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Abstract

The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires 

processing of broken ends. For repair to commence, the DSB must first be resected to generate a 

3'-single-stranded DNA (ssDNA) overhang, which becomes a substrate for the DNA strand 

exchange protein, Rad511. Genetic studies have implicated a multitude of proteins in the process, 

including helicases, nucleases, and topoisomerases2–4. Here we have biochemically reconstituted 

elements of the resection process and reveal that it requires the nuclease, Dna2, the RecQ-family 

helicase, Sgs1, and the ssDNA-binding protein, Replication protein-A (RPA). We establish that 

Dna2, Sgs1, and RPA comprise a minimal protein complex capable of DNA resection in vitro. 

Sgs1 helicase unwinds the DNA to produce an intermediate that is digested by Dna2, and RPA 

stimulates DNA unwinding by Sgs1 in a species-specific manner. Interestingly, RPA is also 

required both to direct Dna2 nucleolytic activity to the 5'-terminated strand of the DNA break and 

to inhibit 3'→5' degradation by Dna2, actions which generate and protect the 3'-ssDNA overhang, 

respectively. In addition to this core machinery, we establish that both the topoisomerase 3 (Top3) 

and Rmi1 complex and the Mre11-Rad50-Xrs2 complex (MRX) play important roles as 

stimulatory components. Stimulation of end resection by the Top3-Rmi1 heterodimer and the 

MRX proteins is via complex formation with Sgs15,6 that unexpectedly stimulates DNA 

unwinding. We suggest that Top3-Rmi1 and MRX are important for recruitment of the Sgs1-Dna2 

complex to DSBs. Our experiments provide a mechanistic framework for understanding initial 

steps of recombinational DNA repair in eukaryotes.
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Recent genetic studies in Saccharomyces cerevisiae identified two independent pathways 

capable of rapid and extensive resection of DNA DSBs: one catalyzed by the 5'→3' dsDNA 

exonuclease, Exo17, and a second requiring the nuclease/helicase, Dna28,9, and the 3' →5' 

helicase, Sgs12,4,5. In addition, the MRX-Sae2 complex (MRXS) mediates a short-range 

resection2,4. In cells deleted for RAD50 or MRE11, the long-range resection by Dna2/Sgs1 

or Exo1 occurs at the same rate, but only after an initial delay, demonstrating that the early 

function of MRXS can be bypassed when chemically clean breaks are generated by HO-

endonuclease2,4,5. Work using point mutations in the nuclease site of MRE11 showed that 

processing of HO-induced breaks is not defective10 and that Dna2 nuclease can replace 

Mre11-dependent nuclease activity in DSB repair11, suggesting MRX has a function in end 

resection independent of nuclease activity10,11.

To define the roles of Dna2, Sgs1, and other proteins in this intricate in vivo process, we 

examined DNA resection in vitro by reconstituting a core reaction using purified proteins 

(Fig. 1a). Full-length Sgs1 is a vigorous DNA helicase, as recently reported12, and can fully 

unwind the 2.7 kb linear dsDNA substrate at nanomolar concentrations (Fig. 1b, lanes 2–4). 

RPA is essential for resection because it is needed for Sgs1 unwinding at these 

concentrations (lane 15), and could not be replaced by Escherichia coli ssDNA-binding 

protein (SSB) (lane 16)12; this stimulatory effect of RPA on Sgs1 is the consequence of 

species-specific interaction between Sgs1 and RPA13 superimposed on a non-specific 

stimulation due to ssDNA binding12. Dna2 showed no detectable nuclease or helicase 

activity on the dsDNA, as expected due to its weak unwinding capability14 (lanes 6–8). 

