
UC Irvine
ICS Technical Reports

Title
Layout area models for high-level synthesis

Permalink
https://escholarship.org/uc/item/06n9m4t7

Authors
Wu, Allen C.H.
Chaiyakul, Viraphol
Gajski, Daniel D.

Publication Date
1991-04-19

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/06n9m4t7
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Layout Area Models for
~~ High-Level Synthesi~

Allen C-H. Wu
Viraphol Chaiyakul

Daniel D. Gajski

Technical Report #91-31
April 19, 1991

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

Abstract

Traditionally, the common cost functions, the number of functional units, registers
and selector inputs, are used in high level synthesis as quality measures. However, these
traditional design quality measures may not reflect the real physical design. To establish
quality measures based on the physical designs, we propose layout estimation models for two
commonly used data path and control layout architectures. The results show that quality
measures deriving from our models give an accurate prediction of the final layout. The
results also show that traditional cost functions are not good indicators for optimization in
high level synthesis.

J

/

Contents

1 Introduction

2 Layout area models

2.1

2.2

2.3

Data path layout model

2.1.1

2.1.2

2.1.3

Unit area ..

Wiring area .

The Overall data path layout model

Control layout area model

2.2.1

2.2.2

Random logic layout area model

PLA layout model

Memory and multiplier layout area models .

2.3.1

2.3.2

2.3.3

RAM/ROM layout area model

Register file layout area model

Multiplier Layout area model

2.4 Complexity analysis

3 Experiments and Results

4 Conclusions

5 References

2

4

5

8

10

11

12

13

17

18

19

20

21

23

23

27

35

~
1 2 3 5 1 2 6 7

mux height(um) width(um) delay(ns) with 1 pf load

~ ~ x

2:1 80 43.2 7.35

3:1 80 68.8 7.2 1 3 2

4:1 80 80 7.25 3 2 (b)

5:1 80 102.4 7.85 mux

6:1 80 114 8.9
4 mux 5 6 7

7'.1 80 144 7.9

8:1 80 155.2 7.9 mux mux mux

to reg1 to reg2 to reg3

(a) (c)

Figure 1: Interconnect cost based on physical design

are required. On the other hand, when a three-level-mux model is used by merging the

mux inputs, only 11 mux inputs are needed (Figure l(c)). Based on the mux input count,

the three-level-mux design seems to be better than the one-level-mux design. However, by

taking into account the mux area and delay information in Figure l(a), the total area for

the one-level-mux design with one bit datapath is 19,200 µm 2 while the delay is 7 .25ns.

For the three-level-mux design with one bit datapath, the total area is 19,328 µm 2 and the

delay is 21.45ns. As a result, the one-level-mux design is better than the three-level-mux

design in terms of area and delay even though the one-level-mux design uses more mux

inputs than three-level'"mux design's. This example demonstrates that the number of mux

inputs is not a good quality measures for data path optimization.

As another example considers two designs: (1) using two 2-input multiplexers and (2)

3

usmg one 4-input multiplexer. Since both designs have four mux inputs, both designs

have the same interconnect costs in terms of the mux inputs. However, using the physical

information shown in Figure 1(a), the area of the two 2-input multiplexers is 6,912µm 2 /bit

which is larger than the area of the one 4-input multiplexer (6,400µm 2 /bit). Again, the

traditional interconnect cost function does not well predict for the layout area.

In this paper, we describe layout models for the data path and control logic. We also

defj.ne new quality measures, the product of transistor and routing track density for layout

area optimization. We demonstrate the superiority of our models and the new cost function

by comparing it to the real layout area during design space exploration of the elliptic filter

benchmark.

The remainder of this paper is organized as follows: Section 2 describes the data path,

control logic, and merrto~y area models. Section 3 describes the experiments and results.

Finally, Section 4 summaries our approach.

2 Layout area models

We divide the chip into four parts: (1) Data path, (2) Control logic, (3) Macrocells, and (4)

Memories. Data paths consist of regular structural components such as an adder/ subtracter,

ALU, MUX, or register. Control logic consists of a set of random gates or a PLA associated

with the data path to perform required data transfer. Macrocells include some predefined

components such as multipliers. Memories include RAMs and ROMs. In this section, we

4

first describe the area estimation models for the data path and the control logic. Then we

describe the area estimation models for the multiplier and the memories.

2.1 Data path layout model

There are two common layout architectures ([12),[17),[28],[25),[2],[26]) for data paths: (1)

bit slice stack with abutment and (2) bit-sliced macrocells with routing channel where a

macrocell represents a bit slice of microarchitecture units. The first and second layout

architectures are shown in Figure 2 (a) and (b) respectively. The first architecture uses

abutment to connect different bit slices, and over-the-cell routing for connecting different

units inside one bit slice. Different strips for P and N transistors are laid out horizontally.

Data signals run vertically in second metal over the bit slices. Power, ground, and control

lines are routed in first metal or poly between the bit slices. The stack grows horizontally

when the bit-width increases, and vertically when the number of units increases. In the

second layout architecture, bit-sliced macrocells or standard cells of each bit slice are placed

vertically and a routing channel is used for connecting different cells inside one bit slice. In

this architecture, power and control lines run horizontally in second metal while data lines

run vertically in first metal or poly.

We first describe the area cost of the first architecture (bit slice abutment). In this

architecture, each bit slice has a fixed number of over-the-cell routing tracks (Figure 3(a)).

If the actual number of routing tracks used to connect units is less than or equal to the

available routing tracks for a bit slice, then the stack width is equal to the width of the bit

5

routing
channel (meta11 or poly)

data
lines

(metal2

LSB MSB

-~

)

~c ontrol
lines

~ metal1)

bit
slic

bit
slice

control/

lines " (metal2),._,.__....,_....,._....,_....,._.....,.......,.

