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The Complex Genetic Architecture of the Metabolome
Eva K. F. Chan1¤a, Heather C. Rowe1¤b, Bjarne G. Hansen2¤c¤d, Daniel J. Kliebenstein1*

1 Department of Plant Sciences, University of California Davis, Davis, California, United States of America, 2 Department of Plant Biology and Biotechnology, Copenhagen

University, Copenhagen, Denmark

Abstract

Discovering links between the genotype of an organism and its metabolite levels can increase our understanding of
metabolism, its controls, and the indirect effects of metabolism on other quantitative traits. Recent technological advances
in both DNA sequencing and metabolite profiling allow the use of broad-spectrum, untargeted metabolite profiling to
generate phenotypic data for genome-wide association studies that investigate quantitative genetic control of metabolism
within species. We conducted a genome-wide association study of natural variation in plant metabolism using the results of
untargeted metabolite analyses performed on a collection of wild Arabidopsis thaliana accessions. Testing 327 metabolites
against .200,000 single nucleotide polymorphisms identified numerous genotype–metabolite associations distributed
non-randomly within the genome. These clusters of genotype–metabolite associations (hotspots) included regions of the A.
thaliana genome previously identified as subject to recent strong positive selection (selective sweeps) and regions showing
trans-linkage to these putative sweeps, suggesting that these selective forces have impacted genome-wide control of A.
thaliana metabolism. Comparing the metabolic variation detected within this collection of wild accessions to a laboratory-
derived population of recombinant inbred lines (derived from two of the accessions used in this study) showed that the
higher level of genetic variation present within the wild accessions did not correspond to higher variance in metabolic
phenotypes, suggesting that evolutionary constraints limit metabolic variation. While a major goal of genome-wide
association studies is to develop catalogues of intraspecific variation, the results of multiple independent experiments
performed for this study showed that the genotype–metabolite associations identified are sensitive to environmental
fluctuations. Thus, studies of intraspecific variation conducted via genome-wide association will require analyses of
genotype by environment interaction. Interestingly, the network structure of metabolite linkages was also sensitive to
environmental differences, suggesting that key aspects of network architecture are malleable.
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Introduction

There is a direct link between the genotype of an organism and

its metabolite levels, which can subsequently impact other

quantitative traits [1–5]. Traditionally, studies of metabolic traits

and their genetics have focused on small numbers of metabolites.

However, recent technological advances have enabled broad-

spectrum, untargeted metabolite profiling, or metabolomics [6].

Variation in the levels of metabolites within a species or population

is largely quantitative, moderately heritable [7–10], and shows

polygenic inheritance [11–12] controlled by the interaction of

environmental and genetic factors [13–14].

To better understand the genetic control of metabolite abundance,

linkage disequilibrium analyses, or quantitative trait locus (QTL)

mapping, using structured populations are generally performed (e.g.

[7,9–10,15]). While structured populations may contain significant

fractions of the variation present within a species, their use is

disadvantaged by the limited number of recombination. Genome-wide

association (GWA) mapping provides a complementary approach to

QTL-mapping as it allows wider sampling of the genotypes present

within a species. GWA seeks to associate phenotypes with genotypes, at

a genome-wide level, using ‘unrelated’ individuals [16]. However this

increase in genotypic sampling can be negated by a lack of

corresponding increase in phenotypic diversity that can consequently

lead to an increase in detection of both false-positive and false-negative

genotype-phenotype associations [17–19]. A limitation to both QTL-

mapping and GWA is the generation of false positives within regions of

high linkage disequilibrium (also known as ghost QTL), which can

conversely be turned into false negatives when one errs too much on

the side of caution and ignores the possibility of multiple distinct but co-

localized causative polymorphisms [17–20].

In addition to the genetic-metabolite relationships, the study of

metabolite-metabolite correlation can also enhance understanding of

cellular processes as inter-metabolite correlations are expected to

reflect underlying biochemical networks [21–23] . If biochemical

networks are coordinately controlled by common genetic determi-

nants, then one may expect similar loci identified by GWA to

influence the accumulation of groups of metabolites within a
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biochemical network. Thus far, metabolic networks have generally

been reconstructed using covariance of metabolites across replicated

measures [24], whereas covariance of metabolites across different

genetic backgrounds have not been examined. Equally, little is known

about the stability of metabolic networks under different environ-

mental conditions. Metabolite levels are sensitive to numerous

environmental inputs and as such, the genetic control of metabolite

levels may also be affected by the organism’s environment [25–32].

To investigate the natural genetic diversity underlying a plant

metabolome, we obtained broad-spectrum metabolite profiles

from a densely-genotyped collection of 96 naturally occurring

(wild) A. thaliana accessions chosen to represent the geographic

distribution and genetic diversity of the species. These metabolite

levels were used as phenotypic traits in a GWA analysis and for the

reconstruction of metabolic networks. To query the genotypic

component controlling diversity within the A. thaliana metabolome,

the metabolite profiles of 96 accessions were measured twice from

tissues collected from two independent trials. Between 70–75% of

metabolites measured in our analyses were detected in both trials,

though 70% of these were found at different levels. Our network

analyses identified few significant metabolite-metabolite correla-

tions, indicating minimal direct interaction between metabolites,

and few common metabolite-metabolite correlations between the

two trials, suggesting a strong environmental component to the

architecture of metabolic networks. Finally, we confirmed that

metabolite abundance is heritable and under polygenic control,

and further showed that metabolites are under pleiotopic control

where few genomic regions were associated with changes in levels

of tens to hundreds of metabolites.

Results

The metabolome is quantitatively dynamic
To study both the natural phenotypic and genetic variation in

the A. thaliana metabolome, we identified and measured metabolite

levels, using non-targeted GC-TOF-MS, in leaf tissues of 96 A.

thaliana accessions harvested with replication in two separate

experiments. One experimental set of plants was harvested early in

the plants’ photoperiod (Experiment A) and the other late in the

photoperiod (Experiment B); all other environmental (e.g. growth

chamber condition) and technical (method of planting and growth)

variations were minimized. A total of 327 plant metabolites were

detected and present in .50% of the samples (see M&M for

preprocessing steps). Of these, 194 were detected in both

experiments and 133 were unique to one of the two experiments.

Of the 194 metabolites detected in both experiments, the majority

(133 = 69%) accumulated to significantly different levels between

experiments (t-tests Bonferroni-adjusted P,0.05; Table S1).

