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Abstract of the Dissertation

The Linear Quadratic Gaussian Multistage Game with Nonclassical

Information Pattern Using a Direct Solution Method

by

Joshua William Clemens

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2018

Professor Jason L. Speyer, Chair

Game theory has application across multiple fields, spanning from economic strategy to

optimal control of an aircraft and missile on an intercept trajectory. The idea of game

theory is fascinating in that we can actually mathematically model real-world scenarios

and determine optimal decision making. It may not always be easy to mathematically

model certain real-world scenarios, nonetheless, game theory gives us an appreciation for

the complexity involved in decision making. This complexity is especially apparent when

the players involved have access to different information upon which to base their decision

making (a nonclassical information pattern).

Here we will focus on the class of adversarial two-player games (sometimes referred to

as pursuit-evasion games) with nonclassical information pattern. We present a two-sided

(simultaneous) optimization solution method for the two-player linear quadratic Gaussian

(LQG) multistage game. This direct solution method allows for further interpretation of

each player’s decision making (strategy) as compared to previously used formal solution

methods. In addition to the optimal control strategies, we present a saddle point proof and

we derive an expression for the optimal performance index value. We provide some numerical

results in order to further interpret the optimal control strategies and to highlight real-world

application of this game-theoretic optimal solution.
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CHAPTER 1

Overview

1.1 History of Dynamic Games

The theory behind dynamic (multistage or differential) games was greatly developed in the

1950s and 1960s, partially motivated by Isaacs’ publication [Isa55]. Table 1.1 lists some

of this foundational work in game theory. Since Isaacs first proposed the differential game

problem much research has been done to further understand the problem and develop its

variations. The problem is often cast as a two-player game where the players have competing

interests. For this reason, this type of game is often referred to as a zero-sum game, where

one player is trying to minimize the performance index and the other player is trying to

maximize the same performance index.

The information set that each player has available upon which to base his control strategy

greatly affects the solution complexity. System noises (process and measurement noise), or

information time lag, can greatly alter the optimal control strategies. These result in a

nonclassical information pattern (also referred to as information asymmetry), which means

that all players do not have access to the same information at each time step upon which to

base their strategy. For practical purposes (in terms of actual implementation) it is desired

that the information required by any player’s optimal strategy be finite-dimensional.

The deterministic two-player linear quadratic (LQ) game (no process or measurement

noise) was first solved by Ho, Bryson and Baron ([HBB65]), and particular/special combi-

nations of process and measurement noises were solved by Behn and Ho ([BH68], [Beh68])

and Rhodes and Luenberger ([RL69]). The basis for our research relies heavily on the in-

1



Table 1.1: A brief history of foundational work in game theory.

Decade Names Major Contribution

1940s
von Neumann and Morgenstern

[NM44]
Game Theory

1950s

Nash [Nas50] Nash Equilibrium

Shapely [Sha53] Stochastic games

Isaacs [Isa55],[Isa65] Differential games

Berkovitz and Fleming [BF55],

[Ber60]

Differential game solutions using calculus of

variations

1960s

Ho, Bryson and Baron [HBB65] Deterministic LQ differential game solution

Behn and Ho [BH68],
Special LQG differential game solutions

Rhodes and Luenberger [RL69]

Willman [Wil68], [Wil69] General LQG differential game solution

Starr and Ho [SH69] Non-zero-sum games

Witsenhausen [Wit68] Witsenhausen Counterexample

1970s Witsenhausen [Wit73] Stochastic control standard form

novative work of Willman ([Wil69], [Wil68]) and his formal analysis of the general (process

and measurement noise) linear quadratic Gaussian (LQG) differential game.

2



1.2 Problem Overview

In game theory parlance, sequential dynamic multi-player optimal control problems (game

or team problems) are generally classified according to Figure 1.1.1 That is, we can define

a particular class of problems by specifying the type of objective and information pattern

involved.

Figure 1.1: Game theory problem classification.

As indicated by the bold outline in the figure above, the type of game considered in this

dissertation is the multistage, two-player, zero-sum game (non-cooperative objective) with

nonclassical information pattern (unshared, imperfect information). This implies that each

player knows only his own measurement history and past controls. He knows nothing else

about his opponent other than what he can deduce through his own measurement history

and control history. This is the most general LQG two-player game. The restrictions on this

solution are multistage linear system dynamics and Gaussian zero-mean, delta-correlated

process and measurement noises.

1Also, reference [Mah08, Chapter 1] for further discussion of problem classification.
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In order to solve this LQG game Willman defined an assumed affine control strategy

functional form and an enlarged state-space for each player. He then sequentially substi-

tuted the opposing player’s assumed control strategy functional form into the enlarged state

dynamics and performance index, and solved the resulting one-sided LQG stochastic optimal

control problem. Since each player is faced with a one-sided LQG stochastic optimal control

problem, the separation principle applies. This allowed Willman to easily derive the optimal

control gain and optimal estimator for each player. Furthermore, Willman took advantage of

the certainty equivalence principle to interpret and simplify the resulting optimal strategies.

Willman’s method is formal and provides no rigorous proof as to when solutions ex-

ist or how to calculate the optimal performance index value. Bagchi and Olsder [BO81]

re-developed Willman’s game with some generalizations and further discussion on solution

existence and saddle point uniqueness. With Willman’s control strategies the designer nu-

merically iterates back and forth in the hopes of convergence for a particular set of problem

parameters. Although formal in nature, Willman’s novel technique revealed that the optimal

strategies are infinite-dimensional. The solution method presented herein allows for further

interpretation of the results as compared to Willman’s formal method.

In this dissertation we will reformulate the LQG game problem as a deterministic game

problem in the system statistics. We conceived this notion as a combination of the methods

employed by Willman, and Behn and Ho, in their aforementioned foundational work.2 This

deterministic framework allows us to use a two-sided (simultaneous) optimization technique

to derive the nonclassical information pattern saddle point solution. As will be shown,

information asymmetry enters through specification of the respective players’ measurement

matrix. This allows us to easily look at different information patterns by adjusting the

elements of the measurement matrix, thereby controlling the information that each player

has available.

2We recognize that this method has similarities to Witsenhausen’s ”standard form” ([Wit73]). Also, this

method appears to have similarities to the designer’s approach ([NMT13] and [Mah08]), a solution approach

to decentralized stochastic team optimization problems.

4



It should be noted that in recent years [NGL14], [GNL14], and [Gup14] have also looked

at LQG games with nonclassical information pattern from the viewpoint of what they call

common and private information. Their approach looks at the evolution of information

to formulate a game of symmetric information (classical information pattern, called game

G2) that can be solved, and subsequently used to find a Nash equilibrium of the original

asymmetric game (nonclassical information pattern, called game G1). This formulation

requires a probabilistic (Bayesian) view of the problem, whereas here we will reformulate

the stochastic game as a deterministic game. However, we will draw some parallels to the

common and private information concept as it applies to our optimal strategies.

Other recent work in the area of multi-player stochastic optimal control problems with

special information patterns include [LL11] and [LL12] (decentralized cooperative control),

[PP10] (non-cooperative control, full state feedback), and [Pac16] (non-cooperative control,

control sharing pattern).

1.3 Dissertation Overview

In Chapter 2 we completely define the LQG multistage game problem, including the govern-

ing dynamics and performance index to be optimized. In Chapter 3 we take a moment to

outline the deterministic multistage game solution for later comparison with the stochastic

(LQG) multistage game solution. In Chapter 4 we derive the general LQG multistage game

solution using a two-sided (simultaneous) optimization technique. This includes a saddle

point proof, an expression for the optimal performance index value, and discussion and in-

terpretation of the optimal strategies. We draw parallels between our stochastic optimal

solution and the corresponding deterministic game solution from Chapter 3. We also discuss

how different information patterns may be modeled within the framework of our solution

methodology. In Chapter 5 we perform a numerical study to show the effects of process

noise variance and measurement noise variance on the resulting strategies. This allows us

to provide additional interpretation of the optimal strategies. In Chapter 6 we look at

5



the performance of the stochastic optimal strategies as applied to a simple missile pursuit-

evasion problem. Finally, in Chapter 7 we have some concluding remarks and suggestions

for continued research in this area.

6



CHAPTER 2

Problem Definition

In this chapter we completely define the two-player LQG multistage game optimization

problem. We discuss notation, and specify the governing dynamics and performance index

that will be used throughout the remainder of this dissertation.

2.1 Notation and Dimensions

In general, subscript p indicates a pursuer parameter (the minimizing player) and subscript

e indicates an evader parameter (the maximizing player). The index i is used to indicate

the stage, with the initial stage i = 0. Table 2.1 lists the main problem parameters using

this notation.

Table 2.1: Parameter definitions for the two-player LQG multistage game.

Parameter Description

x(i) ∈ Rn State

up(i) ∈ Rm Pursuer Control

ue(i) ∈ Rl Evader Control

w(i) ∈ Rn Process Noise

zp(i) ∈ Rp Pursuer Measurement

vp(i) ∈ Rp Pursuer Measurement Noise

ze(i) ∈ Rq Evader Measurement

ve(i) ∈ Rq Evader Measurement Noise

7



Capital letters are used to denote an enlarged dimension matrix (e.g. X(i) is the enlarged

state at stage i) and bold-face capital letters are used to denote an enlarged dimension

unconditional statistical parameter (e.g. X(i) is the enlarged state second moment at stage

i). Greek letters are used to denote system matrices and English letters are used to denote the

corresponding enlarged dimension system matrices (e.g. Θp(i) is the pursuer’s measurement

matrix, and Hp(i) is the pursuer’s enlarged measurement matrix).

Lastly, we identify sub-partitions of the enlarged matrices using subscripts denoting (row,

column) block element pairs. A colon in the subscript denotes an entire row or column

depending on the placement in the subscript pair. For example, S2(i)i+1,: is the (i+ 1)th row

and all columns of the enlarged matrix S2(i). In other words, S2(i)i+1,: is an enlarged row

vector.

2.2 State Dynamics

The multistage state dynamics are represented as

x(i+ 1) = x(i) + Γp(i)up(i)− Γe(i)ue(i) + w(i) (2.1)

for i = 0, 1, . . . , N − 1. The problem parameters are the state x(i) ∈ Rn, pursuer’s control

matrix Γp(i) ∈ Rn×m, pursuer’s control up(i) ∈ Rm, evader’s control matrix Γe(i) ∈ Rn×l,

evader’s control ue(i) ∈ Rl, and process noise w(i) ∈ Rn.

This is the stochastic multistage form of the deterministic differential game dynamics

outlined in [HBB65]. The state x represents the relative dynamics between the pursuer and

evader projected to the final stage (i.e. x includes the state transition matrix). This results in

a projected-relative state-space that includes only those dynamics that are of interest to the

game. Since the state represents the relative dynamics of interest in this form, the pursuer

seeks to minimize the final state magnitude (i.e. capture the evader) and the evader seeks to

maximize the final state magnitude (i.e. escape from the pursuer).
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2.3 Measurement Dynamics

The pursuer and evader measurements are represented as

zp(i) = Θp(i)x(i) + vp(i) (2.2)

ze(i) = Θe(i)x(i) + ve(i) (2.3)

for i = 0, 1, . . . , N − 1. The problem parameters are the pursuer’s measurement zp(i) ∈

Rp, pursuer’s measurement matrix Θp(i) ∈ Rp×n, pursuer’s measurement noise vp(i) ∈ Rp,

evader’s measurement ze(i) ∈ Rq, evader’s measurement matrix Θe(i) ∈ Rq×n, and evader’s

measurement noise ve(i) ∈ Rq.

2.4 Gaussian Statistics

All random variables are modeled as Gaussian

x(0) ∼ N (x̄(0),M(0))
w(i)

vp(i)

ve(i)

 ∼ N



0

0

0

 ,

W (i) 0 0

0 Vp(i) 0

0 0 Ve(i)


 .

All noises are delta-correlated, and are uncorrelated with the initial state

E



w(i)

vp(i)

ve(i)

[wT (j) vTp (j) vTe (j)
] =


W (i)δ(i, j) 0 0

0 Vp(i)δ(i, j) 0

0 0 Ve(i)δ(i, j)


where δ(i, j) is the Kronecker delta defined as

δ(i, j) =

 1, i = j

0, i 6= j.
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2.5 Bolza-Type Performance Index

The performance index, J , includes both a weighting on the final state, Q(N), and a weight-

ing on the individual pursuer and evader control energy at each stage, Rp(i) and Re(i),

respectively.

J =
1

2
E

{
‖x(N)‖2

Q(N) +
N−1∑
i=0

[
‖up(i)‖2

Rp(i) − ‖ue(i)‖2
Re(i)

]}
(2.4)

where Q(N) ≥ 0, Rp(i) > 0, and Re(i) > 0. This is the stochastic multistage form of the

deterministic differential game performance index outlined in [HBB65]. The expectation

operator, E, is required because of the stochastic nature of the problem. The individual

players will seek to alter the average value of the performance index in their favor.

2.6 Problem Statement

Find the optimal control strategies, uop(i) and uoe(i), resulting from

min
up(i)

max
ue(i)

J(x(N), up(i), ue(i)), i = 0, 1, ..., N − 1

subject to (2.1), (2.2), and (2.3). The admissible control strategies, Up and Ue, are the

class of Lebesgue square-summable sequences that map from the measurement domain to

the control domain: Up(i) : Zp(i) → up(i) and Ue(i) : Ze(i) → ue(i), where Z(i) is the

measurement history (from stage 0 to stage i) for the respective player.

We seek a saddle point solution for this game such that

J(uop(i), ue(i)) ≤ J(uop(i), u
o
e(i)) ≤ J(up(i), u

o
e(i)). (2.5)

In other words, if either player unilaterally deviates from his optimal strategy then the

performance index improves in favor of the other player (a Nash equilibrium for this zero-

sum game). As discussed in Section 4.6, this saddle point condition is verified by showing

equivalency of the minimax and maximin solutions.
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This is the problem statement for the multistage, two-player, zero-sum game with un-

shared, imperfect information. A common interpretation of this game is that the pursuer

is trying to minimize the distance between the two players (capture the evader), the evader

is trying to maximize the distance between the two players (escape), while both players are

subjected to energy constraints.
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CHAPTER 3

The Deterministic Multistage Game

Ho, Bryson and Baron [HBB65] were the first to solve the deterministic differential game

using variational techniques. Here we will present the deterministic multistage game solution

for later comparison with the stochastic multistage game solution.

Consider the game described in Chapter 2 with W (i) = 0, Vp(i) = 0, Ve(i) = 0, Θp(i) = I

and Θe(i) = I ∀ i. This is the deterministic game. As such, the expectation operator in (2.4)

becomes superfluous.

3.1 Standard Derivation

Using standard optimization techniques (a good reference is [BH75]) we form the Hamiltonian

with Lagrange multiplier, λ(i), as

H(i) =
1

2

(
uTp (i)Rp(i)up(i)− uTe (i)Re(i)ue(i)

)
+ λT (i+ 1)

(
x(i) + Γp(i)up(i)− Γe(i)ue(i)

)
.

The first-order optimality conditions are

∂H(i)

∂up(i)
= 0

= uTp (i)Rp(i) + λT (i+ 1)Γp(i)

=⇒ up(i) = −R−1
p (i)ΓTp (i)λ(i+ 1) (3.1)

and

∂H(i)

∂ue(i)
= 0

12



= −uTe (i)Re(i)− λT (i+ 1)Γe(i)

=⇒ ue(i) = −R−1
e (i)ΓTe (i)λ(i+ 1). (3.2)

Choose the Lagrange multiplier sequence such that

λT (i) =
∂H(i)

∂x(i)
=⇒ λ(i) = λ(i+ 1) (3.3)

and assume the Lagrange multiplier has the form

λ(i) = S(i)x(i). (3.4)

Therefore, using (2.1)

λ(i+ 1) = S(i+ 1)x(i+ 1)

= S(i+ 1)
(
x(i) + Γp(i)up(i)− Γe(i)ue(i)

)
. (3.5)

Substitute (3.1) and (3.2) into (3.5)

λ(i+ 1) = S(i+ 1)
(
x(i)− Γp(i)R

−1
p (i)ΓTp (i)λ(i+ 1) + Γe(i)R

−1
e (i)ΓTe (i)λ(i+ 1)

)
and solve explicitly for λ(i+ 1)

λ(i+ 1) =
(
I + S(i+ 1)Γp(i)R

−1
p (i)ΓTp (i)− S(i+ 1)Γe(i)R

−1
e (i)ΓTe (i)

)−1
S(i+ 1)x(i). (3.6)

According to (3.3) and (3.4), the sum of all terms multiplying x(i) on the right-hand side of

(3.6) is equal to S(i)

Sd(i) =
(
I + Sd(i+ 1)Γp(i)R

−1
p (i)ΓTp (i)− Sd(i+ 1)Γe(i)R

−1
e (i)ΓTe (i)

)−1
Sd(i+ 1) (3.7)

where the superscript d has been added as a reminder that we are dealing with the deter-

ministic optimal solution. Due to our definition of the Lagrange multiplier the boundary

condition for this backward-propagating sequence is λ(N) = Q(N)x(N), which implies that

Sd(N) = Q(N).

Substituting (3.6) into (3.1) and (3.2) yields the optimal deterministic multistage game

strategies

ud
o

p (i) = −R−1
p (i)ΓTp (i)Sd(i)x(i) (3.8)

ud
o

e (i) = −R−1
e (i)ΓTe (i)Sd(i)x(i). (3.9)
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3.2 Alternate Derivation

An alternate approach to the deterministic multistage game solution is to form a new gov-

erning dynamic equation using an assumed control strategy form. This follows the approach

used in [BH68] and [Beh68]. We will outline this approach here for the deterministic game

so that it is familiar when applying it to the succeeding stochastic game.

Assume that the control strategies are linear functions of the state

up(i) = −Cp(i)x(i), ue(i) = Ce(i)x(i). (3.10)

Substitute these assumed control strategy forms into the performance index (2.4) and

define χ(i) , x(i)xT (i). Since the performance index is a scalar quantity, we can use the

trace (Tr) operator and write as follows

J =
1

2
Tr
(
Q(N)x(N)xT (N) +

N−1∑
i=0

[
CT
p (i)Rp(i)Cp(i)x(i)xT (i)− CT

e (i)Re(i)Ce(i)x(i)xT (i)
])

=
1

2
Tr
(
Q(N)χ(N) +

N−1∑
i=0

[
CT
p (i)Rp(i)Cp(i)χ(i)− CT

e (i)Re(i)Ce(i)χ(i)
])
.

Now, substitute the assumed control strategy forms (3.10) into the state dynamics (2.1) to

get

x(i+ 1) =
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
x(i)

and subsequently form χ(i+ 1) , x(i+ 1)xT (i+ 1),

χ(i+ 1) =
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i)

(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)T
. (3.11)

This is now the new governing dynamic equation. The Hamiltonian with matrix Lagrange

multiplier, Λ(i), is then

H(i) =
1

2
Tr
(
CT
p (i)Rp(i)Cp(i)χ(i)− CT

e (i)Re(i)Ce(i)χ(i)
)

+ Tr
(

ΛT (i+ 1)
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i)

(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)T)
.
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The first-order necessary conditions for optimality require that 1

∂H(i)

∂Cp(i)
= 0

= Rp(i)Cp(i)χ(i) + ΓTp (i)
(
Λ1(i+ 1) + ΛT

1 (i+ 1)
)(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i)

∂H(i)

∂Ce(i)
= 0

= −Re(i)Ce(i)χ(i)− ΓTe (i)
(
Λ1(i+ 1) + ΛT

1 (i+ 1)
)(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i)

ΛT (i) =
∂H(i)

∂χ(i)

=
1

2

(
CT
p (i)Rp(i)Cp(i)− CT

e (i)Re(i)Ce(i)
)

+
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)T
ΛT (i+ 1)

(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
.

Define Sd(i+ 1) , Λ(i+ 1) + ΛT (i+ 1) and solve for the control strategies

Cp(i) = R−1
p (i)ΓTp (i)Sd(i+ 1)

(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
Ce(i) = −R−1

e (i)ΓTe (i)Sd(i+ 1)
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
.

Calculate Sd(i) using the above expression for Cp(i) and Ce(i)

Sd(i) , Λ(i) + ΛT (i)

= CT
p (i)Rp(i)Cp(i)− CT

e (i)Re(i)Ce(i)

+
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)T
Sd(i+ 1)

(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
= Sd(i+ 1)

(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
.

Therefore,

Cp(i) = R−1
p (i)ΓTp (i)Sd(i) (3.12)

Ce(i) = −R−1
e (i)ΓTe (i)Sd(i) (3.13)

Sd(i) =
(
I + Sd(i+ 1)Γp(i)R

−1
p (i)ΓTp (i)− Sd(i+ 1)Γe(i)R

−1
e (i)ΓTe (i)

)−1
Sd(i+ 1)

Sd(N) = Q(N) (3.14)

1We use the trace differential properties detailed in Appendix B.2.2 to find these partial derivatives.
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where, again, the superscript d has been added as a reminder that we are dealing with the

deterministic optimal solution.

Returning to our assumed control strategy forms (3.10), we can now write the optimal

deterministic multistage game strategies as

ud
o

p (i) = −R−1
p (i)ΓTp (i)Sd(i)x(i) (3.15)

ud
o

e (i) = −R−1
e (i)ΓTe (i)Sd(i)x(i). (3.16)

Notice that (3.14), (3.15) and (3.16) are the same as we previously derived in (3.7), (3.8)

and (3.9).

3.3 Solution Existence

The above equations ((3.14), (3.15), and (3.16)) constitute a saddle point solution to the

deterministic multistage game as long as the convexity and no conjugate point conditions

are satisfied.

The convexity conditions are easily derived from ∂2H(i)
(∂Cp(i))2

> 0 and ∂2H(i)
(∂Ce(i))2

< 0:

Rp(i) + ΓTp (i)Sd(i+ 1)Γp(i) > 0

−Re(i) + ΓTe (i)Sd(i+ 1)Γe(i) < 0, ∀i.

These conditions ensure the Hamiltonian is convex with respect to the pursuer’s control and

concave with respect to the evader’s control.

The no conjugate point condition ensures that Sd(i) does not have a finite escape time.

We can guarantee that Sd(i) is bounded if

‖Sd(i)‖ ≤ ‖Sd(i+ 1)‖, ∀i.

Using (3.14) and the Cauchy-Schwarz inequality,

‖Sd(i)‖ ≤ ‖
(
I + Sd(i+ 1)Γp(i)R

−1
p (i)ΓTp (i)− Sd(i+ 1)Γe(i)R

−1
e (i)ΓTe (i)

)−1‖‖Sd(i+ 1)‖
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=⇒ ‖
(
I + Sd(i+ 1)Γp(i)R

−1
p (i)ΓTp (i)− Sd(i+ 1)Γe(i)R

−1
e (i)ΓTe (i)

)−1‖ ≤ 1

=⇒ ‖I + Sd(i+ 1)Γp(i)R
−1
p (i)ΓTp (i)− Sd(i+ 1)Γe(i)R

−1
e (i)ΓTe (i)‖ ≥ 1.

Therefore, since Sd(N) = Q(N) ≥ 0, a sufficient condition for no conjugate point is

Γp(i)R
−1
p (i)ΓTp (i) ≥ Γe(i)R

−1
e (i)ΓTe (i), ∀i. (3.17)

This is analogous to saying that the pursuer is more controllable than the evader as in

[HBB65].

3.4 Optimal Performance Index

The optimal performance index value, Jd
o
, may be found using the relationships derived

above, including

Sd(i)χ(i) = Sd(i+ 1)
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i).

Adding and subtracting this optimal game relationship to the performance index yields

Jd
o

=
1

2
Tr
(
Sd(N)χ(N) +

N−1∑
i=0

[
CT
p (i)Rp(i)Cp(i)χ(i)− CT

e (i)Re(i)Ce(i)χ(i)

+ Sd(i)χ(i)− Sd(i+ 1)
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i)

])
.

Pull Sd(0)χ(0) outside of summation and substitute in for χ(i+ 1) (3.11), Cp(i) (3.12), and

Ce(i) (3.13) as follows

Jd
o

=
1

2
Tr
(
Sd(0)χ(0) +

N−1∑
i=0

[
CT
p (i)Rp(i)Cp(i)χ(i)− CT

e (i)Re(i)Ce(i)χ(i)

+ Sd(i+ 1)χ(i+ 1)− Sd(i+ 1)
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i)

])
=

1

2
Tr
(
Sd(0)χ(0) +

N−1∑
i=0

[
CT
p (i)Rp(i)Cp(i)χ(i)− CT

e (i)Re(i)Ce(i)χ(i)

+ Sd(i+ 1)
(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i)

(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)T
− Sd(i+ 1)

(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i)

])
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=
1

2
Tr
(
Sd(0)χ(0) +

N−1∑
i=0

[
CT
p (i)Rp(i)Cp(i)χ(i)− CT

e (i)Re(i)Ce(i)χ(i)

+
(
− Γp(i)Cp(i)− Γe(i)Ce(i)

)T
Sd(i+ 1)

(
I − Γp(i)Cp(i)− Γe(i)Ce(i)

)
χ(i)

])
=

1

2
Tr
(
Sd(0)χ(0) +

N−1∑
i=0

[
CT
p (i)ΓTp (i)Sd(i)χ(i) + CT

e (i)ΓTe (i)Sd(i)χ(i)

+
(
− Γp(i)Cp(i)− Γe(i)Ce(i)

)T
Sd(i)χ(i)

])
.

Canceling terms yields

Jd
o

=
1

2
Tr
(
Sd(0)χ(0)

)
=

1

2
xT (0)Sd(0)x(0).

(3.18)
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CHAPTER 4

The LQG Multistage Game

Now, let’s return to the general stochastic problem statement of Chapter 2. Similar to

our solution approach to the deterministic game in Section 3.2, let’s define each player’s

admissible control strategy to be an affine function of their measurement history, 1

up(i) = −bp(i)−
i∑

j=0

Kp(i)jzp(j)

ue(i) = be(i) +
i∑

j=0

Ke(i)jze(j)

(4.1)

where bp ∈ Rm, Kp(i)j ∈ Rm×p, be ∈ Rl, Ke(i)j ∈ Rl×q. Note that Kp(i) and Ke(i) are

kernels transforming from the measurement domain to the control domain.

Willman’s ([Wil69], [Wil68]) approach to this problem is to solve a one-sided optimization

problem for each player using the assumed strategy form for the opposing player. This

approach allows Willman to take advantage of the separation principle, resulting in the

standard LQG solution for each player. However, Willman’s approach is formal and lacks

proof and insight as to when solutions may or may not exist. Using Willman’s approach, a

numerical solution is found by iterating back and forth between the optimal strategy forms

in the hopes of convergence.

Instead of Willman’s one-sided (iterative) approach, we propose using a two-sided (simul-

taneous) optimization approach in order to directly solve for the saddle point strategies. Due

to the unshared, imperfect information premise of the game, and the inability to make use

of the separation principle, it becomes non-obvious as to how each player will optimize the

1This assumption will be validated in Section 4.6.
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performance index relative to their respective information set. As a result, we reformulate

the problem and take the expectation prior to performing the optimization. This allows us

to treat the problem as a deterministic optimization problem. As will be shown, there is

a richness of information present in the optimal strategies. Furthermore, we can easily see

that these general strategies become the well-known strategies for the special case of the

two-player deterministic game.

4.1 Solution Derivation

Each player must optimize the performance index given their individual information set. In

this sense, the problem can be viewed as a non-zero-sum game with effectively two perfor-

mance indexes

u0
p(i) = argmin

up(i)

(J |Zp(i))

u0
e(i) = argmax

ue(i)

(J |Ze(i)).

Viewing the zero-sum game as a non-zero-sum game in this fashion is essentially Willman’s

approach with his assumed strategy forms and one-sided, iterative, optimization technique.

Rhodes and Luenberger [RL69] also recognized the non-zero-sum aspect of this information

pattern. Even though the conditional expectation of the performance index will differ for

each player, we will show that the unconditional expectation of the performance index for

the zero-sum game is agreed upon and known a priori.

In order to transform what can be thought of as a non-zero-sum game into a zero-sum

game we define an enlarged infinite-dimensional state-space (a Hilbert space). The admis-

sible control strategy forms (4.1) are restricted to the space `2 (Lebesgue square-summable

sequences).
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4.1.1 Enlarged State-Space

Define an enlarged state vector, X(i) ∈ R(N+1)(n+p+q), comprised of state and measurement

noise histories up to and including stage i. The X(i) sub-partitions are

X(i)j =



x(j), j ≤ i

0, i < j ≤ N

vp(j −N − 1), N + 1 ≤ j ≤ N + 1 + i

0, N + 1 + i < j ≤ 2N + 1

ve(j − 2N − 2), 2N + 2 ≤ j ≤ 2N + 2 + i

0, 2N + 2 + i < j ≤ 3N + 2

for i = 0, 1, ..., N , j = 0, 1, ..., 3N + 2.

Define an enlarged process noise vector, Y (i) ∈ Rn+p+q, comprised of the state process

noise at the current stage (i) and measurement noises at the next stage (i + 1). The Y (i)

sub-partitions are

Y (i)j =


w(i), j = 0

vp(i+ 1), j = 1

ve(i+ 1), j = 2

for i = 0, 1, ..., N − 1. Note that the enlarged process noise vector is still zero-mean and

delta-correlated.