(a) LSB
(b)

MSB

Figure 2: Two data path layout architectures

slice times the number of bit slices. The stack height is equal to the sum of the heights of

all units in the stack which include functional units, registers, and interconnect units. On

the other hand, if the actual routing track density used to connect units is higher than the

number of available routing tracks, then extra routing area is required. Thus, the area cost

is calculated as follows:

if Trkavan2::Trkused
Atotal = I

w(A FU + A REG + AIU + Awire) if Trkavail < Tr kused

where
Atotal is the total area of the data path;
AFu is the single bit slice area of functional units;
AREG is the single bit slice area of registers;
Aiu is the single bit slice area of interconnect units, multiplexers or tri-state buffers;
Awire is the area of a routing channel;
Trkavail is the available over-the-cell routing tracks of one bit slice;
Trkused is the actual routing tracks required to connect units in one bit slice.

6

w is the bit widths of the data path;

For the second architecture (cells with routing channel), the area cost is the same as

the described area cost; however, the available over-the-cell tracks in this architecture is

equal to zero, that is Trkavail =0 (Figure 3(b)).

fixed # of over-the-cell
routing tracks

r---".

unlt1
.,

••
•• I

power ,.... : : I
••
• • I ••

ground :: I
• • I ••

.-.t"4-...,.. • • I •• ••I •• •• I •• •• I ••
ground..,...,._....,.•1 I ••
unltn •• I ••

one bit e~~routing
area

(a)

unitn

I routing area

I
I

.__ __ - ...J

one bit

(b)

Figure 3: The area models for two layout architectures

The area of a bit slice consists of two parts: (1) the unit area in the bit slice and (2)

the wiring area. In this section, we first describe the unit area cost. Then, we discuss the

wiring area cost. Finally, we describe the overall area costs for the data paths.

7

2.1.1 Unit area

As described in the previous section, the unit area of one bit slice consists of three parts: (1)

functional unit area, (2) register area, and (3) interconnect unit area. We use the transistor

costs as the measures of unit area consumptions. Since the transistor costs of the functional

units and registers can be obtained by examining a component library ([31]), we focus on

the interconnect unit cost estimations, which consist of two models: (1) multiplexer and

(2) bus. Using the bus model, a tri-state buffer is needed for each selector input in the RT

design; thus, the transistor cost of the interconnect units is shown as follows:

n

trs(IU) = L trs(tri_bufferi))
i=l

where
n is the number of selector inputs in the RT design;
trs(tri_bufferi) is the number of transistors of a tri_buffer.

Using the multiplexer model, the area cost of the interconnect units depends on two

factors: (1) area cost of each selector input and (2) area cost of the selector itself. We

first describe the multiplexer structures and the correlations between transistor costs and

multiplexer inputs. There are two common multiplexer implementations: (1) one select

control line for each input (Figure 4(a)) and (2) flog 2 n l control lines per n inputs (Figure

4(b)). The first mux has one optional decoder outside the sliced stack while the other has

a decoder in each unit. The multiplexer consists of three parts: (1) the selector, (2) the

output drivers, and (3) a~ optional internal decoder. Assume the selector inputs have the

same selection circuit, the number of transistors of a multiplexer j is shown as follows:

8

I in(muxj) x tr1 + tr2 one control per input
trs(muxj) =

in(muxj) x tr1 + 210grin(muxj)l x tra + tr2 decoding control inputs

where
in(muxj) is the number of inputs of mux j;
tr1 is the number of transistors of each selector input;
tr2 is the number of transistors of the output driver.
tr3 is the number of transistors of each decoder input;

input Input

selector

selector

n---
control

output
driver

decoder

output
drhier

n 1 control lo!l"nl

(a)
(b)

input 1

input n

sel 1 sel n

(c)

Figure 4: Two multiplexer structures

output

For example, Figure 4(c) shows a n-input multiplexer with n control lines. In this

multiplexer, there are four transistors for each input and two transistors for each output

driver such that tr1 is equal to 4 and tr2 is equal to 2. Thus, the transistor cost of a

4-input multiplexer is 18.

9

Using the multiplexer model, the transistor cost of the interconnect units is shown as

follows:

m

trs(IU) = L trs(muxj)
j=l

where
mis the number of selector in the RT design.

2 .1. 2 Wiring area

The wiring cost can be described as the routing track density required to completely connect

all nets in a bit slice. The actual density can only be determined after bit slice units have

been physically placed. However, the placement procedure is often expensive in terms of

computation time. Hence, we use an inexpensive wiring estimation method.

In our wiring estimation, the routing density is measured in terms of number of the

routing tracks using the linear placement model of two described data path layout archi-

tectures. Given a netlist, we place components linearly in a single row. We first use the

min-cut partitioning algorithm ([7],[13]) to perform component placement. Then, routing

tracks are assigned to nets using the left-edge algorithm which explores the possibility of

track sharing. The estimated number of routing tracks for a single bit slice is obtained and

the wire cost is calculated as follows:

Awire = f3 (Trkused - Trkavail)

10

where
Trkused is the number of required routing tracks in a bit slice;
Trkavail is the number of routing tracks available for over-the-cell routing;
/3 is the product of wire pitch times the stack height.

/3 is the area coefficient of a routing track which depends on the wire pitch and routing

channel width. The wire pitch depends on the layout technology. For example, using a 3µm

technology, the wire width is 3µm while the distance between two wires is 3µm. Therefore,

the wire pitch of each routing track is 6µm.

