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Abstract

The performance of a neural network that categorizes facial
expressions is compared with human subjects over a set of
experiments using interpolated imagery. The experiments for
both the human subjects and neural networks make use of in-
terpolations of facial expressions from the Pictures of Facial
Affect Database [Ekman and Friesen, 1976]. The only differ-
ence in materials between those used in the human subjects
experiments [Young et al,, 1997] and our materials are the
manner in which the interpolated images are constructed —
image-quality morphs versus pixel averages. Nevertheless, the
neural network accurately captures the categorical nature of the
human responses, showing sharp transitions in labeling of im-
ages along the interpolated sequence. Crucially for a demon-
stration of categorical perception [Hamad, 1987], the model
shows the highest discnimination between transition images at
the crossover point. The model also captures the shape of the
reaction time curves of the human subjects along the sequences.
Finally, the network matches human subjects’ judgements of
which expressions are being mixed in the images. The main
failing of the model is that there are intrusions of “neutral”
responses in some transitions, which are not seen in the human
subjects. We attribute this difference to the difference between
the pixel average stimuli and the image quality morph stim-
uli. These results show that a simple neural network classifier,
with no access to the biological constraints that are presumably
imposed on the human emotion processor, and whose only ac-
cess to the surrounding culture is the category labels placed by
American subjects on the facial expressions, can nevertheless
simulate fairly well the human responses to emotional expres-
sions.

Introduction

Research into the nature of the perception of facial im-
ages in humans (in tasks such as identification of the
subject as well as what expression is being displayed)
has uncovered considerable evidence that the process is
categorical [Beale and Keil, 1992, Etcoff and Magee, 1992,
Young et al., 1997]. This research has focused on how human
responses change over a sequence of interpolated imagery be-
tween two prototypes. The studies have consistently reported
categorical transitions in the sequences. Categorical percep-
tion (CP) typically involves demonstrating a boundary region
where responses by subjects change rapidly and where the
subjects show a correspondingly greater ability to discrimi-
nate the stimuli [Liberman et al., 1957, Harnad, 1987].

In previous work we evaluated several types of image
features in terms of their efficacy as inputs to neural net-
work models of emotion recognition. The facial expres-
sion images we used were from the Pictures of Facial Af-
fect (PFA) database [Ekman and Friesen, 1976]. The cat-
egorization rates of human subjects in a six-way forced
choice labeling of the images [Ekman and Friesen, 1977]
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(provided with the PFA) were used by the model as tar-
gets for the emotion categories. The best network cor-
rectly recognized 86.2% of the expressions displayed in
novel face images [Padgett and Cottrell, 1997]. We then
used this model to predict human responses to constructed
images that dissolve' from one facial expression image to
another [Padgett et al., 1996, Adolphset al., 1998]. When
tested on pixel-averaged transitions between facial expres-
sions of the same subject, the model predicted that some
transitions would be less ‘“categorical” than others, with
shallower transition curves [Padgett et al., 1996]. Human
responses on the same pixel-averaged stimuli show simi-
lar variations [Adolgahs etal., 1998]. Human subject stud-
ies making use of the Ekman and Friesen prototypes
also show categorical responses using morph sequences
of line drawings extracted from the Ekman and Friesen
images [Etcoff and Magee, 1992], and using image-quality
morph sequences that appear as natural as the original im-
ages [Calder et al., 1996, Young et al., 1997].

In one of the most extensive studies with human subjects,
Younget al. (1997, henceforth “Megamix”) show that image-
quality morph sequences between six emotional expressions
(Happy, Sad, Afraid, Angry, Surprised, and Disgusted) and
“neutral” expressions exhibit categorical behavior. In con-
trast to Etcoff and Magee’s work, they used photo quality
images instead of line drawings. In contrast to Calder et al.,
all possible transitions between emotion pairs for a single
subject (“JI") from the PFA database (including neutral) were
tested. This comprehensive study of human responses to fa-
cial expressions is the inspiration for our current study. In the
following sections we review the results from the Megamix
study in more detail, describe the neural network model from
which we develop the comparison, and present our results.

Review of “Megamix”’

The Megamix study is important as it exhaustively examined
the transition space between all six pairs of emotions in the
PFA plus “neutral” faces. The study provided the most in-
depth look at how humans classify morph stimuli and their
ability to discern differences within and between class bound-
aries. Although the stimuli were limited to a single individ-
ual’s expressions (the “JI"" images in the PFA) and a rather
coarse step size between the images along the transition, the
amount and kind of data collected was quite large, and is thus
extremely useful.