Define enlarged system, control, and measurement matrices with the following sub-

partitions

F (i)j,k =



In, j = k ≤ i

In, j = i+ 1, k = i

Ip, N + 1 ≤ j = k ≤ N + 1 + i

Iq, 2N + 2 ≤ j = k ≤ 2N + 2 + i

0, otherwise

F (i) ∈ R(N+1)(n+p+q)×(N+1)(n+p+q),

(4.2)
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Gp(i)j =

 Γp(i), j = i+ 1

0, otherwise

Gp(i) ∈ R(N+1)(n+p+q)×m,

(4.3)

Ge(i)j =

 Γe(i), j = i+ 1

0, otherwise

Ge(i) ∈ R(N+1)(n+p+q)×l,

(4.4)

Gy(i)j,k =



In, j = i+ 1, k = 0

Ip, j = (N + 1) + (i+ 1), k = 1

Iq, j = (2N + 2) + (i+ 1), k = 2

0, otherwise

Gy(i) ∈ R(N+1)(n+p+q)×(n+p+q),

(4.5)

Hp(i)j,k =


Θp(j), j = k ≤ i

Ip, j ≤ i, k = N + 1 + j

0, otherwise

Hp(i) ∈ R(i+1)p×(N+1)(n+p+q),

(4.6)

He(i)j,k =


Θe(j), j = k ≤ i

Iq, j ≤ i, k = 2N + 2 + j

0, otherwise

He(i) ∈ R(i+1)q×(N+1)(n+p+q)

(4.7)

for i = 0, 1, ..., N − 1. Then, with appropriately sized system, control, and measurement

matrices we may write the enlarged state-space as

X(i+ 1) = F (i)X(i) +Gp(i)up(i)−Ge(i)ue(i) +Gy(i)Y (i)

Zp(i) = Hp(i)X(i)

Ze(i) = He(i)X(i)

(4.8)

for i = 0, 1, ..., N−1, where Zp(i) ∈ R(i+1)p and Ze(i) ∈ R(i+1)q are each player’s measurement

history up to and including stage i. This state-space is functionally identically to (2.1), (2.2),
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and (2.3).

To illustrate these definitions let’s consider how the enlarged state-space would appear

at i = 1 for a two-stage (N = 2) scalar game:

x(0)

x(1)

x(2)

vp(0)

vp(1)

vp(2)

ve(0)

ve(1)

ve(2)


︸ ︷︷ ︸

X(2)

=



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

F (1)



x(0)

x(1)

0

vp(0)

vp(1)

0

ve(0)

ve(1)

0


︸ ︷︷ ︸

X(1)

+



0

0

Γp(1)

0

0

0

0

0

0


︸ ︷︷ ︸
Gp(1)

up(1)−



0

0

Γe(1)

0

0

0

0

0

0


︸ ︷︷ ︸
Ge(1)

ue(1)

+



0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1


︸ ︷︷ ︸

Gy(1)


w(1)

vp(2)

ve(2)


︸ ︷︷ ︸

Y (1)

zp(0)

zp(1)


︸ ︷︷ ︸
Zp(1)

=

Θp(0) 0 0 1 0 0 0 0 0

0 Θp(1) 0 0 1 0 0 0 0


︸ ︷︷ ︸

Hp(1)

X(1)
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ze(0)

ze(1)


︸ ︷︷ ︸
Ze(1)

=

Θe(0) 0 0 0 0 0 1 0 0

0 Θe(1) 0 0 0 0 0 1 0


︸ ︷︷ ︸

He(1)

X(1).

4.1.2 Governing Dynamics

With the enlarged state-space now defined, the admissible control strategies (4.1) may be

rewritten in matrix form as

up(i) = −bp(i)−Kp(i)Zp(i)

= −bp(i)−Kp(i)Hp(i)X(i)

ue(i) = be(i) +Ke(i)Ze(i)

= be(i) +Ke(i)He(i)X(i)

(4.9)

where Kp(i) ∈ Rm×(i+1)p and Ke(i) ∈ Rl×(i+1)q. Using the admissible control strategy forms

(4.9) in the enlarged state dynamics (4.8) yields

X(i+ 1) = F̃ (i)X(i)−Gp(i)bp(i)−Ge(i)be(i) +Gy(i)Y (i) (4.10)

where

F̃ (i) ,
(
F (i)−Gp(i)Kp(i)Hp(i)−Ge(i)Ke(i)He(i)

)
. (4.11)

At this point we may also define the enlarged mean state, mean-square state (second

moment), covariance, and process noise variance as follows

X̄(i) , E[X(i)]

X(i) , E[X(i)XT (i)]

P(i) , X(i)− X̄(i)X̄T (i)

Y(i) , E[Y (i)Y T (i)].

(4.12)

Taking the above unconditional expectations of (4.10) results in the governing statistical
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dynamic equations. The mean state sequence is

X̄(i+ 1) = F̃ (i)X̄(i)−Gp(i)bp(i)−Ge(i)be(i)

X̄(0)j =

 x̄(0), j = 0

0, otherwise

(4.13)

where X̄(i) ∈ R(N+1)(n+p+q). The mean-square state sequence is

X(i+ 1) = F̃ (i)X(i)F̃ T (i)

− F̃ (i)X̄(i)bTp (i)GT
p (i)− F̃ (i)X̄(i)bTe (i)GT

e (i)

−Gp(i)bp(i)X̄
T (i)F̃ T (i) +Gp(i)bp(i)b

T
p (i)GT

p (i) +Gp(i)bp(i)b
T
e (i)GT

e (i)

−Ge(i)be(i)X̄
T (i)F̃ T (i) +Ge(i)be(i)b

T
p (i)GT

p (i) +Ge(i)be(i)b
T
e (i)GT

e (i)

+Gy(i)Y(i)GT
y (i)

= F̃ (i)X(i)F̃ T (i)− F̃ (i)X̄(i)X̄T (i)F̃ T (i)

+
(
F̃ (i)X̄(i)−Gp(i)bp(i)−Ge(i)be(i)

)(
F̃ (i)X̄(i)−Gp(i)bp(i)−Ge(i)be(i)

)T
+Gy(i)Y(i)GT

y (i)

= F̃ (i)
(
X(i)− X̄(i)X̄T (i)

)
F̃ T (i) + X̄(i+ 1)X̄T (i+ 1) +Gy(i)Y(i)GT

y (i)

and writing in terms of the covariance yields

X(i+ 1) = F̃ (i)P(i)F̃ T (i) + X̄(i+ 1)X̄T (i+ 1) +Gy(i)Y(i)GT
y (i)

X(0)j,k =



M(0) + x̄(0)x̄T (0), j = k = 0

Vp(0), j = k = N + 1

Ve(0), j = k = 2N + 2

0, otherwise

(4.14)

where X(i) ∈ R(N+1)(n+p+q)×(N+1)(n+p+q). It is now easy to see that the covariance sequence
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is

P(i+ 1) = F̃ (i)P(i)F̃ T (i) +Gy(i)Y(i)GT
y (i)

P(0)j,k =



M(0), j = k = 0

Vp(0), j = k = N + 1

Ve(0), j = k = 2N + 2

0, otherwise

(4.15)

where P(i) ∈ R(N+1)(n+p+q)×(N+1)(n+p+q).

As stated, the driving noises are Gaussian and the admissible strategies are affine. There-

fore, the governing statistics remain Gaussian which means that the mean (4.13) and covari-

ance (4.15) are sufficient to describe the X(i) probability density function.

4.1.3 Necessary Conditions

Let’s return to the performance index (2.4). First, we define an enlarged final state weighting

matrix

Q̃(N)j,k =

 Q(N), j = k = N

0, otherwise

where Q̃(N) ∈ R(N+1)(n+p+q)×(N+1)(n+p+q). We can now substitute the assumed affine strate-

gies (4.9) into the performance index (2.4) using the enlarged state, X(i). Furthermore,

since the performance index is a scalar quantity, we can use the trace (Tr) operator without

affecting the result. We can then use the cyclic property to rearrange the order of matrix

multiplication, which then allows us to take the unconditional expectation of the perfor-

mance index using the previously defined enlarged statistical parameters. This procedure

yields

J =
1

2
E

{
XT (N)Q̃(N)X(N) +

N−1∑
i=0

[(
bp(i) +Kp(i)Hp(i)X(i)

)T
Rp(i)

(
bp(i) +Kp(i)Hp(i)X(i)

)
−
(
be(i) +Ke(i)He(i)X(i)

)T
Re(i)

(
be(i) +Ke(i)He(i)X(i)

)]}
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=
1

2
Tr
(
Q̃(N)P(N) + Q̃(N)X̄(N)X̄T (N)

)
+

1

2

N−1∑
i=0

Tr
((
bp(i) +Kp(i)Hp(i)X̄(i)

)T
Rp(i)

(
bp(i) +Kp(i)Hp(i)X̄(i)

)
−
(
be(i) +Ke(i)He(i)X̄(i)

)T
Re(i)

(
be(i) +Ke(i)He(i)X̄(i)

)
+HT

p (i)KT
p (i)Rp(i)Kp(i)Hp(i)P(i)−HT

e (i)KT
e (i)Re(i)Ke(i)He(i)P(i)

)
where we used the fact that X(N) = P(N) + X̄(N)X̄T (N). Some of these terms are scalar

quantities, making the trace operator superfluous. We can therefore simplify the performance

index expression as

J =
1

2
X̄T (N)Q̃(N)X̄(N) +

1

2
Tr
(
Q̃(N)P(N)

)
+

1

2

N−1∑
i=0

[(
bp(i) +Kp(i)Hp(i)X̄(i)

)T
Rp(i)

(
bp(i) +Kp(i)Hp(i)X̄(i)

)
−
(
be(i) +Ke(i)He(i)X̄(i)

)T
Re(i)

(
be(i) +Ke(i)He(i)X̄(i)

)
+ Tr

(
HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)P(i)−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)P(i)
)]
.

(4.16)

Since the mean (4.13) and covariance (4.15) are the governing dynamics, we can append these

dynamic constraints to the performance index using the column vector Lagrange multiplier

λ1(i) ∈ R(N+1)(n+p+q) and symmetric matrix Lagrange multiplier Λ2(i) ∈ R(N+1)(n+p+q)×(N+1)(n+p+q).

This augmented performance index, J̄ , is

J̄ =
1

2
X̄T (N)Q̃(N)X̄(N) +

1

2
Tr
(
Q̃(N)P(N)

)
+

1

2

N−1∑
i=0

[(
bp(i) +Kp(i)Hp(i)X̄(i)

)T
Rp(i)

(
bp(i) +Kp(i)Hp(i)X̄(i)

)
−
(
be(i) +Ke(i)He(i)X̄(i)

)T
Re(i)

(
be(i) +Ke(i)He(i)X̄(i)

)
+ 2λT1 (i+ 1)

(
f1(i)− X̄(i+ 1)

)
+ Tr

(
HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)P(i)−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)P(i)

+ 2ΛT
2 (i+ 1)

(
f2(i)−P(i+ 1)

))]
where f1(i) and f2(i) are the right-hand side of (4.13) and (4.15), respectively. We define

the Hamiltonian, H(i), as

H(i) ,
1

2

(
bp(i) +Kp(i)Hp(i)X̄(i)

)T
Rp(i)

(
bp(i) +Kp(i)Hp(i)X̄(i)

)
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− 1

2

(
be(i) +Ke(i)He(i)X̄(i)

)T
Re(i)

(
be(i) +Ke(i)He(i)X̄(i)

)
+ λT1 (i+ 1)f1(i)

+
1

2
Tr
(
HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)P(i)−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)P(i)

+ 2ΛT
2 (i+ 1)f2(i)

)
(4.17)

for i = 0, 1, . . . , N − 1. Rewriting the augmented performance index using the Hamiltonian

results in

J̄ =
1

2
X̄T (N)Q̃(N)X̄(N) +

1

2
Tr
(
Q̃(N)P(N)

)
+

N−1∑
i=0

[
H(i)− λT1 (i+ 1)X̄(i+ 1)− Tr

(
ΛT

2 (i+ 1)P(i+ 1)
)]

=
1

2
X̄T (N)Q̃(N)X̄(N)− λT1 (N)X̄(N) + Tr

(1

2
Q̃(N)P(N)− ΛT

2 (N)P(N)
)

+
N−1∑
i=1

[
H(i)− λT1 (i)X̄(i)− Tr

(
ΛT

2 (i)P(i)
)]

+H(0).

The first-order variation of J̄ with respect to changes in the control variables (bp(i), Kp(i),

be(i), Ke(i)) and state variables (X̄(i), P(i)) produces the necessary conditions for optimality.

In order to write the J̄ differential we convert all matrices to vectors using the vectorization

(vec) column stacking operator

dJ̄ =
1

2
(dX̄(N))T Q̃(N)X̄(N) +

1

2
X̄T (N)Q̃(N)dX̄(N)− λT1 (N)dX̄(N)

+ Tr
(1

2
Q̃(N)dP(N)− ΛT

2 (N)dP(N)
)

+
N−1∑
i=1

[
∂H(i)

∂bp(i)
dbp(i) +

∂H(i)

∂vec(Kp(i))
dvec(Kp(i)) +

∂H(i)

∂be(i)
dbe(i) +

∂H(i)

∂vec(Ke(i))
dvec(Ke(i))

+
∂H(i)

∂X̄(i)
dX̄(i) +

∂H(i)

∂vec(P(i))
dvec(P(i))− λT1 (i)dX̄(i)− Tr

(
ΛT

2 (i)dP(i)
)]

+
∂H(0)

∂bp(0)
dbp(0) +

∂H(0)

∂vec(Kp(0))
dvec(Kp(0)) +

∂H(0)

∂be(0)
dbe(0) +

∂H(0)

∂vec(Ke(0))
dvec(Ke(0))

+
∂H(0)

∂X̄(0)
dX̄(0) +

∂H(0)

∂vec(P(0))
dvec(P(0)).

Replace the remaining trace terms using the vectorization operator (reference Appendix

B.1.4)

dJ̄ =
(
X̄T (N)Q̃(N)− λT1 (N)

)
dX̄(N) + vec

(1

2
Q̃(N)− Λ2(N)

)T
dvec(P(N))
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+
N−1∑
i=1

[
∂H(i)

∂bp(i)
dbp(i) +

∂H(i)

∂vec(Kp(i))
dvec(Kp(i)) +

∂H(i)

∂be(i)
dbe(i) +

∂H(i)

∂vec(Ke(i))
dvec(Ke(i))

+
(∂H(i)

∂X̄(i)
− λT1 (i)

)
dX̄(i) +

( ∂H(i)

∂vec(P(i))
− vec(Λ2(i))T

)
dvec(P(i))

]

+
∂H(0)

∂bp(0)
dbp(0) +

∂H(0)

∂vec(Kp(0))
dvec(Kp(0)) +

∂H(0)

∂be(0)
dbe(0) +

∂H(0)

∂vec(Ke(0))
dvec(Ke(0))

+
∂H(0)

∂X̄(0)
dX̄(0) +

∂H(0)

∂vec(P(0))
dvec(P(0)).

Using this expression for dJ̄ we choose the Lagrange multipliers such that

λT1 (i) =
∂H(i)

∂X̄(i)
, λT1 (N) = X̄T (N)Q̃(N)

ΛT
2 (i) =

∂H(i)

∂P(i)
, ΛT

2 (N) =
1

2
Q̃(N)

(4.18)

for i = 0, 1, . . . , N − 1. In addition, at an extremum, variations with respect to the control

produce dJ̄ = 0, therefore the controls must satisfy

∂H(i)

∂bp(i)
= 0,

∂H(i)

∂Kp(i)
= 0

∂H(i)

∂be(i)
= 0,

∂H(i)

∂Ke(i)
= 0

(4.19)

for i = 0, 1, . . . , N − 1.

We now define two matrices S1(i), S2(i) ∈ R(N+1)(n+p+q)×(N+1)(n+p+q), such that

λ1(i) = S1(i)X̄(i), S1(N) = Q̃(N)

S2(i) , Λ2(i) + ΛT
2 (i) = 2Λ2(i) = 2ΛT

2 (i), S2(N) = Q̃(N)
(4.20)

for i = 0, ..., N−1. Then, with the above first-order necessary conditions satisfied we can find

an expression for the augmented performance index differential due to differential changes

in initial conditions

dJ̄ =
∂H(0)

∂X̄(0)
dX̄(0) +

∂H(0)

∂vec(P(0))
dvec(P(0))

= λT1 (0)dX̄(0) + vec(Λ2(0))Tdvec(P(0))

= X̄T (0)ST1 (0)dX̄(0) + Tr
(

ΛT
2 (0)dP(0)

)
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= X̄T (0)ST1 (0)dX̄(0) +
1

2
Tr
(
S2(0)dP(0)

)
. (4.21)

It is apparent that λ1(0) and Λ2(0) are the performance index gradient with respect to the

mean state and covariance initial conditions. Therefore, S1(0) and S2(0) are also influence

functions relating a change in X̄(0) or P(0), respectively, to a change in J .

4.1.4 Optimization

As will be shown, the first-order necessary conditions ((4.18) and (4.19)) produce a primary

and a secondary set of equations. The primary set of equations follows from the Λ2(i), Kp(i),

and Ke(i) necessary conditions. The secondary set of equations follows from the λ1(i), bp(i),

and be(i) necessary conditions. The primary set of equations is independent of the secondary

set of equations; as such, we shall start by deriving the primary set of equations.

Primary Set of Equations

The primary set of equations follows from the Λ2(i), Kp(i), and Ke(i) necessary conditions.

We use the trace differential properties detailed in Appendix B.2.2 to find the following

partial derivatives.

ΛT
2 (i) =

∂H(i)

∂P(i)

=⇒ Λ2(i) =
1

2

(
HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)
)

+ F̃ T (i)Λ2(i+ 1)F̃ (i)

and using our definition of S2(i) in (4.20) we may write

S2(i) = HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)−HT
e (i)KT

e (i)Re(i)Ke(i)He(i) + F̃ T (i)S2(i+ 1)F̃ (i)

S2(N) = Q̃(N).

(4.22)

Before proceeding we define two matrices, Lp(i) and Le(i), that represent the pursuer’s

and evader’s enlarged Kalman gain matrix, respectively. Appendix A.3 details the derivation
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and interpretation of these Kalman gain matrices. In particular, because these Kalman gain

matrices are formed using the enlarged state-space, they produce a current state estimate,

as well as a smoothed estimate of all past states using the available information through

stage i,

Lp(i) , P(i)HT
p (i)

(
Hp(i)P(i)HT

p (i)
)−1

Le(i) , P(i)HT
e (i)

(
He(i)P(i)HT

e (i)
)−1

.
(4.23)

Continuing with the first-order necessary conditions

∂H(i)

∂Kp(i)
= 0

= Hp(i)X̄(i)bTp (i)Rp(i) +Hp(i)X̄(i)X̄T (i)HT
p (i)KT

p (i)Rp(i)

+Hp(i)P(i)HT
p (i)KT

p (i)Rp(i)−Hp(i)X̄(i)λT1 (i+ 1)Gp(i)

−Hp(i)P(i)F̃ T (i)S2(i+ 1)Gp(i).

Take the transpose and rearrange to arrive at

Rp(i)Kp(i)Hp(i)P(i)HT
p (i)

= GT
p (i)S2(i+ 1)F̃ (i)P(i)HT

p (i)

−Rp(i)
(
bp(i)−R−1

p (i)GT
p (i)λ1(i+ 1) +Kp(i)Hp(i)X̄(i)

)
X̄T (i)HT

p (i).

As shown below in (4.32), the second term on the right-hand side of the above equation

is identically zero due to the bp(i) first-order necessary condition. Furthermore, since by

definition Rp(i) > 0 (i.e. invertible), and, as discussed in Appendix A.3, Hp(i)P(i)HT
p (i) is

invertible, we can write

Kp(i) = R−1
p (i)GT

p (i)S2(i+ 1)F̃ (i)P(i)HT
p (i)

(
Hp(i)P(i)HT

p (i)
)−1

= R−1
p (i)GT

p (i)S2(i+ 1)F̃ (i)Lp(i). (4.24)

Similarly,

∂H(i)

∂Ke(i)
= 0
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= −He(i)X̄(i)bTe (i)Re(i)−He(i)X̄(i)X̄T (i)HT
e (i)KT

e (i)Re(i)

−He(i)P(i)HT
e (i)KT

e (i)Re(i)−He(i)X̄(i)λT1 (i+ 1)Ge(i)

−He(i)P(i)F̃ T (i)S2(i+ 1)Ge(i).

Take the transpose and rearrange to arrive at

Re(i)Ke(i)He(i)P(i)HT
e (i)

= −GT
e (i)S2(i+ 1)F̃ (i)P(i)HT

e (i)

−Re(i)
(
be(i) +R−1

e (i)GT
e (i)λ1(i+ 1) +Ke(i)He(i)X̄(i)

)
X̄T (i)HT

e (i).

As shown below in (4.33), the second term on the right-hand side of the above equation

is identically zero due to the be(i) first-order necessary condition. Furthermore, since by

definition Re(i) > 0 (i.e. invertible), and, as discussed in Appendix A.3, He(i)P(i)HT
e (i) is

invertible, we can write

Ke(i) = −R−1
e (i)GT

e (i)S2(i+ 1)F̃ (i)P(i)HT
e (i)

(
He(i)P(i)HT

e (i)
)−1

= −R−1
e (i)GT

e (i)S2(i+ 1)F̃ (i)Le(i). (4.25)

We can now find another expression for S2(i) that will be useful later on. Substitute

(4.24) and (4.25) into (4.22) and rearrange to get

S2(i) = HT
p (i)KT

p (i)GT
p (i)S2(i+ 1)F̃ (i)

(
Lp(i)Hp(i)− I

)
+HT

e (i)KT
e (i)GT

e (i)S2(i+ 1)F̃ (i)
(
Le(i)He(i)− I

)
+ F T (i)S2(i+ 1)F̃ (i)

S2(N) = Q̃(N).

(4.26)

We can also rearrange (4.24) and (4.25) into a more explicit form. First, we recognize

from (4.23) that Hp(i)Lp(i) = I(i+1)p and He(i)Le(i) = I(i+1)q. We then substitute F̃ (i)

(4.11) into (4.24) to get

Kp(i) = R−1
p (i)GT

p (i)S2(i+ 1)
(
F (i)−Gp(i)Kp(i)Hp(i)−Ge(i)Ke(i)He(i)

)
Lp(i)

= −R−1
p (i)GT

p (i)S2(i+ 1)Gp(i)Kp(i)

+R−1
p (i)GT

p (i)S2(i+ 1)
(
F (i)−Ge(i)Ke(i)He(i)

)
Lp(i).

(4.27)
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Furthermore, we know that Gp(i) is a sparse matrix, with only the (i + 1)th sub-partition

being non-zero and equal to Γp(i). Therefore, we can simplify the Kp(i) expression using

subscripts on S2(i+ 1) as

Kp(i) = −R−1
p (i)ΓTp (i)S2(i+ 1)i+1,i+1Γp(i)Kp(i)

+R−1
p (i)ΓTp (i)S2(i+ 1)i+1,:

(
F (i)−Ge(i)Ke(i)He(i)

)
Lp(i).

(4.28)

Solving explicitly for Kp(i) and using the matrix inversion lemma (reference Appendix B.1.1)

we get

Kp(i) = R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗ S2(i+ 1)i+1,:

(
F (i)−Ge(i)Ke(i)He(i)

)
Lp(i).

(4.29)

Following the same procedure we can rearrange (4.25) as

Ke(i) = −R−1
e (i)ΓTe (i)

(
I − S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1

∗ S2(i+ 1)i+1,:

(
F (i)−Gp(i)Kp(i)Hp(i)

)
Le(i).

(4.30)

Equations (4.15), (4.26), (4.29), and (4.30) form a two-point boundary value problem

where P(0) and S2(N) are given.

Secondary Set of Equations

The secondary set of equations follows from the λ1(i), bp(i), and be(i) necessary conditions

λT1 (i) =
∂H(i)

∂X̄(i)

=⇒ λ1(i) = HT
p (i)KT

p (i)Rp(i)bp(i)−HT
e (i)KT

e (i)Re(i)be(i)

+HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)X̄(i)−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)X̄(i)

+ F̃ T (i)λ1(i+ 1) (4.31)

∂H(i)

∂bp(i)
= 0

=⇒ bp(i) = R−1
p (i)GT

p (i)λ1(i+ 1)−Kp(i)Hp(i)X̄(i) (4.32)
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∂H(i)

∂be(i)
= 0

=⇒ be(i) = −R−1
e (i)GT

e (i)λ1(i+ 1)−Ke(i)He(i)X̄(i). (4.33)

Substitute (4.32) and (4.33) into (4.31)

λ1(i) = HT
p (i)KT

p (i)GT
p (i)λ1(i+ 1)−HT

p (i)KT
p (i)Rp(i)Kp(i)Hp(i)X̄(i)

+HT
e (i)KT

e (i)GT
e (i)λ1(i+ 1) +HT

e (i)KT
e (i)Re(i)Ke(i)He(i)X̄(i)

+HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)X̄(i)−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)X̄(i)

+ F̃ T (i)λ1(i+ 1)

= F T (i)λ1(i+ 1).

Using our definition of S1(i) in (4.20) we may rewrite this optimal λ1 relationship as

S1(i)X̄(i) = F T (i)S1(i+ 1)X̄(i+ 1). (4.34)

Now, substitute the optimal bp(i) (4.32) and be(i) (4.33) into the X̄(i+ 1) expression (4.13)

X̄(i+ 1) = F̃ (i)X̄(i)−Gp(i)R
−1
p (i)GT

p (i)λ1(i+ 1) +Gp(i)Kp(i)Hp(i)X̄(i)

+Ge(i)R
−1
e (i)GT

e (i)λ1(i+ 1) +Ge(i)Ke(i)He(i)X̄(i)

= F (i)X̄(i)−Gp(i)R
−1
p (i)GT

p (i)λ1(i+ 1) +Ge(i)R
−1
e (i)GT

e (i)λ1(i+ 1) (4.35)

which means that

λ1(i+ 1) = S1(i+ 1)X̄(i+ 1)

= S1(i+ 1)
(
F (i)X̄(i)−Gp(i)R

−1
p (i)GT

p (i)λ1(i+ 1) +Ge(i)R
−1
e (i)GT

e (i)λ1(i+ 1)
)

=
(
I + S1(i+ 1)Gp(i)R

−1
p (i)GT

p (i)− S1(i+ 1)Ge(i)R
−1
e (i)GT

e (i)
)−1

S1(i+ 1)F (i)X̄(i).

(4.36)

This now allows us to rewrite the right-hand side of (4.34) as

S1(i)X̄(i)

= F T (i)
(
I + S1(i+ 1)Gp(i)R

−1
p (i)GT

p (i)− S1(i+ 1)Ge(i)R
−1
e (i)GT

e (i)
)−1

S1(i+ 1)F (i)X̄(i)
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from which we can easily see the backward-propagating equation for S1(i) is

S1(i) = F T (i)
(
I + S1(i+ 1)Gp(i)R

−1
p (i)GT

p (i)− S1(i+ 1)Ge(i)R
−1
e (i)GT

e (i)
)−1

S1(i+ 1)F (i)

S1(N) = Q̃(N)

(4.37)

for i = 0, ..., N − 1. Furthermore, using (4.36) the optimal bp(i) (4.32) and be(i) (4.33)

become

bp(i) = Kd
p (i)X̄(i)−Kp(i)Hp(i)X̄(i)

Kd
p (i) , R−1

p (i)GT
p (i)

(
I + S1(i+ 1)Gp(i)R

−1
p (i)GT

p (i)− S1(i+ 1)Ge(i)R
−1
e (i)GT

e (i)
)−1

∗ S1(i+ 1)F (i)

(4.38)

and

be(i) = Kd
e (i)X̄(i)−Ke(i)He(i)X̄(i)

Kd
e (i) , −R−1

e (i)GT
e (i)

(
I + S1(i+ 1)Gp(i)R

−1
p (i)GT

p (i)− S1(i+ 1)Ge(i)R
−1
e (i)GT

e (i)
)−1

∗ S1(i+ 1)F (i).

(4.39)

The above equations can be greatly simplified due to the sparse structure of the enlarged

matrices. Recall that per the enlarged matrix definitions at the terminal boundary condition

S1(N)N,N = Q(N), Gp(N − 1)N = Γp(N − 1), and Ge(N − 1)N = Γe(N − 1) with all other

sub-partitions being zero. Also, F (N − 1)N,N−1 = In. Therefore, returning to (4.37) we can,

through induction starting at the terminal boundary condition, write

S1(i)j,k =


(
In + S1(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

−S1(i+ 1)i+1,i+1Γe(i)R
−1
e (i)ΓTe (i)

)−1
S1(i+ 1)i+1,i+1, j = k = i

0, otherwise

S1(N)j,k =

 Q(N), j = k = N

0, otherwise.

(4.40)
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That is, S1(i) has only one non-zero sub-partition, S1(i)i,i, which is exactly the same as the

deterministic game Sd(i) backward-propagating sequence (3.14). As a result of the sparse

S1(i) matrix, returning to (4.35) and substituting λ1(i+ 1) = S1(i+ 1)X̄(i+ 1) we can also

write

X̄(i+ 1)j =



X̄(i)j, j ≤ i(
In + Γp(i)R

−1
p (i)ΓTp (i)S1(i+ 1)i+1,i+1

−Γe(i)R
−1
e (i)ΓTe (i)S1(i+ 1)i+1,i+1

)−1
X̄(i)i, j = i+ 1

0, otherwise

X̄(0)j =

 x̄(0), j = 0

0, otherwise.

(4.41)

Definition 4.1. The corresponding deterministic game is the noiseless game with x(0) =

x̄(0).

Remark 4.1. It is important to recognize that the mean state sequence, X̄(i)i, is just the

state propagation for the corresponding deterministic game. In other words, the forward-

propagating mean state sequence is the corresponding deterministic game state trajectory.

