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ABSTRACT OF THE DISSERTATION

Deep learning methods for

Electrocorticographic data analyses

by

Tejaswy Pailla
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Electrocorticography (ECoG) records brain activity from the cortical surface. ECoG data anal-

yses has led to significant advancements in neuroscientific research, particularly in two major domains:

functional mapping to understand the cortical organization of human brain; and brain-machine interfaces

(BMIs) that decode intent from neural data. Designing high performance BMIs is an active area of inter-

est. A discrete BMI design primarily involves decoding specific targets from features extracted from ECoG

data. Majority of ECoG based research studies use spectral features i.e. powers in specific frequency bands;
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which are based on empirical observations. However, given the non-stationarity and variability of neural

signals, features extracted in a data driven way could lead to more robust BMIs. In addition to efficient

feature extraction and decoder training, the choice of targets presented to BMI user can greatly affect the

bit-rate or throughput of the BMI.

The ability to record ECoG data in the order of days in epilepsy monitorig units (EMU); in syn-

chrony with behavioral data through non-invasive sensors like Kinect; has resulted in deluge of large-scale,

coarsely labelled datasets. Deep learning architectures are being explored to tackle this big-data problem

and extract meaningful spatio-temporal patterns from these data. However, much of the existing research

has been relying on architectures that found success in other domains such as computer vision and audio.

A more systematic approach towards neural network architecture designs for analyzing large-scale ECoG

datasets, that embeds domain knowledge from neuroscience and neurophysiology, is necessary.

The contributions of this thesis are three-fold. Firstly, I show that we can increase the throughput

of a speech-based BMI by using targets that generate maximal separation in neural space. Secondly, I

show that data-driven features can be learnt in an unsupervised fashion using autoencoders and are more

robust compared to linear dimensionality reductions methods like PCA. These features also aid in funcional

mapping by identifying functionally similar electrodes in unsupervised fashion. Lastly, I show that cross-

subject model can be learnt to decode finger flexions by learning common latent spaces that map activity

from different subjects onto a single latent space. By learning temporal dynamics using a recurrent neural

network, from this common space, we show that we can decode continuous behvaiors from ECoG.

By analyzing the architectural design decisions on smaller, well-structured and labelled datasets,

we can have a smarter approach towards developing deep learning toolkits for larger, coarsely labelled or

unlabelled datasets. The methods described in this thesis will aid neuroscientists in ECoG data analysis,

clinicians by providing data driven functional mapping methods, and neural engineers by providing more

robust machine learning pipelines for BMI design.
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Chapter 1

Introduction

Nothing in neuroscience makes sense except in the light of behavior

-Shepherd, Gordon M. Neurobiology. Oxford University Press, 1988. [1]

1.1 Background

1.1.1 Neural recording technologies

Neural recording methods provide a way to record brain activity. Invasive neural recording methods

such as intracortical spike recordings, Electrocorticography (ECoG), or non-invasive recording modalities

like functional near-infrared spectroscopy (fNIRS), function Magnetic Resonance Imaging (fMRI), Elec-

troencephalography (EEG) have various clinical applications depending on the spatial, temporal resolutions

and the invasiveness of recording techniques. Figure 1.1 shows various recording modalities along with

their spatial and temporal resolutions. Depending on the spatial and temporal resolution and the kind of

activity measured, e.g. electrical potentials or blood oxygenation levels, these recording techniques have

enabled great progress in our understanding of the functioning of brain.
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Figure 1.1: Dimensions of Spatial and Temporal Resolution in Human Neurophysiology from [2]

1.1.2 Electrocorticography

ECoG records local field potentials from the cortical surface. ECoG is primarily used to monitor

cortical activity for identifying epileptic seizure foci. Individuals with chronic epilepsy undergo surgery

for electrode implantation and are placed in epilepsy monitoring units (EMUs) for post surgical care and

their cortical activity is monitored to localize seizure foci [3]. Figure 1.2 shows the implanted electrode

grid for epilepsy monitoring. Individuals in EMUs volunteering to participate in research studies are vital

contributors to ECoG research. The data collected in EMUs has largely contributed to the advancements in

neuroscientific research. Two such research areas are functional mapping ; i.e. understanding the organiza-

tion of brain regions and their relationships to behavior; and the development of brain-machine interfaces
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(BMIs).

Figure 1.2: Clinical ECoG and sEEG electrodes implanted for epilespy monitoring

1.1.3 Functional mapping

Analyzing ECoG data has advanced our understanding of motor, cognitive behaviors and memory

[4–6]. Offline analysis of data from structured experimental tasks wherein the subjects perform specific

behavioral activity has led to advancements in our understanding of functional organization of cortical

areas. For example, in [4], hand areas were mapped using spectral powers in high frequency band (76-200

Hz). In [7], human sensorimotor cortex has been mapped for speech production from the data obtained as

subjects spoke a diverse set of phonemes that enabled timed movements of articulators, thereby enabling
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researching to study the relationship between cortical area and the articulator.

1.1.4 Brain-machine interfaces

BMIs decode intent from neural data by modeling spatio-temporal patterns. ECoG records neural

data from the cortical surface and has higher spatial and temporal resolution compared to non-invasive

neural recording techniques such as EEG, fMRI. The viability of ECoG as a neural acquisition modality

for prosthetic control has been an area of active research for the past two decades ( [8–11]. The general

pipeline of ECoG based BMI studies is shown in top part of Figure 1.4. The decoder is usually built

using prior recorded training data after extensive offline analyses to perform feature extraction and model

selection. [12, 13] demonstrated the use of ECoG based BMIs in paralyzed individuals with great success.

In [14], the authors show the feasibility of wireless implantations of ECoG devices that can record signal

and decode it to give control signal to BMIs in real time.

1.2 Motivating problem

Spectral features i.e. powers in low frequency band (Beta : 8-32 Hz) and high frequency band

(High-γ : 76-150 Hz) have been traditionally dominated ECoG-based research studies [15]. Strong evidence

of decrease in low frequency power and increase in high-γ power during motor movements, as shown in

figure 1.3, has motivated majoritty of ECOG based BMI studies to rely on these spectral features.

Need for data driven features: There has been an increased interest in the development of high

density ECoG electrodes [16]. The BRAIN initiative has propelled the development of tools and techniques

to record brain activity at a single neuron level, understand neural circuitry and mapping neural activity

to behaviors, perceptions, thoughts and emotions [17, 18]. The electrode diameter and inter-electrode dis-

tance, i.e. the pitch has been steadily reducing from 1 cm in clinical grade ECoG to micron scale, allowing

researchers to record neural data at varying resolutions, from thousands of neurons to single neuron reso-
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Figure 1.3: Spectral changes in cortical surface potentials during motor movement. Source [15].

lution. For example, using Neurogrid, a thin flexible, high density micro-ECoGdevice is shown to record

single units in rats [19]. In [20], micro ECoG with a pitch of 400 microns has been shown to record evoked

activity has been recording in humans in operating room. The ability to record ECoG at varying resolution

warrants new data driven features rather than relying on empirical observations.

Cross-subject learning: Despite the moderate dataset sizes in brain imaging research, deep learn-

ing methods are being employed with considerable success in different non-invasive neuro-imaging tech-

niques like fMRI and EEG. The standardization of fMRI and EEG data across subjects and experimental

studies is also well studied, facilitating the creation of data corpuses and the development of cross-subject

analysis techniques. Given the higher relative invasiveness, well labelled ECoG datasets with high trial

size are scarce and inter subject variability is high as the electrode grid placement is guided by individual

subject’s clinical requirements. These constraints pose challenge to developing cross-subject models for

BMIs.

Need for scalable, unsupervised machine learning models: Recently, the opportunity to record
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long term ECoG recordings from EMUs along with behavioral data with minimally intrusive video based

sensors has facilitated the creation of larger scale data corpus [21, 22]. However these datasets ae highly

noisy owing to the clinical environment in which they are recorded and are largely unlabelled or coarsely

labelled. In order to be able to extract meaningful spatio-temporal patterns from these data, we need to

explore scalable and unsupervised machine learning methods.

In this thesis, I address the challenges of learning data driven features using unsupervised archi-

tectures and cross-subject model training. I describe tools and techniques; specifically neural network

architectures; to model spatial, frequency and temporal dynamics in ECoG data. By understanding the

modeling capabilities and limitations neural network architectures from smaller, well labelled datsets from

structured experimental tasks, we can have a smarter approach to developing toolkits for larger datasets.

The methods developed will aid neuroscientists in ECoG data analysis, clinicians by providing data driven

functional mapping methods, and neural engineers by developing more robust machine learning pipelines

for BMI design.

1.3 Chapter Previews

In this thesis, I explore various considerations while analyzing ECoG data, both for BMI applica-

tions and for understanding spatio-temporal structures in data for better experimental designs and aiding

neuroscientific research.

In Chapter 2, I investigate possible feature extraction methods and experimental paradigms for a

speech-based BCI system. We find that the exact method to estimate spectral powers doesn’t have any

significant effect. We show that improvement in bit rate can be achieved by a task design that allows more

articulator movements in a given time.

In chapter 3, we propose an autoencoder based approach for summarizing ECoG data with “tem-

plate spectrograms”, i.e. informative time-frequency (t-f) patterns, and demonstrate their efficacy in two
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Figure 1.4: Schematic of proposed BMI decoder pipeline

contexts: brain-computer interfaces (BCIs) and functional brain mapping.

In chapter 4, we show that neural network architectures can be trained to learn common latent

spaces across subjects, thereby enabling cross-subject learning for ECoG decoding.

In chapter 5, neural networks are used to find patterns in large-scale unstructured data as a prelimi-

nary demonstration of future directions for this thesis work.
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Chapter 2

ECoG data analyses using traditional

methods for speech-based prosthetic

applications

2.1 Introduction

Brain Computer Interfaces (BCIs) aid communication in paralyzed individuals by translating neural

signals into control signals for prosthetic devices [1]. Clinical trials of intracortical BCIs demonstrate the

potential for neural prostheses to partially restore lost motor and communication function in individuals with

tetraplegia [2, 3]. In recent years, electrocorticographic (ECoG) signals have been investigated for prosthetic

control [4, 5]. ECoG signals have higher spatio-temporal resolution and signal-to-noise ratio compared to

electroencephalographic (EEG) signals [6], which may translate to system performance advantages .

The first demonstrations of ECoG-based BCIs used actual or imagined motor movements to control

a one-dimensional computer cursor [4]. Since then, several studies have used ECoG signals to decode motor

actions or imagery [7, 8] to control cursor movements. ECoG signals from sensory-motor cortices can also

be used to decode speech elements. Given the high bit rate of natural human speech, successful speech
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Figure 2.1: Overview of the processing pipeline

decoding could result in BCIs with high information transfer rates. Recent ECoG-based speech prosthesis

studies have used whole words or combinations of consonants and vowels to decode speech elements [9–15].

Fig. 2.1 shows an overview of a BCI system. Features extracted from processed neural signals

are decoded to guide a prosthetic device. Neural activity, corresponding to specific behaviors, should be

well separated in the feature space to enable decoding with minimal error. Since ECoG captures activity of

neural ensembles, an optimal ECoG-based BCI design paradigm would be the one that prompts realizable

behavioral changes that originate from consistent and well distinguishable neural sources.