However, in the presence of Sgs1, Dna2 degraded the DNA (lanes 10–12), showing that up 

to 2.7 kb can be readily processed. Consistent with previous findings4,9, degradation was not 

observed with nuclease-dead Dna2 (K677R), whereas helicase-dead Dna2 (K1080E) 

supported resection, albeit with a lower efficiency (Supplementary Fig. 2). A DNA end was 

required for Dna2-dependent degradation, as no DNA cleavage was observed on a 

covalently-closed circular dsDNA, with or without Sgs1, even if it contained a 450 

nucleotide (nt) `bubble' of non-complementary ssDNA (Supplementary Fig. 3). Processing 

of linear dsDNA (Fig. 1b) required Sgs1 helicase activity (lane 13) and ATP (lane 14). The 

amount of DNA resected depended on both Sgs1 and Dna2 concentrations (Fig. 1c,d). Thus, 

Sgs1, Dna2, and RPA comprise a minimal set of proteins required for DNA end resection.

To determine whether Dna2 and Sgs1 interact functionally, we replaced Sgs1 with other 

helicases. Neither S. cerevisiae Pif1 nor Srs2 could replace Sgs1, even when at a 1000-fold 

higher concentration than Sgs1 (Fig. 1f). E. coli RecQ could partially replace Sgs1, but a 

1000-fold higher concentration (1 μM) was needed to equivalently degrade the substrate 

(Fig. 1f, lane 23). Collectively, these results imply a specific interaction between Sgs1 and 

Dna2. To establish whether Dna2 and Sgs1 physically interact, we tested whether partially 

purified His6-tagged Dna215 could pull-down MBP-tagged Sgs112 (Fig. 1e). The results 
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show that recombinant Sgs1 and Dna2 do directly interact, independently of DNA, and that 

RPA neither blocked nor is required for the interaction. Thus, resection catalyzed by Dna2-

Sgs1-RPA is likely a concerted process where nucleolytic cleavage occurs concomitantly 

with DNA unwinding by Sgs1.

Resection of a DSB in mitotically growing cells is dependent on the nuclease activity of 

Dna22,4,11 and is largely, but not absolutely, limited to the 5'-strand16. This directionality is 

essential to form 3'-ending ssDNA, which is a primer for DNA synthesis from the joint 

molecule intermediate17. However, it was not clear how this specificity is achieved in the 

Sgs1/Dna2 pathway, because Dna2 degrades both 5'- and 3'-terminated ssDNA14. To 

determine which strands are resected in our reconstituted system, we designed a set of 32P-

labeled oligonucleotides that are complementary to either the 5'- or 3'-terminated strands at 

positions that are directly adjacent to, 100 nt, or 300 nt from the DNA end (Fig. 2a). These 

oligonucleotides were used as hybridization probes to determine the DNA strand, and 

length, exposed by resection. The probes for the 100 nt and 300 nt positions annealed 

exclusively to the 3'-terminated strand indicating that extensive resection is limited to the 5'-

strand, leaving the 3'-end largely intact (Fig. 2b). Resection required Dna2 because, without 

it, both the 3'- and 5'-terminated strands are intact and unpaired, as expected from simple 

unwinding by Sgs1 helicase (Supplementary Fig. 4a). Unexpectedly, but consistent with the 

ability of Dna2 to degrade 5'- and 3'-strands, we did not detect hybridization using probes 

for sequences adjacent to the DNA end (Fig. 2c) suggesting that, while extensive 

degradation occurs only on the 5'-strand, both strands are degraded in the vicinity of the 

DNA break. Loss of ssDNA at the 3'-terminus was confirmed independently in assays using 

dsDNA 32P-labeled at the 3'-end, where the combined action of Dna2-Sgs1-RPA resulted in 

a rapid loss of signal and the appearance of rapidly migrating degradation products 

(Supplementary Fig. 4b). Kinetic analysis of resection at the 0, 100 nt, and 300 nt sites is 

shown in Fig. 2c; resection to 100 nt is slightly faster than to 300 nt, as expected. We note 

that, because the enzyme concentrations and incubation time are limiting, resection 

originating from the opposite DNA end is unlikely to reach the end analyzed by 

hybridization and, therefore, does not affect our analysis (Supplementary Figure 4c,d). In 

summary, with the exception of the region directly next to the end, resection of DNA by 

Dna2-Sgs1-RPA is limited to the 5'-terminated DNA strand.