We can also further simplify the optimal Kd
p (i) (4.38) and Kd

e (i) (4.39)

Kd
p (i) = R−1

p (i)ΓTp (i)
(
In + S1(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

− S1(i+ 1)i+1,i+1Γe(i)R
−1
e (i)ΓTe (i)

)−1
S1(i+ 1)i+1,i+1X̄(i)i

= R−1
p (i)ΓTp (i)S1(i)i,iX̄(i)i

= Cp(i)X̄(i)i

and

Kd
e (i) = −R−1

e (i)ΓTe (i)
(
In + S1(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

− S1(i+ 1)i+1,i+1Γe(i)R
−1
e (i)ΓTe (i)

)−1
S1(i+ 1)i+1,i+1X̄(i)i

= −R−1
e (i)ΓTe (i)S1(i)i,iX̄(i)i

= Ce(i)X̄(i)i
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where Cp(i) and Ce(i) are exactly the same as (3.12) and (3.13), respectively, as derived for

the deterministic game. The optimal bp(i) (4.38) and be(i) (4.39) may now be expressed as

bp(i) = Cp(i)X̄(i)i −Kp(i)Hp(i)X̄(i) (4.42)

be(i) = Ce(i)X̄(i)i −Ke(i)He(i)X̄(i). (4.43)

We can rewrite (4.40) using Cp(i) and Ce(i)

S1(i)j,k =

 S1(i+ 1)i+1,i+1

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
, j = k = i

0, otherwise

S1(N)j,k =

 Q(N), j = k = N

0, otherwise.

(4.44)

We can also rewrite the enlarged mean state sequence (4.41) by starting with (4.13) and

substituting in (4.42) and (4.43)

X̄(i+ 1)j =


X̄(i)j, j ≤ i(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
X̄(i)i, j = i+ 1

0, otherwise

X̄(0)j =

 x̄(0), j = 0

0, otherwise.

(4.45)

Finally, using (4.44) we can also express Cp(i) and Ce(i) as

Cp(i) = R−1
p (i)ΓTp (i)S1(i+ 1)i+1,i+1

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
(4.46)

Ce(i) = −R−1
e (i)ΓTe (i)S1(i+ 1)i+1,i+1

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
. (4.47)

For later convenience we define the mean control strategy, ūp(i) and ūe(i), for each player

as follows. We take the unconditional expectation of the assumed control strategy forms

(4.9) and then use the optimal bp(i) (4.42) and be(i) (4.43) to arrive at

ūp(i) , E[up(i)] = −bp(i)−Kp(i)Hp(i)X̄(i) = −Cp(i)X̄(i)i (4.48)

ūe(i) , E[ue(i)] = be(i) +Ke(i)He(i)X̄(i) = Ce(i)X̄(i)i. (4.49)

So, on average, the players use their corresponding deterministic game control strategy.
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4.2 Solution Summary

To solve the LQG multistage game:

1. Solve the two-point boundary value problem involving the forward-propagating se-

quence P(i) (4.15) with initial boundary condition P(0), and the backward-propagating

sequence S2(i) (4.26) with terminal boundary condition S2(N) in conjunction with

Kp(i) (4.29) and Ke(i) (4.30).

P(i+ 1) = F̃ (i)P(i)F̃ T (i) +Gy(i)Y(i)GT
y (i)

P(0)j,k =



M(0), j = k = 0

Vp(0), j = k = N + 1

Ve(0), j = k = 2N + 2

0, otherwise

S2(i) = HT
p (i)KT

p (i)GT
p (i)S2(i+ 1)F̃ (i)

(
Lp(i)Hp(i)− I

)
+HT

e (i)KT
e (i)GT

e (i)S2(i+ 1)F̃ (i)
(
Le(i)He(i)− I

)
+ F T (i)S2(i+ 1)F̃ (i), S2(N) = Q̃(N)

Kp(i) = R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗ S2(i+ 1)i+1,:

(
F (i)−Ge(i)Ke(i)He(i)

)
Lp(i)

Ke(i) = −R−1
e (i)ΓTe (i)

(
I − S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1

∗ S2(i+ 1)i+1,:

(
F (i)−Gp(i)Kp(i)Hp(i)

)
Le(i)

(4.15)

(4.26)

(4.29)

(4.30)

2. Solve the corresponding deterministic game involving the backward-propagating se-

quence Sd(i) (3.14) with terminal boundary condition Sd(N). Form Cp(i) (3.12) and

Ce(i) (3.13).

Sd(i) =
(
I + Sd(i+ 1)Γp(i)R

−1
p (i)ΓTp (i)

− Sd(i+ 1)Γe(i)R
−1
e (i)ΓTe (i)

)−1
Sd(i+ 1), Sd(N) = Q(N)

Cp(i) = R−1
p (i)ΓTp (i)Sd(i)

Ce(i) = −R−1
e (i)ΓTe (i)Sd(i)

(3.14)

(3.12)

(3.13)
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3. Using the result of step 2, forward-propagate X̄(i) (4.45) with initial boundary condi-

tion X̄(0).

X̄(i+ 1)j =


X̄(i)j, j ≤ i(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
X̄(i)i, j = i+ 1

0, otherwise

X̄(0)j =

 x̄(0), j = 0

0, otherwise

(4.45)

4. Using the results of steps 1-3, form bp(i) (4.42) and be(i) (4.43).

bp(i) = Cp(i)X̄(i)i −Kp(i)Hp(i)X̄(i)

be(i) = Ce(i)X̄(i)i −Ke(i)He(i)X̄(i)

(4.42)

(4.43)

5. For any realization of the game, each player will play their optimal strategy (4.9) using

the optimal gains from steps 1 and 4.

up(i) = −bp(i)−Kp(i)Zp(i)

= −bp(i)−Kp(i)Hp(i)X(i)

ue(i) = be(i) +Ke(i)Ze(i)

= be(i) +Ke(i)He(i)X(i)

(4.9)

4.3 Solving the Two-Point Boundary Value Problem

To solve the two-point boundary value problem (TPBVP) in Section 4.2, Step 1, we need to

find an explicit expression for Kp(i) and Ke(i) as a function of P(i), S2(i), and the problem

parameters (Rp(i), Re(i), etc.). We first substitute (4.30) into (4.29) to obtain

Kp(i) = R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1
S2(i+ 1)i+1,:F (i)Lp(i)

+R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗ S2(i+ 1)i+1,i+1Γe(i)R
−1
e (i)ΓTe (i)

(
I − S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1
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∗ S2(i+ 1)i+1,:F (i)Le(i)He(i)Lp(i)

−R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗ S2(i+ 1)i+1,i+1Γe(i)R
−1
e (i)ΓTe (i)

(
I − S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1

∗ S2(i+ 1)i+1,i+1Γp(i)Kp(i)Hp(i)Le(i)He(i)Lp(i).

We use the matrix inversion lemma to re-order some matrix multiplications, then multiply

the first term by an identity and combine with the second term, and finally add/subtract

additional Kp(i) terms to get

Kp(i) = R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗
(
I − S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1(
S2(i+ 1)i+1,:F (i)Lp(i)

− S2(i+ 1)i+1,i+1Γe(i)R
−1
e (i)ΓTe (i)S2(i+ 1)i+1,:F (i)

(
I − Le(i)He(i)

)
Lp(i)

)
−R−1

p (i)ΓTp (i)
(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗
(
I − S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1
S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

∗ S2(i+ 1)i+1,i+1Γp(i)Kp(i)
(
Hp(i)Le(i)He(i)Lp(i)− I

)
−R−1

p (i)ΓTp (i)
(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗
(
I − S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1
S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

∗ S2(i+ 1)i+1,i+1Γp(i)Kp(i).

Now, moving the last Kp(i) term to the left-hand side, and after extensive use of the matrix

inversion lemma, and some algebra, we find the following simplified expression

Kp(i) = R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)− S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1

∗
(
S2(i+ 1)i+1,:F (i)Lp(i)− S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)S2(i+ 1)i+1,:

∗ F (i)
(
I − Le(i)He(i)

)
Lp(i)

)
+R−1

p (i)ΓTp (i)
(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)− S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1

∗ S2(i+ 1)i+1,i+1Γe(i)R
−1
e (i)ΓTe (i)S2(i+ 1)i+1,i+1Γp(i)Kp(i)Hp(i)

(
I − Le(i)He(i)

)
Lp(i)

(4.50)
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where we have also used the fact that Hp(i)Lp(i) = I(i+1)p to re-write the last term. Note

that (4.50) is a discrete Sylvester equation. Likewise, we could substitute (4.29) into (4.30)

to find the discrete Sylvester form of Ke(i).

We define the first term in (4.50) as CS
p (i), the left matrix multiplier on Kp(i) in the

second term as ASp (i), and the right matrix multiplier on Kp(i) in the second term as BS
p (i),

where the superscript S is a reminder that these are discrete Sylvester equation matrices.

We now write (4.50) using this notation as

Kp(i)− ASp (i)Kp(i)B
S
p (i) = CS

p (i). (4.51)

As shown in Appendix B.1.3, the solution to this equation may be written as

vec(Kp(i)) = [I(i+1)p ⊗ Im − (BS
p (i))T ⊗ ASp (i)]−1vec(CS

p (i)), (4.52)

assuming [I(i+1)p ⊗ Im − (BS
p (i))T ⊗ ASp (i)] is nonsingular.

We can now detail our solution process to solve this TPBVP:

1. Take an initial guess at the S2(i) sequence for i = 0, 1, . . . , N − 1 (use the terminal

boundary condition for S2(N)). We call this guess SG2 (i).

2. Solve for Lp(i) and Le(i) (4.23) using P(i) (starting with i = 0 and the P(0) initial

boundary condition).

3. Plug the result of Step 2, along with SG2 (i), into (4.52) to find Kp(i).
2

4. Plug the result of Step 3, along with SG2 (i), into (4.30) to find Ke(i).

5. Plug the results of Steps 3 and 4 into (4.15) to find P(i+ 1).

6. Repeat Steps 2-5 for i = 0, 1, . . . , N − 1.

7. Using the results of Steps 2-6, backward-propagate S2(i) for i = N − 1, N − 2, . . . , 0

using (4.26).

2Within the MATLAB environment we use the dlyap function to solve for Kp(i).
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8. Compare S2(i) from Step 7 with SG2 (i). If the two sequences are within some tolerance,

then exit the loop. Otherwise, update SG2 (i) based on S2(i) and return to Step 2.

In terms of the initial guess for SG2 (i) in Step 1, we have had success using the deterministic

game S1(i) sequence (4.44). Although we have demonstrated the ability to solve non-scalar,

multiple stage (e.g. N = 50), problems using this method, it is still quite sensitive to the

SG2 (i) initial guess and update in Step 8. A more robust and efficient method to solve this

TPBVP is certainly desired/warranted.

The MATLAB code that we developed to solve this TPBVP using the method outlined

above is included in Appendix C.

4.4 Interpretation of Optimal Strategies

Now, let’s take a closer at the optimal strategies and interpret our results. Referring to

Appendix A, define each player’s enlarged state estimate

X̂p(i) , E[X(i)|Zp(i)] = `p(i) + Lp(i)Zp(i)

=
(
I − Lp(i)Hp(i)

)
X̄(i) + Lp(i)Hp(i)X(i)

X̂e(i) , E[X(i)|Ze(i)] = `e(i) + Le(i)Ze(i)

=
(
I − Le(i)He(i)

)
X̄(i) + Le(i)He(i)X(i).

Using (4.29) and (4.42) in (4.9) we can write the pursuer’s optimal strategy as

uop(i) = − Cp(i)X̄(i)i +Kp(i)Hp(i)X̄(i)−Kp(i)Hp(i)X(i)

= − Cp(i)X̄(i)i −Kp(i)Hp(i)
(
X(i)− X̄(i)

)
= − Cp(i)X̄(i)i

−R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗ S2(i+ 1)i+1,:

(
F −Ge(i)Ke(i)He(i)

)
Lp(i)Hp(i)

(
X(i)− X̄(i)

)
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= − Cp(i)X̄(i)i

−R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗ S2(i+ 1)i+1,:

(
F (i)−Ge(i)Ke(i)He(i)

)(
X̂p(i)− X̄(i)

)
.

(4.53)

Likewise, using (4.30) and (4.43) in (4.9) we can write the evader’s optimal strategy as

uoe(i) = Ce(i)X̄(i)i

−R−1
e (i)ΓTe (i)

(
I − S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1

∗ S2(i+ 1)i+1,:

(
F (i)−Gp(i)Kp(i)Hp(i)

)(
X̂e(i)− X̄(i)

)
.

(4.54)

We also define

C̃p(i) , R−1
p (i)ΓTp (i)

(
I + S2(i+ 1)i+1,i+1Γp(i)R

−1
p (i)ΓTp (i)

)−1

∗ S2(i+ 1)i+1,:

(
F (i)−Ge(i)Ke(i)He(i)

)
Kp(i) = C̃p(i)Lp(i)

(4.55)

and

C̃e(i) , −R−1
e (i)ΓTe (i)

(
I − S2(i+ 1)i+1,i+1Γe(i)R

−1
e (i)ΓTe (i)

)−1

∗ S2(i+ 1)i+1,:

(
F (i)−Gp(i)Kp(i)Hp(i)

)
Ke(i) = C̃e(i)Le(i)

(4.56)

so that we can rewrite (4.53) and (4.54) in more compact form as

uop(i) = −Cp(i)X̄(i)i − C̃p(i)
(
X̂p(i)− X̄(i)

)
(4.57)

uoe(i) = Ce(i)X̄(i)i + C̃e(i)
(
X̂e(i)− X̄(i)

)
. (4.58)

The optimal closed loop system, using strategies (4.53) and (4.54), is shown graphically

in Fig. 4.1. Again, we delineate the deterministic and stochastic aspects of each player’s

strategy. These forms of the optimal strategies allow for an interesting interpretation: Each

player plays a certainty equivalent term assuming the corresponding deterministic game state

trajectory (X̄(i)i), plus an error term that is his best estimate of the actual state deviation

from the corresponding deterministic game state trajectory.
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Figure 4.1: Optimal strategies for the LQG multistage game.
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Finally, it is easy to see from (4.53) and (4.54) that for the special case where all noises

are zero and x(0) = x̄(0) (X̂p(i) = X̂e(i) = X̄(i)) we have exactly the deterministic game

solution (3.15) and (3.16).

Remark 4.2. In the parlance of common and private information employed by [NGL14],

[GNL14] and [Gup14], we can say that the common information is X̄(i)i (known by both

players) and the private information is the unshared measurement history, Zp(i) (or X̂p(i))

and Ze(i) (or X̂e(i)). Therefore, each player plays his certainty equivalent control with the

common information, plus an error term operating on the difference between his private

information and the common information.

Note that in general the error term appearing in these strategies could be infinite-

dimensional since it includes smoothing. This naturally leads to possible sub-optimal strate-

gies whereby we could limit the amount of smoothing that each player is allowed to incor-

porate in his strategy.

4.5 Solution Existence

Due to the fact that each player includes a certainty equivalent term, the solution existence

requirements for the deterministic multistage game as discussed in Section 3.3 still apply.

These requirements ensure that Cp(i) and Ce(i) exist. However, we have additional solution

existence requirements for the stochastic game in order to ensure that Kp(i) and Ke(i) exist.

Specifically, from ∂2H(i)
(∂Kp(i))2

> 0 and ∂2H(i)
(∂Ke(i))2

< 0 we find that the stochastic game convexity

conditions are

Rp(i) + ΓTp (i)S2(i+ 1)i+1,i+1Γp(i) > 0

−Re(i) + ΓTe (i)S2(i+ 1)i+1,i+1Γe(i) < 0, ∀i.

These are analogous to the deterministic game convexity conditions, with the only difference

being the reliance on S2(i+ 1) instead of Sd(i+ 1) (or, equivalently, S1(i+ 1)). In addition,

the stochastic game no conjugate point condition requires that S2(i) remain bounded.
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Remark 4.3. The fact that we must satisfy additional convexity and no conjugate point

conditions that are a function of S2(i + 1) for the stochastic game is intuitive: S2(i + 1)

contains information related to the nonclassical information pattern through Hp(i) and He(i),

and propagation of system noise variances through P(i).

4.6 Saddle Point Proof

The LQG multistage game optimal control strategies must satisfy the saddle point condition

(2.5). This section follows the procedure used in [BH75] to prove optimality of the two-sided

deterministic game solution; here we will prove optimality of the two-sided stochastic game

solution.3

As outlined in [BH75] for the deterministic game, the saddle point condition is validated

by solving the two one-sided optimization problems formed by substituting the opposing

player’s optimal strategy, (4.53) or (4.54), into the performance index (2.4) and enlarged state

dynamics (4.8). If the resulting strategies from these two one-sided optimization problems

are equivalent to (4.53) and (4.54), then the saddle point condition is satisfied.

Theorem 4.1. The LQG multistage game optimal control strategies as derived in (4.53) and

(4.54) form a saddle point solution as defined in (2.5).

Proof. Consider the two one-sided optimization problems formed by substituting the oppos-

ing player’s optimal strategy, (4.53) or (4.54), into the performance index (2.4) and enlarged

state dynamics (4.8). We will use compact notation and write these strategies as

uop(i) = −bop(i)−Ko
p(i)Hp(i)X(i)

uoe(i) = boe(i) +Ko
e (i)He(i)X(i)

where bop(i) (4.42), Ko
p(i) (4.29), boe(i) (4.43), and Ko

e (i) (4.30) are defined above.

3Behn and Ho [BH68] also used this method to validate the saddle point condition for their specific

problem.
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Game #1, denoted by superscript ”(1)”, is formed by substituting the evader’s optimal

two-sided strategy, uoe(i), and solving for the pursuer’s optimal one-sided strategy, u
(1)
p (i):

J (1) = min
u
(1)
p (i)

1

2
E

{
‖X(1)(N)‖2

Q̃(N)
+

N−1∑
i=0

[
‖u(1)

p (i)‖2
Rp(i)

− (boe(i))
TRe(i)b

o
e(i)− (X(1)(i))THT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)X

(1)(i)

− (boe(i))
TRe(i)K

o
e (i)He(i)X

(1)(i)− (X(1)(i))THT
e (i)(Ko

e (i))TRe(i)b
o
e(i)
]}

(4.59)

subject to

X(1)(i+ 1) =
(
F (i)−Ge(i)K

o
e (i)He(i)

)
X(1)(i) +Gp(i)u

(1)
p (i)−Ge(i)b

o
e(i) +Gy(i)Y (i)

Z(1)
p (i) = Hp(i)X

(1)(i).

(4.60)

This, however, is just a standard one-sided LQG optimization problem with the enlarged

state dynamics driven by delta-correlated Gaussian noise, Y (i). Therefore, we know that the

separation and certainty equivalence principles apply. That is, we can solve the equivalent

optimization problem subject to the a priori known form of the pursuer’s enlarged state

estimation dynamics

X̂(1)
p (i+ 1) =

(
F (i)−Ge(i)K

o
e (i)He(i)

)
X̂(1)
p (i) +Gp(i)u

(1)
p (i)−Ge(i)b

o
e(i) + Ỹ (1)

p (i) (4.61)

where Ỹ
(1)
p (i) is the pursuer’s delta-correlated innovations sequence.

Due to the linear Hamiltonian terms resulting from boe(i), we assume the Lagrange mul-

tiplier will have the form

λ
(1)
2 (i) = S

(1)
2 (i)X̂(1)

p (i) + β(1)
p (i). (4.62)

Performing the optimization we find the optimal control strategy as

u(1)
p (i) = − C̃(1)

p (i)X̂(1)
p (i)−R−1

p (i)GT
p (i)

(
I + S

(1)
2 (i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

∗
(
β(1)
p (i+ 1)− S(1)

2 (i+ 1)Ge(i)b
o
e(i)
) (4.63)
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where

C̃(1)
p (i) , R−1

p (i)GT
p (i)

(
I + S

(1)
2 (i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

∗ S(1)
2 (i+ 1)

(
F (i)−Ge(i)K

o
e (i)He(i)

)
.

The backward-propagating Lagrange multiplier sequences used in the optimal control strat-

egy are

S
(1)
2 (i) = −HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i) +

(
F (i)−Ge(i)K

o
e (i)He(i)

)T
∗ S(1)

2 (i+ 1)
(
F (i)−Gp(i)C̃

(1)
p (i)−Ge(i)K

o
e (i)He(i)

) (4.64)

and

β(1)
p (i) = −HT

e (i)(Ko
e (i))TRe(i)b

o
e(i)−

(
F (i)−Ge(i)K

o
e (i)He(i)

)T
∗
(
I + S

(1)
2 (i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1(

S
(1)
2 (i+ 1)Ge(i)b

o
e(i)− β(1)

p (i+ 1)
) (4.65)

with boundary conditions S
(1)
2 (N) = Q̃(N) and β

(1)
p (N) = 0.

Remark 4.4. The pursuer’s one-sided optimal control strategy, consisting of (4.63), (4.64),

and (4.65), is identical in form to Willman’s result ([Wil68, Appendix A (A28), (A31), and

(A32)]).

At this point it is non-obvious as to whether or not this one-sided optimal control strategy

(4.63) is equivalent to the two-sided optimal control strategy (4.53). To see this equivalency,

we recall that due to the LQG structure of this one-sided optimization problem we know

a priori that the optimal estimator will be an affine function of the measurement history.

We can therefore rewrite the pursuer’s enlarged state estimate (4.61) using a more general

expression,

X̂(1)
p (i) , `(1)

p (i) + L(1)
p (i)Z(1)

p (i)

= `(1)
p (i) + L(1)

p (i)Hp(i)X
(1)(i),

where `
(1)
p (i) and L

(1)
p (i) will be defined shortly. Also, define

K(1)
p (i) , C̃(1)

p (i)L(1)
p (i) (4.66)
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and

b(1)
p (i) , C̃(1)

p (i)`(1)
p (i) +R−1

p (i)GT
p (i)

(
I + S

(1)
2 (i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

∗
(
β(1)
p (i+ 1)− S(1)

2 (i+ 1)Ge(i)b
o
e(i)
) (4.67)

so that we can rewrite (4.63) as

u(1)
p (i) = −b(1)

p (i)−K(1)
p (i)Hp(i)X

(1)(i).

Using this form for u
(1)
p (i) we can express the enlarged mean state sequence (as defined in

(4.12)) for Game #1 as

X̄(1)(i+ 1) =
(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
X̄(1)(i)−Gp(i)b

(1)
p (i)−Ge(i)b

o
e(i)

(4.68)

and the enlarged covariance sequence (also defined in (4.12)) for Game #1 as

P(1)(i+ 1) =
(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
P(1)(i)

∗
(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)T
+Gy(i)Y(i)GT

y (i).
(4.69)

Now, using these enlarged state statistics we can define the terms in the pursuer’s enlarged

state estimate (as shown in Appendix A.3)

`(1)
p (i) =

(
I − L(1)

p (i)Hp(i)
)
X̄(1)(i)

L(1)
p (i) = P(1)(i)HT

p (i)
(
Hp(i)P

(1)(i)HT
p (i)

)−1
.

(4.70)

A very important property that we will take advantage of is Hp(i)L
(1)
p (i) = I. This means

that

L(1)
p (i)Hp(i)

(
X̂(1)
p (i) = `(1)

p (i) + L(1)
p (i)Hp(i)X

(1)(i)
)

L(1)
p (i)Hp(i)X̂

(1)
p (i) =

(
L(1)
p (i)Hp(i)− L(1)

p (i)Hp(i)
)
X̄(1)(i) + L(1)

p (i)Hp(i)X
(1)(i)

= L(1)
p (i)Hp(i)X

(1)(i)

= X̂(1)
p (i)− `(1)

p (i).
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To summarize, we have the following two equivalent expressions 4

X̂(1)
p (i) = `(1)

p (i) + L(1)
p (i)Hp(i)X̂

(1)
p (i) (4.71)

or, rearranging, (
L(1)
p (i)Hp(i)− I

)
X̂(1)
p (i) + `(1)

p (i) = 0. (4.72)

Using (4.66) and (4.71) in (4.63),

u(1)
p (i) = − C̃(1)

p (i)
(
`(1)
p (i) + L(1)

p (i)Hp(i)X̂
(1)
p (i)

)
−R−1

p (i)GT
p (i)

(
I + S

(1)
2 (i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1(

β(1)
p (i+ 1)− S(1)

2 (i+ 1)Ge(i)b
o
e(i)
)

= − C̃(1)
p (i)X̄(1)(i) +K(1)

p (i)Hp(i)X̄
(1)(i)−K(1)

p (i)Hp(i)X̂
(1)
p (i)

−R−1
p (i)GT

p (i)
(
I + S

(1)
2 (i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1(

β(1)
p (i+ 1)− S(1)

2 (i+ 1)Ge(i)b
o
e(i)
)

= − b(1)
p (i)−K(1)

p (i)Hp(i)X̂
(1)
p (i).

(4.73)

We can rewrite the assumed Lagrange multiplier form (4.62) by subtracting a zero-quantity

using (4.72),

λ
(1)
2 (i) = S

(1)
2 (i)X̂(1)

p (i) + β(1)
p (i)

−HT
p (i)(K(1)

p (i))TGT
p (i)S

(1)
2 (i+ 1)

(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
∗
((
L(1)
p (i)Hp(i)− I

)
X̂(1)
p (i) + `(1)

p (i)
)
.

(4.74)

Note that we can write another expression for K
(1)
p (i) (4.66), again using the fact that

Hp(i)L
(1)
p (i) = I,

K(1)
p (i) = C̃(1)

p (i)L(1)
p (i)

= R−1
p (i)GT

p (i)
(
I + S

(1)
2 (i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

∗ S(1)
2 (i+ 1)

(
F (i)−Ge(i)K

o
e (i)He(i)

)
L(1)
p (i)

= R−1
p (i)GT

p (i)S
(1)
2 (i+ 1)

(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
L(1)
p (i).

(4.75)

4Reference Appendix A.3 for another derivation of this property using the definition of the conditional

mean.
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Using (4.73), (4.74), and (4.75) we can write a new expression for S
(1)
2 (i) (4.64). We will step

through this process in order to gain an appreciation for how we arrive at the final S
(1)
2 (i)

expression. The Lagrange multiplier is chosen to satisfy a Hamiltonian first-order necessary

condition such that

λ
(1)
2 (i) =

(
F (i)−Ge(i)K

o
e (i)He(i)

)T
λ

(1)
2 (i+ 1)

−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i)−HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)X̂

(1)
p (i)

=
(
F (i)−Ge(i)K

o
e (i)He(i)

)T (
S

(1)
2 (i+ 1)X̂(1)

p (i+ 1) + β(1)
p (i+ 1)

)
−HT

e (i)(Ko
e (i))TRe(i)b

o
e(i)−HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)X̂

(1)
p (i)

=
(
F (i)−Ge(i)K

o
e (i)He(i)

)T(
S

(1)
2 (i+ 1)

((
F (i)−Gp(i)K

(1)
p (i)Hp(i)

−Ge(i)K
o
e (i)He(i)

)
X̂(1)
p (i)−Gp(i)b

(1)
p (i)−Ge(i)b

o
e(i)
)

+ β(1)
p (i+ 1)

)
−HT

e (i)(Ko
e (i))TRe(i)b

o
e(i)−HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)X̂

(1)
p (i).

(4.76)

Equating (4.76) to (4.74) and collecting all terms multiplying X̂
(1)
p (i), using (4.75) in the

process, we find that

S
(1)
2 (i) =

(
F (i)−Ge(i)K

o
e (i)He(i)

)T
S

(1)
2 (i+ 1)

(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
−HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)

+HT
p (i)(K(1)

p (i))TGT
p (i)S

(1)
2 (i+ 1)

(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
∗
(
L(1)
p (i)Hp(i)− I

)
= HT

p (i)(K(1)
p (i))TGT

p (i)S
(1)
2 (i+ 1)

(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
∗ L(1)

p (i)Hp(i)−HT
e (i)(Ko

e (i))TRe(i)K
o
e (i)He(i)

+
(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)T
S

(1)
2 (i+ 1)

∗
(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
= HT

p (i)(K(1)
p (i))TRp(i)K

(1)
p (i)Hp(i)−HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)

+
(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)T
S

(1)
2 (i+ 1)

∗
(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
.

(4.77)

Again, equating (4.76) to (4.74) and this time collecting all other terms not multiplying
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X̂
(1)
p (i) we find that

β(1)
p (i) =

(
F (i)−Ge(i)K

o
e (i)He(i)

)T(
S

(1)
2 (i+ 1)

(
−Gp(i)b

(1)
p (i)−Ge(i)b

o
e(i)
)

+ β(1)
p (i+ 1)

)
−HT

e (i)(Ko
e (i))TRe(i)b

o
e(i) +HT

p (i)(K(1)
p (i))TGT

p (i)S
(1)
2 (i+ 1)

∗
(
F (i)−Gp(i)K

(1)
p (i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
`(1)
p (i).

(4.78)

Remark 4.5. Before proceeding, we pause to note that we’ve now derived a Game #1

two-point boundary value problem with governing equations K
(1)
p (i), P(1)(i + 1), and S

(1)
2 (i)

( (4.66), (4.69) and (4.77), respectively). These Game #1 governing equations are identical

to those we derived using the primary set of equations for the two-sided solution in Section

4.1.4 ( (4.29), (4.14) and (4.22)). Furthermore, the Game #1 initial boundary condition

is P(1)(0) = P(0) and the terminal boundary condition is S
(1)
2 (N) = S2(N). Therefore,

since the governing equations and boundary conditions are identical we can conclude that

the parameters derived via one-sided optimization are identical to those derived via two-sided

optimization:

K(1)
p (i) = Ko

p(i),

P(1)(i) = P(i) =⇒ L(1)
p (i) = Lp(i),

S
(1)
2 (i) = S2(i).

(4.79)

We will use these interim results as we proceed with the remainder of the proof.

