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Biospheric feedback effects in a synchronously coupled model of Earth and human systems 1	  

Authors:  Peter E. Thornton, Katherine Calvin, Andrew D. Jones, Alan V. Di Vittorio, Ben Bond-Lamberty, Louise 2	  

Chini, Xiaoying Shi, Jiafu Mao, William D. Collins, Jae Edmonds, Allison Thomson, John Truesdale, Anthony 3	  

Craig, Marcia L. Branstetter, George Hurtt † 4	  

Fossil fuel combustion and land-use change are the first and second largest contributors to 5	  

industrial-era increases in atmospheric carbon dioxide concentration, which is itself the 6	  

largest driver of present-day climate change1. Projections of fossil fuel consumption and 7	  

land-use change are thus fundamental inputs for coupled Earth system models (ESMs) 8	  

used to estimate the physical and biological consequences of future climate system 9	  

forcing2,3.  While historical datasets are available to inform past and current climate 10	  

analyses4,5, assessments of future climate change have relied on projections of energy and 11	  

land use from energy economic models, constrained by assumptions about future policy, 12	  

land-use patterns, and socio-economic development trajectories6.  Here we show that the 13	  

influence of biospheric change (i.e., the integrated effect of climatic, ecological, and 14	  

biogeochemical processes) on land ecosystems drives significant feedbacks in energy, 15	  

agriculture, land-use, and carbon cycle projections for the 21st century.  Previous ESM 16	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
† Present addresses: P.E.T., X.S., and J.M., Oak Ridge National Laboratory, Environmental Sciences 
Division/Climate Change Science Institute; K.C., B.B.-L., and J.E., Joint Global Change Research Institute, Pacific 
Northwest National Laboratory; A.D.J., A.V.D., and W.D.C., Lawrence Berkeley National Laboratory; L.C. and 
G.H., University of Maryland; J.T. and A.C., independent contractors with Lawrence Berkeley National Laboratory; 
M.L.B., Oak Ridge National Laboratory, Computer Science and Mathematics Division/Climate Change Science 
Institute; A.T., Field to Market: The Alliance for Sustainable Agriculture, 777 N Capitol St NE, Washington, DC 
20002. 
  
Copyright Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725 with the U.S. Department of Energy.  The United States Government retains and the publisher, by 
accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to 
do so, for United States Government purposes.  The Department of Energy will provide public access to these 
results of federally sponsored research in accordance with the DOE Public Access 
Plan(http://energy.gov/downloads/doe-public-access-plan). 



studies of future climate have ignored these biospheric feedbacks with human systems. We 17	  

find that exposure of land ecosystem productivity in the economic system to biospheric 18	  

change as it develops in an ESM results in a 10% reduction of land area used for crop 19	  

cultivation; increased managed forest area and land carbon; a 15-20% decrease in global 20	  

crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing 21	  

scenario7. These results demonstrate that biospheric change can significantly alter primary 22	  

human system forcings to the climate system, and that these interactions are handled 23	  

inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy 24	  

economic models to ESMs to date1, 8-9.  25	  

Current projections of future climate are based on ESMs that include sophisticated 26	  

representations of biotic and abiotic processes in the Earth system, but which represent human 27	  

systems through static, unidirectional, asynchronous coupling10 (black arrows in Figure 1a). We 28	  

explore here the difference between asynchronous coupling, in which human system models are 29	  

executed in advance to generate complete time series outputs later passed to an ESM, and 30	  

synchronous coupling, in which the human system model and ESM are executed simultaneously, 31	  

with opportunity for interaction between these two components that can change the simulation 32	  

trajectory of both.  In the traditional asynchronous approach, human system information required 33	  

as forcing for climate prediction  is generated in advance by economic integrated assessment 34	  

models (IAMs) that include both energy and agricultural sectors. As summarized in the Fifth 35	  