Although consistent with in vivo results1, our findings are surprising because 

characterization of Dna2 nuclease suggests that both strands should be fully degraded14. To 

determine the basis for the observed strand bias in end resection, we used DNA containing 

either 5'- or 3'-ssDNA tails that were used previously to study Dna218. In the absence of 

RPA, Dna2 does indeed degrade both 5'- and 3'-terminated ssDNA (Fig. 3a, lanes 3 and 9). 

Unexpectedly, however, RPA blocks degradation of only the 3'-terminated strand; inhibition 

is concentration dependent and is maximal when RPA exceeds the amount required to 

saturate the ssDNA (lanes 10–12). In contrast, RPA stimulates the 5' → 3' nucleolytic 

capacity of Dna2 (lanes 4–6). Thus, RPA enforces discrimination of the 3'- and 5'- 

terminated strands. These results are in agreement with the interpretation of earlier 

observations using G4-containing DNA15. To confirm the observations using a substrate that 

resembles a DNA end unwound by a helicase, we also used a synthetic DNA duplex 
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containing a Y-structure (Supplementary Fig. 5a,b). In agreement, the results showed that 

RPA blocked nucleolytic degradation of the 3'-ssDNA arm, whereas it stimulated 

degradation of the 5'-ssDNA arm (Supplementary Fig. 5a,b). The nuclease activity of Dna2 

was limited to the ssDNA region, as reported14 and Dna2 did not unwind the 31 bp dsDNA 

(Supplementary Fig. 5a). The effect of RPA is species-specific, as SSB completely inhibited 

Dna2 nuclease activity (Supplementary Fig. 6), consistent with the reported physical 

interaction between RPA and Dna219,20. These results collectively show that RPA 

selectively enhances the 5'→3' degradative capacity of Dna2 while repressing the 3'→5' 

degradative activity (Fig. 3b). This specific interaction with RPA thus alters the 

functionality of Dna2 and explains the strand bias of DNA end resection.

Sgs1 also physically interacts with Top35 and Rmi121,22 to dissolve double Holliday 

junctions to complete recombination (P. C., J. Plank, C. Bachrati, I. Hickson, S. C. K., 

submitted). Surprisingly, in vivo, both top3Δ and rmi1Δ mutants showed similar defects to 

an sgs1Δ mutant in resection, suggesting that the functional unit in resection is an Sgs1-

Top3-Rmi1 complex4, although it remained possible that the proteins are required for Sgs1 

protein stability in vivo22. When examined in vitro (Fig. 4a and Supplementary Fig. 7a), 

Top3-Rmi1 stimulated resection by Dna2-Sgs1-RPA by ~2-fold. A titration with Top3-

Rmi1 at a fixed Sgs1 and Dna2 concentration (each 0.5 nM) shows concentration-dependent 

stimulation with saturation occurring at ~1 nM Top3-Rmi1 (Fig. 4b), suggesting that the 

proteins function in a nearly equimolar protein complex.

To determine the basis for this stimulation, we examined the effect of Top3-Rmi1 on the 

activities of Sgs1 and Dna2. The Y-structure oligonucleotide substrate (Supplementary Fig. 

5) was used because it permits a quantitative evaluation of either the helicase activity of 

Sgs112 or the nuclease activity of Dna2. Sgs1 is the most active RecQ-helicase reported12, 

yet unexpectedly, we discovered that Top3, Rmi1, and Top3-Rmi1 stimulated the initial rate 

of DNA unwinding by Sgs1 (Supplementary Fig. 7b). The Sgs1 concentration required for 

half-maximal unwinding is 68 pM in the absence of Top3-Rmi1, and only 30 pM in the 

presence of Top3-Rmi1, corresponding to a 2.3-fold increase in apparent affinity 

(Supplementary Fig. 7c). We found that 10-fold more Top3 than Top3-Rmi1 was required to 

stimulate the helicase activity of Sgs1 (Supplementary Fig. 7e,f). The stimulatory effect of 

