
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Structure Formation and Diffusive Transport in the Endoplasmic Reticulum

Permalink
https://escholarship.org/uc/item/06h5q55w

Author
Scott, Zubenelgenubi Chippendale

Publication Date
2024

Supplemental Material
https://escholarship.org/uc/item/06h5q55w#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/06h5q55w
https://escholarship.org/uc/item/06h5q55w#supplemental
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Structure Formation and Diffusive Transport in the Endoplasmic Reticulum

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Physics

by

Zubenelgenubi Chippendale Scott

Committee in charge:

Elena F. Koslover, Chair
Nigel Goldenfeld
Padmini Rangamani
Wouter-Jan Rappel
Johannes Schöneberg
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ABSTRACT OF THE DISSERTATION

Structure Formation and Diffusive Transport in the Endoplasmic Reticulum

by

Zubenelgenubi Chippendale Scott

Doctor of Philosophy in Physics

University of California San Diego, 2024

Elena F. Koslover, Chair

The endoplasmic reticulum is a highly conserved organelle throughout the eukaryotes.

The endoplasmic reticulum (ER) forms a vast network of membrane-bound tubules and stacked

sheet-like structures that fill the cell, connecting distant structures like the nuclear envelope,

the plasma membrane and many other organelles such as mitochondria and endosomes. It

plays critical roles in cell signaling (through Ca2+ release), the cellular stress response, lipid

biosythesis and storage, and the production and quality control of secreted proteins.

This work employs a diverse set of modeling tools paired with quantitative image analysis

techniques to better understand the structure-function relationship of the ER. In Chapter 2, we

develop a model that takes into account the micro-scale fluctuations that drive ER motion to

xiii



recreate the large-scale morphology of the ER. Several key geometric features are found to match

the mammalian ER. Analytic calculations, informed by the growth laws of polygons (regions

between tubules) in simulated networks, also recreate observed polygon size distributions and

survival times.

In Chapter 3, we develop propagator-based methods for efficiently calculating search

times and simulating diffusive search and reaction processes on stationary spatial networks.

These powerful methods shed light on several important design choices of intracellular structures

such as the peripheral ER and mitochondrial networks.

In Chapter 4, these techniques are paired with live-cell photoactivation experiments to

explicitly demonstrate how ER network heterogeneity influences protein transport. Through the

use of the aforementioned model for network dynamics, we show that network rearrangements

are too slow to substantially affect protein transport at the several micron scale. Additionally,

we identify the existence of hot-spots within the ER network structure, wherein sparse diffusive

reactants are more likely to encounter one another. Altogether, these results drive forward our

understanding of the ER as a dynamic, structurally-complex hub for the transport and reaction of

biomolecules
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Chapter 1

Introduction

A defining feature of eukaryotic cells is the existence of specialized organelles which

compartmentalize reactions and aid in the storage and transport of essential biomolecules.

This compartmentalization into organelles makes large, complex, highly evolved cell types

possible [1]. One such organelle, the endoplasmic reticulum (ER), is conserved across the

eukaryotes and fills the cell with an interconnected web of membrane-bound tubules (the

peripheral ER), stacked-sheet volumes near the nucleus and other diverse, interspersed, complex

structures (Fig. 1.1A). Bound within the ER membrane is a single, continuous aqueous lumen,

separate from the cytoplasm, with a distinct population of proteins and a high concentration

of Ca2+ ions. With its unique morphology and composition, the ER fulfills diverse functional

roles within the cell. As the first step in the secretory pathway, it is a site for the translation,

quality control and transport of proteins [2]. Via ion pumps and channels, the ER acts as a

reservoir for Ca2+, facilitating intra- and extra-cellular signaling [3, 4]. The ER also synthesizes,

stores and delivers lipids throughout the cell via contacts with other organelles and budding

processes [5, 6]. The ER forms important contact sites with many subcellular structures [7, 8]

and is highly dynamic, allowing it to accomplish a variety of tasks, all while adapting to changing

cellular and environmental conditions [9].

In addition to its essential role in the transport of proteins, lipids and ions, the ER functions

as a quality-control center for newly synthesized proteins destined for secretion [2]. These
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proteins must interact with ER-resident chaperones for proper folding and then locate ER exit

sites (ERES) for transport out of the organelle. The ERES are stable structures budding from the

ER that package secretory cargo into vesicles for delivery to the Golgi apparatus [10, 11, 12, 13].

As there is no established method for active transport within the ER, proteins must diffuse to

find their chaperones and exit sites (Fig. 1.1B). Thus, understanding how the ER’s network

architecture influences particle transport and encounter kinetics is vital for comprehending its

biological functions.

Perhaps due to its omnipresence within the cell, perturbations to ER structure are as-

sociated with a variety of human diseases, most notably, neurodegenerative diseases such as

hereditary spastic paraplegias, amyotrophic lateral sclerosis (ALS) [14], and Alzheimer’s [15, 16].

From these diseases, it is clear that the unique structure of the ER is key to supporting its many

functions within the cell. Specifically how the structure impacts function remains opaque. To

achieve a better understanding of this organelle and its role in health and disease requires quanti-

tative, physical descriptions of structure formation and the effects of network morphology on

biological transport and function, which is the focus of this work.

Previous research has focused on how the ER’s various morphologies [17] arise from

a combination of ER morphogen proteins and membrane mechanics. For example, certain

proteins induce and stabilize the positive curvature of tubules [18, 19], while others maintain the

spacing between sheets [20, 21]. Junction formation is mediated by proteins like lunapark and

the atlastin GTPase family [22, 23, 24]. The relative abundance of junctions, tubules, and sheets

is determined by the concentrations of these curvature-producing proteins and by membrane

tension [20, 25]. Recent models have shown that tuning the proportions of these proteins can

generate a variety of ER morphologies, highlighting the role of membrane curvature and low

tension in forming intricate ER structures [26].

In addition to the effects of morphogen gradients and membrane mechanics, active forces

drive the ER to be highly dynamic. New tubules often form when motor proteins such as

dynein or kinesin-1 bind to the ER and pull out a new tubule while walking along acetylated
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Figure 1.1. Structure and transport in the endoplasmic reticulum. (A) Confocal image of COS7
ER (blue, BFP KDEL) and distribution of ER exit sites (red, mCherry Sec23A). Image courtesy
of Professor Laura M. Westrate, Calvin University. (B) Schematic of an ER junction at the
sub-micron scale. Proteins diffuse through the membrane or lumen of the ER while searching
for binding partners or exit sites.

microtubules [27, 28]. Other mechanisms involve the ER attaching to dynamic microtubule

plus-ends [29] or motile organelles [30, 31, 32]. The inherent membrane tension in the lipid

bilayer of the tubules also leads to junction sliding and loop closure, similar to rearrangements

observed in systems such as foams [33], epithelial cell monolayers [34], and crystal grains [35].

These structural changes can be functionally significant, such as when aiding in the fission of

mitochondria [32] and endosomes [36]. The balance of new tubule nucleation and junction

sliding leads to an adaptive, constantly evolving steady-state structure.

Research has explored the relationship between ER dynamics and structure. For instance,

the movement of ER exit sites along tubules has been modeled as motion along a semi-flexible

polymer [37]. The dynamics of the ER also influence other cellular structures, such as the

distribution of microtubules, which has been shown to be regulated by the motion of ER

junctions [38].

In other systems, such as plant cells [39, 40] and reconstituted lipid-protein systems [41],
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the ER has been shown to behave as a network which minimizes its length over time. Although

these models focused on small ER regions, they provided insights into difficult-to-measure

biophysical quantities such as local membrane tension and the viscoelastic properties of the

cytoplasm. A key aspect of these studies, which we apply to our work, lies in the assumption

that the ER behaves as a network with constant tension propagated along fluid-like tubules. This

approach is distinct from traditional models of intracellular networks (e.g. actin and microtubule

lattices) where filaments are treated as polymer chains with spring-like stretching and bending

energies.

To connect the small-scale dynamics of the peripheral ER to its large-scale structure, in

Chapter 2 we develop a physical model of the ER as an ‘active liquid network.’ Junction mobility

and tubule spawning rate are identified as the two key factors regulating network density. The

balance between tubule creation and annihilation determines the network’s steady-state density

and connectivity profile. Our model reproduces key geometric features of the ER, such as the

distribution of areas between tubules, and shows how the ER’s large-scale structure emerges

from local dynamics. Through static tethering of the ER to the cytoskeleton and withdrawal of

newly growing tubules, cells can tune junction mobility and tubule spawning rates, respectively,

thus affecting steady-state network properties. Using a combination of computational models,

analytical calculations, and quantitative image analysis of living mammalian cells, we identify

physical rules governing ER formation and maintenance at the cellular scale.

Ultimately, it is critical to connect the dynamic structural properties of the ER to its

function as a hub for the storage and diffusive transport of proteins, lipids and ions. This is

a fundamental problem with broad significance: diffusive transport in complex geometries

plays a crucial role in numerous biophysical processes, including transcriptional regulation

in the nucleus [42, 43], reactions within organelles [44, 45], and intercellular communication

through channels and bridges [46]. The morphology of these environments significantly impacts

diffusion-limited reactions. Switching between compact and non-compact search processes,

depending on the domain’s effective dimensionality, changes the kinetics, a concept referred to
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as ‘geometry-controlled kinetics’ [47, 48]. Confined diffusion can lead to unique behaviors in

multimolecular systems, such as ultrasensitivity, bistability, and proofreading [49, 50, 51]. When

domain structures change dynamically, they can also alter diffusion rates [52, 53] and expand

the range of search times for reactions [54].

A key class of these confined diffusion processes occurs on spatial networks, which

include organelle structures [55, 45], neuronal trees [56], and porous media [57, 58]. Spatial

networks, characterized by nodes and edges embedded in physical space, have a limited node

degree because connections are restricted to nearby neighbors [59]. Traditional studies of random

walks on networks often assume uniform hop times, treated either as discrete steps [60, 61]

or constant-rate processes [62, 63]. However, recent advancements have introduced theories

for heterogeneous continuous-time random walks, which account for transition times that vary

across the network [64].

Particle diffusion along edges in a spatial network produces a broad distribution of inter-

node transition times, dependent on edge length [45]. In Chapter 3, we develop mathematical

methods to compute reaction mean first passage times (MFPT) on arbitrary spatial networks,

incorporating diffusion as a physical transport process along edges. Unlike past models that used

a single effective rate constant for node transitions [63, 62], our approach explicitly includes

edge-length-dependent transition time distributions and splitting probabilities, linking local

diffusive dynamics to large-scale transport.

In many reaction-diffusion systems, more than just the mean first passage time is needed

to understand the behavior of interest. Biochemical processes might depend on extreme value

statistics [65] or require consideration of particles that repeatedly return to a target [49]. These

complexities often necessitate stochastic simulations beyond analytical methods. A family

of agent-based simulation methods, known as kinetic Monte Carlo [66], are well-suited for

simulating particle diffusion in complex geometries, as they efficiently manage computational

time by adapting the propagation timestep to local domain structures. We build tools for

simulating diffusive transport informed by this prior research.
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In this work, we introduce new algorithms to quantify target search and reaction kinetics

in spatial networks, accounting for the effects of variable edge-length and connectivity profiles.

We focus on tubular networks similar to those formed by intracellular reticulated organelles

like the endoplasmic reticulum (ER) and mitochondrial networks. Our framework accurately

computes search and encounter time distributions for diffusive particles, using both analytical

and stochastic simulation methods. With these techniques, we explore the notion of optimality in

ER networks, and identify potential design principles dictating the broad dispersal of ER exit

sites for optimal export of proteins. Building upon this, in Chapter 4, stochastic simulations

reveal that ER heterogeneity creates ‘hot spots’ where diffusing reactants are more likely to meet.

In live cells, we show that ER exit sites are frequently located in regions with higher accessibility

due to network connectivity and proximity to the nucleus. Thus, we model the kinetics of various

molecular processes confined within tubular networks, providing a comprehensive understanding

of diffusive transport in these intricate structures.

With these powerful new methods in hand, we can begin to probe how specific structures

in the cell affect the transport of biomolecules, with direct comparison to imaging of the ER

and its resident proteins in living cells. Prior research emphasizes the importance of network

connectivity, which can be influenced by mutations affecting ER morphogens [22, 38, 4]. While

earlier studies primarily examined global network properties like mean first-passage times,

cellular networks are not uniform lattices, and local transport variability can significantly affect

particle encounter rates and distribution within the cell [67].

Chapter 4 focuses on the spatial heterogeneity of the peripheral ER network in mammalian

(COS7) cells and the impact this has on the diffusive transport of proteins. We show that structural

differences within individual ER networks lead to varied diffusive access across different ER

regions. Using live-cell imaging, we demonstrate that photoactivated membrane proteins spread

unevenly to nearby ER areas, consistent with simulations predicting preferential transport to

well-connected regions. We also simulate diffusive transport on the aforementioned model of the

ER as an active liquid network, finding little effect of dynamic ER rearrangements on membrane
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protein distribution. This work highlights the relationship between ER network structure and its

function in regulating diffusion-limited reactions and local protein distribution.

In this dissertation, we explore how the unique structure of the peripheral ER arises from

simple mechanical laws and how these emergent morphological features impact the biological

function of the cell, viewed through the lens of diffusion-mediated transport and reaction

processes. Paired with quantitative analysis of live-cell imaging data, we identify key design

principles connecting the physical laws of pattern formation with biological transport and

regulation of kinetics within cells.
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Chapter 2

The Endoplasmic Reticulum as an Active
Liquid Network

2.1 Abstract

The peripheral endoplasmic reticulum (ER) forms a dense, interconnected, and constantly

evolving network of membrane-bound tubules in eukaryotic cells. While individual structural

elements and the morphogens that stabilize them have been described, a quantitative understand-

ing of the dynamic large-scale network topology remains elusive. We develop a physical model

of the ER as an active liquid network, governed by a balance of tension-driven shrinking and new

tubule growth. This minimalist model gives rise to steady-state network structures with density

and rearrangement timescales predicted from the junction mobility and tubule spawning rate.

Several parameter-independent geometric features of the liquid network model are shown to be

representative of ER architecture in live mammalian cells. The liquid network model connects

the timescales of distinct dynamic features such as ring closure and new tubule growth in the ER.

Furthermore, it demonstrates how the steady-state network morphology on a cellular scale arises

from the balance of microscopic dynamic rearrangements.
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2.2 Introduction

The endoplasmic reticulum (ER) consists of a vast interconnected web of membrane-

bound tubules and sheets in eukaryotic cells. It forms connections with many subcellular

structures [7, 8], synthesizes and delivers lipids to other organelles [6, 5], stores and releases

calcium [3, 4], and serves as a hub for the translation, folding, and quality control of secreted

proteins [68, 2]. The ER is highly dynamic and assumes a variety of structural motifs, which aid

in accomplishing these diverse functional roles and maintaining its interconnection with other

organelles [9].

Prior work on ER structure has focused on how its diverse morphologies (tubules,

junctions, helicoidal ramps, fenestrated sheets, cisternae, etc. [17]) arise from an interplay of ER

morphogen proteins and membrane mechanics. A variety of ER membrane proteins (including

the reticulons and the DP1/REEP/Yop1p family) induce and stabilize the high positive curvature

of tubules [18, 19]. Others (e.g.: Climp63) stabilize the thickness of sheets and tubules [20, 21],

while proteins such as lunapark [22] and the atlastin GTPase family [23, 24, 22] help to form

and maintain junctions. It has been shown that the relative abundance of junctions, tubules and

sheets is determined by a combination of the absolute concentrations of curvature-producing

proteins and membrane tension [20, 25]. In other work, it was found that a diverse set of

ER morphologies can be generated by tuning the proportions of reticulons and lunapark [69].

Recently, a model was developed which highlighted the role of intrinsic membrane curvature

and ultra-low tensions in generating ER tubular matrices, ER sheet nanoholes and other intricate

membrane structures [26]. These studies have helped elucidate the diverse structures observed in

the ER as manifestations of local mechanical equilibrium.

Other work has sought to understand the link between ER dynamics and its structure.

For instance, the anomalous diffusion of ER exit sites (ERES) along tubules is captured by a

model of an individual ER tubule as a semi-flexible polymer [37]. The fluctuations of individual

tubules have also been quantified, with variations in their dynamic behavior associated with
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different regions of the cell [70]. The dynamics of the ER are also implicated in controlling other

subcellular structures; for instance, the motion of junctions may help regulate the distribution of

microtubules within the cell [38].

Prior modeling work on plant cell ER [39, 40] demonstrated how small networks between

persistent points appear to minimize the length of intervening tubules. This is consistent with

observations from in vitro studies of reconstituted lipid-protein systems, where the tension

responsible for rearrangements is theorized to arise from the dimerization of membrane pro-

teins [41]. Although these studies focused on small regions of the ER with only a few tubules,

quantification of such minimal networks enabled estimation of biophysical quantities such as

local membrane tension and viscoelastic properties of the cytoplasm. Notably, the ER was treated

not as a polymer chain with spring-like stretching or bending energies, but rather as a network

with constant tension along effectively fluid tubules, an assumption which we also adopt in this

work.

The tubular network of the peripheral ER (Fig. 2.1A) undergoes dynamic rearrangements

(Fig. 2.1B, Video S2.1) that include two frequently observed processes. First, there is the

creation of new tubules, which branch from and remain connected to the existing network.

Most commonly, tubule creation occurs when cytoplasmic dynein or kinesin-1 motors bind

to the ER and walk along acetylated microtubules [27, 28]. Other mechanisms of new tubule

growth include attachment of the ER to the dynamic plus-ends of microtubules, deemed TAC

events [29], or to motile organelles such as trafficking endosomes [30], lysosomes [31] and

mitochondria [32]. The second class of dynamic ER rearrangements arises from the inherent

membrane tension in the lipid bilayer of the tubules. This tension induces junction sliding and

neighbor rearrangements, akin to the T1 rearrangements observed in foams [33], leading to a net

decrease in network edge length [71]. As a result, loops of tubules can shrink until they vanish,

often referred to as loop or ring closure. Certain loop closure events play important functional

roles in the fission of mitochondria [32] and endosomes [36], while other loop closures are rapid

and do not appear to be associated with other organelles.
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Similar structural rearrangements, such as T1 events and ring closures, have been ob-

served in other physical systems characterized by interfaces under an effective tension. These

include foams [72, 73], microemulsions [74, 75], crystal grain growth in metals [76, 35], and

patterns formed by mass-conserving reaction-diffusion systems [77, 78]. The evolution of do-

main boundaries in these systems is driven by a curvature-dependent effective pressure and a

characteristic rate of material transport across the boundary. The tendency of large domains to

grow at the expense of small ones leads to domain coarsening over time with a characteristic

scaling [33, 79].

Other space-tiling systems, such as epithelial cell monolayers, do not coarsen, but also

undergo boundary rearrangements driven by a combination of interface tension and domain

pressure [34]. Such monolayers exhibit T1 junction rearrangements, ring closure due to cell

extrusion, and domain splitting arising from cell division. Domain splitting is also observed

in ER networks, resulting from the spawning and growth of new tubules. However, the ER

differs from previous classic models of foams, crystal grains, and monolayers due to the ‘empty’

nature of the domains between tubules, with no substantial resistance expected to the exchange

of cytoplasm between neighboring domains.

With the aim of connecting the small-scale dynamic rearrangements of the peripheral

ER to its large-scale topological structure, we develop a simple physical model of the ER as

an ‘active liquid network.’ We first identify junction mobility and tubule spawning rate as the

primary regulators of steady-state network density within the liquid network model. The balance

of creation and annihilation of tubules leads to a network structure with a characteristic density

and connectivity profile. Key geometric quantities from the ER of living cells, such as the

distribution of areas between tubules and their shapes, are reproduced by this simple model.

Liquid networks with physiological densities are also found to rearrange at a rate consistent with

the living ER. Intriguingly, extracted laws for growth and shrinking dynamics in simulations are

sufficient to recapitulate the distribution of areas, thus highlighting how large-scale structure

emerges from local dynamics. Cells may modulate these properties by tuning their effective
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junction mobility or tubule spawning rate. This could be achieved by static tethering of the

ER to the cytoskeleton and other organelles and by withdrawal of newly growing tubules in

‘catastrophe’ events whose rate is quantified via semi-automated tracking in COS7 cells. Through

computational models, analytic calculations, and quantitative image analysis of the peripheral ER

in living mammalian cells, we identify physical rules governing its formation and maintenance

on a cellular scale.

2.3 Results

2.3.1 Emergent network topology from tension and growth

Inspired by the dynamic processes observed in living animal cells and prior descriptions

of small ER subregions as length-minimizing networks [39, 40, 41], we build a physical model

of the large-scale mammalian peripheral ER as an active liquid network. Here, we focus on

two-dimensional networks, relevant for adherent mammalian cells such as COS7 cells, whose

thin periphery typically accommodate only a single layer of ER tubules [80]. The 2D nature

of these ER networks is evidenced by the dearth of degree four junctions visible in planar

projections of the network (Fig. 2.1A). We separately explore the extension of the model to three

dimensions in SI Appendix (Fig. S1). The liquid network is composed of edges which transmit a

membrane tension force between neighboring junctions. The membrane tension and tubule radii

are assumed to be constant throughout the network.

In the low Reynolds-number environment of the cytoplasm, the motion of junction node

i, located at position r⃗i, is assumed to obey an overdamped Langevin equation (Fig. 2.1C):

d⃗ri

dt
=−b∇ f (⃗ri)+

√
2Dη⃗(t). (2.1)

Here, b is the junction mobility (units of µm/s), f (⃗ri) = ∑
d
j=1

∣∣⃗ri − r⃗ j
∣∣ is the total tubule length

connecting junction i with its neighbors at positions r⃗ j, D is the junction diffusivity, and η⃗(t) is

a Gaussian distributed random noise term with zero mean and unit variance in each dimension.
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Figure 2.1. The dynamic structure of the endoplasmic reticulum is represented by a liquid
network model. (A) Confocal image of COS7 cell expressing fluorescent endoplasmic reticu-
lum (ER) marker (KDEL mcherry), highlighting the peripheral ER network morphology. (B)
Montage from same cell line illustrating the spawning of a new tubule (red arrow) and loop
closure events (yellow and green shaded regions). Size of each image is 5.0×5.0 µm with a
time step of 0.6 s between each frame. (C) Physical model of junctions in a liquid network. A
length-independent tension force (red) and a Brownian force (blue) combine to define junction
velocities (black). (D) Possible rearrangements within a liquid network include junction sliding,
neighbor swapping and rearrangement, loop closure and tubule spawning, growth, and fusion.
(E) Representative simulated liquid network evolves from initially uniform honeycomb lattice to
a random structure, with characteristic steady-state density. Region shown is a small segment of
a much larger domain.

The first term describes the deterministic response to length-minimizing tension forces along

the edges, and the second term describes a random Brownian force meant to capture the noisy

environment of the cytoplasm.

With the above laws of motion, liquid network junctions are frequently pulled into close

contact. Within some threshold distance of one another, junctions may swap neighbors, allowing

for T1 transitions that lead to a decreasing edge length. Model results are not sensitive to the

choice of threshold distance (SI Appendix, Fig. S2). Example neighbor rearrangements are
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shown in Fig. 2.1D. Occasionally, loops may form due to these neighbor swapping events,

wherein two junctions are doubly-connected. These loops contract over time, due to there being

twice as much tension pulling them together as there is pulling them apart. The network is not

allowed to rupture or fragment, a process which can be induced in vitro [81] but is not observed

in our data, potentially due to the high membrane tension in the ER [41].

In addition to the tension and diffusion driven motion of junctions, new tubule nucleation

from existing tubules is modeled as an exponentially distributed random process with rate k

(tubule spawning rate, units of µm−1s−1). Newly spawned tubules grow with a velocity v (µm/s),

until coming into contact with an existing tubule, at which point the growth ceases and the

tubules fuse, forming a stable junction.

In the endoplasmic reticulum, the velocity of growing tubules has been measured to

be on the order of 1 µm/s [28, 82]. We assume that the velocities of growing tubules are fast

compared to the junction mobility (v ≫ b), so that a newly spawned tubule will span across a

polygon before it substantially changes its shape. This assumption, justified via subsequently

described measurements, allows us to treat tubule growth as nearly instantaneous. Additionally,

the diffusive motion of junctions is assumed to be relatively small compared to experimentally

observed tension-induced sliding events. With these assumptions, the behavior of the liquid

network model can effectively be described by two parameters: the junction mobility, b, and the

tubule spawning rate, k.

We simulate active liquid networks for a variety of parameter values, by integrating Eq. 2.1

forward in time (details in SI Appendix Methods). As seen in Fig. 2.1E, an initially uniform

honeycomb network develops into a random network over time. The network continuously

evolves, but after a transient initial period, the tubule density remains relatively unchanged. Thus,

a steady state emerges due to the competing forces of junction motion controlled by edge tension

and novel tubule spawning triggered by a random Poisson process.
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Figure 2.2. Steady-state network density and rearrangement timescales are set by two parameters.
(A) Junction mobility and tubule spawning rate set the length and time scales (ℓ, τ respectively).
(B) Network length over time for nine separate simulations, each starting from an initially sparse
honeycomb network enclosed in a circle of radius 15 µm. The steady-state network length is
set by ℓ (color) and the time to reach steady state is set by τ (line style). Other parameters
are D = 10−5 µm2/s and v = 1 µm/s. (C) Timescale to approach steady state, extracted via
exponential fit of curves as in (B) is proportional to the intrinsic network timescale τ . (D) The
mean area of polygons in a liquid network is proportional to ℓ2 = b/k. Mean polygon area in
COS7 cells is indicated by dotted blue line; shaded region gives inter-cell standard deviation
(N = 7 cells). Inset: illustration of polygon extraction, different colored regions correspond
to individual polygons. (E) Measured spawning rates from 19 COS7 cells, with mean and
inter-cell standard deviation of 8.5± 0.8× 10−3 µm−1s−1. Scatter data for (C), (D) is from
simulations with mobility ranging between 0.001−0.1 µm/s and spawning rate ranging between
0.0005−0.05 µm−1s−1.

2.3.2 Steady-state density and timescales of liquid networks

Because the liquid network model is governed by only two parameters, dimensional

analysis indicates there is a single characteristic length scale (ℓ =
√

b/k) and timescale (τ =

1/
√

bk) that define its behavior. Thus, changing the ratio of b and k generates networks with
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varying steady-state density and changing the product of b and k affects the dynamics of the

network (Fig. 2.2A, Video S2.2). To illustrate this effect, the results from nine simulations

of liquid networks are shown in Fig. 2.2B. Each of the nine simulations has the same initial

condition but a different combination of ℓ and τ .

The total network length approaches a steady-state value over time, and can be fit to an

exponential of the form f (x) = c
(
1− exp

(
t/τsteady

))
. The parameter τsteady gives an estimate

of the time for liquid networks to approach steady state. This extracted time scales linearly with

τ over a wide parameter range, as expected for simulations with a single dominant timescale

(Fig. 2.2C).

To measure steady-state density one can consider the area of polygons (minimal loops)

within the network. The mean area of these polygons scales linearly with ℓ2 = b/k (Fig. 2.2D).

It is therefore possible to construct networks with the same density as observed in living cells

simply by tuning ℓ. From a linear fit of the mean area across a range of b and k values we obtain

⟨A⟩ ≈ 0.29b/k.

The overall steady-state density of liquid networks can be captured by a simple equation

for the total network length as a function of the new tubule spawning rate k and mobility b. For

simplicity, we consider a network of hexagonal polygons. The total network length L can either

grow via spawning of new tubules across the polygons, or decrease due to junction sliding:

dL
dt

= kLλ
√

3− γbn. (2.2)

Here, λ is the average edge length,
√

3λ is the distance between parallel edges of a hexagon, n

is the total number of junctions in the network, and γb describes the average sliding speed of a

junction. At each individual junction, the value of γ must be between 0 and 3 depending on the

angles between the adjacent tubules. The speed of growing tips is assumed to be sufficiently fast

that growth events are instantaneous and there is no effect from the diffusion of junctions.

The total network length can be expressed in terms of the average edge length (λ ) and
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the number of junctions (n) using the fact that the number of edges (e) in a hexagonal lattice is

e = 3
2n. Thus, L = 3

2λn and at steady state dL
dt = 0 gives an average area of:

⟨A⟩= 3
√

3
2

λ
2 = γ

b
k
. (2.3)

This predicted scaling of mean area with b/k aligns with expectations from dimensional analysis

and agrees with the fit of simulation results. Notably, an analogous scaling law relating network

dynamics and the average edge length is also observed for three-dimensional liquid network

simulations (see SI Appendix, Fig. S1). However, such 3D networks also depend on an additional

length scale (the contact radius within which a growing tube is capable of fusing into the network),

which modulates network pore size and density.

The new tubule spawning rate k can be extracted directly from observations of ER

dynamics in live COS7 cells (Fig. 2E, details in SI Appendix Methods). Together with the

measured polygon area, this allows the effective mobility of the ER junctions in COS7 cells

to be estimated as b = ⟨A⟩k/γ = 0.03 µm/s. We note that the relevant mobility is indeed much

slower than the tubule growth speed (b ≪ v), justifying our assumption of a single dominant

length and time scale. One advantage of this approach is that tubule spawning rate is simple to

directly measure from experimental data whereas junction mobility is a more opaque quantity.