Assessment Report of the Intergovernmental Panel on Climate Change (AR5), several IAMs 36	  

have been used to generate standard climate forcing inputs to ESMs covering a range of policy 37	  

assumptions from aggressive mitigation to business-as-usual1,11. These inputs include 38	  

harmonized forcings sharing a common historical baseline and a common set of definitions and 39	  



analyses for 21st century long-lived12 and short-lived13 greenhouse gas (GHG) emissions and 40	  

land-use change5. 41	  

IAM projections of future GHG and air pollutant emissions and land-use and land-cover change 42	  

(LULCC) are constrained by assumptions regarding human demography, economic development 43	  

trajectories, and policy. Estimates of ecosystem productivity and crop yields (including biomass 44	  

energy crops for some scenarios) are based on historical data. These estimates change over time, 45	  

following assumptions about the influence of technological change on yield and endogenous 46	  

estimates of crop location and area (Figure 1a). IAMs do not typically consider the influence of 47	  

future biospheric change, although recent work has evaluated the economic and carbon stock 48	  

impacts of changing temperature, precipitation, and atmospheric carbon dioxide concentration 49	  

(CO2,atm) in crop and land-use models14,15.   50	  

The use of asynchronous coupling in climate projections for AR5 excludes the influence of 51	  

multiple biospheric factors known to influence managed ecosystems,  including short-term 52	  

weather variation16, long-term climate trends17, changes in CO2,atm
18,19, changes in atmospheric 53	  

deposition of reactive nitrogen on land20, and the complex interactions among these factors21,22. 54	  

One IAM used in AR5, the IMAGE model, does have the capability to examine the dynamic 55	  

influence of climate change factors on ecosystem productivity using its own internal, reduced-56	  

form climate model23, but its scenarios for use by ESMs are still based on one-way coupling and 57	  

result in inconsistent representation of biospheric change between the IAM and ESM. Two-way 58	  

coupling of IMAGE to a general circulation model (GCM) was used to examine changes in land 59	  

use24, but the feedback in that case was limited by passing only 30-year mean monthly 60	  

temperature and precipitation changes from the GCM to IMAGE. In that study, simulation of 61	  

carbon cycle and ecosystem processes was performed within IMAGE, a simple and highly 62	  



parameterized land model which ignores the tight integration of biophysical and biogeochemical 63	  

processes, driven by sub-daily variations in temperature, precipitation, humidity, and short and 64	  

long-wave radiation. This mechanistic coupling of biological and physical processes at the land 65	  

surface-atmosphere interface is a defining feature of the current generation of ESMs1. 66	  

Here we investigate the influence of biospheric change on human systems and associated 67	  

feedbacks to the biosphere as introduced in a synchronous two-way coupling approach. We 68	  

introduce two-way coupling by passing biospheric change information from an ESM to the 69	  

ecosystem productivity and crop yield components of an IAM at five-year intervals, as 70	  

radiatively-forced climate change unfolds over the course of a 90-year simulation (2005-2094). 71	  

We examine the consequences of realistic two-way feedback between the human and Earth 72	  

system components for crop price, fossil fuel emissions, LULCC, and transfers of carbon 73	  

between land, ocean, and atmosphere (Figure 1b). The IAM component used here is the Global 74	  

Change Assessment Model (GCAM 3.0)25 and the ESM is the Community Earth System Model 75	  

(CESM 1.1)26. We refer to the two-way coupled system as the integrated Earth system model 76	  

(iESM)27. Our investigation uses the same demographic and policy assumptions as the 4.5 W m-2 77	  

radiative forcing reference concentration pathway (RCP4.5) scenario of AR57, which was 78	  

originally generated by GCAM. The passing of LULCC signals from IAM to ESM is based on 79	  

the land-use harmonization approach used in AR55, with modifications to improve signal 80	  

integrity8
. To help assess the generality of our results, we also performed a pair of simulation 81	  

experiments based on a the AR5 RCP 8.5 scenario 82	  

[insert Figure 1 here] 83	  



Coupling from ESM to IAM is accomplished by passing an integrated biospheric change signal 84	  

to each of the IAM spatial units and land types at five-year intervals. This signal is based on 85	  

departures from a present-day baseline (average over period 2000-2004) of net primary 86	  

production and heterotrophic respiration generated by the ESM land model component, which 87	  

includes a fully prognostic treatment of energy, water, carbon, and nitrogen cycles for multiple 88	  

vegetation types in each ESM land grid cell. This signal captures the desired change factors with 89	  

minimal bias and a linear response, while minimizing signal interference from LULCC28.  90	  