While the two experiments were not conducted concurrently,

the plants were grown in the same chambers using as nearly

identical conditions as possible. As such, we expect that the time of

harvest to be the major cause of variation between the two

experiments. Supporting this, the identity of several of the

differentially abundant metabolites is consistent with photoperi-

od-sensitive accumulation. For example, phytol, a constituent of

chlorophyll that mainly functions to absorb and transfer light

energy, was 6-times more abundant in the AM samples (Expt. A)

compared to the PM samples (Expt. B) [33]. Conversely, many

metabolites were present at higher levels in Experiment B relative

to Experiment A, including metabolites involved in starch (e.g.

fructose, maltose, glucose) and ascorbate (e.g. ascorbate, threonic

acid) metabolism as expected (Figure 1; [34,35]). These differences

between the experiments, however, appear to be largely

metabolite specific as no metabolic class or pathway was over or

under represented among differentially abundant metabolites (data

not shown). While the data suggests that time of day for harvest is

the major difference, it is not inherently the only difference

between the two experiments.

The metabolome is qualitatively dynamic
The observed difference in the type and amount of metabolites

present in the two experiments could result from 1) a common

metabolic network being differentially regulated under the two

conditions or 2) differences in the structure of metabolite

relationships between the two experiments. To investigate these

hypotheses, we constructed metabolite correlation networks across

genotypes which were used as surrogates for metabolic networks. If

differential metabolite accumulation resulted from differential

regulation of a common metabolic network, we would expect

similar correlation structure and network properties between

experiments, involving different metabolites. This would be akin to

being given two different low resolution images and testing if they

represent the same object. The pixels (metabolites) presented may

differ in each image but still conveys the same object (network). If

instead, the structure of the network also differs between the

experiments, then the correlation structure will fundamentally

differ between the experiments.

We used partial (first-order) correlation to analyze the

genetically identified metabolic network [36–37]. This approach

was chosen over more common, zero-order correlation methods,

such as Spearman’s correlation, because first-order correlations

account for indirect correlations, a problem that can inflate

clustering coefficients and subsequently lead to false network

cliquishness [38]. Strong indirect correlation within A. thaliana

metabolism have previously been found using both growth and

starch accumulation as the likely cause of these indirect correla-

tions, supporting our use of first-order correlations [39–40]. Few

significant correlations among metabolites were identified: at a local

FDR of 5%, only 30 correlations between 52 metabolites (Expt. A)

Author Summary

Understanding how genetic variation can control phenotypic
variation is a fundamental goal of modern biology. We
combined genome-wide association mapping with metabo-
lomics in the plant Arabidopsis thaliana to explore how
species-wide genetic variation controls metabolism. We
identified numerous naturally-variable genes that may
influence plant metabolism, often clustering in ‘‘hotspots.’’
These hotspots were proximal to selective sweeps, regions of
the genome showing decreased diversity possibly from a
strong selective advantage of specific variants within the
region. This suggests that metabolism may be connected to
the selective advantage. Interestingly, metabolite variation in
wild Arabidopsis is highly constrained despite the significant
genetic variation, thus providing the plant un-sampled
metabolic space if the environment shifts. The observed
structuring of genetic and metabolic variation suggests
individual convergence upon similar phenotypes via different
genotypes, possibly intra-specific parallel evolution. This
phenotypic convergence couples with a pattern of geno-
type—phenotype association consistent with metabolite
variation largely controlled by numerous small effect genetic
variants. This supports the supposition that large magnitude
variation is likely unstable in a complex and interconnected
metabolism. If this pattern proves generally applicable to
other species, it could present a significant hurdle to
identifying genes controlling metabolic trait variation via
genome-wide association studies.

GWAS and the Environment
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and 17 correlations between 34 metabolites (Expt. B) were

observed. This lack of significant correlation between pairs of

metabolites implies that their levels were not coordinated in the

96 genetic backgrounds used. Increasing the local FDR to 20% as

suggested by [36] resulted in 89 significant correlations of 126

metabolites (Expt. A) and 27 significant correlations of 54

metabolites (Expt. B) (Figure 2 and Figure 3). Even at this more

lenient threshold, connectivity is much lower than that observed

using Spearman’s r correlation (Figures S1, S2, S3, S4),

suggesting few true direct correlations. In all, only six pairs of

metabolite-metabolite correlations were identified in both the

Expt. A and Expt. B genetic networks, suggesting each pair of

these metabolites are genetically linked under these two

conditions. Interestingly, these six consistent metabolite-metab-

olite connections all represented negative correlations. Two

serine compounds likely linked by serine racemase [41] (L-serine

(213294) & D-serine(227962) [42–43]) showed strong negative

correlations in both experiments. The other correlated metab-

olite-pairs were glucose/talose, glucose-1-phosphate/227973,

208686/216838, 200622/215682, 226280/228078; the numbers

correspond to BinBase identifiers of unannotated compounds

[42]. No metabolite-pairs showed opposing correlation directions

between the two networks.

We next analyzed network similarity. The average degree (k), or

number of connections per metabolite, was higher in Expt. A

(k = 3) than Expt. B (k = 1) suggesting more genetically variable

links within the metabolite network within Expt. A than in Expt.

B. All measures of connectivity were significantly higher in Expt. A

Figure 1. Metabolites in the Starch and Ascorbate pathways are more abundant in Expt. B (collected at PM) compared to Expt. A
(collected at AM). Shown are the average metabolite levels across 96 accessions in Expt. A (orange) and Expt. B (blue). Error bars denote one
standard deviation and asterisks denote significant and greater than two-fold difference between experiments. Purple arrows denote starch and
sucrose metabolic pathway members and blue arrows correspond to the ascorbate metabolic pathway.
doi:10.1371/journal.pgen.1001198.g001

GWAS and the Environment
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Figure 2. Metabolic network for Expt. A generated from significant (local FDR,20%) partial correlations between metabolites.
Metabolites are represented by nodes (circles) and significant metabolite-metabolite connections are represented by edges (lines). Solid lines define
positive connection and dotted lines indicated negative correlations. Colors of circles indicate: amino acids (bright green), fatty acids (yellow),
carbohydrates (pink), hydroxy acids (dark green), alcohols and polyols (blue).
doi:10.1371/journal.pgen.1001198.g002

Figure 3. Metabolic network for Expt. B generated from significant (local FDR,20%) partial correlations between metabolites.
Metabolites are represented by nodes (circles) and significant metabolite-metabolite connections are represented by edges (lines). Solid lines define
positive connection and dotted lines indicated negative correlations. Colors of circles indicate: amino acids (bright green), fatty acids (yellow),
carbohydrates (pink), hydroxy acids (dark green), alcohols and polyols (blue).
doi:10.1371/journal.pgen.1001198.g003

GWAS and the Environment
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than in Expt. B. This included straight connectivity (P,0.001),

closure of triads (P,0.001) and degree distributions (P,0.001;

Figure S1). This suggests that there is a fundamental shift in the

shape of the genetic networks controlling metabolism that partly

explains the differences between the two experiments.