It now remains to determine how b
(1)
p (i) relates to bop(i). Returning to (4.78) and using

the interim results above to drop the superscript ”(1)” where appropriate, we substitute for
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`
(1)
p (i) using (4.70) and do some rearranging

β(1)
p (i) =

(
F (i)−Ge(i)K

o
e (i)He(i)

)T
S2(i+ 1)

(
−Gp(i)b

(1)
p (i)−Ge(i)b

o
e(i)
)

+
(
F (i)−Ge(i)K

o
e (i)He(i)

)T
β(1)
p (i+ 1)

−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i) +HT

p (i)(Ko
p(i))TGT

p (i)S2(i+ 1)

∗
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)(
I − Lp(i)Hp(i)

)
X̄(1)(i)

=
(
F (i)−Ge(i)K

o
e (i)He(i)

)T
S2(i+ 1)

(
−Gp(i)b

(1)
p (i)−Ge(i)b

o
e(i)
)

+
(
F (i)−Ge(i)K

o
e (i)He(i)

)T
β(1)
p (i+ 1)

−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i) +HT

p (i)(Ko
p(i))TGT

p (i)S2(i+ 1)

∗
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
X̄(1)(i)

−HT
p (i)(Ko

p(i))TRp(i)K
o
p(i)Hp(i)X̄

(1)(i).

Using X̄(1)(i+ 1) (4.68) we can rewrite the first term as follows

β(1)
p (i) =

(
F (i)−Ge(i)K

o
e (i)He(i)

)T
S2(i+ 1)

(
X̄(1)(i+ 1)

−
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
X̄(1)(i)

)
+
(
F (i)−Ge(i)K

o
e (i)He(i)

)T
β(1)
p (i+ 1)

−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i) +HT

p (i)(Ko
p(i))TGT

p (i)S2(i+ 1)

∗
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
X̄(1)(i)

−HT
p (i)(Ko

p(i))TRp(i)K
o
p(i)Hp(i)X̄

(1)(i)

= −HT
p (i)(Ko

p(i))TRp(i)K
o
p(i)Hp(i)X̄

(1)(i)

−
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)T
S2(i+ 1)

∗
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
X̄(1)(i)

−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i)

+
(
F (i)−Ge(i)K

o
e (i)He(i)

)T (
S2(i+ 1)X̄(1)(i+ 1) + β(1)

p (i+ 1)
)
.

And now, using S2(i) (4.77), we can rewrite the first two terms and rearrange to get the

following expression

β(1)
p (i) =

(
−S2(i)−HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)

)
X̄(1)(i)
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−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i)

+
(
F (i)−Ge(i)K

o
e (i)He(i)

)T (
S2(i+ 1)X̄(1)(i+ 1) + β(1)

p (i+ 1)
)

S2(i)X̄(1)(i) + β(1)
p (i) = −HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)X̄

(1)(i)−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i)

+
(
F (i)−Ge(i)K

o
e (i)He(i)

)T (
S2(i+ 1)X̄(1)(i+ 1) + β(1)

p (i+ 1)
)
.

Define

λ
(1)
1 (i) , S2(i)X̄(1)(i) + β(1)

p (i),

λ
(1)
1 (N) = S2(N)X̄(1)(N) + β(1)

p (N)

= Q̃(N)X̄(1)(N)

(4.80)

so that we can now write

λ
(1)
1 (i) = −HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)X̄

(1)(i)−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i)

+
(
F (i)−Ge(i)K

o
e (i)He(i)

)T
λ

(1)
1 (i+ 1).

(4.81)

We now return to b
(1)
p (i) (4.67) and we substitute for `

(1)
p (i) using (4.70) and do some

rearranging

b(1)
p (i) = −Ko

p(i)Hp(i)X̄
(1)(i)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

∗ S2(i+ 1)
(
F (i)−Ge(i)K

o
e (i)He(i)

)
X̄(1)(i)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1(

β(1)
p (i+ 1)− S2(i+ 1)Ge(i)b

o
e(i)
)
.

Add and subtract a term in order to get the following form

b(1)
p (i) = −Ko

p(i)Hp(i)X̄
(1)(i)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

S2(i+ 1)Gp(i)K
o
p(i)Hp(i)X̄

(1)(i)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

∗ S2(i+ 1)
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)
X̄(1)(i)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1(

β(1)
p (i+ 1)− S2(i+ 1)Ge(i)b

o
e(i)
)
.

54



Using X̄(1)(i+ 1) (4.68) we can rewrite the third term and rearrange

b(1)
p (i) = −Ko

p(i)Hp(i)X̄
(1)(i)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

S2(i+ 1)Gp(i)K
o
p(i)Hp(i)X̄

(1)(i)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

∗ S2(i+ 1)
(
X̄(1)(i+ 1) +Gp(i)b

(1)
p (i) +Ge(i)b

o
e(i)
)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1(

β(1)
p (i+ 1)− S2(i+ 1)Ge(i)b

o
e(i)
)

= −Ko
p(i)Hp(i)X̄

(1)(i)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

∗ S2(i+ 1)Gp(i)
(
b(1)
p (i) +Ko

p(i)Hp(i)X̄
(1)(i)

)
+R−1

p (i)GT
p (i)

(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1(

S2(i+ 1)X̄(1)(i+ 1) + β(1)
p (i+ 1)

)
= −Ko

p(i)Hp(i)X̄
(1)(i)

+R−1
p (i)GT

p (i)
(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

∗ S2(i+ 1)Gp(i)
(
b(1)
p (i) +Ko

p(i)Hp(i)X̄
(1)(i)

)
+R−1

p (i)GT
p (i)

(
I + S2(i+ 1)Gp(i)R

−1
p (i)GT

p (i)
)−1

λ
(1)
1 (i+ 1).

Solving explicitly for b
(1)
p (i), and using the matrix inversion lemma in the process (Appendix

B.1.1), we obtain a greatly simplified expression

b(1)
p (i) = R−1

p (i)GT
p (i)λ

(1)
1 (i+ 1)−Ko

p(i)Hp(i)X̄
(1)(i). (4.82)

Finally, let’s rewrite λ
(1)
1 (i) (4.81). We add and subtract a term and then use (4.82) to arrive

at

λ
(1)
1 (i) = −HT

e (i)(Ko
e (i))TRe(i)K

o
e (i)He(i)X̄

(1)(i)−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i)

+
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)T
λ

(1)
1 (i+ 1)

+
(
Gp(i)K

o
p(i)Hp(i)

)T
λ

(1)
1 (i+ 1)

= −HT
e (i)(Ko

e (i))TRe(i)K
o
e (i)He(i)X̄

(1)(i)−HT
e (i)(Ko

e (i))TRe(i)b
o
e(i)

+
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)T
λ

(1)
1 (i+ 1)
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+HT
p (i)(Ko

p(i))T
(
Rp(i)b

(1)
p (i) +Rp(i)K

o
p(i)Hp(i)X̄

(1)(i)
)

= HT
p (i)(Ko

p(i))TRp(i)b
(1)
p (i)−HT

e (i)(Ko
e (i))TRe(i)b

o
e(i)

+HT
p (i)(Ko

p(i))TRp(i)K
o
p(i)Hp(i)X̄

(1)(i)−HT
e (i)(Ko

e (i))TRe(i)K
o
e (i)He(i)X̄

(1)(i)

+
(
F (i)−Gp(i)K

o
p(i)Hp(i)−Ge(i)K

o
e (i)He(i)

)T
λ

(1)
1 (i+ 1).

(4.83)

Remark 4.6. We have now derived a second Game #1 two-point boundary value problem

with governing equations b
(1)
p (i), X̄(1)(i + 1), and λ

(1)
1 (i) ( (4.82), (4.68) and (4.83), respec-

tively). Given the results of Remark 4.5, these Game #1 governing equations are identical

to those we derived using the secondary set of equations for the two-sided solution in Section

4.1.4 ( (4.32), (4.13) and (4.31)). Furthermore, the Game #1 initial boundary condition

is X̄(1)(0) = X̄(0) and the terminal boundary condition is λ
(1)
1 (N) = λ1(N). Therefore,

since the governing equations and boundary conditions are identical we can conclude that

the parameters derived via one-sided optimization are identical to those derived via two-sided

optimization:

b(1)
p (i) = bop(i),

X̄(1)(i) = X̄(i) =⇒ `(1)
p (i) = `p(i),

λ
(1)
1 (i) = λ1(i).

(4.84)

In summary, for Game #1 we have shown that the pursuer’s one-sided optimal strategy

is equivalent to the two-sided optimal strategy. That is, b
(1)
p (i) = bop(i) and K

(1)
p (i) = Ko

p(i)

which means that u
(1)
p (i) = uop(i).

In a similar manner we can construct Game #2, denoted with superscript ”(2)”, by

substituting the pursuer’s optimal two-sided strategy, uop(i), and solving for the evader’s
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optimal one-sided strategy, u
(2)
e (i):

J (2) = max
u
(2)
e (i)

1

2
E

{
‖X(2)(N)‖2

Q̃(N)
+

N−1∑
i=0

[
−‖u(2)

e (i)‖2
Re(i)

(bop(i))
TRp(i)b

o
p(i) + (X(2)(i))THT

p (i)(Ko
p(i))TRp(i)K

o
p(i)Hp(i)X

(2)(i)

+ (bop(i))
TRp(i)K

o
p(i)Hp(i)X

(2)(i) + (X(2)(i))THT
p (i)(Ko

p(i))TRp(i)b
o
p(i)
]}

(4.85)

subject to

X(2)(i+ 1) =
(
F (i)−Gp(i)K

o
p(i)Hp(i)

)
X(2)(i)−Gp(i)b

o
p(i)−Ge(i)u

(2)
e (i) +Gy(i)Y (i)

Z(2)
e (i) = He(i)X

(2)(i).

(4.86)

As before with Game #1, this is just a standard one-sided LQG optimization problem with

the enlarged state dynamics driven by delta-correlated Gaussian noise, Y (i).

Remark 4.7. Due to the symmetry of structure between Game #1 and Game #2, and based

on Remark 4.4, we can deduce that the evader’s one-sided optimal control strategy resulting

from direct optimization of (4.85) will be identical in form to Willman’s result ([Wil68,

Appendix A]).

Following the same algebraic manipulations as we did for Game #1 (with some sign

changes) it can be shown that the corresponding Game #2 parameters, b
(2)
e (i) and K

(2)
e (i),

form two separate two-point boundary value problems with identical boundary conditions

and governing equations as compared to the primary and secondary equations of Section

4.1.4. Therefore, due to the symmetry of structure between Game #1 and Game #2 we

prove by deduction that the evader’s one-sided optimal strategy is equivalent to the two-sided

optimal strategy: u
(2)
e (i) = uoe(i).

�

In conclusion, the optimal control strategies (4.53) and (4.54) form a saddle point solution

for the zero-sum LQG multistage game with nonclassical information pattern. Neither player
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can unilaterally change his control strategy for a better outcome; this is the definition of a

saddle point equilibrium or, equivalently for this class of games, the Nash equilibrium.

In this saddle point proof we made no a priori assumption regarding the form of u
(1)
p (i)

or u
(2)
e (i). As such, the fact that these end up being affine strategies validates that our affine

strategy assumption in (4.9) is appropriate, as we have now proven that an affine strategy

is the best strategy out of all possible strategies (linear and nonlinear) for this game.

Furthermore, from stochastic optimal control theory we know that for the one-sided

LQG problem we get identical optimal solutions using a variational optimization technique (a

necessary condition for global optimality) or a dynamic programming optimization technique

(a sufficient condition for global optimality). This means that the LQG solution using

either technique yields a globally optimal solution. We derived u
(1)
p (i) and u

(2)
e (i) using a

variational technique, which means these are globally optimal strategies for their respective

one-sided LQG problems. Therefore, since we have shown these globally optimal strategies

are equivalent to uop(i) and uoe(i), we can state that we have found globally optimal saddle

point strategies for the zero-sum LQG multistage game with nonclassical information pattern.

As such, the optimal performance index value (as derived in Section 4.7) is unique.

Remark 4.8. We make no statement here regarding uniqueness of the optimal affine strate-

gies (i.e. nonlinear saddle point strategies may exist). Regardless, as discussed in [BH68,

Section V-A], each player can rest assured that by playing these optimal affine strategies they

will at least achieve the calculated expected performance index value, even if their opponent

plays a nonlinear strategy.

4.7 Optimal Performance Index

We can now use the derived optimal relationships to find an expression for the optimal

performance index value. First, we start with the form of the performance index in (4.16),
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and substitute in our mean control strategy definition from (4.48) and (4.49),

J =
1

2
X̄T (N)Q̃(N)X̄(N) +

1

2
Tr
(
Q̃(N)P(N)

)
+

1

2

N−1∑
i=0

[(
bp(i) +Kp(i)Hp(i)X̄(i)

)T
Rp(i)

(
bp(i) +Kp(i)Hp(i)X̄(i)

)
−
(
be(i) +Ke(i)He(i)X̄(i)

)T
Re(i)

(
be(i) +Ke(i)He(i)X̄(i)

)
+ Tr

(
HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)P(i)−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)P(i)
)]

=
1

2
X̄T (N)NQ(N)X̄(N)N +

1

2

N−1∑
i=0

[
ūTp (i)Rp(i)ūp(i)− ūTe (i)Re(i)ūe(i)

]
+

1

2
Tr
(
Q̃(N)P(N)

)
+

1

2

N−1∑
i=0

[
Tr
(
HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)P(i)

−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)P(i)
)]

=
1

2
X̄T (N)NQ(N)X̄(N)N +

1

2

N−1∑
i=0

[
X̄T (i)iC

T
p (i)Rp(i)Cp(i)X̄(i)i

− X̄T (i)iC
T
e (i)Re(i)Ce(i)X̄(i)i

]
+

1

2
Tr
(
Q̃(N)P(N)

)
+

1

2

N−1∑
i=0

[
Tr
(
HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)P(i)

−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)P(i)
)]
.

Notice that the first two terms are related to the mean state and mean control strategy,

whereas the last two terms are related to the variance about this mean behavior. We now

add/subtract equalities for S1(i)i,i (4.44) and S2(i) (4.22)

Jo =
1

2
X̄T (N)NQ(N)X̄(N)N +

1

2

N−1∑
i=0

[
X̄T (i)iC

T
p (i)Rp(i)Cp(i)X̄(i)i

− X̄T (i)iC
T
e (i)Re(i)Ce(i)X̄(i)i + X̄T (i)iS1(i)i,iX̄(i)i

− X̄T (i)iS1(i+ 1)i+1,i+1

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

))
X̄(i)i

]
+

1

2
Tr
(
Q̃(N)P(N)

)
+

1

2

N−1∑
i=0

[
Tr
(
HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)P(i)

−HT
e (i)KT

e (i)Re(i)Ke(i)He(i)P(i) + S2(i)P(i)−HT
p (i)KT

p (i)Rp(i)Kp(i)Hp(i)P(i)
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+HT
e (i)KT

e (i)Re(i)Ke(i)He(i)P(i)− F̃ T (i)S2(i+ 1)F̃ (i)P(i)
)]
.

Move the terminal boundary conditions inside the summations (remember that S1(N)N,N =

Q(N) and S2(N) = Q̃(N)) and pull the S1(0)0,0 and S2(0) terms outside the summations

Jo =
1

2
X̄T (0)0S1(0)0,0X̄(0)0 +

1

2

N−1∑
i=0

[
X̄T (i)iC

T
p (i)Rp(i)Cp(i)X̄(i)i

− X̄T (i)iC
T
e (i)Re(i)Ce(i)X̄(i)i + X̄T (i+ 1)i+1S1(i+ 1)i+1,i+1X̄(i+ 1)i+1

− X̄T (i)iS1(i+ 1)i+1,i+1

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

))
X̄(i)i

]
+

1

2
Tr
(
S2(0)P(0)

)
+

1

2

N−1∑
i=0

[
Tr
(
S2(i+ 1)P(i+ 1)− F̃ T (i)S2(i+ 1)F̃ (i)P(i)

)]
.

Substitute in X̄(i+ 1)i+1 (4.45), P(i+ 1) (4.15), Cp(i) (4.46), and Ce(i) (4.47)

Jo =
1

2
X̄T (0)0S1(0)0,0X̄(0)0

+
1

2

N−1∑
i=0

[
X̄T (i)iC

T
p (i)Rp(i)R

−1
p (i)ΓTp (i)S1(i+ 1)i+1,i+1

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
X̄(i)i

+ X̄T (i)iC
T
e (i)Re(i)R

−1
e (i)ΓTe (i)S1(i+ 1)i+1,i+1

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
X̄(i)i

+ X̄T (i)i
(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)T
S1(i+ 1)i+1,i+1

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
X̄(i)i

− X̄T (i)iS1(i+ 1)i+1,i+1

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

))
X̄(i)i

]
+

1

2
Tr
(
S2(0)P(0)

)
+

1

2

N−1∑
i=0

[
Tr
(
S2(i+ 1)F̃ (i)P(i)F̃ T (i) + S2(i+ 1)Gy(i)Y(i)GT

y (i)

− F̃ T (i)S2(i+ 1)F̃ (i)P(i)
)]

and cancel terms (the first summation is identically zero)

Jo =
1

2
X̄T (0)0S1(0)0,0X̄(0)0 +

1

2
Tr
(
S2(0)P(0)

)
+

1

2

N−1∑
i=0

Tr
(
S2(i+ 1)Gy(i)Y(i)GT

y (i)
)
.

(4.87)

Recall that for the corresponding deterministic game x(0) = X̄(0)0 and Sd(0) = S1(0)0,0.

Therefore, the first term in the stochastic game optimal performance index is simply the
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corresponding deterministic game optimal performance index value (3.18), Jd
o
, 5

Jo = Jd
o

+
1

2
Tr
(
S2(0)P(0) +

N−1∑
i=0

S2(i+ 1)Gy(i)Y(i)GT
y (i)

)
. (4.88)

It’s now easy to see that if all the variances are zero (no noise), we are left with the corre-

sponding deterministic game optimal performance index value. In general, whether or not the

stochastic game optimal performance index increases/decreases relative to the corresponding

deterministic game optimal performance index depends on the problem parameters, affect-

ing the definiteness of S2(i). One conclusion that we can readily make is that process noise

at the final stage is advantageous to the evader (increasing the performance index) since

S2(N) ≥ 0.

In (4.21) we wrote the augmented performance index differential due solely to differential

changes in initial conditions. Now, given (4.88) we can write the total optimal performance

index differential as

dJo = x̄T (0)Sd(0)dx̄(0) +
1

2
Tr
(
S2(0)dP(0) +

N−1∑
i=0

GT
y (i)S2(i+ 1)Gy(i)dY(i)

)
. (4.89)

4.8 Modeling Other Information Patterns

The solution methodology that we’ve outlined in this chapter provides great flexibility for

investigating various information patterns. In fact, modeling different information patterns

is as simple as specifying the appropriate enlarged measurement matrices for the pursuer

and evader, Hp(i) and He(i), respectively.

For example, we can model a stochastic game with perfect information as follows. Instead

of using the measurement matrices in (4.6) and (4.7), we specify the jth sub-partition as

having three rows, with total dimension R(n+p+q)×(N+1)(n+p+q). Then, we can define the

5Note the similarities between this optimal performance index value and the special cases (in continuous

time) from [BH75, Eqn. 14.2.16] and [BH68, Eqn. 73].
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measurement matrices for this game as

Hp(i)j,k =



In, j ≤ i, k = j Row 1 of jth sub-partition

Ip, j ≤ i, k = N + 1 + j Row 2 of jth sub-partition

Iq, j ≤ i, k = 2N + 2 + j Row 3 of jth sub-partition

0, otherwise

He(i) = Hp(i) ∈ R(i+1)(n+p+q)×(N+1)(n+p+q)

for i = 0, 1, ..., N − 1. Therefore, at stage i = 1 for a two-stage (N = 2) scalar game the

enlarged measurement matrices would appear as

Hp(1) = He(1) =



1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0


where the first three rows are the measurement at stage 0, and the last three rows are the

measurement at stage 1 (current stage).

As another example, we can model a game where the pursuer has perfect information and

the evader has imperfect information. With no process noise this becomes the Behn and Ho

game [BH68]. In fact, we can compare the case where the perfect-information pursuer has a

one-stage delay in his knowledge of the evader’s estimation error (which happens naturally

through the dynamics) versus a no-delay information pattern where we give the pursuer

immediate access to the evader’s measurement at the current stage (and hence the evader’s

current estimation error).6

6Note that the one-stage delay information pattern requires special dimension and matrix invertibility

restrictions in order for the pursuer to determine the evader’s estimation error as discussed in [BH68, Section

IV] and [RL69, Section V].
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For this game the evader’s measurement matrix still appears as in (4.7). The perfect-

information pursuer one-stage delay information pattern appears as

Hp(i)j,k =

 In, j = k ≤ i

0, otherwise

Hp(i) ∈ R(i+1)n×(N+1)(n+p+q)

for i = 0, 1, ..., N − 1.7 To model the perfect-information pursuer no-delay information

pattern (superscript ND) we specify the jth sub-partition as having two rows, with total

dimension R(n+q)×(N+1)(n+p+q). We can therefore give the pursuer immediate access to the

evader’s current measurement by using

HND
p (i)j,k =



In, j = k ≤ i Row 1 of jth sub-partition

Θe(j), j = k ≤ i Row 2 of jth sub-partition

Iq, j ≤ i, k = 2N + 2 + j Row 2 of jth sub-partition

0, otherwise

HND
p (i) ∈ R(i+1)(n+q)×(N+1)(n+p+q)

for i = 0, 1, ..., N − 1. Therefore, at stage i = 1 for a two-stage (N = 2) scalar game

the perfect-information pursuer no-delay information pattern enlarged measurement matrix

would appear as

HND
p (1) =


1 0 0 0 0 0 0 0 0

Θe(0) 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 Θe(1) 0 0 0 0 0 1 0


where the first two rows are the pursuer’s measurement at stage 0 (the second row being the

evader’s measurement at stage 0), and the last two rows are the pursuer’s measurement at

stage 1 (the last row being the evader’s measurement at stage 1).

7Note that we have kept the enlarged state dimension the same (i.e. the Hp(i) column dimension is still

(N +1)(n+p+q)). Since the pursuer is assumed to have perfect information, his measurement noise variance

will be zero and the corresponding elements of his enlarged measurement matrix will be zero. Therefore, we

could have reduced the enlarged state dimension to (N + 1)(n + q).
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Note that we could easily reverse this information pattern and model a game where the

evader has perfect information and the pursuer has imperfect information.

4.9 Summary

In summary, we’ve derived the general LQG multistage game solution using a two-sided (si-

multaneous) optimization technique. We discussed the methodology used to solve the result-

ing two-point boundary value problem, we provided interpretation of the optimal strategies,

and we showed that these optimal strategies satisfy the saddle point condition. In addition,

we have shown that our general solution to the LQG multistage game may be used to study

various information patterns by simply modifying the enlarged measurement matrices.

In the next chapter we will study the performance of these optimal strategies in the

presence of noise by way of a numerical study.
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CHAPTER 5

Effects of Noise: Some Numerical Results

Some interesting strategy characteristics arise as a function of the process and measurement

noise variances. In order to study the effects of noise, we consider a simple, scalar, twenty-

stage (N = 20) game using the optimal strategies as outlined in Section 4.2. We will

characterize the noise impacts on the stochastic part of the strategies, that is the S2(i)

(4.26) Lagrange multiplier sequence, and the Kp(i) (4.29) and Ke(i) (4.30) kernels. As such,

we can assume that x̄(0) = 0 for this study since it only affects the deterministic part of the

strategies.

5.1 Analysis Setup

Referring to the multistage state dynamics (2.1), the time-invariant parameters we will use

are

Γp(i) = 1, Γe(i) = 1

Θp(i) = 1, Θe(i) = 1.

The initial state statistics are x(0) ∼ N (0, 10). The process noise variance W (i), pursuer

measurement noise variance Vp(i), and evader measurement noise variance Ve(i) will be

denoted on each figure as we study the effects of these individual variances.

Referring to the performance index (2.4), the time-invariant parameters we will use are

Q(N) = 0.5

Rp(i) = [0.5, 0.95], Re(i) = 1.
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Note that we will investigate two different values for Rp(i). We have chosen Rp(i) < Re(i)

so that the deterministic no conjugate point condition (3.17) is satisfied.

We include the following types of plots and associated notation:

• In order to characterize the effects of noise, we will compare the maximum singular

value of S2(i) (4.26) (associated with the stochastic game) to the maximum singular

value of Sd(i) (3.14) (associated with the deterministic game). The maximum singular

value can be thought of as the maximum gain of a matrix as shown in Appendix B.1.2.

Therefore, by comparing the maximum singular values we can characterize the relative

system gains.

• In addition, we further characterize the effects of noise by plotting the optimal perfor-

mance index value, Jo (4.88).

• Kp(i) (4.29) and Ke(i) (4.30) plots show the last six elements of these kernels at stage

i. That is, at stage i we show the gains applied to the last six measurements: Kp(i)i−5:i

and Ke(i)i−5:i. These kernels are not shown for every stage of the game, but, rather,

in intervals so that we can discern the overall behavior and decision making without

making the plots overly-complicated.

• C̃p(i) (4.55) and C̃e(i) (4.56) plots show the last six elements of these control gains

operating on the state estimate at stage i. That is, at stage i we show the control gains

applied to the last six state estimates (current state estimate, x̂(i), and smoothed state

estimates, x̂(k|i), k = i−5, i−4, ..., i−1). We use this as a comparison with the Kp(i)

and Ke(i) plots in order to distinguish between control gain behavior and estimator

gain behavior.

• Kce
p (i) and Kce

e (i) are the certainty equivalent sub-optimal centralized solution kernels.

These kernels are generated using Cp(i) (3.12) and Ce(i) (3.13) applied to a sub-optimal

centralized Kalman filter for each player. The sub-optimal centralized Kalman filter

for each player is designed assuming that his opponent uses a common state estimate.
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Referring to Appendix A.1 we can show this explicitly using the traditional Kalman

filter equations as

ucep (i) = −Cp(i)x̂p(i)

x̂p(i) = x̄p(i) +Mp(i)Θ
T
p (i)

(
Θp(i)Mp(i)Θ

T
p (i) + Vp(i)

)−1(
zp(i)−Θp(i)x̄p(i)

)
Pp(i) = Mp(i)−Mp(i)Θ

T
p (i)

(
Θp(i)Mp(i)Θ

T
p (i) + Vp(i)

)−1
Θp(i)Mp(i)

x̄p(i+ 1) =
(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
x̂p(i)

Mp(i+ 1) =
(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
Pp(i)

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)T
+W (i)

(5.1)

and

ucee (i) = Ce(i)x̂e(i)

x̂e(i) = x̄e(i) +Me(i)Θ
T
e (i)

(
Θe(i)Me(i)Θ

T
e (i) + Ve(i)

)−1(
ze(i)−Θe(i)x̄e(i)

)
Pe(i) = Me(i)−Me(i)Θ

T
e (i)

(
Θe(i)Me(i)Θ

T
e (i) + Ve(i)

)−1
Θe(i)Me(i)

x̄e(i+ 1) =
(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
x̂e(i)

Me(i+ 1) =
(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)
Pe(i)

(
In − Γp(i)Cp(i)− Γe(i)Ce(i)

)T
+W (i)

(5.2)

where x̄p(0) = x̄e(0) = x̄(0) and Mp(0) = Me(0) = M(0). We can also write the state

estimates, x̂p(i) and x̂e(i), as affine functions of the measurement histories to get the

certainty equivalent sub-optimal centralized strategies in the following form

ucep (i) = −bcep (i)−
i∑

j=0

Kce
p (i)jzp(j)

ucee (i) = bcee (i) +
i∑

j=0

Kce
e (i)jze(j)

(5.3)

where bcep ∈ Rm, Kce
p (i)j ∈ Rm×p, bcee ∈ Rl, Kce

e (i)j ∈ Rl×q. If x̄(0) = 0 then bcep (i) = 0

and bcee (i) = 0,∀i. The centralized Kalman filter assumption produces a sub-optimal

filter/solution, but it avoids the infinite recursion that we see in the stochastic optimal

solution. We use these certainty equivalent sub-optimal centralized solution kernels

here as a comparison with the stochastic optimal solution kernels.
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In order to specify different strategy combinations and compare the respective perfor-

mance we define three terms for use throughout Chapters 5 and 6.

Definition 5.1. The LQD game is the corresponding deterministic multistage game (noise-

less game with x(0) = x̄(0)).

Definition 5.2. The LQG1 game is the stochastic multistage game where each player uses

their certainty equivalent sub-optimal centralized strategy. The terms P-LQG1 and E-LQG1

will be used to indicate when only the pursuer or evader, respectively, is playing their LQG1

strategy.

Definition 5.3. The LQG2 game is the stochastic multistage game where each player uses

their stochastic optimal strategy. The terms P-LQG2 and E-LQG2 will be used to indicate

when only the pursuer or evader, respectively, is playing their LQG2 strategy.

We use the solution process outlined in Section 4.2 to solve the two-point boundary value

problem as outlined in Section 4.3 for the various combinations of process and measurement

noises below.

5.2 No Measurement Noise

We first consider the game where measurement noises are zero: Vp(i) = 0 and Ve(i) = 0.

Because the player’s have access to the exact same information upon which to base their

strategies, we should surmise that they will use their deterministic game strategies, and,

indeed, this is the case. As we can see in Fig. 5.1 and Fig. 5.2 the stochastic optimal strate-

gies (LQG2), Kp(i) and Ke(i), are exactly equal to their respective certainty equivalent

sub-optimal centralized strategies (LQG1), Kce
p (i) and Kce

e (i) (the sub-optimal centralized

strategies are indicated by the underlying gray markers). Each player makes a perfect mea-

surement at each stage, and, as such, at each stage of the game the kernels include only one

non-zero element associated with Cp(i) or Ce(i) for the respective player.