Top3-Rmi1 was completely RPA-dependent, as no increase in unwinding by Sgs1 was 

observed in the absence of RPA (Supplementary Fig. 7g,h). Furthermore, Top3-Rmi1 

increased the DNA-dependent ATPase activity of Sgs1 in the presence of RPA ~2.5-fold 

(Supplementary Fig. 7d). Thus, Top3-Rmi1 promotes the helicase activity of Sgs1 by 

increasing its affinity to DNA. However, Top3-Rmi1 did not stimulate the nuclease activity 

of Dna2 (Supplementary Fig. 8, lane 2 vs. 4). We therefore conclude that Top3-Rmi1 

stimulates DNA end resection by recruiting Sgs1 to DNA, rather than by potentiating the 

nuclease activity of Dna2.

To further examine the stimulation of Sgs1-Dna2 by Top3-Rmi1, we used elevated 

concentrations of Mg2+ (5 mM magnesium acetate) and Na+ (100 mM sodium acetate), 

which are suboptimal for Sgs1 helicase activity, thereby better revealing substrate 

specificity12, and which are more representative of in vivo conditions. As expected, higher 

salt concentrations significantly inhibited DNA end resection by Dna2-Sgs1-RPA (Fig. 
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4c,d). However, addition of Top3-Rmi1 resulted in a striking restoration of resection (~11-

fold stimulation). Top3-Rmi1 also stimulated unwinding of the 2.7 kb DNA substrate by 

Sgs1 alone (Fig. 4e). Finally, under these conditions, both Top3 and Rmi1 are required for 

the stimulation of resection, because neither alone is effective (Fig. 4f; Supplementary Fig. 

9), in agreement with the in vivo resection data4. Therefore, the stimulatory role of Top3-

Rmi1 in DNA end resection is evident when conditions are more physiological. 

Collectively, these results show that Top3 and Rmi1 stimulate DNA end resection by 

promoting the helicase activity of Sgs1 by enhancing its affinity for DNA.

In vivo, DSB resection is delayed in the physical absence of MRX2,4, whereas both the yield 

and resection rate in cells expressing nuclease-deficient MRX (mre11-D56N) are 

indistinguishable from wild type10. These findings led Llorente and Symington to suggest 

that MRX is needed as a structural complex to recruit a resection nuclease which is not 

Exo110. In agreement, in vivo observations by Budd and Campbell revealed that Dna2 

nuclease can function in X-ray repair in the absence of Mre11 nuclease, but not in the 

physical absence of Mre1111. To determine whether MRX has a role in our reconstituted 

biochemical system, we used the in vitro conditions that revealed a nearly essential role for 

Top3-Rmi1. We found that MRX modestly promoted DNA end resection by Dna2-Sgs1-

RPA, but the magnitude of the stimulation (~2-fold) was far less than for Top3-Rmi1 (Fig. 

4g,h and Supplementary Fig. 10a,b). When Top3-Rmi1 was present, MRX did not further 

stimulate resection by Dna2-Sgs1-RPA (Fig. 4h). MRX modestly promoted DNA 

unwinding by Sgs1 (Fig. 4i and Supplementary Fig. 10c,d), whereas it did not affect Dna2 

nuclease activity (Supplementary Fig. 8 (lane 2 vs. 6). These findings are consistent with the 

previously reported physical interaction between Sgs1 and Mre116, and we propose that 

MRX stimulates DNA end resection by recruiting Sgs1 to the DSBs.