The global average of the productivity and yield component of this signal is similar in magnitude 91	  

and time course among the major vegetated land types, increasing by about 10% by 2094 (Figure 92	  

2), with regional variation reflecting patterns of changed ecosystem productivity in the ESM 93	  

(Supplemental Figure 2). In CESM, land productivity tends to increase under climate change 94	  

scenarios, driven primarily by increasing atmospheric CO2 concentration and anthropogenic 95	  

nitrogen deposition associated with fossil fuel combustion, overlain with spatially and temporally 96	  

varying effects due to increasing temperature and changing precipitation patterns. Even though 97	  

CESM, with its inclusion of carbon-nitrogen cycle coupling, generates one of the lowest CO2 98	  

fertilization effects in the CMIP5 collection of ESMs, the CO2 fertilization effect still dominates 99	  

the varying climate feedbacks to produce global-scale patterns of increasing land productivity 100	  

under all tested scenarios1. Nothing we have added to the iESM system alters these ESM-centric 101	  

aspects of the ecosystem-climate feedbacks, and the increasing productivity obtained in our 102	  

iESM experiments is qualitatively and quantitatively consistent with the well-characterized 103	  

behavior of CESM in this regard. The unique aspect of our study is that this increased 104	  

productivity is communicated synchronously to the human system component to influence 105	  

LULCC (and other energy economic factors such as crop price and fossil fuel emissions). Our 106	  



estimate of 10% increase in ecosystem productivity and crop yield over present-day is consistent 107	  

with estimates from free-air CO2 enrichment (FACE) studies for crop yield18. CO2,atm prognosed 108	  

in the ESM rises to approximately 590 parts per million by volume by 2094 in the two-way 109	  

coupled simulation (Supplemental Figure 3), similar to the enriched levels typical of FACE 110	  

experiments, although a direct comparison of model and experimental results in this case suffers 111	  

from differences in the time scale of changed forcing and the integration in our simulations of 112	  

additional factors such as changing climate and changing rates of nutrient inputs and 113	  

mineralization. Our finding of increased productivity under future climate change contrasts with 114	  

recent results reported for a comparison of agricultural models, but that study excluded the 115	  

possibility of CO2 fertilization14. Other recent work has stressed the importance of modeled 116	  

nutrient dynamics in estimating CO2 fertilization for global cropland22, a factor included in our 117	  

ESM.  118	  

[insert Figure 2 here] 119	  

We quantify the influence of coupling approaches by differencing two simulations, one with 120	  

two-way synchronous coupling and the other with traditional one-way asynchronous coupling. A 121	  

common trajectory for fossil fuel emissions is used in both simulations (discussed below). Global 122	  

crop prices increase through 2080 for both coupling approaches under RCP4.5, driven by a 123	  

mitigation policy that applies a cost to carbon emissions25 (Supplemental Figure 4), but the 124	  

increase in price is 12-25% smaller in the synchronously coupled system (Figure 3a), with 125	  

similar magnitude and trajectory for major crop types. The decline in prices under the 126	  

experimental simulation is due to higher productivity (Supplemental Figure 5) that reduces 127	  

cropland requirements and lessens competition for land. Higher productivity with biospheric 128	  

feedback drives a 10% decrease in total global crop area, as the same amount of food and feed 129	  



can be produced on smaller amounts of land. The decrease in total global crop area is 130	  

accompanied by an increase in area of noncommercial forest (Figure 3b).  131	  

[insert Figure 3 here] 132	  

These changes drive carbon cycle responses in the land model component of the ESM, resulting 133	  

in altered CO2,atm. Atmospheric change drives additional response in the ocean carbon cycle 134	  

through physical and biological feedbacks with CO2,atm  (Figure 1b, pathways labeled 3, 4, and 135	  