2.1.3 The Overall data path layout model

Using the described area and wiring costs, we can derive the overall area cost of the data

path as follows:

n m P

Atotal = w(a(L trs(FUi) + L trs(REGj) + L trs(IUk)) + Awire)
i=l j=l k=l

where
Atotal is the area cost of the data path;
a is the transistor area coefficient which correlates to the layout technology
and the layout system;
trs(FUi) is the number of transistors in functional unit i;
trs(REGj) is the number of transistors in register j;
trs(IUk) is the number of transistors in interconnect unit k;
n is the number of functional units in one bit slice;
mis the number of registers in one bit slice;
p is the number of interconnect units in one bit slice;
w is the bit widths of the data path;

a is a transistor area coefficient (area/transistor) which is technology dependent and

varies with different layout systems. For example, a is 220 µm 2 /transistor using the l.5µm

11

technology component library (31), while a is 1,100 µm 2 using the 3µm technology com-

ponent library (1]. This area coefficient a is obtained from the empirical studies using the

targeted layout system and technology.

2.2 Control layout area model

Conditional
status

Next-state
Logic

Conditional
status

Next
State

Conditional
status

uj Present
O> State e
Cl) -s

en

Next

State

Conditional
status

Conditional
status

(a)

AND Plane

Inputs

(b)

OR Plane

Outputs

to Data Path
Control Lines

Figure 5: Two control logic layout architectures: (a) Random logic and (b) PLA imple­
mentations

In the control logic layout model, we focus on two control logic architectures: (1)

Random logic and (2) PLA (Figure 5). Random logic includes gates, flip-flops, decoders,

and drivers which are often laid out using standard or custom cells. On the other hand,

12

PLA offers a regular structure for implementing control logic functions. A typical PLA

uses an AND-OR structure combined with an input and output circuitries.

One major issue in control logic implementation is the state encoding scheme. Many

researches([4),[29]) have focused their efforts to find an encoding scheme which can produce

minimal layout area. Results obtained from these schemes vary in a wide range. Hence an

accurate general control logic estimation is difficult to achieve. In our control logic layout

model, we assume that states are encoded in binary value according to their state number.

However, this assumption can be further improved upon the knowledge of encoding scheme

uses in the actual layout implementation.

In this section, we first describe the random logic layout model. Then, we describe the

PLA layout model. As mentioned earlier, we use the transistor costs as the measurement

of area consumptions.

2. 2 .1 Random logic layout area model

We define the random logic model as a next-state logic, a state registers, and a state decoder

logic (Figure 5a). The next-state logic consists of combinational gates which computes

the next state from the present state and the conditional status. A set of state registers

provides state sequencing effect. The state decoder logic uses the present state and the

conditional status to determine the control signals of the data path.

The upper bound of the number of transistors needed in the next-state logic can be

13

PRESENT-STATE IN OUT NEXT-STATE
PSn PS1 PS0 NSn NS1NSo

0 1 0

0 ······· 0 0 0 1 1

0 0
NS1

0 0 0
0 0 1

0 1 0

• • • • • • • • • • • •
m

• n = r log2 ml

Figure 6: The next-state logic model

determined from the state transition table. Basically, we can express each encoded next-

state bit, (NSi), as a sum of product terms of encoded present-state bits, (PSi), see Figure

6. To simplify the cost, we do not take into account the conditional status bits. The product

terms can be implemented as AND gates while the overall sum can be implemented as an

OR gate (Figure ??). Thus, the next-state logic cost is calculated as follows:

flog2ml

trs(ns_logic) = I: trs(NSi)
i=O

The state decoder logic can be further sub-divided into two parts: (1) a state decoder,

and (2) a two-level OR-gate-driver logic. For a data path component with a set of control

lines, a n-input OR gate is inserted in front of each control line where n is the number

of time steps in which the particular control is activated(Figure 7(a)). For example, the

register in Figure 7(b) loads n=3 variables varl, var2, and var3 on the time steps 1, 3,

14

and 5 respectively. A 3-input OR gate takes 3 control inputs for time steps 1, 3, and 5 from

the state registers. For an n-input MUX (Figure 7(c)), if n1 variables are selected from

mux inputl on n1 time steps, then a n1-input OR gate takes n1 control inputs. Similarly,

an n-input OR gate takes n control inputs to select the add or substract operation of a

functional unit (Figure 7(d)).

control
inputs

control
inputs

1

n~-t>.
1~1
n~

DP component

step 1

control ~tep3
Inputs

step 5

n variables

load Register

(a) (b)

n1 "2
varlables variables

sel_1

MUX

sel_n

(c)

1

control ~
Inputs~

n

sel +/-

(d)

Figure 7: The control driver model

The transistor cost of the random logic implementation consists of five parts: (1) next-

state logic costs(trs(ns_logic)), (2) state registers costs(trs(state_reg)), (3) state decoder

costs (trs(state_decoder), (4) OR-gatecosts(trs(OR)), and (5) drivercosts(trs(driver)).

Where,

15

and

p <

trs(state_reg) = flog2m l x (trs(register))

trs(state_decoder) = trs(pog2m l : m DECODER)

n

trs(OR) = I:trs(p_input OR gate)
i=l

of control steps in which variables are loaded
if i is a register control line

of control steps in which inputs are selected from mux input i
if i is a mux select line

of control steps in which variables are loaded from the trLstate buffer input
if i is a tri...state buffer control line

of control steps in which operation i is selected
if i is a functional unit select line

mis the number of control steps;
n is the number of control lines.

Thus, the total transistor cost trs(RL) is calculated as follows:

n

trs(RL) = trs(ns-1ogic)+trs(state_reg)+trs(state_decoder)+trs(OR)+ I: trs(driver)
i=l

And the .area cost of the random logic is calculated as follows:

ARandom_Logic = a trs(RL)

16

where
a is the transistor area coefficient.