Consider the design of a speech-based BCI system that decodes individual phonemes. Vocaliza-

tion of a specific phoneme requires coordinated movement of multiple articulators. The spatio-temporal

dynamics of activity in sensory-motor cortex (SMC) during speech are complex, given the precise control

of multiple degrees of freedom of each articulator. Correlated neural activity corresponding to articulator

movements start well before speech onset and continues through vocalization [16]. Knowledge of the sepa-
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rability of neural features corresponding to different behaviors can guide BCI design choices. In this study,

we analyze data collected while subjects vocalize three cardinal vowel-phonemes. We analyze how behav-

ioral paradigms affect decoding accuracy and discuss how our observations inform potential BCI design

strategies. We also discuss how our findings relate to the current understanding of functional organization

of SMC.

2.2 Datasets

2.2.1 Subjects

Three native English speakers; EC56, EC61, and EC69 (1 male and 2 female respectively); under-

went chronic implantation of a high-density, subdural ECoG array (over the right hemisphere (EC56,61) or

left hemisphere(EC69)) as part of their clinical treatment of epilepsy. Subjects gave their written informed

consent before the day of surgery. The experimental protocol was approved by Human Research Protection

Program at the University of California, San Francisco. All subjects had self-reported normal hearing and

underwent neuropsychological language testing (including the Boston Naming and verbal fluency tests) and

were found to be normal. Subjects EC56 and EC61 were implanted with 256 electrode arrays and subject

EC69 with 296 electrodes. For all subjects we restricted our analysis to the 256 electrode grid covering

SMC and superior temporal gyrus.

2.2.2 Recordings

Cortical local field potentials were sampled at 3052 Hz from the ECoG grid with a multi-channel

amplifier optically connected to a digital signal processor (Tucker-Davis Technologies, Alachua, FL). Audio

data from the subjects, in synchrony with the ECoG data, was recorded with a microphone, amplified, and

digitized.
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2.2.3 Experimental Paradigm

Subjects performed a call-and-response task where each subject vocalized one of three cardinal

vowel-phonemes ([a], [u], [i]) at different pitch levels in their respective vocal ranges, in response to the

pattern of vocalization produced by the experimenter. Fig. 2.2 shows the audio recording of one such cycle

with five utterances. The duration of each utterance was 1013±283 ms, 628±49 ms and 495±34 ms for

subjects EC56, 61 and 69 respectively. Each subject vocalized 6–7 such cycles for each phoneme. Baseline

data, when the subject was at rest, was collected at the end of sessions.

2.3 Exploring feature extraction methods

Brain Computer Interfaces (BCIs) aid communication for paralyzed individuals by translating neu-

ral signals into control signals for a prosthetic device [1]. In recent years, electrocorticography (ECoG )

based BCIs have been investigated [4, 17] as an alternative to intracortical based BCIs [18, 19]. ECoG

signals have higher spatial resolution and signal-to-noise ratio (SNR) compared to electroencephalography

(EEG) signals, enabling higher performance control.

Estimated band power is an effective and commonly employed signal feature used by ECoG based

BCIs. For example, in [20] spectral changes in ECoG signals were analyzed during motor movements. A

consistent decrease of power in low-frequency band (8–32 Hz) and increase in high-frequency band (76–100

Figure 2.2: Audio recording showing a phoneme vocalization cycle where the first and last utterances
(highlighted) belong to the same pitch level
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Hz) across relevant electrodes was observed. In [21], band powers in low (11–40 Hz) and high(71–100

Hz) frequency ranges were used to reliably classify motor movements. Powers in higher frequency range

(76–200 Hz) were found to be useful correlates of local cortical function [22]. Spectral powers in these

frequency ranges prove to be reliable features for ECoG classification tasks [23].

Two common estimates of band specific powers include band-specific amplitude modulation [24]

and time-varying analytic amplitude of a band-pass filtered signal obtained using Hilbert transform [25].

More recently, wavelet based spectral features were shown to give robust control features [26]. Features

from wavelet transform coefficients are shown to reliably classify motor imagery signals [27].

While numerous methods of extracting spectral features have been proposed and used, power ef-

ficient computation is crucial. ECoG recording systems are progressing towards higher channel count and

battery powered in vivo wireless transceivers [28, 29]. Implants with fully integrated on-board, under-the-

scalp real-time signal processing will require computational choices that optimize the tradeoff between sys-

tem performance and power consumption. As feature extraction operates on the broadband recorded signal

and compresses these signals for follow on processing stages, it typically dominates BCI computation.

We assess the effect of commonly employed band power extraction techniques on ECoG classifica-

tion performance. We test our methods on the speech vocalization dataset.

2.3.1 Methods for computing power estiamtes

Raw ECoG recorded at 3KHz is downsampled to 400 Hz before further analysis. Figure 2.6 outlines

the steps of our analysis.

2.3.2 Pre-processing

We first visually and quantitatively inspected the time series data for artifacts. Electrodes 257–296

in third subject were identified as bad channels and excluded from all subsequent analysis. Electromagnetic
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Figure 2.3: Electrode localization map of second subject (EC61) showing electrode 173 in the motor cortex.

200

220

240

260

280

300

320

P
itc

h

Time [s]

F
re

q 
[H

z]

 

 

5 10 15 20 25 30
0

50

100

150

−2 −1 0 1 2 3 4 5 6 7

/a/ /u/ /i/

Figure 2.4: Pitch Trajectory and spectrogram for an electrode

noise common to channels was removed by common average referencing (CAR) 16-channel blocks that

shared the same cable. Line noise (at 60 Hz and its harmonics) was removed using notch filters and CAR

was once again performed on all the channels to remove common noise. Data is then z-scored relative to

baseline and locally detrended to remove linear trending effects.
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Figure 2.5: Red: Silent, Blue: Voc. The dotted lines show 95% confidence bounds derived from jackknife
estimate of the standard error for each spectra
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Figure 2.6: Block Diagram showing steps in analysis

2.3.3 Feature Extraction

In this work, we compute spectral features, i.e. power estimates of a window of data in two fre-

quency ranges: low frequency band(LFB) i.e. 12.5–25 Hz, high frequency band (HFB) i.e. 75–100, using

four different methods described below (M1 through M4) and evaluate their performance. The choice of

frequency ranges for the two spectral bands is based on the literature and is supported by spectrograms

of these data (figure 2.5). The choice of exact bounds was limited by implementation of dyadic discrete

wavelet transform (DWT).

A vocalization (Voc) trial is defined as the time window from vocalization onset to offset and a
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silent trial is defined as the time window from Voc offset to onset, i.e. the time between two vocalizations.

Trials with less than 400 ms duration were discarded. A 300 ms time window (W) starting from trial onset

is considered for feature extraction.

M1- Band-specific amplitude modulation(AM)

Following Sanchez et al.’s method of band-specific AM, we band-pass filtered the signal in ap-

propriate frequency bands and mean of squared voltage in W was computed for feature. Let v(t) be the

band-pass filtered voltage signal. Spectral feature for a window of width ∆t is calculated as

f =
1
∆t

∆t

∑
t=0

(v2(t)) (2.1)

M2- Analytic signal from Hilbert transform

Similar to the method followed in [16], we band pass filtered the signal using 4 Gaussian filters

with logarithmically increasing center frequencies and semi-logarithmically increasing band-widths in each

frequency range. We computed the analytic amplitude of these filtered signals using Hilbert transform and

computed average amplitude. For each frequency band , mean of squared amplitude in W was taken for

feature.

M3- Continuous Wavelet Transform (CWT) Coefficients

In [27], averages and standard deviations of CWT coefficients are used as features. We followed

a similar approach. CWT was performed with ’symlet’ mother wavelet and mean of square of coefficients

in each frequency range were taken as approximation of spectral powers. Means of these power estimates

in W were taken as features. Symlet wavelets are chosen because of their similarities with the shape of

neurophysiological signals and their suitability for event-related desynchronization(ERD) analysis. [30].
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M4-Wavelet Packet Features

In [30], discrete wavelet transform (DWT) based features were used. ECoG signal was first de-

composed into wavelet components of specific frequency ranges by wavelet-packet analysis. Full sampled

wavelet-filtered signals were reconstructed from wavelet packet components in relevant frequency ranges.

We performed a 5 level DWT with the ’symlet’ mother wavelet and the signal was reconstructed from ap-

propriate DWT coefficients corresponding to LFB and HFB. Mean of squared amplitude of reconstructed

signals in W was taken for feature.

2.3.4 Feature Selection

The construction of ECoG based classifiers in this context is subject to the ”curse of dimensionality,”

i.e. we generally have limited training examples relative to the high dimensionality of feature space. The

dimensionality of feature spaces from the above methods is number of channels × 2, (i.e. 512 for each

subject).

We performed a balanced one-way ANOVA to extract relevant features. We ranked the dimensions

based on p–value from the ANOVA test and used the first 15 dimensions. Note that this number was not

optimized for classification performance and was only chosen to maintain reasonable dimensionality to

sample size ratio.

2.3.5 Discrete Classification

We used features from the above four methods to classify ECoG data using five commonly used

classification algorithms: Naive Bayes (NB), Linear Discriminant Analysis(LDA), Support Vector Machine

(SVM) with a linear kernel, k-Nearest Neighbors (k-NN) with Euclidean distance as distance metric, feed-

forward Artificial Neural Network (ANN) with a hidden layer of size 15. For multi-class SVM classification,

we used a “One vs all” approach [31, 32]. While NB and LDA are generative models, SVM, k-NN, ANN
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Table 2.1: MA and SE are mean accuracy and standard error over 5 Cross-Validation folds, M and MLA
are feature extraction Method (described in section 2.3.3) and machine learning algorithm (described in
section 2.3.5) that gave the best performance. Chance-level accuracies are listed in row 1.

Voc-Sil (50%) Pitch Level(33.33%) Phoneme Type(33.33%)

Subject ID MA SE M MLA MA SE M MLA MA SE M MLA

EC56 98.13 0.80 1 ANN 65.33 6.90 2 LDA 88.00 2.23 3 ANN

EC61 92.75 1.52 2 LDA 66.67 2.72 2 LDA 80.00 3.37 1 LDA

EC69 90.53 1.26 3 LDA 69.00 2.61 2 SVM 74.00 3.85 3 NB

are discriminative models. All these classification algorithms assume different models to classify data [33]

and serve as good test cases for our extracted features.

2.3.6 Results comparing different power estimates

We perform 5 fold cross-validation (CV) and report mean accuracy and standard error for each

classification in figure 2.7. Table 2.1 lists the best performance results for each subject and classification

category. Upon referring to electrode localization maps, the top 15 dimensions from 2.10 were found to

correspond to electrodes in sensorimotor cortex thereby validating our feature selection method.

Classification task largely influences the choice of feature extraction method. To distinguish be-

tween presence and absence of motor activity (eg. Voc-Sil), a crude estimate of power would suffice. Low

accuracy for pitch-level classification may be attributed to the underlying complex physiology [34]. To

distinguish between complex articulator movements (e.g. Phoneme type/pitch-level), a more sophisticated

spectral power estimate with cleaner resolution in time and frequency and a model that better captures the

time-varying dynamics of neural signal will yield better classification results.