5).  Specifically, land ecosystems accumulate 5-10 Pg of additional carbon with two-way 136	  

coupling, driving a decrease in CO2,atm that in turn reduces the amount of carbon transferred from 137	  

the atmosphere to the ocean by ~3 Pg C (Figure 4).  Variability in this feedback flux on 138	  

interannual to decadal timescales is suggested by the two ensemble members, superimposed on a 139	  

coupling signal with peak increase in land carbon storage around 2060. This peak and 140	  

subsequent decline corresponds in time with a reduced rate of increase in non-commercial forest 141	  

area (Figure 3b).  142	  

[insert Figure 4 here] 143	  

Increases in ecosystem productivity and crop yield, combined with decreases in the global land 144	  

area required for food, feed, and fiber crops  drive increases in bioenergy potential and 145	  

corresponding decreases in the price of bioenergy. The decline in bioenergy cost results in an 146	  

increase in demand, an increase in land area dedicated to biomass energy production (Figure 3b), 147	  

and a decline in the demand of other energy carriers (e.g., gas and coal). The decrease in carbon-148	  

intensive energy production leads to a 17% reduction in predicted fossil fuel emissions by the 149	  

end of the 21st century (Supplemental Figure 6). The changes in global carbon stocks shown in 150	  

Figure 4 do not reflect the lower fossil fuel emissions generated by the biospheric feedback, as 151	  



we held these emissions constant for the two simulations to provide the least complicated 152	  

feedback demonstration. We expect that a more complete coupling, in which the updated fossil 153	  

fuel emissions are passed to the ESM, would result in lower atmospheric concentrations, less 154	  

land carbon storage via CO2 fertilization in the ESM land model, and a decreased rate of ocean 155	  

carbon uptake.  156	  

We obtain qualitatively similar results when comparing asynchronous one-way coupling and 157	  

synchronous two-way coupling under a higher radiative forcing scenario (RCP 8.5). Biospheric 158	  

change caused increases in crop yield of 15-22% for RCP 8.5, compared to 11-17% increase for 159	  

RCP 4.5 (Supplemental Figure 8). Two-way coupling causes a decrease in crop prices of 6-17% 160	  

for RCP 8.5, compared to 12-25% decrease for RCP 4.5. Changes in yield and price drive shifts 161	  

in LULCC that are somewhat larger for RCP 8.5 than for RCP 4.5, while acting through similar 162	  

mechanisms. The land ecosystem accumulates an additional 10-15 PgC due to two-way coupling 163	  

by the final decades of RCP 8.5, compared to 5-10 PgC additional accumulation for RCP 4.5. 164	  

We conclude that biospheric feedbacks to human systems can significantly alter primary 165	  

anthropogenic climate forcing by driving changes in land use and energy activities which 166	  

propagate to changes in land, atmosphere, and ocean carbon stocks as well as changes in fossil 167	  

fuel emissions trajectories: truly comprehensive climate change assessment efforts must 168	  

therefore consider these feedbacks. The approach demonstrated here removes a major 169	  

inconsistency in the practice of coupled Earth system modeling as identified in AR51, thereby 170	  

improving the policy relevance of climate and Earth system model projections29,30. Our study 171	  

does not seek to provide a comprehensive assessment of uncertainty associated with a particular 172	  

scenario. Indeed, a synchronously coupled system that includes an ESM component can never 173	  

replace the traditional use of stand-alone IAMs as tools for deep exploration of uncertainty. 174	  

Thornton, Peter E.� 8/21/2016 12:40 PM
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Instead, we argue that the synchronously coupled system is a new tool that allows us to explore a 175	  

previously dark region of the uncertainty space: each time an ESM is run without synchronous 176	  

coupling we miss an opportunity to better understand and quantify this uncertainty.   177	  



