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Abstract: Delayed vascularization and resultant resorption limits
the clinical use of tissue engineered bony constructs. The objec-
tive of this study is to develop a strategy to accelerate the
neovascularization of tissue-engineered bony constructs using
endothelial differentiated adipose-derived stem cells (ASC). The
authors harvested ASC from inguinal fat pads of male Lewis rats
(n ¼ 5) and induced toward endothelial and osteoblastic lineages.
The authors created critical size calvarial defects on male Lewis
rats (n ¼ 30) and randomized the animals into 4 groups. For the
repair of the defects the authors used hydroxyapatite/poly(lac-
tide-co-glycolide) [HA-PLG] scaffolds in group I, HA-PLG
scaffolds seeded with ASC in group II, HA-PLG scaffolds seeded
with ASC-derived endothelial cells in group III, and HA-PLG
scaffolds seeded with ASC-derived osteoblasts in group IV. The
authors evaluated the bone healing histologically and with micro-
computed tomography (CT) scans 8 weeks later. Adipose-
derived stem cells exhibited the characteristics of endothelial
and osteogenic lineages, and attached on HA-PLG scaffolds after
differentiation. Micro-CT analysis revealed that highest bone
mineral density was in group IV (1.46 � 0.01 g/cm3) followed
by groups III (1.43 � 0.05 g/cm3), I (1.42 � 0.05 g/cm3), and II
(1.3 � 0.1 g/cm3). Hematoxylin–Eosin and Masson Trichrome
staining revealed similar results with the highest bone regener-
ation in group IV followed by groups II, III, and I. Regenerated
bone in group IV also had the highest vascular density, but none
of these differences achieved statistical significance (P > 0.05).
The ASC-derived endothelial cells and osteoblasts provide a
limited increase in calvarial bone healing when combined with
HA-PLG scaffolds.

Key Words: Bone, multipotent, regeneration, skull, stem cells
(J Craniofac Surg 2017;28: 1874–1879)

arge bony defects usually exceed the physiologic regenerative
L capability of human body and require bone grafts or biomater-
ials for adequate healing.1,2 These approaches are in large part
successful but they come with inherent disadvantages. The use of
bone grafts is limited by donor-site morbidity, resorption, and
additional operative risk, whereas biomaterials are prone to
exposure and infection.1,3,4 In addition, the survival of bone grafts
may be impaired by previous irradiation, contamination, and com-
promised vascularity in the recipient bed.

Tissue engineering uses scaffolds, signals, and cells to synthes-
ize tissues in vitro, offering an exciting solution to problems faced
with traditional bone substitutes.2,3,5 An ideal bone substitute,
which is inert, inexpensive, structurally fortified, and fully osteo-
conductive, can be obtained using tissue engineering methods.3

However, angiogenesis and neovascularization are critical pro-
cesses in bone regeneration and the success of bone tissue engin-
eering is hampered by the lack of an efficient blood circulation
within the bony scaffolds. A variety of approaches have been
applied to promote the vascularization of bony scaffolds including
the localized delivery of potent proangiogenic macromolecules.6–8

Coseeding of endothelial cells and mesenchymal stem cells on
osteogenic scaffolds were also shown to promote vascularization
and bone regeneration.9,10 Endothelial cells can be a viable alterna-
tive to costly macromolecules; however, due to the associated donor
site morbidity and limited proliferation capacity, the clinical use of
mature endothelial cells can be challenging.11 Adipose-derived
stem cells (ASC) differentiate into both endothelial and osteogenic
lineages.12–14 With abundant donor tissue and ease of harvest, ASC
can serve as a source of endothelial cells and osteoblasts for bone
tissue engineering.

Adipose-derived stem cells secrete a number of trophic factors,
can prime the local microenvironment and stimulate angiogenesis
within the scaffolds,15,16 but it is unlikely that the ASC will
spontaneously differentiate into osteoblasts and endothelial cells
in vivo after transplantation due to the lack of external cues.17

Therefore, differentiation of ASC into osteogenic and endothelial
lineages in vitro (before transplantation) represents a more effective
strategy for bone regeneration. The differentiated cells have the
potential to stimulate osteogenesis and neovascularization, and
enable a more complete reconstructive effort.