In [35], fundamental equivalence of different spectral analysis methods namely Fourier, Hilbert and

wavelet transform has been detailed. When different feature extraction methods are matched in parameter

choices like window length or bandwidth, they essentially yield similar spectral power estimates. Com-
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Figure 2.7: Discrete classification results. Bars represent mean accuracy over 5 CV folds for the four
different feature types described in section 2.3.4. Blue: M1, Cyan: M2, Yellow: M3, Brown: M4. Errorbars
represent standard error. The black horizontal line in each plot represents the chance-level accuracy (50%
for Voc-Silent classification and 33.33% for Pitch Level and Phoneme classification )

putational efficiency then becomes the decisive factor in choice of feature extraction method. Of all the

methods described in 2.3.3, M1 has the least computational complexity and has performance on par with

more computationally intensive methods like M2 and M3. The similarity in feature spaces across all the

methods can be visualized by figure 2.8. Therefore in the interests of computational costs (latency, power),

M1 can be used as a robust feature extraction method for BCI applications.

2.4 Methods to inform closed-loop BCI experiments for speech-based pros-

thetic applications

Raw ECoG was downsampled to 400 Hz; using an anti-aliasing, linear-phase, low-pass FIR filter;

before further analysis. Fig. 2.1 outlines the steps of our analysis.
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Figure 2.8: Normalized histograms showing Voc-Sil feature distributions of top ranked channel for each
method across subjects .

2.4.1 Preprocessing

Electromagnetic noise common to channels was removed by common average referencing (CAR)

16-channel blocks that shared the same cable. Data was then locally detrended, using a 2 s sliding window

with an overlap of 0.01 s, to remove linear trends caused by DC offsets. Line noise (at 60,120,180 Hz) was

removed using a multi-taper decomposition approach [36, 37] and the resulting time series was high-pass

filtered at a 1 Hz cutoff frequency. Channels with high kurtosis value (>3σ compared to the average kurtosis

of all channels combined) were identified as “bad channels” and were excluded from further analysis. CAR

was once again performed on the remaining channels to remove common activity.

2.4.2 Feature Extraction and Model Selection

For our primary analysis, we considered the first and last utterances (shown in Fig. 2.2) from each

vocalization cycle. These utterances are in the same pitch range, thus avoiding potential behavioral con-

founds with phoneme type and pitch range. For each utterance, a time window of width W ms centered
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around an offset d ms from the vocalization onset was considered for feature extraction. We used band

powers, from SMC electrodes, in high–γ range (75–150 Hz) to extract features [20] . To estimate the band

powers, the pre-processed time series data from each channel was band-pass filtered to obtain high–γ am-

plitude. Squared high–γ amplitude was z-scored with baseline data and integrated in n nonoverlapping bins,

each of width W
n ms, to estimate band powers.

A regularized linear discriminant analysis (R-LDA) model with uniform prior and regularization

parameter of 0.5 was used for classification. The dimensionality of the feature space is the number of

channels in SMC × n and is much larger than the available number of trials. To overcome the “curse of

dimensionality” and select the best features, we performed a balanced one-way ANOVA across 3 phoneme

groups (using trials from both first and last utterances) and ranked features based on their p–value. Features

with p < 0.05 were retained and used for further analysis. Optimal choice for parameters W,d,n was found

via a grid search (TABLE 2.2) by maximizing the leave-one-out (LOO) cross-validation (CV) accuracy of

classification of the three phonemes. Hence, no test data was used in training the decoder. We ensured that

we only considered the activity during preparation and utterance of each phoneme in the grid search.

Table 2.2: Optimal parameters from grid search

Parameter EC56 EC61 EC69

Offset in ms (d) 200 -50 200

Window width in ms (W ) 400 400 300

Number of bins (n) 1 1 1

2.4.3 Decoding

When designing a speech-based communication system, the relative timing and sequencing of at-

tempted phoneme production during training data collection and real-time use may have system perfor-
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mance consequences. For example, one possible design could allow the individual to vocalize discrete

phonemes, in random order, at well spaced intervals. This would require the subject to reposition his/her

articulators for every utterance. Another design strategy could cue for repeated vocalization of the same

phoneme. Our hypothesis is that the first paradigm that allows for more articulator movement will also gen-

erate more easily distinguishable spatio-temporal neural dynamics. Consistency of these dynamics across

trials is also important to train a stable decoder. To test this, we trained the R-LDA model, using trials

from two utterance types (shown in Fig. 2.2) in each vocalization cycle. The first utterance corresponds to

trials that would be generated by the first design. The last utterance is a repeated vocalization of the same

phoneme and simulates the trials that would be generated by the second design. We performed LOO CV

to get an estimate of decoding performance. In addition, we used the R-LDA model trained on trials from

one utterance type to test the trials from other utterance type to see how well the model generalizes across

utterance types. The analyses are focused on measuring relative performance between decoders in two dif-

ferent paradigms. It should be noted that we paired the first and last utterances from the same vocalization

cycle (that is left out in the LOO CV fold) for testing, thus avoiding the use of correlated neural features in

training and testing sets.

2.5 Results and Discussion

We observed that for all three subjects, the channels selected by ANOVA are located in areas of

SMC related to speech articulators (i.e. the lips, jaw, tongue and larynx). Fig. 2.9 shows the selected elec-

trode locations for EC56. Although it is difficult to locate the spatial organization for individual articulators,

our findings concur with the general consensus [38] of somatotopy in ventral SMC.

Fig. 2.10 shows the first three dimensions of features projected onto the LDA subspace for each

utterance type. According to the LDA model, these are the linear dimensions in which the phoneme specific

neural activity is most separable. We noted that in this view phoneme separability is higher in the trials
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of first utterance type. Fig. 2.11 shows that first utterances are more distinguishable than last utterances

suggesting that the neural activity during the first utterances is better distinguishable and more predictive

of phonemes than the activity during repeated vocalizations. These results suggest that a BCI which allows

more change in articulator positions (e.g. in our case, from rest to phoneme vocalization) might lead to

higher bit rates than a task which doesn’t encourage change in articulator positions (e.g. repeated vocaliza-

tions).

Certain phoneme pairs are more separated in neural space than others. To maximize bit rate one

might choose to use only those phoneme pairs which have high information transfer rates in the BCI design.

The confusion matrices (Fig. 2.12) for subjects EC61 and EC69 show confusion between phoneme pairs.

To see which phoneme pairs are most separated in neural space, we performed pairwise binary classification

on trials from first utterances. Fig. 2.13 shows confusion matrices from LOO CV for each phoneme pair.

We calculated the Information Transfer Capacity (ITC) in bits per trial (bpt), using the Blahut-Arimoto

algorithm [39]. The ITC for EC69 when phoneme pair ‘/a/-/u/’ is used is higher than the case when all the

Figure 2.9: Electrode map of EC56 showing electrode locations that were selected by ANOVA (p<0.05)
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Figure 2.13: Confusion matrices for pairwise classification using trials from first utterance

three phonemes are used (See TABLE 2.3). In cases like this, it may be beneficial to use only two target

phonemes to potentially achieve higher data rates.

Chapter 2, in part, is a reprint of the material from material as it appears in the Proceedings of the

2016 Engineering in Medicine and Biology Conference, ”ECoG data analyses to inform closed-loop BCI

experiments for speech-based prosthetic applications.” Pailla, Tejaswy, Werner Jiang, Benjamin Dichter,

Edward F. Chang, and Vikash Gilja. The dissertation author was the primary investigator and author of this

paper. Chapter 2 also contains analyses done together with Anthony Au and is unpublished.

27



Table 2.3: Comparing pairwise phoneme classification with three phoneme classification

Accuracy ITC (in bpt)

Subject a-u a-i u-i a-u-i a-u a-i u-i a-u-i

EC56 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.5843

EC61 1.00 0.75 1.00 0.9167 1.00 0.3270 1.00 1.3052

EC69 0.90 0.40 0.70 0.60 0.6180 0.0290 0.1246 0.4463
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Chapter 3

Autoencoders for learning template

spectrograms in ECoG signals

3.1 Introduction

Electrocorticography (ECoG) is a neural recording technique wherein electrical potentials are mea-

sured from the surface of cortex. One of the primary clinical applications of ECoG is to evaluate epileptic

activity: individuals with chronic intractable epilepsy are implanted with ECoG electrodes and their cortical

activity is monitored in an epilepsy monitoring unit (EMU) to localize epileptic seizure foci. In this set-

ting, the implanted electrodes are also used to provide electrical stimulation to map functional brain areas.

These maps guide surgical resection of affected brain areas while attempting to minimize the potential for

functional deficits. Patients in the EMU are often recruited to take part in neurophysiology studies and

ECoG data are collected while they perform cognitive and behavioral tasks. Given this unique opportunity

to study the human brain in action, such studies have significantly contributed to the advancement of hu-

man neuroscience research, particularly with respect to two domains: functional brain mapping [1, 2] and

brain-computer interface (BCI) development [3].

Most functional brain mapping studies analyze spatio-temporal patterns of ECoG signal modula-
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tion in the 8-40 Hz band or the 70-200 Hz band or sub-bands in those ranges to identify cortical processes

underlying behaviors [2, 4–7]. Precise labeling of behavioral onset and offset timings is important when

performing such analyses since event related potentials are sensitive to the timing of activity [8]. However,

many of the labeling methods employed in experimental studies rely upon the subjects’ reaction times to a

cue and this can potentially introduce errors in analysis; thus, while ECoG may afford high temporal reso-

lution, study design and conventional analysis methods can limit the temporal resolution of interpretations.

The high spatio-temporal resolution and signal-to-noise ratio (SNR) of ECoG also makes it a

promising source for BCI control signals. Several studies have explored the use of ECoG for prosthetic

control [3, 9–12] and ECoG based BCI systems are being explored for long term use as communication

prosthesis for individuals with locked-in syndrome [13]. Evidence of ECoG signal modulation in specific

spectral bands, such as 8-32 Hz and 76-100 Hz [14] and in broad spectral changes in the 5-200 Hz frequency

range [15] during motor activity, has motivated the majority of ECoG based BCI studies to use frequency

specific spectral power as features for decoding. These spectral powers are typically estimated from a

specific time window around activity onset. However, the typically applied conventional and rigid feature

selection of frequency bands and time windows may limit BCI system performance, since the precise range

of informative frequency bands and temporal range of relevant modulation may vary across subjects [16].

Also, the activation patterns in different cortical areas for the same task might vary for the same subject

throughout the duration of the experiment as the subject’s familiarity with the task changes [17]. Further-

more, computing spectral powers in aggregated time bins does not fully exploit the temporal resolution

that ECoG provides. With conventional approaches, decoding ECoG signals with high accuracy requires a

neural engineer to carefully analyze spatial, temporal and frequency patterns in the data and hand design

custom subject-specific, task-specific features and decoding models, resulting in a herculean task.

