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AI IN BRIEF

Air trapping and bronchiolitis obliterans are impor-
tant pathways for diffuse lung injury, caused by in-

flammatory obstruction of small airways. They are seen 
in a variety of respiratory conditions, including chronic 
obstructive pulmonary disease (COPD) (1), graft-versus-
host disease, bronchiolitis obliterans syndrome (BOS), 
chronic rejection or allograft dysfunction in lung trans-
plant patients (2,3), cystic fibrosis, and hypersensitivity 
pneumonitis, among several others (3–5). These share 
common manifestations on chest CT scans, observed as a 
mosaic pattern of lung attenuation and loss of change in 
parenchymal attenuation between inspiratory and expira-
tory phase images (6). Measures of air trapping can also 
be used to evaluate effects of treatment and long-term 
progression, particularly in COPD and lung transplanta-
tion (7–9). While radiologist interpretation of chest CT 
scans remains the clinical standard, air trapping detection 
is a visually difficult task (7). Evidence shows potential 
for quantitative CT methods to detect and grade char-
acteristics such as air trapping on a granular level (1,10) 
and to prognosticate outcomes in disease processes like 
BOS (11–13).

Quantitative measurements show benefit but can be 
time and labor intensive (14). Machine learning algo-
rithms leveraging convolutional neural networks have the 
potential to automate quantitative measurements (15,16) 
and may make them more feasible clinically. Despite their 
capabilities, it remains uncertain how to translate these 

algorithms into clinical practice, how they might practi-
cally affect diagnostic decision-making, and how they 
might be perceived in the radiologist workflow.

To evaluate the impact and reader perceptions of a 
quantitative artificial intelligence (AI) algorithm on the as-
sessment of air trapping severity, we deployed a previously 
developed algorithm to quantify air trapping into our clini-
cal practice alongside a dedicated quantitative inspiratory-
expiratory chest CT examination (17). Five subspecialty 
cardiothoracic radiologists retrospectively reviewed these 
examinations, assessed algorithm impact at multiple stages 
of interpretation, and were surveyed about their percep-
tions of the algorithm after each case.

Materials and Methods
In this retrospective study, 18 consecutive quantitative 
inspiratory-expiratory CT scans were obtained, exclud-
ing one nondiagnostic examination due to insufficient 
inspiration. Examinations were performed at our insti-
tution between December 2020 and March 2021 with 
non–contrast-enhanced images obtained at full inspira-
tion and normal expiration. CT examinations were per-
formed with one of three CT scanners, including a GE 
Revolution 256 and GE 64 (GE Healthcare) and Canon 
320 (Canon Medical Systems). Thin-section 0.5-mm or 
0.625-mm images were reconstructed with standard re-
construction kernels and were provided for reader review 
and automated analysis with the AI algorithm.
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Quantitative imaging measurements can be facilitated by artificial intelligence (AI) algorithms, but how they might impact decision-
making and be perceived by radiologists remains uncertain. After creation of a dedicated inspiratory-expiratory CT examination and 
concurrent deployment of a quantitative AI algorithm for assessing air trapping, five cardiothoracic radiologists retrospectively evalu-
ated severity of air trapping on 17 examination studies. Air trapping severity of each lobe was evaluated in three stages: qualitatively 
(visually); semiquantitatively, allowing manual region-of-interest measurements; and quantitatively, using results from an AI algorithm. 
Readers were surveyed on each case for their perceptions of the AI algorithm. The algorithm improved interreader agreement (intraclass 
correlation coefficients: visual, 0.28; semiquantitative, 0.40; quantitative, 0.84; P , .001) and improved correlation with pulmonary 
function testing (forced expiratory volume in 1 second–to–forced vital capacity ratio) (visual r = −0.26, semiquantitative r = −0.32, 
quantitative r = −0.44). Readers perceived moderate agreement with the AI algorithm (Likert scale average, 3.7 of 5), a mild impact on 
their final assessment (average, 2.6), and a neutral perception of overall utility (average, 3.5). Though the AI algorithm objectively im-
proved interreader consistency and correlation with pulmonary function testing, individual readers did not immediately perceive this 
benefit, revealing a potential barrier to clinical adoption.
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final assessment either incorporating or discarding the algo-
rithm’s results. Image review resulted in 1275 score observa-
tions across the 17 patients 3 five lung lobes 3 five readers 
3 three methods (visual, semiquantitative, and quantitative). 
After each case, readers subjectively rated the following: their 
level of agreement with the algorithm, on a scale of 1 (com-
pletely disagree) to 5 (completely agree); the algorithm impact 
on their final assessment, on a scale of 1 (no change) to 5 
(completely different); and how useful they found the algo-
rithm, on a scale of 1 (not helpful) to 5 (extremely helpful).