To test if metabolites differing in abundance between the two

experiments also participate in different genetic interactions, we

investigated correlations involving metabolites that differentially

accumulated in the two experiments and were significantly

correlated with at least one other metabolite in both experiments.

Of the 39 metabolites fulfilling these requirements only eight had

identical connections within both experiments (Figure 4). For the

remaining 31 metabolites, we did not detect shared connections

between the two different genetic networks; either because they

were connected to different compounds between Expt. A and

Expt. B (4 metabolites) or they were not significantly correlated

with any other detected metabolites in the alternate dataset (27

metabolites). For example, the abundance of succinic and threonic

acids was 3- and 6- times higher in Expt. B than Expt. A, and

while these two metabolites were significantly connected to each

other in Expt. A neither demonstrated significant correlation with

any other metabolites in the Expt. B data set. These results imply

that metabolites that were differentially abundant between these

experiments were the consequence of the metabolites being

involved in different environmentally-influenced genetic networks,

rather than differential regulation of the same networks.

Metabolite abundance is heritable and complex
Two lines of evidence indicate a genetic contribution to control

of metabolite abundance within these two experiments and this

collection of accessions. First, the estimated broad-sense heritabil-

ity, H2, for both experiments was 0.4560.14, with no significant

difference between known and unknown compounds, suggesting

our estimates are not biased by the ease of the annotation status of

a metabolite (Figure 5). These estimates can be compared to

heritability for traits such as yield, typically less than 10%, and

flowering time, frequently greater than 90% [44–45]. This level of

heritability provides sufficient power to detect significant geno-

type-phenotype associations [16,46–48]. As an additional test of

how genetic variation may influence metabolite variation in this

collection of accessions, we estimated the genetic coefficient of

variation (CV) per metabolite. Genetic CV is a dimensionless

measure that allows the direct comparison of phenotypic diversity

controlled by genetic variation across experiments and populations

[44]. Genetic CV describes how genomic variation controls

phenotypic diversity and does not reveal the contribution of

individual genes to phenotype. The average genetic CV was

56%627% for both experiments (Figure 6, Table S1).

Figure 4. Differentially-abundant and differentially-connected metabolites. Of a total of 194 metabolites detected in both experiments,
138 were either present at more than two-fold difference (Bonferroni-adjusted P,5%) between Expt. A and Expt. B or are significantly connected
(local FDR,20% using partial correlation) to at least one other metabolite in Expt. A or Expt. B. Colored stars correspond to the list of metabolites
belonging to one of the four overlapping groups. Unannotated metabolites are shown by their BinBase database identifiers. Lines between
metabolites indicate significant correlations present in both Expt. A and Expt. B (red), only in Expt. A (blue) or only in Expt. B (green). Italicized
metabolites are only detected in one experiment.
doi:10.1371/journal.pgen.1001198.g004

GWAS and the Environment
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Figure 5. Distributions of broad-sense heritability, H2. Distributions are shown for Expt. A (left three violin plots) and Expt. B (right three violin
plots) and for (1) all metabolites detected at the corresponding time-points, (2) known (annotated) metabolites and (3) unknown (unannotated)
metabolites. The variable widths of the violin plots indicate the probability density of the data at each H2.
doi:10.1371/journal.pgen.1001198.g005

Figure 6. Coefficients of variation (CV) of metabolites. Shown are CV based on 96 Arabidopsis accessions in Expt. A (dark blue) and Expt. B
(light blue) and across 211 Bay-0 x Shahdara RILs (red; [10]). For Expt. A & B, CV were calculated as the ratio of the standard deviation and mean across
the 96 accessions.
doi:10.1371/journal.pgen.1001198.g006

GWAS and the Environment
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One presumed benefit of GWAS is that the increased level of

genetic variation will inherently lead to increased phenotypic

variance [49–51]. To test this assumption we compared the

genetic CV for all metabolites in the wild accessions to a structured

RIL population. We obtained the genetic CV for all metabolites

measured in a previously published experiment using a population

of Recombinant Inbred Lines (RIL) generated from the accessions

Bay-0 and Shahdara, both among the 96 accessions used in this

study [10,18]. Both RIL and GWA studies used the same GC-

TOF-MS platform for data collection representing the same

metabolite classes. Comparing the distributions showed that nearly

one half of the metabolites had a higher genetic CV in the

structured population than the collection of wild accessions;a full

one third of metabolites had a genetic CV higher than the largest

genetic CV present in the GWA accession collection ([10];

Figure 6). Thus, for these metabolites, a cross of two individual

wild accessions provides greater phenotypic diversity than is

observed in 96 wild accessions. This suggests that constraints on

metabolism in wild A. thaliana accessions are relaxed in

experimental crosses [8]. Given that there are only two accessions

used for this cross, it is not surprising that some metabolites show

lower genetic CV in this population than in the 96 accessions

(Figure 6). For these metabolites, it is likely that a cross involving

two different accessions known to differ in accumulation of these

metabolites would provide a dramatic boost in genetic CV, a

concept not too different to heterosis (Figure 6). This is supported

by the observation that the CV per metabolic network differed

between the two experiments, suggesting also that changing the

environment can reveal novel genotype-phenotype associations or

entire genetic networks, independent of the type of population

employed for analysis (Figure S5). Thus, a collection of structured

populations using different wild parents may provide a greater

range of phenotypic diversity than natural populations.

To further explore the genetic bases of metabolite abundance in

A. thaliana, we searched for associations between 31,505 genes

(encompassing 206,096 genotyped SNP) and the accumulation of

327 metabolites in the 96 A. thaliana accessions in a genome-wide

association (GWA) analysis. A gene was considered to be

associated with a metabolite if at least two SNP within 1 kb

flanking that gene were significant at FDR,0.05. This post hoc

filtering of significant SNPs on a per gene basis is based on

previous observations that multiple SNPs associate with causal

genes [52]. This post-hoc procedure was shown to optimize the

false positive to false negative rates while correctly identifying true

positive genes in a previous study of metabolic variation using

these 96 accessions [17]. Less than 31% of the metabolites (67 in

Expt. A, 78 in Expt. B, 18 in both) showed significant association

with any gene. This was unexpected, given the relatively high

(45%) heritability observed. This is also puzzling given the ability

of linkage disequilibrium and population structure within A.

thaliana to generate false-positive linkages [17–18]. Detection of

few significant associations for traits with high heritability is

consistent with the ‘infinitesimal model’ [53], suggesting that each

metabolite is controlled by numerous genes with small effects. The

applicability of this model is further supported by the fact that

metabolites with significant associations were associated with

multiple genes (A: 546171, B: 786297; Figure 7). While the

majority of such cases are caused by local linkage disequilibrium

(multiple associated genes are co-localized), there is a minority of

cases where gene-gene interaction (co-associated genes are either

not in LD or are in trans-LD) cannot be ruled out (see next

section). Differences in metabolite abundances between the two

experiments suggest few associations will be common if differential

abundance is due to different genetic controls. Of the 194

compounds detected in both experiments, only one metabolite

associated with the same genes in the two experiments: the

unknown metabolite 244578 was associated with two tandem

genes on chr5 (AT5G09310 is unannotated and AT5G09320 is a

potential Rho guanyl-nucleotide exchange factor). Given the false-

positive and false-negative issues with GWA, the biological effect

of one or both of these two genes on metabolite 244578 requires

experimental validation [17]. This single shared genetic associa-

tion between the two experiments is dramatically lower than the

number of shared associations expected by chance alone as

estimated by permutation analyses. These GWA results and the

similar heritability estimates between the two experiments argue

that the major genetic variants controlling the detected metabolite

variation among accession are likely subject to genotype x

environment interactions. Genotype x environment interactions

have demonstrated importance in determining plant metabolite

levels [8,27–29,54–57].