In this work, we reconstituted elements of the machinery that processes DSBs in preparation 

for DNA repair. Our biochemical findings show that Sgs1, Dna2, and RPA are the minimal 

essential components. By promoting the binding of Sgs1 to DNA, the Top3-Rmi1 complex 

is stimulatory, and is effectively essential at approximately physiological conditions. The 

MRX complex can stimulate resection modestly, consistent with a recruitment function in 

resection in vivo that can be bypassed. MRX has a high affinity for DNA ends and is a 

sensor of DSBs in vivo23. Mre11 interacts directly with Sgs16, suggesting that stimulation of 

resection by MRX might be due to recruitment of Sgs1 to DNA ends, consistent with our 

biochemical results and in vivo interpretations10,11. In addition to signaling and recruitment 

functions, MRXS nuclease is essential during meiosis to remove Spo11 from the 5'-

terminated strand of DSBs24, and in mitotic cells to remove adducts of topoisomerase II 

covalently linked to DSB ends that arise from drug treatment3,25. Thus, the MRXS proteins 

are especially important for initial processing of DNA ends that contain adducts which could 

impede processing. In the absence of such adducts, Sgs1-Dna2-RPA in a complex with 

Top3-Rmi1 comprise the core of one of the two major pathways for extensive DNA 

resection. We show that Top3-Rmi1 and MRX potentiate resection by recruiting Sgs1 to the 

site of the break, and propose that this recruitment is consistent with both the requirement 

for Top3-Rmi1 in vivo and the delay when MRX is physically absent. Sgs1 interacts with 

Dna2 to resect DNA in an RPA-regulated manner. Based on the in vitro data presented here, 
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we propose a model for DNA end resection by Dna2-Sgs1-RPA (Supplementary Fig. 1). 

First, the Sgs1-Top3-Rmi1 complex is recruited to a DSB in a step that can be augmented by 

the physical presence of MRX. Sgs1 unwinds dsDNA, and the single-strands of DNA are 

coated with RPA. Concomitantly, and mediated through direct interaction with Sgs1, Dna2 

preferentially degrades the 5'-terminated DNA strand. RPA promotes the degradation of this 

strand and inhibits the degradation of the 3'-terminated strand. Thus, this reconstituted 

reaction recapitulates steps required to resect a DSB to produce a 3'-ssDNA overhang. 

Results that parallel the major findings reported here have been independently obtained by 

the Sung laboratory (Niu et al., (2010), this issue of Nature). Finally, this eukaryotic 

resection complex shows intriguing functional parallels to the resection machine of bacteria, 

RecBCD (or AddAB), where the recombination-promoting complex (post Chi-recognition) 

comprises a helicase subunit (RecB) unwinding 3'→5' (equivalent to Sgs1); a slower 

translocation subunit (RecD) traveling 5'→3' on the complementary strand (equivalent to 

Dna2); and a nuclease domain that is threaded onto the end of a DNA strand but that acts 

endonucleolytically to process the 5'-terminated DNA strand to produce 3'-tailed duplex 

DNA26. Furthermore, RecBCD delivers RecA to the 3-terminated processed ssDNA via an 

essential interaction with a RecA-loading domain26,27; because the C-terminus of Sgs1 

physically interacts with Rad5128, it is also possible that Sgs1 and its homologues may 

coordinate processing with DNA pairing in a related manner in eukaryotes29.

Methods Summary

Unless indicated otherwise, the DNA substrate used for end resection experiments was 

linear pUC19 dsDNA (2.7 kb). The reaction products were separated by electrophoresis, and 

visualized by ethidium bromide staining. For clarity, we present all DNA gels as inverted 

images. The interaction of Sgs1 with Dna2 was determined using Ni2+-nitrilotriacetic acid 

(NTA) pull-down assays using Dna2 tagged with His6 and MBP-tagged Sgs1. The 

directionality of resection was determined by hybridization using radiolabeled strand-

specific oligonucleotide probes. All oligonucleotide-based DNA substrates were 32P-

labeled, and visualized by autoradiography. The resection assays with the dsDNA substrates 

containing either 5'- or 3'-ssDNA flaps were carried out as described previously15. Helicase 

assays were carried out as described previously12.

Methods

DNA substrates

The dsDNA substrates containing 5'- or 3'-ssDNA flaps were prepared as described 

previously18. The oligonucleotide-based DNA substrates were described previously12. 