In this study, we combined a resorbable hydroxyapatite/
poly(lactide-co-glycolide) [HA-PLG] scaffold and ASC-derived
ion of this article is prohibited.
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osteoblasts and endothelial cells in an attempt to obtain a
vascularized osteogenic construct. We transferred the resultant
construct to critical size rat calvarial defects and evaluated bone
regeneration histologically and with micro-computed tomogra-
phy (CT) scans.

MATERIALS AND METHODS
All the animal experiments were approved by Institutional Animal
Care and Use Committee at Travis Air Force Base, David Grant
Medical Center Clinical Investigation Facility (protocol no
FDG20110033A).

Harvest and Differentiation of Adipose-Derived
Stem Cells

We harvested ASC from the inguinal fat pads of Lewis rats
(n¼ 5) following the published protocols of our laboratory.18

Briefly, inguinal fat pads were mechanically minced and digested
in 0.15% collagenase solution for 45 to 60 minutes. The suspension
containing digested fat was filtered through 100 mm filters (Ther-
moFisher Scientific, Pittsburgh, PA) and centrifuged at 1200 rpm
for 5 minutes. The supernatant was discarded and the resultant cell
pellet was washed with sterile phosphate-buffered saline to elim-
inate any contaminants. The cell pellet was plated onto 60 mm cell
culture dishes (Corning, Corning, NY). Fresh medium was added to
dishes twice a week and the cells were allowed to grow until 70% to
80% confluence in culture dishes before passaging. Adipose-
derived stem cells between passages III and V were used for all
the experiments.

We induced rat ASC toward osteoblastic lineage by feeding the
cells with StemPro Osteogenesis Media (ThermoFisher Scientific)
for 21 days, adding fresh medium twice a week. We confirmed
osteogenic differentiation with Alizarin red staining, osteopontin
(OPN) immunofluorescence (IF) staining, and qRT-PCR to detect
OPN gene (the primers used for qRT-PCR are shown in Table 1). For
IF staining we fixed the cells with 4% paraformaldehyde and
incubated them with a primary antibody for OPN (Santa Cruz,
San Diego, CA) overnight at 48C. We used antimouse AF488
(Invitrogen, Eugene, OR) as the secondary antibody. Finally, we
counterstained the nuclei with 40,6-diamidino-2-phenylindole (Vec-
tor Laboratories, Burlingame, CA) and visualized the cells under a
fluorescence microscope.

We induced rat ASC toward endothelial lineage by feeding the
cells with EGM-2MV Bullet Kit (Lonza Pharmaceuticals, Basel,
Switzerland) twice a week for 14 days as described pre-
viously.12,13,19 The contents of the EGM-2MV medium are shown
in Table 2. We confirmed endothelial differentiation with CD31 and
von Willebrand factor (vWF) IF staining, and qRT-PCR to detect
CD31 and vWF gene expression (the primers used for qRT-PCR are
shown in Table 1). We used rat anti-CD31 antibody (Santa Cruz),
mouse anti-vWF antibody (BD Pharmingen, San Jose, CA) as
primary antibodies and antirat Texas red (Life Technologies,
Copyright © 2017 Mutaz B. Habal, MD. Unautho

TABLE 1. Primers Used for qRT-PCR

Forward

OPN 50-AAGGCGCATTACAGCAAAACTCA-

CD31 50-TCACCAAGAGAACGGAAGGC-30

vWF 50-CCGAGCCATACCTGCACATC-30

GAPDH� 50-AGACAGCCGCATTCCCTTGT-30

OPN, osteopontin; vWF, Von Willebrand factor.
�Housekeeping gene.

# 2017 Mutaz B. Habal, MD
Carlsbad, CA), antimouse AF488 (Invitrogen) as secondary anti-
bodies. The rest of the staining protocol was same as above.