2.2.2 PLA layout model

We use a common PLA layout implementation ([4],[29]) which performs state encoding

techniques which yields minimum area in the final implementation. The layout model of a

PLA consists of five parts: (1) inputs, (2) AND plane, (3) OR plane, (4) outputs, and (5)

state registers which are described as follows:

(1). Inputs. For m control inputs, it requires log f ml input drivers and state latches. The

transistor cost of the inputs of a PLA is shown as follows:

trs(in) = flog ml x (trs(driver)+ trs(latch))

(2). AND plane. The size of AND plane in a PLA is proportional to the number of control

inputs. The transistor cost of the AND plane is shown as follow:

trs(AND) = pogml x m

(3). OR plane. The size of OR plane in a PLA is proportional to the number of control

inputs as well as the number of control outputs. For m control inputs and n control

outputs, the transistor cost of the OR plane is shown as follow:

trs(OR) = m x n

17

(4). Outputs. For each control output, a driver, a precharging cell, and an optional latch

are required. For n control outputs, the transistor cost of the outputs of a PLA is shown

as follow:

trs(out) = n x (trs(driver) + trs(latch) + trs(precharge_cell))

(5). State registers. Since we assumed that states are encoded as binary value according

to the state numbers, the transistor cost of the state registers can be defined as follow:

trs(state_register) = r1og2m l x (trs(register))

Thus, the total transistor cost of the PLA is:

trs(PLA) = trs(in) + trs(AND) + trs(OR) + trs(out) + trs(state_register)

and the area cost of the PLA is:

APLA = a trs(PLA)

where
a is the transistor area coefficient.

2.3 Memory and multiplier layout area models

In this section, we first describe the RAM/ROM layout area model. Then, we discuss the

register file layout area model. Finally, we describe the multiplier layout area model.

18

N

M X N bits M

Sense Amp.

Column Decoder
w

Column Buffers

Figure 8: The RAM/ROM layout area model

2.3.1 RAM/ROM layout area model

Figure 8 shows the RAM/ROM model. For a MxN bits RAM/ROM, each row contains

N-bit storages which are divided into N/W sections, where Wis the word size. The row

decoder selects N-bit out of MxN bits of storages. The column decoder selects W-bit out

of N-bit of storages. Thus, the transistor cost of RAM/ROM is calculated as follows:

MxN
trs(Mem) = L (trs(Mem_cell)) + trs(row_decoder) + trs(column_decoder)

i=l

N q

+ L trs(sense_amp) + L trs(buffer)
j=l i=l

where

19

Mem ={RAM, ROM}

trs(row_decoder) = trs(flog2Ml : M DECODER)

trs(column_decoder) = trs(flog2N/Wl: N/W DECODER)

and the area cost is given as follows:

AMem = a trs(Mem)

2.3.2 Register file layout area model

~
~
enl ...
en
~

l

M-word
N-blt

Ret~!:ter

Read/Write
Circuit

J~

,.,i.- p

,~

Data
1/0

Figure 9: The register file layout area model

Figure 9 shows a p-port M by N bits register file which consists of a register array, a

20

set of address decoders, and a read/write circuitry. For a p-port register file, it requires p

sets of decoders to decode p register addresses simultaneously. Thus, the transistor cost of

a register file is calculated as follows:

MxN p N

trs(RF) = L (trs(Reg_cell)) + L trs(decoder) + L trs(r/w_cell)
i=l j=l k=l

where

trs(decoder) = trs(pog2p l : p DECODER)

and the area cost is given as follows:

ARF = a trs(RF)

2.3.3 Multiplier Layout area model

Area usage of the multiplier is estimated using a M by N S-stage pipeline parallel

multiplier model (Figure 10), where M and N is the number of operand bits, and S is the

number of pipeline stages.

The core array of the multiplier requires (M x N) AND gates, (M-1) half adders, and

(M-1) x (N-2) full adders. Hence, the transistor estimation of the core cells array is given

as follows:

trs(core_array) = (M x N)trs(AND) + (M - l)trs(Half_adder)

21

__ ...m----:-:::::::==m"" ~r~!r\r core
Pipelined Stage

Latch ea

0 m+n-1

Figure 10: The pipelined multiplier layout area model

+(M - 1) x (N - 2)trs(Fu1Ladder)

If S > 1, (S-1) columns of latches are inserted to store intermediate results of each

pipeline stage. For each of the M rows, a total of 3 latches are required for storing the

operand, the sum from the adder, and the carry from the adder. In addition, input and

output latches are inserted for stage computations. Thus, the required latches is given as

follows:

trs(stageJ.atch) = (S - 1)(3 x (M - l))trs(latch)

t (. t I t h) { L:f811
)l(M -1)/SJ xix trs(latch) if S > 1

rs mpu - a c = o = otherwise

22

trs(output_latch) = { 0I:~~~l) l(N + M - 1)/SJ xix trs(latch) if S > 1
otherwise

Thus, the total transistor of the multiplier is calculated as follows:

trs(Multiplier) = trs(core_array) + trs(stage_latch)

+trs(input_latch) + trs(outpuLlatch)

and the area cost is given as follows:

AMultiplier = a trs(Multiplier)

2.4 Complexity analysis

(1). Data path estimation. For a structural netlist of n components and m nets, unit area
estimation takes O(n) time. The wiring estimation uses min-cut partitioning ([7],[13]) for
unit placement and left edge algorithm for routing track assignment. Both take O(mlogm)
time.
(2). Control estimation. For the random logic implementation, it takes O(p) time where p
is the number of the control lines. For the PLA implementation, it takes constant time.
(3). Memory and macros layout estimations take constant time.