Interreader agreement between severity categories was as-
sessed with intraclass correlation coefficient (18), separately for 
each air trapping evaluation strategy (visual, semiquantitative, 
quantitative), using a cross-classified random-effects model with 
a random intercept corresponding to lung lobe nested within pa-
tient and a random intercept corresponding to readers. Ninety-
five percent CIs were calculated using clustered bootstrapping 
with resampling performed at the patient level. Comparison of 
scoring differences between each of the three air trapping evalu-
ation strategies was performed using a cross-classified mixed-
effects model with a three-level categorical variable (visual, 
semiquantitative, or quantitative) as a fixed effect, lung lobe 
nested within patient as a random effect, and reader as a separate 
random intercept. Scoring differences and 95% CIs were deter-
mined analytically using the cross-classified mixed-effects model. 
Pulmonary function tests (PFTs) were available from the clini-
cal record for 16 patients. To determine correlations between 
air trapping rating and forced expiratory volume in 1 second 
(FEV1), FEV1 percent predicted (FEV1pp), and FEV1-to–forced 
vital capacity (FVC) ratio for each evaluation strategy, scores 
were first averaged within patient and within reader, producing 
a single score per patient per reader. Correlations were then cal-
culated between the patients’ averaged scores and PFT values 
within reader, producing five correlations per patient. Resulting 
correlations were then averaged across the five readers for the 
final correlation measure. Correlation 95% CIs and differences 
between strategies were determined using a clustered bootstrap-
ping procedure with resampling at the patient level. Correlation 
between PFTs and the unadjusted quantitative AI results were 
calculated using a Pearson correlation. All statistical analysis was 
performed in R (R Foundation for Statistical Computing) using 
a type I error rate of .05 for statistical significance.

Results
Average patient age was 57 years (range, 24–86 years; eight 
women, nine men). For demographics and study indications, 
please see Table 1.

On average, the severity rating between visual, semiquantita-
tive, and quantitative measures increased with use of ROI and 
AI-generated measurements. Comparing visual and semiquan-
titative assessment, there was a small but significant difference, 
with an increase of 0.21 severity grades (P , .001; 95% CI: 
0.15, 0.28). When scores were averaged among all readers, four 
patients had a change greater than 0.5 grades; if rounded to near-
est severity grade, this would have resulted in a higher severity 
rating. Comparing visual and quantitative assessment, there was 
an increase of 0.83 grades (P , .001; 95% CI: 0.71, 0.98), with 

Automated Analysis of Air Trapping
Images were analyzed with an in-house–developed algorithm, 
described in detail in Hasenstab et al, to perform lobar-level 
quantification of emphysema and air trapping (17). This al-
gorithm consists of a series of convolutional neural networks 
that perform lobar-level lung segmentation and deformable 
registration between inspiratory and expiratory phases. This al-
gorithm generates a table of measurements and a color overlay 
image series to highlight areas of emphysema and air trapping.