Thus, the complexity of feature engineering motivates the need for automated pattern recognition

tools that can efficiently extract spatial, temporal and frequency patterns in ECoG data. In recent years,

33



several neuroimaging and EEG based studies have used Deep Learning (DL) methods for pattern recognition

and classification tasks [18–23]. Deep belief networks (DBN) have been applied to learn neural correlates in

real-time for an ECoG based BCI [24]. In another study [25], a variant of convolutional stacked autoencoder

[26] has been used to extract hierarchical features from ECoG signals. Other studies [27–30] have used echo

state network implementations of recurrent neural networks (RNNs) to model neural activity for use in BCIs.

These studies demonstrate that deep neural network architectures can achieve performance comparable to

the state-of-the-art achieved by conventional machine learning methods and, in addition, have the potential

to extract physiologically relevant features [18]. However, most studies that use deep learning methods

to decode neural data use network architectures that are successful in other domains, mainly computer

vision (For example, [31] used a network mimicking the VGG architecture that was developed for object

recognition). Although such architectures achieve good performance results, the number of parameters to be

learnt is on the order of millions, thus risking overfitting. Given the small dataset sizes in neurophysiology

studies, network architectures designed with domain knowledge could address the problem of overfitting

and improve generalizability of architectures across subjects and tasks.

In this work, we learn generalized time-frequency (t-f) patterns, which we call ”template spectro-

grams” (TS), that can effectively encode patterns from ECoG electrode channels at different spatial locations

using autoencoders (AE) [32]. These patterns find representations that are robust to temporal and frequency

shifts in the data. We show the efficacy of TS in two contexts: BCI decoding and identification of function-

ally similar cortical regions (Figure 3.1). We use a convolutional neural network framework that uses TS

to decode individual finger flexions, i.e. identify which finger is moving, from ECoG data and demonstrate

classification performance that surpasses models that achieved when using traditional spectral features. We

also evaluate the generalizability of TS by using a subject-to-subject transfer learning approach. The results

suggest that for this finger flexion task, informative neural patterns across brain regions and subjects can

be summarized using a limited number of TS. To investigate potential functional mapping applications, we
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use learnt t-f representations to cluster functionally similar brain regions and validate clustering results by

comparing them with prior knowledge of electrode location. We observed that brain areas that have task

relevant responses are clustered together. This suggests that unsupervised learning based methods could aid

in the mapping of brain areas to behaviors.

Figure 3.1: Schematic of proposed electrocorticographic (ECoG) data analysis approach. ECoG signals and
behaviors are synchronously recorded while the subject performs a queued tasks. In the primary datasets
considered for this study, a finger flexion task was utilized.

3.2 Methods

3.2.1 Recordings

Data were collected from 9 subjects with intractable epilepsy who underwent temporary placement

of subdural electrode arrays to localize seizure foci prior to surgical resection. All the subjects participated

in a purely voluntary manner, after providing informed written consent, under experimental protocols ap-

proved by the Institutional Review Board of the University of Washington (#12193). All patient data were

anonymized according to IRB protocol, in accordance with HIPAA mandate. These data originally appeared

in [33] and were publicly released in [34]. Three subjects’ data were excluded from the main analyses due to
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inconsistencies in recorded behavior and low trial count (see section 3.2.2 for more details about exclusion

criteria). Subjects were instructed to move specific individual fingers of the hand contralateral to the im-

plant in response to visual cues. During the finger movement task, subjects were cued with a word displayed

on a bedside monitor indicating which finger to move during 2 second movement trials. They performed

self-paced movements in response to each of these cues, and typically moved each finger 2-5 times during

each trial, but some trials included many more movements. A 2 second rest trial (blank screen) followed

each movement trial. There were 30 movement cues for each finger, and trials were interleaved randomly.

Finger positions were recorded using a data glove (5DT Data Glove 5 Ultra, Fifth Dimension Technologies;

see Figure 3.2 for example data glove recordings for subject I). Electrode locations were determined using

localization methods described in [35] and were also manually verified.

3.2.2 Subject exclusion criteria

The task required subjects to flex fingers for two seconds and rest for two seconds, thus allowing

for neural activity to return to baseline during the intertrial interval. However, not all subjects followed the

cues. Figure 3.3 below shows a snapshot of normalized, detrended flexion traces for subjects ‘A-F’ and

‘G-I’ respectively for a period of 30 seconds. Flexions were inconsistent across subjects and trials. For

example, subject ‘C’ presented in the main results did not rest during the two second intertrial period.

The decoding results for subjects ‘G-I’ are excluded in the main results, but are shown in Figure

3.14. For each subject, the {number of SMC electrodes}/{total number of electrodes} is 8/58, 12/43, 3/38

for subjects G-I respectively. These subjects were excluded from the main manuscript due to inconsistent

flexion behavior and low trial count (¡250).

• Subject G’s flexion behavior was inconsistent (similar to subject C Fig 3.4. ) and inspection of glove

data shows overlapping flexion traces from multiple fingers. Trials labeled using the method described

in section above couldn’t be verified with expected behavior. (Unlike subject C’s trial labels which
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could be manually verified, which allowed us to include subject C). This discrepancy could either

stem from faulty data glove or due to subject not following cues. We excluded this subject owing to

this ambiguity in labelling.

Figure 3.2: Complete flexion trace for subject ’I’.

• Subject H’s experiment duration was less than 3 minutes resulting in very few trials per finger and

Subject I had highly variable flexion duration across trials and appeared to not follow the task mid

experiment and not flex their fingers for a long enough duration to have a sufficient number of 600

ms trials for training AE (See Figure 3.2). There were less than 160 total trials for subjects H and I.

3.2.3 Preprocessing

The ECoG signals were amplified, bandpass filtered between 0.15 and 200 Hz, digitized at 1000

Hz and stored along with the time synchronized digitized flexion samples for all fingers. Noise common

to all channels was removed by common average referencing. Signals from each channel were band pass

filtered with windowed sinc type I linear phase filters of 4 Hz bandwidth between 4-140 Hz (i.e. 4-8, 8-12

. . . . 136-140 Hz). After excluding bands that include line noise and its harmonic frequencies (i.e. 56-60,

60-64, 64-68, 116-120, 120-124, 124-128), 28 frequency bands were used. Filtered signals were z-scored.

37



Figure 3.3: Flexion traces of sample 30 sec of subjects A-F presented in main results (top) and excluded
subjects G-I (below).
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Figure 3.4: Sample flexion trace for subject C ad G

The flexion periods were further broken into 600 ms non overlapping windows which we define as trials

for our analysis. Rest data from inter trial intervals were not used. The 600 ms blocks were split into 6

bins of 100 ms each and signal power in each frequency band and each 100 ms time bin was estimated.

For all our analysis, to estimate the power of a signal for a frequency band and time bin, we calculated the

average of the squared amplitude of the bandpass filtered signal within the time bin. Accordingly, from

each electrode channel, trial blocks were restructured into a 28×6 matrix (see Figure 3.6a) in which each

entry is the estimated power for a specific frequency band and time bin. Neural signals were delayed by 150

ms to account for delay between cortical activity and motor movement. Each matrix was labeled with the

finger that was flexed during the corresponding block of time, as determined by analyzing the glove data.

The method we used for labeling trials is described in section 3.2.4 below. The number of 600 ms trials for

each subject are 278, 464, 364, 291, 541 and 463, for subjects A-F, respectively.
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3.2.4 Labelling Trials

Flexion traces from data gloves are first detrended to eliminate baseline drift in sensor readings and

zscored to normalize signal amplitude. Thresholds for detecting finger flexion onset are set as follows. Let

x be the time series comprising the flexion trace of a finger. The values in x are sorted into 10 equally spaced

bins between the minimum and maximum values of x. Let p be the bin center with the maximum count.

The threshold for detecting finger movement is set as 2
5(max(x)− p)+ p. Movement onset is detected when

the flexion trace crosses the threshold (Fig 3.5). Consecutive detected movements are merged into a single

trial if they occur within a set time difference between each other (determined empirically). If two finger

movements are detected during the same period, the finger cued by the stimulus is marked as flexed.

Figure 3.5: Sample flexion trace from Subject D with dotted lines showing labelled trials.

3.2.5 Autoencoders for learning time-frequency patterns

An autoencoder, in its simplest form, is a feed-forward neural network that takes an input and maps

it to a hidden layer (encoder). The latent representation, i.e. the output from hidden layer is then mapped

back (decoder) into a reconstruction of the same shape as input. The weights of encoder and decoder

layers are optimized to minimize error between input and reconstructed output [32, 36]. Autoencoders

thus learn efficient representation of data and are commonly used for unsupervised feature extraction and

dimensionality reduction in neural networks [37, 38].
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We use AEs to find t-f patterns (or kernels) in ECoG data. Restructured data from each electrode

channel is given as a separate input to an AE and h t-f kernels are learnt using a saturated linear (satlin)

activation function in Eq. 3.1, where h is the number of hidden nodes in AE. We expect the satlin activation

to make the model robust to artifacts by saturating extreme activations that might result from noisy data.

f (z) =



0 if z≤0

z if 0<z< 1

1 if z≥ 1

(3.1)

The rationale behind this AE approach is that each channel might have its own task relevant t-f

pattern and we want to find a set of templates which have representations generalizable for all channels.

To determine the sparsity proportion, i.e. the average output of each hidden unit over the training set, we

examined the mean squared error between reconstructed and input signals for varying levels of sparsity

proportion and h, and observed that there was no significant trend. So, we used a sparsity proportion of 0.05

for all our analyses. AEs are trained to minimize the sparse mean squared error with l2 weight regularization

for a maximum of 200 epochs. The encoder of a trained AE can be used to generate new t-f based features

for neural decoding and in a neural network based decoding architecture (see Section 3.2.6 and Figure 3.6b)

the encoder can be directly integrated into the architecture. Figure 3.7a shows example t-f patterns learnt

for a subject. We evaluate the efficacy of these representations in two applications: BCI decoding and

functional mapping.

3.2.6 Deep neural networks for decoding

Deep neural networks (DNNs) learn hierarchical representations of data [39] and provide a way to

embed feature abstraction as a part of goal-directed learning. In this work, we use a 3-layer AE initialized

DNNs (AE-DNNs) to decode individual finger flexions. The architecture is shown in Figure 3.6b and is
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Figure 3.6: Schematic of network architecture. (a): Trials from each channel are restructured in time-
frequency (t-f) format and autoencoders are trained to extract t-f patterns. ECoG signal (in blue, shown
for a single channel) is synchronized with finger flexion trace (in black). The dashed lines represent the
start and end of a flexion period.(b): t-f kernels learnt by autoencoders are used as weights in DNNs to
decode finger flexions. DNN takes input from N channels. Weights for each electrode channel, i.e. spatial
modeling, are learnt in the last layer.

implemented with a convolutional framework. N denotes the number of electrode channels for each subject

and hi denotes the number of hidden nodes in each layer. The first layer’s weights and biases are fixed with

TS learnt from an AE that transforms data from each channel to h1 nodes. The second layer transforms

each of the h1 nodes in the first layer to h2 nodes and the last layer is a fully connected softmax layer which

maps N×h2 nodes to 5 nodes that give class probabilities. So, we are effectively learning the discriminative
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spatial pattern in the last layer. We use a rectified linear unit (ReLU) non-linearity between the layers as we

observed that the training was more stable as compared to training with sigmoid and tanh non-linearities.