This behavior is also shown explicitly in Fig. 5.3 and Fig. 5.4 where the control gains C̃p(i)

68



and C̃e(i) have only one non-zero gain operating on the current state and that gain is exactly

equal to Cp(i) or Ce(i) (indicated by the underlying gray markers) for the respective player.

Therefore, we haveKp(i)i = C̃p(i)i = Cp(i) (Fig. 5.1 and Fig. 5.3) andKe(i)i = C̃e(i)i = Ce(i)

(Fig. 5.2 and Fig. 5.4).
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Figure 5.1: Pursuer’s optimal strategy for a perfect information game.
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Figure 5.2: Evader’s optimal strategy for a perfect information game.
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Figure 5.3: Pursuer’s optimal gain for a perfect information game.
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Figure 5.4: Evader’s optimal gain for a perfect information game.

5.3 Process and Measurement Noise Effects

We will study the effects of process and measurement noise variances by observing the

impact these variances have on the Lagrange multiplier sequence, S2(i), and the optimal

performance index value, Jo. We generated the plots contained in this section using the

following measurement noise variance combinations; one player’s variance was fixed while

the other player’s variance changed. We vary the pursuer measurement noise variance as

Vp(i) = [0.1, 1, 5, 10, 15, 20, 30, 40, 60, 80, 100]

Ve(i) = 0.1
(5.4)

and we vary the evader measurement noise variance as

Vp(i) = 0.1

Ve(i) = [0.1, 1, 5, 10, 15, 20, 30, 40, 60, 80, 100].
(5.5)
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To begin, let’s look at the case where W (i) = 5, Rp(i) = 0.5, and we sweep through the

pursuer and evader measurement noise variance combinations in (5.4) and (5.5). In Fig. 5.5

we can see the measurement noise variance effects on the stochastic system gain, σ̄(S2(i)),

relative to the deterministic system gain, σ̄(Sd(i)).1 The larger magnitude Vp variation lines

are associated with relatively larger pursuer measurement noise variances, and the smaller

magnitude Ve variation lines are associated with relatively larger evader measurement noise

variances. That is, as the pursuer measurement noise variance increases the system gain

increases, but as the evader measurement noise variance increases the system gain decreases.
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Figure 5.5: Measurement noise effects on S2(i) with W (i) = 5 and Rp(i) = 0.5.

This behavior is also reflected in the magnitude of the LQG2 strategies, Kp(i) and Ke(i),

relative to the LQG1 strategies, Kce
p (i) and Kce

e (i). For the case where Vp(i) = 100 and

Ve(i) = 0.1 we can see from Fig. 5.6 and Fig. 5.7 the relatively larger LQG2 gains as

compared with the LQG1 gains. Furthermore, we can see that the overall behavior of Ke(i)

1The relatively large y-axis scale is for ease of comparison with larger magnitude plots that follow.
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is significantly different than Kce
e (i) in Fig. 5.7. The reason for this behavior becomes more

apparent, and we will discuss it further, using the limiting noise cases that follow.
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Figure 5.6: Pursuer’s optimal strategy for W (i) = 5, Vp(i) = 100, and Ve(i) = 0.1.
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Figure 5.7: Evader’s optimal strategy for W (i) = 5, Vp(i) = 100, and Ve(i) = 0.1.

For the case where Vp(i) = 0.1 and Ve(i) = 100 we can see from Fig. 5.8 and Fig. 5.9

the relatively smaller LQG2 gains as compared with the LQG1 gains. In fact, it appears

that as Ve(i) increases Ke(i) trends towards zero (along with Kce
e (i)). That is, the evader

control becomes open-loop. As we can see from (4.43) as Ke(i) → 0, be(i) → Ce(i)X̄(i)i,

which means that uoe(i) = Ce(i)X̄(i)i. Therefore, as Ve(i) increases the evader uses his

deterministic gain operating on the corresponding deterministic game state trajectory.
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Figure 5.8: Pursuer’s optimal strategy for W (i) = 5, Vp(i) = 0.1, and Ve(i) = 100.
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Figure 5.9: Evader’s optimal strategy for W (i) = 5, Vp(i) = 0.1, and Ve(i) = 100.
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In Fig. 5.10 we can see that, as expected, increasing the pursuer’s measurement noise

variance increases the optimal performance index value (in favor of the evader), and increas-

ing the evader’s measurement noise variance decreases the optimal performance index value

(in favor of the pursuer). Note that as the evader’s measurement noise variance increases the

optimal performance index value appears to be approaching some limit. This seems to cor-

roborate our previous finding that the evader control becomes open-loop as his measurement

noise variance increases.

Since x̄(0) = 0 (x(0) = 0 for the corresponding deterministic game) we can see from

(3.18) that Jd
o

= 0. Therefore, the non-zero Jo in Fig. 5.10 when the measurement noise

variances are both approximately zero is due solely to process noise variance (W (i) = 5).
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Figure 5.10: Measurement noise effects on Jo with W (i) = 5 and Rp(i) = 0.5.

Next, we look at a case where process noise variance is decreased from W (i) = 5 to

W (i) = 1. Comparing Fig. 5.11 (W (i) = 1) with Fig. 5.5 (W (i) = 5) we can see the

dramatic effect that decreased process noise variance has on the solution. For W (i) = 1 the
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stochastic system gain, σ̄(S2(i)), increases significantly, especially at the latter stages of the

game, with increasing pursuer measurement noise variance. Comparing Fig. 5.12 (W (i) = 1)

with Fig. 5.10 (W (i) = 5) we can see that decreasing the process noise variance results in a

decreased optimal performance index value across the board (in favor of the pursuer). Since

decreased process noise variance benefits the pursuer, what is happening with the stochastic

system gain as reflected in σ̄(S2(i)) with increasing pursuer measurement noise variance? To

further explore this question we will decrease process noise variance even further.
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Figure 5.11: Measurement noise effects on S2(i) with W (i) = 1 and Rp(i) = 0.5.
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Figure 5.12: Measurement noise effects on Jo with W (i) = 1 and Rp(i) = 0.5.

We now take a closer look at the strategies when process noise variance is decreased to

W (i) = 0.1 with Vp(i) = 100 and Ve(i) = 0.1. From Fig. 5.13 it is interesting to note that the

pursuer’s certainty equivalent sub-optimal centralized solution kernel is essentially zero due

to the large measurement noise variance and small process noise variance (Kalman filter gain

is approximately zero). However, note that the pursuer’s stochastic optimal solution kernel

is non-zero, and, furthermore, in Fig 5.14 we see that the pursuer is utilizing his smoothed

state estimate in his control strategy. In particular, we see that at the latter stages of the

game there is an oscillatory behavior that develops.

As the process noise variance approaches zero the evader, whose measurement noise

variance is approximately zero, has almost perfect knowledge of the state with one-frame

delay. That is, at stage i the evader is able to calculate the pursuer’s control/measurement

from the previous stage, i − 1. Therefore, effectively the only private information that the

pursuer has is his measurement at the current stage; he can use that measurement to come
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up with a smoothed state estimate across previous stages. The apparent reason for the

oscillatory pursuer control gains in Fig 5.14 is his desire to inject the noise from his current

measurement into the system at some time constant from the end of the game in order to

confuse the evader’s estimator, while at the same time averaging through the noise. The

effect of this behavior is reflected in Fig. 5.15 where we see that the evader’s stochastic

optimal solution kernel (which includes his enlarged Kalman filter) is oscillatory, whereas

the evader’s optimal control gains in Fig. 5.16 are well-behaved. This seems to suggest

that the pursuer’s oscillatory control gains are having much more impact on the evader’s

estimator gains than on the evader’s control gains. We will see the consequences of the

pursuer’s optimal strategy using a Monte Carlo analysis in Section 5.4.
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Figure 5.13: Pursuer’s optimal strategy for W (i) = 0.1, Vp(i) = 100, and Ve(i) = 0.1.
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Figure 5.14: Pursuer’s optimal gain for W (i) = 0.1, Vp(i) = 100, and Ve(i) = 0.1.
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Figure 5.15: Evader’s optimal strategy for W (i) = 0.1, Vp(i) = 100, and Ve(i) = 0.1.
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Figure 5.16: Evader’s optimal gain for W (i) = 0.1, Vp(i) = 100, and Ve(i) = 0.1.

Lastly, we look at the case where the pursuer’s control energy is more heavily penalized

(i.e. Rp(i) increases). We choose Rp(i) = 0.95, such that we still satisfy the deterministic

no conjugate point condition (3.17). Fig. 5.17 and Fig. 5.18 show the stochastic system

gain and optimal performance index value, respectively, for W (i) = 5. And Fig. 5.19 and

Fig. 5.20 show the stochastic system gain and optimal performance index value, respectively,

for W (i) = 1. Note, in particular, the dramatically different stochastic system gain due to

the increased penalty on the pursuer’s control when comparing Fig. 5.17 with Fig. 5.5 for

W (i) = 5, and Fig. 5.19 with Fig. 5.11 for W (i) = 1.
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Figure 5.17: Measurement noise effects on S2(i) with W (i) = 5 and Rp(i) = 0.95.
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Figure 5.18: Measurement noise effects on Jo with W (i) = 5 and Rp(i) = 0.95.
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Figure 5.19: Measurement noise effects on S2(i) with W (i) = 1 and Rp(i) = 0.95.
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Figure 5.20: Measurement noise effects on Jo with W (i) = 1 and Rp(i) = 0.95.
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As we saw with the increased stochastic system gains previously (specifically with W (i) =

0.1 and Rp(i) = 0.5), it appears from Fig. 5.19 that due to the high cost of control effort the

pursuer is starting to inject noise at much earlier stages of the game as his measurement noise

variance increases.2 This behavior is reflected in Fig. 5.21 and Fig. 5.22 with the oscillatory

behavior that we observe in the evader’s stochastic optimal solution kernel. Again, we will see

the consequences of the pursuer’s optimal strategy using a Monte Carlo analysis in Section

5.4.
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Figure 5.21: Pursuer’s optimal strategy for Rp(i) = 0.95 with W (i) = 1, Vp(i) = 100, and

Ve(i) = 0.1.

2In Fig. 5.19, the inflection point at stage 1 as the pursuer’s measurement noise variance is increased is

presumably due to the evader’s ability to estimate the pursuer’s control/measurement used at stage 0 given

the measurement at stage 1. At this early stage of the game the pursuer has not had time to affect the

evader’s estimate, hence the inflection point.
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Figure 5.22: Evader’s optimal strategy for Rp(i) = 0.95 with W (i) = 1, Vp(i) = 100, and

Ve(i) = 0.1.

As an aside, we have experimented with providing the evader no-delay access to the

pursuer’s measurement.3 That is, we provide the evader two measurements: his own mea-

surement and the pursuer’s measurement. In this case, the oscillatory behavior as observed

in Fig. 5.22 ceases. The evader’s stochastic optimal solution kernel operating on his first

measurement is well-behaved, and the evader’s stochastic optimal solution kernel operating

on his second measurement is well-behaved. This appears to corroborate our claim that

the oscillatory behavior observed in the figures above is due to the one-frame delay in the

evader’s ability to estimate the pursuer’s control/measurement, and the pursuer’s resulting

desire to inject noise into the system.

In summary, we have identified the following trends through this simple numerical study:

3This is similar to the special information pattern of [BH68], where the pursuer was the perfect-

information player and was assumed to have immediate access to the evader’s estimate (no process noise was

included).
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• As the pursuer’s measurement noise variance increases relative to the process noise

variance and evader’s measurement noise variance, the pursuer appears to inject noise

into the system by increasing the gain on his smoothed state estimate. This behavior

is exacerbated when the pursuer is more heavily penalized for control energy (i.e. as

Rp(i) increases). When the pursuer injects noise he appears to do so in a way such

that his control averages through it, which is why we see the oscillatory behavior in

the strategies.

• As the evader’s measurement noise variance increases his control appears to become

open-loop and he uses his deterministic gain operating on the corresponding deter-

ministic game state trajectory. This is contrary to the pursuer’s behavior when his

measurement noise variance increases as previously mentioned. The reason for this

difference in behavior is due to the asymmetry of the performance index and the fact

that it is not a concave functional with respect to x(N) and ue(i).

• A decrease in process noise variance benefits the pursuer, an increase in process noise

variance benefits the evader (i.e. an increase in noise that affects both players benefits

the evader).

5.4 Monte Carlo Analysis

In this section we use a Monte Carlo analysis to look at the resulting performance of the

strategies that we discussed in Section 5.3. We use the same problem parameters as outlined

in that section, except that we will use x̄(0) = 100 to give the problem some realism. There

are no units attached to these problem parameters (we will look at a more realistic set of

problem parameters in Chapter 6), however, we define a miss distance, d , ‖x(N)‖, at

the final stage in order to present Monte Carlo statistics. The mean, standard deviation,

minimum, and maximum values presented in the following tables are calculated with respect

to this miss distance.
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We use Definitions 5.2 and 5.3 above in order to compare the performance of the stochastic

optimal strategies with the performance of the certainty equivalent sub-optimal centralized

strategies for several different noise combinations. Specifically, we compare statistics, in-

cluding the experimental performance index value, for three different strategy combinations:

LQG2 (both players use their stochastic optimal strategy), P-LQG2 vs. E-LQG1 (evader is

sub-optimal), and P-LQG1 vs. E-LQG2 (pursuer is sub-optimal).

To begin with we look at the no measurement noise case from Section 5.2. As we saw

in that section, the LQG1 and LQG2 strategies are equivalent since the players have access

to the exact same information. This is confirmed with the Monte Carlo analysis results

presented in Table 5.1. As shown in the table, all three strategy combinations produce

the exact same statistics. In addition, as confirmation that we have executed a sufficient

number of analysis runs we can see in the table that for the LQG2 game the analytical and

experimental performance index values are the same. The convergence of the experimental

performance index value over the 10k analysis runs is shown in Fig. 5.23.

Table 5.1: Monte Carlo analysis (10k runs) with W (i) = 5, Vp(i) = 0, Ve(i) = 0, and

Rp(i) = 0.5.

LQG2
P-LQG2/ P-LQG1/

E-LQG1 E-LQG2

Mean 9.1 9.1 9.1

Std. Dev. 3.4 3.4 3.4

Min. 0.0 0.0 0.0

Max. 23.0 23.0 23.0

E[J ] (anal.) 234.1 N/A N/A

E[J ] (exp.) 234.1 234.1 234.1
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Figure 5.23: Experimental performance index convergence for Table 5.1 Monte Carlo anal-

ysis.

We now take a look at a summary of the results for several different noise combinations

in Table 5.2. Note that for all cases the stochastic optimal solution (LQG2) satisfies the

saddle point condition (2.5)

E
[
J(P -LQG2, E-LQG1)

]
≤ E

[
J(LQG2)

]
≤ E

[
J(P -LQG1, E-LQG2)

]
. (5.6)

Relatively speaking, it appears that the pursuer has much more to lose by playing a

sub-optimal (P-LQG1) strategy as compared to the evader playing a sub-optimal (E-LQG1)

strategy. For example, comparing cases #1 and #2 where one player has large measurement

noise variance relative to the other player: In case #1 the performance index increases

significantly for the P -LQG1/E-LQG2 strategy combination when the pursuer does not

play his stochastic optimal strategy, whereas in case #2 the performance index decreases

only slightly (beyond the first decimal place) for the P -LQG2/E-LQG1 strategy combination

when the evader does not play his stochastic optimal strategy.
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In fact, we saw in Fig. 5.5 that increases in the pursuer’s measurement noise variance have

a much more dramatic effect on the system gain that increases in the evader’s measurement

noise variance (which appear to reach a limit value). In Fig. 5.6 we saw that the pursuer’s

LQG2 strategy is significantly different than his LQG1 strategy (case #1), and in Fig. 5.9

we saw that the evader’s LQG1 and LQG2 strategies are approximately the same (case #2).

So, the Monte Carlo results re-enforce the preceding analysis that the pursuer’s stochastic

optimal strategy is non-traditional and provides him a significant advantage.

Comparing cases #1, #4, and #7 we can see the effect that process noise variance has

on the pursuer’s stochastic optimal strategy (Vp(i) = 100, Ve(i) = 0.1, and Rp(i) = 0.5).

First, note that the performance index value for the LQG2 game decreases as process noise

variance decreases, which means that a decrease in process noise variance favors the pursuer.

Second, note that the penalty for the pursuer playing a sub-optimal LQG1 strategy increases

as process noise variance decreases, which means that the evader has a significant advantage.

So, a decrease in process noise variance is good for the pursuer if he plays his LQG2 strategy,

otherwise, a decrease in process noise variance benefits the evader. For example, looking at

case #7 the P -LQG1/E-LQG2 strategy combination results in a performance index value

increase from 250.3 to 1496.4, which greatly favors the evader.

With large measurement noise variance and small process noise variance the pursuer’s

sub-optimal centralized Kalman filter becomes low-bandwidth, resulting in an open-loop

LQG1 pursuer strategy. However, the pursuer’s LQG2 strategy is not affected in the same

way as we saw in Fig. 5.13 (case #7). As with case #7, we also observe a dramatic increase

in the performance index value for cases #8 and #9 when the pursuer plays his sub-optimal

LQG1 strategy. Therefore, we will take a closer look at a couple of these cases.
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Table 5.2: Monte Carlo analysis (10k runs) for several different noise combinations.

E[J]

Case W(i) Vp(i) Ve(i) Rp(i) LQG2
P-LQG2/ P-LQG1/

E-LQG1 E-LQG2

1 5 100 0.1 0.5 258.9 255.6 359.8

2 5 0.1 100 0.5 232.8 232.8 233.0

3 5 100 100 0.5 249.3 247.1 280.6

4 1 100 0.1 0.5 251.9 248.1 741.5

5 1 0.1 100 0.5 228.5 228.5 228.6

6 1 100 100 0.5 242.6 240.7 326.7

7 0.1 100 0.1 0.5 250.3 245.7 1496.4

8 5 100 0.1 0.95 1803.2 1789.4 193238.5

9 1 100 0.1 0.95 1786.0 1769.8 8132545.7

The Monte Carlo analysis results for case #7 from Table 5.2 are presented in more detail

in Table 5.3. The convergence of the experimental performance index value over the 10k

analysis runs is shown in Fig. 5.24.

Fig. 5.25 shows the three different strategy combinations for a single realization of the

noise sequences. In other words, the initial state, process noise, pursuer measurement noise,

and evader measurement noise sequences are exactly the same for these three simulation

runs using the different strategy combinations. Note on the bottom plot (P-LQG1) that the

pursuer is minimally responsive, whereas on the top two plots (P-LQG2), even though the

pursuer has noisy measurements, he becomes much more active towards the latter stages of

the game using his stochastic optimal strategy/control. Again, this behavior on the part of

the pursuer is presumably to inject noise into the system in order to increase the evader’s

estimation error. The P-LQG1 and P-LQG2 controls are approximately the same up until

stage 16. When the pursuer is using his P-LQG2 strategy the evader is unable to radically
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maneuver at the latter stages of the game (and drive up the performance index value), as he

can against the P-LQG1 strategy.

Table 5.3: Monte Carlo (10k runs) with W (i) = 0.1, Vp(i) = 100, Ve(i) = 0.1, and

Rp(i) = 0.5.

LQG2
P-LQG2/ P-LQG1/

E-LQG1 E-LQG2

Mean 13.3 9.6 75.9

Std. Dev. 9.7 5.7 56.7

Min. 0.0 0.0 0.0

Max. 57.1 37.0 405.9

E[J ] (anal.) 250.1 N/A N/A

E[J ] (exp.) 250.3 245.7 1496.4
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Figure 5.24: Experimental performance index convergence for Table 5.3 Monte Carlo anal-

ysis.
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Figure 5.25: Control sequence for a single realization from Table 5.3 Monte Carlo analysis.

The Monte Carlo analysis results for case #9 from Table 5.2 are presented in more detail

in Table 5.4. The convergence of the experimental performance index value over the 10k

analysis runs is shown in Fig. 5.26.

As we did with case #7, Fig. 5.27 shows the three different strategy combinations for

a single realization of the noise sequences for case #9. Again, note on the bottom plot

that the evader is able to radically maneuver towards the latter stages of the game against

the pursuer’s P-LQG1 strategy. This greatly increases the miss distance and resulting per-

formance index value as we can see in Table 5.4. Conversely, when the pursuer plays his

stochastic optimal P-LQG2 strategy then his control sequence (up(i)) appears more erratic

and, presumably, the evader therefore is unable to maneuver as aggressively.

Also, note that the pursuer’s P-LQG2 control appears erratic throughout all stages of
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the game in Fig. 5.27, contrary to the P-LQG2 control in Fig. 5.25 (case #7). As we’ve been

discussing, this is a consequence of the high stochastic system gain as shown in Fig. 5.19

(case #9).

Table 5.4: Monte Carlo (10k runs) with W (i) = 1, Vp(i) = 100, Ve(i) = 0.1, and Rp(i) = 0.95.

LQG2
P-LQG2/ P-LQG1/

E-LQG1 E-LQG2

Mean 67.8 66.1 6978.8

Std. Dev. 36.0 18.8 5196.4

Min. 0.0 1.7 0.3

Max. 211.5 137.4 34777.2

E[J ] (anal.) 1786.4 N/A N/A

E[J ] (exp.) 1786.0 1769.8 8132545.7
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Figure 5.26: Experimental performance index convergence for Table 5.4 Monte Carlo anal-

ysis.
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Figure 5.27: Control sequence for a single realization from Table 5.4 Monte Carlo analysis.

5.5 Summary

In summary, our Monte Carlo analysis in Section 5.4 confirmed the stochastic optimal strat-

egy performance that we discussed in Section 5.3. This analysis provided additional insight

into the controls, specifically, we observed that the pursuer’s stochastic optimal control pro-

vides him a significant advantage over his certainty equivalent sub-optimal centralized control

when he has noisy measurements relative to the evader or when he is not as maneuverable

relative to the evader. Next, in Chapter 6 we will apply our stochastic optimal solutions to

a missile guidance problem.
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CHAPTER 6

A Pursuit-Evasion Game: Missile Guidance

Our goal in this chapter is to apply the LQG multistage optimal solution to solve the stochas-

tic homing missile guidance endgame problem from a game-theoretic standpoint.1 The guid-

ance algorithm that we develop here would takeover once the pursuing missile (interceptor)

is closing in on the evading missile (incoming threat) and the sensors on each missile have

locked on the opposing missile. A control law would have to convert the guidance acceleration

commands that we generate into actuator (e.g. attitude control motor) commands.

6.1 Background Information

Missile guidance algorithms have been of interest since the Cold War era. In fact, a lot of

the early work in game theory/dynamic games taking place in the 1950s and 1960s was with

application to military operations, such as Isaacs’ work at The RAND Corporation [Isa55].

Fig. 6.1 shows the three different phases of flight for an incoming threat (boost, midcourse,

and terminal) and the different interceptors available to the United State Missile Defense

Agency depending on phase of flight. Interceptors are typically classified as either ”blast

fragmentation” or ”hit-to-kill”. With blast fragmentation the interceptor uses a warhead

that detonates in close proximity to the incoming threat. With hit-to-kill the interceptor

physically impacts the incoming threat, destroying it with kinetic energy alone. Hit-to-kill

requires more precise guidance and control as compared to blast fragmentation, however,

1Note that [BH68, Section VI] solved a similar problem in continuous-time for their special information

pattern.
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if the interceptor can physically impact the incoming threat then there is a high chance of

truly neutralizing the threat.

With either type of interceptor, the hard problem to solve is how to detect and neutralize

an incoming threat that is moving several times the speed of sound. Obviously, the detection

part of the problem involves imperfect information; ground support/fire control equipment

and/or onboard sensors are only able to estimate the position/velocity of the incoming threat.

In the presence of jamming, which leads to increased estimation error, or when the incoming

threat is highly maneuverable the problem becomes even more difficult. As a result, the

question we ask here is: What is the best short-duration endgame strategy (less than ten

seconds to impact), from both the interceptor’s viewpoint and from the incoming threat’s

viewpoint, given the relative measurement noises and relative maneuverability?

Figure 6.1: Types of intercept (pursuer) missiles by flight phase (graphic courtesy of

www.mda.mil).
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6.2 Problem Definition

We start out by defining the 2-D homing missile guidance problem in terms of its deter-

ministic continuous-time representation and the dynamics associated with each player. As

mentioned in Section 2.2, we define a projected-relative state-space using the state transition

matrix. We then discretize the dynamics and add the applicable noise parameters in order

to define the problem in terms of (2.1), (2.2), and (2.3).

Our goal here is to assess the stochastic optimal solutions as applied to a realistic problem.

However, we also desire to keep the problem defined within a simplified framework so that

we can easily assess the stochastic optimal solution performance. As such, we make following

assumptions/restrictions:

1. Gravitational differences between the two players are negligible and can be ignored.

2. The pursuer and evader are modeled as point masses.2

3. The pursuer and evader can linearize around their trajectories during the short-duration

endgame.

4. The pursuer and evader continuous-time matrices are time-invariant.

5. There is no actuator model included which means that the pursuer and evader are able

to immediately achieve their commanded accelerations.3

These assumptions are in-line with accepted assumptions as listed in [BS17] and [SOT09].

The players’ 2-D state dynamics include inertial x/y position, rx and ry, and inertial x/y

velocity, vx and vy. This means that the state dimension is n = 4. Each player’s control

input affects their acceleration in inertial space which means that m = l = 2.4 As a further

2As a future improvement we could include missile (autopilot) dynamics.
3As a future improvement we could, for example, include the time response of attitude control motors

used for terminal agility.
4As a future improvement we could restrict control to the lateral body-axis direction (i.e. perpendicular

to thrust).
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indication that we are working in continuous-time we will include the time parameter, t, in

parenthesis with each parameter, even if the parameter is time-invariant. Using this notation,

the pursuer’s deterministic 2-D state dynamics are represented as
ṙxp(t)

ṙyp(t)

v̇xp (t)

v̇yp(t)

 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

Φp(t)


rxp(t)

ryp(t)

vxp (t)

vyp(t)


︸ ︷︷ ︸
xp(t)

+


0 0

0 0

1 0

0 1


︸ ︷︷ ︸

Γp(t)

up(t) (6.1)

and the evader’s deterministic 2-D state dynamics are represented as
ṙxe (t)

ṙye (t)

v̇xe (t)

v̇ye (t)

 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

Φe(t)


rxe (t)

rye (t)

vxe (t)

vye (t)


︸ ︷︷ ︸

xe(t)

+


0 0

0 0

1 0

0 1


︸ ︷︷ ︸

Γe(t)

ue(t). (6.2)

We know that for a time-invariant system matrix, Φ, we can write the state transition

matrix, Ψ, from time, τ , to time, t ≥ τ , as

Ψ(t, τ) = Ψ(t− τ) = eΦ(t−τ) =
∞∑
k=0

Φk

k!
(t− τ)k (6.3)

where we have written the matrix exponential in terms of its power series representation.

We now define new states such that

x̃p(t) , Ψp(tf , t)xp(t)

x̃e(t) , Ψe(tf , t)xe(t)
(6.4)

where Ψp and Ψe are the pursuer and evader state transition matrix, respectively, from

current time, t, to final time, tf ≥ t. Since Φp(t) = Φe(t) we know that Ψp(tf , t) = Ψe(tf , t).

Using (6.3), along with (6.1) and (6.2), we find the expression for the state transition matrix
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as 5

Ψ(tf , t) =


1 0 (tf − t) 0

0 1 0 (tf − t)

0 0 1 0

0 0 0 1

 (6.5)

where

Ψp(tf , t) = Ψe(tf , t) = Ψ(tf , t).

Since we are ultimately interested in the relative position/velocity between the two play-

ers, we difference these new states (6.4) to define a projected-relative state-space

x̃(t) , x̃p(t)− x̃e(t)

= Ψ(tf , t)
(
xp(t)− xe(t)

)
.

(6.6)

We can derive the differential equation governing this projected-relative state-space using

(6.1) and (6.2) and the fact that

d

dt
Ψ(tf , t) = −Ψ(tf , t)Φ (6.7)

as

˙̃x(t) =
d

dt
Ψ(tf , t)(xp(t))− xe(t))

= −Ψ(tf , t)Φp(t)xp(t) + Ψ(tf , t)ẋp(t)

+ Ψ(tf , t)Φe(t)xe(t)−Ψ(tf , t)ẋe(t)

= Ψ(tf , t)Γp(t)up(t)−Ψ(tf , t)Γe(t)ue(t). (6.8)

Remark 6.1. Reference [BH75, Appendix A4 and Section 9.4] for further description of the

development used in this section.