3 Experiments and Results

We have tested our layout models on four different implementations of the elliptic fil-

ter benchmark (19-step with 2-adder and 1-piped multiplier, 21-step with 2-adder and 1-

multiplier, 19-step with 2-adder 2-multiplier, and 17-step 3-adder and 2-piped multipliers)

23

which were collected from the literature ([6],[10],[23],[24]). We first performed allocation

[30) trading off registers and interconnect units on each example. Then, we used GDT [1)

tools to generate the layouts. Figure 11 shows the data path of a 16-bit elliptic filter' using

data path architectures I and II respectively. Figures 12 and 13 show the final layouts

of a 16-bit, 19-step, 2-adder, 1-piped multiplier, and 10-register elliptic filter example with

PLA and random logic implementations respectively.

In the data path area estimation, we used the single-level interconnect model and per­

formed multiplexer and bus implementations for all cases. The area and transistor informa­

tion of the bit slices and macro cells are obtained from a VTI data path library [31] which

uses a 1.5-µm technology. Figure 14 shows the results of the multiplexer implementation

and Figure 15 shows the results of the bus implementation. Since the multiplier is treated

as a macrocell, its area is constant throughout all examples. Therefore, the multiplier area

is not included. For example, row 1 of Figure 14(a) is described as follows: The 17-step

elliptic filter design uses 3-adder and 2-piped multipliers. This design uses 10 registers and

11 selectors with 34 inputs. This design consists of 552 transistors and 27 nets for each bit

slice. The final layout of this design contains 11 routing tracks and our track estimation

is 15. Using layout architecture I, the estimated area is 129,680µm 2 and the actual area

is 136,720µm 2 per bit, and the ratio of estimated and actual areas is 0.95. Using layout

architecture II, the estimated area is 213,625µm 2 and the actual area is 193,117 µm 2 per

bit, and the ratio of estimated and actual areas is 1.11. Figures 16 and 1 7 (a)-(b), (c)­

(d), (e)-(f), and (g)-(h) show the relationships between estimated and actual areas using

the multiplexer and bus implementations with layout architectures I and II of 17-step,

24

19-step (2-adder and 2-multiplier), 21-step, and 19-step (2-adder and 1-piped multipler)

respectively.

For the data P<:th architecture I, we use the sliced layout architecture [16) which has 13

over-the-cell routing tracks for each bit slice. Therefore, if the routing tracks are less than

or equal to 13, then the area estimations are solely dependent on the number of transistors

in the designs. The results in Figure 14 and 15 show that our layout models can predict

the actual area with an average of 90% accuracy.

In the total area estimation including data path, control, and multiplier, we have ex­

perimented with a 16-bit, 19-step, 2-adder, and 1-piped multiplier elliptic filter example.

Using data path architecture I, we implemented two control logic models, PLA and random

logic, along with two interconnect models, bus and mux. Since multiplier is treated as a

macrocell, the area of multiplier is obtained directly from the component library. Figures

18(a) and (b) show the results of mux and bus implementations respectively. The results

show that our layout models can predict the actual area (1) of the data path with 10%

error, (2) of the PLA with 18% error, (3) of the random logic with 16% error, and (4) of

the total area with 6% error.

Using the layout results, we also investigated the relationships between the structural

designs and the physical designs for traditional quality measures. The results show that

neither the design with the minimal registers nor the design with the minimal

interconnect units can predict the minimal area which are described as follows:

(1) The designs with the minimal number of registers do not produce the minimal area,

25

such as:

(i) 21-step, mux implementation, and architecture I (Figure 16(g)).

(ii) 19-step and 19-step with 2-adder and 1-piped multiplier, mux implementation,

and architecture II (Figure 16(d)(h)).

(iii) 21-step and 19-step with 2-adder and 1-piped multiplier, bus implementation,

and architecture I (Figure 17(e)(g)).

(iv) 21-step and 19-step with 2-adder and 1-piped multiplier, bus implementation,

and architecture II (Figure 17(f)(h)).

(2) The designs with the minimal number of mux inputs do not produce the minimal area,

such as:

(i) 19-step with 2-adder and 1-piped multiplier, mux implementation, and

architecture I (Figure 16(g)).

(ii) 21-step, mux implementation, and architecture I (Figure 16(f)).

(3) The design which produces the minimal area for one layout architecture does not guar­

antee the minimal area for another layout architecture. For example, using both of the mux

and bus implementations, the 21-step design (Figure 16(e)) with 11 registers and 27 bus

inputs produces the minimal area using layout architecture I but not layout architecture II

(Figure 16(f)).

The results in Figures 16 and 17 show that using our layout models, the estimated

areas do accurately reflect the actual areas. The only two exceptions are the design with

17-step and 19-step with bus and architecture I (Figure 17(a) and (c)). For both cases,

the errors are caused by over-estimated routing tracks using our track estimation.

26

4 Conclusions

In this paper, we demonstrated that the traditional design quality measures, using register

and selector input counts, do not well reflect the real layout. We established novel layout

area estimation models for data path and control logic. Our models formulate layout area

estimation as a function of transistor and wiring costs. Our models are flexible in that

we can use different area coefficients a and /3. to predict layout areas for different layout

technologies and layout systems. The results show that our models can accurately predict

physical layout. Furthermore, the layout estimation can he computed in a O(mlogm)

time complexity which allows us to explore design space in high level synthesis rapidly and

efficiently.

5 Acknowledgements

This work was supported by NSF grant ~MIP-8922851, California MICRO grant ~90-046,

and contributions from Rockwell International, Western Digital, and Silicon Systems Inc.

We are grateful for their support. The authors also like to thank Tedd Hadley and L.

Ramachandran for their useful discussions.

27

Figure 11: The data path layouts of a 16-bit elliptic filter example: (a) Architecture I and
(b) Architecture II (multiplier is not included).