Thus, it is possible to calculate ER junction mobility via mean polygon area and spawning-rate

measurements by taking advantage of the steady-state properties of liquid networks.

2.3.3 Scale-invariant network structure reproduces ER morphology

While the two parameters of the liquid network model set length and time scales, any

dimensionless metric of network structure must be parameter-independent. In particular, we

consider the full distribution of polygon areas for a range of ℓ values (Fig. 2.3A). As the ratio of

mobility to spawning rate increases, the distributions shift to the right, indicating an increase

in large areas and a decrease in small areas. However, the overall shape of the distribution
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Figure 2.3. Scale-invariant liquid network model reproduces peripheral ER morphology. (A)
Distribution of polygon areas in simulated liquid networks for a range of b/k values. Bin sizes
are logarithmic. Inset: distributions collapse onto a single curve when normalized by mean
area, revealing scale-invariant behavior of liquid networks. (B) Distribution of normalized
polygon areas from the ER networks of COS7 and U2OS cells (yellow and pink, respectively)
exhibit similar scaling to simulated liquid networks (black). For comparison, the distribution
of areas for Voronoi networks and experimental measurements of a two-dimensional dry foam
(data from [83]) are also shown (purple and blue lines). Example networks in matching color
below. (C) Mean and standard deviation of angles between 3-way junctions in liquid networks
(black) and the COS7 ER (yellow). (D) Mean and standard deviation of aspect ratio (shortest
dimension/longest dimension) in liquid networks (black) and the COS7 ER (yellow).

remains unchanged. At low areas, the log-binned distribution scales as ∼
√

A and at high

areas it decays exponentially. When normalized by the mean area, the distributions collapse

onto a single universal curve (Fig. 2.3A, inset), highlighting the scale-free nature of the model.

Thus, increasing mobility is equivalent to “zooming in” on a patch of network, while increasing

spawning rates leads to a denser network, or “zooming out.”

Notably, the parameter-independent shape of the polygon area distribution for liquid

networks provides a good approximation to that of the ER in living cells. In Fig. 2.3B, area

distributions extracted from two different cell types commonly used to study the peripheral
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ER are shown (details in SI Appendix Methods). Both COS7 and U2OS cells (monkey kidney

and human osteosarcoma, respectively) exhibit remarkably similar scaling, collapsing onto a

single curve. The exponential drop-off at large areas is clearly conserved across experiments

and simulations. The experimental measurements exhibit a slight enhancement of small-area

polygons as compared to liquid network simulations. However, limitations in imaging resolution

and segmentation prohibit the extraction of a reliable power-law for small-area scaling in the

distribution.

The distributions for two other families of network are provided in order to demonstrate

that the close match to ER morphology is not exhibited by other commonly studied 2D networks.

The area distribution of simulated Voronoi networks (purple line) is comparatively narrow and

sharply peaked around the mean. Experimental imaging data of a two-dimensional dry foam [83]

(blue line), shows that the area distribution of foams is broader than Voronoi networks but still

narrower than the ER and liquid networks. The foam also exhibits an exponential drop-off at

large areas but has a linear scaling in the logarithmic distribution of small-area polygons. We

note that extending the liquid network model to three dimensions yields a distinctly different

scaling for the size distribution of small pores, akin to that observed in foams and random-line

networks (SI Appendix, Fig. S1).

For 2D liquid networks, it is possible to estimate the functional form of the liquid network

area distribution (black line) using only the rules for polygon growth and splitting, as described

in the following section.

Other metrics of shape further confirm the similarities between the liquid network model

and experimental ER networks. The distribution of angles between neighboring 3-way junctions

is centered at 2π/3 or 120◦. This is a universal property of two-dimensional networks composed

of degree 3 junctions. The standard deviation of angles at 3-way junctions is also shown to be

similar for simulated and ER networks across a wide range of parameter values (Fig. 2.3C).

Finally, the aspect ratio of polygons (ratio of shortest dimension to longest dimension) is

calculated in both simulated and experimental networks. This provides another dimensionless,
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scale-free measure of shape: the mean and standard deviation of polygon aspect ratio are constant

over a wide range of parameter values and approximately match experimental measurements

(Fig. 2.3D). Notably, the realistic variances of the aspect ratio and junction angles arise from

heterogeneity in polygon shapes and are not related to the Brownian forces on the junctions (SI

Appendix, Fig. S2A-C), which are taken to be very small in the simulations.
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Figure 2.4. Dynamics of liquid networks predict ER rearrangement timescales and give rise to
emergent polygon area distribution. (A) Confocal images of COS7 ER with 1s interval between
first and last frames (green, pink). Extracted networks overlaid in matching colors. White arrows
indicate minimal distance from meshed points on final network (pink) to meshed points on
the initial network (green). (B) Left panel: edge mean minimal distance (EMMD) over time
for 16 peripheral ER networks of COS7 cells. Right panel: EMMD of liquid networks with
τ = (bk)−1/2 varying across one order of magnitude and fixed

√
b/k = 2 µm. (C) Exponential

timescale for EMMD to approach steady-state scales with τ for liquid network simulations.
Yellow lines show mean value and intercellular standard deviation for COS7 cells. (D) Example
polygon tracking of experimental data to quantify polygon growth and shrinking rates. Each
frame is 5.0× 5.0 µm with a timestep of 2 s. Red and green arrows indicate shrinking and
growing polygons, respectively. (E) Non-dimensionalized growth rates normalized by mean
area and network timescale for 10 liquid network simulations. Green curve indicates mean (and
standard error of the mean) within coarse bins of normalized area. Dotted black curve indicates fit
to Eq. 2.4, giving β = 0.78, g = 1.69, h = 1.85. (F) Mean growth rates normalized by mean area
and their dependence on relative polygon size from 7 experimental COS7 peripheral ER networks.
Green curve indicates mean (and standard error of the mean). Dotted black curve indicates fit
to Eq. 2.4, with β fixed at 0.78 giving g/τ = 0.018 s−1, h/τ = 0.015 s−1. (G) Polygon growth
timescale (defined as τ/g) from 7 COS7 cells agrees with the simulated timescales extracted
from simulations. (H) Polygon survival times normalized by τ for 10 liquid network simulations.
Green curve indicates mean (and standard error of the mean) within bins of area. Black curve
indicates theoretical prediction. Inset: representative trajectories for shrinking and splitting
polygons. (I) Distribution of normalized polygon areas in a simulated liquid network (black)
compared to analytically approximated area distribution (pink). Vertical dashed line shows A∗,
where small-area and large-area solutions are joined.
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2.3.4 Model dynamics determine network rearrangement rates

Having demonstrated that the liquid network model approximately matches the steady-

state morphology of ER networks, we next proceed to compare the dynamics of simulated and

observed network structures. We consider two metrics for the dynamic rearrangement of the

networks, demonstrating how parameters extracted from measuring polygon size and new tubule

spawning enable accurate prediction of the time-evolution of ER network structure.

Edge mean minimal distance

To quantify the motion of individual tubules over time and the resulting changes in

network structure, the edge mean minimal distance (EMMD) is calculated between the first

and all subsequent networks, as described in SI Appendix Methods. Briefly, the network is

meshed and for each point on subsequent networks, the minimal distance to a point on the

starting network is found; these minimal distances are averaged to find the EMMD. The EMMD

grows over time with an initial jump between the first and second frames that can be attributed to

localization error and network segmentation artifacts (Fig. 2.4B, left panel). The same calculation

is performed for simulated liquid networks with a matching average polygon size and a range of

timescales.

Exponential fits of the EMMD growth over time give an effective timescale for the

rearrangement of the network. As expected, this rearrangement time scales linearly with the

intrinsic timescale τ of the simulations (Fig. 2.4C). The observed rearrangement timescale for

the COS7 ER is 35±11 s, implying that during this time edges are significantly displaced from

their original location. This timescale is of similar magnitude to the time required for the ER as a

whole to explore a large fraction of the cytoplasm [84]. Notably, this rearrangement timescale is

consistent with the simulation model, given the parameters b and k extracted from measurements

of polygon area and tubule spawning rate. Thus, the liquid network model makes it possible to

connect two seemingly independent dynamic processes—new tubule growth and rearrangement

of existing edges.
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Polygon growth rates

An additional metric to quantify the dynamic behavior of liquid networks arises from

considering the growth and shrinking rates of polygons (independent of splitting events due

to new tubule growth). Polygons are tracked in time and space using conventional particle

tracking software [85] (details in SI Appendix Methods). We calculate the normalized growth

rate for all tracked polygons in several COS7 ER networks and simulated liquid networks. The

normalized growth rate is defined to be the time-derivative of each polygon’s area scaled by

the average polygon area in that cell. For simulated networks, the growth rate is rescaled by

the characteristic model timescale τ = (bk)−1/2, allowing simulations with different parameter

values to be analyzed together. By determining the relationship between growth rate and polygon

area the underlying laws governing the dynamics of the network can be probed.

A characteristic behavior of liquid networks is the growth of large polygons and the

shrinking of small ones (Fig. 2.4E). This is similar to von Neumann’s law for foams, which

dictates that polygons with more than 6 sides grow while those with fewer sides shrink [72]. In

liquid networks, as in foams [33] and crystal grain boundaries [35], polygons that are substantially

larger than average tend to have more sides, as a greater number of average-sized neighbors

can fit around them (SI Appendix, Fig. S3A). Consequently, such above-average polygons tend

to have internal angles greater than 120◦, causing them to grow under tension. As noted in SI

Appendix, the growth and shrinking rates for a regular n-gon are expected to be proportional to

its perimeter, which scales roughly as
√

A. For large polygons, the number of neighbors should

also increase as the polygon grows, giving a steeper dependence of the growth rate on area. We

fit the average simulated growth rates to the following expression: (Fig. 2.4E):

τ
1
⟨A⟩

dA
dt

= g
(

A
⟨A⟩

)β

−h

√
A
⟨A⟩

, (2.4)

where the prefactor g encapsulates the rate of large polygon growth and h describes the rate of
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small-polygon shrinkage. We note that the above equation constitutes an approximate ansatz

that describes the distinct dynamic behavior of polygons at the extremes of the area distribution.

From the fitted function, we can extract the typical rate kgrow = g/τ for the growth of large

polygons.

When tracking polygons in images of live ER, the average growth rate is also negative

for small polygons and positive for large ones, as in the liquid network model. Due to the limited

data at small polygon areas, we fix the value β = 0.78 as fitted for simulated networks, and

fit the remaining coefficients in Eq. 2.4 to the experimental data (Fig. 2.4F). This enables the

extraction of a growth rate for large polygons, in real time units. As shown in Fig. 2.4G, the

estimated growth rate for COS7 ER falls within range of the predicted value for liquid networks

with the appropriate timescale τ . Thus, by measuring the average polygon area and rate of new

tubule spawning (to set parameters b,k), the liquid network model makes it possible to predict

the typical growth rate of large polygons in the ER network, thereby connecting distinct dynamic

processes.

These results demonstrate that liquid networks are not only able to replicate key steady-

state structural features but also capture the rearrangement timescales of living ER networks,

providing a connection between morphology and tubule dynamics.

2.3.5 Steady-state structure emerges from polygon dynamics

The dynamic behavior of network polygons can be abstracted still further by considering

them as a population of individual aspatial entities capable of growing, shrinking, and splitting

(SI Appendix, Video S2.3). The drift velocity of polygon areas v(A) = dA/dt is set by Eq. 2.4.

The rate of splitting is expected to be proportional to the perimeter of a polygon, which scales

as the square root of the area: ksplit = k̂
√

A. This simplified description neglects noise in the

polygon trajectories, assuming the dynamics of each is consistent with the average behavior of

the population.
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Polygon survival times

The normalized area of a given polygon [Â(t) = A(t)/⟨A⟩] can be treated as a determin-

istically growing or shrinking quantity, computed through integration of Eq. 2.4. The polygon

will grow if its initial normalized area is above the cutoff value of Âc = (h/g)1/(β−1/2) and will

shrink otherwise. The polygon trajectory is terminated by a stochastic event with rate ksplit.

For a shrinking polygon with initial area Â0, we can compute the time to closure as

t∗ =
∫ Â0

0
−dÂ
v(Â)

. The survival probability S(t) to time t < t∗ is given by

S(t) = e−k̂
√

⟨A⟩
∫ t

0

√
Â(t ′)dt ′. (2.5)

and the average survival time can be found as

τ = t∗S(t∗)−
∫ t∗

0
t ′∂t ′S(t

′)dt ′ =
∫ t∗

0
S(t ′)dt ′. (2.6)

For growing polygons, an analogous expression for the average survival time is given by replacing

t∗ → ∞. The resulting estimate for the survival time approximately matches the behavior of

polygons in liquid network simulations (Fig. 2.4H). Notably, polygons with intermediate areas

have the longest survival time because they are both slow to shrink and also have a low splitting

rate.

Because this simplified model of polygon dynamics does not incorporate stochastic

noise in the trajectories, the approximated survival times tend to be slightly over-predicted. In

simulations, some polygons with area below Âc may nevertheless be growing and some larger

polygons may be shrinking. As a result, polygons spend less time trapped in the intermediate-area

state where deterministic dynamics are very slow and are more likely to fluctuate to a more

extreme small or large area that quickly leads to a shrinkage or a splitting event, thereby reducing

the survival time.
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Steady-state area distribution

Making the same approximation of deterministic dynamics for the population of polygon

areas, we define P(A) as the area distribution function, whose steady-state form must encompass

a balance between small polygons disappearing due to shrinking and large polygons splitting

into new ones.

In the limit of very small areas, the formation and disappearance of polygons due to

splitting is negligible compared to the flux associated with polygon shrinking (SI Appendix).

The overall rate of polygons disappearing when their area shrinks to zero can be estimated as:

J0 = lim
A→0

v(A)P(A) = lim
A→0

h
τ
⟨A⟩1/2√AP(A). (2.7)

Because this flux must be a finite non-zero value, the small-area limit of the distribution is set to

P(A)→ c1/
√

A, where c1 is a constant. A logarithmic transform gives the scaling P(logA)∼
√

A,

as observed in Fig. 2.3A.

In the limit of very large polygons, the distribution evolves due to area growth and

splitting, and the steady-state form can be found by solving the resulting equation:

∂P
∂ t

=− ∂

∂A
[v(A)P]− k̂

√
AP = 0 (2.8)

P(A)→ c3c1A−β e−c2Az
(2.9)

where z = 3
2 −β , c2 =− k̂⟨A⟩β−1

gz , and c3 is a constant.

In order to construct a full approximate distribution, the two limits for small and large area

are married together at some intermediate value A∗, thereby enforcing a value for the coefficient

c3 = (A∗)1−z exp(c2A∗z). The coefficient c1 is obtained by normalizing P(A). Furthermore,

the total rate at which polygons disappear (J0) and the rate at which new ones are produced

(Jsplit =
∫

∞

0 k̂
√

AP(A)dA) must be equal at steady state. This constraint fixes the transition value

A∗ ≈ 0.12b/k.
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These calculations lead to a predicted average polygon area ⟨A⟩ ≈ 0.23(b/k), similar to

the fitted relationship in Fig. 2.2D. Furthermore, the overall distribution of polygon areas, with a

polynomial scaling at small A and an exponential scaling at large A, approximately reproduces

the observed distribution from liquid network simulations (Fig. 2.4I). We note that the only

fitting parameters employed in this analysis are the values of g,h,β in the expression for polygon

growth rates as a function of area (Eq. 2.4). Thus measurement of polygon dynamics can be

leveraged to approximately predict the steady-state architecture of the liquid network as well as

the ER network structure in live cells.

2.3.6 Pinning to static structures increases network density

We have shown how the structure and dynamics of liquid networks are governed by two

parameters, the junction mobility and tubule spawning rate. In the next two sections, we explore

how the cell effectively controls these parameters to modulate ER properties, first examining

how junction mobility can be tuned by tethering of the ER to static structures.

The ER exists within the crowded, complex environment of the cytoplasm. It is pinned

to the cytoskeleton via contacts with microtubules and actin filaments [86, 87]. The ER also

forms critical contact sites with mitochondria [28, 32, 88], the plasma membrane [89], the

Golgi [90, 91], endosomes [30, 36] and other organelles [7]. Quantification of ER network

dynamics in plant cells has indicated that certain points along the network remain persistent

over minute-long timescales [39]. To determine the effect of connections to static structures, we

introduce a process for temporarily immobilizing junctions in liquid networks via pinning (rate

kp). An unpinning process (rate ku) allows for a steady-state number of pins (Video S2.4). The

ratio np = kp/ku sets the average number of pins in the model. We analyze systems with variable

pin densities and with a wide range of pin persistence times.

To begin, we find how mean area depends on both junction mobility and pin density,

calculated as np divided by total simulation area (Fig. 2.4A). For a fixed mobility, increasing the

density of pins leads to a denser network with smaller mean areas. This effect is most pronounced
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Figure 2.4. Tethering to static structures reduces effective mobility and increases network density.
(A) Dependence of mean area on mobility and pin density. Dashed green line indicates contour
corresponding to mean COS7 area, with shaded green region indicating standard deviation across
all cells (N=7). Inset depicts an example 10×10 µm snapshot of a liquid network with pinned
nodes highlighted in red. (B) Effective mobility, defined as beff = ⟨A⟩k/γ , as a function of pin
density for different mobilities. (C) Mean polygon survival time for simulations with and without
pinning. Yellow curve: no pinning, varying node mobility b (bottom axis). Pink curve: different
pin densities (top axis), with constant mobility b = 0.02 µm/s, plotted against the effective node
mobility beff (bottom axis). Matching effective mobilities gives similar results with and without
pinning. Error bars indicate standard error of the mean. (D) Reversible pinning leads to denser
networks, shifting the area distributions. Inset: normalized area distributions collapse to a single
curve for all pin densities. (E) Aspect ratio is unchanged across a range of pin densities. (F)
Mean area remains constant across a wide range of pin lifetimes. All results are with a tubule
spawning rate of k = 0.005 µm−1s−1.

for larger mobilities, leading to a steep decrease in mean area as pin density increases. The

contour corresponding to the average area across COS7 cells is shown in green, indicating a

wide range of possible mobility and pin density combinations in experimental networks.

The overall effect of pinning is to reduce the rate at which the network can relax and

rearrange. For any given pin density, we can define an ‘effective mobility’ (beff = ⟨A⟩k/γ , with

γ = 0.29) by finding the value of b that would give the same average polygon area in the absence

of pinned points. At low pin density, beff ≈ b, but as the pin density grows, the effective mobility
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steeply decreases (Fig. 2.4B) as the rearrangement of the network is slowed down. Notably, the

effect of pinning on the survival time of individual polygons is almost completely encompassed

by the accompanying change in effective mobility (Fig. 2.4C).

In liquid networks, pinning to static structures or other organelles may thus limit network

mobility and increase the corresponding density of ER network tubules in critical regions of the

cell. For instance, this mechanism could aid the coalescence of ER around mitochondria contact

sites.

There is little effect from pinning beyond tuning the density of the network. Area

distributions shift as a function of pin density, but when normalized by mean area, the data

collapse onto a single curve (Fig. 2.4D) just as in the case without pinning (Fig. 2.3A). There

is also no effect on the mean and variance of polygon shape, as measured by aspect ratio

(Fig. 2.4E). Furthermore, altering the pinning and unpinning rates (thus probing a wide range of

pin lifetimes while maintaining a fixed pin density) has no effect on the steady-state structure of

liquid networks (Fig. 2.4F).

2.3.7 Tracking tubule spawning in COS7 ER reveals rate of catastrophe

Another mechanism through which cells can modulate ER network properties is by

tuning tubule spawning rate. Within living cells, newly spawned tubules often cease growth

and retract, a process we refer to as ‘catastrophe’. Independent of the underlying mechanism of

growth (e.g. ER sliding or TAC events [27, 28, 29]), we quantify ER tubule catastrophe rates in

COS7 cells, and explore the effect of catastrophe on network structure.

The tips of newly spawned tubules are tracked within COS7 cells (details in SI Appendix

Methods). In addition to positional data, it is also recorded whether the growth is successful in

fusing with a neighboring tubule (fused) or if it ultimately retracts (not fused). Using the position

of tracked tips, the average velocity until fusion or until the time of retraction is calculated. The

distribution of growth speeds is broad (Fig. 2.5A), with an average and standard deviation of

1.09±0.75 µm/s, consistent with previous measurements [28, 82]. No significant differences in
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the distribution are observed between tubules that successfully fuse and those that do not.

We next calculate the gap size that growing tubules must traverse in order to fuse, a

quantity which differs between successful and unsuccessful spawning events (Fig. 2.5B). Here,

gap size is the approximate diameter of the enclosing polygon (d = 4A/P, with A area and

P perimeter, an exact formula for the inscribed diameter of regular polygons). On average,

successful growth events traverse shorter gap sizes (2.1± 0.5 µm) than unsuccessful events

(2.4± 0.5 µm). This effect can also be visualized by considering the success rate of newly

spawned tubules, which decreases as a function of gap size (Fig. 2.5C).

An estimate for the catastrophe rate in living ER networks can be extracted by fitting the

experimental success rate to S(d) = e−αd/v (Fig. 2.5C). Here, d is the gap size, v = 1.1 µm/s is

the average velocity of all measured growth events, and α is the catastrophe rate and fit parameter.

This gives αER = 0.25±0.04 s−1.

To explore how these events affect the steady-state structure of the network, we introduce

a constant-rate (Poissonian) catastrophe process for each growing tubule in the liquid network

simulations. A single parameter (α) controls the rate at which a growing tip ceases forward

motion and begins to retract due to membrane tension. Simulations are performed with experi-

mentally relevant choices for mobility and spawning rate (b = 0.02 µm/s, k = 0.005 µm−1s−1)

across a wide range of catastrophe rates, and the steady-state structural properties of the network

are analyzed.

At small catastrophe rates, the mean area of polygons in the network remains relatively

unchanged from the case with no catastrophe (Fig. 2.5D). As the catastrophe rate increases, it

becomes more likely that growing tubules will retract before fusing, especially across larger gaps.

Thus, there are fewer splitting events of large areas, leading to an increase in mean area. The

larger average gap size, in turn, leads to even fewer fusion events. As the catastrophe rate grows

sufficiently large, the persistence length of growth events becomes smaller than the average gap

they must traverse. Mean area is then expected to diverge beyond a critical catastrophe rate, as

confirmed by simulations (Fig. 2.5D).
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Figure 2.5. Growing tubules undergo catastrophe events that alter polygon size distributions.
(A) Velocity distributions of growing tubules that lead to both successful and unsuccessful
fusion. Mean of each distribution indicated by dashed line. (B) Distribution of gap sizes across
which tubules are growing for both successful and unsuccessful fusion events. Mean of each
distribution indicated by dashed line. p = 0.001 for a one-sided Student’s t-test. (C) Success
rate as a function of gap size d, with fit to S(d) = e−αd/v indicated by dashed line. (D) Mean
area grows as a function of catastrophe rate. Black line marks analytic prediction. Dashed
vertical line shows predicted critical rate beyond which mean areas diverge. (E) Normalized area
distributions for liquid networks with increasing catastrophe rates. High catastrophe rate leads to
an enrichment of both small and large areas.

The average effect of catastrophe on steady-state structure in liquid networks can be

analytically approximated by modifying Eq. 2.2 for the total network length to incorporate the

success rate S(d) of new growth events:

dL
dt

= kLλ
√

3e−
√

3αλ/v − γbn. (2.10)

At steady state, this reduces to the following transcendental equation for λ ,

λ
2e−

√
3αλ/v =

2γb
3
√

3k
. (2.11)
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The derivative of λ with respect to α approaches infinity at αc =
1
e (2

√
3k/γb)1/2, indicating that

no finite solution is possible above this critical catastrophe rate. For the simulation parameters

used in Fig. 2.5D, the critical value is given by αc = 0.64 s−1. Solving for λ numerically,

the polygon mean area can be found as a function of catastrophe (black curve in Fig. 2.5D).

The divergence of average area with increasing catastrophe rate is successfully predicted by

this analytic model. Using this model for catastrophe (SI Appendix, Fig. S4), we additionally

demonstrate that liquid networks can form quasi-stable architectures without a boundary or

tethering to static structures, so long as there is sufficient growth to counteract the tension-

induced shrinking.

Notably, the catastrophe process affects not only the average polygon area, but also the

normalized distribution of areas (Fig. 2.5E). The altered distributions arise because catastrophes

have a greater effect on large than on small polygons. Thus, normalized distributions for systems

with frequent catastrophes have a fatter tail of large-area polygons that are unlikely to be split by

a successful new tube fusion.

2.4 Discussion

We use a physical model of the peripheral ER as an active liquid network to capture its

steady-state structural and dynamic properties. The behavior of liquid networks is effectively

described by two main parameters, the junction mobility and tubule spawning rate. A character-

istic network density and connectivity emerges from a balance between tubule creation and the

contraction of small polygons. This model reproduces key geometric features of the peripheral

ER in adherent mammalian cells, such as the typical shape and distribution of areas between

tubules. We find that liquid networks are able to replicate physiological rearrangement timescales.

Quantifying polygon dynamics in these systems allows us to derive the distribution of areas, thus

forming a connection between emergent steady-state structure and the underlying, small-scale

dynamics. Finally, by considering the effects of static tethering points and catastrophe of tubule
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growth we explore how the cell can alter the effective junction mobility and tubule spawning

rate to modulate network properties.

In this work, the complex protein-studded membrane structure of the peripheral ER is

reduced to a spatial graph of junctions connected by one-dimensional, constant-tension, fluid-like

edges. This highly simplified model is able to recapitulate much of the structural and dynamic

properties of the living ER, while remaining agnostic to the specific details of membrane-shaping

and dynamics at the nanometer scale. In reality, the effective tension driving the shortening of ER

tubules could be modulated by varying tubule radii and by the distribution of tubule-stabilizing

proteins such as the reticulons [92]. Both tubule radii and reticulon distributions are spatially

heterogeneous across the network [21], potentially giving rise to tension gradients. Fluctuations

in tension may also arise from cis-dimerization of membrane proteins such as atlastin [41].

More complicated ER structures, such as fenestrated sheets [80], may also influence the tension

and hence the dynamics of the surrounding network. Furthermore, tubule spawning rate may

be heterogeneous due to varying distributions of microtubules and motors. These effects may

account for some of the spatial variability in ER density observed in cells [93].

An additional simplifying assumption inherent to the liquid network model is the ability

of individual tubules to straighten on a timescale faster than the node rearrangements. While

some bent tubules can be seen in the peripheral ER, their persistence length [70] is usually much

longer than the typical polygon size. Thus the kinks that sometimes appear in long ER tubules are

likely associated with connections to other cellular structures (analogous to the ‘pinning points’

discussed above). The constant, isotropic mobility coefficient for network nodes is another

simplification of the model, neglecting the differences in friction associated with dragging a long

tubule perpendicular to its axis, versus sliding a junction along the tubule membrane. Despite

these simplifications, the liquid network model reproduces many aspects of ER structure and

dynamics, helping to connect local rearrangements to the large-scale architecture of the network.

The model presented here is most relevant for two-dimensional network structures such

as those observed in the peripheral ER of adherent COS7 cells. In many other cell types, the ER
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forms three-dimensional networks. Such networks require an additional length scale defined by

the range within which a growing tubule tip can contact and fuse into the rest of the network. This

additional length scale alters the dependence of network density on the kinetic parameters b,k.

While we demonstrate some basic scaling behaviors of 3D liquid networks in the SI Appendix,

more detailed exploration of these networks is left for future work. Further high-resolution

imaging and quantification of 3D ER network architecture will also be necessary to probe the

validity of the liquid network model in 3D.

Alternative 3D models can also give rise to network-like structures. In particular, mi-

croemulsions of lipids, water, and surfactants can form bicontinuous cubic phases whose density

is governed by the relative concentrations of the components [75, 74]. Such structures coexist

with lamellar phases, with the balance modulated by the curvature preferences of the lipid

layers [75]. These models may be particularly relevant for understanding the transition of the ER

between network-like and sheet-like structures, which can be tuned by changing the distribution

of preferred membrane curvatures [69]. While our liquid network model focuses on structures

emerging through tension and growth, future work comparing the resultant dynamics and ar-

chitecture to networks arising via phase transition may prove informative. In particular, such

connections may shed light on in vitro observations of ER network formation in the absence of

cytoskeletal filaments needed for new tubule extension [94].

Maintaining an organelle as an active, dynamic liquid network incurs a continuous

energy cost for the cell. In particular, motor activity or driven microtubule polymerization is

required to grow new tubules that split polygons and interrupt coarsening. Given that individual

kinesin motors burn one ATP molecule per 8-nm step [95], we would expect the rate of energy

consumption associated with network maintenance to scale as
(√

2γ/
√

3
)

Lkℓ/ds, where L is

the total network length, ℓ=
√

b/k, ds is the motor step size, and γ is the scaling factor relating

average polygon area to ℓ2. For the cells considered here this would amount to roughly 2×103

ATP/sec. Notably, this maintenance cost is orders of magnitude lower than the estimated energy

consumption (∼ 108 ATP/sec) associated with synthesizing the proteins shipped from the ER in

35



the secretory pathway [96, 97, 98].