5Note that (Φp(t))k and (Φe(t))
k are nilpotent for k ≥ 2.
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We can easily write the solution to (6.8) as

x̃(t) = x̃(t0) +

∫ t

t0

(
Ψ(tf , τ)Γp(τ)up(τ)−Ψ(tf , τ)Γe(τ)ue(τ)

)
dτ. (6.9)

We now wish to discretize over one sample period, ∆. That is, we want to find the

state transition equation from time, t1 = ∆i, to time, t2 = ∆(i + 1). As discussed in

[FPW98, Section 4.3.3] we can perform this discretization by assuming a zero-order hold

on the control input over the sample period. We plug in the assumed problem parameters

(i.e. Γp(t) = Γe(t)) to find

Ψ(tf , t)Γp(t) = Ψ(tf , t)Γe(t) =


(tf − t) 0

0 (tf − t)

1 0

0 1

 . (6.10)

We now pull the controls outside of the integral since they are assumed constant over the

sample period. This results in the following state transition equation from time, t1 = ∆i, to

time, t2 = ∆(i+ 1),

x̃(∆(i+ 1)) = x̃(∆i) +

∫ ∆(i+1)

∆i


(tf − τ) 0

0 (tf − τ)

1 0

0 1

 dτ
(
up(∆i)− ue(∆i)

)
. (6.11)

Define η , tf − τ so that the integration now appears as

x̃(∆(i+ 1)) = x̃(∆i) +

∫ tf−∆i

tf−∆(i+1)


η 0

0 η

1 0

0 1

 dη
(
up(∆i)− ue(∆i)

)
(6.12)
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which has the solution

x̃(∆(i+ 1)) = x̃(∆i) +



(tf−∆i)2−(tf−∆(i+1))2

2
0

0
(tf−∆i)2−(tf−∆(i+1))2

2

∆ 0

0 ∆


︸ ︷︷ ︸

Γ̃(∆i)

(
up(∆i)− ue(∆i)

)
.

(6.13)

Dropping the sample period, ∆, we can now write the multistage form of projected-relative

state dynamics (6.8) as

x̃(i+ 1) = x̃(i) + Γ̃(i)
(
up(i)− ue(i)

)
. (6.14)

This state transition equation is still written in its deterministic form (without process

noise). In the following section we will introduce the process and measurement noises for

our particular problem.

6.3 Analysis Setup

Typically it is assumed that the forward speed is constant over the short-duration endgame

and each player applies an acceleration in the lateral body-axis direction, perpendicular to

thrust. Note that our governing equations (6.1) and (6.2) allow the players to apply an

acceleration in the inertial x/y direction without regard for body-axis acceleration direction.

In order to simplify our analysis and negate the need for a rotation from body-axis to inertial-

axis, we initialize the problem in such a way as to approximately enforce the lateral body-axis

acceleration direction.

Fig. 6.2 shows the initial condition geometry for our analysis. Each player has an initial

velocity that is along the inertial x-axis, and the players are offset some distance apart along

the inertial y-axis. In a sense, we have defined the problem in 2-D, which allows for future

analysis capabilities, but we have forced the results to be approximately 1-D based on the
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initial conditions. This means that although our controls are 2-D, we should expect that

only the inertial y-axis control will be non-zero (and, indeed, this is the case in the results

that follow).

Figure 6.2: Missile guidance endgame problem, initial condition geometry.

We now define the nonclassical information pattern involved. Each player makes an inde-

pendent, noise-corrupted, measurement of the relative inertial y-position and relative inertial

y-velocity.6 The measurement dimensions are therefore p = q = 2. We use the inverse state

transition matrix (6.5) as part of the measurement matrices in order to transform from our

projected-relative state-space back into physical-relative states that can be sensed/measured.

6As a future improvement we could allow each player only a line-of-sight angle (or relative inertial

y-position) measurement (no rate measurement).

102



The independent measurements are therefore expressed as

zp(i) =

0 1 0 0

0 0 0 1

Ψ−1(tf ,∆i)

︸ ︷︷ ︸
Θ̃p(i)

x̃(i) + vp(i)

= Θ̃p(i)x̃(i) + vp(i)

(6.15)

ze(i) =

0 1 0 0

0 0 0 1

Ψ−1(tf ,∆i)

︸ ︷︷ ︸
Θ̃e(i)

x̃(i) + ve(i)

= Θ̃e(i)x̃(i) + ve(i)

(6.16)

which appear exactly as (2.2) and (2.3). Lastly, we add process noise to the deterministic

dynamics (6.14) to get

x̃(i+ 1) = x̃(i) + Γ̃(i)up(i)− Γ̃(i)ue(i) + w(i) (6.17)

which appears exactly as (2.1). Note that the measurement noises are in terms of the

physical-relative states, but the process noise is in terms of the projected-relative states.

We now consider a missile guidance endgame problem with tf = 5 sec and a sample

time of ∆ = 0.1 sec. This leads to a multistage game with N = 50 stages. The problem

parameters are as follows (all units are in meters and seconds): 7

E[xp(0)] =


r̄xp(0)

r̄yp(0)

v̄xp (0)

v̄yp(0)

 =


0

0

1000

0



7As a future improvement we could more accurately model the a priori state variance, E[x̃(0)x̃T (0)],

and process noise variance, W (i), for the projected-relative state-space. For the sake of simplicity in our

analysis we assume these are diagonal matrices.
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E[xe(0)] =


r̄xe (0)

r̄ye (0)

v̄xe (0)

v̄ye (0)

 =


10000

1000

−1000

0


E[x̃(0)] = Ψ(5, 0)

(
E[xp(0)]− E[xe(0)]

)

=


0

−1000

2000

0



E[x̃(0)x̃T (0)] =


0.01 0 0 0

0 10 0 0

0 0 0.01 0

0 0 0 10



W (i) =


0.01 0 0 0

0 1 0 0

0 0 0.01 0

0 0 0 1



Q(N) =


0 0 0 0

0 100 0 0

0 0 0 0

0 0 0 0


Rp(i) =

0.25 0

0 0.25


Re(i) =

2 0

0 2

 .
Note that Q(N) only has a weighting on the final relative y-position. For measurement noise,

we use the angle measurement sensor model as specified in [SKT90, Eqn. 55], converted to
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distance as follows

Vdist(i) =
(

0.25 + 5.625 ∗ 10−7
(
(v̄xp (0)− v̄xe (0))(tf −∆i)

)2
)
/∆. (6.18)

Therefore, each player’s measurement noise variance (units of m2 and (m/s)2) appears as 8

Vp(i) = kVp

(0.25 + 5.625 ∗ 10−7
(
(v̄xp (0)− v̄xe (0))(tf −∆i)

)2
)
/∆ 0

0 1

 (6.19)

Ve(i) = kVe

(0.25 + 5.625 ∗ 10−7
(
(v̄xp (0)− v̄xe (0))(tf −∆i)

)2
)
/∆ 0

0 1

 (6.20)

where, nominally, kVp = kVe = 1. We use these factors to adjust one player’s measurement

noise variance relative to the other player.

6.4 Monte Carlo Analysis

We now use the problem setup of the previous section to perform a Monte Carlo analysis

with variations in measurement noise variance and evader maneuverability. As we did in

Section 5.4, we use Definitions 5.2 and 5.3 in order to compare the performance of the

stochastic optimal strategies with the performance of the certainty equivalent sub-optimal

centralized strategies. We compare statistics for four different strategy combinations: LQG1

(both players use their certainty equivalent sub-optimal centralized strategy), LQG2 (both

players use their stochastic optimal strategy), P-LQG2 vs. E-LQG1 (evader is sub-optimal),

and P-LQG1 vs. E-LQG2 (pursuer is sub-optimal).

The mean, standard deviation, minimum, and maximum values presented in the following

tables are calculated with respect to the relative inertial y-position at closest approach. That

is, we are looking at the inertial y miss distance.

8In reality, the rate measurement noise variance and position noise variance would be correlated. For

the sake of simplicity in our analysis we assume the measurement noise variance matrices are diagonal.
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6.4.1 Same Measurement Noise Variance, Evader Low Maneuverability

We start off by analyzing the stochastic missile guidance problem using the default param-

eters outlined above.9 Fig. 6.3 shows the LQD state trajectories (i.e. the corresponding

deterministic game state trajectories). The initial line-of-sight (ILOS) is 5.7 deg, and at the

final stage of the game the y miss distance is 0.7 m (x miss distance is 0 m). Note in the

lower-right subplot of Fig. 6.3 that, as expected due to our initial conditions, the players use

only inertial y-axis acceleration/control (first element of the control vectors is zero, second

element of the control vectors is non-zero).
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Figure 6.3: Missile guidance deterministic state trajectory for Re/Rp = 8.

9With a slight abuse of notation we will indicate this relative maneuverability in our figures/tables as

”Re/Rp = 8”.
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Table 6.1 shows the miss distance statistics from a 10k run Monte Carlo analysis using

the four different strategy combinations. Note that the LQG1 strategy combination is not

a saddle point solution; the pursuer can play his P-LQG2 strategy and decrease the miss

distance standard deviation from 3.4 m to 2.5 m, or the evader can play his E-LQG2 strat-

egy and increase the miss distance standard deviation from 3.4 m to 4.9 m. Conversely,

note that the LQG2 strategy is a saddle point solution - if either player deviates from his

LQG2 strategy then the miss distance changes in favor of the other player. The magnitude

of this change is asymmetric; the pursuer has more to lose by not playing his stochastic op-

timal strategy. For the P-LQG1/E-LQG2 strategy combination the miss distance standard

deviation almost doubles from its LQG2 value of 2.6 m to 4.9 m.

Table 6.1: Missile guidance Monte Carlo (10k runs) with Re/Rp = 8 and kVp = 1.

LQG1 LQG2
P-LQG2/ P-LQG1/

E-LQG1 E-LQG2

Mean (m) -0.7 -0.7 -0.7 -0.7

Std. Dev. (m) 3.4 2.6 2.5 4.9

Min. (m) 0.0 0.0 0.0 0.0

Max. (m) 12.8 10.8 10.4 19.3

The scatter plot in Fig. 6.4 graphically shows the saddle point property of the stochastic

optimal solutions. In particular, notice the right subplot; when the pursuer plays his sub-

optimal P-LQG1 strategy the evader is able to double the miss distance standard deviation.
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Figure 6.4: Miss distance scatter plot for Table 6.1 Monte Carlo analysis.

Fig 6.5 shows the control sequences for a single realization. Note that when the pursuer

is playing his stochastic optimal P-LQG2 strategy that he appears to maneuver within ap-

proximately 1 sec time-to-go (decreasing towards 0 g’s then abruptly increasing towards 3

g’s), whereas when he plays his sub-optimal P-LQG1 strategy (bottom subplot) this maneu-

vering is not as defined. For this particular realization, when the pursuer plays his P-LQG1

strategy the y miss distance magnitude is 3.7 m, whereas when he plays his P-LQG2 strategy

the y miss distance magnitude is <2.3 m. So, the abrupt maneuvering on the part of the

pursuer when he uses his stochastic optimal strategy appears to help in minimizing the miss

distance.
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Figure 6.5: Control sequence for a single realization from Table 6.1 Monte Carlo analysis.

6.4.2 Pursuer Increased Measurement Noise Variance, Evader Low Maneuver-

ability

We now look at the case where the pursuer’s measurement noise variance is twice as large

as the evader’s (kVp = 2). Situations such as this could be representative of jamming which

increases the pursuer’s measurement uncertainty, and, hence, estimation error.

Table 6.2 shows the miss distance statistics from a 10k run Monte Carlo analysis using

the four different strategy combinations. Note that when the pursuer plays his sub-optimal

P-LQG1 strategy against the evader’s optimal E-LQG2 strategy the miss distance standard

deviation increases greater than threefold relative to the LQG2 strategy combination.
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Table 6.2: Missile guidance Monte Carlo (10k runs) with Re/Rp = 8 and kVp = 2.

LQG1 LQG2
P-LQG2/ P-LQG1/

E-LQG1 E-LQG2

Mean (m) -0.7 -0.7 -0.7 -0.7

Std. Dev. (m) 4.7 3.0 2.8 10.3

Min. (m) 0.0 0.0 0.0 0.0

Max. (m) 18.4 12.6 12.0 41.7

Fig. 6.6 shows the miss distance scatter plots for the different strategy combinations,

which reflects the statistical results in Table 6.2. As with the previous example, in Fig. 6.7

we see that when the pursuer is playing his stochastic optimal P-LQG2 strategy that he

appears to abruptly maneuver within approximately 1 sec time-to-go. For this particular

realization, when the pursuer plays his P-LQG1 strategy the y miss distance magnitude is

5.5 m, whereas when he plays his P-LQG2 strategy the y miss distance magnitude is <2.1

m. Again, the abrupt maneuvering on the part of the pursuer when he uses his stochastic

optimal strategy appears to help in minimizing the miss distance.
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Figure 6.6: Miss distance scatter plot for Table 6.2 Monte Carlo analysis.

111



00.511.522.533.544.55
0
3
6
9

12
15

Time−to−Go [s]

P
−

LQ
G

1/
E

−
LQ

G
2

[g
]

00.511.522.533.544.55
0
3
6
9

12
15

P
−

LQ
G

2/
E

−
LQ

G
1

[g
]

00.511.522.533.544.55
0
3
6
9

12
15

P
−

LQ
G

2/
E

−
LQ

G
2

[g
]

Controls for Different Strategy Combinations
W(i) = diag(0.01,1,0.01,1), V

p
(0) = diag(1130,2), V

e
(0) = diag(565,1),

Q(N) = diag(0,100,0,0), R
p
(i) = diag(0.25,0.25), R

e
(i) = diag(2,2)

 

 
u

p
(i)

2,:

u
e
(i)

2,:

Figure 6.7: Control sequence for a single realization from Table 6.2 Monte Carlo analysis.

6.4.3 Same Measurement Noise Variance, Evader Increased Maneuverability

Finally, we look at the case where evader is not as heavily penalized in terms of his perfor-

mance index control weighting. Here we will investigate the case where the pursuer is only

twice as maneuverable as the evader. We keep Rp(i) the same, but we change the evader’s

control weighting to be 10

Re(i) =

0.5 0

0 0.5

 .
10With a slight abuse of notation we will indicate this relative maneuverability in our figures/tables as

”Re/Rp = 2”.
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This allows the evader to increase his acceleration commands and possibly increase the miss

distance.

As discussed in [SOT09], this scenario is representative of trying to intercept a highly

maneuverable tactical ballistic missile (TBM). TBMs are difficult to intercept due to insuffi-

cient maneuverability advantage on the part of the pursuer (interceptor), in addition to the

inherent imperfect information/estimation error.

Fig. 6.8 shows the LQD state trajectories for this missile guidance problem. Note in

the lower-right subplot that, as expected, the evader is able to pull half as many g’s as the

pursuer. Comparing with our previous results in Fig. 6.3 we can also see that the pursuer

maneuvers almost twice as much (compared to when the evader had a much higher control

weighting).
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Figure 6.8: Missile guidance deterministic state trajectory for Re/Rp = 2.

Table 6.3 shows the miss distance statistics from a 10k run Monte Carlo analysis using

the four different strategy combinations. Note that when the pursuer plays his sub-optimal

P-LQG1 strategy against the evader’s optimal E-LQG2 strategy the miss distance standard

deviation increases two-orders of magnitude relative to the LQG2 strategy combination. This

is the most stark contrast we’ve seen in these missile guidance examples between P-LQG1

and P-LQG2 strategy performance. When the pursuer plays his P-LQG2 strategy he is

guaranteed a miss distance standard deviation <3.3 m, whereas when he plays his P-LQG1

strategy the miss distance standard deviation could increase to 173.9 m (assuming that the

evader plays his optimal E-LQG2 strategy).
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Table 6.3: Missile guidance Monte Carlo (10k runs) with Re/Rp = 2 and kVp = 1.

LQG1 LQG2
P-LQG2/ P-LQG1/

E-LQG1 E-LQG2

Mean (m) -1.2 -1.2 -1.2 -3.5

Std. Dev. (m) 4.0 3.3 2.7 173.9

Min. (m) 0.0 0.0 0.0 0.0

Max. (m) 15.2 14.4 12.1 601.8

Fig. 6.9 shows the miss distance scatter plots for the different strategy combinations,

which reflects the statistical results in Table 6.3. The asymmetric y miss distance for the

P-LQG1/E-LQG2 strategy combination (right subplot) is due to the fact that the x miss

distance is non-zero mean; there are some cases outside the plot bounds at x = -200 m.

This is a consequence of the evader being able to aggressively maneuver and hence influence

not only y miss distance, but x miss distance as well. The reason the additional cases are

centered around -200 m is due to our sample time of ∆ = 0.1 sec and the relative velocity

of 2000 m/s. So, over one sample period the players move 200 m in the inertial x direction.
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Figure 6.9: Miss distance scatter plot for Table 6.3 Monte Carlo analysis.

In Fig. 6.10 we see that when the pursuer is playing his sub-optimal P-LQG1 strategy

(bottom subplot) the evader is able to aggressively maneuver within approximately 1 sec

time-to-go and greatly increase the miss distance. The evader’s maneuver appears to lead

the pursuer’s response in this case. Conversely, when the pursuer is playing his stochastic

optimal P-LQG2 strategy he appears to abruptly maneuver, with relatively little response

from the evader, within approximately 1 sec time-to-go. For this particular realization, when

the pursuer plays his P-LQG1 strategy the y miss distance magnitude is 29 m, whereas when

he plays his P-LQG2 strategy the y miss distance magnitude is <3.2 m.
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Figure 6.10: Control sequence for a single realization from Table 6.3 Monte Carlo analysis.

6.5 Summary

In summary, we have demonstrated the dramatic performance improvement for the pursuer

(interceptor) when he uses his stochastic optimal missile guidance strategy (P-LQG2) relative

to his certainty equivalent sub-optimal centralized missile guidance strategy (P-LQG1). As

we also saw in our Section 5.4 study, this increase in performance is even more apparent

when the pursuer’s measurement noise is increased relative to the evader, and especially

when the pursuer is only twice as maneuverable as the evader. Therefore, our stochastic

optimal missile guidance strategy shows great promise for environments where the pursuer’s
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measurements are corrupted and the estimation error is high, as well as, environments where

the incoming threat is highly maneuverable (such as trying to intercept TBMs).

As we’ve noted throughout this chapter, there are several areas within our analysis that

could be further developed in order to add more realism to the missile guidance results. In

particular, we could allow only lateral body-axis accelerations, we could more accurately

model the a priori state variance and process noise variance for the projected-relative state-

space, and we could use only line-of-sight angle (or relative inertial y-position) measurement

(no rate measurement). These are all candidate enhancements for future research.
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CHAPTER 7

Concluding Remarks

In this dissertation we have shown that by forming an enlarged state-space the LQG multi-

stage game with nonclassical information pattern may be solved as a deterministic two-sided

optimization problem (Section 4.2). The advantage of using this direct solution method is

that it leads to a natural decomposition into deterministic and stochastic terms in the opti-

mal control strategies (Section 4.4). We proved that the derived affine strategies are indeed

optimal since they form a saddle point solution (Section 4.6). In contrast to Willman’s for-

mal solution method, we also derived expressions for the optimal performance index value

and optimal performance index differential, both of which provide insight into the stochastic

nature of the problem (Section 4.7).

We then used the optimal control strategies to study the impacts of noise and relative ma-

neuverability on strategy performance. Specifically, we saw in Chapter 5 that the pursuer’s

stochastic optimal control strategy provides him a significant advantage over his certainty

equivalent sub-optimal centralized strategy. We looked at this in terms of the Lagrange mul-

tiplier sequence (S2(i)) behavior, as well as, the pursuer and evader optimal control kernels

(Kp(i) and Ke(i), respectively). As the pursuer’s measurement noise variance increases, or

as the pursuer becomes less maneuverable relative to the evader, he appears to inject noise

into the system so as to increase the evader’s estimation error. We demonstrated the effects

of this stochastic optimal strategy by way of several different Monte Carlo examples.

Finally, we applied the stochastic optimal control strategies to three different missile

guidance problems in Chapter 6. Although we made several simplifying assumptions along

the way, the results of our Monte Carlo analysis show significant performance advantage
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for the pursuer when using his stochastic optimal strategy. In fact, our results show great

promise for intercept guidance laws in the presence of large measurement uncertainty facing

highly maneuverable incoming threats.

In summary, the contribution of this dissertation includes expressions for the LQG mul-

tistage game saddle point strategies and optimal performance index value, as well as, numer-

ical results and analysis for stochastic systems with nonclassical information patterns that

demonstrate the optimality of these strategies.

7.1 Areas for Continued Research

As with any research endeavor, while investigating and learning more about the problem at

hand, we naturally ask additional questions and see potential for future research directions.

Accordingly, throughout the development of this work we’ve noted several areas for continued

research that we shall outline here for the interested reader.

1. Starting with the optimal strategies in Section 4.2 and our analysis in Section 4.4, in-

vestigate alternate forms of the optimal strategies that provide further insight/intuition

into each player’s decision making.

2. The optimal strategies in Section 4.2 become unwieldy with increasing number of

stages. Consider scheduling sample time as a function of time-to-go so that the number

of stages (i.e. storage/memory required) is minimized for a particular discrete-time

application. That is, decrease the sample time as time-to-go decreases and a higher-

fidelity solution is required towards the critical final time.

3. In addition, the enlarged matrices in Section 4.2 are in general sparse and/or symmet-

ric. For example, the symmetric S2(i) and P(i) matrices start out sparse at stage 0

and become more dense as the stages progress. Consider memory/storage optimization

techniques that could take advantage of this sparse and symmetric structure.

4. Reduced-dimension, sub-optimal strategies could be obtained by defining an appropri-
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ate time constant used to discard smoothing terms in the optimal strategies. These

reduced-dimension, sub-optimal strategies might still perform significantly better than

the certainty equivalent sub-optimal centralized strategies, while at the same time re-

quiring significantly less memory/storage than the optimal strategies.

5. As mentioned in Section 4.3, a more robust and efficient method is warranted to solve

the two-point boundary value problem of Section 4.2. This could include quasilin-

earization, or possibly starting with a smaller-stage game and using that solution to

initialize the next larger-stage game, building up to the complete N-stage game.

6. Continue to investigate the solution existence criteria of Section 4.5. Specifically, in-

vestigate the effect of process and measurement noise variances on the convexity and

concavity conditions.

7. Apply dynamic programing to further validate our claim of global optimality in Section

4.6.

8. Use the methodology outlined in Section 4.8 to show the optimal strategy differences for

the multistage version of the Behn and Ho game [BH68] when the perfect-information

pursuer has a one-stage delay vs. no-delay information pattern. Take the discrete-to-

continuous limit for these two different information patterns and compare with the

Behn and Ho continuous-time solution.1

9. Enhance the application of our missile guidance strategies by implementing the sug-

gested improvements detailed throughout Chapter 6.

10. Consider applying our enlarged state-space methodology to multi-player games. That

is, consider the case where one group of cooperative players is competing against an-

other group of cooperative players (e.g. wartime strategies).

1Reference the conclusions drawn in [Beh68, Appendix III-A].
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11. Consider applying our enlarged state-space methodology to the cooperative control

problem. That is, consider the case where the sign on ue(i) in the performance index

is positive.

12. Consider applying our enlarged state-space methodology to nonlinear applications,

such as aircraft evasive maneuvering and/or dog-fight maneuvering.
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APPENDIX A

An Alternate Form of the Kalman Filter:

The Enlarged Kalman Filter

A.1 Traditional Form of the Kalman Filter

Consider the multistage system

x(i+ 1) = Φ(i)x(i) + Γ(i)u(i) + w(i)

z(i) = Θ(i)x(i) + v(i)
(A.1)

for i = 0, 1, ..., N − 1. The parameters that appear in this system are defined in Table

A.1. All random variables are modeled as delta-correlated Gaussian noises; all noises are

Table A.1: Parameter definitions for Kalman filter example.

Parameter Description

x(i) ∈ Rn State

Φ(i) ∈ Rn×n System Matrix

Γ(i) ∈ Rn×m Control Matrix

u(i) ∈ Rm Control

w(i) ∈ Rn Process Noise

z(i) ∈ Rp Measurement

Θ(i) ∈ Rp×n Measurement Matrix

v(i) ∈ Rp Measurement Noise
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uncorrelated with the initial state:

x(0) ∼ N(x̄(0),M(0))

w(i) ∼ N(0,W (i))

v(i) ∼ N(0, V (i)).

The a priori (pre-measurement update) Kalman filter error, ē(i), and a posteriori (post-

measurement update) Kalman filter error, ê(i), are defined as

ē(i) , x(i)− x̄(i)

ê(i) , x(i)− x̂(i)

where x̄(i) and x̂(i) will be defined shortly.

Using the above definitions, the Kalman filter equations are found by taking the following

expectations, conditioned on the complete measurement history up to stage i, denoted as

Z(i),

x̄(i+ 1) , E[x(i+ 1)|Z(i)]

= Φ(i)x̂(i) + Γ(i)u(i)

M(i+ 1) , E[ē(i+ 1)ēT (i+ 1)|Z(i)]

= Φ(i)P (i)ΦT (i) +W (i)

P (i) , E[ê(i)êT (i)|Z(i)]

= M(i)−M(i)ΘT (i)
(
Θ(i)M(i)ΘT (i) + V (i)

)−1
Θ(i)M(i)

x̂(i) , E[x(i)|Z(i)]

= x̄(i) +M(i)ΘT (i)
(
Θ(i)M(i)ΘT (i) + V (i)

)−1(
z(i)−Θ(i)x̄(i)

)
.

(A.2)

For further information on the development of these equations refer to [SC08].
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A.2 Alternate Form of the Kalman Filter

Now, consider rewriting the usual system equations (A.1) as follows. Define a new enlarged

state vector, X(i),

X(i) ,

x(i)

v(i)

 ∈ R(n+p)

and a new enlarged process noise vector, Y (i),

Y (i) ,

 w(i)

v(i+ 1)

 ∈ R(n+p)

with statistics

Y(i) , E[Y (i)Y T (i)].

Note that the enlarged state vector and enlarged process noise vector are uncorrelated ∀i ≤ j

E[(X(i)− E[X(i)])(Y (j)− E[Y (j)])T ] =

E[(x(i)− x̄(i))wT (j)] E[(x(i)− x̄(i))vT (j + 1)]

E[v(i)wT (j)] E[v(i)vT (j + 1)].


=

0 0

0 0

 .
The system equations may now be written asx(i+ 1)

v(i+ 1)

 =

Φ(i) 0n,p

0p,n 0p,p


︸ ︷︷ ︸

F (i)

x(i)

v(i)

+

Γ(i)

0p,m


︸ ︷︷ ︸
G(i)

u(i) +

 In 0n,p

0p,n Ip

 w(i)

v(i+ 1)



z(i) =
[
Θ(i) Ip

]
︸ ︷︷ ︸

H(i)

x(i)

v(i)


(A.3)

or, in compact notation as

X(i+ 1) = F (i)X(i) +G(i)u(i) + Y (i)

z(i) = H(i)X(i).
(A.4)
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The system equations appear with process noise only since the measurement noise is now

included in the enlarged state vector.

The enlarged Kalman filter errors are defined as

Ē(i) , X(i)− X̄(i)

Ê(i) , X(i)− X̂(i)

where X̄(i) and X̂(i) will be defined shortly.

An alternate form of the Kalman filter may now be written as

X̄(i+ 1) , E[X(i+ 1)|Z(i)]

= F (i)X̂(i) +G(i)u(i)

M(i+ 1) , E[Ē(i+ 1)ĒT (i+ 1)|Z(i)]

= F (i)P(i)F T (i) + Y(i)

P(i) , E[Ê(i)ÊT (i)|Z(i)]

=M(i)−M(i)HT (i)
(
H(i)M(i)HT (i)

)−1
H(i)M(i)

L(i) ,M(i)HT (i)
(
H(i)M(i)HT (i)

)−1

X̂(i) , E[X(i)|Z(i)]

= X̄(i) + L(i)
(
z(i)−H(i)X̄(i)

)

(A.5)

where

X̄(0) =

x̄(0)

0


M(0) =

M(0) 0

0 V (0)

 .
Let’s take a moment to look at the L(i) equation. Note that a necessary condition for

the matrix inverse to exist is that H(i) is full row rank and M(i)HT (i) is full column rank.

A sufficient condition is that H(i) is full row rank andM(i) is full column rank (invertible).

As long as there are no repeated measurements then H(i) will be full row rank, and due to
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the process noise variance in M(i + 1) we know that M(i) is full column rank (invertible).

Therefore,
(
H(i)M(i)HT (i)

)−1
exists at all stages.

It is easy to see that the alternate form of the Kalman filter (A.5) is equivalent to the

traditional form of the Kalman filter (A.2) by writing out the individual enlarged matrix

elements

X̄(i+ 1) =

x̄(i+ 1)

v̄(i+ 1)

 =

Φ(i)x̂(i) + Γ(i)u(i)

0


M(i+ 1) =

Φ(i)P1(i)ΦT (i) +W (i) 0

0 V (i+ 1)

 ,
M1(i+ 1) M2(i+ 1)

MT
2 (i+ 1) M3(i+ 1)


P(i) =M(i)−

M1(i)ΘT (i)

M3(i)

(Θ(i)M1(i)ΘT (i) +M3(i)
)−1
[
Θ(i)M1(i) M3(i)

]

=

 M1(i)−M1(i)ΘT (i)
(
Θ(i)M1(i)ΘT (i) +M3(i)

)−1
Θ(i)M1(i) . . .

−M3(i)
(
Θ(i)M1(i)ΘT (i) +M3(i)

)−1
Θ(i)M1(i) . . .

. . . −M1(i)ΘT (i)
(
Θ(i)M1(i)ΘT (i) +M3(i)

)−1M3(i)

. . . M3(i)−M3(i)
(
Θ(i)M1(i)ΘT (i) +M3(i)

)−1M3(i)


,

P1(i) P2(i)

PT2 (i) P3(i)


L(i) =

M1(i)ΘT (i)
(
Θ(i)M1(i)ΘT (i) +M3(i)

)−1

M3(i)
(
Θ(i)M1(i)ΘT (i) +M3(i)

)−1

 ,
L1(i)

L2(i)


X̂(i) =

x̂(i)

v̂(i)

 =

x̄(i) + L1(i)
(
z(i)−Θ(i)x̄(i)

)
v̄(i) + L2(i)

(
z(i)−Θ(i)x̄(i)

)
 .