Image Review by Cardiothoracic Subspecialty Radiologists
Five fellowship-trained cardiothoracic radiologists (S.J.K., 
K.E.J., A.C.Y., S.S.B., L.D.H., average of 7 years of postfel-
lowship experience) assessed air trapping severity for each lung 
lobe on inspiratory and expiratory images. Severity categories 
were based on prior observations from the COPDGene study 
cohort (17) as follows: (a) normal, less than 15% air trapping; 
(b) mild, 15%–33%; (c) moderate, 33%–50%; (d) severe, 
50%–66%; and (e) very severe, greater than 66%. Readers 
reviewed images in three phases (Fig 1). First, readers rated 
the severity of air trapping visually, without use of region-of-
interest (ROI) tools or results of the AI algorithm. Second, 
readers rated air trapping semiquantitatively, allowing use of 
an ROI tool displaying lung attenuation in Hounsfield units. 
We informed the readers that the algorithm utilized an attenu-
ation difference threshold of 100 HU to establish the presence 
or absence of air trapping, in addition to providing the scien-
tific publication describing the algorithm (17). Third, readers 
rated air trapping quantitatively, allowing readers to form a 

Abbreviations
AI = artificial intelligence, BOS = bronchiolitis obliterans syn-
drome, COPD = chronic obstructive pulmonary disease, FEV1 
= forced expiratory volume in 1 second, FEV1pp = FEV1 percent 
predicted, FVC = forced vital capacity, PFT = pulmonary function 
test, ROI = region of interest

Summary
Quantitative artificial intelligence (AI) measurement of air trapping 
on CT scans increased interreader consistency and improved cor-
relation with pulmonary function testing; however, reader percep-
tion of utility did not immediately align with the objective benefits, 
highlighting a potential barrier to AI adoption.

Key Points
 n Quantitative artificial intelligence (AI) measurements improved 

interreader consistency in assessment of air trapping on dedicated 
inspiratory-expiratory chest CT scans (intraclass correlation coef-
ficient, 0.28 to 0.84).

 n Quantitative AI measurements improved the correlation between 
assessment of air trapping and forced expiratory volume in 1 
second–to–forced vital capacity ratio on dedicated inspiratory-
expiratory chest CT scans (r = −0.26 to −0.44).

 n Reader’s subjective impression of algorithm utility did not always 
align with the objective benefits, indicating a disconnect between 
interpretative value and reader perception.

Keywords
Technology Assessment, Quantification
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0.40 (95% CI: 0.28, 0.51), and good for quantitative 
at 0.84 (95% CI: 0.78, 0.88).

Reader assessments were compared against mea-
surements from PFTs, including FEV1, FEV1pp, 
and FEV1/FVC. There was modest correlation be-
tween assessments of air trapping to FEV1 or FE-
V1pp (Table 2). FEV1/FVC correlation increased 
from r = −0.26 for visual assessment to r = −0.32 
for semiquantitative and to r = −0.44 for quantita-
tive. Ranges of Pearson correlations for PFTs across 
readers decreased considerably between all visual 
and quantitative assessments. However, differences 
in mean correlations were not significantly different 
from each other (P = .25–.76), likely related to sam-
ple size. All unadjusted AI quantitative measures fell 
within the ranges of quantitative reader scores for 
FEV1, FEV1pp, and FEV1/FVC. For FEV1, the raw 
AI correlation was slightly higher than the reader 
mean at r = −0.42, for FEV1pp it was slightly lower 
at r = −0.17, and for FEV1/FVC it was slightly 
higher at r = −0.47 (Table 2).

Reader perception of algorithm impact on assess-
ment and overall utility was variable between readers, 

but generally favorable. On average, there was moderate per-
ceived agreement with the algorithm, averaging 3.7 of 5 (range, 
3.1–4.1). On average, perceived impact on final assessment was 
rated as little change, with average of 2.6 of 5 (range, 2.1–3.4), 
and perceived utility was rated slightly above neutral at 3.5 of 5 
(range, 2.3–4.9).