For this modest energetic cost, the dynamic network of the ER provides the cell with a

number of functional benefits. As a topologically isolated space with high calcium concentration,

the ER provides a compartment for the efficient folding of proteins destined for the extracellular

environment [68, 2]. Its dense network structure enables the rapid and proximal delivery

of calcium ions into the cytoplasm [4] during localized signaling events known as puffs or

sparks [99]. The well-connected network architecture also allows for rapid search by newly

folded proteins to encounter exit sites in the ER [93]. Furthermore, the density of the network

makes it possible for the ER to form a plethora of contact sites for the transport of proteins, lipids,

and ions to and from other organelles such as mitochondria and endo/lysosomes [32, 36, 31, 100].

The dynamic rearrangements of the network could allow for rapid structural response of

the ER to local and global perturbations. For example, the increased network density associated

with pinning points may aid the accumulation of ER tubules near mitochondrial contact sites,

where the ER is known to play an important role in mitochondrial fission and fusion [101, 32].

Network dynamics could also allow the ER to restructure around rearranging organelles or in

response to cytoplasmic deformation in motile cells [102].

The interplay between microtubules and peripheral ER [103] enables the network to

maintain its structure against tension. Suppression of motor proteins that drive tubule extension

results in retraction of the ER network from the cell periphery [104]. In addition, depolymeriza-

tion of microtubules following nocodazole treatment leads to the withdrawal of peripheral ER

tubules and an increase in perinuclear ER sheets and cisternae [105]. By maintaining the ER in a

state of constant tension, poised on the verge of retraction, and controlled by driven extension

along the cytoskeleton, the cell ensures that its structure can respond rapidly to changing cues.

Such mechanical response may partly underlie the ability of the ER to restructure rapidly during

mitosis, when it undergoes a global tubule-to-sheet conversion [106, 107].

The liquid network model not only accounts for the unique reticulated structure of the

ER but also demonstrates how this architecture can emerge from and be regulated by a balance
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of two simple dynamical processes: tension-driven coarsening and new tubule growth.

2.5 Materials and Methods

2.5.1 Liquid network simulations

To simulate liquid networks, the overdamped Langevin equation for network nodes

(Eq. 1) is integrated forward in time using a fourth-order Runge-Kutta method implemented in

Fortran 90.

After updating junction positions in each time step dt, the code checks for connected

nodes which are within some threshold distance of each other, defined to be dx = max(
√

Ddt,

bdt), where D is the diffusivity and b the mobility of the nodes. The threshold distance is

thus comparable to the typical distance a node moves per timestep, with values typically in the

range of dx = 10−4 − 10−3 µm. The model is insensitive to the specific choice of threshold

(Fig. S2D-F).

For connected nodes within the threshold distance, the length of all possible rearrange-

ments of the neighbors is calculated, to determine which configuration minimizes the connected

length (Fig. 1D). The minimal configuration is chosen, and edges accordingly undergo their

small rearrangements. Rearrangements are taken to occur within a single timestep, consistent

with the observation that rearrangement at ER junctions occurs at sub-second timescales, much

faster than the time to grow or shrink a polygon.

Next, the code checks for fusion of actively growing tubule tips with existing edges by

finding any crossings that may have occurred. Upon identification of a crossing event, the tubules

fuse and form a stable junction node (Fig. 2.1D). Finally, the code samples from a Poisson

distribution with rate k to determine the number of new tubule spawning events occurring in

the current time step dt, given the current network length (excluding boundary edges). Novel

spawning events occur uniformly distributed across all non-boundary edges of the network.

Thus concludes one cycle of the simulation, after which the code iterates to update junction
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positions. Unless stated otherwise, a time step of dt = 0.01 s is used, the initial configuration is

a honeycomb network, and the simulation is run until steady state has been reached (as defined

by the stabilization of total network length over time).

To avoid runaway growth or full collapse of the membrane, all simulations are enclosed

within a circle of radius 14 µm defined by fixed immobile junctions connected via boundary

edges. When a tubule growth event fuses with a boundary edge, the resulting boundary junction

behaves exactly the same as junctions in the bulk except its motion is restricted to the perimeter

of the boundary circle. Neighbor rearrangements and loop closure can still occur, resulting in

a net balance of boundary junctions over time. The circular boundary is taken to represent the

plasma membrane, which is known to make direct contacts with the peripheral ER network.

Extensions to the model include random static pinning and unpinning of bulk nodes, and

the catastrophe process for tubule growth, all modeled as random Poisson distributed processes.

Pinning of nodes occurs with rate kp (s−1), and unpinning of nodes occurs with rate ku (s−1).

This pinning and unpinning is performed at the end of each simulation cycle. Catastrophe of

each growing tubule occurs with rate α (s−1). Catastrophe events are sampled every cycle after

checking for tubule fusion. Boundary-free simulations are also performed, typically with a finite

catastrophe rate for growing tubules. See Sec. A.1 for model details in three dimensions.

We obtain spatial network structures over time from these simulations in the form of

node positions and edge connectivity. To analyze the properties of minimal loops or polygons in

the two-dimensional network structures, we use publicly available code written in Matlab [108].

2.5.2 Cell culture and imaging

COS7 cells (ATCC-CRL-1651) and U2OS cells (ATCC-HTB-96) were grown in Dul-

becco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS)

and 1% penicillin/streptomycin. Prior to imaging experiments, COS7 cells were seeded in

six-well, plastic bottom dishes at a density of 150,000 cells per well, about 16 hours prior

to transfection of DNA plasmids. The mCh-KDEL and KDEL-venus were described previ-
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ously [109] and were transfected at a standard amount of 0.2 µg for all experiments. Plasmid

transfections were performed 24 hours prior to imaging with plasmid DNA in Opti-MEM (Invit-

rogen) with 5 µL of Lipofectamine 3000 reagent (Invitrogen) according to the manufacturer’s

instructions. After 5 hours of transfection, cells were seeded in 35 mm glass-bottom microscope

dishes (MatTek).

All imaging experiments were performed at the Van Andel Institute Optical Microscopy

Core on a Zeiss LSM 880, equipped with an Axio Observer 7 inverted microscope body, stage

surround incubation, Airyscan detector, two liquid-cooled MA PMT confocal detectors, and one

32-channel GaAsP array confocal detector. Images were acquired with a Plan-Apochromat 63x

(NA 1.4) oil objective with 3x optical zoom using Zeiss Zen 2.3 Black Edition software. Cells

were tracked for at least 2 minutes with constant acquisition (200 ms or 316 ms).

2.5.3 Image analysis

Extracting networks from live cell images

The machine learning segmentation toolkit ilastik [110] is used to segment ER network

structures from live-cell images using the KDEL Venus or mCherry KDEL markers. A network

structure is extracted from the probability file output by ilastik using custom code for skeleton trac-

ing in Matlab [111]. This code is publicly available at https://github.com/lenafabr/networktools

and includes data structures for storing the network as a set of nodes connected by edges with

curved spatial paths.

Estimating the tubule spawning rate in living cells

All new tubule spawning events are manually counted within cropped subregions (6.3×

6.3 µm) of the peripheral ER from 19 cells over the course of 40 s (Video S2.5). The number

of tubule spawning events is then normalized by the average network length over all frames (as

obtained via ilastik and Matlab skeletonization, see above) and the total time considered. This

yields an estimate for the average tubule spawning rate, k, (units of µm−1s−1) in each cell.
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Extracting polygons from experimental ER images

The machine learning segmentation toolkit ilastik [110] is used to accurately identify

polygons in experimental images of ER networks (7 COS7 cells and 2 U2OS cells). First, images

are segmented as before using the pixel classification capabilities of ilastik. Then, an object

classification model is trained to identify polygons in the cell periphery using the previously

generated probability file and raw image as input. Associated geometric and spatial properties of

these polygons are then analyzed in Matlab.

Semi-automated tracking of new tubule growth events

Network structures are extracted from images of COS7 cells, and all degree-1 (terminal)

nodes are identified. The positions of these nodes and the length of their connected edges are

calculated. The terminal nodes are then tracked over time using conventional particle tracking

software [85] where the particle ‘amplitude’ is set by the connected edge length. Tracks within

1 µm of the network boundary or with track length less than 3 frames are discarded. The

tracks are manually verified and adjusted as necessary using a custom-built Matlab GUI that

superimposes track data on top of image files. The fate of the growing tubule (whether or not it

successfully fuses into the network) is manually identified. A total of 200 tubule tip trajectories

are quantified for Fig. 6.

The average velocity is found by dividing the maximum distance a tubule travels from

its spawning point by the time it takes to get there. For successfully fused tubules, this is

simply the distance from spawning to fusion; for unsuccessful spawning events, it is the distance

from spawning to the turnaround or catastrophe point. The area and perimeter of the polygon

containing the spawning event are calculated for each tracked frame. The gap size is estimated

as d = 4A/P and is averaged over the whole track.
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2.5.4 Quantifying network rearrangement

Edge mean minimal distance

Both simulated and experimental networks are meshed into 0.03 µm segments, and for

each point on subsequent networks, the minimal distance to a point on the starting network

is found. The edge mean minimal distance (EMMD) is the mean of all such distances. To

extract a timescale from the experimental data, the EMMD versus time curve is fit with a double

exponential function of the form f (x) = c1(1− e−t/c2)+ c3(1− e−t/c4). The longer timescale

(e.g. c2 ≫ c4) is chosen as the representative EMMD timescale for each experimental network.

Simulated data does not exhibit the same short timescale jump as experimental because there are

no localization errors or network segmentation artifacts. Thus, only a single exponential (e.g. the

first term of f (x)) is fit to the simulated EMMD curves, giving the extracted EMMD timescale

for each simulated network.

Polygon growth rates

Experimental polygon positions and areas are extracted from ilastik segmented images

(see above). Matlab File Exchange code for extracting minimal loops from graphs is used to

find polygons in simulated networks [108]. Polygons are tracked over time using conventional

particle tracking software [85]. For each tracked polygon, we also perform a change point

analysis of the tracked area over time using Matlab’s findchangepts function [111]. This enables

identification of additional splitting events that may have been missed by the tracking software.

The tracks are broken up at the change-points, allowing for robust tracking of polygon growth

and shrinking dynamics between split events.

From these tracks, the area rate of change over 3 s intervals is calculated in both experi-

ments and simulations after applying a lowess smoothing filter with span 3 s. Only tracks longer

than 4s are analyzed. The normalized growth rate is obtained by dividing the extracted growth

rate by the average area of all tracked polygons in that cell or simulation run. In order to collapse

together simulations with different parameter values, we multiply the simulated growth rate data

41



by the intrinsic network timescale τ = (bk)−1/2, yielding a non-dimensionalized growth rate.

The mean and standard error of the mean of normalized growth rate are calculated within

bins of normalized polygon area (green points in Fig. 4E, F). This provides an estimate for the

average growth and shrinking behavior for polygons as a function of their area within liquid

networks and the ER. The binned mean growth rates are then fitted to Eq. 4. For simulation data,

β ,g,h are the fitting parameters, whereas for experimental data we fix β = 0.78 (the scaling

exponent obtained from the simulation fits) and only fit g,h. In both cases, the data is resampled

2000 times to estimate the error in the fitting parameters, assuming normally distributed values

with mean and standard deviation obtained from binned values.
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Chapter 3

Diffusive Search and Trajectories on Tubu-
lar Networks: a Propagator Approach

3.1 Abstract

Several organelles in eukaryotic cells, including mitochondria and the endoplasmic

reticulum, form interconnected tubule networks extending throughout the cell. These tubular

networks host many biochemical pathways that rely on proteins diffusively searching through the

network to encounter binding partners or localized target regions. Predicting the behavior of such

pathways requires a quantitative understanding of how confinement to a reticulated structure

modulates reaction kinetics. In this work we develop both exact analytical methods to compute

mean first passage times and efficient kinetic Monte Carlo algorithms to simulate trajectories

of particles diffusing in a tubular network. Our approach leverages exact propagator functions

for the distribution of transition times between network nodes and allows large simulation

time steps determined by the network structure. The methodology is applied to both synthetic

planar networks and organelle network structures, demonstrating key general features such as

the heterogeneity of search times in different network regions and the functional advantage of

broadly distributing target sites throughout the network. The proposed algorithms pave the way

for future exploration of the interrelationship between tubular network structure and biomolecular

reaction kinetics.
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3.2 Introduction

Diffusive transport in geometrically complex environments underlies a broad variety

of biophysical phenomena, ranging from transcriptional regulation in the nucleus [42, 43], to

reactions inside organelle structures [44, 45], to intercellular communication through a variety

of channel and bridge arrangements [46]. The morphology of the confining environment is

known to fundamentally alter the kinetics of diffusion-limited chemical reactions, switching

between compact and non-compact search processes depending on the effective dimensionality

of the domain [47, 112]. Multimolecular reaction systems such as phosphorylation cascades may

acquire novel dynamic behaviors such as ultrasensitivity and bistability depending on the degree

of confinement [49, 50].

A particularly important class of confined diffusion processes occurs on network struc-

tures, which have been used to describe porous media [57, 58], neuronal trees [56], and organelle

morphologies [55, 39]. These ‘spatial networks’ are characterized by nodes and edges embedded

in physical space, a restriction which limits the network topology. Encompassing a broad variety

of transport and communications networks, spatial networks have limited node degree, with each

node connected only to a handful of neighbors in close physical proximity [59]. There is an

extensive body of literature on characterizing the behavior of random walks on general networks

(see [113] for a review). Many studies focus on systems where particles exhibit a well-defined

hopping time across each edge, with hops treated either as discrete time steps [60, 61] or as

constant-rate Poisson processes [63, 62]. Others allow for generalized distributions of hop times

that are nevertheless uniform throughout the network [114, 115]. Recently, a general theory

for heterogeneous continuous-time random walks on networks has been developed [64], which

incorporates transition times with arbitrary distributions that are specific to each node. A similar

approach has previously been applied, modeling transitions on a network of states embedded in

an energy landscape [116].

Particles diffusing along the edges of a network exhibit a broad range of inter-node
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transition times, whose distribution is dependent on the edge length. Prior work focusing

on simple networks of tubes and containers [117], as well as planar networks resembling

percolation clusters [45], highlighted the importance of edge length in overall search times

on the network. Here, we develop mathematical methodology for computing reaction mean

first passage times (MFPT) on arbitrary spatial networks, with diffusion incorporated as a

concrete physical transport process along each edge. Whereas past work on diffusive processes

simplified individual node transitions to a single effective rate constant [63, 62], we explicitly

incorporate the edge-length-dependent distribution of transition times, bridging local diffusive

particle dynamics and large-scale transport on spatial networks.

For many reaction-diffusion systems, the behavior of interest requires quantities beyond

the mean first passage time and other low-order moments of the first-passage distribution. For

example, biochemical processes may rely on extreme value statistics that dictate the time-scales

for the first of many signaling particles to reach a target [65]. Activation cascades can be

modulated by processive rebinding processes wherein one enzyme can return repeatedly to the

same target after its first encounter [49]. Targets that themselves undergo diffusive motion are

prevalent in most biomoleculear reaction systems. Modeling of these more complex processes

requires moving beyond analytically tractable methods to leverage stochastic simulations of

diffusing particles on network structures.

A family of agent-based simulation methods, known as kinetic Monte Carlo [66] or

Green’s function reaction dynamics [118, 119] are particularly well suited for simulating sparse

populations of particles diffusing in complex geometries. These methods rely on analytically

determined propagator functions to evolve individual particles within ‘protective domains’ –

regions where they do not come in contact with other particles. By sampling from an appropriate

propagator, such simulations allow time steps that are tuned to the local structure of the domain,

minimizing the computational time involved in propagating a particle through empty space.

Several general propagators have been developed for three-dimensional regions [120], and this

approach has been employed for simulating systems such as kinase cascades [49], target search
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by DNA-binding proteins [43], and multi-modal transport of peroxisome vesicles in fungal

hyphae [121]. In this work we develop exact analytical propagators for the passage of diffusing

particles between network nodes. By allowing for step sizes comparable to the local edge

length, these propagators enable simulations that can be run much more efficiently than classical

Brownian dynamics. We thus present an efficient propagator-accelerated algorithm optimized

for stochastic simulations of diffusing particles confined in spatial networks.

We focus specifically on tubular networks similar to those formed by intracellular reticu-

lated organelles. The peripheral endoplasmic reticulum is one such network; it forms a dynamic

web of interconnected tubules with a topologically continuous lumen, spread throughout the cell

periphery[9]. The ER hosts a variety of biochemical reaction pathways and plays a crucial role in

calcium dynamics, lipid delivery, and protein synthesis and quality control [122]. Another reticu-

lated organelle structure is formed by the fusion of mitochondria in yeast and many mammalian

cell types [123, 124]. Mitochondrial network structures share many topological features with

geographical transportation networks [55] and are thought to reside in the percolation regime,

exhibiting just barely enough connectivity to form a large cell-spanning connected cluster [124].

The functional role of mitochondrial network formation remains a topic of much debate [125],

but is thought to include complementation of mtDNA defects [126], quality control through

selective fusion and mitophagy [127, 128], and enhanced energy transmission [129].

In both the ER and mitochondrial networks, critical biomolecular reactions require

individual diffusive components to find each other within the extensive network architecture.

Some functions, such as the packaging of newly synthesized secretory proteins into ER exit sites

or the regulation of transciption in mitochondrial nucleoids, rely on proteins reaching relatively

stationary punctate target sites in the network. Although some recent evidence indicates the

possibility of directed transport for ER luminal proteins driven by local fluid flow [130], the

major form of transport within organelle networks is still believed to be diffusive.

In this work, we develop new algorithms for quantifying target search and reaction

kinetics inside tubular network structures similar to those exhibited by reticulated cellular
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organelles. Specifically, our approach is well suited to spatial networks with well-defined edge

lengths and low node degrees (typically 3 or less for ER [39] and mitochondrial networks [55]).

Furthermore, we rely on the simplifying assumption that motion along tubular edges, rather

than trapping at voluminous nodes, dominates diffusive transport times. Our overarching goal

is to be able to accurately compute the distribution of search and encounter times for diffusive

particles within network morphologies. To this end, we employ both analytical methods to

extract low-order moments (mean and variance) of the search times, as well as describing an

efficient algorithm for agent-based stochastic simulations that can incorporate mutually reactive

diffusing particles. The result is a mathematical framework optimally suited for modeling the

kinetics of a broad variety of molecular processes confined in tubular networks.

3.3 Model development and transition time distributions

We consider the diffusive motion of particles on a network embedded in physical space.

Specifically, the network structure consists of point-like nodes (i, j, . . .), connected by one-

dimensional edges of length ℓi j. The edges can be curved, and thus longer than the Euclidian

distance between the connected nodes, but can only connect to other edges at a node.

Particles diffuse in one dimension along these edges, with diffusivity D. They do not

spend any finite time trapped at the nodes themselves, which serve merely as point-like edge

intersections. A particle that starts at such an intersection will diffuse around the edges adjacent

to that node (a ‘node neighborhood’) until it hits an adjacent node. It will then continue to

diffuse in the neighborhood of the new node. We can thus consider the particle as moving from

neighborhood to neighborhood with a certain distribution of transition times between adjacent

neighborhoods. It is important to note that the current neighborhood of a particle is defined not

by the edge on which it is located but rather by the last node that it has crossed (Fig. 3.1). With

this definition, the motion of the particle can be treated as a Markov state model [131], with

each Markov state corresponding to a neighborhood. Transitions between neighborhoods are
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Figure 3.1. Model schematic, showing small section of an example network. Blue lines show
the neighborhood of node i; magenta lines show the neighborhood of node k. The coordinate
system for two edges within neighborhood i is labeled, with x going from 0 (at adjacent node) to
ℓi j (at node i itself).

memoryless – once a particle hits a given node, its subsequent distribution is no longer dependent

on the previous nodes it has passed through. However, unlike prior applications of Markov state

models [131] or ‘discrete path sampling’ [62, 132] in the context of molecular rearrangements,

the transition times between states are not Poisson distributed. Instead, this model falls in the

category of heterogeneous continuous time random walks, which can be analyzed on arbitrary

networks for arbitrary distributions of transition times [64].

To quantify the behavior of such a system, we need to know the local transition time

distribution Pik(t), which gives the probability density that a particle which starts at node i at

time 0 will first hit an adjacent node k between time t and t + dt, without first reaching any

other nodes in the meantime. We note that in contrast to previous analyses of random walks on

networks [113, 64], the distribution of waiting times to leave the neighborhood and the splitting

probability of which node is next encountered are not independent random variables (i.e. the

conditional distribution of first passage times differs depending on which of the adjacent nodes

is reached first). To calculate the local transition time distributions, we generalize a well-known

approach for finding the flux of diffusive particles to the edges of a linear segment with absorbing

boundaries [133]. A one-dimensional coordinate system (0 ≤ x ≤ ℓik) is placed along each edge

attached to node i, with x = 0 corresponding to node k and x = ℓik corresponding to the junction

node i where the particle starts (see Fig. 3.1).

Along each edge ik of the neighborhood, the Green’s function distribution cik(x, t) of a
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diffusing particle obeys the usual diffusion equation:

∂cik

∂ t
= D

∂ 2cik

∂x2 , (3.1a)

cik(x,0) =
1
di

δ (x− ℓik) , (3.1b)

cik(0, t) = 0, (3.1c)

where di is the degree of the ith node in the network. Equation 3.1b gives the initial condition,

indicating that the particle distribution is concentrated in a Dirac-delta function at the junction

node. Equation 3.1c gives the boundary conditions, with each neighboring node treated as an

absorbing boundary. The transition time distibution function is then given by the flux into each

of these boundaries:

Pik(t) = D
∂cik

∂x

∣∣∣∣
x=0

. (3.2)

Integrating each Pik over time gives the probability that a particle will hit adjacent node k before

any other (ie: the splitting probability from node i). An additional boundary condition at each

edge is set by enforcing continuity of the particle distribution function at the junction node:

cik(ℓik, t) = ci j(ℓi j, t), for all adjacent nodes k, j.

Equation 3.1 can be solved by way of a Laplace transform t → s, which gives the

following equation for the transformed Green’s function ĉik

sĉik − cik(t = 0) = D
∂ 2ĉik

∂x2 . (3.3)

The homogeneous solution is

ĉik(x,s) = Asinh(αx)∏
j ̸=k

sinh
(
αℓi j

)
, (3.4)
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where α =
√

s/D, loo and the product is over all edges attached to node i, other than edge k.

The prefactor A is set by the initial condition, and can be found by integrating Eq. 3.3 over an

infinitesimally small interval around the junction node. This gives

−1 =−D
di

∑
k=1

∂ ĉik

∂x

∣∣∣∣
ℓik

,

A =
1

αD

(
di

∏
j=1

sinhαℓi j

)−1( di

∑
k=1

cothαℓik

)−1

,

(3.5)

where the sums and products are over all edges attached to node i. Finally, the flux to the

absorbing boundaries is given by

P̂ik =

(
sinhαℓik

di

∑
j=1

cothαℓi j

)−1

(3.6)

Equation 3.6 gives the Laplace-transformed distribution of times for a particle starting at

junction node i to first reach adjacent node k without hitting any other neighboring node. We can

also define the survival time distribution Qi(t)—the probability that the particle has not reached

any of the neighboring nodes by time t. Its Laplace-transformed form is:

Q̂i =
1−∑

di
k=1 P̂ik

s
(3.7)

Expanding around s = 0 gives the splitting probability to each neighboring node (P∗
ik)

and the overall average waiting time (Q∗
i ) before the particle hits one of the neighboring nodes.

Specifically,

P∗
ik = lim

s→0
P̂ik(s) =

1/ℓik

∑
di
j=1 1/ℓi j

(3.8a)

Q∗
i = lim

s→0
Q̂i(s) =

1
2D

.
∑

di
j=1 ℓi j

∑
di
j=1 1/ℓi j

(3.8b)
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The next higher-order term for small s can be used to calculate the variance in the transition time

to one of the neighboring nodes (see Sect. 3.4.1).

The above expressions enable propagation of particles that start specifically on a node

to the neighboring nodes. In many applications it is useful instead to consider particles that

start distributed along the edges of the network. Such a particle must first be propagated to

one of the nodes bounding that edge, after which its behavior can again be described by the

node-to-node propagator (Eq. 3.6.) For a particle starting at position x0 along edge m, of length

ℓm, the Laplace-transformed flux to either of the two boundaries has the well-known form [133]

j− =
sinh [α(ℓm − x0)]

sinh [αℓm]
, j+ =

sinh [αx0]

sinh [αℓm]
. (3.9)

If the particle starts uniformly distributed along edge m, the corresponding flux to each

of the bounding nodes (P̂(E)
m j ) and the survival probability on the edge (Q̂(E)

m ) are given by

P̂(E)
m j =

1
αℓm

tanh
(

αℓm

2

)
Q̂(E)

m =
1

α2D

[
1− 2

αℓm
tanh

(
αℓm

2

)]
.

(3.10)

Expanding around s = 0 gives the trivial splitting probability for a particle starting uniformly on

the edge: P(E∗)
m j = 1/2, and the average waiting time to leave the edge:

Q̂(E∗)
m = ℓ2

m/(12D) (3.11)

The splitting probabilities and survival times enable the calculation of mean first passage

times on the network (Sect. 3.4). In order to sample from the full distribution of transition

times, an inverse Laplace transform must be applied to the propagators in Eqs. 3.6 and 3.10, as

discussed in Sect. 3.5.
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3.4 Computing mean and variance of first passage times

3.4.1 Diffusion-limited reactions

We next present an analytic approach for calculating low-order moments of the reaction

time distribution for particles that react instantaneously upon reaching a set of target nodes in

the network. We note that the derivation in this section largely reiterates previously published

work [64, 116, 45], but is presented here for completeness and consistency of notation.

The probability that a particle starting at node i at time 0 is in the neighborhood of node

j at time t is defined by Gi j(t). The Laplace-transformed form of this propagator has been

previously derived, both for general continuous-time random walks on networks [64] and for

specific applications involving diffusive motion of particles in interconnected tubules [45] or

over multi-state energy landscapes [116, 132]. It can be expressed as

Ĝi j =

[(
I− P̂

)−1
]

i j
Q̂ j, (3.12)

where the elements of matrix P̂ are given by Eq. 3.6 if two nodes are connected by an edge in the

network, and are zero otherwise. The propagator Gi j(t) gives the probability that the particle last

hit node j sometime before time t and has not yet left the neighborhood of that node.

To calculate the distribution of first passage times to any set target of nodes {k} in the

network, we treat those nodes as being perfect absorbers. That is, whenever the particle first

hits node k, it instantaneously vanishes from the network. The case of finite reaction rates in

localized network regions is treated separately in the next section. We remove all rows and

columns corresponding to the target neighborhoods from the matrix P̂ as well as the vector
−̂→
Q .

As a result, the time a particle spends in the neighborhood of any network node is not altered,

but when the particle leaves that neighborhood by moving to a target node, it is removed entirely

from the network rather than continuing to propagate further [116, 45]. The survival probability

that a particle starting at node i has not left the network by time t is Hi(t) = ∑
N
k=1 Gik(t), where
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Figure 3.2. Target search rate on peripheral ER networks. (a) Network structure (yellow)
extracted from confocal image of the COS7 cell peripheral ER network. (b) Peripheral ER
network (blue) and ER exit sites (red, marked by fluorescently labeled Sec23a, a COPII protein).
Scale bars in (a) and (b) are 5µm. (c) Dependence of search rate (inverse of mean first-passage
time) on target concentration (per tube length) in nine distinct ER network structures. Each dot
shows the average over 100 realizations of a fixed number of target nodes uniformly distributed
over a single network structure. Black dashed lines indicate appropriate scaling for mass-action
kinetics (∼ ρ) and one-dimensional search rates(∼ ρ2). The pink dashed line indicates expected
behavior for two-dimensional kinetics [k = Dρ2D/ log(a

√
ρ2D), where a is taken as average

ER edge length and ρ2D is the two-dimensional target concentration]. Horizontal dotted line
shows limiting case of average search rate on a network composed entirely of target nodes.
Yellow line gives ERES density extracted from (b). Particles are assumed to have a diffusivity of
D = 1µm2/s.

the summation is over all nodes on the network. For particles initially distributed over nodes,

with Vi the probability of starting at node i, the survival probability is given by the following

matrix expression:

Ĥ(s) =
−→
V ·
(

I− P̂
)−1

· −̂→Q . (3.13)

The central inverted matrix is a normalized form of a weighted discrete Laplacian over the

network, which is used in a broad class of problems involving random walks on networked

structures [64, 113].

A natural extension is to consider particles starting on the edges of the network, with

probability Wm of starting (uniformly distributed) along edge m. In this case, the Laplace-
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transformed survival probability can be expressed as

Ĥ(E)(s) =
−→
W ·

[
−̂→
Q

(E)
+P(E) ·

(
I− P̂

)−1
· −̂→Q

]
. (3.14)

Here, the first term represents particles that never leave their initial edge and the second term

includes a propagator for moving from the edge to one of its bounding nodes, convolved with the

propagators for moving across all node-to-node paths through the network, and finally the survival

probability of remaining at some final node neighborhood. Columns of P̂(E) corresponding to

target nodes are again removed from the matrix. The elements of P̂(E) and
−̂→
Q

(E)
are given in

Eq. 3.10.