28

** Area not including multiplier

Lq_out Architecture I Layout Architecture M

Control
#of+ #of* #of #of /#Sel. #trks. Est Area Actualkea Est Est Ana Aclualkea Esl

Steps Reg. Sel. Inputs #trs. #nets Actual (esl) (1111~ biQ (um~biij TciiiiT (um~biQ (um~ biij Tciiir

17 3 2·~ped 10 11 /34 ns 26 11(15) 182,888 162,240 1.13 259,600 229,164 1.13

17 3 2·~ped 11 10/33 784 28 10(14) 174,526 163,680 1.07 255,750 225,060 1.14

17 3 2·~ped 12 8/ 31 780 28 9(13) 171,600 162,720 1.05 242,063 217,638 1.11

17 3 2·piped 13 9/33 824 29 8(12) 181,280 168,960 1.07 244,976 219,648 1.11

(a)

Layout Architecture I Layout Archttecture I

Control #of* #of #of /#Sel. #trks. EslArea Ac.-Aret Est Esl Area Actualkea Est
Steps #of+ Reg. Sel. Inputs #trs. #nets Acbal (est) (1111~ biQ (1111~biQ 1CiWi (um~ biij (um~ biij Actual

19 2 2 10 8/30 672 21 8(10) 147,840 136,960 1.08 199i 176 172,912 1.15

19 2 2 11 6/28 688 22 7(9) 151,360 136,000 1.11 197,260 171,700 1.15

19 2 2 12 6 /28 688 23 9(10) 151,360 139,840 1.08 203,800 187,036 1.09

19 2 2 13 6/29 720 24 8(10) 158,400 146,080 1.08 200,860 189,904 1.06

(b)

laj'_out Architecture I Lq_out Architecture II

Control #of* #of #of /#Sel. #trks. Est Area Acml.Artl Est Est Area Aclualkea Est
Steps #of+ Reg. Sel. Inputs #trs. #nets Actwlltst) (1111~ biQ (llll~biij kii:i (um~biij (uin~ biij ~

21 2 1 10 7130 672 20 10(10) 147,840 136,896 1.08 199i 176 186,816 1.07

21 2 1 11 5/ 27 656 19 8(8) 144,320 133,536 1.08 184,380 172,464 1.07

21 2 1 12 5/28 688 20 7(8) 151,360 137,376 1.10 192,572 172,446 1.12

21 2 1 13 6 / 31 744 23 9(8) 163,680 153,216 1.07 209i644 203,652 1.03

(c)

~out Architecture I Lq_out Architecture I

Control
#Of+ #of* #of #of /#Sel. #trks. Est Arel Actual Ana Est Est Area Aclua1Ar88 Est

Steps Reg. Sel Inputs #trs. #nets Actull(est) (IMll~ biij (um~biij Tc;;" (um~ biij (um~ biQ ~

19 2 1-piped 10 10/36 744 21 10(13) 163,680 148,896 1.10 225,099 203,316 1.11

19 2 1·piped 11 6/28 668 19 7(9) 146,960 133,536 1.10 191,706 167,598 1.14

19 2 1-piped 12 6/26 664 20 8(9) 146,080 132,576 1.10 196,824 171,216 1.11

19 2 1·~ped 13 5/23 648 20 8(8) 142,560 129i216 1.10 181,324 166,848 1.09

(d)

Figure 15: The results of the elliptic filter exampie with bus implementation.

31

~
<
~
0

"" .2 e
Ill

~

~
<
~
0

"" .2 e
Ill

~

~
<
!
0

"" .2 e
Ill

~

,....
~
<
!
0

"" .2 e
Ill

~

150000

145000

140000

135000

130000

125000

(a), 17-step, mux, and architecture I.

actual...,._
estimate --·

120000 ~-----~----~-----~
(10,34) (11,33) (12,31)

(#of Reg.,# of SeL lnput11)
(13,33)

124000

122000

120000

118000

116000

114000

112000

110000

108000

106000

130000

125000

120000

115000

110000

(c). 19-step, mux, and architecture L

(11 28) (12,28)
(# of&g.,f of SeL Input.)

(13,29)

(e). 21-step, mux, and architecture L

actual -
estimate--·

-------------105000 ,__ _____ ..__ ______ ____ __,

(10,30) (11,27) (12,28)
(#of Reg.,# of SeL Input.)

(13,31)

(g). 19-step (2·adder, 1-piped), mux, and architecture I.
126000-------r-----....-----~

124000

122000

120000

118000

116000

114000

112000

110000
,,

',,
',,

actual -
estimate--·

108000 106000_ ___ ',_,_',_,_,, __ .:;. ______________________ _, -_-_-_-_--_-_-_-_--_-_-....

(10,36) (11 28) (12,26)
(# of&g.,f of SeL Input.)

(13,Z3)

(b). 17-step, mux, and architecture IL
230000------------~------,

225000

220000

215000

uoooo

205000

200000

190000

190000 ~----~~--~-~-----~
(10,34) (11,33) (12,3i)

(# of Reg.,# of SeL Inputs)
(13,33)

(d). 19-step, mux, and architecture II.
168000------------~-----__,...

ac,iu«t'-:;:::::-

166000 '\ ,~mate --·

164000 \\,, ,,,/,/

162000 '

160000 '\\\ /,/

', /~
158000 '\ ,/

156000 'r/

154000

152000
150000_ ______ _____ .___ ____ __,

(10,30)

175000

170000

165000

(11 28) (12,28)
(# of&g.,# of Sel. lnput11)

(13,29)

(f), Zl-step, mux, and architecture L

actual......_,,,
estimate-.,.:..

/,//

/

///

160000

___________________________ .,(

155000

150000

145000_ ____ __,, _____ _._ ____ ___,

(10,30) (11 27) (12,28)
(# of&g.,f of SeL Inputs)

(13,31)

(h). 19-step (Z·adder, 1-piped), mux, and architecture II.
180000..--------,.-------.--------.

175000

170000

165000

160000

155000

150000

actual...,._
estimate--·

145000_ ______ ______ ____ ____.