Discussion
Here we observed the impact of an AI algorithm on subspecialty 
cardiothoracic radiologist interpretation of air trapping on in-
spiratory-expiratory lung CT scans. Quantitative AI measure-
ments improved interreader consistency beyond manual ROI 

11 patients having their rating changed to a higher severity, and 
between semiquantitative and quantitative there was an increase 
of 0.62 grades (P , .001; 95% CI: 0.52, 0.72), with 11 patients 
having their rating changed to a higher severity. A case where 
assessment of severity increased by nearly one grade between 
semiquantitative and quantitative analysis is highlighted in Fig-
ure 2. The patient later developed pneumomediastinum, a rare 
complication of BOS.

Intraclass correlation coefficient reader agreement increased 
with semiquantitative analysis and access to AI-generated quan-
titative measurements (Table 2). Visual agreement was low at 
0.28 (95% CI: 0.12, 0.43), increased for semiquantitative at 

Figure 1: Design of the reader study. Cardiothoracic radiologists performed lobar-level assessment of air trapping severity in three stages. 1, Air trapping severity was 
rated visually with inspiratory and expiratory images. 2, Air trapping was assessed semiquantitatively after placement of any desired regions of interest (ROIs) to measure 
lung attenuation. 3, Air trapping was rated after providing artificial intelligence (AI)–generated quantitative measurements and color overlays showing areas of air trapping 
(blue) and emphysema (red). Finally, readers were surveyed for their perceptions of the AI algorithm.

Table 1: Patient Demographics and Study Indications from the Clini-
cal Record for Quantitative Inspiratory-Expiratory Lung CT

Patient Demographic and Indication Value

Male-to-female ratio 9:8
Average age (y) 57 (range, 24–86)
Study indication
 Organ transplant 6
 Marrow or stem cell transplant 4
 Other bronchiolitis obliterans 2
 Tracheobronchomalacia 2
 Restrictive pathologic condition or PFT 2
 Airways disease 1
Smoking status
 Never smoker 10
 Former smoker 7
Average pack-years 17 (range, 2.5–58)

Note.—Except where otherwise noted, values are numbers of patients. No 
patients were current smokers. PFT = pulmonary function test.
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radiologists, but when paired with radiologists, their perfor-
mance improved (24).

Previous work has shown correlations between air trapping 
and PFTs, with FEV1 or FEV1pp in the range of r = −0.45 
(25). However, in studies similar to ours with ranges of dis-
ease states and emphysema, the relationship with PFTs is less 
clear (26,27). FEV1 was found to account for less than half of 
air trapping progression on CT scans in patients with COPD 
(28), and correlations are lower between AI measures and PFTs 
in cystic fibrosis (27). While PFTs allow comparison against 
an objective measurement, their variability in both acquisition 
and association with imaging findings highlights a need for fu-
ture studies to determine their relationship to imaging across 
disease states and longitudinally.

There were several limitations to this study. First, radiologist 
perception was assessed early in the clinical deployment of the 
AI algorithm, a few months after creation of the dedicated quan-
titative lung CT examination. With greater experience, reader 
perception of the algorithm may change, or the algorithm may 
gradually influence reader interpretation. This type of automa-
tion bias is seen in a variety of fields with automated decision 

measurements, and the algorithm improved correlation with 
objective measurements of pulmonary function. Acknowledg-
ing the reader sample size is small, qualitative perception of 
algorithm utility in this population did not immediately align 
with these objective benefits, indicating a disconnect between 
clinical value and reader perception.