Regardless of whether particles start on nodes or edges of the network, the mean first

passage time to encounter the set of targets is given by

τ = lim
s→0

Ĥ(s), (3.15)

which can be evaluated directly with the aid of Eq. 3.8a, 3.8b, and 3.11. Similarly the variance in

the time to find a target is given by

σ
2 = ⟨τ2⟩−⟨τ⟩2, (3.16)

where

⟨τ2⟩=−2
∂ Ĥ
∂ s

∣∣∣∣∣
s=0

. (3.17)

From this, the mean square first passage time is expressed as

⟨τ2⟩=−2
−→
V ·

[(
I− P̂

)−1
· ∂ P̂

∂ s
·
(

I− P̂
)−1

· −̂→Q

+
(

I− P̂
)−1 ∂

−̂→
Q

∂ s

 , (3.18)
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where the derivatives of P̂ and
−̂→
Q are

∂ P̂ik(s)
∂ s

∣∣∣∣∣
s=0

=− 1
6D

(
ℓik

∑ j 1/ℓi j
+

2/ℓik
(
∑ j ℓi j

)(
∑ j 1/ℓi j

)2

)
(3.19a)

∂ Q̂i(s)
∂ s

∣∣∣∣∣
s=0

=− 1
24D2

(
∑ j ℓ

3
i j

∑ j 1/ℓi j
+

8
(
∑ j ℓi j

)2(
∑ j 1/ℓi j

)2

)
. (3.19b)

Example: target search times in the endoplasmic reticulum

As an example application of the calculations above, we consider network structures

extracted from confocal images of the peripheral endoplasmic reticulum in COS7 cells. A data set

of 9 peripheral ER images, obtained as described in prior work [45], was used to extract tubular

network structures (Fig. 3.2a; details in B.2). For these biologically important tubular networks,

we consider how the distribution of times to find target nodes varies with the target concentration.

This question is particularly important in the context of the early secretory pathway. Proteins

destined for secretion are co-translationally inserted into the ER membrane or lumen, undergo

folding and quality control [68, 134], and must leave the ER through punctate ER exit sites

(ERES). These ERES are largely immobile sites scattered throughout the network [37] (Fig. 3.2b)

and proteins are assumed to diffuse to one of these sites for capture and packaging into vesicles

that enable them to leave the ER and proceed to further steps of secretory processing [135, 136].

It is interesting to consider what ERES density is sufficient to enable diffusing proteins

to rapidly encounter exit sites. In a three-dimensional continuum, reaction rates are proportional

to the concentration of the target. However, in a geometry that is less than or equal to two-

dimensional, the usual assumption of mass-action kinetics ceases to hold, and we expect a steeper

dependence of rates upon target concentration [47].

For each individual ER network structure, we randomly distribute different numbers of

target nodes across the network and compute the mean first passage time (MFPT) for a diffusive

particle to first hit a target. The particles are assumed to start uniformly distributed over the
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edges of the network, with Wm = ℓm/∑n ℓn the probability of starting on edge m. In Fig. 3.2c

we plot the search rate, defined as the inverse of the averaged mean first passage time for many

choices of target node location. Across a wide range of target concentrations ρ , we see a search

rate scaling as ρ/ logρ . This scaling indicates the ER is well-connected and behaves largely

as a two-dimensional system, with a logarithmic correction factor to the linear concentration

scaling expected for mass action kinetics. A limit is reached when 1/ρ becomes comparable

to the typical edge length of the ER network structures: ℓ ≈ 1.2± 0.1µm (expected value of

starting edge length for uniformly distributed particles, with standard error of the mean computed

over different networks). In this limit, particles need only diffuse along a single edge before

encountering a target site. This gives rise to effectively one-dimensional kinetics or ρ2 scaling.

It should be noted that the estimated physiological exit site density (yellow line in Fig. 3.2c) is in

a range where the search rate is super-linearly dependent on ERES concentration. Increasing the

number of target sites should thus disproportionately speed up the encounter process.

Variability of arrival times

One important question in considering kinetics on complex geometries is the extent to

which the mean first passage time can be used to characterize the full distribution of reaction

times. For compact diffusive search on fractal geometries of dimension less than two, the first

passage time distribution is known to exhibit a broad range of relevant time-scales, so that

the search process is not well-characterized by the MFPT [137, 47]. Although the search for

very sparse targets in ER networks appears to be effectively two-dimensional, signatures of

geometry-controlled kinetics (such as a strong dependence on source and target position [47]) are

nevertheless observed. In particular, the mean first passage time varies substantially depending

on the distance of the starting node from the target (Fig. 3.3). Nodes at similar spatial (Euclidean)

distances can also exhibit very different mean first passage times, due to the heterogeneous

nature of the ER network connectivity. Because diffusing particles explore many paths from

the source to the target, the MFPT can also be very different for nodes with similar values of
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the ‘network distance’, defined as the shortest distance between two points measured along the

network edges. Furthermore, the standard deviation of the arrival time from a given starting node

can be substantially larger than the mean first passage time itself, particularly for nodes located

close to the target (Fig. 3.3c). This effect again arises from the multiple time-scales associated

with particles following a variety of different paths to the target site.

These observations imply that diffusion-limited reactions within the ER network deviate

from the expectations of bulk kinetics, where arrival times generally represent a Poisson process

with a well-characterized MFPT and a comparable standard deviation. Instead, particles starting

in regions nearby and well-connected to the target arrive much faster than particles from far away.

Furthermore, even for a given starting point, some particles travel rapidly directly to the target,

while others meander away to explore the rest of the network, leading to broadly distributed first

passage times.

3.4.2 Finite reaction rates

First passage times to perfectly absorbing network nodes represent purely diffusion-

limited kinetics, where a reaction occurs as soon as the particle finds its target. A biologically

relevant complication to this model would include finite reaction rates in certain regions of the

network. Such rates become relevant when a reaction requires particles to undergo rearrange-

ments, rotations, or conformational changes in addition to simply finding each other diffusively.

If those rearrangements occur on a timescale that is relatively slow compared to the time for the

reactants to diffusively separate again, then the reaction kinetics cannot be simply treated as first

passage to a perfectly absorbing target site. Instead, the target site is assumed to have a particular

rate of reacting with the particle, that is applicable only when the particle is within some minimal

contact distance from the target. Models with spatially localized finite reaction rates have previ-

ously been employed in quantifying the kinetics of multi-conformation DNA-binding proteins

searching for their genomic target sites [138], and of vesicles encountering cytoskeletal filaments

to initiate motor-driven transport [139]. For one-dimensional models of a tubular geometry, finite
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Figure 3.3. Plot of mean first-passage time (MFPT) versus starting distance from target. (a)
ER network structure with a single target (green) and color indicating the MFPT to the target
for particles starting at each node. (b) Dependence of MFPT on Euclidean distance from the
target for each node; color indicates network distance of each node to the target; circles and
triangles indicate nodes to the left and right of the target, respectively. (c) Analogous plot
showing standard deviation for the first passage time distribution. Dashed line shows standard
deviation for a constant-rate Poisson process (σFPT = MFPT) for comparison. A diffusivity of
D = 1µm2/s is assumed.
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reaction rates can also be used as a simplification to account for the radial diffusion time required

to find a target by a particle that approaches its axial position [140].

In our model of diffusion on tubular networks, particles spend all their time on network

edges, with nodes serving only as intersections that allow transitions between edges. We therefore

consider reaction rates that are associated with each edge of the network, defining γi j as the

reaction rate on the edge connecting nodes i and j. Reactions near a particular node can be

represented by setting the reaction rates in all edges around that node. If necessary, additional

degree-2 nodes can be inserted along the edge to confine the reactive area still further.

To solve for the mean reaction time in this model, we first consider the propagation of

the particle from a single neighborhood (i). The Laplace-transformed probability distribution on

each edge around node i, ĉik, obeys a modified form of Eq. 3.3. Namely,

sĉik − cik(t = 0) = D
∂ 2ĉik

∂x2 − γikĉik. (3.20)

This can be solved to find the flux into each of the adjacent nodes:

P̂ik = αik

(
sinhαikℓik

di

∑
j=1

αi j cothαi jℓi j

)−1

, (3.21)

where αi j =
√

(s+ γi j)/D. The splitting probability P∗
ik of hitting an adjacent node before any

reaction occurs is given by plugging s = 0 into the expression above. The probability of reacting

before leaving the neighborhood of node i can then be calculated as 1−∑k P∗
ik.

The Laplace-transformed probability that the particle is still in the neighborhood by a

certain time (having neither reacted nor reached an adjacent node) is given by

Q̂i =
di

∑
k=1

∫ ℓik

0
ĉikdx =

1
D

∑
di
j=1

1
αi j

tanh(αi jℓi j
2 )

∑
di
j=1 αi j coth(αi jℓi j)

. (3.22)

Evaluating this expression at s = 0 gives the average waiting time to leave the neighborhood.
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Figure 3.4. Reaction times for localized finite reactive region in one dimension. (a) Schematic
of cylindrical domain representing a cellular projection (such as a neuronal axon), with reactive
points representing microtubule tips distributed over a region of length ℓ, with ka the absorbance
rate for a particle that reaches an axial position within distance ξ of a tip. (b) The cylindrical
system is mapped to a one-dimensional model, with effective reaction rate kreg in the region
where microtubule tips are distributed, a reflecting boundary at z = 0 representing the distal tip
of the projection, and an absorbing boundary at z = L representing the cell body. (c) Scaled
mean absorption time for particles originating at z = 0 and diffusing in the partially reactive one
dimensional domain.

Similarly, for particles starting uniformly distributed along network edge m, we can find

the flux into one of the bordering nodes j (defined as P̂(E)
m j ) and the survival probability on the

edge (Q̂(E)
m ) using Eq. 3.10, where we replace α with the edge-dependent αm.

These expressions can then be plugged directly into Eq. 3.13 or Eq. 3.14 to compute the

mean first passage time to leave the network through either the finite-rate reactions along network

edges or through reaching a perfectly absorbing target node. To find the MFPT in the presence

of perfectly absorbing targets, all elements corresponding to the target nodes should be removed

from the matrix expressions as before, so that reaching the targets is treated as permanently

leaving the network.

Example: Extended absorbing region in one dimension

A simple example of the calculations described above involves particles on a one-

dimensional interval containing a region with a finite reaction rate kreg. Such a system can be

thought of as a simplified representation of a tubular cellular domain, such as a fungal hypha
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or neuronal axon [141]. Organelles such as signaling endosomes and autophagosomes that are

produced at the distal end of this domain must be loaded onto microtubules to be delivered in a

retrograde fashion to the nuclear region [142, 143]. There is evidence that some cellular cargos

begin their retrograde journeys by binding preferentially to microtubule plus-end tips, which

accumulate high concentrations of dynein motors and associated activator proteins to form a

‘loading zone’ at the distal cell tip [144, 145]. An interesting question then arises regarding how

the distribution of microtubule tips near the distal end affects the overall rate of loading the

organelles. If all tips are localized right at the distal end, particles originating at the distal end

will have a chance to bind as soon as they are formed. However, any particles that diffuse axially

past the tips may end up exploring the full domain over long time periods without returning to

the distally localized tips. On the other hand, a broader distribution of tip positions may make

particles more likely to latch on before diffusing away.

We explore this trade-off by mapping the distribution of microtubule tips in a cylindrical

domain to an effective one-dimensional model (Fig. 3.4a, b), where ℓ represents the length of the

region over which microtubule tips are distributed. The overall attachment rate in this region can

be approximated as kreg = nkaξ/ℓ, where n is the number of microtubule tips, ξ is the contact

radius for binding a tip, and ka is an effective binding rate that incorporates rapid radial diffusion

to encounter the tip while at the appropriate axial position. We assume a reflecting boundary at

z = 0 representing the distal end, and an absorbing boundary at z = L representing the region near

the nucleus that serves as the target for the particles. Particles are initiated at z = 0 and diffuse

with diffusivity D until they are either absorbed in the reactive region or reach the soma through

diffusion alone. For simplicity, we neglect the motor-driven transport time to reach the soma

after loading on the microtubules, focusing instead on the optimal dispersion of microtubule

tips to minimize the loading time. For a given number of microtubules, kregℓ is expected to be

constant and we explore how distribution over different region lengths ℓ affects the first passage

time to loading.

Treating the 1D simplified system (Fig. 3.4b) as a network with only two edges, one
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Figure 3.5. Mean first passage times on synthetic honeycomb networks with dimensions similar
to the ER in COS7 cells. (a) The relationship between MFPT of particles initiated on interior
nodes and maximum radial distance of 30 absorbing edges (γ = 1s−1) for various maturation
rates, λ . Each dot shows the MFPT averaged over 500 different combinations of absorbing edges
within the maximum target distance (errorbars included but not visible at this scale.) Example
networks are shown for small, medium and large maximum target distance, with target edges
highlighted in green. Dashed black line shows the case with no maturation process (λ = ∞).
(b) The effect of maturation rates, λ , on the optimal maximum target distance, with various
absorption rates, γ . Dashed lines indicate optimal maximum target distance in limiting case
of instantaneous maturation (λ = ∞). Inset networks illustrate particle distribution at time of
maturation for two different choices of maturation rate.

of which is absorbing, we plot (in Fig. 3.4c) the mean first passage time for a particle to either

react with the microtubule tips or reach the far end of the domain. Interestingly, an optimum is

observed with respect to the length ℓ over which the absorbing tips are distributed, indicating

that it is advantageous to spread out microtubule tips in the distal region rather than placing them

all as near as possible to the distal end. The optimum value of ℓ increases as the overall reactivity

goes down. When the tip reaction rate ka is very rapid, then ℓopt → 0 as no particle can make it

past the most distal tips. By contrast, when ka is very low, the optimum disappears entirely as

particles have the chance to explore the entire domain and reach the distal absorbing boundary

without ever binding in the absorbing region, regardless of its size.
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Example: Target distribution on a 2D network

Similar to the one-dimensional case described in the previous section, we can explore

how the distribution of reactive regions in a two-dimensional network such as the peripheral

endoplasmic reticulum affects diffusive search times. Here, we use a synthetic network consisting

of a honeycomb lattice structure in a circular band with dimensions comparable to the peripheral

ER in COS7 cells (Fig. 3.2, insets). The network has an edge length 0.8µm (equal to average

edge length for ER networks used in this study), an inner radius of 8µm representing the nucleus,

and an outer radius of 20µm representing the cell boundary.

Most protein synthesis in the ER is thought to occur in the ribosome-studded perinuclear

sheets [9], so we consider particles that are initiated at the innermost nodes of the network.

Localized reactive regions are distributed over the network edges to represent ER exit site

structures. A finite reaction rate on each exit-site edge accounts for any additional process

that a particle must undergo after reaching an exit site before it can be stably captured. Such

processes could include rotation, molecular rearrangement, or entry into a narrow-necked ERES

structure [136].

One question of particular interest is whether there is any functional advantage to scatter-

ing ERES throughout the peripheral network, rather than concentrating them in the perinuclear

region where proteins are initially translated. Given that both luminal and membrane proteins

have been shown to penetrate throughout the peripheral tubular structure [9], one possible ad-

vantage to well-dispersed ERES is to efficiently capture proteins that happen to diffuse deeply

into the periphery. We therefore consider how the average reaction time varies when a fixed

number of reactive sites are distributed across regions of different width surrounding the interior

boundary where particles are initiated.

Interestingly, unlike the one-dimensional case in Fig. 3.4, there is very little advantage

to dispersing reaction regions over a broader region of the two-dimensional lattice network.

The dashed black line in Fig. 3.5a shows the MFPT for a network with 30 edges with reaction
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rate γ = 1s−1, spread out over increasingly broad regions of the network. While there is a

slight optimum when the reactive edges are allowed to spread to a radial distance of 12µm,

the difference between this system and one where targets are placed in the innermost region of

the network (in the same location where particles originate) is less than 3%. Higher values of

reactivity γ make it even more advantageous to concentrate all reactive sites closer to the inner

radius, while lower values of γ make the system independent of the reactive edge distribution

(data not shown), much as in the one-dimensional case. In no case does there appear to be a

substantial advantage to spreading out the reactive edges.

This result underscores a fundamental distinction between a well-connected 2D network

and a 1D interval. In the network, moving target sites out from the central region where particles

are initiated necessitates spreading those sites out over a longer band, leaving gaps for particles

to be able to diffuse through without hitting any target. Particularly in the case of high reactivity

γ , such gaps allow escape of particles into the periphery that would not be possible if the targets

were concentrated near the inner radius of the network. This effect counterbalances the advantage

to capturing particles which do manage to disperse through the network. As a result, there is no

substantial benefit to placing target sites further out in the periphery for the 2D network case.

However, the dispersed placement of reactive sites can greatly enhance kinetics in the

case where newly synthesized particles are incapable of reacting immediately upon production,

as discussed in the subsequent section.

Example: Maturing particles

Another potentially important complication for a variety of biomolecular search processes

is the existence of a ‘maturation time,’ during which particles diffuse through the domain but are

not able to undergo the relevant reactions. For example, newly manufactured proteins in the ER

must undergo folding and quality control processes that can take from minutes to hours before

they are able to be loaded at ER exit sites for export [146, 134]. Such particle maturation can

be easily incorporated in our model as a Poisson process of rate λ that occurs simultaneously
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with diffusion. While the particle is maturing, it is not capable of reacting even if it reaches the

reactive edges. As soon as the particle matures, reactivity is enabled and the particle’s mean

first passage time can be determined from its maturation point using an extension of the usual

techniques outlined above.

Specifically, we define ψm(x, t) as the overall density of particles on edge m at time t. Its

Laplace-transformed form is given by

−̂→
ψ m(x,s) =

−→
V ·
(

I− P̂
)−1

· ĉ(x,s) , (3.23)

where the entries ĉim (x,s) contain the Laplace transformed particle densities along edge m

defined for the node neighborhood i, as given by Eq. 3.4.

This approach allows for nonuniform particle densities along each edge. In order to find

mean first passage time after maturation, we need to compute the overall survival probability,

H(E)
m (x, t), for a particle starting at position x on edge m. Such a particle can remain on the edge

until time t, react during that time, or hit either of the bounding nodes (i, j) before time t. In the

latter case, its survival probability can be obtained by convolving with the expression in Eq. 3.13

for particles initiated on a node. The overall Laplace-transformed survival probability is obtained

as

Ĥ(E)
m (x,s) = Q̂(E)

m (x,s+ γm)+ P̂(E)
m,i (x,s+ γm)Ĥi(s)

+ P̂(E)
m, j (x,s+ γm)Ĥ j(s).

(3.24)

Here, Q̂(E)
m (x,s) and P̂(E)

m,i (x,s) are the survival probability and flux to the bounding node, respec-

tively, given the particle starts at x. These quantities can be obtained using the standard solutions

for diffusion on a one-dimensional interval with two absorbing boundaries [133] (i.e.: from

Eq. 3.9).

The overall mean first passage time after maturation (not including the maturation time
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of 1/λ itself) is then

τ(λ ) = λ ∑
m

∫ ℓm

0
ψ̂m(x,λ )Ĥ

(E)
m (x,s = 0)dx, (3.25)

where the sum is over all edges in the network.

Again considering the synthetic honeycomb networks, we can investigate the effect of

particle maturation on mean first passage time, and probe the functional advantage of widely-

distributed ER exit sites. In Fig. 3.5a we see that by adding a maturation process (e.g. λ ≤ 0.1s−1),

the MFPT of particles starting at the inner boundary exhibits a pronounced minimum when

the reactive regions are spread out over a broader region of the network. As the maturation

rate becomes slower (e.g. λ = 0.001s−1,) the particles have time to spread uniformly across the

network before maturing and it becomes advantageous to disperse targets over the entire network

structure.

The interplay of maturation and local reactivity is highlighted in Fig. 3.5b. For lower

maturation rates, it is best to distribute reactive regions throughout the network, regardless of

local reaction rate γ . For higher maturation rates, we see the optimal distance vary depending

on reactivity. For rapid absorption (γ = 100s−1) concentrating targets near the inner boundary

is advantageous, as most particles can be captured shortly after maturation before they have a

chance to explore the network. For slower reactivity, many particles have a chance to explore

the full network structure and placing the target regions more broadly dispersed throughout the

network becomes advantageous.

These results highlight how the placement of reactive regions in a tubular network can

lead to non-trivial effects on the overall reaction rate. The analytic approach described here

allows for rapid, easily implemented calculations of the mean and variance of reaction times.

This approach thus makes practical an extensive exploration of how network morphology and

the distribution of target positions and/or reaction rates modulate kinetic processes involving

stationary network structures.
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Figure 3.6. First passage times to a stationary target obtained with exact kinetic Monte Carlo
simulations. (a) Mean first passage times for particles starting at different source nodes on a
synthetic planar network to reach the target (green), plotted versus Euclidean distance from
source to target. Error bars give standard error of the mean (n = 150 particles simulated). Black
line and shaded region give mean and expected standard error from corresponding analytical
calculations. Diffusivity is set to D = 1µm2/s; length units are non-dimensionalized by network
size L and time units by L2/D. (b) Distribution of first passage times to a target node (green),
scaled by the MFPT (τ), on a yeast mitochondrial network. Color corresponds to different
starting nodes. Dashed lines show expected exponential decay for a Poisson process with the
same mean. (c) Analogous plot for particles diffusing on a peripheral ER network structure.

3.5 Simulating particle trajectories

The analytic first passage time calculations described in the previous section are limited

in several important aspects. First of all, they directly provide only the low-order moments (mean

and variance) of first passage time distributions, without enabling the exploration of more detailed

features, such as the extreme statistics for the earliest and latest arriving particles, which are

important in a variety of biological signalling processes [65]. In the complex, compact geometry

of a reticulated network, the relevant arrival timescales can be very broadly distributed, and

are not necessarily well-characterized by the mean and variance alone [137, 47]. Furthermore,

our calculations thus far have been restricted to immobile targets or reactive regions within

the network. Modeling the behavior of more complex reaction-diffusion processes, which

may involve interaction between multiple mobile particles, can be achieved by switching from

analytically tractable methods to agent-based stochastic simulations.

Agent-based simulations are particularly relevant when the reacting molecules are present

in small copy numbers and substantial fluctuations of local concentration make mean-field de-
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scriptions of particle concentrations inaccurate. The simplest such reaction-diffusion simulations

rely on Brownian dynamics, with particles taking very small discrete time steps and checking for

a reaction on each step [147]. A series of alternate schemes have been developed to minimize

the computational cost of propagating particles when they are far away from each other or

the domain boundaries. Such methods, which have been variously termed Green’s Function

Reaction Dynamics or first-passage kinetic Monte Carlo [118, 119, 66, 120], leverage analyti-

cally computed propagator functions to move individual particles over large time steps within a

‘protected domain’ where interaction with other particles or structures does not occur. They thus

enable rapid propagation in regions where particle motion is purely diffusive, interspersed with a

finer time-resolution in regions where reactions may take place. The main required assumption

is that each propagated step of the particle is Markovian (memory-less) and that there are no

reactions, obstacles, or interactions with other particles while the particle is propagating within

the protected region.

Kinetic Monte Carlo approaches all rely on sampling the time interval for the next event

of interest to occur, from an appropriate distribution of transition times. Original schemes relied

on exponentially distributed transition times [148], while the more recent approaches sample

from the analytically known distributions of first passage times in simple domains such as a

one-dimensional interval or three-dimensional sphere [66, 120]. Here, we leverage our diffusive

propagator between network node neighborhoods (Sect. 3.3) to develop an efficient kinetic

Monte Carlo simulation algorithm optimized for diffusive particles on tubular networks. In this

section, we focus on instantaneous reactions with perfectly absorbing target nodes, although the

method can easily be expanded to include finite reactivity on edges.

3.5.1 Single particle propagator

For a single particle propagating on a network, we consider the particle starting at node i

at time t = 0. A protected domain can then correspond to the local neighborhood, containing all

the edges connected to node i. The distribution of times to leave this domain is given by the flux
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into all the neighboring nodes, which are treated as absorbing boundaries. Specifically, we begin

by sampling which neighboring node k is first reached by the particle, from the discrete splitting

probability P∗
ik given in Eq. 3.8a. The distribution of times to first hit this node, conditional upon

not previously leaving the neighborhood, can then be obtained by the Laplace inversion of the

flux P̂ik (Eq. 3.6), normalized by P∗
ik.

To perform the Laplace inversion, we first numerically calculate the poles of P̂ik. These

poles occur at discrete values sp, which fall on the negative real axis and can be expressed as

sp =−Du2
p, where the up satisfy the following equation

sin(ℓikup)
di

∑
j=1

cot
(
ℓi jup

)
= 0. (3.26)

The residues r(ik)p at the poles can be found by evaluating the derivative of Eq. 3.26 with

respect to s, yielding

1

r(ik)p

=
sin(ℓikup)

2Dup

di

∑
j=1

ℓi j csc2 (ℓi jup
)
. (3.27)

Finally, we evaluate the inverse Laplace tranform using the standard Bromwich integral

together with the Cauchy residue theorem [149]:

Pik(t) = ∑
p

r(ik)p e−Du2
pt . (3.28)

In a kinetic Monte Carlo simulation, we initiate a particle on node i, sample the next

neighboring node to be reached (k) according to probabilities P∗
ik, and then use inverse transform

sampling to select the time interval ∆t to first reach this node according to the normalized

probability distribution ∆t ∼ Pik(∆t)/P∗
ik. Details of the sampling procedure are provided in B.3.

To validate the simulations, we evaluate the mean and standard deviation in first passage times

from different starting positions to a particular target on a 2D lattice-like network, showing a
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close match to analytical predictions (Fig. 3.6a).

Examples: first passage time distributions

Beyond the low-order moments, simulations allow us to explore the full distribution of

first passage times to a target node. Fig. 3.6b, c shows such distributions from several different

starting nodes on an example yeast mitochondrial network [55] and a peripheral ER network

from a COS7 cell. These distributions are compared to the exponential distribution expected for

a constant-rate Poisson process with the corresponding average time. For particles starting far

from the target (orange curves), there is a peak “most likely” time of target encounter. Shorter

search times are precluded by the need to traverse a substantial distance in the network before

ever hitting the target. Particles that start near the target (black curves) exhibit long tails in the

first passage time distribution, which are a known signature of compact search processes [47].

These tails highlight the multiple timescales that contribute to the search, as some particles move

towards the target immediately while others follow long meandering paths over the network

before reaching the target. The deviation from a Poisson distribution, for both nearby and distant

starting locations, indicate that reaction kinetics on these networks should have qualitatively

different behaviors than would be expected in a bulk three-dimensional continuum.

Another application of stochastic particle hopping simulations is to explore the extreme

arrival time—the average time for the first of many particles to find a target on the network.

Such calculations are relevant to signaling processes where one or a few molecules are sufficient

to trigger a response, so that the shortest rather than the mean arrival times set the timescale

of signal initiation [65]. In Fig. 3.7, we run simulations of N independent particles starting

from a given position on the network and show the time for the first of these particles to hit a

particular target node. For a small number of simulated particles, the average first hitting time

scales roughly as ∼ 1/N, as would be expected in a bulk continuum. In other words, the reaction

rate is approximately proportional to the particle concentration. However, for large numbers

of particles, we observe a δ 2/ logN dependence, where δ is the minimal distance along the
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Figure 3.7. Extreme arrival statistics on an ER network structure. Plotted is the average first
passage time for the first of N particles to hit a target node (green), starting from either a nearby
source (blue) or a distant source (magenta). Scaling laws are shown for the small N limit (solid,
∼ 1/N) and large N limit (dashed, ∼ δ 2/ logN, where δ is the minimal network distance between
start node and target). Diffusivity is set to D = 1µm2/s.

network between the starting point and the target. These results are consistent with extreme first

passage statistics in one-dimensional or two-dimensional systems [150, 151], and are similar to

previous simulations of particle hopping on networks which assumed a single timescale for each

individual hop [63].

Synchronizing trajectories

In certain applications, it is desirable to calculate snapshots of the particle position at

prespecified times. For example, such trajectory information is needed to compute the mean

squared displacement of a particle over different time intervals, a common analysis tool for

quantifying the rate of diffusive spread. In this case, during each step of the kinetic Monte Carlo

procedure, we check whether the time point t +∆t exceeds the next save-time ts. If that is the

case, the particle needs to be propagated first over a time interval δ t = ts − t. To achieve this, we

leverage a spatial ‘no-passage’ propagator within the neighborhood of node i, which gives the

distribution of particle positions conditional on not leaving the neighborhood by time δ t. For a

particle that starts on node i at time 0, and does not leave the neighborhood, the probability that

it is on the edge connecting i to k, between position x and position ℓik, at time δ t is defined as
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Yik(δ t). The Laplace transform of this spatial cumulative distribution is:

Ŷik(x,s) =
∫ ℓik

x
ĉik(x′,s)dx′

=
1
s

P̂ik [cosh(αℓik)− cosh(αx)]
(3.29)

To invert the Laplace transform, we note that this expression has the same poles as the

flux P̂ik, so that

Yik(x,δ t) = ∑
p

r(ik)p

Du2
p
[cos(upx)− cos(upℓik)]e−Du2

pδ t (3.30)

To propagate the particle forward over a time interval δ t, we first sample which edge

ik the particle is positioned on, using the discrete probabilities Yik(0,∆t). The position along

the edge is then sampled according to the conditional cumulative distribution: P(x′ > x) =

Yik(x,∆t)/Yik(0,∆t).