Metabolites are mapped to genes in local-LD and
trans-LD

The numbers of significantly associated genes far exceeded the

numbers of significantly associated metabolites in both experi-

ments. In expression QTL-mapping studies (currently the most

studied quantitative genomics system) the number of QTL per

expression-trait generally averages less than four [58]. Indeed, a

permutation analysis with our current data predicted that, on

average, each metabolite would falsely associate with 3 genes in

Expt. A and 5 genes in Expt. B. Instead, each metabolite in the

real data demonstrated significant association with an average of

14 (Expt. A) and 24 (Expt. B) genes. Exceeding expectation, 45

metabolites were associated with more than three genes in Expt. A

and 42 metabolites were associated with more than five genes in

Expt. B (Figure 7). Further, six metabolites in Expt. A (asparagine,

beta-alanine, and four unknown compounds) and 12 in Expt. B

(ascorbic acid, threitol, trehalose, serine, coniferin, and seven

unknown compounds) were associated with .100 genes. These

findings strongly suggest gene-gene dependence such as local or

trans-linkage disequilibrium with causal polymorphisms as previ-

ously identified for a number of A. thaliana phenotypes using

GWAS [17–18]. Alternatively, epistatic interactions may create

multiple associations per metabolite [10]. The absence of

metabolite associations with single or few highly significant SNPs

suggests that, in contrast to phenotypes such as gene-for-gene

mediated disease resistance, genetic control of metabolite levels is

likely complex and polygenic [18].

Of the metabolites associated with more than the expected

number of genes, the majority were associated with multiple genes

in close physical proximity. Of these, an average of 60% (Expt. A)

and 58% (Expt. B) of the genes significantly associated with the

same compound were within 10 kb of each other. These results

support previous observations of association clusters within A.

thaliana [18,59]. Thus, it is likely that the majority of these linked

associations are due to either natural selection or demographic

influences, and that finer dissection of these blocks using

traditional genetic approaches will be necessary to identify the

true causal polymorphisms in these regions [18,59].

Interestingly, a small percentage (1–2%) of genes associated with

five (Expt. A) and seven (Expt. B) of these compounds were

significantly associated with genes that were in LD with each other

(r2.0.4) but located on different chromosomes (i.e. non-syntenic).

As r2.0.4 is a conservative threshold (see Materials and Methods), it

is likely that non-syntenic LD is more prevalent than estimated here.

These non-syntenic correlated gene-pairs are non-randomly

distributed within the genome (Figure S6). Most of these gene-pairs

GWAS and the Environment
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are genetically linked with the 59 teleomeric end of chr5. This region

on chr5 lacks of diversity (Figure S7), possibly due to a recent

positive selective sweep [60]. It remains to be seen if the genetic, but

not physical, linkage of multiple polymorphisms associated with

metabolic variation with this chr5 sweep is a statistical artifact

created by the relative lack of polymorphism in this region, or if the

postulated sweep altered metabolic phenotypes. Such an effect

could result either from a re-modulation of genetic variation within

the rest of the genome to optimize the phenotypic consequence of

this selective sweep, or from more direct selection on changes in

metabolism occurring during the sweep.

Association hotspots are in trans-LD
While we observed significant association between one metab-

olite and many genes, we also identified instances where multiple

metabolites associated with the same genes. Permutation analyses

predicted that no more than three metabolites should associate

with the same gene. Yet, 25 (Expt. A) and 30 (Expt. B) genes were

significantly associated with four to six measured compounds. The

numbers of metabolites associated with each gene in the real

datasets significantly differed from the permutation-derived null

distributions, confirming the presence of association ‘hotspots’.

Other ‘hotspots’ have also been observed in quantitative genomics

studies of metabolite levels using structured mapping populations

(e.g. RILs) [8,10,61].

To better identify association hotspots within our GWA

experiments, we estimated the average number of associated

compounds per gene within sliding windows of 100 genes. Given

the observed extent of LD decay within A. thaliana, we expected to

detect associations between metabolite levels and gene clusters near

the actual causal polymorphism [59]. A sliding average will

accentuate regions likely to contain at least one causal polymor-

phism (Figure 8). Using this approach we identified 20 and 11

significant hotspots containing 129 and 60 metabolite-associated

genes in the two experiments (Table S2). In Expt. A, 13 hotspots

were detected on chr1, two on chr3, and five on chr5 all ranging

from 1.5 to 5 kb. In Expt. B, six hotspots were detected on chr1, two

on chr4, and three on chr5. Interestingly, only two hotspots, one

located on chr1 containing 13 genes, were detected in both

experiments, again confirming that the experiments identify

different genetic contributions to metabolite variation. The second

hotspot was a region previously identified as a selective sweep on chr

5 which might be expected to generate false-positive associations

due to decreased diversity (Figure 8; [60]). However, as the hotspot

significance threshold was obtained by conducting a permutation

analysis utilizing the same SNP data but shuffling the phenotypes,

this would account for this potential bias and supports the selective

sweep being a hotspot for genetic variation associated with

metabolic phenotypes [62]. Additionally, this region is not a hotspot

for all measured phenotypes, again supporting its identification with

Figure 7. Summary of genome-wide association results. The two left panels correspond to Expt. A and the two right panels to Expt. B. Top
panels show the numbers of metabolites significantly associated with the corresponding numbers of genes. The bottom panels show the numbers of
genes significantly associated with the corresponding numbers of metabolites.
doi:10.1371/journal.pgen.1001198.g007
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metabolite variation in this dataset [17–18]. However, it remains to

be tested if natural variation for any of these genes within this region

control plant metabolism.