Unless otherwise specified, we only train the last two layers of DNN while keeping the first layer weights

from AE fixed. We perform 5-fold cross validation (CV) for evaluating decoding performance. The trials

are first randomized and DNNs are trained on 4/5th of the data and tested on the remaining 1/5th. While

randomizing trials, we ensured that possibly correlated 600 ms trials split from the same flexion epoch are

either in training set or in test set. We also ensured that the TS are obtained from AE using only the trials

from training set. The network with the minimum validation loss is chosen to decode trials in the test set.

Sample scripts used for decoding analyses are available at https://github.com/tejaswy/ECoG-TF.

Neural network training is done with MatConvNet [40]. For decoding results, we used electrodes from

sensory motor cortices (SMC) which includes dorsal M1, dorsal S1 and ventral SMC regions. For each

subject, the {number of SMC electrodes}/{total number of electrodes} is 11/46, 11/64, 15/63, 12/47, 11/61

and 9/64 for subjects A-F respectively. Selection of hyperparameters, such as the number of nodes in each

neural network layers, is made using a grid search. A grid search between 10 to 100 with a step size of 10

was used to select the number of hidden nodes in AE. The same grid search was completed for choosing the

number of principal components. The number of nodes in the second layer of the DNN was selected from

a grid search between 5 to 40 with a step size of 10. The models which minimized cross entropy loss was

selected. For training neural networks, the learning rate for stochastic gradient descent algorithm was set to

a linearly decreasing value from 0.025 to 0.001 with a step size of 0.001. The maximum number of training

epochs was fixed to 25 and batch normalization was adopted with a batch size of 10. Training is done with

a training to validation split of 4:1.
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Transfer learning

Limited ECoG dataset size for structured tasks is a major impediment to applying deep learning

methods for BCI studies. We show that using a transfer learning (TL) approach, we can leverage the

representations learnt across subjects to decode flexions for a new subject. We use data from 4 subjects to

learn TS and use them in the first layer of DNN to decode flexions of fifth subject. The rationale behind this

is that there may be generalizable t-f patterns in different brain areas across subjects and extracting these

patterns from the available data corpus and using them for a new subject by learning the spatial structure

by training the last layers might be advantageous in data limited conditions. Thus, the goal for the AE is to

effectively learn a ”library” of relevant TS.

3.2.7 Baseline models

Spectral features (SF), i.e. estimated spectral powers in low (8-32 Hz) and high (76-100 Hz) fre-

quency bands are prominently used as features in ECoG based BCIs [14, 41]. Linear Discriminant Analysis

(LDA) classifier is commonly used in ECoG based BCI studies [11]. Thus, to evaluate the efficacy of differ-

ent features, i.e. SF, time-frequency powers described in Section 3.2.3 (TF), and AE, as well as to evaluate

different decoding models, i.e. LDA vs. DNN, we compare decoding results for the following pairings of

features and decoding models.

• SF-LDA: We use SF calculated in 6 bins of 100 ms each with a regularized LDA classifier. To

calculate SF, we bandpass filter signals in 8-32 Hz and 76-100 Hz band and calculate the spectral

power estimate using the procedure described in Section 3.2.3. So, for a given channel, we have 12

SF per trial. This provides a baseline model with traditional SF and a linear decoding model.

• TF-LDA: We used estimated powers in time-frequency arrays and a regularized LDA classifier. This

model will demonstrate if using information from the entire frequency range and smaller frequency
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bins improves decoding performance when compared to SF.

• AE-LDA: We used the t-f features learnt by AE and a regularized LDA classifier. This provides a

baseline to compare SF with AE features.

• CK-DNN: We created custom kernels (CK) that act as t-f filters shown in Figure 3.7b by using an

entry of 1 in rows that cover frequency bands from 8-32 Hz and/or 76-100 Hz and 0 for the rest. We

have combinations of kernels ranging all temporal scales i.e. 1 to 6 time bins. This give us a total

of 63 kernels. We use these custom kernels in the first layer of the DNN described previously for

classification. We use this baseline comparison model to be consistent with conventionally used SF

while providing the advantage of a DNN for decoding.

• PCA-LDA: The weights of an autoencoder with linear activation and lower number of hidden units

(n) than number of inputs can span the same subspace as the first n eigen vectors of the covariance

matrix of features. Hence, Principal Component Analysis (PCA) could be a reasonable alternative to

the autoencoder based feature extraction methods, specifically in data limited conditions.

Figure 3.7: Comparison of t-f kernels. Kernel ordering in this figure is arbitrary. Axes are frequency vs time
bins as shown in Figure 3.6a. (a) An example of 63 kernels learnt by autoencoders (b) 63 custom kernels
used in CK-DNN.
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3.2.8 Regularization for LDA

We used a regularized LDA where the class covariance is defined by Σγ = (1− γ)Σ+ γdiag(Σ),

where Σ is the empirical, pooled covariance matrix and γ (where γ ∈ [0,1]) is the level of regularization.

Optimal values of γ are obtained using Bayesian optimization.

3.2.9 Robustness of features in noisy conditions

Noise in ECoG recordings due to external sources is a common occurrence. Figure 3.8 shows a

sample ECoG signal recorded in the epilepsy monitoring unit outside of controlled experimental conditions.

Unlike in controlled experimental settings, brain-computer interfaces have to be robust to external noise

when used in real world applications. System design choices, specially for invasive monitoring devices or

implants, should also consider the trade-off between battery life and SNR. For example, using low-power

amplifiers could result in longer battery life but comes at the expense of SNR. The use of signal processing

pipelines robust to noise could play a crucial role in making such design choices.

Due to the use of a non-linear activation, we expect AE based features to be more robust to noise

compared to PCA or TF features. To verify this, we simulated frequently occurring spike noise in ECoG

by introducing broadband noise of varying levels in randomly selected trials in the training data. We then

trained LDA and obtained predictions on test data.

3.2.10 Noise levels in PCA vs AE comparison

Noise due to external sources are commonly observed in ECoG recordings. To test the robustness

of TF-LDA, PCA-LDA and AE-LDA to noise events commonly observed in ECoG recordings, we added

simulated noise with varying amplitude to ECoG channels. Figure 3.8 shows signal from an ECoG channel

recorded in the epilepsy monitoring unit. Common Average Referencing (CAR) is a commonly used tech-

nique to remove noise sources common to recorded channels. We performed CAR on this noisy channel
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to get a cleaner signal devoid of spike noise. Power spectral densities (psd) shown gives us an estimate

of the broadband power shift caused by the noise in clinical recording conditions. Drawing an estimate of

scale of broadband power changes caused by noise, we added broadband noise to the time-frequency arrays

(described in the Preprocessing section) of channels randomly selected from 30% of training samples. We

Figure 3.8: Effect of transient noise on ECoG signals. ECoG signal before common average referencing
(top) shows the commonly occuring spike noise in ECoG recordings. Common average referencing removes
majority of the spike noise (bottom left). The power spectral density plots (bottom) show broadband power
shift occuring due to noise.
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do this by generating a 1x28 array which is an estimate of noise psd following the Power-law m.106

f 2 .1. This

noise addition is done prior to normalization of features across bands. Here the scaling factor m is varied

from 1 to 5 to simulate increasing noise levels and f is the center frequency in each of 4 Hz frequency bins.

3.2.11 Generalization of autoencoder features

We tested our methods on a new dataset to see how well AE features generalize. We used a motor

movement and imagery dataset where 5 subjects perform both actual movements of hand and tongue and

kinesthetic imagery. During imagery task, subjects were asked to imagine making the movements. However

there is no definitive way to verify if they are following the cues during imagery tasks. This dataset was first

published in [42]. We used all recorded channels (4̃8-64) for this analysis, not just SMC channels. There

are a total of 120 trials for each subject with 30 trials each corresponding to hand and tongue movements

and interleaved with rest trials. We used TS learnt using finger flexion dataset to initialize the first layer of

network for subjects in this new dataset to test inter dataset transfer learning (ITL-DNN).

3.2.12 Clustering brain areas

Functional mapping studies use behavioral labels and have some prior constraints on relevant cor-

tical areas when looking for neural correlates. To evaluate if the representations learnt by AE can help

identify functionally similar brain areas without any prior knowledge, we clustered electrode channels with

the k-means algorithm based on their average activation across finger movement trials. We then validated

the clustering results using two metrics.

• Normalized Mutual Information (NMI): We compared our clusters to random clusters to validate

that the clusters are informative. We have actual electrode locations (Lact) labeled by cortical regions

based on anatomical boundaries. These regions do not form a ground truth for clustering, as electrodes

1Miller, Kai J., et al. ”Power-law scaling in the brain surface electric potential.” PLoS computational biology 5.12
(2009): e1000609.
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from the same regions do not necessarily share the same physiological response patterns. However,

physiological responses do tend to be more similar within regions than across regions and thus we

expect a ”good” clustering to share information with these regions. The random cluster labels (Lrand)

were obtained by sampling from a uniform distribution of electrode location labels. NMI provides a

metric to test if the cluster labels from AE (Lae) are significantly different from Lrand and accounts for

the varying number of clusters. NMI between two random variables X ,Y is calculated using Eq 3.2,

where I(X ,Y ) denotes the mutual information between X ,Y and H(X) denotes the entropy of X . We

calculated NMI between our cluster labels and Lact and compared this with the NMI between random

cluster labels and Lact .

NMI(X ,Y ) =
I(X ;Y )

[H(X)+H(Y )]/2
(3.2)

• Decoding accuracy: We used groups of channels clustered together to decode finger flexions, using

DNNs described earlier, to see if the task relevant electrodes tend to be clustered together.

3.3 Results

3.3.1 Decoding finger flexions

Classification performance comparing different feature extraction methods for the six subjects (‘A’-

‘F’) is shown in Figure 3.9. Results for excluded subjects are shown in Figure 3.14. Given the anatomical

constraints of movements of ring and pinky fingers, their movements are highly correlated and hence; thus,

we merged these two class labels into one class. Models using time-frequency features outperform models

using SF, demonstrating the advantage of using features that leverage smaller frequency bins that span the

entire broadband frequency range. Statistical significance was evaluated and details are provided in Tables

3.1 & 3.2. Subject F consistently had low decoding performance across all models; we suspect that this is

due to insufficient ECoG grid coverage in SMC regions.
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Figure 3.9: Comparing different feature extraction methods with LDA classifier. Mean accuracy with stan-
dard error bars over five cross validation folds for 4-class finger flexion classification is shown. Legend:
SF-LDA: Spectral Features, TF-LDA: Features are estimated powers in Time-Frequency bins, PCA-LDA:
Principal Component projections, AE-LDA: Autoencoder features. Chance level is 28% for random clas-
sifier. All the models performed above chance. Models with significantly higher performance compared to
SF-LDA are indicated with red asterisks. ANOVA results comparing each condition to the other 3 are in
3.1.(P ¡ 0.05; multiple comparison with one-way ANOVA statistics.)

Although TF-LDA, AE-LDA and PCA-LDA have similar decoding performance against the orig-

inal datasets collected in this study, autoencoders could provide more robust features under high noise

conditions by incorporating a saturating non-linearity and learning sparse representations that are resilient

to input dropout. Thus, in Figure 3.10 we measure the performance of these three decoding strategies with

respect to increasing levels of additive spike noise. This analysis demonstrates that AE-LDA is more robust

and can be advantages in noisy conditions which are common in EMUs.