Unless otherwise indicated, the DNA substrate used for resection assays was unlabelled 

pUC19 dsDNA that had been linearized with Hind III and purified by phenol-chloroform 

extraction and ethanol precipitation.

Proteins

Sgs1, RPA, SSB, and RecQ proteins were expressed and purified as described12,31–33. Top3, 

Rmi1, and Top3-Rmi1 heterodimer were prepared as described (P.C., J.L. Plank, and 
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S.C.K., submitted). All of the above proteins are free of nuclease contamination. Srs2, Pif1, 

and MRX proteins were generous gifts from Xavier Veaute (Institute of Cellular and 

Molecular Radiation Biology, France); Jean-Baptiste Boulé and Alain Nicolas (Institut 

Curie, Paris); and Patrick Sung (Yale University), respectively.

Purification of Dna2

Dna2 was expressed from a modified pGAL:DNA29 vector that contains N-terminal Flag 

and HA tags and a C-terminal His6-tag, in protease-deficient S. cerevisiae strain 

WDH66834. This protocol describes purification from 4 liters of cell culture. Yeast cells 

were grown to an OD600 ~ 0.6 in a standard synthetic SD medium, lacking uracil, and 

supplemented with both glycerol (3%) and lactic acid (2%). Expression of Dna2 was 

induced by adding galactose (2%) for 6 hours. All subsequent steps were carried out on ice 

or at 4°C. Pelleted cells were resuspended in 40 ml TBSG-PI buffer (25 mM Tris HCl (pH 

7.5), 100 mM NaCl, 10% glycerol, 5 mM β-mercaptoethanol, 10 μg/ml leupeptin, 1 mM 

phenylmethylsulphonyl fluoride (PMSF) and protease-inhibitor cocktail (Sigma, P8340, 

diluted 1:1000)), and lysed in French press. The lysed cells were collected by centrifugation 

at 58,000 g for 30 minutes; the supernatant was transferred to a new centrifuge tube and 

spun again as above. The cleared extract was then supplemented with imidazole (10 mM) 

and incubated batch-wise with 5 ml Ni2+-NTA agarose (Qiagen) for 1 hour. The resin was 

washed extensively with TBSG-PI buffer containing imidazole (10 mM) batch-wise and the 

bound proteins were eluted from the column with 400 mM imidazole in TBSG-PI. The 

fractions containing proteins were pooled, and loaded on a HiTrap Heparin HP column (5 

ml; GE Healthcare) at 2.5 ml/minute in HEP buffer A (25 mM Tris HCl (pH 7.5), 100 mM 

NaCl, 10% glycerol, 1 mM β-mercaptoethanol, 10 μg/ml leupeptin, 1 mM PMSF and 

protease-inhibitor cocktail (Sigma, P8340, diluted 1:1000)), and eluted with HEP buffer B 

(the same as HEP buffer A, but with 600 mM NaCl) at 2.5 ml/minute. Fractions containing 

proteins were pooled, diluted 1:1 with TBS buffer (50 mM Tris HCl (pH 7.5), 150 mM 

NaCl), and incubated batch-wise with M2 anti-FLAG affinity resin (0.5 ml; Sigma) for 30 

minutes. The resin was then washed with TBS buffer, and Dna2 was eluted with TBS 

supplemented with 3XFLAG peptide (150 μg/ml; Sigma). Fractions containing protein were 

pooled, diluted with ½ volume water and 1 volume of Q buffer A (25 mM Tris HCl (pH 

7.5), 100 mM NaCl, 10% glycerol, and 5 mM β-mercaptoethanol), and then loaded on 

HiTrapQ column (1 ml; GE Healthcare) at 0.8 ml/minute. The column was washed with Q 

buffer A, and Dna2 was eluted with Q buffer B (the same as Q buffer A, but with 600 mM 

NaCl). Fractions containing protein were pooled, small aliquots were frozen in liquid 

nitrogen, and stored at −80 °C. The final protein concentration was quite low, and thus 

estimated by densitometry by comparison with dilution series of broad range protein marker 