We examined the extent of LD of all gene-pairs within all

hotspot regions to look for co-segregation of hotspots. The results

showed that a previously proposed recent selective sweep on chr5

[60] is in strong LD with many of the metabolite hotspots

(Figure 9). This is particularly true for a 2.7–2.9 Mb region which

is not only in LD with many other genomic regions but also

contains extended local LD. Similarly, chr1 (6.1–6.8Mbp) also

appears to have elevated LD with various regions on chr2, chr3

and ch5 but has no strong local LD. The chr4 hotspots were not in

LD with non-syntenic regions, but did contain strong local LD,

particularly at 4.1–4.2 Mbp. Interestingly, while the chr5 hotspots

in Expt. A coincided with the region of the proposed recent

positive selective sweep [60], the immediately adjacent hotspot in

Expt. B is not within this sweep region. Thus, it is possible that this

predicted selective event has affected a gene which contributes to

the differential regulation of metabolites between the two

experimental conditions.

Similar/different genetics of taxonomically similar
metabolites and metabolites of the same pathway

To better understand the naturally variable genetic control of the

metabolome we focused our analyses on annotated metabolites,

including those that have been assigned into a metabolite

(taxonomy) class (based on the Human Metabolome Database) or

assigned into a known KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathway of A. thaliana. Specifically, we searched for

metabolite classes and metabolic pathways that may be over- or

under- represented. Considering metabolite classes, we found

significantly more amino acids (11/20 with P(x2),0.03; 6 expected)

and hydroxyl acids (4/5 with P(x2),0.04; ,2 expected) associated

with at least one gene in Expt. B but not Expt. A. No other classes of

metabolites have significantly more or less than the expected

numbers of compounds associated with any genes. We also found

that fewer genes were shared between amino acids in Expt. A

(P(x2),0.001; Figure S8) and between carbohydrates in Expt. B

(P(x2),0.02; Figure S9). Compounds significantly associated with

the same gene (gene-sharing) did not belong to any particular

metabolite classes. We infer from these results that 1) different

genetic effectors control metabolite abundance under the two

experimental conditions, 2) amino acids and carbohydrates may

have more coordinated genetic control in one experimental

condition than another, and/or 3) individual amino acids and

carbohydrates, under these two conditions respectively, are likely to

be governed by different genetic determinants; i.e. individual

compounds within these classes may share few genetic regulators.

Considering biochemical pathways, six pathways identified two

or more compounds associated with the same polymorphic genes.

Figure 8. Genome-wide association hotspots. Plotted are the average numbers of associated metabolites per gene, estimated at sliding
windows of 100 genes, for Expt. A (top) and Expt. B (bottom). Indicated on the axes are previously reported linkage hotspots (red lines; [10]), and two
previously reported recent positive selective sweeps (pink S; [60]).
doi:10.1371/journal.pgen.1001198.g008
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These included galactose metabolism, ascorbate metabolism and

aspartate metabolism, each having 2–3 of their members

significantly associated with an average of three genes. The

function of many of these genes is not currently known, but with

continuing improvements in genome annotation, the use of GWA

to analyze biochemical networks will increase precision and/or

power to detecting causal polymorphisms.

Discussion

Although the genetic architecture of individual and small

targeted classes of metabolites has been well-studied

[4,12,56,59,63–65], the genetic architecture underlying natural

variation in the metabolome as a whole remains poorly

understood. Recent studies have explored the genetic architecture

of the metabolome [8,10,61], but this has not extended to genome-

wide association studies. In this paper we described natural

variation of the metabolite profiles of 96 accessions of A. thaliana in

terms of abundance, genetic correlation, and genetic association.

Genetic variation is a major component controlling the A. thaliana

metabolome. We generated two metabolomics datasets, which

differed essentially only at the time of tissue harvest, to explore the

extent of environmental effects and its interactions with genetics

on metabolite abundance.

Clear differences between these two datasets were observed,

suggesting large differences in the metabolic dynamic related to

environmental conditions. While attempts were made to keep all

non-experimental variables constant, we recognize the possibility

of other environmental differences between these two experiments.

As such, we refrain from drawing the conclusion that the

differences in metabolic profiles were due solely to the time of

harvest. Without loss of generality, we conclude instead that the

genetic network controlling A. thaliana metabolism is likely to be

conditional upon the environment as well as parameters such as

tissue and plant age [28,30]. Thus, future experiments should

include factorial analysis of environmental perturbations to better

understand links between genotype and phenotype.

Association mapping versus structured populations
Compared to previous QTL-mapping studies using approxi-

mately 200 RILs, where 40%–75% of all examined metabolites

were mapped to at least one QTL [10,61], the current GWA

study, using 96 accessions, found significant association of only

23%–30% of all detected metabolites with at least one region of

the genome. A number of factors might explain this discrepancy.

First, GWA and traditional QTL studies usually differ in statistical

power. It is generally proposed that fewer individuals are necessary

when using natural compared to structured populations due to the

increased potential for recombination to isolate causal polymor-

phism in the former, as lineages are separated by many

generations [66]. However, it is unclear to what extent the

increase in recombination opportunity among our 96 accessions

Figure 9. Heatmap of gene–gene LD for all hotspot genes. The average maximum SNP-SNP r2 (see Materials and Methods) between each of the
176 hotspot genes (y-axis) and the genome (x-axis) is plotted. Not all 31,505 genes are shown on the x-axis: only those with average maximum SNP-SNP
r2.0.3 are included. Note that, because only selected genes are plotted, the genomic distances in the two axes are not to scale. The horizontal dashes on
the right-hand side of the heatmap indicate whether the gene is located within a hotspot identified in Expt. A (red) or Expt. B (blue).
doi:10.1371/journal.pgen.1001198.g009
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compensates for the increased statistical power provided by a

structured population containing twice as many genotypes.

Secondly, while a greater number of recombination events should

facilitate fine mapping of a trait, the reduction in linkage

disequilibrium between the causative polymorphism and its closest

marker will weaken the phenotype-genotype (trait-marker) associ-

ation, especially if the effect is small. As such, elevated genetic

diversity in the GWA population may actually decrease our

statistical power to associate that diversity with trait variation [67–

68] if the observed range of metabolite phenotypic diversity within

the GWA population is lower than in the RIL, as we observed here

(Figure 5). Thirdly, A. thaliana RILs have shown a high level of

epistasis controlling metabolic traits, which may decrease our

ability to identify significant associations in GWA [10]. While

different metabolite detection technologies (e.g. LC-MS vs. GC-

TOF-MS) can bias the identified classes of metabolites (e.g.

primary vs. secondary) and differing selective forces are suggested

to shape variation in primary versus secondary metabolite levels,

both the RILs and GWA were analyzed using GC-TOF-MS

[4,10,61,69]. A combination of GWA and QTL-mapping studies

are likely necessary to fully query the genetic architecture of the

metabolome.