Preparation of Hydroxyapatite/Poly
(Lactide-Co-Glycolide) Scaffolds

We prepared HA-PLG scaffolds using a gas foaming/particu-
late leaching method as described previously.20,21 Briefly, micro-
spheres composed of PLG (8515 DLG 7E; Lakeshore
Biomaterials, Birmingham, AL) were prepared using a double-
emulsion process. Lyophilized PLG microspheres (8 mg) were
mixed with 152 mg of NaCl particles (250–425 mm in diameter)
and compressed to a solid disk (final dimensions: 8.5 mm diameter
and 1.5 mm thickness; approximately 85 mL total volume) in a
custom-made stainless steel die using a Carver press (Fred S.
Carver) at 10 MPa for 1 minute. An additional 20 mg of HA
nanocrystals (100 nm diameter; nm diameter; Berkeley Advanced
Biomaterials, Berkeley, CA) were added to the PLG/NaCl mixture
before compression to attain HA:PLG mass ratio of 2.5:1. The
solid disks were exposed to high-pressure CO2 gas (5.5 MPa) for
at least 16 hours to saturate the entire disk. The pressure was
rapidly (<1 min) released to ambient, causing the polymer
particles to foam and ultimately fuse to create porous polymer
matrices. NaCl particles were then removed from the scaffolds by
leaching in distilled H2O over 24 hours.

Cell Seeding on the Scaffolds
We seeded ASC, ASC-derived endothelial cells, and ASC-

derived osteoblasts on the HA-PLG scaffolds in groups II, III,
and IV, respectively (Table 3). We suspended 1 � 106 cells
in 100 mL of serum-free medium and seeded the cells at a density
of 5� 103 cells/mm2 on the scaffolds in 12-well dishes. We kept the
dishes at 378C in incubator for 2 hours to allow the cells to attach to
the scaffolds. Two hours later, we added 1000 mL of cell culture
media containing Dulbecco modified Eagle medium (Gibco, Grand
Island, NY), 10% fetal bovine serum (Corning, Manasas, VA), 1%
antibiotic–antimycotic solution (Sigma, St Louis, MO) into the
wells containing scaffolds. We transplanted the scaffolds into the
calvarial defects a day after cell seeding (Fig. 1).

Rat Critical Sized Calvarial Defect Model
We created 8 mm circular defects in the calvaria of male Lewis

rats (n¼ 30) using a modification of methods described previously.2

Briefly, we prepped and draped the heads of the animals in sterile
fashion and made a 2- to 3-cm midline incision over the parietal
bone using a scalpel. We incised and reflected the periosteum
overlying parietal bones away using a periosteal elevator and
created a circular bone defect measuring 8 mm in diameter using
a drill. We paid extra caution not to disrupt the underlying dura
mater that was freed from the bone using a periosteal elevator.
Following adequate hemostasis, we repaired the defects using
rized reproduction of this article is prohibited.

Reverse

30 50-ATGAAGAGCCAGGAGTCCATGAG-30

50-TATTTGACGGCAGCAGAGGA-30

50-CGGATGCGCTTCTGAGAGAT-30

50-TGATGGCAACAATGTCAAGT-30
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TABLE 2. Contents of EGM-2MV Endothelial Differentiation Medium

EBM 2 basal medium 500 mL

Microvascular SingleQuots Kit

VEGF 0.5 mL

Fetal bovine serum 25 mL

Hydrocortisone 0.2 mL

hFGF-B 2.0 mL

R3-IGF-1 0.5 mL

Ascorbic acid 0.5 mL

hEGF 0.5 mL

GA-1000 0.5 mL

GA-1000, gentamycin/amphotericin-B; hEGF, human epidermal growth factor

hFGF-b, human fibroblast growth factor beta; R3-IGF-1, R3-insulin like growth

factor-1; VEGF, vascular endothelial growth factor.