Figures and figure legends 178	  

 179	  

 180	  

Figure 1. Interactions between human and Earth systems using one-way (black) and two-181	  

way (black + red) coupling. a) Technological change factors for crop yield are included in the 182	  

generation of IAMs used for AR5, but biospheric change factors are not. Demographic 183	  



constraints and policy assumptions are necessary IAM inputs, with important influence on 184	  

projected crop price, GHG emissions, and LULCC. Ecosystem productivity, including crop 185	  

yield, has been considered as a static input to IAMs in AR5. Red arrows indicate the new 186	  

feedback connections in our study, passing biospheric change information from the ESM back to 187	  

the IAM through its influence on ecosystem productivity and crop yield. b) For AR5, 188	  

connections across the dotted line are asynchronous and one-way (from IAM to ESM). 189	  

Synchronous two-way coupling described here is accomplished by passing biospheric 190	  

information, as filtered by the ESM land model component, to the IAM on a 5-year time step 191	  

(red arrows, pathway labeled 1). This new information drives LULCC changes that are passed 192	  

back to the land system (pathway labeled 2), resulting in a coupled feedback (green arrow).  T, P, 193	  

q, rad indicate temperature, precipitation, humidity, and radiation components of physical 194	  

climate.  195	  



 196	  

 197	  

Figure 2. Integrated biospheric change for the 21st century, as communicated from ESM to 198	  

IAM. The scalar used to inform ecosystem productivity and crop yield changes in the IAM 199	  

includes a vegetation component (shown here) based on change in net primary production 200	  

relative to conditions in 1990 and a below ground component based on changes in net primary 201	  

production and heterotrophic respiration (Supplemental Figure 1). Category “Other” includes 202	  

urban, lake, land ice, and bare ground. The signal communicated to the IAM is specific to each 203	  

agro-ecological zone and vegetation type within zone, with the plot showing area-weighted 204	  

global mean signal. For each aggregated land type the solid colored line shows the mean of two 205	  

ensemble simulations, while the shaded region of matching color shows the range of values from 206	  

the two ensemble members. 207	  

  208	  



 209	  

 210	  

Figure 3. Changes in crop price and land-use area resulting from biospheric feedback. a) 211	  

Percentage change in global average crop price, relative to the asynchronous one-way coupling 212	  



(control) simulation, for each major crop type. b) Global total change in land cover summarized 213	  

by major land-use/land-cover types, relative to the asynchronous one-way coupling simulation. 214	  

For each aggregated crop type or land cover type the solid colored line shows the mean of two 215	  

ensemble simulations, while the shaded region of matching color shows the range of values from 216	  

the two ensemble members. 217	  

  218	  



 219	  

Figure 4. Change in global carbon stocks caused by biospheric feedback to human systems. 220	  

Difference in total carbon stocks on land, in the atmosphere, and in the oceans, between two-way 221	  

and one-way coupling simulations, as predicted within the ESM component of our coupled 222	  

system.  Solid colored line shows the mean of two ensemble members, while the shaded region 223	  

of matching color shows range of values from the two ensemble members. 224	  

 225	  

  226	  
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Supplemental Information 340	  

Supplemental Information consists of six figures and their captions. 341	  

 342	  

 343	  

Supplemental Figure 1. Soil component of the integrated biospheric change signal passed from 344	  

ESM to IAM, based on changes in belowground net primary production and heterotrophic 345	  

respiration in the ESM relative to conditions in 1990. Signal communicated to IAM is specific to 346	  

each agro-ecological zone and vegetation type within zone, with plot showing area-weighted 347	  

global mean signal. For each aggregated land type the solid colored line shows the mean of two 348	  

ensemble simulations, while the shaded region of matching color shows the range of values from 349	  

the two ensemble members. 350	  

  351	  



 352	  

Supplemental Figure 2. Regional means for the aboveground component of integrated 353	  

biospheric change signal in simulation year 2094.  354	  

  355	  



 356	  

Supplemental Figure 3. Global mean near-surface atmospheric CO2 from the historical transient 357	  

simulation (1850-2004) and a two-way synchronous coupling experiment (2005-2094). 358	  