Once the particle has been placed at position x0 along a specific edge m (bounded by

nodes i and k), we can use a Laplace inversion of Eq. 3.9 to sample the next time interval ∆t for

the particle to first hit either node i or node k. If this time interval would again exceed the next

desired save point, the particle is propagated spatially along the edge (see B.3 for details).

Simulations of complete particle trajectories can be used to explore the mean squared

displacement (MSD) of particles diffusing over a network structure. As seen in Fig. 3.8, particles

on a poorly connected network with many dead ends exhibit a lower, apparently subdiffusive,

MSD than particles on a lattice-like network. This result implies that MSD analysis alone may

indicate subdiffusive motion even when the particles are in fact undergoing classic diffusive

motion, due to confinement on a network structure with missing connectivity.

72



Figure 3.8. Mean squared displacement for simulated diffusing particles on two synthetic
networks. Blue: Synthetic planar network with full lattice-like connectivity. Magenta: decimated
network network with 27% of edges removed while maintaining a single connected component.
Length units are non-dimensionalized by network size L and time units by L2/D.

3.5.2 Simulating multiple particles

Many problems concerning reaction kinetics on networked geometries require the ability

to simulate not just individual particles searching for stationary target sites, but also multiple

mobile particles that encounter and react with each other. Additional complications arise in

the multi-particle case because the possibility of reaction with a neighbor alters the distribution

of each particle after any given time interval. This issue was addressed in previous studies by

introducing ‘protective domains’ that break up the available space into disjoint regions wherein

each particle propagates independently of the others with no chance of interaction [66, 119]. For

example, on a simple 1D interval, such protective domains can be defined by placing boundaries

at all points half-way between the positions of neighboring particles. This notion was refined

further by noting that when two particles approach close to each other, infinitesimal time steps

can be avoided by defining a single protective domain surrounding both of them and then jointly

propagating the pair distribution of the two particles [66].

In our system, a protective domain around a particle has one of the following three forms

(Fig. 3.9). An edge segment domain is a single linear segment with end-points on one network
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Figure 3.9. Protective domains used in multi-particle simulations. The network region is shown
in black, the particle of interest in red, and the protective domain containing it in blue. An
edge segment domain is confined to a single edge and can contain a pair of particles (green).
A node segment domain is centered on a node, with equal-length segments along all edges; it
is employed when a nearby particle with its own domain (green) prevents a direct hop onto an
adjacent node. A node neighborhood domain encompasses the full edges connected to a given
node, and requires the particle to start on the node itself.

edge. This domain can contain one or two particles and is made as big as possible given the edge

length and the presence of any additional particles. A node segment domain is centered on a

node and surrounded by equal-length segments of the adjacent edges. The segment lengths are

set to the minimum of the distance to the nearest unoccupied node or half the distance to the

nearest other particle along each edge. Finally, the full node neighborhood domain is employed

in the case where there are no other particles on the nodes or edges adjacent to the current node.

The asynchronous time propagation for multiple particles proceeds as described in [66] and

summarized below.

At the start of the simulation, all particles are distributed into non-overlapping protective

domains of the form illustrated in Fig. 3.9. The particles all begin synchronously with the global

time set to zero. We then proceed to sample the first passage time for each particle or pair of

particles to leave its protective domain, as well as the boundary through which they leave. This

results in an ordered queue of times ti < .. . < tk for leaving the domain. The particle with the

shortest leaving time ti is propagated to one of the edges of its domain. Any other particle ( j1, j2,

etc) whose domain touches the boundary reached by particle i is also propagated forward to

time ti, using the spatial propagator appropriate to its domain (eg: Eqs. 3.30, B.9). The affected

particles i, j1, j2, . . . are then partitioned into protective domains. New exit times are selected
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Figure 3.10. First encounter times for two diffusing particles (with same diffusivity), compared
to the analytic tagMFPT to a stationary target. Target initial position is averaged over all network
nodes, and particles start uniformly distributed along network edges. (a) Relative search time on
network consisting of single line of nodes. Dashed black line indicates analytic expected value
on a finite-length linear segment. (b) Relative search times on a lattice-like synthetic network
with increasing number of edges removed, reducing connectivity. (c) Relative search times on
9 ER network structures from COS7 cells (magenta circles), 9 yeast mitochondrial network
structures (orange triangles). Error bars show standard error of the mean, for simulations of 500
particles.

for these particles and added into the priority queue. Each step of the algorithm thus consists of

propagating a single particle using the appropriate first-passage time distribution for its domain

and one or more particles using the spatial “no-passage” distribution within their domain. The

number of such no-passage particles is at most equal to two (if particle i ends on an edge) or the

degree of the network node to which it has transitioned.

The first-passage and no-passage propagators for a single particle have already been

derived for a node-neighborhood domain (Eqs. 3.28 and 3.30, respectively) and an edge-segment

domain (Eq. B.8 and B.9). A node-segment domain, consisting of d segments of equal length

ℓ, can be treated identically to a single one dimensional interval with absorbing boundaries at

(−ℓ,ℓ) and the particle starting at x0 = 0. Given the symmetry of the domain, the particle has

a 1/d chance of ending a first-passage or a no-passage step on any one of the edges. The joint

propagation of a pair of particles that share an edge segment is described in B.3.4.
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Example: Pair encounter times

We use simulations on a variety of network structures to compare the encounter time

for two diffusive particles (τenc) versus the mean first passage of a single diffusive particle

searching for a stationary target placed anywere on the network (target-averaged global MFPT,

or tagMFPT). On an infinite line or plane, the separation between a pair of particles is itself

diffusive, with an effective diffusivity 2D. The pair encounter time is thus expected to be half

that of the MFPT to a stationary target. In a finite domain, the pair encounter time is dependent

on the initial separation between the two particles, as well as on their position relative to the

domain boundaries. An exact solution for this encounter time is available for pair diffusion on a

line segment [152], where averaging over starting positions gives

τ
(1D)
enc =

L2

D

(
1
8
+

32
π5

∞

∑
k=0

cos(kπ)− sinh
((

k+ 1
2

)
π
)

(2k+1)5 cosh
((

k+ 1
2

)
π
) )

≈ 0.42× tagMFPT.

Simulation results using our algorithm reproduce this expected behavior on a simple network

consisting of a line of nodes (Fig. 3.10a). We next look at pair particle behavior on a planar

lattice-like network structure with degree 3 nodes and multiple edges removed to reduce network

connectivity. The edges are chosen at random while keeping a single connected cluster within

the network. For a full lattice network, the pair encounter time is nearly half of the tagMFPT.

However, as the network connectivity decreases and approaches a tree-like loop-less structure,

the pair encounter time drops substantially lower, to about 0.3 tagMFPT (Fig. 3.10b). On poorly

connected networks the ability of a target to move diffusively can thus greatly speed up the

encounter time, beyond what would be expected in a bulk continuum geometry. This result

stems from the fact that poorly connected networks have highly heterogeneous global mean first

passage times, depending on where a stationary target is placed [45]. If the target is located in

regions of the network that are difficult to access, the MFPT can be several times higher than
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the average over all target positions [45]. Even when averaging over different target locations,

the extremely poor accessibility of some target positions leads to tagMFPTs that are more than

twice as slow as the pair encounter time where both particles are diffusive and capable of leaving

the hard-to-access regions.

We also compare the pair encounter time to the stationary target search time for several

organelle network structures (Fig. 3.10c). Given their high connectivity, peripheral ER network

structures have a pair encounter time that is, on average,
〈

τ
(ER)
enc /tagMFPT

〉
≈ 0.40± 0.007

(standard error over networks). Even for these highly looped structures, the pair encounter time is

less than half the averaged first passage time to a stationary target. Yeast mitochondrial network

structures are less well connected (less looped) than the mammalian ER [45], and their pair

encounter time is slightly lower:
〈

τ
(mito)
enc /tagMFPT

〉
≈ 0.35±0.009. These results imply that

diffusion of ER and mitochondrial structures such as ERES components or nucleoids may be

helpful in allowing for rapid search by diffusing proteins.

3.6 Discussion

The methodology outlined in this work allows for precise modeling of the propagation of

diffusive particles confined in tubular network structures. We first describe analytic calculations

for the mean and variance of the first passage time to reach one of several stationary target sites.

Our approach is distinct from past studies of transport on spatial networks [113, 153, 64, 63]

by explicitly considering the physical process of diffusion between network nodes, allowing

the exact calculation of appropriate splitting probabilities and mean hopping times between

adjacent nodes, as a function of the relevant edge lengths. Applications to peripheral ER network

structures indicate the effective kinetics in the ER are intermediate between those expected in a

1D vs. 2D geometry (Fig. 3.2), as well as highlighting the spatial heterogeneity in first passage

times between different regions of a network (Fig. 3.3).

The analytic calculations are then further expanded to consider partially reactive edges
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scattered throughout the network, giving spatially heterogeneous reaction rates. This model

allows an exploration of how the spatial distribution of a fixed total absorbance affects reaction

kinetics. In a single long tube, we show that spreading out an absorbing region over an intermedi-

ate length-scale results in optimal mean reaction times (Fig. 3.4). This result is applied to distal

cargo capture by microtubule tips and implies a benefit to heterogeneous microtubule lengths

in extended cell domains such as neuronal axons and fungal hyphae. In a two-dimensional

lattice-like network, dispersal of partially absorbing regions away from the source of particle

production is shown to be advantageous primarily when particles have a finite maturation time

period before they can react (Fig. 3.5). While protein production in the endoplasmic reticulum is

thought to occur largely in the perinuclear rough ER, secreted proteins must undergo a folding

and maturation process over timescales of minutes to hours before they can exit the network [146].

Our results thus indicate a potential functional role for the dispersion of ER exit sites throughout

the periphery, where they can catch diffusing proteins as they mature.

Complementing the analytic MFPT calculations, we also present an exact, efficient

algorithm for agent-based reaction-diffusion simulations of particles on a tubular network.

This algorithm constitutes a special case of kinetic Monte Carlo [66] or Green’s Function

Reaction Dynamics [119] approaches, tailored for a network geometry. Unlike classic Brownian

Dynamics, it allows for step sizes on the order of entire edge lengths, while sampling from the

exact node propagator distribution function. In contrast to a variety of prior studies of stochastic

trajectories on networks [60, 154, 63], we do not assume a single well-defined timescale for

each node transition and instead incorporate the full distribution of transition times and splitting

probabilities based on physical diffusion over edges of arbitrary length. Such simulations allow

for calculations that go beyond the mean target search time, to explore reaction time distributions

(Fig. 3.6), extreme particle statistics (Fig. 3.7), spatial dispersion (Fig. 3.8), and pair encounter

times between multiple diffusive particles (Fig. 3.10). Interestingly, the pair encounter times are

found to be less than half the timescale for hitting a stationary target, particularly in the case

of poorly-connected networks. This finding implies that allowing targets to become diffusively
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mobile, rather than fixed to a specific network region, can significantly increase their encounter

rates with other diffusing particles.

Our approach is relevant to any spatial network that can be described by curved one-

dimensional edges (tubules) connecting nodes of negligible volume. For realistic reticulated

networks the implied assumption is that particles spend a negligible amount of time in tubule

junctions and are equally likely to enter any of the edges emerging from the junction. While

mitochondrial networks generally have nodes that appear to simply be junctions of joining

edges [55], the endoplasmic reticulum may include more complex node morphologies such as

small regions of fenestrated sheets [155]. While our methods do not currently describe diffusion

within such peripheral sheets, they can incorporate the dense patches of tubular intersections that

have been hypothesized to comprise some such regions [80]. Including non-negligible trapping

times within expanded nodal regions could serve as an important avenue for future work in

modeling diffusive transport throughout the ER.

Another potential source of complication in cellular organelles is the combination of

diffusive transport with other dynamic processes such as network structural remodeling and

the recently postulated intra-tubule flows that may contribute to rapid motion of ER luminal

proteins [130, 63]. Topological rearrangements of both mitochondria and the ER occur on

the tens of seconds to minutes timescales [123, 32, 39]. Network remodeling is thus unlikely

to have a substantial effect on local protein propagation but may modulate the long search

times to reach poorly connected regions of the network. Putative flows in the ER lumen have

been proposed to rapidly drive luminal proteins betweeen adjoining nodes, without affecting

the diffusion of membrane-embedded proteins [130]. Simulations incorporating such flows

would require modifying the local node-to-node propagator function for diffusion with drift

along individual edges. Both time-varying flows and network rearrangements would require

propagating particles forward to synchronization times when such network-level changes occur.

In the case of localized changes (ie: flow reversal along a given edge, or extension of a single

tubule), substantial speed-up could still be obtained using the asynchronous kinetic Monte Carlo
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approach described above.

The methodology presented here has broad applicability to modeling the diffusion of

particles over networks with physical edges. Our examples focus on applications to intracellular

organelle networks, forming a mathematical framework for exploring diffusion-limited reac-

tion processes in reticulated mitochondria and the ER. These two organelles host a variety of

biomolecular pathways of interest, and understanding the kinetics of diffusive search is critical to

investigating dynamics of such disparate cellular processes as the early secretory pathway (ER),

calcium release and replenishment (ER), and mitochondrial gene transcription. The described

framework for simulation and analytic computation of diffusive reaction times in reticulated

structures forms an important foundation for exploring the link between morphology and function

in complex biological architectures.
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Chapter 4

Endoplasmic Reticulum Network Hetero-
geneity Guides Diffusive Transport and
Kinetics

4.1 Abstract

The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and

tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The

impact of its complex, dynamic morphology on its function as an intracellular transport hub

remains poorly understood. To elucidate the functional consequences of ER network structure and

dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive

protein transport. In vitro imaging of photoactivated ER membrane proteins demonstrates

their non-uniform spreading to adjacent regions, in a manner consistent with simulations of

diffusing particles on extracted network structures. Using a minimal network model to represent

tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have

little effect on diffusive protein transport. Furthermore, stochastic simulations reveal a novel

consequence of ER network heterogeneity: the existence of ’hot spots’ where sparse diffusive

reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo

export from the ER, are shown to be disproportionately located in highly accessible regions,

further from the outer boundary of the cell. Combining in vitro experiments with analytic
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calculations, quantitative image analysis, and computational modeling, we demonstrate how

structure guides diffusive protein transport and reactions in the ER.

4.2 Introduction

The eukaryotic cell contains myriad complex structures and compartments, each serv-

ing a specialized functional role. These include the tortuous interior of interconnected mito-

chondria [156], the stacked sheets [157] and tubular networks [22, 80] of the perinuclear and

peripheral endoplasmic reticulum (ER), and the intertwined actin and microtubule networks of

the cytoskeleton [158, 159, 160]. The morphology of these intracellular structures modulates

the long-range active and passive transport of particles within them [161]. For example, the

winding cristae of mitochondria slow down the long-range spread of particles [156], while spiral

dislocations connecting ER sheets facilitate more rapid diffusive transport [157, 162].

A number of theoretical studies have demonstrated that the architecture of the domain

can play an important role in determining reaction rates, a general phenomenon described

as ‘geometry-controlled kinetics’ [47]. Emergent kinetic behaviors such as ultrasensitivity,

bistability, and proofreading can be promoted or suppressed when enzyme and reactant diffusion

is perturbed by crowding or by association with cellular structures [49, 50, 51]. Additional effects

arise when the domain structure is dynamic, leading to time-varying effective diffusivity [52, 53]

and broadening the distribution of search times [54].

One important class of intracellular geometries includes network structures, consisting

of effectively one-dimensional edges connected at junction nodes. The transport properties of

spatial networks [59] have been studied in a variety of contexts, from porous media [58], to

neuronal maintenance [163, 56]. For instance, particles diffusing through networks of tubes and

containers have been shown to exhibit novel transport properties such as wavelike concentration

fluctuations [117], as well as enhanced reaction rates [164].

The peripheral ER [40, 165, 38] and the mitochondrial networks of yeast and mammalian
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cells [55, 166] can both be described as spatial networks of interconnected hollow tubules. Studies

of search kinetics in these networks have highlighted the importance of network connectivity, as

described by the number of loops within the network [55, 45]. The connectivity of the organelles

can be biologically perturbed by mutations in ER morphogens [22, 38] and mitochondrial fusion

and fission proteins [55, 166]. Prior studies have focused largely on global network architecture

and transport properties, such as mean first-passage times averaged over the entire network.

Cellular networks, however, are not homogeneous lattices, implying that a significant amount of

variability should be expected in local transport to specific regions [67]. This variability has the

potential to modulate encounter kinetics and dispersal to different regions of the cell.

The dynamic, interconnected web of the ER plays an important biological role as a

delivery network for proteins, ions, and lipids throughout the cell [167, 168, 9, 7]. For example,

phospholipids manufactured in the ER, must diffuse through its membrane to contact sites with

lipid droplets, mitochondria, and other organelles in order to be transferred to their eventual

cellular destinations [5, 7]. Additionally, alteration of network structure through modulating

expression of ER morphogens has been shown to affect the magnitude of calcium release,

possibly due to altered transport through the ER lumen [167].

The ER also serves as a quality-control hub for newly synthesized proteins destined for

secretion [68, 2]. These proteins are co- or post-translationally inserted into the ER lumen or

membrane, interact with a variety of ER-resident chaperones to ensure correct folding, and exit

the organelle after encountering an ER exit site (ERES). The ERES are punctate, persistent

structures which package secretory cargo into COPII-coated vesicles for subsequent transport

to the Golgi apparatus [10, 11, 12, 13]. While in the ER, the proteins targeted for secretion

engage in diffusive transport to encounter their chaperone binding partners and to find the exit

sites. Furthermore, certain steps in the protein quality control pathways are thought to occur in

specialized local regions of the ER [169, 170], necessitating transport of proteins into and out of

these regions. Given that many of the biological functions of the ER rely on its ability to serve

as a topologically isolated transport network throughout the cell, understanding how network
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architecture modulates particle transport and encounter kinetics forms an important problem in

cell biology.

In this work, we focus on the spatial heterogeneity of the peripheral ER network in

mammalian (COS7) cells. We demonstrate that structural variability across individual ER

networks translates to heterogeneous diffusive accessibility for different ER regions within the

same cell. Live-cell imaging data is used to show that locally photoactivated membrane proteins

spread non-uniformly to nearby regions of the ER, in agreement with simulation results that

predict preferential transport to better-connected regions of the network. The contribution of

dynamic ER network rearrangements is quantified using a minimal network model [39, 40],

and shown to have little effect on membrane protein spreading. Furthermore, with the aid of

stochastic simulations we demonstrate that the heterogeneity of the ER leads to the formation

of ‘hot spots’ where diffusing reactants are more likely to find each other. In live cells, we

additionally find that ER exit sites are preferentially localized to regions of higher accessibility

as dictated by network connectivity and proximity to the perinuclear region. By examining the

impact of ER network heterogeneity on diffusion-limited reactions and local protein spread, this

work sheds light on the structure-function relationship of a biologically crucial organelle.

4.3 Materials and Methods

4.3.1 DNA plasmids

ER plasmids (mCherry KDEL, KDEL Venus or BFP KDEL) were described previ-

ously [109, 32, 171]. Plasmids expressing fluorescently tagged COPII proteins: GFP Sec16s,

GFP Sec23A, GFP Sec24D, and EYFP Sec31A were acquired from addgene (gifts from Ben-

jamin Glick #15775, David Stephens #66609 and #66613, Henry Lester #32678) [172, 173, 174].

Generation of PAGFP Calnexin was performed by PCR amplification of calnexin from mEmer-

ald Calnexin (gift from Michael Davidson, addgene #54021) using iProof high-fidelity DNA

Master mix (Bio-Rad) and primers flanked with Xho1 or BamH1 recognition sites (Primer Fwd:
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5’-AGATCTCGAGCTCATGGAAGGGAAGTGGTTGCTG -3’ and Primer Rev:

5’-CCGATGGATCCCGCTCTCTTCGTGGCTTTCTGTTTCT-3’) according to manufacturer instructions.

Amplified DNA was purified using the Monarch Gel Extraction Kit (New England Bioscience)

according to manufacturer protocol and digested with Xho1 and BamH1 (NEB). The digested

calnexin was then ligated into PAGFP N1 (gift from Jennifer Lippincott-Schwartz, addgene

#11909) [175] using T4 DNA ligase (NEB) according to manufacture protocols. Bacterial clones

were screened for insertion of calnexin sequence and confirmed by sequencing.

4.3.2 Photoactivation experiment

COS7 cells were purchased from ATCC and cultured in Dulbecco’s modified Ea-

gle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% peni-

cillin/streptomycin. For all imaging experiments, COS7 cells were seeded in six-well, plastic-

bottom dishes at 7.5×104 cells/ml about 16 hours before transfection. Plasmid transfections

were performed using lipofectamine 3000, as described previously [176]. The following standard

DNA amounts were transfected per mL: 0.2 µg mCherry KDEL, 0.2 µg BFP KDEL and 0.4 µg

PAGFP Calnexin. Cells were transferred to 35mm imaging dishes (CellVis) at least 16 hours

before imaging.

All photoactivation experiments were performed at the Van Andel Institute Optical

Microscopy Core on a Zeiss LSM 880, equipped with an Axio Observer 7 inverted microscope

body, stage surround incubation, Airyscan detector, two liquid cooled MA PMT confocal

detectors and one 32-channel GaAsP array confocal detector. Images were acquired with a

Plan-Apochromat 63x (NA 1.4) oil objective with 3x optical zoom using Zeiss Zen 2.3 Black

Edition software. Photoactivated target ROIs (60x60 pixel ROI) in the peripheral ER network

were stimulated with 405 nm light (single pass with 0.51 µsec pixel dwell) to selectively

activate defined regions within the peripheral ER. Cells were tracked for at least 2 minutes

after stimulation with constant acquisition (0.629 sec/frame) to track diffusion of photoactivated

signal into the surrounding ER network.
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4.3.3 Image analysis and network structure extraction

The machine learning segmentation toolkit ilastik [110] is employed to segment ER

network structures from live-cell images using the mcherry KDEL marker. A custom-written

skeleton tracing subroutine in Matlab [111] is used to extract a network structure from the

probability file output by ilastik. This code is publicly provided at https://github.com/lenafabr/

networktools and includes data structures for storing the network morphology as a set of nodes

connected by edges with curved spatial paths. The networks are manually curated (using

a network editing GUI provided as part of the networktools package) to remove unphysical

terminal nodes arising from skeletonization artifacts.

For the calculations shown in Fig. 4.1A,C,D,F, and G a circular region of radius 20 µm is

cut out from the extracted network structure. In Fig. 4.1B, eight sections of peripheral ER with

radius 8.5 µm are used from three different cells. These eight extracted ER networks are again

used in the pairwise reaction simulations (Fig. 4.4B-E) and in the Supplemental Material.

4.3.4 Mean first passage times on tubular and reservoir networks

In our base model, mean first passage times (MFPTs) are computed on networks consist-

ing of edges joined at point-like nodes. Details of the computation are outlined in Ref. [67]. In

short, we find the splitting probability Pik and waiting time Qi for a diffusive particle starting at

node i to first reach neighboring node k:

Pik =
1/ℓik

∑
di
j=1 1/ℓi j

, Qi =
1

2D
.

∑
di
j=1 ℓi j

∑
di
j=1 1/ℓi j

. (4.1)

Here, di is the node degree and ℓik is the length of the connecting edge. The MFPT from node i

to a target node is then given by [67]:

τi =
[
(I−P)−1 ·Q

]
i
, (4.2)
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where I is the identity matrix, and the matrix and vector P,Q are defined by Eq. 4.1, with the

row and column correponding to the target removed. The GMFPT is defined as the MFPT to a

given target k, averaged over all starting nodes i.

In this work we also introduce a novel extension to the base model that allows calculation

of search times on networks with enlarged nodes or ‘reservoirs’ (details in Supplemental Material

Section S2). The model represents the motion of particles between disk-shaped reservoirs and

connecting tubules as transitions between distinct spatial states. Waiting times for transition out

of the reservoir are set by two-dimensional diffusive escape into the narrow tube entrances. The

additional states associated with trapping in the reservoirs are included in the transition matrix P

and waiting time vector Q to compute the MFPTs according to Eq. 4.2.

We consider two extended network models. In Supplemental Fig. S3, we randomly

select nodes to be expanded into larger reservoirs. GMFPTs are computed to both the point-like

remaining nodes of the network and to a central target inside each reservoir, where the radius of

the target is equal to the network tubule radius. Particles are assumed to start on the nodes, in

proportion to the node area. In Fig. 4.5 we introduce a single large disk-like reservoir representing

the perinuclear region. GMFPTs are computed for particles starting uniformly distributed along

the network edges and the reservoir, in proportion to the associated surface area for the tubules

and the disk. Details for computing MFPTs for a particle starting on a network edge can be

found in Ref. [67].

4.3.5 Analysis of photoactivated spreading data

Imaging datasets for 9 individual cells are selected for analysis, each of which has a

photoactivation region surrounded by a well-defined tubular network structure with primarily

3-way junctions. The net signal over time is computed in 10 distinct wedge regions comprising

an annulus around the photoactivation region with inner radius 3.5 µm and outer radius 6 µm.

The photoactivated signal in wedge j at time i is defined as wPAGFP
i j . The fractional signal

is then given by f PAGFP
i j = wPAGFP

i j /PPAGFP
0 where PPAGFP

0 is the total initial signal within the
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photoactivated zone. We find the slope (‘signal arrival rate’) of the fractional signal via a linear

fit over the first 10 seconds of imaging time following photoactivation.

Two rounds of filtering are applied to ensure a meaningful relationship between the

photoactivated signal dynamics and the observed network structure. The first filter removes

regions with extremely rapid and/or large fluctuations in the ER signal. We calculate the

time-variance in the fractional signal in each wedge as

Vj = vari(wPAGFP
i j /mPAGFP

i ), (4.3)

where mPAGFP
i =∑ j wPAGFP

i j is the total signal in the annular region at time i. Given the distribution

of these time-variances, a threshold of 2.5× (MAD× 1.4826), where MAD is the median

absolute deviation, is used to define outliers with extreme ER dynamics, in keeping with

commonly used outlier detection methods [177].

The second round of filtering removes instances where network extraction does not

accurately capture the underlying ER morphology. For example, small peripheral sheet regions,

expanded junctions, or dense tubular matrices [80] can complicate the extraction of a well-defined

network structure. Outlier regions are defined as those where the extracted total tubule length

and the ER marker (mCherry KDEL) signal levels are mismatched. Specifically, we compute

the time-averaged fractional mCherry KDEL signal for each wedge region in each cell as s j =〈
wmCherry

i j /mmCherry
i

〉
i
. A linear fit is performed relating s j with the total extracted network length

for each wedge, averaged over time. Any wedge with a residual above 2.5× (MAD×1.4826) is

filtered out of the analysis. Wedge regions filtered out due to either criterion are shown as gray

dots in Fig. 4.2E-G.

4.3.6 Simulations of photoactivation on static networks

For each frame in a photoactivation video, the ER network structure is extracted from

the mCherry KDEL fluorescence channel, as described in the Image Analysis section. On
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each individual network structure, simulations of diffusing particles are conducted via a kinetic

Monte Carlo method, as described in prior work [67]. Briefly, analytically computed propagator

functions are used to sample the time required for each particle to transition between neighboring

nodes and edges, obviating any artifacts associated with a fixed time discretization. This method

allows the particle to propagate in larger timesteps than would be achievable through classic

Brownian dynamics simulations on a network.

Batches of N = 10000 particles are initiated within the experimentally photoactivated

region, a 3×3 µm patch in the peripheral ER. Particles propagate through the network with a

diffusivity of D = 1 µm2/s, consistent with previous measurements of ER membrane protein

diffusivity [165]. All particle positions are saved at a frame rate matching the experimental

imaging rate, dt = 0.629s.

To process the simulated data, we define individual wedge regions of the same size and

location as in the experimental images and analyze the number of particles in each. Note that

each simulation is run on a static network extracted from a single frame (k) of the experimental

image. The simulated signal in each wedge (wsim
ki j ) is then defined as the total number of particles

in wedge j and time point i on the network extracted from frame k, and the fractional signal

(plotted in Fig. 4.2D) is f sim
ki j = wsim

ki j /N.

We next average this fractional signal over the different networks, defining f sim
i j =〈

f sim
ki j

〉
k

(see Supplemental Material Fig. S2A.iii for example averaged signal vs time curves).

The resulting values are used to find the signal arrival rate (slope over first 10 seconds), exactly

as for experimental data. Alternative methods for incorporating the time-varying ER network

structure are considered in the Supplemental Material.

The simulations make it possible to incorporate a range of values for the particle diffusiv-

ity. We accomplish this by rescaling the simulation time in our analysis, which leads to a rescaling

of the diffusivity (assuming static networks). For example, to test whether Deff = 0.5 µm2/s

is a better representation of the protein diffusivity than Dorig = 1 µm2/s, we can find the slope
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of f sim
i j over time Tscale =

Deff
Dorig

×10 s = 5 s. The slope is then multiplied by Dorig
Deff

to arrive at a

simulated arrival rate with an effective diffusivity of Deff = 0.5 µm2/s.