FIGURE 1. Illustration shows the experimental flow. Critical size rat calvarial
defects were repaired with HA-PLG scaffolds seeded with ASC-derived
osteoblasts and endothelial cells. ASC, adipose-derived stem cells; HA-PLG,
hydroxyapatite/poly(lactide-co-glycolide).
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corresponding methods (Fig. 1, Table 1). Lastly, we closed the skin
over the repair zone using interrupted sutures with 5/0 nylon
(Prolene, Ethicon US, LLC, Sommerville, NJ). Anesthesia was
induced and maintained via inhalation of 2% to 5% isoflurane
during animal procedures.

Evaluation of Bone Regeneration
We evaluated bone regeneration using micro-CT scans and

histologic examination 8 weeks after implantation of the scaffolds.
We obtained micro-CT scans under general anesthesia using a
SkyScan High Resolution in vivo x-ray microtomograph (Bruker,
Billerica, MA). We quantified bone mineral density (g/cm3) on the
CT images using region of interest (ROI) analysis. Briefly, we drew
an 8 mm ROI on the defect zone using the SkyScan Software
[CTAn(v.1.15) þ CTVol(v.2.3)] and quantified the bone mineral
density in the selected area. Following micro-CT scanning, we
euthanized the animals and harvested their calvaria for histologic
analysis. We fixed the excised calvaria including the defect zone
with 4% paraformaldehyde, decalcified, embedded in paraffin
blocks and cut to 5 mm sections. We stained the sections with
Hematoxylin–Eosin (HE) and Masson Trichrome stain and quan-
tified the bone tissue formed in the defect zone using ImageJ
software.22 We expressed the results as ‘‘percent of the total surface
area.’’ In addition, we calculated the vascular density in the defect
zone using HE stained slides. We selected 7 slides from each group
randomly and counted the number of the vessels in the whole defect
zone manually under high power magnification.

Statistical Analysis
All results were compared using 1-way analysis of variance

test and, if necessary, Tukey test. P< 0.05 was considered
significant.
Copyright © 2017 Mutaz B. Habal, MD. Unautho

TABLE 3. Study Groups

Groups n Treatment Method

I 9 HA-PLG scaffold only

II 7 HA-PLG scaffold þ ASC

III 7 HA-PLG scaffold þ ASC-derived endothelial cells

IV 7 HA-PLG scaffold þ ASC-derived osteoblasts

ASC, adipose-derived stem cells; HA-PLG, hydroxyapatite/poly (lactide-co-

glycolide).
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RESULTS

Differentiation of Adipose-Derived Stem Cells
Toward Osteoblastic and Endothelial Lineages

The ASC-derived osteoblasts secreted bone matrix as detected
by Alizarin red staining (Fig. 2, upper panel) and the cells stained
positive for OPN in IF staining (Fig. 2, upper panel). After 3 weeks
of differentiation, the expression of OPN gene also increased
6.3� 1.8 fold in ASC (P< 0.05) (Fig. 2, upper panel). The
rized reproduction of this article is prohibited.

FIGURE 2. Upper panel: Alizarin red staining revealed the osteogenic matrix
secreted by ASC-osteo (above left, microbar 500 mm). ASC-osteo also stained
positive for OPN in IF staining (below left, microbar 50 mm) and exhibited an
increase in the expression of OPN gene at the end of differentiation period
compared with undifferentiated ASC (right). Lower panel: ASC-derived
endothelial cells stained positive for CD31 and vWF in IF staining (above and
below left, microbar 50 mm), and showed increased CD31 and vWF gene
expression compared with undifferentiated ASC (right).

�
P<0.05. ASC,

adipose-derived stem cells; ASC-osteo, ASC-derived osteoblasts; IF,
immunofluorescence; OPN, osteopontin; vWF, Von Willebrand factor.

# 2017 Mutaz B. Habal, MD



FIGURE 4. Evaluation of bone regeneration within the calvarial defect zone
using region of interest (red circle) analysis (above). Micro-computed
tomography scans show new bone protruding into the defect zone in ASC-osteo
group, whereas there was no bone regeneration in the defects repaired with
blank scaffold (middle). However, the increase in bone regeneration in ASC-
osteo group was limited and bone mineral density was similar across the study
groups (below). ASC, adipose-derived stem cells; ASC-endo, ASC-derived
endothelial cells; ASC-osteo, ASC-derived osteoblasts.