(10,38) (11 28) (12,26)
(# of&g.,f of SeL Input.)

(13,23)

Figure 16: The relationships between estimated area and actual areas using multiplexer
implementation. 32

Q:i'
<
~
0

"" u

~
al

~

Q:i'
<

QD
s:l
0

"" u

~
al
QI

~

(a). 17-step, bus, and architecture L
185000

180000

175000

170000

165000

160000 ,__ _____ ,___ ____ __. _____ __,

(10,34)

160000

155000

(11,33) (12,31)
(f of Reg.,# of SeL Input.)

(13,33)

(c). 19~atep, buu, and architecture I.

actual-;
estimate ...,...-:.

/

;;

;;;

150000 --------------·--------------·--/

145000

140000

135000__ ____ __.....__ ____ __. _____ __,

(10,30) (11 28) (12,28)
(f of&g.,# of SeL Input.)

(13,29)

(e), 21-step, bWI, and architecture I.
165000 ..--------.,.------.--------.

160000

155000

150000

145000

140000

135000

130000 ,__ _____ .__ ____ __......_ ____ __.

(10,30) (11 27) (12,28)
(# of&g.,f ofSeLlnpute)

(13,31)

(g). 19-utep (2-adder, 1-piped), hwl, and architecture L
165000 ..---------..------.--------.

160000

155000

150000

145000

140000

135000

130000

'',,,',,,',,,

',,

actual -
estimate --·

.,._ ___________________________ _

125000__ ____ __. _____ _._ ____ ___.

(10,36) (11 28) (12,26)
(f of&g.,f of SeL Input.)

(13,23)

......
~
< a
Cl

"" .Si
~
al

l

(b). 17•.tep, bus, and architecture IL
260000..,.------..------------­-------------""""'
255000 '',,

actual -
estimate --·

,,
250000 ',,

245000 '
...... ~---------

240000

235000

230000

225000

220000
215000 ,__ ____ __. _____ __. _____ __,

(10,34) (11,33) (12,31)
(f of Reg.,# of SeL Input.)

(13,33)

195000

190000

185000

180000

175000

170000 ,__ ____ __. _____ __. _____ __,

(10,30)

200000

195000

190000

185000

180000

175000

(11 28) (12,28)
(f of&g.,# of SeL Inputs)

(13,29)

170000_ ____ _._ _____ _._ ____ ___.

(10,30) (11 27) (12,28)
(f of&g.,f of SeL Inputs)

(13,31)

(h).19-atep (2-adder, l·piped), hue, and architecture II.
230000 ..--------.--------.----------.

220000

210000

200000

190000

180000

170000

actual _.,_
estimate ..,.. __

160000_ ____ __. __ ___, __ __. _____ __,

(10,38) (11 28) (12,26)
(f of&g.,f of SeL Input.)

(13,23)

Figure 17: The relationships between estimated area and actual areas using bus implemen­
tation.

33

Alclitect1n I Control ~c Total Area

#of #of /#Sel. Multiplier Data Path Alel(umi PLA Alea (umi IW!dom L~c Alel(umi PLA Alel(umi Random Logic Area (um 2)
Reg. Sel. Inputs Alelluml Est1Al Actual(~} A:B Est_.!!} Actual(B) A:B ~ ActualJB) A:B Est_{A) Actual(B) A:B Est.(A) Actual(B) A:B

10 10/36 2,330,880 1,788,160 2,006,016 0.89 332,600 312,256 1.07 278,400 255,352 1.09 4,667,064 4,649,152 1.01 4,612,864 4,592,248 1.01

11 6/28 2,330,880 1,696,640 1,810,176 0.94 315,000 267,540 1.18 248,400 230,082 1.08 4,435,064 4,408,596 1.01 4,368,464 4,371,138 0.99

12 6/26 2,330,880 1,731,840 1,851,136 0.94 312,200 266,228 1.17 229,200 196,616 1.16 4,545,544 4,448,244 1.02 4,462,544 4,378,632 1.02

13 5 / 23 2,330,880 1,724,800 1,819,136 0.95 306,600 259,116 1.18 229,200 200,889 1.14 4,559,144 4,409,132 1.04 4,481,744 4,350~05 1.03

(a)

Alchitect1n I Control ~c Total Area

#of #of I# S&I. Multiplier Data Path Alel(umi PLA Alel(umi Rnlom L~c Alel(umi PLA Alel(umi Random Logic Area (um i
Reg. Sel. Inputs Arealum_i Est4& Actual(B) A:B Est(A) Actual(B) A:B Estm Actual(~ A:B Est.{_A) Actual(B) A:B Est.(A) Actual(B) A:B

10 10 /36 2,330,880 2,618,880 2,382,336 1.10 332,600 312,256 1.07 278,400 255,352 1.09 5,282,360 5,025,472 1.05 5,228,160 4,968,568 1.05

11 6 / 28 2,330,880 2,351,360 2,136,576 1.10 315,000 267~40 1.18 248,400 230,082 1.08 4~97,240 4,734,996 1.05 4~30,640 4,697,538 1.05

12 6 / 26 2,330,880 2,337,280 2,121,216 1.10 312,200 266,228 1.17 229,200 196,616 1.16 4,980,360 4,718,324 1.06 4,897,360 4,648,712 1.05

13 5/ 23 2,330,880 2,280,960 2,067,456 1.10 306,600 259,116 1.18 229,200 200,889 1.14 4,921,000 4,657,452 1.06 4,843,600 4,599,225 1.05

(b)

Figure 18: The overall area estimation of the elliptic filter example with (a) Mux and (b)
Bus implementation.

34

6 References

[l] M. R. Buric and T. G. Matheson, "Silicon Compilation Environments," Proc. CICC,
1985.