We perform a linear fit of the rescaled simulated rates to the experimental protein arrival

rates (slopes over 10 s). Repeating over a range of effective diffusivities, the value of Deff

with the optimal fit indicates the best estimate of ER membrane protein diffusivity given the

photoactivated spreading data.

4.3.7 Minimal model for dynamic ER networks

To estimate the effects of ER network rearrangements on particle spreading, we conduct

Brownian dynamics simulations on synthetic dynamic networks. To represent the dynamic

network, we use a modified version of the previously published ‘minimal network model’ [39, 40].

In this model, the network consists of mobile nodes connected by edges, where the node positions

xi(t) obey an overdamped Langevin equation

dxi

dt
=−b∇ f (xi)+

√
2Dnη(t), (4.4)

where Dn ≈ 10−3 µm2/s [40] is the node diffusivity, b is the node mobility in units of µm/s, and

f (xi) is the total edge length attached to each node. Specifically, f (x) = ∑
d
j=1

∣∣x−y j
∣∣, where the

sum is over neighbor nodes and y j are the neighbor positions. The stochastic variable η(t) is a

Gaussian distributed noise term with mean zero and standard deviation 1. This model represents

a network of edges which are under a constant tension, driving a minimization of their length.

As the edges of the network shrink, neighboring nodes approach each other. When two

nodes are sufficiently close together, topological rearrangements of network connectivity can

occur. If the two nodes are both degree 3 junctions, they undergo a T1 rearrangement [33] if

and only if this decreases the total edge length. If one of the nodes has degree 2, or if they are

connected by two edges (forming a short loop), then the two nodes can fuse together into a single

node. The combination of these processes allows for ring-closure events, as observed in live-cell
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imaging of ER dynamics [71, 9].

To maintain a steady-state network structure, new edges are generated by a tube spawning

and growth process. A new tube spawns at a fixed growth rate per existing total edge length

(k, units of s−1µm−1). The new tube location is uniformly selected along existing edges. The

nascent tube grows at a right angle from the parent edge, with fixed velocity v = 2 µm/s,

comparable to rapid rates observed in dynamic ER images [31, 13]. When the tip of a nascent

tube crosses an existing tube, it stops growing and fuses to form a new junction node.

Similar to [39], the balance between new tubule growth and shrinking due to length

minimization enables the dynamic network to reach a stable steady-state. Of the parameters in

the model, the diffusivity is sufficiently low (D ≪ vℓ, where ℓ≈ 1 µm is the characteristic edge

length) to have little effect on network structure. Additionally, the tubule growth speed (v ≫ b)

is high enough that newly spawned tubules fuse much quicker than the node rearrangement

timescales. The network structure is thus largely determined by the remaining two parameters

k,b, which are set to match observations of COS7 ER in live-cell images.

The approximate growth rate k is extracted from videos of COS7 peripheral ER, labeled

with 0.2 µg KDEL Venus (transfected as described above) and imaged on the Zeiss LSM 880

at a frame rate of 0.315 s, by manually counting new growth events (Supplemental Video 4.3).

The number of growth events in a region of size 10 µm× 10 µm is manually counted over

time interval 63s. This number is normalized by the time interval and the time-averaged total

segmented ER length within the region, giving: k ≈ 0.005 µm−1s−1.

Dimensional analysis indicates that the average steady-state edge length in the network

scales as ℓ ∼
√

b/k. We tune the node mobility b to set a typical ER network edge length

ℓ≈ 1 µm [165], corresponding to an estimate of b = 0.05 µm/s.

The resulting dynamic network model thus has tubule lengths and turnover timescales

that approximately represent those of the COS7 ER (‘normal ER model’). For comparison, we

consider also a model where b and k are both increased by 2×, allowing for more rapid turnover

but the same steady-state structure (‘fast ER model’).

91



4.3.8 Simulating photoactivated spread on the dynamic network model

Diffusive particles (N = 10000) are simulated on the dynamic network using Brownian

dynamics, with particles moving along the network edges in discrete timesteps dt = 10−3 s, with

diffusivity D = 1 µm2/s, and network structure updated at each timestep. After each network

update, the particle position is projected to the closest location in the new network. The network

architecture is first evolved for a total time of 1000s to allow it to reach steady state prior to

initiating the diffusive particles. The particles are placed within a square 3 µm×3 µm region

of the network and the joint simulations of particle and network evolution then proceed for an

additional 15 s of simulated time.

The number of particles arriving in each wedge region surrounding the starting center

is analyzed on both the dynamically evolving network and on each individual static network

structure extracted at 0.6 s intervals from the simulation. The signal arrival rates are obtained as

described in the previous section.

4.3.9 Paired particle simulations

Simulations of reactive particle pairs are run using the propagator-based approach, which

enables particles to hop rapidly from node to node of the network until they come within the same

neighborhood of each other. Details of the methodology, including the appropriate propagator

functions for two reactive particles on the same edge, are provided in prior work [67]. Each

simulation is run until the two particles encounter each other, and the reaction position on the

network is recorded. A total of N = 160000 particles are simulated on each network structure.

The ER network structures are extracted from COS7 cell imaging data as described in the Image

Analysis section.

Two other families of network are also analyzed. Eight circular honeycomb networks are

generated, each with the same diameter and total edge length as one of the eight ER structures

analyzed. Mikado networks are generated by scattering Nrod randomly oriented rods of length
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Lrod in a square of size Lspace x Lspace. The intersections of these rods define the nodes of the

network, the segments of rods between intersections define the edges of the network. This

algorithm generates highly heterogeneous networks with a density that is tunable by changing

any of the three input parameters [178]. However, Mikado networks tend to have degree 4

junctions, whereas ER (and honeycomb) networks are composed of mostly degree 3 junctions.

Our modification to the Mikado networks is thus to remove degree 4 nodes by iteratively

removing 1 random edge from a randomly chosen degree 4 node until all nodes in the network

have degree 3 or less. The Mikado parameters are chosen to be Nrod = 80, Lrod = 12 µm, and

Lspace = 24 µm and a circular portion of the network is extracted with diameter 18 µm, matching

the circular ER networks. We generate many copies of these circular modified Mikado networks

and select for analysis only those which have a total length within 5% of the corresponding ER

network.

4.3.10 ERES localization on ER network

COS7 cells were seeded in plastic 6-well dishes and transfected as described in the

photoactivation experiment section. Cells were then imaged as previously described [13]. The

following standard amounts of DNA were transfected per mL: 0.1 µg GFP Sec16s, 0.1 µg

GFP Sec23a, 0.1 µg GFP Sec24d, 0.1 µg EYFP Sec31a, 0.2 µg mcherry KDEL. Images were

acquired on inverted fluorescent microscope (TE2000-U; Nikon) equipped with a 100x oil

objective (NA 1.4) on an electron-multiplying charge coupled device (CCD) camera (Andor).

Live cell imaging was performed at 37◦C following media change to pre-warmed imaging media

(fluorobrite DMEM (Invitrogen) + 10% FBS).

Images of 22 different COS7 cells are analyzed as described in the Image Analysis section

to extract the peripheral ER network structure. The perinuclear region is manually excised from

each one. ERES locations are identified as puncta in the GFP or EYFP fluorescent signal using a

previously published implementation of the standard particle localization algorithm by Crocker

and Grier [179, 180]. We identify a total of 1443 peripheral and 2327 perinuclear ERES. The
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peripheral puncta are projected onto the nearest point along the extracted network structure.

To convert these structures into reservoir networks (model described in Supplemental

Material Section S2), the centroid of the nodes bounding the excised perinuclear region is set

to be the center of the reservoir. The average distance of the bounding nodes to the centroid

determines the radius of the reservoir, R+. Each bounding node is then connected to the reservoir

via a tubule of length equal to the mean edge length of the network.

The GMFPT to each projected ERES is computed for particles starting uniformly dis-

tributed across the network. For comparison, an equivalent number of target points are selected

uniformly at random along the edges of each network structure, and the GMFPT is computed to

each of those points individually.

4.4 Results and Discussion

4.4.1 ER network structures exhibit spatially heterogeneous accessibility

The peripheral endoplasmic reticulum forms an intricate web of tubules, with primarily

three-way junctions scattered at varying densities across the cell periphery. We aim to characterize

the heterogeneity of the network structure and its effects on the accessibility of different regions

by particles diffusing on the network.

ER network morphologies are extracted from confocal images of the peripheral ER

in cultured COS7 cells (Fig. 4.1A), where these network structures are largely planar. The

network structure is simplified into effectively one-dimensional edges (not necessarily straight),

connected at point-like nodes. Although more complex peripheral structures, including hole-

studded sheets [155] and dense localized matrices[80], have been observed, we focus here on

regions composed primarily of well-defined tubules and junctions. In Supplemental Material, we

show that enlarged junctions between the tubules do not substantially affect the results (Fig. S3).

The ER density in different spatial regions can be characterized by computing the local

edge length Lloc(x;σ), defined as the total length of network tubules that falls within distance
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Figure 4.1. Analytic mean first passage times as a measure of accessibility for different regions
of the ER. (A) Confocal image of COS7 cell expressing fluorescent ER marker (KDEL Venus,
gray) with extracted network structure overlay (green). (B) The distribution of local edge lengths
in one cell (left) is similar to the corresponding distribution across multiple cells (right). (C)
Global mean first passage times (GMFPTs) to nodes on the example COS7 ER network shown
in A. (D) GMFPT scales inversely with local edge length, color denotes radial position from
center of network. (E) MFPT to each network node for particles diffusing outward from the
center of a circular honeycomb network. (F) MFPTs to all network nodes for particles diffusing
outward from the center of the example ER network. Vertical lines highlight heterogeneity in a
ring from 3.5−6 µm around the center. (G) MFPTs for nodes in the ring from 3.5−6 µm, as
highlighted in F. Particle diffusivity is set to D = 1 µm2/s throughout.

σ = 5 µm of position x. We sample local edge length for random points scattered across the

domain of an example network (shown in Fig. 4.1A). The values of Lloc(x;σ) span one order

of magnitude, demonstrating substantial spatial heterogeneity in the ER density (Fig. 4.1B).

Notably, spatial variation in the local edge length within a single network is comparable to the

variation between networks extracted from different cells.

While local edge length provides a purely structural metric of heterogeneity, we further

consider the consequences of network variability on the diffusive transport of particles within

the ER. One useful metric for quantifying search efficiency on spatial networks is the global

mean first passage time (GMFPT) [45], which gives the mean first passage time for a diffusing

particle to reach a given node in the network, averaged over all starting nodes. This quantity can
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be computed analytically from the edge lengths and topology of the network [67] (see Methods).

The GMFPTs for different nodes in a single ER network can vary substantially (Fig. 4.1C).

Nodes near the boundary have a higher GMFPT, whereas more centrally located nodes and

those in denser regions of the network exhibit the lowest GMFPTs. Some of the variation in

GMFPT can be explained by the local edge length surrounding a node, as well as proximity to

the boundary of the domain (Fig. 4.1D), both a measure of centrality within the network [59].

However, even nodes with similar local edge lengths and radial position can have GMFPTs that

vary by a factor of 2. We note that the ER networks form a highly-looped structure composed

primarily of 3-way junctions, with less than 5% terminal nodes. Thus, although network search

times are known to vary with node degree [181], the degree of each node is insufficient to account

for the observed variability of the GMFPTs. Furthermore, we consider a modified network where

a randomly selected subset of node junctions is enlarged, with a target of size comparable to the

tube width placed in their center. As shown in Supplemental Fig. S3, targets inside the enlarged

nodes have similar search times to targets on ordinary tubule junctions. Thus, the heterogeneity

in search times appears to be dictated by the edge connectivity of the network rather than by

junction size.

Individual mean first passage times (MFPTs) between pairs of nodes in the network can

be used to further assess heterogeneity in local transport processes. The MFPT for a particle

diffusing outward from a central point to each possible target node in a uniform honeycomb

network exhibits a characteristic scaling with distance, as shown in Fig. 4.1E. Unsurprisingly,

nodes that are located farther from the source tend to have higher MFPTs, with the search time

increasing exponentially for the most distant population of nodes. This particular scaling of the

diffusive search time relative to distance has also been observed for particles that hop actively

across edges in planar network structures [63]. Similar scaling is found in diffusive search for

targets on the ER (Fig. 4.1F). However, the heterogeneity of the ER network structure gives rise

to a broad range of mean search times for nodes at similar distances from the source. A factor of

3 difference is observed for nodes that fall within a ring from 3.5 µm−6 µm from the center
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(Fig. 4.1F, G).

Overall, we use analytic mean first passage times as a measure of accessibility for different

regions of the ER, either by particles starting throughout the network, or those originating from a

localized source. This accessibility is shown to vary between different regions of an ER network,

due to the heterogeneous density and connectivity patterns of the tubules.

4.4.2 Network morphology governs the nonuniform spread of photoacti-
vated proteins
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Figure 4.2. Spreading of localized bolus of particles over the ER network. (A) ER membrane
protein PAGFP Calnexin (green) is pulse-activated in a local region, while ER luminal marker
mCherry KDEL (red) serves to visualize network structure. Equidistant surrounding regions
(colored wedges) are used to analyze signal spread. (B) Photoactivated signal arriving in each
analyzed region, normalized by initial total signal in photoactivated zone. Gray region denotes
time prior to photoactivation. (C) Snapshots of simulations on frozen ER structures extracted
from first frame in A. (D) Simulated particle counts arriving in individual analysis regions,
normalized by total number of particles. Gray region denotes time prior to photoactivation.
(E) Correlation between signal arrival rates (slopes of signal vs time curves) for experimental
and simulated data. Color indicates cell (N=9). Inset: simulated protein arrival rates best
match experimental arrival rates when effective diffusivity is rescaled from Dorig = 1 µm2/s to
Deff = 1.3 µm2/s (dashed line). (F) Correlation of experimental signal arrival rate in individual
regions versus the fraction of ER marker signal in that region. (G) Correlation of experimental
signal arrival rate with the number of edges intersecting the boundary of each region. Regions
removed due to filtering are shown in gray in E-G.
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Although mean first passage times are a convenient, easily computed metric of diffusive

accessibility, they are difficult to probe experimentally. To directly observe the heterogeneity

of diffusive spreading within the ER, we consider instead the short-time rate of arrival to

nearby regions surrounding a particle source. This process is visualized by photoactivating ER

membrane-associated proteins within a localized region of the network and watching their spread

into surrounding regions. We note that past measurements of single-particle trajectories [165]

and bulk spreading [167] of several ER membrane proteins have demonstrated that they undergo

diffusive dynamics along the tubules of the peripheral ER. By contrast, aqueous proteins in the ER

lumen may in some cases exhibit rapid active motion between neighboring junctions [130, 167].

Such active motion can substantially alter long-range transport across a network [63], and we

thus do not include luminal proteins in this study.

Cultured COS7 cells are transfected with PAGFP Calnexin, a membrane-bound ER

protein in the ER with a photoactivatable fluorescent tag, as well as mCherry KDEL as a general

marker for ER structure. A single pass photoactivating pulse is applied in a 3 µm× 3 µm

square of the peripheral ER. Several frames from an example video (Supplemental Video 4.1)

are shown in Fig. 4.2A with mCherry KDEL in red and the PAGFP Calnexin in green. The

initial dense bolus of photoactivated proteins can be seen spreading outward through the network.

We track the signal in individual small regions located equidistant from the photoactivation site.

Diffusive spreading of particles over a homogeneous continuum would be expected to yield

similar time-courses of signal arrival to each of these regions. However, the observed PAGFP

fluorescence signal over time varies substantially between the individual wedges in a single cell

(Fig. 4.2B). This variability can be attributed to the heterogeneous distribution and connectivity

of the ER tubules. Intuitively, the blue region contains dense, highly connected tubules and has

the strongest and fastest-growing photoactivation signal. By contrast, the orange region is poorly

connected to the activation site and exhibits the smallest initial signal growth.

To account for the observed differences in signal arrival rates due to ER morphology,

we extracted the ER network structure in the vicinity of the photoactivation site and carried
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out agent-based simulations of diffusing particles initiated at the site (Fig. 4.2C, Supplemental

Video 2). Quantifying the number of simulated particles accumulating in each region over time

allows for a direct comparison between simulated and observed fluorescent signal. For both the

experimental and simulated data, we normalize the measured signal in each region by the initial

total signal within a disk of 3.5 µm radius centered on the photoactivation zone (inner circle

in Fig. 4.2A,C). Thus, the reported signal traces are given in terms of the fraction of initially

photoactivated particles present in a given region at a given time. The normalized simulated

signal (Fig. 4.2D) exhibits similar behavior to the experimental results, with well-connected

dense regions receiving more signal faster than poorly-connected and sparse ER regions.

To partially incorporate the effect of ER network rearrangement over time, the photoacti-

vation simulations are run on network structures extracted for every frame of the experimental

movie (at time interval 0.6s). The signal over time is then averaged across the ensemble of

simulations on all of these different network structures. This ensemble-averaged simulated signal

is used in the subsequent analysis. Analogous results using only a single network structure can

be found in the Supplemental Material.

To quantitatively compare protein arrival rates in the experimental and simulated ER

networks, we extract the slope of the normalized signal curves up to 10 seconds following

photoactivation. These slopes (referred to as ‘arrival rates’) serve as a simple metric that provides

information about the spatial heterogeneity of protein spreading around the photoactivation site.

Because our simulations are carried out on network structures extracted from the experimental

images, it is possible to directly compare the rate of signal arrival in matched regions between

experimental and simulated data (Fig. 4.2E). Regions where the extracted network length was a

poor match for the observed ER marker (mCherry KDEL) fluorescence, or where the ER marker

showed large fluctuations over time, were filtered out of the analysis (gray dots; see Methods

for details). Notably, the variability of measured rates between regions within each individual

cell (same color dots) is comparable to the inter-cell variability (different color dots), indicating

that the arrival rates are similarly heterogeneous in all the observed cells. The experimental
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and simulated arrival rates show a direct correlation: R2 = 0.68, obtained from a linear fit. The

high correlation implies that diffusive particle motion over an ER network is a good predictor of

signal arrival to different regions.

Notably, the simulation time can be rescaled to effectively represent particles of different

diffusivity (see Methods for details). We compare the correlation of signal arrival rates between

experimental measurements and simulations with different time-scaling. The simulations which

best correlate with experimental values correspond to a particle diffusivity of Deff ≈ 1.3 µm2/s

(Fig. 4.2E, inset), a value that is similar in magnitude to previous measurements of diffusivity

via single-particle tracking for other ER membrane proteins [165]. This result demonstrates that

particle diffusivity in the ER can be measured by quantifying signal arrival rates to different

structural regions regions of network, all located relatively close to the photoactivated zone,

without the need for tracking longer-range spread across the cell [167].

In order to test whether particle diffusion simulations are more predictive than simpler

metrics of network structure, we also compare the experimental arrival rates to the mCherry

KDEL ER signal in each region. A linear fit (Fig. 4.2F) demonstrates there is some correlation

between the two (R2 = 0.44), but variation in the ER volume within each region (as measured by

mCherry KDEL signal) cannot capture the full variability in protein spreading rates. A simple

metric for local connectivity, the number of edges crossing the boundary of each wedge region,

is shown to be roughly correlated (Fig. 4.2G, R2 = 0.2), but also does not provide a strong

predictor of protein arrival rates. Thus, the distribution of protein spreading rates in live cells is

best modeled by simulations which take into account not just the local ER density in a region,

but also the connectivity of the surrounding network together with the dynamics of diffusive

particles moving through this network.

4.4.3 Slow ER network dynamics have little effect on particle spreading

The ER network in a living cell is itself a dynamic structure, with network rearrangements

occurring over tens-of-second timescales as a result of attachment to motile organelles, molecular
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Figure 4.3. ER network dynamics does not substantially affect particle spreading. (A) Snapshots
from simulation of diffusing particles spreading from a local region, on a minimal network
dynamic model. Network edges are blue and a subset (500) of the simulated particles (D =
1 µm2/s) are shown in orange. White arrows highlight several new edges that grew between
first and second snapshots. (B) Correlation of signal arrival rate (slope of signal-vs-time curves)
to individual regions, comparing simulations on a single static network structure and on dynamic
minimal network model with turnover timescales comparable to ER dynamics (blue) or 2×
faster (red). (C) Comparison of signal arrival rates for simulation on a dynamic network versus
simulations of particles diffusing on a static network, averaged over static structures from
individual snapshots of the minimal network. The average static rates are obtained in the same
manner as in the analysis of experimental data.

motors, and growing microtubule tips [9, 28, 31]. In comparing the measured rates of protein

spread to simulations of diffusing particles (Fig. 4.2E), we account for time variation in ER

architecture by averaging over network structures extracted from each frame.

To gain a better sense of how ER tubule dynamics may contribute to the spread of

photoactivated proteins, we incorporate network rearrangements directly into our simulations, by
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treating the ER as a ‘minimal network’ with tubules subject to growth and constant tension [39].

These synthetic dynamic networks (described in the Methods) mimic the rearrangements of the

ER over time, including new tubule growth, junction sliding, and the merging of junctions.

The two parameters primarily responsible for determining the equilibrium properties are

node mobility (units of µm/s, sets speed with which nodes rearrange) and new tubule growth

rate (units of µm−1s−1, rate at which new tubules are pulled out of existing tubules). Other

parameters, such as node diffusivity and new tubule growth speed play a secondary role in

the parameter regimes considered here. Input parameters to the model are set so that network

properties at equilibrium match the ER network in COS7 cells. Specifically, the modeled

networks match the measured rate of new tubule formation (Supplemental Video 4.3) and the

steady-state average edge length in the network. For comparison, we also ran simulations of

networks that exhibit faster dynamics, with both tubule growth rate and node mobility increased

by a factor of 2. These faster networks have the same steady-state network structure but rearrange

twice as rapidly.

For each of these dynamic networks, 16 separate photoactivation events are simulated

in different regions of the network. Particles are initiated within 33 µm× 3 µm patches and

allowed to diffuse through the structure either on a static network or concurrently with the

network dynamics (Fig. 4.3A, Supplemental Video 4.4). We compare the rate of particles

arriving to equidistant regions surrounding the initiation zone both with and without network

dynamics.

When the particle simulations are run on a single static network structure, the arrival

rates are moderately well-correlated (R2 = 0.87) with the rates observed for simulations on

dynamic networks (Fig. 4.3B). Faster dynamics in the synthetic networks reduces this correlation

to R2 = 0.78. Intuitively, as the rearrangements occur more quickly, diffusive particles encounter

more extensive changes in structure during the 10-second timescale of the measurement.

Notably, even when network dynamics are twice as rapid as the experimentally observed

dynamics of the ER network, the static network approximation is a good predictor for particle
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arrival rates. We can estimate the importance of active network rearrangements versus the

diffusive motion of the particles by considering an effective Péclet number for the system. The

mobility parameter for the dynamic networks (b = 0.05 µm/s) sets a typical velocity for tension-

driven sliding. Over a length scale of 10 µm (corresponding to the diameter of the analyzed

region), the corresponding Péclet number for a protein within the network is Pe = vL/D ≈ 0.5.

Doubling the rate of ER rearrangement doubles this Péclet number. Because this dimensionless

quantity is close to or below Pe = 1, the motion of the particles is dominated by their diffusivity

rather than by the tubule rearrangement dynamics.

The moderate effect of network dynamics on particle spreading can be partly accounted

for by running simulations on many individual static network structures extracted at different

points in time. We perform this analysis using snapshots of our simulated dynamic networks

and averaging the signal in each region at each time point. For this ensemble-averaged data, the

arrival rates on static and dynamic networks become more closely correlated (Fig. 4.3C), even in

the case of rapid network rearrangements (R2 = 0.91). Thus, the effect of network dynamics is

almost entirely accounted for by averaging multiple static simulations on consecutive network

structures. These results on synthetic dynamic networks validate the use of the same ensemble

averaging approach when analyzing experimental data.

4.4.4 ER structure directs reaction locations

The endoplasmic reticulum does more than simply serve as a transport hub for proteins,

lipids and ions; it also plays a role in protein synthesis and quality control [68, 170], as well

as forming functionally important contact sites with other organelles [7]. The formation of

reactive complexes, exit sites for protein export, and contact site assemblies requires multiple

intra-ER particles to find each other within the network. In order to better understand how

diffusion-mediated biochemical reactions are impacted by ER morphology, we simulate reactive

particle pairs diffusing on extracted ER network structures (Fig. 4.4A). From these simulations,

both the spatial locations of reactions on the network as well as the distribution of reaction times
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Figure 4.4. ER heterogeneity leads to hot spots of paired particle encounters. (A) Schematic of
paired particle simulations. Pairs of particles (pink and blue circles) diffuse through the network
(dashed lines indicate trajectories) until they encounter and react. (B) Normalized reaction
density on three example networks, each with similar total edge length and spatial size. For each
discretized segment of network, the fraction of simulated reactions occurring within that segment
is normalized by the fraction of total edge length contained within that segment. Left panel,
a homogeneous honeycomb network with the same average edge length as the ER network in
the middle panel. Middle panel, ER network is extracted from a section of COS7 peripheral
ER, and exhibits regions of higher reaction density than the homogeneous honeycomb (bright
yellow segments). In the right panel, the normalized reaction density on a highly heterogeneous
synthetic, Mikado-like network, exhibiting even more pronounced hot spots than the ER. (C)
Paired reaction density on each segment of the ER is roughly correlated with the inverse of
the global mean first passage time (GMFPT) to that segment. (D) Distribution of reaction rate
densities for all discretized segments in honeycomb, ER, and Mikado-like networks, showing
increasing heterogeneity in the densities. Insets show long tail of distribution plotted on log-log
axes. Mean for each distribution is one, red overlay denotes standard deviation. (E) Distributions
of paired reaction times in the three network structures. Dotted lines mark the mean reaction
time. Dashed lines show exponential decay for a Poisson process with the same mean. The
target-averaged GMFPT on the ER networks indicated by the purple arrow is more than twice
the mean pair reaction time.

are extracted.

Many previous studies of diffusive processes on networks have focused on the temporal

properties of reactions or exit times (e.g. MFPTs, extreme statistics, and full FPT distributions [67,
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55, 54]), without considering in detail where those reactions occur. Here, we provide fresh

insight by analyzing the spatial locations, as well as temporal distributions, of pair-wise reactions

on the ER. Pairs of particles are distributed randomly across the network to begin the simulation.

Each pair diffuses along the edges of the network until the two particles come into contact with

one another. At this point, they react and the position and time of reaction is recorded. The

network edges are meshed into segments of length ℓ ≈ 0.2 µm, and the normalized reaction

density in mesh cell i is defined as:

γi =
# of reactions in cell i

# of particle pairs
× total network length

ℓ
. (4.5)

When averaged over an entire network, ⟨γ⟩ = 1. Simulations on the ER network structure

demonstrate that paired particle reaction locations are heterogeneous (Fig. 4.4B, middle panel),

with some regions showing a particularly high reaction density γ . Certain tubule segments are

more likely to serve as the reaction site, due to their enhanced connectivity to the rest of the

network. The normalized reaction density correlates with the inverse of the GMFPT (Fig. 4.4C),

indicating that these highly reactive regions are in fact easier to find by diffusing particles.

These simulations imply that heterogeneity in ER structure and accessibility is expected

to result in diffusive particle reactions becoming concentrated within certain regions. For compar-

ison, we repeat the simulations on two synthetic network structures: a homogeneous honeycomb

network (Fig. 4.4B, left panel) and a highly heterogeneous modified Mikado network [178]

(Fig. 4.4B, right panel; see Methods for details). Both of these networks have the same spatial

extent and total network length as the extracted ER networks. This allows for a quantitative

comparison of the reaction density and reaction time distributions between all three families of

networks.

As expected, reaction locations are more uniformly distributed on the honeycomb network.

Within this homogeneous network, reactions are slightly more likely to occur at junction nodes

rather than along the edges, in keeping with past work showing random walkers are more likely
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to encounter each other at higher-degree network nodes [181]. There is also a dearth of reactions

at the network boundary, mirroring the increased GMFPT in the boundary region (Fig. 4.1C).

The ER networks show a similar drop-off in reaction density along edges as compared to

junctions, as well as at the boundary. Moreover, due to the heterogeneous network density and

connectivity, reactions are more concentrated into certain junctions within the network, with a

higher maximum reaction density at these select junctions than is observed in the more uniform

honeycomb. Reactions are further concentrated in the modified Mikado networks, demonstrating

that more heterogeneous networks exhibit a broader range of reaction densities. This effect is

quantified in Fig. 4.4D, where a longer tail is visible in the distribution of normalized reaction

densities for ER and Mikado networks, as compared to the honeycomb. The morphology and

connectivity of a network can thus tune the spatial distribution of reaction locations.