LD and causal gene identification
We identified numerous metabolites that significantly associated

with hundreds of genes. These multiple associations may be real, as

could result from epistatic genetic controls, or spurious, as would

result from local linkage disequilibrium. For the majority of these

associated genes, we show that a significant fraction of gene

associations with metabolite traits likely results from local linkage

disequilibrium with a causal polymorphism. Previous work with

secondary metabolites showed that GWA hotspots, regions

associated with multiple metabolic traits, are likely not spurious,

but instead contain at least one causal gene [59]. As such, while local

LD prevents direct identification of causal gene(s), it provides strong

support for the presence of at least one causal polymorphism within

these regions. Future work will be required to identify ways to

distinguish causal from non-causal polymorphisms.

In addition to local LD we also showed that a portion of genes

associated with the same metabolite are actually located on different

chromosomes; i.e. in trans-LD. Interestingly, previous work with

secondary metabolites has shown that trans-LD between genes may

predict epistatic relationships between gene pairs [59]. Given the

prevalence of epistasis in A. thaliana metabolism [4,10,59], it is possible

that genes showing trans-LD and significant associations with the

same metabolite interact to determine the level of the metabolite.

Detection of multiple genes that are in local LD and concurrently

associated with the same trait is a well documented phenomenon in

QTL-mapping, however future experimental efforts to validate

candidate gene-trait associations will be required to explore the

intriguing question of why some metabolites are associated with genes

in trans-LD. Response of physically distant regions to a selective sweep

(in effect, hitch-hiking of distant loci), as postulated for groups of

genotype–metabolite associations in non-syntenic LD with a previ-

ously-identified selection sweep on chr5, is a phenomenon requiring

validation and thorough exploration in additional systems, as it would

potentially complicate interpretation of both evolutionary and

quantitative genetic analyses.

Genetic network structure
Interestingly, while most previously described metabolic net-

works have shown exclusively scale-free properties [24,70], our

metabolic-networks, reconstructed using Spearman’s correlation,

suggested a network topology somewhere between random and

scale-free (Figure S1). The discrepancy between our findings here

and previous studies may be explained by the difference in objects

of correlation analyses: previous studies correlated metabolite

abundance across replicate measures, whereas this study estimated

genetic correlations across A. thaliana accessions. Additionally,

previous analyses of metabolic-networks have queried laboratory-

generated mutations in environments with reduced selection

whereas our networks were obtained using natural polymorphisms

likely to be shaped by natural selection. As such, it is possible that

the metabolome is in fact a single unique network but that natural

selection only allows natural polymorphism to persist within a

portion of this network; it is only this variation that is detectable.

Again, this creates a major difference in the interpretation of the

estimated networks. Even the weak scale-free network properties

disappeared when a partial correlation approach was adopted,

suggesting a much smaller proportion of the metabolites measured

actually share direct regulators that are genetically diverse, and

have regulatory effects strong enough to be detectable with the

experimental power in this study.

Future directions
Metabolomics and quantitative genetics show great potential to

help better link genetic variation with phenotypic variation. The

observations described here suggest that the use of GWA to

identify these links is highly susceptible to genotype x environment

effects, as well as epistatic interactions and their potential effects on

population structure. As such, populations may need to be

phenotyped in a broad set of environments to fully query genetic

control of the observed natural variation in phenotypes. This

dataset encourages further investigation of the environmental

sensitivity of the basic genetic network architecture. The

observation of GWA hotspots, while confounding our ability to

directly find causal genes, suggests an approach to find regions that

will contain a causal gene. Further work is required to test the

hundreds of candidate genes identified with this approach to see if

there are ways to rank candidate genes within these hotspots.

Materials and Methods

Growth conditions and plant material
A collection of 96 previously described A. thaliana accessions was

examined. Seeds were imbibed and cold stratified at 4uC for three

days to break dormancy. Four plants of each accession were grown

in individual pots in a randomized block design. The full

experiment was replicated over two years utilizing the same

growth chamber providing four metabolomics assays per accession

per replicate. For all experiments, plants were grown in flats with

36 cells per flat, and maintained under short day conditions in

controlled environment growth chambers. At 35 days post

germination, a fully-expanded mature leaf was harvested, digitally

photographed and metabolite extraction and profiling were

performed as described below [10]. In the first replicate (Expt.

A), all harvesting started at subjective mid-day, finishing within

two hours, and in the second replicate (Expt. B), all harvesting

started two hours prior to subjective night-fall, finishing within two

hours. In all, there is at least a six hour difference in the harvest

time between the two experiments. Given the time between

experiments, the batch of soil necessarily changed and the

experiments, while performed in the same environmental

chamber, were at different times of year. Each plant was

independently harvested, in random order to minimize any

variation due to harvest order, and extracted as per published

protocols providing a total of 768 samples, four per 96 accessions

per two experiments [2,24,42,71]. Tissue samples were stored dry
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at 280uC until automated derivatization and GC-TOF-MS

analysis at the UC Davis Genome Center Metabolomics Facility

(http://metabolomics-core.ucdavis.edu; [42]).

Metabolite profiling
For each metabolomics sample, one leaf disk from each of two

leaves per plant was harvested, providing two leaf disks of

approximately 20 mg total weight. Metabolite identity was

determined by comparing retention time and mass to the 2007

UC Davis Genome Center Metabolomics Facility metabolites

database (http://fiehnlab.ucdavis.edu/Metabolite-Library-2007;

[42]). At the time of analysis, this library contained reference

spectra for 713 known metabolites, generated by the analysis of

purified reference compounds. The ion count values were used as

a surrogate for metabolite abundance.

Metabolomics data pre-processing
Following the initial quality control which detected 416

compounds in at least 50% of the samples in at least one accession

across both experiments, the data was further processed,

independently for the two experiments, to include 1) only

compounds present in .50% of the samples per accession, and

2) only samples where at least 50% of the predominant

compounds (compounds detected in at least 70% of the samples)

were detected. This resulted in 266 compounds in 326 samples

(Expt. A) and 255 compounds in 282 samples (Expt. B).

Due to quasi-gamma distributions of some metabolites, all ion

count values were log2-transformed. To minimize potential daily

variation in MS sensitivity, median-normalization (and standard-

ized to 9 log2 units) was performed across the date of the GC-

TOF-MS runs: eight runs for Expt. A and 15 runs for Expt. B.

Estimation of heritability, genetic means, and genetic
coefficient of variation

Broad-sense heritability (H2) was estimated as the variation

attributable to accession (A) variations whilst accounting for

variations due to population structure (S) and experimental noise

(F for plotting flat & R for replication). Specifically, H2 was

estimated as the Aa(Ss) type II sum of squares per the linear model:

ysafr ,m+Ss+Ff+Aa(Ss) +Rr(Ff) +e, where ysafr is the log2-value of the

metabolite corresponding to the sample belonging to accession Aa

(a = 1,..,96) and population structure Ss (s = 1,..,8), that was planted

in flat Ff (f = 1,2) as replicate Rr (r = 1,..,4). Residual error was

assumed normally distributed: e , N(0, se
2). The model was run

independently for each dataset.