(BioRad) on 10% polyacrylamide gel stained with Coomassie Brilliant Blue. The protein 

yield was ~3.7 μg and concentration ~27 nM. An identical procedure without the FLAG step 

was employed to prepare the enriched Dna2 protein used for the affinity pull-down 

experiments. This Dna2 preparation was more concentrated but less pure (~20%), as shown 

previously15. The Dna2 protein used in Fig. 3 was prepared as described previously9.
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DNA resection assays

The resection assays with the dsDNA substrates containing either 5'- or 3'-ssDNA flaps were 

carried out as described previously15. All other resection assays contained, unless indicated 

otherwise, 25 mM Tris acetate (pH 7.5), 1 mM dithiothreitol, 2 mM magnesium acetate, 250 

μg/ml BSA, 1 mM ATP, 1 mM phosphoenolpyruvate (Sigma), 80 U/ml pyruvate kinase 

(Sigma), 200 ng linear pUC19 DNA substrate (7.6 nM molecules; 41 μM nucleotides) and 

the indicated proteins. Reactions that were conducted at the “high salt” condition, where 

indicated, were in standard buffer containing 100 mM sodium acetate and 5 mM magnesium 

acetate. Unless otherwise indicated, the reactions were assembled on ice, initiated by adding 

ATP, and carried out for 30 minutes at 30°C, in a volume of 15 μl. The reactions were 

terminated with 5 μl of stop buffer (150 mM EDTA, 2% SDS, 30% glycerol, 0.1% 

bromphenol blue) and 1 μl of proteinase K (14–22 mg/ml, Roche) for 30 minutes at 30 °C, 

unless otherwise indicated, and analyzed by electrophoresis in 1% agarose in the presence of 

0.05 μg/ml ethidium bromide. Gels were analyzed using an AlphaImager HP (Alpha 

Innotech) imaging station, and are presented as the inverted image. Resection was quantified 

by measuring disappearance of the substrate dsDNA band. All error bars show the standard 

error from 2–5 independent experiments as determined by GraphPad Prism 5.0.

To analyze the directionality of resection by hybridization with radiolabeled oligonucleotide 

probes (as in Fig. 2), a standard reaction was first carried out as described above. Upon 

termination, the reaction was diluted so that the DNA concentration was 1 nM (molecules). 

The oligonucleotide probe, which was 32P-labeled at the 5'-terminus (2 nM, molecules), was 

added to the diluted mixture, as well as PNK buffer (New England Biolabs) to final 

concentrations of 7 mM Tris-HCl (pH 7.6), 1 mM MgCl2, and 0.5 mM dithiothreitol. The 

sequences of the oligonucleotide probes are: for 5'-resection at 0 nt 

(GCATGCCTGCAGGTCGACTC), 100 nt (GGCGTTACCCAACTTAATCG), 300 nt 

(AGCCAGCCCCGACACCCGCC), and for 3'-resection at 0 nt 

(GAGTCGACCTGCAGGCATGC), 100 nt (CGATTAAGTTGGGTAACGCC), and 300 nt 

(GGCGGGTGTCGGGGCTGGCT). The mixture was then heated to 70 °C for 5 minutes, 

and cooled to room temperature over ~ 2 hours. The products were then separated by 

electrophoresis in 1% agarose and analyzed by Storm 860 PhosphorImager (GE Healthcare). 

The percentage of DNA hybridization was calculated from the proportion of annealed vs. 

free oligonucleotides, assuming 100% efficiency of annealing.

Helicase assays

The helicase assays were carried out as described previously12. The products were separated 

by native 10% polyacrylamide gel electrophoresis and detected by autoradiography.