In line with the benefits seen here, quantitative measure-
ments can improve reliability of imaging interpretation but 
remain underutilized in many clinical scenarios. For exam-
ple, while it is common practice to assess size and growth 
of pulmonary nodules with a single long-axis measurement, 
newer guidelines suggest nodule volume is more reliable (19). 
Quantitative volumetry improves nodule classification (20), 
reduces interreader variability (21), and allows calculation of 
volume doubling time, considered a better metric of nodule 
growth (2). Similarly, while pitting AI against radiologists 
has drawn considerable attention, multiple recent studies 
have shown that when AI is paired with a radiologist, the ef-
fect may be synergistic. In addition to several examples from 
the mammography literature (22,23), Liu et al found that 
a lung nodule detection algorithm performed similarly to 

Figure 2: Example case in a 45-year-old man with history of stem cell transplant and graft-versus-host disease with bronchiolitis obliter-
ans syndrome (BOS) causing diffuse air trapping. At (A) inspiration and (B) expiration, lung attenuation in the left upper lobe in the regions 
of interest (ROIs) were 896 HU and 797 HU, respectively. (C) On the artificial intelligence–generated quantitative overlay, there is exten-
sive air trapping throughout the lungs (shown in blue, with areas of emphysema shown in red). For this case, readers’ assessment of air trap-
ping increased by nearly one grade between placement of ROIs and provision of quantitative maps. (D) Two months after the initial CT, the 
patient went on to develop spontaneous pneumomediastinum (arrows), a rare complication of severe BOS.
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support, ranging from aviation to health care, and has been 
shown to have a greater impact on less experienced physicians 
(29,30). Future work can assess longer-term impact on reader 
agreement with AI or patient outcomes. Further, different algo-
rithms may not observe as dramatic an effect on reader agree-
ment as seen in air trapping, a relatively difficult visual task com-
pared with many other aspects of diagnostic imaging.

The benefit of AI-generated quantitative measurements on 
clinical interpretation of air trapping is highlighted here, as is a 
potential barrier to adoption of AI into clinical practice—reader 
perception. It may be difficult for an individual to perceive ben-
efit, which may lag behind the larger impact. When seeking to 
implement AI algorithms in the clinical workflow, benchmarks 
of impact on interpretation, such as interreader agreement, or 
correlation with other objective external metrics relevant to the 
disease process, such as PFT testing, may be required.

Author contributions: Guarantors of integrity of entire study, T.A.R., K.A.H., 
A.H.; study concepts/study design or data acquisition or data analysis/interpreta-
tion, all authors; manuscript drafting or manuscript revision for important intellec-
tual content, all authors; approval of final version of submitted manuscript, all au-
thors; agrees to ensure any questions related to the work are appropriately resolved, 
all authors; literature research, T.A.R., S.J.K., A.H.; clinical studies, K.E.J.; experi-
mental studies, T.A.R., K.A.H., S.J.K., S.S.B., L.D.H., A.H.; statistical analysis, 
T.A.R., A.H.; and manuscript editing, all authors

Disclosures of conflicts of interest: T.A.R. RSNA Machine Learning Committee 
member, unrelated to this work. K.A.H. No relevant relationships. S.J.K. Deputy 
editor of Radiology: Cardiothoracic Imaging. K.E.J. No relevant relationships. A.C.Y. 
No relevant relationships. S.S.B. No relevant relationships. L.D.H. No relevant rela-
tionships. A.H. Grants from GE Healthcare and Bayer; cofounder and shareholder 
in Arterys.

References
 1. Lowe KE, Regan EA, Anzueto A, et al. COPDGene® 2019: Redefining the 

Diagnosis of Chronic Obstructive Pulmonary Disease. Chronic Obstr Pulm 
Dis (Miami) 2019;6(5):384–399.

 2. Devaraj A, van Ginneken B, Nair A, Baldwin D. Use of Volumetry for Lung 
Nodule Management: Theory and Practice. Radiology 2017;284(3):630–644.

 3. Miller WT Jr, Chatzkel J, Hewitt MG. Expiratory air trapping on thoracic 
computed tomography. A diagnostic subclassification. Ann Am Thorac Soc 
2014;11(6):874–881.

 4. Criado E, Sánchez M, Ramírez J, et al. Pulmonary sarcoidosis: typical and 
atypical manifestations at high-resolution CT with pathologic correlation. 
RadioGraphics 2010;30(6):1567–1586.