Accession means (average value per accession per trait) were

estimated using a similar linear model with the exclusion of Ss:

yafr , m+Ff+Aa+Rr(Ff) +e. The coefficients of the Aa terms were

taken as the genetic means. We do not account for population

structure effect here because it will be inherently accounted for in

the association mapping analysis (below). These accession means

were used for all subsequent analyses (Datasets S1 and S2).

The accession means as well as previously published means for a

single RIL population were also used to estimate genetic

coefficient of variations (CV) as a way of comparing the level of

genetically determined phenotypic diversity between the different

populations. The genetic CV was independently calculated for

each metabolite by taking the standard deviation across the

genotypes and dividing it by the mean; s/m [69,72–73].

Metabolite correlation analysis
Zero-order correlation between all metabolite-pairs was esti-

mated using Spearman’s Correlation Coefficient. Significance was

determined using Student’s t-distribution: t =r/!( (1-r)/(n-2) ) and

local (density-based) false discovery rate was estimated using the

R/fdrtool package [74–75].

First-order correlation was estimated using a Static Shrinkage

approach of Partial Correlation [76] via the R/GeneNet package

[36]. Local false discovery rates were estimated using the

network.test.edges function of the same package.

Metabolite networks from correlation matrices were generated

using the R/igraph package [77]. The same package was also used

to calculate the various network properties, including degree (k)

and clustering coefficient (C(k)).

Genome-wide association mapping
Genotypes of ,250,000 SNP of each of the 96 accessions were

obtained from the Arabidopsis 2010 Project (http://walnut.usc.

edu/2010/data; [50,78]). Single-locus GWA mapping was

performed using a mixed-model approach, EMMA [79], where

the effect of each SNP on a metabolite was modeled as a fixed-

effect. The effect of population structure was also included in this

model as a random-effect and is represented as a genetic similarity

matrix (estimated using the SNP genotypes). Variance-compo-

nents to this model were estimated directly using maximum

likelihood as implemented in the R/EMMA package [79]. For this

analysis, accession means were used and performed independently

for the two experiments. P-values for all SNP-by-metabolite tests

were extracted from EMMA. P-value distributions were roughly

uniform (data not shown). Q-values were estimated using R/

qvalue [80–81]. Significant SNP-metabolite association was

defined at q,0.20.

Based on the genomic location of each SNP we identified a

subset 206,096 SNP, with greater than 5% minor allele frequency

in this collection of 96 accessions, residing within 1 kb of at least

one of 31,505 genes. The statistical significance of each SNP was

independently calculated, followed by post-hoc filtering to identify

the top candidate genes linked with specific metabolites. A gene-

metabolite link was called a candidate if $2 SNP within 1 kb of

the gene were significantly associated with the metabolite. This

protocol was previously described using a list of known causal

genes controlling differential abundance of metabolites within

these 96 accessions [17] and relies upon previous observations that

multiple SNPs per causal gene show statistical association with a

phenotype [52]. The use of $2 SNP within 1 kb of the gene was

found to optimize the ratio of false negative and false positive

results while maintaining the maximal number of true positive

candidates [17].

Association hotspots were determined as follows: 1) the number

of significantly associated metabolites was counted for each gene,

2) sliding averages of these counts at 100 gene-intervals were

calculated, 3) the genes with sliding averages exceeding the

estimated maximum average number of false compounds per gene

were considered as hotspot genes (448 for Expt. A and 239 for

Expt. B), 4) genes whose immediate neighbor not passing the same

threshold were excluded, leaving 381 genes in 101 intervals (Expt.

A) and 215 genes in 56 intervals (Expt. B), 5) only hotspot intervals

with a) an average of more than two compounds per gene or b) at

least eight genes within the interval with an average of more than

one compound per gene were maintained. This resulted in a final

set of 20 hotspots (129 genes) in Expt. A and 11 hotspots (60 genes)

in Expt. B (Table S2).

Permutation datasets for each experiment were generated for

assessing false associations. Permutation was performed for the

purpose of breaking true gene-metabolite associations, and so

accessions were re-sampled without replacement within each

compound. This is similar to permutation for QTL mapping
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wherein the phenotypes are shuffled randomly across the defined

genotypes [62]. For each permutation, GWA mapping as

described above and similar subsequent analyses as performed

for the real data were performed independently. Permutations

were conducted independently for Experiment A and B. The

‘‘maximum average number of false compounds per gene’’ was

estimated from this permutation analysis: the numbers of

significantly associated metabolites per gene were counted, and

the sliding averages at 100-gene-intervals were also calculated and

the maximum of these sliding averages was the ‘‘maximum

average number of false compounds per gene’’.

Estimation of linkage disequilibrium
Linkage disequilibrium was estimated for all pairs of 6,783

significantly associated genes. Due to heavy computation demand,

each gene was collapsed into a biallelic locus prior to LD

calculation: for each gene, all empirically observed haplotypes

were first deduced from its SNP genotypes then the haplotype with

the highest frequency was assigned as the ‘‘major’’ allele and all

other haplotypes as the ‘‘minor’’ allele. Because of the homozygous

nature of the accessions, this resulted in each accession having a

homozygous biallelic genotype at each gene. This new genotype

matrix was then used to calculate the r2 LD measure. r2.0.4 was

used as a very conservative arbitrary threshold: as a comparison

the 99th percentile of all non-syntenic (pairs of genes not on the

same chromosome) LD was 0.12 and the largest non-syntenic LD

was 0.62; only 74 non-syntenic gene-pairs exceed this threshold.

LD between each of the 176 hotspot genes and 31,505 genes in

the genome were calculated as the average maximum SNP-SNP

r2. All SNP within 1 kb of each gene were first identified: 1,624

unique SNP within at least one hotspot gene and 206,096 unique

SNP within at least one of all genes. For each of

176631505 = 5544880 gene-pairs, 1) r2 were calculated between

all corresponding SNP-pairs, 2) maximum r2 at each SNP of a

gene was determined separately for each of the two genes, and 3)

the two maximum values were averaged to give the gene-gene r2

value. A gene-pair is defined as in significant LD if their

corresponding r2 exceeded the average non-syntenic r2 = 0.323,

calculated from all gene-pairs located on different chromosomes.

The gene-gene r2 calculations will be somewhat elevated by using

the maximum value per SNP but then restored to a slightly

conservative estimate by averaging across SNPs. This should be

less influenced by individual pairwise LD values, as a maximal r2 is

only 1.0 and the genomic average between any two SNPs is about

0.20–0.33. Additionally, examining blocks of genes effectively

hides extreme individual gene values, diminishing the effect of

individual outliers. While this is meant to represent the potential

trans-LD between these regions, intensively computational matrix

approaches are required to test if these are truly biological outliers.