LDA uses linear decision boundaries whereas DNN can model complex decision boundaries using

non-linear activation functions. We compare how these different classifiers affect decoding performance in

Figure 3.11. We show results from CK-DNN to show performance of spectral features with the advantage
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Figure 3.10: Noise levels which have a statistically significant difference between TF-LDA and AE-LDA
are denoted with green asterisks and between the PCA-LDA and AE-LDA are denoted with black asterisks.
(p < 0.05; multiple comparison with one-way ANOVA statistics.)

of having DNNs. While CK use powers in traditional frequency bands, the TS from autoencoders encode

informative patterns learnt from provided data. By using TS from other subjects (TL-DNNs), performance

is comparable to that achieved by using features obtained from same subject; this suggests that t-f patterns

learnt across subjects hold generalizable information. Given the limited dataset sizes in ECoG studies, using

features obtained via TL can be advantageous.

Although the performance of AE-DNN was observed to be on par with that of AE-LDA, DNNs

could potentially benefit with increased trial count and have the potential to learn mappings for more com-

plex tasks than LDA. In a more complex task, for example, behavioral labels could be arbitrary relative
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Figure 3.11: Comparing different classifiers. Mean accuracy with standard error bars over five cross val-
idation folds for 4-class finger flexion classification is shown. Legend: AE-LDA: Autoencoder features
with LDA classifier, CK-DNN: Custom Kernel features with Deep Neural Network classifier, AE-DNN:
Subject specific autoencoder features with DNN, TL-DNN: Transfer Learning features from other subjects
with DNN. AE-LDA, AE-DNN, TL-DNN show equivalent decoding performance. Chance level is 28% for
random classifier. All the models, except for CK-DNN for subjects C, D and F, performed above chance.

to the true underlying behavioral intent and structure of neural activity. Conventional techniques like LDA

typically assume that there is a prototypical pattern of neural activity for each behavioral label. The DNN, in

contrast, has a structure that facilitates a more complex relationship between neural activity and behavioral

label. To demonstrate this potential advantage, we consider a scenario in which two classes, thumb and

index finger, which have distinct neural activity, are merged to create one label. Neural activity between

thumb and index fingers is well distinguishable from one another compared to index and middle fingers.

Therefore LDA would be able to find good decision boundaries for classification tasks when thumb, index,

and middle fingers are labeled separately. However, when we merge thumb and index classes, effective

classification might require a more complex mapping than possible via LDA. Figure 3.12 shows decoder

performance for this modified classification task for AE-LDA and AE-DNN with 50 hidden nodes (arbitrary
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parameter choice); Figure 3.15 shows the confusion matrices. DNNs fare well when decoding thumb/index

vs middle finger demonstrating the comparative advantage DNNs have over LDA when labels are more

abstract.

Figure 3.12: Comparing LDA and DNN when two classes (Thumb,Index fingers) are merged. Mean accu-
racies with standard error bars for 5 cross-validation folds are shown. Subjects indicated with asterisk have
P¡0.05 with paired-sample t-Test.

The classification results for hand vs tongue dataset shown in Figure 3.13 suggest that the decoding

method presented in this paper generalizes to other datasets. ITL-DNN performed on par with AE-DNN

suggesting the plausibility of inter dataset transfer learning and AE based models outperformed SF-LDA

despite the high dimensionality and small dataset size.

3.3.2 Significance tests

Significance tests were used to compare the different decoding methods for each subject. p-values

from pairwise comparison of the subject’s group means using Tukey’s honestly significant difference cri-

terion are shown in tables below. The statistics for multiple comparison tests are obtained from posthoc
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Figure 3.13: Subjects perform actual movement or kinesthetic imagery of hand and tongue. Mean accuracy
with standard error bars over five cross validation folds for 3-class classification is shown. Chance level with
random guessing is 37.5%. Actual movement decoding performance (left) is higher compared to kinesthetic
imagery (right). For ITL-DNN, template spectrograms trained using finger flexion dataset were used in
the first layer of DNN and for AE-DNN, template spectrograms were trained using respective subject’s
data. Subjects with significant difference (p < 0.05; multiple comparison with one-way ANOVA statistics.)
between SF-LDA and AE-DNN are indicated with an asterisk.

testing after a one-way ANOVA. Tables 1 and 2 show p-values for 5 subjects A-F and G-I from multiple

comparison tests to compare across models for each subject. p-values< 0.05 are shown in bold face.

Table 3 shows the p-values for cluster decoding results. p-values of clusters with performance on

par with SMC channels are shown in bold face.

3.3.3 Clustering results

Figure 3.16 demonstrate that NMI(Lae,Lact) and NMI(Lrand ,Lact) are significantly different (Results

from t-test are in Table 3.3 ). Figure 3.18a is the brain maps when clustering electrode channels into 4 groups

and Figure 3.18b quantifies classification performance using channels from each cluster. We observed that

the cluster that significantly outperforms other clusters has performance comparable to that achieved when

using SMC electrodes and tends to include electrodes from dorsal SMC, except for Subject F. Statistical

comparisons of performance across clusters are detailed in Table 3.4 . This observation is consistent when
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Figure 3.14: Mean accuracy with standard error bars over five cross validation folds for 4-class finger
flexion classification comparing different feature extraction methods (top) and different classifiers (bottom).
Chance level is 28% for random classifier.
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Figure 3.15: Sum of confusion matrices from five cross-validation folds of subjects A-E when Thumb and
Index fingers are merged to create one class. The four labels are 1:’Thumb/Index’, 2:’Middle’,3:’Ring’ and
4:’Pinky’ fingers. Confusion matrices show true labels on vertical axis and predicted labels on horizontal
axis.

varying the number of clusters. Further, we performed the same clustering experiment with only SMC

electrodes and observed that electrodes in dorsal SMC and ventral SMC are almost always clustered into

two groups (see Figure 3.17) and the electrode cluster with higher classification performance is in dorsal

SMC. This is in agreement with related studies [15, 43] that document distinct dorsal SMC activity during

finger flexions. This suggests that the proposed clustering based dimensionality reduction method can be

used to identify task relevant channels in an unsupervised fashion.

3.4 Discussion

During motor activity, significant increases in ECoG signal power occurs mostly in high frequency

bands. However, it is difficult to estimate the exact frequency ranges and the timing of increased activity for

different electrode channels. We exploit the temporal and frequency information in the data by restructuring

signals into a t-f format. If we consider the result from Figure 4, we see that TF-LDA can outperform

SF-LDA, suggesting that a finer frequency resolution is advantageous in this task. However, the TF-LDA

approach may lead to poor generalization as the number of features grows to the product of number of
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Figure 3.16: NMI is calculated for 10 random initializations and the mean values with standard error bars
are shown.

channels, frequency bins, and time bins. In the current study, the ratio of TF-LDA features to trials was

approximately 15 to 1 for most subjects. We noticed that regularization of TF-LDA tended to reduce the

effective parameterization of TF-LDA by weighting off-diagonal terms of the covariance matrix in the LDA

model close to zero. The resulting model is effectively a Naive Bayes model which assumes all features

(i.e. all t-f entries) are independent given the finger being flexed. Thus, we compare these results to PCA-

LDA and AE-LDA; AE and PCA (which is the special linear case of AE) can efficiently aggregate data

from all frequency bands and time bins based upon underlying regularities (i.e. correlations between t-f

entries) in the dataset. AE and PCA allow the models to move away from using fixed frequency band

spectral features selected based upon previous literature while controlling the number of features used by

the decoding model. The comparable performance for TF-LDA, PCA-LDA, and AE-LDA in Figure 4

suggests that this additional structure can be imposed upon t-f based features without a loss in performance.

Figure 3.19 shows sample t-f responses of an SMC electrode. Since for the majority of electrodes’

t-f responses vary in power for specific high frequency bands in narrow time bins, the autoencoder preserves
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B

Figure 3.17: A shows the brain maps with electrode clusters. B shows 5 class classification performance
with AE-DNN with h1 = 60 and h2 = 10.

this information by learning kernels that depict bandpass filters at different time bins as shown in Figure 3a.

These template spectrograms generated using AE when used in a convolutional neural network framework

serve as filters learnt in a data-driven approach. The AE used in this work uses a non-linear transform, the

satlin function. While the addition of this non-linearity does not convey a measurable benefit relative to

PCA for the dataset, we demonstrate in Figure 5 how this approach can increase model robustness in higher
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Figure 3.18: (a): Electrode channels projected onto brain images for five subjects. Colors correspond to
different clusters from k-means algorithm. Shapes correspond to original channel locations as obtained
from brain images. Note that for subjects A, D and E, electrodes are projected on a standard template and
for subjects B, C and F, subjects’ original brain maps are used. (b): Decoding performance results using
electrode channels from each cluster, SMC channels, and all channels. Colors of cluster bars match with
the cluster colors in Figure 3.18a. The figure shows 4 class classification performance with AE-DNN with
fixed (non-optimized) hyperparamter values, h1 = 60 and h2 = 10. Blue asterisks above the bar indicates
cluster decoding performance on par with SMC channels decoding performance.

noise conditions.

DL methods are successfully being employed across various domains such as computer vision,
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Figure 3.19: We can notice increase in power in specific frequency ranges at varying time bins. Autoencoder
kernels shown in Figure 3 in main manuscript are learnt and appear to summarize these t-f responses of this
nature.

speech recognition, and natural language processing [44–46]. However, the major impediment for using

DL in neurophysiology studies is the lack of sufficient data to train large scale networks with millions

of parameters. The proposed DNN architecture has a modest parameter count (of the order of tens of

thousands) which can be advantageous for neural decoding when data size is limited. One downside of

using DNN methods is the additional effort required for hyperparameter tuning. In our analyses, we used

a small grid search on the number of hidden nodes and fixed the learning rate constant. However, one

could complete a finer grid search and additional hyperparamater tuning to potentially improve decoder

performance at additional computational expense.

Figure 3.12 demonstrates that DNNs can be advantageous in learning complex mappings under

ambiguous or abstract behavioral conditions. This proof-of-concept analysis demonstrates the potential ad-

vantage of employing DNN architectures in situations in which behaviors are ambiguous or not well defined.

Another advantage of using DNN architectures is that they provide the opportunity to integrate feature ex-

traction methods like AE. By adding the trained AE encoder as an input layer of a DNN classifier, we also
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have the opportunity to optimize AE weights to better suit the classification problem by backpropagating

errors through the single aggregate DNN during training. This could be especially useful in a transfer learn-

ing setting, where AE weights are first learnt in an unsupervised fashion and then fine-tuned in combination

with DNNs for the classification task at hand.

With advancements in high density ECoG recording technology [47–50], neurophysiology datasets

are likely to see an orders of magnitude increase in data dimensionality. To begin to understand these com-

plex datasets, we must leverage the availability of long duration EMU recordings that can span a few days.

However, excluding the recordings collected during structured behavioral tasks, which is of the order of few

minutes, a vast portion of the ECoG data is unlabeled or coarsely labeled. The TL-DNN results suggest

that a library of t-f patterns learnt across such unlabeled datasets can be used to initiate deep convolutional

networks in data limited studies allowing for knowledge transfer.