Network structure is not only responsible for shaping the spatial profile of reaction

density, but can also affect the overall reaction time [45, 55]. The distribution of pair-wise

reaction times on each network exhibits exponential scaling (Fig. 4.4E), as for a Poisson process

with a single dominant time-scale. As noted in previous work, the mean reaction time on the ER

(dashed purple line) is less than half of the target-averaged GMFPT (purple arrow) [67]. Even

though there are higher spatial reaction densities in the more heterogeneous networks, mean

reaction time is lowest in the homogeneous honeycombs and highest in the modified Mikado

networks (Fig. 4.4E). Thus, there is a trade-off between locally concentrating reactions in space

versus minimizing overall reaction time.

4.4.5 Proximity to well-connected perinuclear ER enhances accessibility

In addition to variations in local connectivity, a further source of heterogeneity for

the peripheral ER network arises from the presence of extended sheet-like structures in the

perinuclear zone (Fig. 4.5A). While the morphology of the perinuclear region cannot be well

resolved with confocal microscopy, electron microscopy studies have shown that the ER near

the cell nucleus consists of stacks of sheet-like structures, connected with spiral ramps [157].
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Figure 4.5. Concentration of ERES in regions of the peripheral ER with high search rate. (A)
Image of the ER (magenta, mCherry KDEL) and ERES (green, GFP Sec24d) of a COS7 cell. (B)
Extracted network structure of peripheral ER (excluding nucleus and perinuclear sheet regions).
Junctions are colored by their effective search time (GMFPT, units of s). ERES positions are
shown in green. Dashed line indicates excised nucleus and perinuclear sheet region, with interior
color corresponding to GMFPT to a target at the center. (C) The GMFPT scales with graph
distance to the perinuclear reservoir, for the example network shown in B. Orange star indicates
GMFPT to target in reservoir. (D) ERES positions exhibit lower search times than random points
on the network. Distributions include 1443 exit sites and the same number of random points
extracted from the peripheral ER of 22 different COS7 cells. Green and magenta vertical lines
indicate mean of each distribution; orange dotted line indicates the mean GMFPT (averaged over
all networks) to a target in the reservoir center; black dotted line gives mean GMFPT to full
population of peripheral and perinuclear ERES targets. (E) Distributions of graph distance to
the reservoir for 1443 exit sites and 1443 random points extracted from the peripheral ER of 22
different COS7 cells.

We consider how the presence of a large perinuclear ER reservoir may affect search times for

targets in the peripheral network. For simplicity, we do not directly model the structure of the

perinuclear ER, but rather treat it as a large, flat, disk-like region connected along its boundary to

the peripheral network. This approximation neglects transport between the stacked ER sheets

themselves, which has previously been shown to be accelerated by spiral connecting ramps [162].
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We expand our model to treat the perinuclear reservoir as an extremely large node,

connected to many network tubules. We then compute the GMFPT to each peripheral node,

assuming that particles can start anywhere in the peripheral network or the perinuclear region, in

proportion to the available surface area. Within the perinuclear zone, particles effectively move

through two-dimensional diffusion, returning to the peripheral network through narrow exits

into individual tubules, as described in Supplemental Material Section S2. Due to the large area

of the perinuclear zone, most particles enter this region before finding any given target on the

peripheral network. As a result, targets located near the perinuclear region have lower GMFPTs.

This effect leads to a gradient of accessibility for the peripheral ER as a function of distance

from the perinuclear zone (Fig. 4.5B,C). A target placed in the center of the perinuclear zone has

a search time comparable with the lowest values for the peripheral network.

Given the variation in search times for different regions of the peripheral ER, we next

sought to examine whether certain ER-associated protein assemblies may be more likely to local-

ize to more accessible regions. Specifically, we explore the distribution of ER exit sites (ERES),

which serve as the export hubs for newly synthesized proteins in the ER [12, 13]. The mechanism

underlying the distribution of exit sites on the network is not well understood, although prior

work has suggested they may arise from a process of confined diffusive aggregation [182]. The

ERES are found both on the perinuclear and the peripheral ER (Fig. 4.5A). Because puncta in

the well-mixed perinuclear region are expected to all have similar accessibilities, we focus here

on those ERES located in the peripheral network.

We extract ERES puncta locations using several different markers for the exit sites

(Fig. 4.5A, details in Methods) and project the peripheral ERES locations onto the extracted ER

network structure (Fig. 4.5B). We next calculate the GMFPT to each peripheral ERES position,

and compare the distribution of these times to that expected for randomly selected locations

along the networks (Fig. 4.5D). The distribution of search times at the exit sites (mean ± std:

5.9±2.8×103s) is shifted to smaller values as compared to the randomized control (mean ± std:

6.5±3.1×103s). Although the magnitude of the shift is modest, this difference is statistically
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significant [p << 10−6 by a one-sided student’s t-test] due to the large number of ERES puncta

sampled. The ERES are thus disproportionately likely to be found in more accessible regions of

the peripheral network. The lower search times to peripheral ERES locations can be explained by

their tendency to be located near the perinuclear zone and their depletion from the distal regions

of the periphery (Fig. 4.5E). Exit sites located in the perinuclear zone itself (approximated as

targets in the center of the reservoir) are expected to have the lowest search times (Fig. 4.5D,

dotted orange line). Because a substantial fraction of ERES are found in the perinuclear zone, the

overall average search time to the exit sites (black dotted line) is approximately two-fold lower

than the search time to randomly selected peripheral targets. Overall, localization of ERES to

within and nearby the perinuclear region is expected to enhance their accessibility for diffusively

searching particles.

These results indicate a potential structure-function relationship for the peripheral ER

network. Structural heterogeneity in the network, both in terms of connectivity and in terms to

proximity to the perinuclear ER, translates to heterogeneous search times for diffusing particles.

In turn, certain multi-protein assemblies within the ER network appear to be localized to the

more accessible regions, where they can be more easily reached by other diffusive particles.

4.5 Conclusion

In this work, we highlight the heterogeneous connectivity of the tubular ER network and

its consequences for diffusive particle transport. We extract peripheral ER network structures

from live-cell confocal images of COS7 cells and analytically compute mean first passage times

(MFPTs) for particles diffusing over these networks. These calculations allow us to quantify

the variability in diffusive accessibility within individual ER architectures. The global MFPT

(GMFPT) to individual nodes within the network is found to vary by up to 4-fold due to the

heterogeneous connectivity of the network.

We then directly visualize the local spreading of ER membrane proteins from an initial
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region of pulsed photoactivation. Signal arrival rates to distinct regions equidistant from the

photoactivated center show marked disparities (varying by more than a factor of 4 within a single

cell). We compare these measurements to simulations of diffusing particles on the visualized

ER network structure, and show that the simulated rates of arrival to distinct regions show

strong agreement with experimental data. These results demonstrate the importance of network

structure in guiding the observed heterogeneity in protein spread.

By modifying and extending a model for ‘minimal networks’ driven by membrane tension

and new tubule growth [39], we assess the effect of ER network rearrangements on protein spread.

The substantial separation of timescales between network dynamics and protein diffusivity leads

to only a marginal predicted effect of tubule rearrangement on the motion of proteins within the

ER.

Additionally, we simulate pairs of reactive particles diffusing through the ER and demon-

strate that the structural heterogeneity of the network gives rise to effective hot-spots where

encounters are more likely to occur. The proximity of targets to the well-connected perinuclear

zone provides another source of variable accessibility with the network. Notably, an analysis of

ERES positions across the peripheral ER indicates that the location of these structures is biased

towards the more accessible regions near the perinuclear zone and away from the less accessible

distal periphery of the cell.

We note that the ER models in this study are intentionally highly simplified, reducing the

complex membrane-enclosed geometry of the ER to a network of effectively one-dimensional

tubules. These simplifications make it possible to focus on the role of cellular-scale network

connectivity and rearrangements in particle transport. The simple structural model is sufficient

to reproduce the observed heterogeneous protein arrival rates to different network regions in

photoactivation experiments. More detailed structural models could include variability in tubule

diameter [26, 21] as well as scattered peripheral sheets [20], which may themselves be perforated

with holes [155] or composed of dense tubular matrices [80]. Exploring the effect of these

structures on particle transport forms a potentially interesting avenue for future work.
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The network dynamics model employed here aims to isolate the key important features

governing ER rearrangements – namely, the formation of new tubules and the tension-driven

movement of junctions [9, 183, 39]. Although network dynamics are shown to have little

impact on protein diffusion, they are expected to play a greater role in the motion of larger and

slower-moving ER-associated bodies such as the ERES [37]. Furthermore, it is possible that

directed flows of luminal and / or membrane contents may be associated with the growth and

shrinking of ER tubules, as implied by recent evidence that new tubule growth is followed by a

delayed widening and infilling with Climp63 spacer proteins [21]. Although the spatial extent

and magnitude of such flows is not currently established, they could more extensively contribute

to modulating intra-ER protein motion.

The transport, quality control, and export of proteins in the ER are essential biological

processes in the early secretory pathway. These processes require a variety of encounters

between newly manufactured proteins, chaperones, and regulatory factors. The structural

heterogeneity of the ER network implies that certain regions may allow for more efficient

encounters between binding partners. Notably, however, the effect of morphology becomes

important only in the regime of diffusion-limited kinetics when the particles are sparsely scattered

over the network [55]. The sequestration of some quality control machinery to specific regions

of the ER [170] implies that long-range diffusive search by proteins through the network may be

an important factor in the kinetics of such pathways.

In addition to protein transport, the results described here apply to any diffusive particles

contained in the membrane or lumen of the peripheral ER network. This includes ions such

as calcium, as well as the buffer proteins which bind to them. In particular, we would expect

the demonstrated structural heterogeneity of the ER to lead to more rapid calcium release in

better-connected regions of the network. Given that calcium homeostasis and signaling is one

of the key functional roles of the ER, heterogeneous transport could thus provide an important

link between physical structure and biological function. Furthermore, it would be interesting

to explore whether contacts between the peripheral ER and other cellular structures, such as
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mitochondria, tend to preferentially occur at highly connected regions, which may facilitate the

delivery of lipids or ions across these contacts [184, 88, 185].

Through the use of experiments paired with quantitative image analysis and computational

modeling, our results demonstrate how morphology guides particle transport and reactions in the

ER, with broad implications for diffusive transport in any intracellular network structure.
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Appendix A

Appendix for Chapter 2

A.1 Liquid networks in 3D

Here we briefly explore the extension of our liquid network model to three-dimensional

(3D) systems. It should be noted that the peripheral ER in adherent COS7 cells is effectively a

2D network [80]; however, near the nucleus in adherent cells [80, 186, 187], and in the cell body

of neuronal cells [188, 189], it can form a 3D networked structure.

A liquid network embedded in a 3D space has fundamentally different properties from

the planar case. Specifically, it becomes necessary to consider a distinct length scale (r) –

the effective contact distance within which a growing tip can fuse into the existing network

structure. This distance is expected to be at least 0.1 µm, given the approximate 0.05 µm radius

of COS7 ER tubules [92]. However, we may expect the contact distance to be substantially

larger due to fluctuations, such as the thermal fluctuations of the tubules themselves (which have

a typical persistence length of 8 µm [70]). Furthermore, ER tubules tend to be associated with

the microtubule cytoskeleton [38, 190, 27, 28, 29], and growing tubules often hitchhike on other

motor-driven organelles [191, 30, 31, 32], which may affect the fluctuations of both the nascent

and existing tubules. Here, we assume contact distances that range between 0.1− 0.25 µm,

comparable to expected sizes of vesicular organelles swinging around microtubules.

We carry out simulations of 3D networks that are analogous to our 2D model (see

Materials and Methods), with a few concrete changes. Specifically, we treat all tubules as
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spherocylinders, neglecting steric interactions, and allowing fusions to occur when the tip of

a growing tubule comes within distance r of an existing edge. The direction of new tubule

spawning is uniformly sampled from the set of directions perpendicular to the spawning edge.

All simulations take place in a sphere of radius Rsim = 10 µm. Growing nodes which

reach Rsim cease their growth and become boundary nodes. These boundary nodes obey the same

Langevin equation as other nodes, but their motion is restricted to sliding along the spherical

boundary. If two boundary nodes come within the threshold distance (dx, just as in 2D) of

one other and they share a neighbor, they annihilate and their common neighbor assumes their

average position on the boundary. This allows for an analog of T1 rearrangements and loop

closures at the boundary.
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Figure A.1. Liquid network model produces stable structures in three dimensions, with steady
state geometries obeying different scaling laws than in two dimensions. (A) Example snapshot
of a liquid network simulation within a sphere of radius 10 µm, with tubule contact distance
r = 0.25 µm, and ℓ= 6.3 µm. (B) Network length over time for four simulations with different
fundamental length and time scales, ℓ=

√
b/k and τ = 1/

√
bk, and r = 0.25 µm. The steady-

state network length is dependent on ℓ while the time required to reach steady state is set by
τ . (C) Average edge length scales linearly with

√
b/k for several tubule contact radii. Results

from 2D networks shown in yellow for comparison; dashed black line shows λ ∼ ℓ scaling. (D)
Distributions of mesh sizes ξ in 2D and 3D liquid networks. Black line indicates fit to Rayleigh
distribution with scale parameter σ = 0.80. (E) Mesh size ξ̄ varies with length scale ℓ; dashed
black lines indicate ξ̄ ∼ ℓ3/4 scaling. (F) Mesh size scaling with contact distance; colors are
different values of ℓ; dashed black line indicates ξ̄ ∼ r1/2. (G) Total network length L as a
function of length scale ℓ=

√
b/k for several contact distances r. Dashed black line indicates

ℓ−1 scaling for 2D networks (yellow); solid black lines indicate ℓ−1.5 scaling for 3D networks.
(H) Total network length L scales inversely with tubule contact distance r, across a range of
length scales ℓ (colors). Dashed black line indicates L ∼ r−1 scaling.
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These simulations generate network structures (Fig. A.1A, Video S2.6) that also reach a

steady-state (Fig. A.1B) whose density varies as a function of the balance between growth (k) and

tension-driven relaxation (b). Given the introduction of a new length scale (r) for 3D networks,

the scaling laws governing the steady-state geometry may be expected to differ from the 2D case.

In particular, we look at the scaling of the average edge length λ versus the fundamental length

scale ℓ=
√

b/k. If we assume that the typical length that a new tubule must grow before fusing

into the network scales in proportion to the average edge length λ , then in analogy to Eq. 2, we

have the relationship:

dL
dt

= ζ kLλ − γbn = 0 (A.1)

at steady-state. Neglecting numerical prefactors ζ ,γ , and noting that the number of nodes scales

as n ∼ L/λ gives the same predicted scaling relationship as in the 2D case: λ ∼ ℓ. Notably,

if the average edge length is approximately independent of the total size of the domain, then

dimensional analysis implies that it should not depend on any other length scale. Specifically,

changing the contact distance r should have little effect on the average edge length. These

predictions for the average edge length are borne out in our simulations (Fig. A.1C).

We next consider the mesh size of the network, analogous to the polygon size in the

2D case. Mesh size is determined by scattering random points (N = 20000) in the simulation

volume and calculating the minimal distance from each point to the network [192]. The resulting

distribution of mesh sizes is shown in Fig. A.1D. For the 2D case, the small-size tail of the

distribution scales according to P(logξ ) ∼ ξ , as expected from Fig. 3A, given that ξ ∼
√

A.

Interestingly, the 3D networks exhibit a distinctly different scaling for this small-size tail, with

P(logξ )∼ ξ 2. The mesh size distribution for the 3D liquid networks is similar to the Rayleigh

distribution observed in experimental studies on collagen and fibrin networks [192]. Notably,

this distribution is also expected for ‘Mikado’ networks consisting of long, randomly distributed,

disconnected lines of length much greater than the pores size [192].
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The overall mesh size ξ̄ for the network is defined as the average of this distribution.

For a lattice-like network, the average mesh size is expected to scale with the average edge

length, ξ̄ ∼ λ . In an entangled, semi-flexible polymer network, there is an alternate scaling

of ξ̄ ∼
√

λ r [193]. In 3D liquid networks with a range of tubule contact distances, we find

ξ̄ ∼ ℓ3/4, falling between these two regimes (Fig. A.1E). We also find ξ̄ ∼
√

r, matching the

scaling expected for entangled, semi-flexible polymer networks (Fig. A.1F) [193].

Putting these results together provides an estimate for how the total edge length L in the

liquid network scales with the parameters. Namely, we would expect

L ∼ R3

ξ̄ 2
∼ ℓ−3/2r−1, (A.2)

which agrees with simulations in a fixed-size domain of radius R = 10 µm (Fig. A.1G,H). In

summary, increasing tubule radius has little effect on average edge length, but results in a spatially

sparser network with larger pore size and less total edge length. Increasing ℓ=
√

b/k also leads

to a sparser network, with a steeper scaling than in two dimensions.

More detailed exploration of 3D liquid network structure would require incorporation of

explicit fluctuations in the ER tubules, which would be expected to increase the effective contact

radius for fusion, possibly in a length-dependent manner. Furthermore, additional experimental

characterization of 3D ER network structures is needed to establish typical pore sizes and edge

lengths in vitro.

A.2 Steady state network properties are independent of
junction diffusivity and minimal length scale

In this section, we demonstrate that changes to junction diffusivity and the minimal

length scale for junction rearrangements have no effect on steady state network properties, within

a wide range around our chosen values.

Our choice for junction diffusivity (typically 10−5 µm 2/s) is sufficiently small to have
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Figure A.2. Junction diffusivity and minimal length parameter do not affect liquid network
properties. (A) Diffusivity of junctions is sufficiently small to have no effect on mean polygon
area. Diffusivity has no effect on the mean and standard deviation of angles at three-way junctions
(B) or the aspect ratio of polygons (C). Minimal length parameter dx does not substantially
impact mean area of polygons (D), angles at three-way junctions (E), or the aspect ratio of
polygons (F). All simulations performed with b = 0.02 µm/s, k = 0.005 µm −1s−1, and for
(D)-(F), D = 10−5 µm 2/s.

no effect on polygon areas (Fig. A.2A). Additionally, the mean and standard deviation of the

distributions of angles at three way junctions and polygon aspect ratios are unaffected by junction

diffusivity (Fig. A.2B,C). The noise in these metrics instead arises from the random growth of

new tubules and the tension-driven sliding of junctions.

In our simulations, dx = max(
√

D ·dt,b ·dt), sets the minimal length scale. When neigh-

boring junctions are within this distance of one another, they check for possible rearrangements

that would minimize the total connected edgelength. Steady state network properties, such

as polygon area, junction angle and polygon aspect ratio, are insensitive to changes in dx for

otherwise fixed simulation parameters (Fig. A.2D-F).
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A.3 Polygon growth dynamics: regular n-gons

Informed by the equation of motion for junctions in a liquid network (Eq. 1), an approxi-

mate form for the growth law can be derived. For simplicity, we consider the growth dynamics

of regular n-gons, whose outgoing connections are assumed to bisect the angle of each junction.

The rate of change in area A is given by:

dA
dt

=
n

∑
i=1

∂A
∂ r⃗i

· dr⃗i

dt
= n

∂A
∂ r⃗1

· dr⃗1

dt
= n

(
∂A
∂ ru

)(
dru

dt

)
. (A.3)

where r⃗i are the positions of each of the polygon’s n identical junctions, and ru is the component

along the radial direction.

Assuming diffusion is negligible, the junction motion is determined solely by the length

minimization term from Eq. 1, giving

dru

dt
=−b

∂ f
∂ ru

=−b
(

2sin
π

n
−1
)

dA
dt

= bλn
(

cos
π

n

)(
1−2sin

π

n

)
,

(A.4)

where λ is the side length of the polygon.

This predicts a negative growth rate for 3 < n < 6 and a positive growth rate for n > 6.

For small polygons, we would expect n ≈ 3, and the shrinking rate should scale with the polygon

perimeter (λn ∼
√

A). For large polygons, the rate of growth can be described as dA
dt ∼

√
Aξ (A)

where ξ (A) grows with the number of polygon sides. Because the number of sides is expected to

grow with area, ξ (A) should increase with A. We therefore make the approximation that large

polygon growth rates increase as Aβ for some approximate value of 0.5 < β < 1. Overall, we

take an ansatz that linearly combines the two scaling relations for small and large area polygons:

dA
dt

= ĝAβ − ĥ
√

A, (A.5)
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where normalization by the average area yields Eq. 4 in the main text. It should be noted that

this analysis does not account for the irregular shape of the polygons in the liquid network and

thus provides only an approximation for the growth rate as a function of area.

A.4 Derivation of the polygon area distribution from growth
and splitting laws

The goal here is to determine the steady-state distribution of polygon areas in a liquid

network, P(A), starting from the laws for growth and splitting of individual polygons and the

assumption that polygons on average take the form of a hexagon. The growth law extracted from

simulations (Fig. 2.4 and the splitting rate of these polygons can be expressed as follows:

1
τ

dA
dt

= g⟨A⟩1−β Aβ −h
√
⟨A⟩

√
A, (A.6a)

ksplit = k̂
√

A, (A.6b)

where A is polygon area, ⟨A⟩ is the average area of all polygons, g, h, and β are constants

determined from a fit of simulated growth rates, and k̂ = (
√

2
√

3)k is the prefactor for splitting

in terms of the spawning rate k. Equation A.6b is obtained by finding the perimeter p of a regular

hexagon of area A and noting that the expected splitting rate is ksplit =
1
2kp, since new tubules

can grow in either direction perpendicular to an edge.

If we make the additional assumption that polygons tend to split in half upon new

tubule growth, the distribution of polygon areas, P(A), would be expected to obey an effective

Fokker-Planck equation:

∂P
∂ t

=− ∂

∂A

[
dA
dt

P(A)
]
− k̂

√
AP(A)+4k̂

√
2AP(2A). (A.7)

Here, the first term corresponds to the area drift associated with polygon growth and shrinking,

the second term describes polygon disappearance due to splitting, and the last term corresponds
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to the formation of new polygons after a splitting event [194]. We note that stochastic noise

terms are neglected in this equation for simplicity. While such noise could be extracted from the

breadth of the growth rate distribution in polygons of each size (Fig.4E), we choose to consider

only the deterministic drift in polygon areas that shrink or grow in a size-dependent manner as

the simplest possible description accounting for the observed steady-state area distribution.

A.4.1 Small area scaling

Although Eq. A.7 is not easily solvable analytically, we can analyze its behavior in the

limit of very small polygons. We consider a narrow band of small polygon areas: (0,δA). The

rate at which polygons disappear from this band due to shrinking below 0 area (J0) must equal

the total rate at which polygons enter the band. This includes the shrinking of larger polygons,

which enter the band at rate v(δA)P(δA) and the creation of new polygons due to splitting of

polygons with area between (0,2δA):

J0 =−v(δA)P(δA)+2k̂
∫ 2δA

0

√
aP(a)da− k̂

∫
δA

0

√
aP(a)da (A.8)

Here, the second term corresponds to 2 new polygons created by splitting and the last term

accounts for the fact that the original polygon vanishes when a splitting event occurs. If we

assume that the distribution function for small areas is a power law: P(A) = Aµ , then the above

equation can be expressed as:

J0 = ĥ(δA)µ+1/2 + k̂

(
2µ+5/2 −1

µ + 3
2

)
(δA)µ+3/2 (A.9)

When very small areas are being considered (δA → 0), the first term is dominant, so we have

J0 → ĥ(δA)µ+1/2. In order to have a finite flux of disappearing polygons, countering the

production of new polygons throughout the system, we must set µ =−1/2.
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Therefore the distribution function for polygons of small area can be written as

P(A) =
c1√

A
for small A, (A.10)

with c1 a constant. Converting to a logarithmic distribution, P(log(A)) = AP(A) ∼
√

A. This

square root scaling matches the distribution of small polygon areas measured for simulations of

liquid networks (Fig. 2.3A and Fig. 2.4H).

A.4.2 Large area scaling

For very large values of the area A, the polygon dynamics are described by a balance

between growth and splitting. We neglect the last term in Eq. A.7, assuming that P(2A)≪ P(A)

so that the production of very large polygons by splitting events is rare. This assumption is

self-consistent with an exponentially decaying distribution for large areas. Plugging the growth

velocity from Eq. A.6a into the truncated form of Eq. A.7 gives the steady-state distribution of

polygon areas as:

P(A) = c3c1A−β e−c2Az
for large A, (A.11)

where c2 =
k̂
gz⟨A⟩

β−1, z = 3
2 −β , and c3, c1 constants.

A.4.3 Full distribution by stitching together the two limits

In order to construct the complete distribution, the two limits for small and large area are

married together at some intermediate area A∗. Enforcing continuity of the distribution requires

c3 = A∗(1−z)ec2A∗z
and gives the following functional form for the full distribution:

P(A) =


c1√

A
for A < A∗

c3c1
Aβ

e−c2Az
for A ≥ A∗

(A.12)
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The remaining unknowns are c1, A∗, and ⟨A⟩ (which also appears in c2). In order to estimate

A∗ and ⟨A⟩, we first note that the total number of polygons must remain fixed at steady state.

Thus, the flux of vanishing small polygons must equal the flux of newly created polygons via

splitting: J0 = Jsplit. The flux of vanishing polygons is:

J0 ≈ c1h
√
⟨A⟩/τ, (A.13)

and the flux of newly created polygons due to splitting is:

Jsplit =
∫

∞

0
k̂
√

AP(A)dA

=
∫ A∗

0
k̂c1dA+

∫
∞

A∗
k̂c3c1A

1
2−β e−c2Az

dA

= k̂c1A∗
(

1+
1

c2z
(A∗)−z

) (A.14)

Additionally, an expression for the average area is obtained via ⟨A⟩=
∫

∞

0 P(A)AdA/
∫

∞

0 P(A)dA.

Through this matching of fluxes and the definition of average area, we obtain two equations:

h
√

⟨A⟩/τ = k̂A∗
(

1+
1

c2z
(A∗)−z

)
,

⟨A⟩=
2
3A∗3/2 + c3

zc1+1/(2z)
2

Γ
(
1+ 1

2z ,c2A∗z)
2
√

A∗+ c3

zc1−1/(2z)
2

Γ
(
1− 1

2z ,c2A∗z
) , (A.15)

where Γ is the incomplete Gamma function. These can be solved numerically for A∗ and ⟨A⟩

using parameters g, h, and β from the effective growth law. Finally, the prefactor c1 is set by

normalizing the full distribution
∫

∞

0 P(A)dA = 1.

Using the non-dimensionalized growth law extracted from liquid network simulations

(Fig. 2.4E, Eq. 4), this gives A∗ ≈ 0.12ℓ2 and ⟨A⟩ ≈ 0.23ℓ2. We note that the predicted average

area is similar to the actual value of ⟨A⟩ ≈ 0.29ℓ2 obtained for simulated liquid networks

(Fig. 2.2D).
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The area A∗ corresponds to the peak in the area distribution function P(A) (see Fig. 2.4H)

and thus gives an estimate of the most ‘typical’ polygon area. For COS7 ER, we have the length

scale ℓ≈ 1.95 µm, giving the predicted typical area A∗ ≈ 0.46 µm 2 in the liquid network model.

For comparison, the peak in the measured area distribution for ER polygons in COS7 cells is

0.72±0.32 µm 2 (mean and standard deviation across cells).

A.5 Polygon neighbor counts, areas and growth rates

Figure A.3. Polygon area, neighbor count and growth rate are interconnected. (A) Polygon area
as a function of neighbor count (same simulation data as in Fig. 4.) Solid black line gives mean
area at each n, dotted black line is analytic prediction from Eq. A.16. (B) Non-dimensionalized
growth rates normalized by mean area and network timescale for 10 liquid network simulations.
Green curve indicates mean (and standard error of the mean) within coarse bins of normalized
neighbor count. Non-integer neighbor counts arise from averaging over 3 s intervals. Dashed
black line is obtained by plugging Eq. A.16 into Eq. 4, and using the fit parameters extracted
from the growth rate vs area data (Fig. 4E).

In this section, we derive an approximate geometric relationship between a polygon’s

normalized area and its number of neighbors, and quantify the relationship between growth rates

and number of neighbors. To begin, we make the simplifying assumption of regular polygons, and

compute the number of average-sized neighbor polygons that can be placed around a polygon of

a given area. Specifically, we imagine a regular polygon with n sides, with outgoing connections

bisecting its junction angles, surrounded by neighboring regular polygons with m sides. Note
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that m may not always be an integer, but it still provides an estimate for the expected relationship

between side counts of the central and neighboring polygons. The internal angles of the neighbor

polygons are given by θ = π
(
1− 2

m

)
, which must be equated to half the external angle of the

central polygon: θ = π

n +
π

2 . This gives the relationship m = 4
1−2/n .

The area of a regular polygon with side length ℓ can be expressed A = nℓ2/
(
4tan π

n

)
.

Assuming that all neighbor polygons are average sized, with area ⟨A⟩, the normalized area of the

central polygon can be expressed as:

A
⟨A⟩

=
n tan π

m
m tan π

n
=

(
n−2

4

)(
tan π(1−2/n)

4
tan π

n

)
. (A.16)

This predicted scaling for area as a function of neighbor (or edge) count approximately captures

the scaling of polygons in liquid networks (Fig. A.3A). It should be noted that this derivation

assumes regular polygons — for irregular polygons the area we be expected to be slightly lower,

as seen in the simulation data.