Metabolite classes and pathways
Metabolite classes considered in this paper were defined

according to the Human Metabolome Database (http://www.

hmdb.ca/public/downloads/current/metabocards.zip). Metabo-

lites were also assigned to zero or more A. thaliana specific

pathways according to KEGG (ftp://ftp.genome.jp/pub/kegg/

pathway/organisms/ath/ath.list and ftp://ftp.genome.jp/pub/

kegg/pathway/map_title.tab).

Other test statistics
Differential metabolite abundance was tested using Two Sample

Paired t-test for each metabolite detected in both trials. Over-

representation of metabolite in specific classes or pathways was

assessed using Pearson’s x2 test for all compounds assigned to a

metabolite class or at least one metabolic pathway.

Supporting Information

Dataset S1 Table of adjusted accession means of 266 metabolite

compounds for the 96 accessions in experiment A.

Found at: doi:10.1371/journal.pgen.1001198.s001 (0.44 MB

TXT)

Dataset S2 Table of adjusted accession means of 255 metabolite

compounds for the 96 accessions in experiment B.

Found at: doi:10.1371/journal.pgen.1001198.s002 (0.42 MB

TXT)

Figure S1 Metabolic-network properties for experiment A (left

panels) and experiment B (right panels). Networks were generated

from all significant metabolite-metabolite correlations at local

FDR ,5% using Spearman’s r correlation. Top panels show the

relationship between clustering coefficient, C(k), and degree, k.

Degree is the number of connections per metabolite (node). C(k) is

the proportion of all triplets (simultaneous connection to two other

metabolites) that are closed (all three metabolites are connected to

each other). Bottom panels show the degree distributions, P(k); the

insets show the same relationship at a log-log scale.

Found at: doi:10.1371/journal.pgen.1001198.s003 (0.26 MB TIF)

Figure S2 Connectivity between experiments. Average connec-

tivity per node (average number of connected metabolites per

metabolite) corresponding to r2 cut-offs of 0.35 - 0.95 is shown for

experiment A (black) and experiment B (red).

Found at: doi:10.1371/journal.pgen.1001198.s004 (0.17 MB TIF)

Figure S3 Genetic correlations of metabolite-pairs. For com-

parison, only the 194 metabolites detected in both experiment A

(left) and experiment B (right) are shown. Metabolites are order

identically for datasets, and only annotated metabolites are

labeled. Colors denote Spearman’s r correlation coefficients

ranging from negative correlations, -1, (red) to positive, +1, (blue).

Found at: doi:10.1371/journal.pgen.1001198.s005 (0.58 MB

TIF)

Figure S4 Distributions of correlation coefficients. The distri-

butions of all metabolite-metabolite correlations as determined by

Spearman’s r (solid lines) and partial correlation coefficient, r

(dashed lines), are shown for experiment A (back) and experiment

B (blue).

Found at: doi:10.1371/journal.pgen.1001198.s006 (0.16 MB TIF)

Figure S5 Distributions of coefficients of variations (CV) of

subsets of metabolites across 96 Arabidopsis accessions in the AM

(left) and PM (right) experiments. Compared are all detected

metabolites (black), metabolites that are differentially abundant

between experiments (red), carbohydrates (green), metabolites

involved in galactose metabolism, KEGG ID: ath00052 (blue),

metabolites involved in the urea cycle, KEGG ID: ath00220

(cyan), and metabolites involved in starch and sucrose metabolism,

KEGG ID: ath00500 (pink).

Found at: doi:10.1371/journal.pgen.1001198.s007 (0.26 MB TIF)

Figure S6 Non-syntenic LD between genes concurrently

associated with the same metabolite for the A (left) and B (right)

experiments. Shown are gene-pairs (arbitrarily assigned as gene 1

and gene 2) that are (i) associated with the same metabolite, (ii)

located on different chromosomes, and (iii) are in strong LD

(r2.0.4). Genes 1 and 2 are physically ordered along the two

parallel lines. The same colored lines connected the gene-pairs

indicate that the genes were associated with the same metabolite.
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Found at: doi:10.1371/journal.pgen.1001198.s008 (0.52 MB TIF)

Figure S7 LD between the Chr5 recent positive selective sweep

and the genome. r2 was calculated for all 219 SNP within the

sweep region of Chr5:2,790,000-2,900,000 against all of ,
250,000 available SNP across the genome. The sliding averages

of the medians (black) and the 25th and 75th percentile (grey lines)

in 50 SNP-intervals are plotted.

Found at: doi:10.1371/journal.pgen.1001198.s009 (0.05 MB TIF)

Figure S8 Significant gene association rate with amino acids.

Proportion of the genes showing significant association with the

corresponding numbers (x-axis) of metabolites for all 266

metabolites (white) and for 20 amino acids (hashed bars).

Found at: doi:10.1371/journal.pgen.1001198.s010 (0.05 MB TIF)

Figure S9 Significant gene association rate to carbohydrates.

Proportions of genes significantly associated with the correspond-

ing numbers (x-axis) of metabolites for all 255 metabolites (white

bars) and for 15 carbohydrates (shaded bars).

Found at: doi:10.1371/journal.pgen.1001198.s011 (0.05 MB TIF)

Table S1 Information and summary statistics of metabolites. A

tab-delimited file of a 14-column table containing: BinBase

identifier of each metabolite (ID), the metabolite name (Name),

Retention Index and quantitative mass (quantmass) from the GC-

TOF-MS, KEGG identifier (KEGG), the Human Metabolome

Database metabolite taxonomy classification (Taxonomy Class),

the average abundance in the A trial (A Mean), the average

abundance in the B sample (B Mean), the paired t-test statistic, the

degrees of freedom of the test-statistic (d.f.), the corresponding P-

values, the Fold Difference, the coefficients of variation (CV) in the

A and B data.

Found at: doi:10.1371/journal.pgen.1001198.s012 (0.44 MB

TXT)

Table S2 Lists of the 129 genes residing within 20 association

hotspots detected in experiment A and of the 60 genes residing

within 11 association hotspots detected in experiment B. This is a

tab-delimited text file where each row corresponds to a metabolite

and the columns correspond to: the experiment (A or B), a Hotspot

identifier within which the gene is contained, the gene’s TAIR

identifier, Gene symbol, chromosome of the gene, the gene’s

starting genomic position, the gene’s ending genomic position, the

number of significantly associated SNP (NumMetabs), the number

of SNP within 1kb of the gene (NumSNP_within1kb), and the

average minor allele frequency of the SNP within 1kb of the gene

(MeanMAF_within1kb).

Found at: doi:10.1371/journal.pgen.1001198.s013 (0.42 MB

TXT)
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