FIGURE 3. ASC-osteo (labeled with DiI) and ASC-endo (labeled with DiO)
seeded on the HA-PLG scaffolds. Microbar 50 mm. ASC, adipose-derived
stem cells; ASC-endo, ASC-derived endothelial cells; ASC-osteo, ASC-derived
osteoblasts; HA-PLG, hydroxyapatite/poly(lactide-co-glycolide).
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ASC-derived endothelial cells stained positive for CD31 and vWF
(Fig. 2, lower panel). Expression of vWF and CD31 genes also
increased 11.2� 1.3 and 1.5� 1.01-fold, respectively, compared
with undifferentiated ASC (P< 0.05) (Fig. 2, lower panel). Differ-
entiated and undifferentiated ASC both attached to the surface of
HA-PLG scaffolds (Fig. 3).

Bone Regeneration
We initially included 9 animals per each group; however, 2

animals from groups II, III, and IV were excluded from the study
due to postoperative complications. All the other animals survived
and recovered from the surgery uneventfully.

The highest bone mineral density was in group IV [(scaffold þ
ASC-derived osteoblasts) (1.46� 0.01 g/cm3)] followed by groups III
(1.43� 0.05 g/cm3), I (1.42� 0.05 g/cm3), and II (1.3� 0.1 g/cm3)
(Fig. 4). Even though there was a trend toward increased bone
regeneration in group IV in comparison to other groups, this did
not achieve statistical significance (P> 0.05) (Fig. 4).

The results of HE and Masson Trichrome staining (Fig. 5, above)
was similar to micro-CT evaluation. We observed the highest bone
regeneration in group IV followed by groups II, III, and I but the
difference between the groups did not achieve statistical signifi-
cance (P> 0.05) (Fig. 5, below). Highest vascular density was in
group IV but this difference also did not achieve statistical signifi-
cance (P> 0.05) (Fig. 6).

DISCUSSION
Our beginning hypothesis in this study was that ASC-derived
endothelial cells would accelerate the neovascularization of the
osteogenic scaffolds and increase the bone regeneration. However,
we did not observe a significant increase in bone regeneration with
the use of ASC-derived endothelial cells and osteoblasts. These
results are consistent with our previous report using poly lactic acid
scaffolds23 and might be explained by several possible reasons
including the loss of the plasticity of ASC-derived endothelial cells
after transplantation to an osteogenic environment, death of the
majority of the transplanted cells (due to continuing delay in
vascularization), and low seeding efficiency. We also failed to
observe the well-documented angiogenic effect of ASC that might
be due to the same reasons mentioned above, in particular death of
the ASC after transplantation into an avascular environment, and
low initial seeding efficiency.

The most striking difference between in vitro and in vivo
environments is the complex 3-dimensional structure of the in vivo
environment. In vitro, culture medium effectively delivers the
nutrients to the cells in cell culture dishes. In contrary to this,
the access of the cells to the nutrients in vivo solely relies on the
neovascularization of the scaffolds following transplantation. A
delay in neovascularization unquestionably leads to cell death and
Copyright © 2017 Mutaz B. Habal, MD. Unautho
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decreases the effectiveness of cellular treatment.11,24 Our results
suggest that seeding scaffolds with endothelial cells alone is not
sufficient to stimulate neovascularization of the scaffolds. A more
effective strategy might be to establish a vascular network within
scaffold before transplantation so that the vascular network of the
scaffolds can be anastomosed to the vessels in the recipient bed
providing immediate blood flow to the scaffold. At the time of this
writing, there are several research groups, including ours, working
toward achieving this goal.25,26

An interesting finding of this study was the markedly better bone
regeneration detected in the stem cell-treated groups histologically
in comparison to micro-CT scans. The reason for this discrepancy
might be the failure to detect immature bone tissue with micro-CT
as well as the different quantification methods (ImageJ vs SkyScan
Software). Since histologic analysis is a more direct method of
evaluation, we believe that our histologic results reflect the extend
of bone regeneration in cell treatment groups better than micro-CT
scans. There is a visibly stronger trend toward better bone
rized reproduction of this article is prohibited.
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FIGURE 6. Vascular density in the defect zone was also similar across the groups
as seen in Hematoxylin–Eosin stained slides (P<0.05). Black arrows mark the
vessels. Microbar 100 mm. ASC, adipose-derived stem cells; ASC-endo, ASC-
derived endothelial cells; ASC-osteo, ASC-derived osteoblasts.