Table 2: Interreader Reliability and Correlation to Pulmonary Function Testing for Each Method of CT Air Trapping As-
sessment

Parameter Qualitative (Visual) Semiquantitative (ROI) Quantitative (AI-aided) AI (Unadjusted)

Interreader reliability 0.28 (P , .001); 95% CI: 
0.12, 0.43

0.40 (P , .001); 95% CI: 
0.28, 0.51

0.84 (P , .001); 95% CI: 
0.78, 0.88

…

Correlation with FEV1 Mean: −0.10 (−0.41 to 0.04) Mean: −0.07 (−0.40 to 0.10) Mean: −0.18 (−0.25 to 
−0.14)

−0.24

Correlation with FEV1 
percent predicted

Mean: −0.13 (−0.34 to 0.09) Mean: −0.11 (−0.19 to 
−0.03)

Mean: −0.20 (−0.24 to 
−0.17)

−0.17

Correlation with FEV1/FVC Mean: −0.26 (−0.66 to 
−0.10)

Mean: −0.32 (−0.55 to 
−0.06)

Mean: −0.44 (−0.50 to −.39) −0.47

Note.—Except where otherwise noted, means with ranges are presented. Among five cardiothoracic radiologists, interreader reliability of 
assessments of air trapping improved with incorporation of semiquantitative and quantitative measurements, as did correlation with spiro-
metric measurements of FEV1/FVC. There was mild correlation with FEV1 or FEV1 percent predicted. AI = artificial intelligence, FEV1 = 
forced expiratory volume in 1 second, FVC = forced vital capacity, ROI = region of interest.

http://radiology-ai.rsna.org


6 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 4: Number 2—2022

Reader Perceptions and Impact of AI on CT Assessment of Air Trapping

 22. Schaffter T, Buist DSM, Lee CI, et al. Evaluation of Combined Artificial 
Intelligence and Radiologist Assessment to Interpret Screening Mammograms. 
JAMA Netw Open 2020;3(3):e200265.

 23. Salim M, Wåhlin E, Dembrower K, et al. External Evaluation of 3 Com-
mercial Artificial Intelligence Algorithms for Independent Assessment of 
Screening Mammograms. JAMA Oncol 2020;6(10):1581–1588.

 24. Liu K, Li Q, Ma J, et al. Evaluating a Fully Automated Pulmonary Nodule 
Detection Approach and Its Impact on Radiologist Performance. Radiol 
Artif Intell 2019;1(3):e180084.

 25. Arakawa H, Webb WR. Air trapping on expiratory high-resolution CT 
scans in the absence of inspiratory scan abnormalities: correlation with 
pulmonary function tests and differential diagnosis. AJR Am J Roentgenol 
1998;170(5):1349-1353. 

 26. Stern EJ, Webb WR, Gamsu G. Dynamic quantitative computed tomogra-
phy. A predictor of pulmonary function in obstructive lung diseases. Invest 
Radiol 1994;29(5):564–569.

 27. Ram S, Hoff BA, Bell AJ, et al. Improved detection of air trapping on expiratory 
computed tomography using deep learning. PLoS One 2021;16(3):e0248902.

 28. Pompe E, van Rikxoort EM, Schmidt M, et al. Parametric response map-
ping adds value to current computed tomography biomarkers in diagnos-
ing chronic obstructive pulmonary disease. Am J Respir Crit Care Med 
2015;191(9):1084–1086.

 29. Bond RR, Novotny T, Andrsova I, et al. Automation bias in medicine: The 
influence of automated diagnoses on interpreter accuracy and uncertainty 
when reading electrocardiograms. J Electrocardiol 2018;51(6S):S6–S11.

 30. Goddard K, Roudsari A, Wyatt JC. Automation bias: a systematic review 
of frequency, effect mediators, and mitigators. J Am Med Inform Assoc 
2012;19(1):121–127.

http://radiology-ai.rsna.org