Discarding the superfluous P(i) elements (only P1(i) affects the estimate), and noting that
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M3(i) = V (i), we can simplify these equations as

x̄(i+ 1) = Φ(i)x̂(i) + Γ(i)u(i)

M1(i+ 1) = Φ(i)P1(i)ΦT (i) +W (i)

P1(i) =M1(i)−M1(i)ΘT (i)
(
Θ(i)M1(i)ΘT (i) + V (i)

)−1
Θ(i)M1(i)

x̂(i) = x̄(i) +M1(i)ΘT (i)
(
Θ(i)M1(i)ΘT (i) + V (i)

)−1(
z(i)−Θ(i)x̄(i)

)
.

(A.6)

Since M1(i) = M(i),∀i, the alternate form of the Kalman filter (A.5) is equivalent to the

traditional form (A.2).

Furthermore, due to the enlarged state-space, X̂(i) also contains an explicit estimate of

the measurement noise at the current stage, v̂(i). We can find a simplified expression for

v̂(i) by adding and subtracting a term as follows

v̂(i) = V (i)
(
Θ(i)M1(i)ΘT (i) + V (i)

)−1(
z(i)−Θ(i)x̄(i)

)
=
(
V (i) + Θ(i)M1(i)ΘT (i)−Θ(i)M1(i)ΘT (i)

)(
Θ(i)M1(i)ΘT (i) + V (i)

)−1(
z(i)−Θ(i)x̄(i)

)
= z(i)−Θ(i)x̄(i)−Θ(i)M1(i)ΘT (i)

(
Θ(i)M1(i)ΘT (i) + V (i)

)−1(
z(i)−Θ(i)x̄(i)

)
= z(i)−Θ(i)x̂(i)

(A.7)

which is as expected.

A.3 Alternate Form of the Kalman Filter with State History:

The Enlarged Kalman Filter

Now, let’s consider an N-stage problem. Define an enlarged state vector, X(i) ∈ R(N+1)(n+p),

comprised of state and measurement noise histories up to and including stage i. The X(i)

sub-partitions are

X(i)j =



x(j), j ≤ i

0, i < j ≤ N

v(j −N − 1), N + 1 ≤ j ≤ N + 1 + i

0, N + 1 + i < j ≤ 2N + 1
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for i = 0, 1, ..., N , j = 0, 1, ..., 2N + 1. In general, here’s how X(i) appears at stage i:

X(i) =



x(0)

x(1)

x(2)
...

x(i)

0
...

0

v(0)

v(1)

v(2)
...

v(i)

0
...

0



.

Define an enlarged process noise vector, Y (i) ∈ Rn+p, comprised of the state process

noise at the current stage (i) and measurement noise at the next stage (i + 1). The Y (i)

sub-partitions are

Y (i)j =

 w(i), j = 0

v(i+ 1), j = 1

for i = 0, 1, ..., N − 1. Note that the enlarged process noise vector is still zero-mean and

delta-correlated.

Define enlarged system, control, and measurement matrices with the following sub-
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partitions

F (i)j,k =



In, j = k ≤ i

Φ(i), j = i+ 1, k = i

Ip, N + 1 ≤ j = k ≤ N + 1 + i

0, otherwise

F (i) ∈ R(N+1)(n+p)×(N+1)(n+p),

G(i)j =

 Γ(i), j = i+ 1

0, otherwise

G(i) ∈ R(N+1)(n+p)×m,

Gy(i)j,k =


In, j = i+ 1, k = 0

Ip, j = (N + 1) + (i+ 1), k = 1

0, otherwise

Gy(i) ∈ R(N+1)(n+p)×(n+p),

H(i)j,k =


Θ(j), j = k ≤ i

Ip, j ≤ i, k = N + 1 + j

0, otherwise

H(i) ∈ R(i+1)p×(N+1)(n+p),

for i = 0, 1, ..., N − 1.

Then, with appropriately sized system, control, and measurement matrices we may write

the enlarged state-space as

X(i+ 1) = F (i)X(i) +G(i)u(i) +Gy(i)Y (i)

Z(i) = H(i)X(i)
(A.8)

for i = 0, 1, ..., N − 1, where Z(i) ∈ R(i+1)p is the measurement history up to and including

stage i. This state-space is functionally identically to (A.1).

We may also define the enlarged mean state, mean-square state (second moment), co-
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variance, and process noise variance as follows

X̄(i) , E[X(i)]

X(i) , E[X(i)XT (i)]

P(i) , X(i)− X̄(i)X̄T (i)

Y(i) , E[Y (i)Y T (i)].

Taking the above unconditional expectations of (A.8) results in the following statistical

dynamic equations. The mean state sequence is

X̄(i+ 1) = F (i)X̄(i) +G(i)E[u(i)]

X̄(0)j =

 x̄(0), j = 0

0, otherwise

(A.9)

where X̄(i) ∈ R(N+1)(n+p). The mean-square state sequence is

X(i+ 1) = F (i)X(i)F T (i) + F (i)E[X(i)uT (i)]GT (i) +G(i)E[u(i)XT (i)]F T (i)

+G(i)E[u(i)uT (i)]GT (i) +Gy(i)Y(i)GT
y (i)

X(0)j,k =


M(0) + x̄(0)x̄T (0), j = k = 0

V (0), j = k = N + 1

0, otherwise

(A.10)
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where X(i) ∈ R(N+1)(n+p)×(N+1)(n+p). The covariance sequence is

P(i+ 1) = F (i)X(i)F T (i) + F (i)E[X(i)uT (i)]GT (i) +G(i)E[u(i)XT (i)]F T (i)

+G(i)E[u(i)uT (i)]GT (i) +Gy(i)Y(i)GT
y (i)− F (i)X̄(i)X̄T (i)F T (i)

− F (i)X̄(i)E[uT (i)]GT (i)−G(i)E[u(i)]X̄T (i)F T (i)−G(i)E[u(i)]E[uT (i)]GT (i)

= F (i)P(i)F T (i) + F (i)
(
E[X(i)uT (i)]− X̄(i)E[uT (i)]

)
GT (i)

+G(i)
(
E[u(i)XT (i)]− E[u(i)]X̄T (i)

)
F T (i)

+G(i)
(
E[u(i)uT (i)]− E[u(i)]E[uT (i)]

)
GT (i) +Gy(i)Y(i)GT

y (i)

P(0)j,k =


M(0), j = k = 0

V (0), j = k = N + 1

0, otherwise

(A.11)

where P(i) ∈ R(N+1)(n+p)×(N+1)(n+p).

The estimation problem is now a least squares optimization as follows: Given Z(i), find

X̂(i) such that the performance index, J , is minimized

J = min
X̂(Z(i))

E

{
1

2

N−1∑
i=0

‖X(i)− X̂(i)‖2

}
(A.12)

subject to (A.8).

We know a priori that the conditional mean is the optimal estimate to minimize the

unconditional error variance. Given the linear dynamics and Gaussian noises, we may write

the admissible form of the optimal conditional mean estimator as an affine function of Z(i)

X̂(i) , E[X(i)|Z(i)]

, `(i) + L(i)Z(i)

= `(i) + L(i)H(i)X(i)

(A.13)

where `(i) ∈ R(N+1)(n+p) is a vector and non-zero only when x̄(0) 6= 0, and L(i) ∈ R(N+1)(n+p)×(i+1)p

is a matrix.
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Since the performance index is a scalar quantity, we can use the trace (Tr) operator

without affecting the result. We can then use the cyclic property to rearrange the order

of matrix multiplication, which then allows us to take the unconditional expectation of the

performance index using the previously defined enlarged statistical parameters. Using (A.13)

in (A.12) this procedure yields

J = min
`(i),L(i)

E

{
1

2

N−1∑
i=0

‖X(i)− `(i)− L(i)H(i)X(i)‖2

}

= min
`(i),L(i)

E

{
1

2

N−1∑
i=0

(
X(i)− `(i)− L(i)H(i)X(i)

)T (
X(i)− `(i)− L(i)H(i)X(i)

)}

= min
`(i),L(i)

E

{
1

2

N−1∑
i=0

Tr
((
X(i)− L(i)H(i)X(i)

)T (
X(i)− L(i)H(i)X(i)

)
+ `T (i)`(i)− `T (i)

(
X(i)− L(i)H(i)X(i)

)
−
(
X(i)− L(i)H(i)X(i)

)T
`(i)
)}

= min
`(i),L(i)

1

2

N−1∑
i=0

Tr
(
E
[
X(i)XT (i)

] (
I − L(i)H(i)

)T (
I − L(i)H(i)

)
+ `T (i)`(i)− 2`T (i)

(
E [X(i)]− L(i)H(i)E [X(i)]

))
= min

`(i),L(i)

1

2

N−1∑
i=0

Tr
(
X(i)

(
I − L(i)H(i)

)T (
I − L(i)H(i)

)
+ `T (i)`(i)− 2`T (i)

(
I − L(i)H(i)

)
X̄(i)

)
.

Taking the partial derivatives associated with the necessary conditions for optimality

∂J

∂`(i)
= 0

∂J

∂L(i)
= 0

and performing some algebraic manipulation results in 1

`(i) =
(
I − L(i)H(i)

)
X̄(i)

L(i) =
(
X(i)− X̄(i)X̄T (i)

)
HT (i)

(
H(i)

(
X(i)− X̄(i)X̄T (i)

)
HT (i)

)−1

= P(i)HT (i)
(
H(i)P(i)HT (i)

)−1
.

(A.14)

1We use the trace differential properties detailed in Appendix B.2.2 to find these partial derivatives.
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Note that the L(i) equation requires that
(
H(i)P(i)HT (i)

)−1
exist.2 A necessary con-

dition for this matrix inverse to exist is that H(i) is full row rank and P(i)HT (i) is full

column rank. A sufficient condition is that H(i) is full row rank and P(i) is full column rank

(invertible). As long as there are no repeated measurements then H(i) will be full row rank.

The P(i) matrix (A.11) is initially a sparse matrix that becomes more dense as i increases.

This means that P(i) is not invertible, but as it turns out from the structure of H(i) and

P(i), P(i)HT (i) is full column rank at all stages which means
(
H(i)P(i)HT (i)

)−1
exists at

all stages. We will show this structure using a simple numerical example below.

The optimal estimate can now be written as

X̂(i) = `(i) + L(i)Z(i)

= X̄(i) + L(i)
(
Z(i)−H(i)X̄(i)

)
= X̄(i) + P(i)HT (i)

(
H(i)P(i)HT (i)

)−1(
Z(i)−H(i)X̄(i)

)
.

(A.15)

An interesting property of this enlarged state Kalman filter is the following: Using the

definition of X̂(i) in (A.13) as the conditional mean, we can take the conditional expectation

of (A.15)

E[X̂(i)|Z(i)] = X̂(i) = E[X̄(i) + L(i)
(
H(i)X(i)−H(i)X̄(i)

)
|Z(i)]

= X̄(i) + L(i)
(
H(i)X̂(i)−H(i)X̄(i)

)
(
I − L(i)H(i)

)
X̂(i) =

(
I − L(i)H(i)

)
X̄(i)(

I − L(i)H(i)
)(
X̂(i)− X̄(i)

)
= 0.

(A.16)

That is, the error between the conditional mean, X̂(i), and unconditional mean, X̄(i), lies

in the null space of
(
I − L(i)H(i)

)
.

Theorem A.1. As further confirmation that we have found the optimal estimate, the con-

ditional mean estimate in (A.15) is optimal in terms of the Orthogonal Projection Lemma.

That is, the estimation error and estimate are orthogonal,

E
[(
X(i)− X̂(i)

)T
X̂(i)

]
= 0.

2By definition and construction P(i) ≥ 0 and is symmetric. Therefore, we could also define the symmetric

square root P1/2(i) and write the inverse as
(
H(i)P1/2(i)

(
H(i)P1/2(i)

)T )−1
.
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Proof. Using the optimal estimator parameters as derived in (A.14) and, once again, taking

advantage of the trace operator we find

E
[(
X(i)− X̂(i)

)T
X̂(i)

]
= E

[(
X(i)− `(i)− L(i)H(i)X(i)

)T (
`(i) + L(i)H(i)X(i)

)]
= Tr

(
E
[
`T (i)X(i) +X(i)XT (i)L(i)H(i)− `T (i)`(i)

− 2`T (i)L(i)H(i)X(i)−X(i)XT (i)HT (i)LT (i)L(i)H(i)
])

= Tr
(
`T (i)

(
−`(i) + X̄(i)− 2L(i)H(i)X̄(i)

)
+ X(i)

(
I − L(i)H(i)

)T
L(i)H(i)

)
= Tr

(
`T (i)

(
−
(
I − L(i)H(i)

)
X̄(i) + X̄(i)− 2L(i)H(i)X̄(i)

)
+ X(i)

(
I − L(i)H(i)

)T
L(i)H(i)

)
= Tr

(
−`T (i)L(i)H(i)X̄(i) + X(i)

(
I − L(i)H(i)

)T
L(i)H(i)

)
= Tr

((
X(i)− X̄(i)X̄T (i)

)(
I − L(i)H(i)

)T
L(i)H(i)

)
= Tr

(
P(i)

(
I − L(i)H(i)

)T
L(i)H(i)

)
= Tr

(
L(i)H(i)P(i)− L(i)H(i)P(i)HT (i)LT (i)

)
= Tr

(
L(i)H(i)P(i)− L(i)H(i)P(i)HT (i)

(
H(i)P(i)HT (i)

)−1
H(i)P(i)

)
= Tr

(
L(i)H(i)P(i)− L(i)H(i)P(i)

)
= 0.

�

As a result of the enlarged state-space, the optimal X̂(i) (A.15) not only produces a

current state estimate, but also a smoothed estimate of all past states. In general, here’s

135



how X̂(i) appears at stage i:

X̂(i) =



E[x(0)|Z(i)]

E[x(1)|Z(i)]

E[x(2)|Z(i)]
...

E[x(i)|Z(i)]

0
...

0

E[v(0)|Z(i)]

E[v(1)|Z(i)]

E[v(2)|Z(i)]
...

E[v(i)|Z(i)]

0
...

0



,



x̂(0|i)

x̂(1|i)

x̂(2|i)
...

x̂(i|i) = x̂(i)

0
...

0

v̂(0|i)

v̂(1|i)

v̂(2|i)
...

v̂(i|i) = v̂(i)

0
...

0



.

Enlarged Kalman Filter Example

Due to the extensive matrix algebra involved, instead of showing analytical equivalency to

the traditional Kalman filter and smoother we will demonstrate the aspects of this enlarged

estimator by means of a simple numerical comparison for a three-stage (N = 3), scalar

problem. The time-invariant parameters are

Φ(i) = 1, Γ(i) = 0, Θ(i) = 2

x̄(0) = 100, M(0) = 20, W (i) = 5, V (i) = 3.

Although these parameters are time-invariant, we will carry indexes on the non-zero and non-

identity parameters while writing out the estimator equations in order to keep the results
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more general. We use the following realization

x(0) = 105

w(0) = 2, w(1) = −2, w(2) = 0.5

v(0) = −1, v(1) = 1, v(2) = −0.5

which, referring to (A.1), leads to the following states and measurements

x(1) = x(0) + w(0) = 107

x(2) = x(1) + w(1) = 105

x(3) = x(2) + w(2) = 105.5

z(0) = Θ(0)x(0) + v(0) = 209

z(1) = Θ(1)x(1) + v(1) = 215

z(2) = Θ(2)x(2) + v(2) = 209.5.

(A.17)

In terms of the enlarged state-space (A.8) we have the following state and measurement

histories.
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Stage 0 Enlarged State-Space: (i = 0)

x(0)

x(1)

0

0

v(0)

v(1)

0

0


︸ ︷︷ ︸
X(1)

=



1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

F (0)



x(0)

0

0

0

v(0)

0

0

0


︸ ︷︷ ︸
X(0)

+



0 0

1 0

0 0

0 0

0 0

0 1

0 0

0 0


︸ ︷︷ ︸
Gy(0)

w(0)

v(1)


︸ ︷︷ ︸
Y (0)

=



x(0)

x(0) + w(0)

0

0

v(0)

v(1)

0

0


[
z(0)

]
︸ ︷︷ ︸
Z(0)

=
[
Θ(0) 0 0 0 1 0 0 0

]
︸ ︷︷ ︸

H(0)

X(0) =
[
Θ(0)x(0) + v(0)

]

(A.18)

Stage 1 Enlarged State-Space: (i = 1)



x(0)

x(1)

x(2)

0

v(0)

v(1)

v(2)

0


︸ ︷︷ ︸
X(2)

=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

F (1)



x(0)

x(1)

0

0

v(0)

v(1)

0

0


︸ ︷︷ ︸
X(1)

+



0 0

0 0

1 0

0 0

0 0

0 0

0 1

0 0


︸ ︷︷ ︸
Gy(1)

w(1)

v(2)


︸ ︷︷ ︸
Y (1)

=



x(0)

x(1)

x(1) + w(1)

0

v(0)

v(1)

v(2)

0


z(0)

z(1)


︸ ︷︷ ︸
Z(1)

=

Θ(0) 0 0 0 1 0 0 0

0 Θ(1) 0 0 0 1 0 0


︸ ︷︷ ︸

H(1)

X(1) =

Θ(0)x(0) + v(0)

Θ(1)x(1) + v(1)



(A.19)
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Stage 2 Enlarged State-Space: (i = 2)



x(0)

x(1)

x(2)

x(3)

v(0)

v(1)

v(2)

v(3)


︸ ︷︷ ︸
X(3)

=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

F (2)



x(0)

x(1)

x(2)

0

v(0)

v(1)

v(2)

0


︸ ︷︷ ︸
X(2)

+



0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 1


︸ ︷︷ ︸
Gy(2)

w(2)

v(3)


︸ ︷︷ ︸
Y (2)

=



x(0)

x(1)

x(2)

x(2) + w(2)

v(0)

v(1)

v(2)

v(3)



z(0)

z(1)

z(2)


︸ ︷︷ ︸
Z(2)

=


Θ(0) 0 0 0 1 0 0 0

0 Θ(1) 0 0 0 1 0 0

0 0 Θ(2) 0 0 0 1 0


︸ ︷︷ ︸

H(2)

X(2) =


Θ(0)x(0) + v(0)

Θ(1)x(1) + v(1)

Θ(2)x(2) + v(2)



(A.20)

As can be seen, the enlarged state-space in (A.18), (A.19), and (A.20) is functionally

identical to (A.17) – it produces the exact same state and measurement histories as the

traditional state-space.3

We now construct the filters and smoothers at each stage. At each stage we will first

calculate the current state estimate using our two methods: the enlarged Kalman filter

(A.15) and the traditional Kalman filter (A.2). We will then calculate the smoothed state

estimate. We get this as a by-product using the enlarged Kalman filter equations. We will

calculate the smoothed state estimate for the traditional Kalman filter using [BH75, Section

13.2].4 For a measurement at stage i ≥ k we have the following recursion to calculate the

3Note in stage 2 (A.20) that v(3) (which is v(N) in general) is superfluous; we write it for consistency

with previous stages even though it is not used in any measurement.
4The author believes that equations 13.2.16 and 13.2.17 in [BH75, Section 13.2] contain some inaccuracies.

As such, (A.21) was derived using 13.2.7 and 13.2.9 in [BH75, Section 13.2] and modifying for fixed stage k

with increasing i.
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smoothed state estimate at stage k given measurements up to stage i, x̂(k|i),

P (k|i) = P (k|i− 1)ΦT (i− 1)
(
I − P (i)ΘT (i)V −1(i)Θ(i)

)T
, P (i|i) = P (i)

x̂(k|i) = x̂(k|i− 1) + P (k|i)ΘT (i)V −1(i)
(
z(i)−Θ(i)x̄(i)

)
, x̂(i|i) = x̂(i).

(A.21)

Stage 0 Filter: (i = 0)

At stage 0 there is no past measurement history, therefore, we end up with only the filter

equations at this stage. Due to the simplicity of the equations at stage 0 it is easy to see

analytical equivalency of the enlarged Kalman filter and traditional Kalman filter. As such,

we will write out these equations explicitly/parametrically.

Enlarged Kalman Filter :

From (A.15) we find the following expression

X̂(0) = X̄(0) + P(0)HT (0)
(
H(0)P(0)HT (0)

)−1(
Z(0)−H(0)X̄(0)

)
,

x̂(0)

0

0

0

v̂(0)

0

0

0


︸ ︷︷ ︸
X̂(0)

=



x̄(0)

0

0

0

0

0

0

0


︸ ︷︷ ︸

X̄(0)

+



M(0) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 V (0) 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

P(0)



ΘT (0)

0

0

0

1

0

0

0


︸ ︷︷ ︸

HT (0)
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∗



[
Θ(0) 0 0 0 1 0 0 0

]
︸ ︷︷ ︸

H(0)



M(0) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 V (0) 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

P(0)



ΘT (0)

0

0

0

1

0

0

0


︸ ︷︷ ︸

HT (0)



−1

∗



[
Θ(0)x(0) + v(0)

]
︸ ︷︷ ︸

Z(0)

−
[
Θ(0) 0 0 0 1 0 0 0

]
︸ ︷︷ ︸

H(0)



x̄(0)

0

0

0

0

0

0

0


︸ ︷︷ ︸

X̄(0)



=



x̄(0)

0

0

0

0

0

0

0



+



M(0)ΘT (0)

0

0

0

V (0)

0

0

0



(
Θ(0)M(0)ΘT (0) + V (0)

)−1
(Θ(0)x(0) + v(0)−Θ(0)x̄(0))
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=



x̄(0) +M(0)ΘT (0)
(
Θ(0)M(0)ΘT (0) + V (0)

)−1
(Θ(0)x(0) + v(0)−Θ(0)x̄(0))

0

0

0

V (0)
(
Θ(0)M(0)ΘT (0) + V (0)

)−1
(Θ(0)x(0) + v(0)−Θ(0)x̄(0))

0

0

0



.

Note that the x̂(0) expression (first row) is identical to (A.2), and the v̂(0) expression (fifth

row) is equivalent to v̂(0) = z(0)−Θ(0)x̂(0) as we showed in (A.7). Plugging in the parameter

values for this example we calculate

X̂(0) =



104.34

0

0

0

0.33

0

0

0



. (A.22)

Traditional Kalman Filter :

We know due to analytical equivalency (as previously mentioned) that (A.2) will produce

the same results

x̂(0) = x̄(0) +M(0)ΘT (0)
(
Θ(0)M(0)ΘT (0) + V (0)

)−1
(Θ(0)x(0) + v(0)−Θ(0)x̄(0))

= 104.34

v̂(0) = z(0)−Θ(0)x̂(0)

= 0.33.

(A.23)
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Therefore, at stage 0 the enlarged Kalman filter (A.22) and traditional Kalman filter

(A.23) yield identical results.

Stage 1 Filter and Smoother: (i = 1)

At stage 1 we will show the parametric structure of the estimators up to the point that

matrix inverses are required, at which point we will plug in the parameter values for this

example.

Enlarged Kalman Filter :

From (A.9) we find the following expression

X̄(1) = F (0)X̄(0)

=



1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

F (0)



x̄(0)

0

0

0

0

0

0

0


︸ ︷︷ ︸

X̄(0)

=



x̄(0)

x̄(0)

0

0

0

0

0

0



.

From (A.11) we find the following expression

P(1) = F (0)P(0)F T (0) +Gy(0)Y(0)GT
y (0)
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=



1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

F (0)



M(0) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 V (0) 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

P(0)



1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

FT (0)

+



0 0

1 0

0 0

0 0

0 0

0 1

0 0

0 0


︸ ︷︷ ︸
Gy(0)

W (0) 0

0 V (1)


︸ ︷︷ ︸

Y(0)

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0


︸ ︷︷ ︸

GT
y (0)

=



M(0) M(0) 0 0 0 0 0 0

M(0) M(0) +W (0) 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 V (0) 0 0 0

0 0 0 0 0 V (1) 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



.
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Using the above X̄(1) and P(1) in (A.15) we find the following expression

X̂(1) = X̄(1) + P(1)HT (1)
(
H(1)P(1)HT (1)

)−1(
Z(1)−H(1)X̄(1)

)
,

x̂(0|1)

x̂(1)

0

0

v̂(0|1)

v̂(1)

0

0


︸ ︷︷ ︸

X̂(1)

=



x̄(0)

x̄(0)

0

0

0

0

0

0


︸ ︷︷ ︸

X̄(1)

+



M(0) M(0) 0 0 0 0 0 0

M(0) M(0) +W (0) 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 V (0) 0 0 0

0 0 0 0 0 V (1) 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

P(1)



ΘT (0) 0

0 ΘT (1)

0 0

0 0

1 0

0 1

0 0

0 0


︸ ︷︷ ︸

HT (1)

∗


Θ(0) 0 0 0 1 0 0 0

0 Θ(1) 0 0 0 1 0 0


︸ ︷︷ ︸

H(1)

P(1)HT (1)


−1

∗



Θ(0)x(0) + v(0)

Θ(1)x(1) + v(1)


︸ ︷︷ ︸

Z(1)

−

Θ(0) 0 0 0 1 0 0 0

0 Θ(1) 0 0 0 1 0 0


︸ ︷︷ ︸

H(1)



x̄(0)

x̄(0)

0

0

0

0

0

0


︸ ︷︷ ︸

X̄(1)


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=



x̄(0)

x̄(0)

0

0

0

0

0

0



+



M(0)ΘT (0) M(0)ΘT (1)

M(0)ΘT (0) (M(0) +W (0)) ΘT (1)

0 0

0 0

V (0) 0

0 V (1)

0 0

0 0



∗



Θ(0) 0 0 0 1 0 0 0

0 Θ(1) 0 0 0 1 0 0





M(0)ΘT (0) M(0)ΘT (1)

M(0)ΘT (0) (M(0) +W (0)) ΘT (1)

0 0

0 0

V (0) 0

0 V (1)

0 0

0 0





−1

∗

Θ(0)x(0) + v(0)−Θ(0)x̄(0)

Θ(1)x(1) + v(1)−Θ(1)x̄(0)



=



x̄(0)

x̄(0)

0

0

0

0

0

0



+



M(0)ΘT (0) M(0)ΘT (1)

M(0)ΘT (0) (M(0) +W (0)) ΘT (1)

0 0

0 0

V (0) 0

0 V (1)

0 0

0 0


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∗

Θ(0)M(0)ΘT (0) + V (0) Θ(0)M(0)ΘT (1)

Θ(1)M(0)ΘT (0) Θ(1) (M(0) +W (0)) ΘT (1) + V (1)

−1

∗

Θ(0)x(0) + v(0)−Θ(0)x̄(0)

Θ(1)x(1) + v(1)−Θ(1)x̄(0)

 .
Plugging in the parameter values for this example we calculate

X̂(1) =



x̂(0|1)

x̂(1)

0

0

v̂(0|1)

v̂(1)

0

0



=



104.69

107.13

0

0

−0.38

0.73

0

0



. (A.24)

Traditional Kalman Filter :

From (A.2) we find the following expressions

x̄(1) = x̂(0)

P (0) = M(0)−M(0)ΘT (0)
(
Θ(0)M(0)ΘT (0) + V (0)

)−1
Θ(0)M(0)

M(1) = P (0) +W (0)

x̂(1) = x̄(1) +M(1)ΘT (1)
(
Θ(1)M(1)ΘT (1) + V (1)

)−1(
z(1)−Θ(1)x̄(1)

)
.

Plugging in the parameter values for this example we calculate

x̄(1) = 104.34

P (0) = 0.7229

M(1) = 5.72

x̂(1) = 107.13

v̂(1) = z(1)−Θ(1)x̂(1) = 0.73.
(A.25)
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These values for x̂(1) and v̂(1) (A.25) are identical to the enlarged Kalman filter current

state estimate in X̂(1) (A.24).

Now, for the smoothing at k = 0 given measurements up to i = 1 we use (A.21) to find

the following expressions

P (0|1) = P (0)
(
I − P (1)ΘT (1)V −1(1)Θ(1)

)T
x̂(0|1) = x̂(0) + P (0|1)ΘT (1)V −1(1)

(
z(1)−Θ(1)x̄(1)

)
where

P (1) = M(1)−M(1)ΘT (1)
(
Θ(1)M(1)ΘT (1) + V (1)

)−1
Θ(1)M(1).

Plugging in the parameter values for this example we calculate

P (1) = 0.6631

P (0|1) = 0.0838

x̂(0|1) = 104.69

v̂(0|1) = z(0)−Θ(0)x̂(0|1) = −0.38.
(A.26)

These values for x̂(0|1) and v̂(0|1) (A.26) are identical to the enlarged Kalman filter smoothed

state estimate in X̂(1) (A.24).

Stage 2 Filter and Smoother: (i = 2)

At stage 2 we will show the parametric structure of the estimators up to the point that

matrix inverses are required, at which point we will plug in the parameter values for this

example.

Enlarged Kalman Filter :

From (A.9) we find the following expression

X̄(2) = F (1)X̄(1)
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=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

F (1)



x̄(0)

x̄(0)

0

0

0

0

0

0


︸ ︷︷ ︸

X̄(1)

=



x̄(0)

x̄(0)

x̄(0)

0

0

0

0

0



.

From (A.11) we find the following expression

P(2) = F (1)P(1)F T (1) +Gy(1)Y(1)GT
y (1)

=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

F (1)



M(0) M(0) 0 0 0 0 0 0

M(0) M(0) +W (0) 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 V (0) 0 0 0

0 0 0 0 0 V (1) 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

P(1)
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∗



1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

FT (1)

+



0 0

0 0

1 0

0 0

0 0

0 0

0 1

0 0


︸ ︷︷ ︸
Gy(1)

W (1) 0

0 V (2)


︸ ︷︷ ︸

Y(1)

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0


︸ ︷︷ ︸

GT
y (1)

=



M(0) M(0) M(0) 0 0 0 0 0

M(0) M(0) +W (0) M(0) +W (0) 0 0 0 0 0

M(0) M(0) +W (0) M(0) +W (0) +W (1) 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 V (0) 0 0 0

0 0 0 0 0 V (1) 0 0

0 0 0 0 0 0 V (2) 0

0 0 0 0 0 0 0 0



.