  359	  



 360	  

Supplemental Figure 4. Crop prices (in 2005$/kg) for two-way coupled (shaded regions) and 361	  

one-way coupled (solid lines) simulations for several major crop types.  For each crop type the 362	  

shaded region shows the range of values from the two ensemble members. 363	  

  364	  



 365	  

Supplemental Figure 5. Change in price for major crop types shown as a function of change in 366	  

yield for each crop type. Each point represents a single five-year time period (2005-2094) from 367	  

one ensemble simulation for a single crop, with changes shown as percent difference between 368	  

two-way synchronous coupled and one-way asynchronous coupled simulations. The plot 369	  

includes points from both ensemble simulations. 370	  

 371	  



 372	  

Supplemental Figure 6.  Difference in fossil fuel CO2 emissions as a result of biospheric change 373	  

feedback, shown as a percentage change between the two-way synchronous coupling and one-374	  

way asynchronous coupling simulations. 375	  

 376	  

  377	  



 378	  

Supplemental Figure 7. Model-predicted vs. observed yield for five crops over multiple 379	  
regions, for two calibration years (1990 and 2005), and two additional years (2010 and 2014). 380	  
Model results for 2014 are interpolated from the actual model outputs in 2010 and 2015, to allow 381	  
comparison with the most recent year for which FAO crop yield observations are available. 382	  

  383	  



 384	  

Supplemental Figure 8. Percent change in global mean yield for multiple crop types in the 385	  
synchronous two-way coupling experiment compared to the asynchronous one-way coupling 386	  
experiment, showing results for RCP 4.5 (left) and RCP 8.5 (right). Although RCP 8.5 has 387	  
significantly higher CO2,atm at the end of century than RCP 4.5, crop yields are only modestly 388	  
higher due to the offsetting influence of more extreme radiatively-forced climate changes under 389	  
RCP 8.5.  390	  



Online-Only Methods 391	  

Technical description of the two-way coupled system 392	  

A complete technical description for our two-way coupling framework (iESM) is published27, 393	  

including the model formulation, requirements, implementation, testing, and functionality. The 394	  

complete code and analysis scripts used to generate results for this study are available from the 395	  

Model Archive at the ORNL DAAC [DOI to be provided prior to publication].  396	  

Experimental design 397	  

Our simulation experiments are initiated with radiative forcing conditions estimated circa 1850 398	  

AD. The 1850 initial conditions for the ESM component (land, atmosphere, ocean, and sea ice 399	  

state variables) are drawn from a long preindustrial control simulation (PC), in which the carbon 400	  

cycle on land and in the atmosphere and oceans is fully prognostic. This PC simulation is over 401	  

1000 years long, with predicted atmospheric CO2 concentration varying between 281 and 287 402	  

ppm.  Experimental simulations used in this study were performed for two time segments: a 403	  

historical transient (HT) segment covering the period 1850-2004, and a future scenario (FS) 404	  

segment covering the period 2005 to 2094.  405	  

During HT segments only the ESM (in our case the Community Earth System Model, CESM) is 406	  

active. Model inputs during HT segments, including fossil fuel emissions and land use and land 407	  

cover change (LULCC)5 are identical to those used for historical simulations in the Climate 408	  

Model Intercomparison Project (CMIP5).  409	  

Both ESM and IAM components are active for FS segments. We performed two types of 410	  

simulation in FS segments, differing only in the coupling method between ESM and IAM. One 411	  



method used asynchronous 1-way coupling (A1), in which the IAM is run in stand-alone mode 412	  

for the entire segment, followed by a stand-alone run of the ESM that receives LULCC and 413	  

emissions information saved from the IAM simulation. This is the traditional coupling approach 414	  

used for all CMIP5 future scenario simulations, and represented by the black arrows in Figure 1 415	  

(main text). The second method used synchronous 2-way coupling (S2) between the IAM and 416	  