FIGURE 5. Hematoxylin–Eosin and Masson Trichrome staining for histologic
evaluation of bone regeneration (above, microbar 500 mm). Black arrow heads
mark the border between the intact calvarial bone and the scaffold occupying
the defect. Even though representative pictures show better bone regeneration
in cell treated groups (II, III, IV) in comparison to defects treated with only blank
scaffold (group I), percent regenerated bone area within the whole defect zone
was similar across the groups (below). ASC, adipose-derived stem cells; ASC-
endo, ASC-derived endothelial cells; ASC-osteo, ASC-derived osteoblasts.

Orbay et al The Journal of Craniofacial Surgery � Volume 28, Number 7, October 2017
regeneration in cell-treated groups in histologic slides, only masked
by wide standard deviation bars. Decreasing the deviation within
the groups by increasing the sample size might conceive the real
osteogenic potential of ASCs and ASCs-derived endothelial cells
and osteoblasts.

Despite the controversial reports on their osteogenicpotential, ASC
are safe and can function as a continuous source of growth factors in
vivo,16,24,27 and still hold the potential to become a valuable tool in
bone tissue engineering. Several other strategies for bone regeneration
have been described in the literature; bone morphogenetic protein-2
(BMP-2),28 recombinant angiogenic proteins,6,29 and proangiogenic
materials7,27 were all shown to induce angiogenesis, and osteogenesis
whenused inconjunctionwithosteogenicscaffolds.Moreover,BMP-2
was found superior to ASC in terms of stimulation of bone regener-
ation.28 However, it should be noted that these molecules are quickly
degraded in vivo, hence have a short-lasting effect, and potentially
serious side effects at clinical doses.30–33 The ideal solution might be
using a combination of these tools instead of using them as opposite
alternatives. Such a combination may have synergistic effects on bone
healing and allow us to avoid the side effects of singular treatments in
clinical application by decreasing the required doses.29,34

Another point that merits discussion is the ideal stem cell type
for bone tissue engineering. We opt to use ASC in this study
considering the ease of access and harvest; however, bone
Copyright © 2017 Mutaz B. Habal, MD. Unautho
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marrow-derived stem cells are known to have a higher osteogenic
potential than ASC,35 and may have yielded a better bone regen-
eration in our animal model. The pros and cons of these stem cell
types should be weighed against each other carefully, preferably on
a case-by-case basis, in clinical application.

Despite the major roadblocks to efficient clinical application,
the number of tissue engineering methods for calvarial bone
reconstruction has increased steeply in recent years. Developments
in 3-dimensional printing, tissue engineering, and osteoinductive
delivery systems allowed the development of computer-designed
implants, which can be tailored to the shape of complex craniofacial
defects.4 Some of these new technologies have been tested in the
clinic on a limited number of patients and yielded favorable results
encouraging future studies.24,36–41 However, as suggested by our
results, vascularity remains to be an obstacle in tissue engineering.
Refinement of the cell delivery vehicles (ie, scaffolds) and devel-
opment of new strategies to induce angiogenesis and neovascular-
ization are mandatory to accelerate the clinical translation of bone
tissue engineering methods.

In conclusion, ASC-derived endothelial cells and osteoblasts
seeded on HA-PLG scaffolds provided a limited increase in vas-
cularization and bone regeneration compared with scaffolds alone.
Detailed studies are needed to determine the exact reason(s) for
these results and possible solutions.
rized reproduction of this article is prohibited.
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