Surgical procedure for treating epilepsy involves electrically stimulating cortical surfaces through

electrodes on grids. With emerging research in high density ECoG, electrode count on grids has increased

dramatically. The unsupervised clustering based approach can potentially help clinical functional mapping

by reducing the cortical areas of interest to a few localized clusters. While the clustering analysis presented

in Figures 9,10 can be done with SF or PCA features, we used the t-f representations from autoencoder,

since Figures 4 and 5 suggest that the autoencoder based features are more robust than PCA based features

and are more informative than spectral features.

This chapter is a reprint of the material as it appears in Journal of Neural Engineering (2018),

”Autoencoders for learning template spectrograms in electrocorticographic signals.” Pailla, Tejaswy, Kai

Joshua Miller, and Vikash Gilja. The dissertation author is the primary investigator and author of this paper.
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Table 3.1: p-values from multiple comparison tests comparing different feature extraction methods and
decoding methods for subjects A-F

Models Subjects

A B C D E F

SF-LDA TF-LDA 0.106 0.0338 0.103 0.153 1.08e-06 0.418

PCA-LDA 0.354 0.106 0.303 0.346 6.18e-06 0.609

AE-LDA 0.0555 0.0127 0.303 0.306 3.96e-06 0.994

CK-DNN 0.285 0.107 0.0978 1.26e-05 0.0112 0.0778

AE-DNN 0.0396 0.0147 0.17 0.177 1.58e-07 0.908

TL-DNN 0.0233 0.011 0.128 0.153 4.72e-07 0.48

TF-LDA PCA-LDA 0.993 0.998 0.997 0.999 0.992 1

AE-LDA 1 1 0.997 1 0.998 0.813

CK-DNN 0.000369 2.26e-05 7.69e-05 5.47e-08 3.72e-08 0.000495

AE-DNN 0.999 1 1 1 0.975 0.972

TL-DNN 0.993 0.999 1 1 1 1

PCA-LDA AE-LDA 0.955 0.964 1 1 1 0.935

CK-DNN 0.00221 9.06e-05 0.00037 9.12e-08 3.78e-08 0.00113

AE-DNN 0.914 0.974 1 1 0.71 0.997

TL-DNN 0.821 0.952 0.999 0.999 0.941 1

AE-LDA CK-DNN 0.000165 7.78e-06 0.00037 8.19e-08 3.76e-08 0.002

AE-DNN 1 1 1 1 0.806 0.999

TL-DNN 1 1 0.999 1 0.975 0.862

CK-DNN AE-DNN 0.000111 9.05e-06 0.000153 5.83e-08 3.71e-08 0.00506

TL-DNN 6.06e-05 6.69e-06 0.000103 5.47e-08 3.72e-08 0.0123

AE-DNN TL-DNN 1 1 1 1 0.998 0.985
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Table 3.2: p-values for excluded subjects G-I.

Models Subjects

G H I

SF-LDA TF-LDA 0.549 0.917 0.999

PCA-LDA 0.471 0.999 0.999

AE-LDA 0.998 0.999 0.675

CK-DNN 0.146 0.994 0.0215

AE-DNN 0.497 0.917 0.992

TL-DNN 0.655 0.5 1

TF-LDA PCA-LDA 1 0.992 1

AE-LDA 0.265 0.678 0.394

CK-DNN 0.00199 0.58 0.00688

AE-DNN 1 1 0.906

TL-DNN 1 0.986 1

PCA-LDA 0.935 0.213 0.966 0.394

CK-DNN 0.00143 0.93 0.00688

AE-DNN 1 0.992 0.906

TL-DNN 1 0.762 1

AE-LDA CK-DNN 0.356 1 0.484

AE-DNN 0.229 0.678 0.966

TL-DNN 0.346 0.243 0.531

CK-DNN AE-DNN 0.0016 0.58 0.102

TL-DNN 0.00309 0.183 0.0123

AE-DNN TL-DNN 1 0.986 0.966
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Table 3.3: p-values for NMI comparisons shown in Fig 6

Subjects Number of Clusters

2 3 4 5 6 7 8

A 3.7336e-08 2.0011e-11 2.0101e-09 8.0431e-08 1.1144e-06 5.262e-07 3.3203e-07

B 0.00049218 1.6744e-06 8.4533e-06 3.2309e-05 5.4786e-05 0.00025408 0.00075218

C 1.1852e-06 1.6533e-05 2.3306e-06 9.4869e-05 6.7712e-06 1.8027e-05 5.1248e-05

D 0.0006323 0.038785 0.0042044 0.026984 0.035542 0.010361 0.054018

E 0.00057913 1.1409e-06 1.0596e-06 4.5653e-07 5.3455e-08 4.3602e-10 3.3207e-09

F 0.0006 0.0011e-03 0.0011e-03 0.005e-03 1.3e0-9 1.2e-09 3.32e-09
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Table 3.4: p-values for clustering results. (Ci denotes Cluster i)

Models Subjects

A B C D E F

C1 2 0.41571 2.1512e-07 2.8206e-05 0.21147 0.99135 0.9977

3 5.7835e-05 3.1934e-08 0.98992 0.020581 2.0693e-08 1

4 0.20957 9.3885e-08 0.01131 0.0059917 0.82704 0.8

SMC 6.9223e-05 0.99997 2.5236e-05 0.0025648 2.0688e-08 0.01

All Chan 9.8504e-06 0.0039328 0.00053721 0.00056861 2.0719e-08 0.82

C2 C3 6.7442e-07 0.73773 6.7598e-06 6.6389e-05 2.0702e-08 1

C4 0.99757 0.99709 0.17854 1.8748e-05 0.98757 0.96

SMC 7.9123e-07 3.1028e-07 1 0.36759 2.0689e-08 0.03

All Chan 1.5192e-07 0.0039328 0.83113 0.13137 2.077e-08 0.96

C3 C4 2.6806e-07 0.93735 0.002654 0.99467 2.0727e-08 0.86

SMC 1 3.6906e-08 6.0671e-06 6.2978e-07 0.66615 0.01

All Chan 0.97503 0.00013105 0.00012183 1.8151e-07 0.88987 0.86

C4 SMC 3.1104e-07 1.2853e-07 0.16418 2.1463e-07 2.0691e-08 0.15

All Chan 7.2473e-08 0.001272 0.80847 7.4041e-08 2.0929e-08 1.00

SMC All Chan 0.96254 0.0061398 0.80847 0.98918 0.14423 0.15
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Chapter 4

Cross-subject learning for decoding ECoG

4.1 Introduction

Prosthetic devices or brain-machine interfaces (BMIs) aim to restore the lost mobility in individuals

paralyzed due to stroke, spinal cord injury or neurodegenerative disorders like amyotropic lateral sclerosis.

BMIs decode intent from neural signals by mapping activity of neural ensembles to behaviors. Invasive

BMIs with intracortical signals, recorded using Utah arrays [1], as control signals have been shown to suc-

cessfully decode volitional movements and enabled users, paralyzed from neck down, to perform tasks like

cursor control, reaching and grasping [2–4]. Electrocorticography (ECoG) is another alternative recording

modality wherein neural activity is recorded from the cortical surface. Although the current clinical ECoG

electrodes record signals from a bigger ensemble of neurons compared to intracortical electrodes, success-

ful decoding of volitional motor activity from ECoG has been shown to be possible [5, 6]. The viability of

ECoG as a neural acquisition modality for prosthetic control has been an area of active research for the past

two decades [7–9]. The feasibility of ECoG based BMIs for paralyzed individuals has been demonstrated

in [10–12]. ECOG based BMIs have the potential of long term stability in performance [13]

Training a decoder for BMI involves mapping spatio-temporal patterns in neural data to behaviors.

Transfer of BMI decoders across multiple users or across session for a given user is a challenging problem.
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Performance of decoder might vary across sessions for a given user. This could be due to change in cortical

activity as user’s familiarity with task changes [14], statistical variability in neural recordings due to changes

in impedance or movements of electrodes, and hardware failure leading to loss of recordings from electrodes

[15]. Decoders are typically recalibrated prior to session to ensure the neural to behavioral mapping is

finetuned to the BMI user’s neural activity for that particular session [16]. An alternative approach to

improving BMI decoder’s across-session stability is to use domain adaptation techniques to align the latent

spaces of features across sessions to that of the first session on which the BMI decoder is trained [17].

In [18], the authors describe the idea of aligning distributions of low-dimensional projections of cortical

activity with distribution of decoder outputs, thus relying on statistics of movements and neural activity to

build decoders.

In this paper, we explore the idea of cross-subject learning (CL) of ECoG based BMI decoders, i.e.

training a decoder using data from a set of users and deploying it for a new user. CL is a well studied prob-

lem in electroencephalography (EEG) based BMIs [19–23]. EEG caps have standard system for the location

of scalp electrodes, making it easier to standardize datasets across users. However, CL is not straightforward

for ECoG based BMIs. Majority of ECoG based studies rely on datasets collected from epilepsy monitoring

units (EMUs). Individuals with chronic epilepsy undergo surgery for ECoG implantation to identify seizure

foci. These individuals volunteer to participate in experiments while in clinical care post electrode implan-

tation. The electrode grid placement is guided by individual subject’s clinical requirements. This leads to

variability in recorded signals across subjects in addition to to anatomical differences of cortex across users.

We address the challenge of cross-subject learning for ECoG based BMIs and demonstrate our

results using a finger flexion dataset for both discrete and continuous decoding. We hypothesize that, given

a set of users performing a behaviorally similar task (e.g. flexing specific finger), we can learn a common

latent space from the neural activity corresponding to the common behavioral activity. We can then learn

a common decoder across subjects that maps the dynamics from this latent space to the behavioral output.
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We will discuss the effect of leveraging information across multiple subjects’ data doing similar behavioral

tasks on BMI decoder performance.

4.2 Methods

4.2.1 Dataset

We used the finger flexion dataset that originally appeared in [24] and was publicly released in [25].

Subjects with ECoG grids implanted for epilepsy treatment volunteered for the experiment. Subjects per-

formed a finger flexion task wherein they were instructed to move specific fingers of the hand contralateral

to the implant in response to visual cues. We use data from 5 subjects (’A’-’E’) and a comprehensive

description of dataset and subject exclusion criteria is described in [26]. ECoG signals were amplified,

bandpass filtered between 0.15 and 200 Hz, digitized at 1000 Hz and stored along with the time synchro-

nized digitized flexion samples for all fingers. All the subjects participated in a purely voluntary manner,

after providing informed written consent, under experimental protocols approved by the Institutional Re-

view Board of the University of Washington (#12193). All patient data were anonymized according to IRB

protocol, in accordance with HIPAA mandate.

Figure 4.1: Preprocessing flexion trajectories from data glove. A: Raw flexion trajectory from data glove.
B Cleaned trajectory for continuous decoding. C: Thresholded amplitude for discrete classification
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4.2.2 Preprocessing data

Finger flexion timings for all subjects are manually annotated. Trial length for both continuous and

discrete decoding is 4 sec. ECoG data and flexion trajectories from glove are preprocessed and downsam-

pled to 12.5 Hz, thus resulting in 80 ms time step prediction, as described below.