[2] H. Cai, S. Note, P. Six, and H. De Man, "A data Path Layout Assembler for High
Performance DSP Circuits," Proc. 27th DAC., pp.306-311, 1990.

[3] R. J. Cloutier and D. G. Thomas, "The Combination of Scheduling,Allocation, and
Mapping in a Slngle Algorithm," Proc. 27th DAC, pp. 71-76, 1990.

[4] S. Devadas et al, "MUSTANG: State Assignment ofr Finite State Machines for Multi­
Level Logic Implementations," Proc. ICCAD pp. 16-19, 1987.

[5] S. Devadas and A. R. Newton, "Algorithms for Hardware Allocation in Data Path
Synthesis," IEEE Trans. on Computer-Aided Design, vol. CAD-8, no. 7, pp. 768-781,
1989.

[6] E. Dirkes Lagnese and D. E. Thomas, "Architectural Partitioning for System Level
Design," Proc. 26th DAC, pp. 62-67, 1989.

[7] C. M. Fiduccia and R. M. Mattheyses, "A Linear-Time Heuristic for Improving Net­
work Partitions," Proc. 19th DAC, pp. 175~181, 1982.

[8) B. S. Haroun and M. I. Elmasry, "Architectural Synthesis for DSP Silicon Compiler,"
IEEE Trans. on Computer-Aided Design, vol. 8, no. 4, pp.431-447, April 1989.

[9] C. Y. Hitchcock and D. E. Thomas, "A method of Automatic Data Path Synthesis,"
Proc. 20th DAC, 1983.

[10] C. Y. Huang, Y. S. Chen, et. al., "Data Path Allocation Based on Bipartite Weighted
Matching", Proc. 27th DAC, pp. 499-504, June, 1990.

[11) K. S. Hwang, A. Casavant, et. al., "Scheduling and Hardware Sharing in Pipelined
Data Paths", Proc. IEEE Intl. Conf. on Computer-Aided Design, Nov. 1989.

[12] Jamier, R. and Jeraya, A., "APOLLON: A Datapath Compiler," Proc. ICCD, 1985.

(13] K. H. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning
Graphs," Bell System Technical Journal, vol. 49, no. 2, pp. 291-307, Februry, 1970.

(14] D. W. Knapp, "Feedback-Driven Datapath Optimization in Fasolt," Proc. IEEE Intl.
Conf. on Computer-Aided Design, 1990.

[15] F. J. Kurdahi and A. C. Parker, "REAL: A Program for REgister ALlocation," Proc.
24th DAG, pp. 210-215, 1987.

(16] L. L. Larmore, D. D. Gajaki, and A. C. Wu, "Layout Placement for Sliced Architec­
ture," IEEE Trans. on Computer-Aided Design, Oct., 1991.

35

(17] Luk, W. K. and Dean, A. A., "Multi-Stack Optimization for Data-Path Chip (Mi­
croprocessor) Layout," Proc. 26th DAG, pp.110-115, 1989.

[18] T. A. Ly, W. Lloyd Elwood, and E. F. Girczyc, "A Generalized Interconnect Model
for Data Path Synthesis," Proc. 27th DAG, pp.168-173, 1990.

[19] M. C. McFarland., "Using Bottom-Up Design Techniques in the Synthesis of Digital
Hardware from Abstract Behavioral Descriptions," Proo.23th DAG, June, 1986.

(20] B. Pangrle, and D. Gajski, "Design Tools for Intelligent Silicon Compilation", IEEE
Trans. on Computer-Aided Design, vol. CAD-6 no. 6, Nov. 1987.

[21] N. Park, and A. Parker, "Sehwa: A Software Package for Synthesis of Pipelines from
Behavioral Specifications", IEEE Trans. on Computer-Aided Design, vol. CAD-7 no.
3, March 1988.

[22) A. C. Parker, J. Pizarro and M. Mlinar, "MAHA: A Program for Datapath Synthesis,"
Proc. 23rd DAG, pp. 461-466, 1986.

(23] P. G. Paulin, J. P. Knight and E. F. Girczyc, "HAL: A Multi-Paradigm Approach to
Automatic Data Path Synthesis," Proc. 23rd DAG, pp. 263-270, 1986.

[24] P. G. Paulin, and J. Knight, "Force-Directed Scheduling for the Behavioral Synthesis
of ASICs", IEEE Trans. on Computer-Aided Design, vol. CAD-8 no. 6, June 1989.

(25] Petersen, B. R., White, B. A., Salomon, D. J. and Elmasry, M. I., "SPIL: A Silicon
Compiler with Performance Evaluation," Proc. ICCAD, pp. 500-503, 1986.

(26] M. T. Trick and S. W. Director, "Lassie: Structure to Layout for Behavioral Synthesis
Tools," Proc. 26th DAG., pp.104-109, 1989.

(27] C. J. Tseng and D. P. Siewiorek, "Automated Synthesis of Data Path in Digital
Systems," IEEE Trans. on Computer-Aided Design, vol. CAD-5, no.3, pp. 379-395,
1986.

(28] Varinot P, J., and Courtois B, J., "Principles of The SYCO Compiler," Proc. 23rd
DAG., pp. 715-721, 1986.

[29] D. Varma and E. A. Trachtenberg, "A Fast Algorithm for the Optimal State Assign­
ment of Large Finite State Machines," Proc. ICCAD, pp. 152-155, 1988.

[30] Allen C-H Wu and D. D. Gajski "Layout-Driven Hardware Allocation in Data Path
Synthesis," Tech. Rpt. No. 91-30, ICS Dept., UC Irvine, 1991.

[31) "Data path Library," VLSI Technology, INC., 1988.

36

llllllll~llllllllllllllllll~lllllllllllllllllllllllllllllllll
3 1970 00882 437 4