ESM, corresponding to the black and red arrows in Figure 1 (main text). The S2 coupling 417	  

method is implemented exactly as described in the iESM technical description27, except that our 418	  

study used a 5-year coupling time step between IAM and ESM instead of the 15-year timestep 419	  

described previously.   420	  

To ensure that the S2 coupling influence is restricted only to the passing of climate change 421	  

information into the crop yield and carbon stock calculations of the IAM, we use identical 422	  

anthropogenic fossil fuel and industrial emissions and other externally imposed radiative forcing 423	  

agents as input to all FS segments. The inputs used were those generated by the GCAM model 424	  

for the Reference Concentration Pathway (RCP) 4.5 as used in CMIP56. To further constrain the 425	  

two-way coupled experiment, we used the GCAM carbon price pathway generated in stand-426	  

alone mode (A1 type coupling) as a specified carbon price pathway for all FS segments. This 427	  

allows us to interpret any differences between S2 and A1 coupling methods as arising from the 428	  

direct influence of climate change on crop yields and carbon stocks in GCAM and the 429	  

subsequent influence of those changes on land-use and land-cover change predictions, without 430	  

needing to consider potential interactions with changing carbon price paths. 431	  

Our general approach to quantifying the influence of S2 vs. A1 coupling is to examine the 432	  

difference between two FS simulation segments, one generated using the A1 approach (FS_A1) 433	  



and another generated using the S2 approach (FS_S2). We refer to the difference between two 434	  

such FS segments as our experimental result (ER = FS_S2 – FS_A1).  435	  

Each ER includes spatio-temporal variation generated by the difference in coupling methods and 436	  

additional spatio-temporal variation generated by different realizations of the internal variability 437	  

in the ESM. By generating multiple ensemble members of ER, we can evaluate the relative 438	  

contributions of forced variation (the signal of interest in our analysis) and internal variation.  439	  

For this study we generated two ER ensemble members by initiating two separate HT segments 440	  

from different time points, ten years apart, in the PC simulation (HTa and HTb). We then 441	  

generated two FS segments starting from the endpoint of HTa, one using A1 coupling (FSa_A1) 442	  

and the other using S2 coupling (FSa_S2). We generated a third FS segment from the endpoint 443	  

of HTb, using S2 coupling (FSb_S2). The two ER ensemble members were then generated as 444	  

ER1 = FSa_S2 – FSa_A1, and ER2 = FSb_S2 – FSa_A1. 445	  

Crop yields and bioenergy production in our coupled system are calculated in the IAM 446	  

component. Crop yields in GCAM are calibrated against global crop data for years 1990 and 447	  

200531, 32.  As the S2 segments progress these yields are modified by climate change information 448	  

passed back from the ESM. Evaluation of predicted yield by region and crop for years outside 449	  

the calibration period shows reasonable model performance for present-day conditions 450	  

[Supplemental Figure 7].   451	  

The influences of spatially and temporally evolving climate change factors on crop yields and 452	  

bioenergy production are estimated within the ESM component of our coupled system and 453	  

passed as scalars (multipliers) applied to yields in the IAM component. This coupling 454	  

arrangement is outlined in Figure 1 (main text) and described in detail in the iESM technical 455	  



documentation27.  The ESM serves as an integrator of multiple climate change factors, but it is 456	  

also of interest to isolate and assess contributions from individual factors. Given the uncertain 457	  

magnitude of CO2 fertilization effects on crop yields18, it is of special interest to examine this 458	  

factor in isolation and compare to experimental estimates as possible. 459	  

Our study concludes that synchronous two-way coupling generates significant changes in crop 460	  

yields which propagate to influence crop prices, land use patterns, energy production, and fossil 461	  

fuel emissions. Since these diagnosed changes are due to overall increases in crop yield and 462	  

bioenergy production, it is possible that an overestimation of the CO2 fertilization effect in crops 463	  

by the ESM could lead to an overstatement of the significance of two-way coupling effects. As 464	  

pointed out in the main text, our ESM component is one of a small number of such models that 465	  

includes the limiting influence of mineral nutrient availability on land ecosystem processes.  466	  