Glove data: Flexion samples from data glove are smoothened with a 80 ms moving average window

and detrended. They are then downsampled to 12.5 Hz and zscored. For continuous regression, flexion

trajectories of the moving finger are normalized to the range [0, 1]. For discrete decoding, binary labels are

assigned with unit amplitude during the movement period for the flexed finger (See figure 4.1). Thus, the

dimensionality of discrete decoder output is 5 x T and dimensionality of continuous decoder output is 1 x

T , where T is the number of samples. For our 4 sec trials, T = 49.

ECoG data: Noise common to all channels was removed by common average referencing. Signals

from each channel were band pass filtered with windowed sinc type I linear phase filters of 4 Hz bandwidth

between 4-140 Hz (i.e. 4-8, 8-12 . . . . 136-140 Hz). After excluding bands that include line noise and

its harmonic frequencies (i.e. 56-60, 60-64, 64-68, 116-120, 120-124, 124-128), 28 frequency bands were

used. Filtered signals were z-scored and Hilbert amplitude of the z-scoed signal is smoothened with a 80

ms moving average window and downsampled to 12.5 Hz. For each trial, ECoG data is restructured into

T ×C×28×1 format where T is the number of time steps, C is the number of electrodes in sensory-motor

cortex (SMC), 28 is the number of frequency bands.

4.2.3 Network architectures

Subject-specific architecture

The input to the network is ECoG data in T ×C×28×1 format. The decoding architecture consists

of two time distributed 1 D convolutional layers that find the spatial and frequency filters at each time step

in the ECoG input. Then a Long Short Term Memory (LSTM) layer, which is a variant of a recurrent
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Figure 4.2: Average Flexion traces (with standard errors) of each finger for subjects ’A’-’E’. The bottom
right subplot shows the mean corrrelation, averaged across fingers, between subjects.

neural network, is used to learn the temporal dynamics. A time-distributed Dense layer is used to map the

output of LSTM to continuous output using an ReLU activation. Another time-distributed Dense layer is

used to get discrete output using a softmax activation. A Parameteric ReLU activation layer, dropout layer

with a dropout rate of 0.2 (i.e 1 in 5 input nodes will be randomly excluded while training) and a batch

normalization layer are applied at the end of convolutional and LSTM layers.The schematic of network

architecture is shown in figure 4.3 and is detailed in Table 4.1. A single flexion trajectory is learnt for each

trial and the discrete decoder predicts which one of five fingers is moving at each time step of trial. The

effective loss function is the sum of mean average error loss for regression and categorical cross entropy

loss for discrete decoding. For all the experiments, hidden node size is 10 in each layer of the network and

batch size is fixed at 10. Both the regression and discrete outputs are trained in parallel.
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4.2.4 Cross-subject architecture

The assumption behind training a cross subject model is that by learning common latent spaces

across subjects, we can train a common decoding model that could map the neural activity to behaviors.

We propose learning this common latent space in an end to end way using a similar architecture described

in section 4.2.3. We call the stacked 1D convolutional layers that convert ECoG activity to input of LSTM

layer ”Aligner layer”. This aligner layer feeds into a common LSTM layer and decoder layers that are

fixed across subjects. We train model shown in figure 4.4 in parallel for all subjects. This enables learning

aligner layer weights such that the ECoG activity for different subjects maps to a common latent space

and the LSTM and decoder layers learn a mapping to the behavioral output. This mapping will thus be

generalizable across subjects. For a new test subject, we fix the LSTM and decoder layers learnt using

cross-subject data and learn the aligner layer weights to map the subject specific data to previously learnt

aligner space.

Figure 4.3: Schematic of neural network architecture.
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Figure 4.4: Schematic of neural network architecture.

4.3 Results

4.3.1 Learning common latent spaces

The central idea behind training cross-subject models is that we can learn an alignment between

neural latent spaces across subjects. We achieve that by fixing the decoder, i.e. the LSTM + dense layers,

that maps from latent space to behavioral output and letting the convolutional layer weights be trained in

such a way that the input to decoders are aligned across subjects. Figure 4.5 shows the first three principal

components of hidden node activations of the aligner layer of subject B learnt to align with the latent space

of model learnt usng data from subject A. This shows that the network architecture allows us to learn

common latent spaces in a supervised way.
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Table 4.1: Network architecture for ECoG decoding

Layer Input Shape Output Shape Notes on layer

Input Layer (49,N,28,1) (49,N,28,1) 4 sec ECoG signal

Time distributed 1D Conv layer (49,N,28,1) (49,N,1,F1) F1 is number of filters to model frequency patterns

Time distributed 1D Conv layer (49,N,1,F1) (49,1,1,F2) F2 is number of filters to model spatial patterns

PReLU activation (49,1,1,F2) (49,1,1,F2) Parametric ReLU activation

Dropout (49,1,1,F2) (49,1,1,F2) dropout rate of 0.2

Batch Normalization (49,1,1,F2) (49,1,1,F2) batch normalization layer for addressing internal covariate shift

Time Distributed Flatten layer (49,1,1,F2) (49,F2) Flatten the output for input to LSTM

LSTM layer (49,F2) (49,F3) F3 is the number of hidden nodes in LSTM layer

Dropout (49,F3) (49,F3)

Batch Normalization (49,F3) (49,F3)

Time distributed Dense layer (ReLU activation) (49,1) (49,1) Predict continuous flexion trajectory at each time step

Time distributed Dense layer (sigmoid activation) (49,5) (49,5) Predict moving finger at each time step

4.3.2 Decoding results

Figure 4.6 shows the discrete classification accuracy, mean average error and correlation coefficient

between true and predicted finger flexion trajectories. For calculating the classification accuracy from the

5×T dimensional output of discrete decoder we calculate the mean prediction probabilities of each finger

during the flexion period and assign the finger that has maximum value as predicted finger. Cross-subject

models perform on par with subject-specific models. Figure 4.7 shows qualitatively the actual and predicted

flexion trajectories. By fixing decoders and only learning the aligner layer weights, we can reduce the

number of training epochs required to train the model for a new test subject as shown in Figure 4.8. The

figure also shows that cross-subject models are less prone to overfitting compared to subject-specific models.

Figure 4.9 shows that by leveraging information across subjects, the LSTM layer is better able to model

dynamics to seperate the fingers.
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Figure 4.5: Common latent spaces learnt using the neural network at the end of aligner network. Latent
spaces of subject specific models (top). Subject B’s latent space is aligned with subject A’s space by fixing
the LSTM and dense layers with subject A’s model weights (bottom). Colors correspond to different fingers
and shapes correspond to subjects
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Figure 4.6: Continuous and discrete decoding results comparing subject specific and cross-subject models.

Figure 4.7: Sample trials for subject A showing predicted and true flexions for subject specific and cross-
subject model for each finger (columns).
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4.4 Discussion

Motivation to explore cross-subject learning for ECoG based BMIs is three fold. Firstly, cross-

subject learning allows us to leverage data from multiple subjects to decode for new subject. Secondly, this

could help reduce the time required to calibrate BMI decoder for new session or user. Thirdly, this would

enable us to use the dynamics learnt from existing data corpus to build prosthesis that can perform tasks in

more degrees of freedom than the user is capable of. In this work, we showed that it is possible to learnt

common models using cross-subject data and these models perform on par with subject-specific models.

Figure 4.8: Comparing training and validation losses of subject specific and cross subject models

Chapter 4, in part, is currently being prepared for submission for publication of the material. ”Cross-

subject learning for decoding electrocorticographic signals”. Pailla, Tejaswy, Venkatesh Elango, Aashish

Patel, Vikash Gilja. The dissertation author is the primary investigator and author of this paper.
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Figure 4.9: Comparing cluster separability of hidden node activation of LSTM output for subject E. The
five columns correspond to five cross validation folds. Colors correspond to different fingers and the title
for each subplot is the Silhouette cluster separability index. We can see that the hidden node activations of
cross-subject models are more separable than subject-specific models
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Chapter 5

Future work

5.1 Analyzing large-scale ECoG data

Until recently, ECoG based research studies have largely relied on datasets collected from subjects

who volunteered to participate in experiments while undergoing treatment in epilepsy monitoring units

(EMUs). These datasets are typically of the order of tens of minutes where the subjects perform controlled

experimental tasks, resulting in well-labelled, relatively clean datasets. The experiment and subject choices

are usually done based on the ECoG coverage and the subject’s ability or willingness to do tasks. Such

studies have largely contributed to the understanding of specific cortical areas and brain-machine interface

studies.

However, recently researchers are pursuing the opportunity to collect ECoG data for extended pe-

riods of times, i.e. usually in the order of days, while the subjects are in EMUs. Behavioral data, i.e. the

subject’s physical activity or movements are recorded using non-invasive or minimally invasive sensors like

Kinect that capture audio, video [1, 2]. The volume of these datasets are large compared to the few minutes

of datasets used in research studies til date. Furthermore, ECoG data collected under naturalistic conditions

is noisy and coarsely labelled making it difficult to study event related potentials. The traditional machine

learning methods used for smaller datasets do not scale well with these large datasets. Therefore, there is
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now a need to develop scalable and unsupervised toolkit to analyze these novel datasets.

5.2 Proof-of-concept results

I use the data presented in [3], where four contexts; Rest, Dialogue, Electronics, TV; have been

coarsely labelled for three subjects: NY394, RCH1 and RCH3. Figure 5.1 shows the timeline of contexts

for three subjects. While subject NY394 has only ECOG electrodes, RCH1 and RCH3 have both ECoG

and sEEG coverage. ECoG channels were common average referenced and sEEG channels were bipolar

referenced. These data were collected over 3-4 days. The data were coarsely labelled in 5 to 15 min

segments.

Figure 5.1: Raster plot showing the locations of each context in time: Rest (R), Dialogue (D), Electronics
(EL), Television (TV). Source [3]

85



5.2.1 Unsupervised methods to cluster ECoG data

Variational autoencoders (VAE) are generational models that learn latent representations of data and

allow sampling new samples from this latent distributions [4]. A two layer VAE with 100 hidden nodes in

first layer and 2 hidden nodes in second layer was used to find the latent representation of data. The resulting

latent space was clustered using a gaussian mixture model and compared with true labels. The existence of

mutual information between the true and clustered labels as shown in 5.2 demonstrate that the VAE could

extract spatio-temporal patterns in the data that could extract context relevant latent representations from

the neural data. This kind of unsupervised clustering methods can further be explored to automate labelling

in large scale datasets.

Figure 5.2: Clustering contexts using variational autoencoders for NY394.

5.3 Future Directions

A major challenge in analyzing large-scale data is defining the scope of the questions that can be

answered with these multi-modal datasets. Given the variation in grid coverage, exact location of electrodes

on the cortical surface and lack of event related timings, it might not be possible to study functional orga-

86



nization of particular cortical areas pertaining to nuanced behaviors. However, these datasets can help us

answer more broader questions such as connectivity of cortical regions, finding spatial-temporal patterns

representative of abstract brain states such as when a subject is at rest or engaging in dialogue. While de-

coding coarse behavioral states (e.g. rest vs dialogue) from naturalistic conditions can find applications in

BMIs [3], these datasets could be much more valuable to neuroscientists seeking to understand connectivity

patterns of brain in the wild.
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