Ni2+-nitrilotriacetic acid (NTA) pull-down assays

The Sgs1 protein used for Ni2+-NTA pull-down experiments contained the MBP tag but 

lacked the His10-tag12. The Dna2 protein used for the pull-down experiments contained a 

His6-tag, and was prepared by a procedure similar to that published previously15, which 

provides a higher yield but lower purity of the recombinant polypeptide. The identity of 

proteins from both purifications was verified by western blotting (data not shown). Purified 

proteins (1 – 2 μg in a final volume of 150 μl) were incubated together at room temperature 
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in 20 mM Tris HCl (pH 7.5), 10% glycerol, 0.1% NP40, 100 mM NaCl and 10 mM 

imidazole, with or without 12.5 Units of Benzonase nuclease (Novagen) for 20 minutes at 

room temperature. Ni2+-NTA agarose (50 μl, Qiagen) was then added, incubated for 30 

minutes, and the resin was washed with buffer. The bound proteins were eluted in the same 

buffer containing 600 mM imidazole, and 20% of eluate was analyzed by electrophoresis in 

8% polyacrylamide, stained with Sypro Orange (Invitrogen), and detected by Storm 860 

PhosphorImager (GE Healthcare).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sgs1 and Dna2 resect DNA in a reaction dependent on yeast RPA
a, Purified Dna2 (80 ng) and Sgs1 (880 ng) stained with Coomassie Brilliant Blue. b, Linear 

pUC19 dsDNA incubated with Sgs1 and/or Dna2, and RPA (3 μM); “SSB”: SSB substituted 

for RPA; “Heat”: heat-denatured dsDNA; ”annealed DNA”: partial unwinding and 

annealing of DNA30. c, and d, Quantification of experiments as shown in b. e, Dna2 and 

Sgs1 physically interact in the absence or presence of RPA (lanes 4 and 5). f, Resection by 

Dna2 (1 nM) is specific for yeast Sgs1 helicase; RPA is 3 μM.
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Figure 2. Sgs1, Dna2, and RPA preferentially resect the 5'-terminated strand of a DNA break
a, Assay. b, Annealing of oligonucleotide to resection products (0.5 nM Sgs1, 0.5 nM Dna2, 

and 3 μM RPA) using probe complementary to either top (3'-) or bottom (5'-) strand, 300 

nucleotides from end. c, Quantification of DNA end resection at various distances from 

DSB, based on experiments as shown in b.
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Figure 3. RPA promotes 5'→3' degradation by Dna2 and inhibits 3'→5' degradation
a, Duplex DNA substrates containing either a 5'- or 3'-ssDNA flap (red asterisk indicates 

the 32P-label) incubated with Dna2 (15 nM) and indicated RPA. b, Illustration summarizing 

results from panel a and Supplementary Figs. 4 and 5 showing modulation of ssDNA 

nuclease activities of Dna2.
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Figure 4. Top3-Rmi1 and MRX complexes stimulate DNA resection by Dna2-Sgs1-RPA
a, Resection kinetics: Sgs1 (0.3 nM), Dna2 (1 nM), RPA (3 μM), and Top3-Rmi1 

heterodimer (10 nM). b, Top3-Rmi1-dependent stimulation of DNA resection: Sgs1 (0.5 

nM), Dna2 (0.5 nM) and RPA (3 μM). c, Resection kinetics in high salt buffer (5 mM Mg2+ 

and 100 mM Na+): Sgs1 (7.5 nM), Dna2 (1 nM), RPA (3 μM ), and Top3-Rmi1 heterodimer 

(15 nM). d, Quantification of experiments as in c. e, DNA unwinding in high salt buffer; 

RPA (3 μM). f, Resection in high salt buffer; RPA (3 μM). g, Stimulation of resection in 

high salt buffer by Top3-Rmi1 (15 nM) and MRX (20 nM) using Dna2 (1 nM), RPA (3 

μM), Sgs1 (0, 1.3, 1.7, 2.5, 3.8, 5.7 and 8.6 nM). h, Quantification of experiments as in g. i, 
Unwinding of Y-structure DNA in high salt buffer: Sgs1 (200 pM); RPA (2.25 nM); and 

MRX (5 nM).
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