Coupling between the model representations of carbon and nutrient (nitrogen) cycles is directly 467	  

responsible for a significant reduction in the CO2 fertilization effect predicted at a given CO2 468	  

concentration when compared to the same model with nutrient limitation switched off33, and 469	  

when compared to other models that lack nutrient limitation10.  We can assert on this basis that of 470	  

all the existing ESMs that might be evaluated in a two-way coupling context, CESM is among 471	  

the two or three least likely to generate this type of overstatement of coupling effects due to high 472	  

bias in CO2 fertilization.  473	  

Even though CESM has a CO2 fertilization effect 2.5 times smaller than the mean of the non-474	  

nutrient limited models10, it is still possible that it overestimates the influence of CO2 fertilization 475	  

on crop yield compared to free-air concentration enrichment (FACE) experiments as summarized 476	  

for example by Long et al.18  To help further quantify this analysis, we refer to previously 477	  

published results from a series of single factor experiments28 which included the influence of 478	  



historical changes in CO2 concentration as one of the isolated factors. These results are based on 479	  

simulations with CESM in which the land component is forced with a multi-year repeating cycle 480	  

of surface weather data, while other factors such as CO2 concentration, nitrogen deposition, or 481	  

land use are allowed to vary (one at a time) according to their observed historical trajectories 482	  

over the years 1850-2010.   483	  

In those simulations a gradual rise in CO2 concentration of 110 ppmv (from 280 ppmv in year 484	  

1850 to 390 ppmv in year 2010) produced a ~7% increase in gross primary production 485	  

(photosynthesis) and in net primary production (NPP, or vegetation growth).  That simulation 486	  

result is not directly comparable to the FACE experimental regime, since the model result is 487	  

based on a gradual increase in CO2 while the FACE experiments involve a step-change. Also, the 488	  

FACE experiments started from modern CO2 concentrations and increased concentration by 489	  

about 200 ppmv, arriving at values around 550 ppmv.  Chamber studies suggest that crop yield 490	  

responses to CO2 concentrations between 380 and 600 ppmv are approximately linear, and our 491	  

offline model results are linear over the range 280 to 390 ppmv.  It is reasonable to estimate, 492	  

based on simple linear scaling, that the ~7% increase in NPP for the increase in atmospheric CO2 493	  

from 280 to 390 ppmv would correspond to an increase in NPP of 12% for an increase in CO2 494	  

similar to the FACE experiments. We are not able to quantify the potential influence of gradual 495	  

vs. step change in CO2 concentration from the available results.  496	  

Since NPP from CESM is passed to the IAM in our synchronously coupled system as a scalar 497	  

(multiplier) on crop yields, a useful comparison with FACE results is from a synthesis for CO2 498	  

enrichment effects on crop yields18, which summarized the FACE results for rice, wheat and 499	  

soybean yields as 12%, 13%, and 14% increase, respectively. The major difference between our 500	  

model results and the FACE crop synthesis18 is for C4 crops. CESM includes a C4 grass type, and 501	  



although the underlying physiology model does not predict a significant response to CO2 502	  

fertilization in this type through an influence on leaf-scale photosynthetic rate, effects of CO2 503	  

concentration on stomatal conductance are included for C4 types, and NPP increases for C4 types 504	  

in the single-factor experiment are similar to increases for C3 types due to indirect effects on soil 505	  

water status. This is in contrast to the FACE synthesis, which found no effect of enriched CO2 506	  

concentration on C4 crop yield (based on one year of data from one study). 507	  

In follow-on work, we are improving the representation of multiple crop types directly within the 508	  

ESM component, so that information can be passed with less aggregation between the ESM and 509	  

IAM components in future coupling simulations. 510	  

We include a single pair of simulation experiments for the RCP 8.5 scenario, as a preliminary 511	  

test of the generality of our RCP 4.5 results. The RCP 8.5 simulations start from the same HT 512	  

endpoint as described above for RCP 4.5, and follow a common simulation protocol. Only one 513	  

A1 and one S2 simulation was performed for RCP 8.5, so the results described in the main text 514	  

and illustrated in Supplemental Figure 8 reflect only a single ensemble member.  515	  
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