Using the above X̄(2) and P(2) in (A.15) we find the following expression

X̂(2) = X̄(2) + P(2)HT (2)
(
H(2)P(2)HT (2)

)−1(
Z(2)−H(2)X̄(2)

)
,
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

x̂(0|2)

x̂(1|2)

x̂(2)

0

v̂(0|2)

v̂(1|2)

v̂(2)

0


︸ ︷︷ ︸

X̂(2)

=



x̄(0)

x̄(0)

x̄(0)

0

0

0

0

0


︸ ︷︷ ︸

X̄(2)

+



M(0) M(0) M(0) 0 0 0 0 0

M(0) M(0) +W (0) M(0) +W (0) 0 0 0 0 0

M(0) M(0) +W (0) M(0) +W (0) +W (1) 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 V (0) 0 0 0

0 0 0 0 0 V (1) 0 0

0 0 0 0 0 0 V (2) 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

P(2)

∗



ΘT (0) 0 0

0 ΘT (1) 0

0 0 ΘT (2)

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0


︸ ︷︷ ︸

HT (2)




Θ(0) 0 0 0 1 0 0 0

0 Θ(1) 0 0 0 1 0 0

0 0 Θ(2) 0 0 0 1 0


︸ ︷︷ ︸

H(2)

P(2)HT (2)



−1

∗




Θ(0)x(0) + v(0)

Θ(1)x(1) + v(1)

Θ(2)x(2) + v(2)


︸ ︷︷ ︸

Z(2)

−


Θ(0) 0 0 0 1 0 0 0

0 Θ(1) 0 0 0 1 0 0

0 0 Θ(2) 0 0 0 1 0


︸ ︷︷ ︸

H(2)



x̄(0)

x̄(0)

x̄(0)

0

0

0

0

0


︸ ︷︷ ︸

X̄(2)


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=



x̄(0)

x̄(0)

x̄(0)

0

0

0

0

0



+



M(0)ΘT (0) M(0)ΘT (1) M(0)ΘT (2)

M(0)ΘT (0) (M(0) +W (0)) ΘT (1) (M(0) +W (0)) ΘT (2)

M(0)ΘT (0) (M(0) +W (0)) ΘT (1) (M(0) +W (0) +W (1)) ΘT (2)

0 0 0

V (0) 0 0

0 V (1) 0

0 0 V (2)

0 0 0



∗


Θ(0)M(0)ΘT (0) + V (0) Θ(0)M(0)ΘT (1) . . .

Θ(1)M(0)ΘT (0) Θ(1) (M(0) +W (0)) ΘT (1) + V (1) . . .

Θ(2)M(0)ΘT (0) Θ(2) (M(0) +W (0)) ΘT (1) . . .

. . . Θ(0)M(0)ΘT (2)

. . . Θ(1) (M(0) +W (0)) ΘT (2)

. . . Θ(2) (M(0) +W (0) +W (1)) ΘT (2) + V (2)


−1 

Θ(0)x(0) + v(0)−Θ(0)x̄(0)

Θ(1)x(1) + v(1)−Θ(1)x̄(0)

Θ(2)x(2) + v(2)−Θ(2)x̄(0)

 .
Plugging in the parameter values for this example we calculate

X̂(2) =



x̂(0|2)

x̂(1|2)

x̂(2)

0

v̂(0|2)

v̂(1|2)

v̂(2)

0



=



104.66

106.89

105.03

0

−0.32

1.23

−0.56

0



. (A.27)
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Traditional Kalman Filter :

From (A.2) we find the following expressions

x̄(2) = x̂(1)

P (1) = M(1)−M(1)ΘT (1)
(
Θ(1)M(1)ΘT (1) + V (1)

)−1
Θ(1)M(1)

M(2) = P (1) +W (1)

x̂(2) = x̄(2) +M(2)ΘT (2)
(
Θ(2)M(2)ΘT (2) + V (2)

)−1(
z(2)−Θ(2)x̄(2)

)
.

Using the previous results from stage 1 and plugging in the parameter values for this example

we calculate

x̄(2) = 107.13

P (1) = 0.6631

M(2) = 5.66

x̂(2) = 105.03

v̂(2) = z(2)−Θ(2)x̂(2) = −0.56.
(A.28)

These values for x̂(2) and v̂(2) (A.28) are identical to the enlarged Kalman filter current

state estimate in X̂(2) (A.27).

Now, for the smoothing at k = 0 and k = 1 given measurements up to i = 2 we use

(A.21) to find the following expressions

P (0|2) = P (0|1)
(
I − P (2)ΘT (2)V −1(2)Θ(2)

)T
P (1|2) = P (1)

(
I − P (2)ΘT (2)V −1(2)Θ(2)

)T
x̂(0|2) = x̂(0|1) + P (0|2)ΘT (2)V −1(2)

(
z(2)−Θ(2)x̄(2)

)
x̂(1|2) = x̂(1) + P (1|2)ΘT (2)V −1(2)

(
z(2)−Θ(2)x̄(2)

)
where

P (2) = M(2)−M(2)ΘT (2)
(
Θ(2)M(2)ΘT (2) + V (2)

)−1
Θ(2)M(2).
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Using the previous results from stage 1 and plugging in the parameter values for this example

we calculate

P (2) = 0.6623

P (0|2) = 0.0098

P (1|2) = 0.0775

x̂(0|2) = 104.66

x̂(1|2) = 106.89

v̂(0|2) = z(0)−Θ(0)x̂(0|2) = −0.32

v̂(1|2) = z(1)−Θ(1)x̂(1|2) = 1.23.

(A.29)

These values for x̂(0|2), x̂(1|2), v̂(0|2), and v̂(1|2) (A.29) are identical to the enlarged Kalman

filter smoothed state estimate in X̂(2) (A.27).

In summary, we have shown by means of a simple three-stage, scalar example that X̂(i)

produces a current state estimate, as well as a smoothed estimate of all past states, and that

these estimates are identical to the traditional Kalman filter and smoother.
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APPENDIX B

Mathematical Background

In the following sections we will consider matrices A, B and C, which are not functions of

matrix X.

B.1 Linear Algebra

B.1.1 Matrix Inversion Lemma

From [BV04], we can derive the matrix inversion lemma as follows. Given an equation such

as

(A+BC)x = b (B.1)

where x and b are vectors and A is nonsingular, we can solve for x using

x = (A+BC)−1b. (B.2)

Likewise, we could introduce a variable y , Cx and instead write (B.1) as

Ax+By = b. (B.3)

Now, solving (B.3) for x we find

x = A−1(b−By) (B.4)

and substituting into our variable y definition we find

y = CA−1(b−By)
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=
(
I + CA−1B

)−1
CA−1b. (B.5)

Finally, substituting (B.5) into (B.4) we find

x = A−1
(
b−B

(
I + CA−1B

)−1
CA−1b

)
=
(
A−1 − A−1B

(
I + CA−1B

)−1
CA−1

)
b. (B.6)

We now have two expressions for x as seen in (B.2) and (B.6), and by equating these

expressions, since b is arbitrary, we can see that

(
A+BC

)−1
= A−1 − A−1B

(
I + CA−1B

)−1
CA−1. (B.7)

This expression (B.7) is known as the matrix inversion lemma.

B.1.2 Singular Value Decomposition

Any matrix A ∈ Rm×n with rank(A) = r can be factored using

A = UΣV T (B.8)

where U ∈ Rm×m and V ∈ Rn×n are orthonormal matrices and Σ ∈ Rm×n is a sparse matrix

of singular values. The upper-left block element of Σ is r×r in dimension with the r non-zero

singular values along its diagonal

σ1 ≥ σ2 ≥ . . . ≥ σr > 0. (B.9)

We write the maximum (or first) singular value of matrix A as σ̄(A), and it is related to the

`2 induced norm of the matrix as

σ̄(A) = sup
x 6=0

‖Ax‖2

‖x‖2

. (B.10)

That is, the maximum singular value may be thought of as the maximum gain of the matrix.
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B.1.3 Discrete Sylvester Equation

From [Lau05], the general linear matrix equation

k∑
i=1

AiXBi = C (B.11)

may be written as

[BT
1 ⊗ A1 +BT

2 ⊗ A2 + . . .+BT
k ⊗ Ak]vec(X) = vec(C) (B.12)

with unique solution (when the matrix is nonsingular)

vec(X) = [BT
1 ⊗ A1 +BT

2 ⊗ A2 + . . .+BT
k ⊗ Ak]−1vec(C) (B.13)

where ⊗ is the Kronecker product, and vec is the vectorization or column stacking operator.

B.1.4 Trace Operator

Some properties of the trace (Tr) operator are

Tr(AB) = Tr(BA) = Tr(BTAT ) = Tr(ATBT ) (B.14)

Tr(ATB) = vec(A)Tvec(B). (B.15)

B.2 Matrix Calculus

B.2.1 Matrix Differential Properties

Some properties of the matrix differential are

d(XT ) = (dX)T (B.16)

dI = d(XX−1) (B.17)

0 = (dX)X−1 +X(dX−1) (B.18)

dX−1 = −X−1(dX)X−1. (B.19)
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B.2.2 Trace Differential Properties

From [Min00], to convert from trace differential form to derivative form

dy = Tr(AdX) =⇒ ∂y

∂X
= A. (B.20)

Some properties of the trace differential are

dTr(AX) = Tr(A(dX)) (B.21)

dTr(AXT ) = Tr(A(dX)T ) = Tr((dX)AT ) = Tr(AT (dX)) (B.22)

dTr(AXB) = Tr(A(dX)B) = Tr(BA(dX)) (B.23)

dTr(XTAX) = Tr((dX)TAX +XTA(dX))

= Tr(XTAT (dX) +XTA(dX)) = Tr(XT (A+ AT )(dX)) (B.24)

dTr(AXBXTC) = Tr(A(dX)BXTC + AXB(dX)TC)

= Tr((BXTCA+BTXTATCT )(dX)). (B.25)
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APPENDIX C

MATLAB Code: Solving the LQG Multistage Game

The MATLAB code included below may be used to solve the system of equations in Section

4.2, including the two-point boundary value problem solution as outlined in Section 4.3.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% CLEMENS MULTISTAGE.M

% Solve two−po int boundary value problem a s s o c i a t e d with the LQG

% mul t i s tage game .

% Notes :

% 1 . Accommodates non−zero xbar0 , non−s c a l a r problem .

% 2 . The s tage o f the game i s always the th i rd dimension , u n l e s s the

% second dimension ( column ) i s s i ng l e t on , in which case the

% stage i s the second dimension .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

func t i on [ bp ,Kp, Lp ,Hp, Kp det , be , Ke , Le , He , Ke det , S1 , S2 , Jopt c s ] = ...

c l emens mul t i s tage (Gammap,Gammae, Thetap , Thetae ,Rp, Re ,QN,N, n

,m, l , p , q , xbar0 ,M0,W,Vp, Ve , max iter , vararg in )

% up( i ) = −bp( i ) − Kp( i )Zp( i )

% ue ( i ) = be ( i ) + Ke( i ) Ze ( i )

%−−−−−−−−−−−−−−−− TPBVP convergence c r i t e r i a −−−−−−−−−−−−−−−−−−−%

d i f f t p b v p = 1e−10;
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k1 tpbvp = 1 . 0 ; % al low l a r g e changes in S2

k2 tpbvp = 0 . 5 ; % al low smal l changes in S2

k3 tpbvp = 0 . 0 7 5 ; % al low smal l changes in S2

i f max(max(max(Vp) ) )<20 && max(max(max(Ve) ) )<20

k tpbvp = k1 tpbvp ;

e l s e i f max(max(max(Vp) ) )<100 && max(max(max(Ve) ) )<100

k tpbvp = k2 tpbvp ;

e l s e

k tpbvp = k3 tpbvp ;

end

%−−−−−−−−−−−−−−− I n i t i a l i z e en la rged matr i ce s −−−−−−−−−−−−−−−−−−%

dimxl = N*(n+p+q ) ; % 'xl ' means ' extra−l a rge ' , d e f i n e s s i z e o f c e l l

arrays , a c tua l matrix dimension i s N*(n+p+q )

% c e l l array i n i t i a l i z a t i o n

c a i n i t = c e l l (3*N,3*N,N) ;

c a i n i t ( 1 :N, 1 :N, : ) = { z e r o s (n , n) } ; c a i n i t ( 1 :N, N+1:2*N, : ) =

{ z e r o s (n , p) } ; c a i n i t ( 1 :N, 2*N+1:3*N, : ) = { z e r o s (n , q ) } ;

c a i n i t (N+1:2*N, 1 :N, : ) = { z e r o s (p , n) } ; c a i n i t (N+1:2*N, N+1:2*N, : ) =

{ z e r o s (p , p) } ; c a i n i t (N+1:2*N, 2*N+1:3*N, : ) = { z e r o s (p , q ) } ;

c a i n i t (2*N+1:3*N, 1 :N, : ) = { z e r o s (q , n ) } ; c a i n i t (2*N+1:3*N,N+1:2*N, : ) =

{ z e r o s (q , p ) } ; c a i n i t (2*N+1:3*N,2*N+1:3*N, : ) = { z e r o s (q , q ) } ;

S1 = c a i n i t ;

S1{N,N,N} = QN;

P = c a i n i t ;

P{1 ,1 ,1} = M0; % non−zero mean s t a t e
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P{N+1,N+1,1} = Vp ( : , : , 1 ) ; % 0 mean no i s e

P{N+N+1,N+N+1,1}= Ve ( : , : , 1 ) ; % 0 mean no i s e

Xbar = ze ro s ( dimxl ,N) ;

Xbar ( 1 : n , 1 ) = xbar0 ;

F = c a i n i t ( : , : , 1 : N−1) ;

F t i l d = F;

Gp = c e l l (3*N,N−1) ;

Gp( 1 :N, : ) = { z e r o s (n ,m) } ;

Gp(N+1:2*N, : ) = { z e r o s (p ,m) } ;

Gp(2*N+1:3*N, : ) = { z e r o s (q ,m) } ;

Ge = c e l l (3*N,N−1) ;

Ge ( 1 :N, : ) = { z e r o s (n , l ) } ;

Ge(N+1:2*N, : ) = { z e r o s (p , l ) } ;

Ge(2*N+1:3*N, : ) = { z e r o s (q , l ) } ;

Hp = c a i n i t (N+1:2*N−1 , : ,1 ) ; % N−1 measurements with dim p

He = c a i n i t (2*N+1:3*N−1 , : ,1 ) ; % N−1 measurements with dim q

Gy = c e l l (3*N, 3 ,N−1) ;

Gy( 1 :N, 1 , : ) = { z e r o s (n , n) } ; Gy( 1 :N, 2 , : ) = { z e r o s (n , p) } ; Gy

( 1 :N, 3 , : ) = { z e r o s (n , q ) } ;

Gy(N+1:2*N, 1 , : ) = { z e r o s (p , n) } ; Gy(N+1:2*N, 2 , : ) = { z e r o s (p , p) } ; Gy(

N+1:2*N, 3 , : ) = { z e r o s (p , q ) } ;

Gy(2*N+1:3*N, 1 , : ) = { z e r o s (q , n ) } ; Gy(2*N+1:3*N, 2 , : ) = { z e r o s (q , p ) } ; Gy

(2*N+1:3*N, 3 , : ) = { z e r o s (q , q ) } ;

bp = ze ro s (m,N−1) ;
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be = ze ro s ( l ,N−1) ;

Kp = ze ro s (m, p*(N−1) ,N−1) ;

Kp det = ze ro s (m, dimxl ,N−1) ;

Ke = ze ro s ( l , q*(N−1) ,N−1) ;

Ke det = ze ro s ( l , dimxl ,N−1) ;

Lp = ze ro s ( dimxl , p*(N−1) ,N−1) ;

Le = ze ro s ( dimxl , q*(N−1) ,N−1) ;

f o r i = 1 :N−1

F( i +1, i , i ) = { eye (n) } ;

f o r j = 1 : i

F( j , j , i ) = { eye (n) } ;

F(N+j ,N+j , i ) = { eye (p) } ;

F(2*N+j ,2*N+j , i )= { eye ( q ) } ;

end

Gp( i +1, i ) = {Gammap( : , : , i ) } ;

Ge( i +1, i ) = {Gammae ( : , : , i ) } ;

Hp( i , i ) = {Thetap ( : , : , i ) } ;

Hp( i ,N+i ) = { eye (p) } ;

He( i , i ) = {Thetae ( : , : , i ) } ;

He( i , 2*N+i ) = { eye ( q ) } ;

Gy( i +1, 1 , i ) = { eye (n) } ; % W( i )
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Gy(N+1+i , 2 , i ) = { eye (p) } ; % Vp( i +1)

Gy(N+N+1+i , 3 , i ) = { eye ( q ) } ; % Ve( i +1)

end

% Convert unnecessary c e l l a r rays to matr i ce s

S1 = ce l l 2mat ( S1 ) ;

P = ce l l 2mat (P) ;

F = ce l l 2mat (F) ;

F t i l d = ce l l 2mat ( F t i l d ) ;

Gp = ce l l2mat (Gp) ;

Ge = ce l l 2mat (Ge) ;

Hp = ce l l 2mat (Hp) ;

He = ce l l 2mat (He) ;

Gy = ce l l 2mat (Gy) ;

%−−−−−−−−−− Solve f o r d e t e r m i n i s t i c S1 sequence −−−−−−−−−−−−−−−−%

f o r i = N−1:−1:1

S1 ( : , : , i ) = F ( : , : , i ) '*( eye ( dimxl )+S1 ( : , : , i +1)*Gp( : , ( i −1)*m+1: i *m)*

Rp ( : , : , i )ˆ−1*Gp( : , ( i −1)*m+1: i *m)'−S1 ( : , : , i +1)*Ge ( : , ( i −1)* l +1: i * l

)*Re ( : , : , i )ˆ−1*Ge ( : , ( i −1)* l +1: i * l ) ')ˆ−1*S1 ( : , : , i +1)*F ( : , : , i ) ;

end

i f isempty ( vararg in {1})

% i n i t i a l i z e S2 guess sequence ( f o r s t o c h a s t i c game) us ing the S1

sequence ( f o r d e t e r m i n i s t i c game)

S2 guess = S1 ;

e l s e

S2 guess = vararg in {1} ;
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end

d i f f = i n f ;

%−−−−−−−−−−− Solve primary system o f equat ions −−−−−−−−−−−−−−−−−%

f o r i t e r = 1 : max iter

d i sp ( [ ' Sta r t i ng I t e r a t i o n #' , num2str ( i t e r ) ] )

d i sp ( ' Sta r t i ng Forward Propagation ' )

% Solve f o r s t a t e covar iance sequence and c o n t r o l s t r a t e g i e s

f o r i = 1 :N−1

Lp ( : , 1 : i *p , i ) = P ( : , : , i )*Hp( 1 : i *p , : ) '*(Hp( 1 : i *p , : ) *P ( : , : , i )*Hp

( 1 : i *p , : ) ')ˆ−1;

Le ( : , 1 : i *q , i ) = P ( : , : , i )*He ( 1 : i *q , : ) '*(He ( 1 : i *q , : ) *P ( : , : , i )*He

( 1 : i *q , : ) ')ˆ−1;

% D i s c r e t e S y l v e s t e r Equation : −Kp( i ) + A*Kp( i )*B + C = 0

A = Rp ( : , : , i )ˆ−1*Gammap( : , : , i ) '*( eye (n)+S2 guess (n* i +1:n* i+n , n*

i +1:n* i+n , i +1)*Gammap( : , : , i )*Rp ( : , : , i )ˆ−1*Gammap( : , : , i )'−

S2 guess (n* i +1:n* i+n , n* i +1:n* i+n , i +1)*Gammae ( : , : , i )*Re ( : , : , i

)ˆ−1*Gammae ( : , : , i ) ')ˆ−1*...

S2 guess (n* i +1:n* i+n , n* i +1:n* i+n , i +1)*Gammae ( : , : , i )*Re ( : , : ,

i )ˆ−1*Gammae ( : , : , i ) '*S2 guess (n* i +1:n* i+n , : , i +1)*Gp( : , ( i

−1)*m+1: i *m) ; % Note that t h i s l a s t m u l t i p l i c a t i o n could

be s i m p l i f i e d to S2 guess (n* i +1:n* i+n , n* i +1:n* i+n , i +1)*

Gammap( : , : , i )
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B = Hp( 1 : i *p , : ) *( eye ( dimxl )−Le ( : , 1 : i *q , i )*He ( 1 : i *q , : ) )*Lp ( : , 1 : i

*p , i ) ; % Note that Hp( 1 : i *p , : ) *Lp ( : , 1 : i *p , i ) = I

C = Rp ( : , : , i )ˆ−1*Gammap( : , : , i ) '*( eye (n)+S2 guess (n* i +1:n* i+n , n*

i +1:n* i+n , i +1)*Gammap( : , : , i )*Rp ( : , : , i )ˆ−1*Gammap( : , : , i )'−

S2 guess (n* i +1:n* i+n , n* i +1:n* i+n , i +1)*Gammae ( : , : , i )*Re ( : , : , i

)ˆ−1*Gammae ( : , : , i ) ')ˆ−1*...

( S2 guess (n* i +1:n* i+n , : , i +1)*F ( : , : , i )*Lp ( : , 1 : i *p , i ) −

S2 guess (n* i +1:n* i+n , n* i +1:n* i+n , i +1)*Gammae ( : , : , i )*Re

( : , : , i )ˆ−1*Gammae ( : , : , i ) '*S2 guess (n* i +1:n* i+n , : , i +1)*F

( : , : , i ) *( eye ( dimxl )−Le ( : , 1 : i *q , i )*He ( 1 : i *q , : ) )*Lp ( : , 1 : i *

p , i ) ) ;

Kp( : , 1 : i *p , i ) = dlyap (A,B,C) ;

% Subs t i tu t e Kp( : , 1 : i *p , i ) and s o l v e f o r Ke ( : , 1 : i *q , i )

Ke ( : , 1 : i *q , i ) = −Re ( : , : , i )ˆ−1*Gammae ( : , : , i ) '*( eye (n)−S2 guess (n

* i +1:n* i+n , n* i +1:n* i+n , i +1)*Gammae ( : , : , i )*Re ( : , : , i )ˆ−1*

Gammae ( : , : , i ) ')ˆ−1*S2 guess (n* i +1:n* i+n , : , i +1)*(F ( : , : , i )−Gp

( : , ( i −1)*m+1: i *m)*Kp( : , 1 : i *p , i )*Hp( 1 : i *p , : ) )*Le ( : , 1 : i *q , i ) ;

F t i l d ( : , : , i )= (F ( : , : , i ) − Gp( : , ( i −1)*m+1: i *m)*Kp( : , 1 : i *p , i )*Hp

( 1 : i *p , : ) − Ge ( : , ( i −1)* l +1: i * l )*Ke ( : , 1 : i *q , i )*He ( 1 : i *q , : ) ) ;

P ( : , : , i +1) = F t i l d ( : , : , i )*P ( : , : , i )*F t i l d ( : , : , i ) ' + Gy ( : , : , i )*

diag ( [ d iag (W( : , : , i ) ) ; d iag (Vp ( : , : , i +1) ) ; d iag (Ve ( : , : , i +1) ) ] ) *

Gy ( : , : , i ) ' ;

end % i loop

S2 guess fwd = S2 guess ;
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di sp ( ' Sta r t i ng Backward Propagation ' )

% Backward propagate Lagrange m u l t i p l i e r sequence .

f o r i = N−1:−1:1

S2 guess ( : , : , i ) = Hp( 1 : i *p , : ) '*Kp( : , 1 : i *p , i ) '*Rp ( : , : , i )*Kp( : , 1 :

i *p , i )*Hp( 1 : i *p , : ) − He ( 1 : i *q , : ) '*Ke ( : , 1 : i *q , i ) '*Re ( : , : , i )*

Ke ( : , 1 : i *q , i )*He ( 1 : i *q , : ) + F t i l d ( : , : , i ) '*S2 guess ( : , : , i +1)*

F t i l d ( : , : , i ) ;

end

% Compare forward and backward propagat ions

d i f f l a s t = d i f f ;

d i f f = max(max(max( abs ( S2 guess−S2 guess fwd ) ) ) ) ;

d i sp ( [ ' Max Change in Lagrange M u l t i p l i e r Sequence : ' , num2str (

d i f f ) , ' ( k tpbvp = ' , num2str ( k tpbvp ) , ' ) ' ] )

i f ( d i f f < d i f f t p b v p )

d i sp ( '>>>>>>>>>> Converged ! <<<<<<<<<<' )

break

e l s e i f d i f f > d i f f l a s t

k tpbvp = max( k tpbvp *0 . 9 , 0 . 0 7 5 ) ;

end

S2 guess = S2 guess fwd+k tpbvp *( S2 guess−S2 guess fwd ) ;

end % i t e r loop

i f i t e r == max iter

d i sp ( '>>>>>>>>>> So lu t i on did not converge ! <<<<<<<<<<' )

S2 guess = 9999* ones ( s i z e ( S2 guess ) ) ;

end

S2 = S2 guess ;
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% Check convex i ty / concav i ty o f pursuer / evader s o l u t i o n

convex i ty ok = 1 ;

concav i ty ok = 1 ;

f o r i = 1 :N−1

i f any (˜ ( e i g (Rp ( : , : , i )+Gammap( : , : , i ) '*S2 (n* i +1:n* i+n , n* i +1:n* i+n , i

+1)*Gammap( : , : , i ) ) > 0) ) % i f any e i g e n v a l u e s are not g r e a t e r

than zero

convex i ty ok = 0 ;

warning ( [ 'Pursuer Convexity Vio lated at Stage ' , num2str ( i ) ] )

end

i f any (˜ ( e i g (−Re ( : , : , i )+Gammae ( : , : , i ) '*S2 (n* i +1:n* i+n , n* i +1:n* i+n , i

+1)*Gammae ( : , : , i ) ) < 0) ) % i f any e i g e n v a l u e s are not l e s s than

zero

concav i ty ok = 0 ;

warning ( [ 'Evader Concavity Vio lated at Stage ' , num2str ( i ) ] )

end

end

i f convex i ty ok && concav i ty ok

d i sp ( 'So lu t i on i s Val id ! ' )

e l s e

warning ( '>>>>> Convexity and/ or Concavity Vio lated ! <<<<<' )

pause

end

%−−−−−−−−−− Solve secondary system o f equat ions −−−−−−−−−−−−−−−−%

% Already so lved f o r S1 above in order to i n i t i a l i z e S2

f o r i = 1 :N−1
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Xbar ( : , i +1) = ( eye ( dimxl )+Gp( : , ( i −1)*m+1: i *m)*Rp ( : , : , i )ˆ−1*Gp( : , (

i −1)*m+1: i *m) '*S1 ( : , : , i +1)−Ge ( : , ( i −1)* l +1: i * l )*Re ( : , : , i )ˆ−1*Ge

( : , ( i −1)* l +1: i * l ) '*S1 ( : , : , i +1) )ˆ−1*F ( : , : , i )*Xbar ( : , i ) ;

Kp det ( : , : , i ) = Rp ( : , : , i )ˆ−1*Gp( : , ( i −1)*m+1: i *m) '*( eye ( dimxl )+S1

( : , : , i +1)*Gp( : , ( i −1)*m+1: i *m)*Rp ( : , : , i )ˆ−1*Gp( : , ( i −1)*m+1: i *m)'−

S1 ( : , : , i +1)*Ge ( : , ( i −1)* l +1: i * l )*Re ( : , : , i )ˆ−1*Ge ( : , ( i −1)* l +1: i * l )

')ˆ−1*S1 ( : , : , i +1)*F ( : , : , i ) ;

bp ( : , i ) = Kp det ( : , : , i )*Xbar ( : , i )−Kp( : , 1 : i *p , i )*Hp( 1 : i *p , : ) *

Xbar ( : , i ) ;

Ke det ( : , : , i ) = −Re ( : , : , i )ˆ−1*Ge ( : , ( i −1)* l +1: i * l ) '*( eye ( dimxl )+S1

( : , : , i +1)*Gp( : , ( i −1)*m+1: i *m)*Rp ( : , : , i )ˆ−1*Gp( : , ( i −1)*m+1: i *m)'−

S1 ( : , : , i +1)*Ge ( : , ( i −1)* l +1: i * l )*Re ( : , : , i )ˆ−1*Ge ( : , ( i −1)* l +1: i * l )

')ˆ−1*S1 ( : , : , i +1)*F ( : , : , i ) ;

be ( : , i ) = Ke det ( : , : , i )*Xbar ( : , i )−Ke ( : , 1 : i *q , i )*He ( 1 : i *q , : ) *

Xbar ( : , i ) ;

end

%−−−−−−−−−− Calcu la te optimal performance index −−−−−−−−−−−−−−−−%

Jopt c s = 0 ;

f o r i = 1 :N−1

Jopt c s = Jopt c s + 0.5* t r a c e ( S2 ( : , : , i +1)*Gy ( : , : , i )*diag ( [ d iag (W

( : , : , i ) ) ; d iag (Vp ( : , : , i +1) ) ; d iag (Ve ( : , : , i +1) ) ] ) *Gy ( : , : , i ) ') ;

end

Jopt c s = Jopt c s + 0.5* t r a c e ( S1 ( : , : , 1 ) *Xbar ( : , 1 ) *Xbar ( : , 1 ) ') + 0.5*

t r a c e ( S2 ( : , : , 1 ) *P ( : , : , 1 ) ) ;

r e turn ;
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