Polygon growth rates and the number of neighbors are also intimately related. As in

foams [72], regular polygons with more sides have a higher internal angle, translating to a net

outward motion of junctions. We note that for liquid networks there is a large variation in

the growth rate among polygons with the same number of neighbors (Fig. A.3B). On average,

however, the growth rate tends to scale together with the number of neighbors, with polygons

that have 7 or more sides tending to grow, while those with fewer sides tending to shrink. The

discrepancy from the classic von Neumann law (which predicts a cross-over from growth to

shrinking at precisely 6 sides) may be due to the more irregular shape of liquid network polygons,

and their tendency to change neighbor counts continuously as they grow.

Using the liquid network simulations, we can also demonstrate the consistency of the

above formula for area as a function of neighbor count and the fitted ansatz for polymer growth

rates vs area. Plugging Eq. A.16 into Eq. 4, provides a predicted polygon growth rate as a

function of edge count. Using the fit parameters from the main text for g,h,β and the values
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from fitting normalized area as a function neighbor count to Eq. A.16 gives the dashed line in

Fig. A.3B. The two quantifications (growth as a function of area or growth as a function of

neighbor count) appear to be relatively consistent for polygons with many neighbors. We note

that the underestimate when converting to growth rate versus neighbor count may be the result of

plugging averages from a noisy distribution into a nonlinear function. Polygons with 4 or fewer

neighbors have limited data and thus may not provide an accurate estimate of the shrinkage rate

of small polygons. In the main text, we consider the dependence of polygon dynamics on the

normalized area, both because of the tighter error bars and to allow for a direct derivation of the

area distribution.

A.6 Boundary-free liquid networks

Here, we demonstrate that the boundary conditions employed in the main text have

no effect on the steady-state properties of liquid networks. In particular, we show that liquid

networks exhibit a well-defined steady-state density even in the absence of tethering to any static

structures, including the outer boundary membrane.

To this end, we perform simulations of boundary-free liquid networks with a catastrophe

rate of α = 0.25 s−1, which allows for finite growth lengths of outwardly growing tubules. These

networks expand their spatial footprint over time, forming complex webs evocative of in vitro

images of reconstituted ER in Xenopus extract, which also show decreasing densities and longer

tubules towards the network periphery [107].

There is no global steady-state in this system; the outer boundary continues to expand

indefinitely. However, the architecture in the bulk of the network does reach a steady state.

Network properties, such as average polygon area, within a region at the center of the network

stabilize over time, and scale as expected with the kinetic parameters (Fig. A.4C, Eq. 11).

This variant of the liquid network model demonstrates that the network is able to support

tension and achieve a steady-state architecture without any connection to stationary structures.
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The length-minimizing tension is counteracted by the finite mobility of network nodes and the

network density is ultimately determined by the balance between this mobility (b) and the rate of

new tubule spawning (k).

Figure A.4. Boundary-free liquid networks achieve steady state in the bulk. Example simulations
after 1000s are shown with (A) low mobility, b = 0.008 µm/s and (B) high mobility, b =
0.04 µm/s. (C) Average polygon area calculated within central 20 µm × 20 µm region of
boundary-free liquid networks, averaged across 10 simulations for each value of b/k. The orange
curve indicates analytic prediction from Eq. 11 in the main text. In (A) and (B), scale bars and
side lengths of red squares are 20 µm. Simulations performed with spawning rate k = 0.005 µm
−1s−1, catastrophe rate α = 0.25 s−1, and over a range of mobilities b = 0.004−0.04 µm/s.
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Appendix B

Appendix for Chapter 3

B.1 Code availability

Example Matlab code for carrying out the calculations described in this chapter (for

both analytic calculations and simulations) is available at https://github.com/lenafabr/

propagatormethods. The details of the network construction and simulation algorithms are

outlined in the appendices below.

B.2 Generating network structures

B.2.1 Cellular network structures

Peripheral ER network structures were obtained from confocal imaging of live COS7

(monkey kidney) cells, labeled with KDEL venus as a fluorescent luminal marker. Cell culture

and imaging was carried out exactly as described in prior work [45]. Images of nine individual

cells were analyzed using Ilastik, an interactive machine-learning tool [110], to classify pixels

as belonging to the ER network structure. The images were then segmented (with standard

Otsu thresholding) and skeletonized using built-in algorithms in Matlab [195]. The network

topology was extracted by grouping skeleton nodes in adjacent pictures and using Matlab’s

bwtraceboundary subroutine to trace out skeleton boundaries between groups of nodes.

Mitochondrial networks in yeast cells were taken directly from published data [55]

available at https://data.mendeley.com/datasets/nshn8hhd6d/1.
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B.2.2 Synthetic network structures

To create the synthetic peripheral ER networks featured in Fig. 3.5, we began with a

regular honeycomb lattice, 30 lattice cells across, and excised an annular region. The inner and

outer radii of the anulus were chosen to correspond with the dimensions of the nucleus (8µm)

and the cell boundary (20µm) for a typical COS7 cell. The network edge length is 0.8µm,

matching the average edge length (0.78± 0.02µm, mean plus or minus standard error of the

mean) computed for the extracted ER networks used in this study.

The synthetic networks from Figs. 3.6, 3.8, and 3.10 were also initiated as honeycomb

lattice networks, 10 lattice cells across. The spatial positions of the nodes were then randomly

perturbed by an amount δd ∈ (0,0.2ℓ), with ℓ the minimum edge length on the network. For

fig. 3.10, random sets of edges were selected for removal, such that the network retained a single

connected component with each subsequent edge removed. The results are averaged over 10

different network structures generated by removing distinct sets of edges.

All edges in the synthetic networks were treated as straight lines between connected

nodes.

B.3 Sampling transition times in simulations

B.3.1 Transition times between node neighborhoods

For a particle that starts at node i, we sample the distribution of times t for leaving the

neighborhood of i according to the following algorithm.

First, we select the next node reached by the particle, using the discrete splitting proba-

bilities P∗
ik (Eq. 3.8a). Next, consider the distribution of survival times Sik(t), conditional on the

particle eventually leaving the neighborhood through node k:

Sik(t) =
1

P∗
ik

∫
∞

t
Pik(t ′)dt ′ =

1
P∗

ik
∑
p

r(ik)p

Du2
p

e−Du2
pt . (B.1)
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The roots up for the Laplace inversion are precalculated for each neighborhood prior to the start

of the simulation. The infinite summation is truncated to up < umax, with the maximum root for

each neighborhood selected as described in B.3.2.

Sampling of the transition time is done through the inverse cumulant method, by first

selecting a uniformly distributed value w ∈ (0,1) and then numerically solving for the value of t

with Sik(t) = w.

In practice, we pre-tabulate the distributions of leaving times Sik(t) for each node and each

adjacent edge in a network, allowing for rapid sampling of many particle transitions initiating at

that node.

B.3.2 Short time asymptotic limit

Eq. 3.28 for the Laplace inversion of the leaving time distribution converges quickly for

long times and short edges, with the number of required summation terms scaling as ℓ2/(Dt). In

the limit of short times, an alternate approach is taken for the Laplace inversion. Specifically, we

expand Eq. 3.6 in the limit of s → ∞ to get the lowest order terms

P̂ik
α→∞−−−→2

n

(
e−αℓik + e−3αℓik

)
− 4

n2

n

∑
j=1

e−α(ℓik+2ℓi j)
(B.2)

where α =
√

s/D and n is the degree of node i.

We then use the relation

L −1
(

1
s

e−2a
√

s
)
= Erfc

(
a√
t

)
(B.3)

to invert the individual terms of Eq. B.2, integrated over time. This yields the final expression for

the cumulative conditional probability that a particle leaves the neighborhood of node i by time t,
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given it eventually leaves to node k:

1−Sik(t)
t→0−−→ 2

nP∗
ik

(
Erfc

(
ℓik

2
√

Dt

)
+Erfc

(
3ℓik

2
√

Dt

))
− 4

n2P∗
ik

∑
j

Erfc
(
ℓik +2ℓi j

2
√

Dt

) (B.4)

In order for this limit to be accurate, the next highest term in the expansion (Eq. B.2)

needs to be sufficiently small. The next highest term for any given time is determined by the

shortest edge length (ℓi,min) and must be at most Erfc
[
5ℓi,min/(2

√
Dt)
]
. Therefore, if we set a

tolerance of ε , and define the cutoff ξ =− logε , then the expression in Eq. B.4 is accurate for

all times t below

t∗ =
25ℓ2

i,min

4ξ D
. (B.5)

For times above t∗, we can employ the converging series of Eq. 3.28. The series is

truncated by considering only those poles that satisfy Dt∗u2
max > ξ , or equivalently

umax =
2ξ

5ℓmin
.

Eq. 3.26 has poles at mπ/ℓi j for all integer m and a root between every pair of consecutive

poles. The maximum number of roots up to umax is then given by

∑
j

mi j,max =
2ξ

5πℓmin
∑

j
ℓi j. (B.6)

The cumulative distribution function can therefore be evaluated efficiently for all values

of time, so long as the ratio of longest to shortest edge length in the neighborhood is not too

large.

An analogous approach can be used to find the no-passage spatial propagation of a
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particle over a very short time interval, conditional on never leaving the neighborhood of the

node. For a particle starting on node i that has never passed any of the adjacent nodes, the

probability that after time t it is located on edge ik, between x and ℓik can be derived from

Eq. 3.29 as

Ŷik(x,s)
α→∞−−−→ 2

sn2

[
1− e−α(ℓik−x)

] n

∑
j=1

e−2αℓik

Yik(x, t)
t→0−−→ 2

n2 ∑
j

[
Erfc

(
ℓi j√
Dt

)
− Erfc

(
2ℓi j + ℓik − x√

Dt

)] (B.7)

This expression is normalized by Yik(0,∆t), and allows for a sampling of the x coordinate using

the inverse cumulant method.

B.3.3 Propagation on edges

For a particle starting at position x0 on edge ik, the survival probability to time t given

that it eventually leaves at one of the bounding nodes can be obtained directly via Eqs. B.1, B.4

by treating the starting position as its own node with adjacent nodes i and k connected by edges

of length ℓik − x0 and x0, respectively. Analogously, Eqs. 3.30, B.7 can be leveraged to sample

the spatial propagation along an edge over a time interval δ t until the next save-point.

For this special case, the splitting probability and survival probability over time match

to the known solutions for a particle on a one-dimensional interval with two absorbing bound-

aries [133, 66]. Namely, for a particle beginning at position x0 on an edge of length ℓm, we
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have

Pi = x0/ℓm, Pk = 1− x0/ℓm,

S(E)m,+(t) =
2ℓm

πx0

∞

∑
p=1

(−1)(p+1)

p
sin
( pπx0

L

)
e
− p2π2Dt

ℓ2m ,

S(E)m,−(t) =
2ℓm

π(ℓm − x0)

∞

∑
p=1

1
p

sin
( pπx0

L

)
e
− p2π2Dt

ℓ2m ,

(B.8)

where S(E)m,±(t) correspond to the probability the particle has not left by time t, given it eventually

leaves through the boundaries at ℓm and 0, respectively. Similarly, the no-passage spatial

propagator for the particle on an edge can be expressed as,

Y (E)
m (x, t) =

2
π

∞

∑
p=1

1
p

sin
(

pπx0

ℓm

)

×
[

1− cos
(

pπx
ℓm

)]
e
− p2π2Dt

ℓ2m .

(B.9)

For the short-time limit, analogous functions for a particle propagating on an edge can be

derived from Eqs. B.4 and B.7.

B.3.4 Particle pair propagation

In order to avoid infinitesimally small steps when particles approach each other, it is

necessary to enable two particles to share a single domain, where particle encounter is a finite-

probability event within the domain. We follow the algorithm for paired particle propagation

that was outlined previously in [66]. The essential points of the algorithm are presented here for

completeness, and generalized to particles with arbitrary diffusivity.

Specifically, assume x < y describe the coordinates of two particles along a segment with
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absorbing boundaries at 0 and L. If we make the coordinate change defined by

u = x− y

v =

√
Dy

Dx
x+

√
Dx

Dy
y,

(B.10)

then the time evolution for the joint distribution of the two particles can be expressed as a

two-dimensional diffusion equation [196],

∂c(u,v)
∂ t

= (Dx +Dy)

[
∂ 2c
∂u2 +

∂ 2c
∂v2

]
. (B.11)

The joint evolution of the transformed variables can thus be treated as two independent 1D

diffusion processes, both with diffusivity Dx +Dy.

The edge segment domain containing a pair of particles is illustrated in Fig. B.1, which

highlights the three boundaries for exiting the domain: x = 0 (first particle hits a segment

boundary), y = L (second particle hits a segment boundary), or x = y (particles encounter each

other). For simplicity of sampling we propagate the system forward within a smaller region

inscribed within this two-dimensional domain. One option is to draw a rectangle (black dashed

line in the figure), aligned with the x and y axes contained within the allowed domain. The

particles are then propagated individually to the boundaries of the rectangle, using Eq. B.8 to

find the earliest time for either particle to hit a boundary and Eq. B.9 to spatially propagate the

other particle on the condition that it does not leave the rectangle. This approach, however, does

not allow the particles to encounter each other and results in infinitesimally small time steps as

the particles come close together. An alternate approach is to inscribe a parallelogram within the

domain that has one edge on the x = y line (corresponding to u = 0) and the other edges parallel

to the v axis, along v = a and v = b. The coordinates u and v are propagated diffusively within

this parallelogram according to Eq. B.8 and B.9, and the two particle positions x,y are then

recalculated accordingly. If the exit from the parallelogram happens along the line u = 0 then
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Figure B.1. Propagators used for an edge-segment protective domain containing a pair of
particles. Blue lines mark absorbing boundaries in the domain. Red dot marks x0,y0, the initial
positions of the two particles. Two propagation approaches are possible. The x and y coordinates
can be propagated directly in an inscribed rectangular domain (black dashed lines). Alternately,
the transformed coordinates u,v can be propagated in the region outlined in purple, allowing for
particle encounter (u = 0) as a finite-probability outcome of the propagation step. The choice of
propagation is based on greatest minimum distance to the boundary – in this case, the purple
region would be used.

the particles encounter each other before leaving the domain and a reaction event is recorded.

The choice between the two subdomains (rectangle in x,y coordinates or in u,v coordi-

nates) is made by picking the one with the biggest minimum distance of the initial pair position

to the boundaries of the domain. In other words, when the particles start close together (u0 close

to 0), the u,v coordinate system is selected to allow an encounter to occur. When they are further

apart, the x,y coordinate system is used to allow larger time steps in propagating to a domain

boundary.

It should be noted that the time steps in this algorithm can get very small when two

particles approach each other in the vicinity of a node, resulting in x and y both close to 0.

However, our propagation approach allows for a substantial probability of either the particles

encountering each other or one of the particles moving away from the node on a different segment,

so that this unfavorable case does not persist for many time steps and does not substantially slow

down the simulations when particle density is sparse.
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Appendix C

Appendix for Chapter 4

C.1 Spatially heterogeneous accessibility observed for
multiple ER structures

A B

Figure C.1. Diffusive search times for extracted ER network structures. (A) Global mean first
passage time (GMFPT) to each node in the network is plotted against the local network edge
length (Lloc) within σ = 5 µm of the node. Compare to Fig. 1D. (B) Mean first passage time
(MFPT) from a central node to target nodes on the ER network is plotted against Euclidean
distance to the target node. Compare to Fig. 1F. In both plots, color indicates results for individual
ER architectures (N=8 network regions extracted from 3 cells).

High spatial heterogeneity in network density and diffusive accessibility is observed

across multiple excised ER networks. Using eight circular regions (radius 8.5 µm) of extracted

ER network structure, local edge lengths and mean first passage times are calculated, as for the

example network shown in Fig. 1.
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The global mean first passage time (GMFPT) to every node in each network (Fig. C.1A)

again scales inversely with local edge length. In individual networks, GMFPT can vary by nearly

one order of magnitude with similar variation observed in the distributions of local edge length.

Notably, the variation within a single network structure is comparable to the overall variation

between networks extracted from different cells. Thus, even a well-connected, highly-looped

structure like the ER can exhibit large spatial fluctuations in diffusive accessibility, an effect that

is observed across multiple peripheral ER architectures.

We next consider a more localized search process wherein a particle begins its search

from a central source node (Fig. C.1B). The mean first passage time (MFPT) to each possible

target node in the ER structures exhibits the characteristic scaling with distance previously

discussed in the main text and elsewhere [63]. Fluctuations in ER density and connectivity

lead to large deviations from the smooth scaling seen in uniform networks (see Fig. 1E). This

implies that in the ER search times for targets that are equidistant from a central source can vary

substantially depending on the local geometry.

C.2 Computing mean first passage times on reservoir
networks

Our base model treats regions of the ER as networks of edges connected at point-like

junctions. This model assumes that the size of the network junctions is comparable to the tubule

width. However, the peripheral ER can also include some sheet-like regions that are substantially

larger than the tubule width [155]. Such peripheral sheet regions would form spatially expanded

junctions that could serve as localized traps for diffusing particles. We therefore consider an

expansion of our model that incorporates enlarged junction regions from which particles escape

through narrow holes along the boundary.

In addition, the perinuclear region of the ER forms a complex structure composed of

interconnected stacks of sheets. The detailed structure of the perinuclear ER cannot be resolved
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with confocal microscopy, but given the large extent of the region we might also expect it to serve

as a substantial trap for diffusing particles. A simplified representation of the perinuclear region

would also treat it as a disk-shaped reservoir connected to many tubules around its circumference.

We use the same mathematical approach to handle the large perinuclear region as we do for the

enlarged junction nodes. This approach is described below.

We propose a “reservoir network” model for calculating analytic mean first passage times

in a structure composed of tubes that are joined either at point-like nodes or at larger reservoirs.

The approximate analytical approach for transitions between reservoirs and tubes is inspired by

previous work describing diffusive escape from pores in cylindrical geometries [168].

In essence, the model represents transitions of particles between disk-shaped reservoirs

and connecting tubules (Fig. C.2A) by decomposing the system into several discrete spatial states

(Fig. C.2B), in a manner analogous to the classic paper on diffusion-limited reactions by Berg

and Purcell [197]. By using a state-based approach, it is then possible to calculate MFPTs on

these hybrid reservoir networks using the previously described graph-theoretic approach [67].

In Supplemental Section C.3 we apply this model to study the effect of scattered reser-

voirs on average search times on a network. Additionally, in the main text, a single reservoir

representing the sheet-like ER in the perinuclear region is used to more accurately capture search

times on a whole-cell scale.

C.2.1 State diagram for a single reservoir

Reservoirs are treated as disks of radius R+, with holes in the boundary of width 2δ

representing connected tubes (a typical geometry is shown in Fig. C.2A with the corresponding

state diagram in Fig. C.2B). An optional target at the center with radius R− is denoted the

central state, C. When a particle enters the reservoir from an adjoining tube it is placed in the

boundary state, B, a distance σ from the outer wall of the reservoir. The value of σ is chosen

to be comparable to the tube size, and represents a distance from which the particle can take

independent samples of the domain wall without maintaining a strong memory of the tubule
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B

Figure C.2. Reservoir network model. (A) Representative geometry for a three-tube reservoir
embedded in the network. Dimensions of the system are highlighted in light blue. The five states
and their locations in space are denoted by circled capital letters. (B) The state diagram for the
effective model with transition probabilities labeled. The reservoir may be embedded in a larger
network, so an additional neighboring node state is depicted where the transition into P from the
neighbor is given as in [67]. (C) Analytic MFPTs (lines) reproduce MFPT from BD simulations
(points) of 2000 particles diffusing (D = 1 µm2/s) across wide range of symmetric triskelion
geometries. Error bars show standard error of the mean. Inset: particles (active, blue; absorbed,
red) start at the green tip of one tube and diffuse until reaching the red target at the center of the
reservoir. (D) Simulations validate the reverse process. Inset: particles start at the center of the
reservoir (green) and diffuse until reaching the tip of the top tube (red).

from which it came. From state B, the particle can either transition back towards the wall or

take the long journey to the center of the reservoir, with splitting probabilities (E±) and average
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waiting time until the transition (QB) given by:
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(C.1)

Here D is the particle diffusivity, E+ is the probability of hitting the wall before the central target,

and E− is the probability of first hitting the central target. If there is no target at the center of the

reservoir, then R− → 0 and E+ = 1. These expressions are derived from the standard solution of

first passage times for the diffusion equation in cylindrical coordinates [133].

If the particle first hits the wall, it has a chance ρ = δd
πR+

of entering a P state, where d is

the number of tubules connected to the reservoir. The particle is equally likely to hit each P state

(this does not mean it will reach the connected node with equal probability, which depends on the

length of the intervening edge). The P state can be thought of as a network node connected to two

edges: one of length L leading to the neighboring node outside the reservoir and one of length

σ leading into the reservoir. The splitting probability from P to B is simply Ee− = σ/(L+σ).

If the particle instead hits the wall, W (probability 1−ρ), it rapidly transitions back to state B.

Assuming σ is small compared to R+, the waiting time in W will be negligible compared to the

time spent performing searches of the bulk. This approach for exit out of a reservoir through a

long tube has been previously described for cylindrical geometries [168].

Included in the state diagram is an additional state, U , an optional initial state representing

a uniform distribution of particles throughout the reservoir. The splitting probabilities and waiting
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times unique to state U are given by:
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(C.2)

For simplicity, this state diagram represents a reservoir with one connected tubule. In

practice, there are often multiple P states, each connected to a neighboring node. Then the

transitions from U and B to each Pi would be symmetric and scaled by the degree (number of

neighbors) of the reservoir.

This reservoir model can be inserted into previously described network models of the

ER. Using the splitting probabilities and waiting times for each state, it is possible to calculate

analytic mean first passage times for diffusive search in the reservoir as previously described

in [67].

C.2.2 BD simulations in triskelion geometries validate analytic approach

The analytic model is validated through the use of Brownian dynamics simulations on

triskelion geometries with a wide range of sizes (Fig. C.2C,D insets). The radius of the reservoir,

R+ is varied between 0.2− 1.0 µm and the length of the connected tubules is varied from

0.1−1.0 µm. The radius of the tubes is fixed at δ = 0.05 µm, a typical size for ER tubules in

COS7 cells [155, 167]. The modified tube size, is set to σ = πδ/4 as in [168, 197]. In all of

these tests (and later applications), the central target has radius R− = δ so that targets placed in

either a tube or a reservoir have the same size.

Two representative search problems are analyzed on these geometries. In the first test,

2000 particles are placed at the end of a tube and allowed to diffuse until reaching an absorbing

disk at the center of the reservoir (Fig. C.2C). In the second, 2000 particles begin at the center of
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the reservoir and diffuse until reaching the end of a specific tube. The time step for both tests

is 10−5 s, with particle diffusivity D = 1 µm2/s. The MFPT is recorded and compared to the

analytic MFPT from the corresponding reservoir network (Fig. C.2C,D).

Over a wide range of scales for both R+ and L the analytic model approximately repro-

duces simulated mean first passage times. Having validated a single triskelion, it is now possible

to intersperse these reservoir structures throughout existing networks and obtain realistic mean

first passage times on reservoir networks.

C.3 Presence of scattered reservoirs increases trapping,
GMFPT

A B C

Figure C.3. Reservoir network model of a COS7 ER. (A) Global mean first passage times
(GMFPTs) to targets on nodes on an example COS7 ER network (from Fig. 1A) where now 20%
of network nodes are converted to reservoirs. Reservoir nodes are shown as true size, point-like
nodes are plotted with a fixed minimum size for visibility. (B) GMFPT scales inversely with
local network surface area. Color denotes radial position from center of network, enlarged points
indicate reservoirs and their relative size. (C) The GMFPT to central targets in reservoirs scales
linearly with GMFPT of the original nodes (prior to conversion to reservoir).

By treating the peripheral ER as a network of one-dimensional tubules we are able to

focus on large-scale structure and connectivity. This enables us to model transport in the ER as

diffusion on a network, where simple computational approaches provide powerful predictions

that agree with experimental results (Fig. 2E). Here we investigate the limits of the network

model by considering the effect of scattering enlarged junction reservoirs over a network.

A COS7 peripheral ER is modeled as a reservoir network by randomly selecting 20%
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of its nodes and converting them into reservoirs. The reservoir radii (R+) are set to be 0.45 of

the minimum edge length connected to the node, giving an average size of 0.26 µm. Connected

edges shrink to accommodate the reservoirs. This avoids unphysical overlap of reservoirs and

edges and allows for a heterogeneous distribution of reservoirs to be randomly dispersed across

the network. The GMFPT is calculated to targets of radius R− = 0.05 µm placed in the center of

each expanded node, as well as to all the ordinary point-like junctions. Because the particles

are meant to represent ER membrane proteins, the starting probability for each node is set in

proportion to surface area, with non-reservoir nodes assigned surface area 2πδ 2, while reservoirs

have surface area 2πR2
+.

We find that even in the presence of many reservoirs, the qualitative trends for network

search times are the same. GMFPT still scales with the amount of locally accessible network (in

this case, surface area, Fig. C.3B). For each individual reservoir target, we compare its GMFPT

in a network with many reservoirs versus the GMFPT to the same node on a network with

point-like junctions only (Fig. C.3C). The main effect of enlarged junction reservoirs is a slight

increase in search times. This is due to the increase in network surface area and the trapping

that occurs inside of reservoirs; there is more space for particles to explore before finding any

given target and thus average search times increase. Notably, the breadth of the search-time

distribution does not change substantially upon the introduction of randomly scattered enlarged

reservoirs. Thus, treating the ER tubule junctions as point-like connections appears to be a

reasonable simplification for these network structures.

C.4 Alternative methods of incorporating network dynam-
ics into simulations of particle diffusion

When modeling the spread of photoactivated diffusing particles from a central region,

the dynamic rearrangements of the ER network need to be considered. In the main text, we

incorporate the effects of the time-varying ER structure by averaging multiple simulations on
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static networks extracted from individual frames of the experimental movie. Here, we analyze

two alternatives: (1) simulations run only on a single network extracted from the first frame; and

(2) a “project and propagate” approach incorporating many network snapshots in each simulation.

In both cases, the same two rounds of filtering are applied when comparing to the experimental

signal.

For approach (1), the simulated fractional signal on the network extracted from frame 1

( f sim
1i j ) is plotted in Fig. C.4A.ii. We calculate the slope of the signal in each wedge j over the

first 10 seconds after photoactivation. These arrival rates are compared to the averaged simulated

rates from the main text (computed from the averaged fractional signal shown in Fig. C.4A.iii).

We see strong agreement between the two (R2 = 0.91, Fig. C.4B, blue dots and dashed line).

Consequently, this approach also does reasonably well in predicting the experimentally measured

protein arrival rates (extracted from Fig. C.4A.i), with R2 = 0.6 (Fig, C.4C, blue dots and dashed

line). Approach 1 includes no information about the network rearrangements over time, but still

captures much of the behavior of proteins in the ER.

For the project and propagate simulations, 50000 particles commence diffusion from

the photoactivation region on the network extracted from the first frame of the movie. The

photoactivated particles then diffuse along the first network for time dt = 0.6s, at which point

they are projected from their location in space to the closest point on the network extracted from

the second frame of the experimental movie. The projection step tends to be small compared

to the diffusive (or propagation) step because the network evolves slowly in time compared to

the diffusion of individual particles. The diffusive particles repeat this process, propagating and

projecting, until the final frame of the experiment is reached.

One advantage of this method is that it more realistically captures the expected spatial

trajectories of particles diffusing on a continuously rearranging network. As time progresses and

the proteins diffuse from the photoactivation region, the network evolves in time as well, albeit

with a large time step set by the experimental frame rate.

The same nine photoactivation runs are analyzed using the project and propagate simula-
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tion method. We again define individual wedge regions of the same size and location as in the

experimental images and analyze the number of particles in each. The simulated signal in each

wedge (wpp
i j ) is then defined as the total number of particles in wedge j at time point i, and the

fractional signal (Fig. C.4A.iv) is f pp
i j = wpp

i j /N. These fractional signals do not require averaging

as in the main text, because the effects of the dynamic network are already incorporated via the

project and propagate method. The fractional signals are then used to find the signal arrival rate

(slope over first 10 seconds), just as before.

Again, we see strong agreement between the project and propagate simulations and the

results from the main text when comparing the calculated arrival rates (Fig. C.4B). The project

and propagate method is also able to predict the experimental arrival rates well: R2 = 0.64

(Fig. C.4C), as compared to R2 = 0.68 in the main text.

Both project and propagate and the frame-averaged approach outlined in the main text

generate simulated protein arrival rates that fit the experimental rates slightly better than the static

approach using the first frame only. These approaches for incorporating ER network dynamics

thus help account for the time-varying tubule density and connectivity within each ER region.

Thus, although ER network dynamics are shown to be quite slow, incorporation of the different

network structures over time allows for a better representation of observed particle motion.
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Figure C.4. Alternative simulations of diffusive spread in the ER. (A) Fractional photoactivated
signal vs time curves for a single cell from experiment and simulations: (i) experimental signal,
(ii) simulated signal on the network from the first frame, (iii) simulated signal averaged over
networks from each frame of the experimental movie (as used in main text, Fig. 1E), and (iv)
simulated signal from the project and propagate approach. (B) Correlation of signal arrival rates
from alternative simulation approaches with the averaging approach used in the main text. (C)
Correlations of simulated rates with experimental protein arrival rates.
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