The focus of the Megamix study was in demonstrat-
ing that two dimensional accounts of classifying emo-

'“Dissolve” is a term from graphics denoting a fade from one
image while fading into another. We use this term to distinguish
our linear pixel-average transitions from image-quality morphing,
an inherently nonlinear process.
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Figure 1: Example dissolve sequences of subject JJ from the Facial Affect database. All seven emotions used in the study are
shown here. The image sequences are linearly interpolated between the two database images at each extreme.

tions [Russell, 1980] based on a multi-dimensional scaling
(MDS) of similarity ratings of emotion categories do not ade-
quately account for the observed boundary behavior between
emotions. MDS results in a “circumplex” of emotions, a two-
dimensional scaling solution where emotions are arranged
around a circle in the scaling space. Accounts based on this
would suggest morphing between pairs of emotions on op-
posite sides of the circumplex would pass through a neu-
tral space in the center. On the contrary, all emotion pairs
showed categorical behavior with few intrusions from other
categories [Young et al., 1997].

For this study, we are interested in comparing the
reported results of the human subject experiments in
Megamix to the neural network model used in our previous
study [Padgett et al., 1996]. The data used in their exper-
iments consisted of morphed imagery from PFA. A single
subject in database (“JJ”) served as the endpoints for the
transition sequences. In their Experiment 2, image-quality
morphs were constructed between all six emotions plus neu-
tral (Experiment 1 just used the six emotion prototypes as
morph endpoints). Step sizes of 90%, 70%, 50%, 30%, and
10% were used between each pair of endpoints (105 unique
images). These were presented in random order to subjects,
who made a 7-way forced choice between the six emotion la-
bels and neutral. An example of the human subject response
curves is given in Figure 3 (middle). Response times (RT’s)
were also recorded. They found the resulting RT curves were
“scalloped", with the fastest RT’s near the prototype emotion,
dropping off farther from the prototype.

In their Experiment 3, subjects were required to discrim-
inate (same/different judgements) simultaneously presented
images that were one step away from each other along the
transitions. The subjects showed better discrimination near
category boundaries than near prototypes, a standard require-
ment for categorical perception.

Finally, in Experiment 4 of Megamix, Young et al. tested
the extent to which their subjects could tell what two emotions
were represented in the morph images. This is important
because, if the images are perceived categorically, one expects
that subjects should be poor at judging what other emotion is
mixed into the image. They asked the subjects to give three
responses to an image: which emotion it was closest to, then
the next closest emotion, then the next, scored as 3, 2, and 1,
respectively. They included the prototype images as well, in
order to be able to control for the intrinsic similarity between
certain emotions. If a surprise image already looks like fear,
forexample, this could bias the results. By collecting the three
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scores for the prototypes, they could subtract off the response
the prototype engendered to other emotion categories. These
difference scores were then averaged across all emotions, and
the average responses to the prototype being moved towards
plotted. Their data is plotted in Figure 5. It clearly shows the
subjects are sensitive to the secondary category in the images.

Neural Network Model

Although we were unable to obtain the Megamix morph se-
quences, we had previously developed dissolve sequences
for testing on the transition behavior between emotion pairs.
The dissolves are a weighted average of corresponding pixels
between two expression prototype images of the same indi-
vidual. The transitions are produced by varying the weights
in fixed steps of 10%. This technique worked reasonably
well since the images were preprocessed to align the eyes and
mouth, and normalized for brightness. Some artifacts (multi-
ple features) can occasionally be observed in the images. A
sequence thus consisted of 9 dissolve images (not including
the prototypes) at 10% mix intervals for the subject JJ. Fig-
ure 1 shows examples of the transitions. We used the same
images of JJ from the database as were used in Megamix for
the endpoints.

In previous work [Padgett and Cottrell, 1997], we deter-
mined that extracting features from the eye and mouth regions,
rather than whole-face “eigenfaces” gives the best generaliza-
tion performance for emotion recognition. The features we
used were the principal components of 32x32 pixel patches
randomly sampled from the face images. These form a set of
basis images that resemble the filtering performed by some
types of cells in primary visual cortex (see Figure 2, right).
Overlapping patches from the eyes and mouth were projected
onto these features and the resulting scores were given as in-
puts to a neural network model. Two patches are used for
each eye, and three for the mouth, from the regions shown in
the left side of Figure 2. Each patch is projected on to the
top 15 principal components of the random blocks resulting
in 105 dimensional input patterns.

The training patterns consisted of 89 images of eleven sub-
jects (five male, six female) from the PFA database (not in-
cluding male subject “JJ”, who is used for testing).> These
included images of all six expressions plus eleven neutral im-

*The PFA database is unbalanced, in that not all subjects have
all expressions represented in the database, and some have multiple
occurrences of some expressions. Hence the number of images is
not 77.
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Figure 2: Left: The feature regions on a normalized test im-
age. Right: The top 25 random block principal components,
15 of which are used as features to construct the inputs to the
neural networks.

ages. In an attempt to get a balanced training set, random
samples of an equal number of each emotion (10) were drawn
from the 89 images and reserved for training (70 images). The
remaining 19 images were used as a hold out set to stop net-
work training. Different subsets of 70 training images were
used for each network.

The network model of a “subject” consists of ensembles of
11 feed-forward, fully connected “vanilla” neural networks.3
Each network has 105 inputs, 10 hidden units, and an output
layer of 7 units, one for each emotion plus neutral. All units
except the inputs are standard logistic functions. We trained
the networks with back propagation and the mean-squared er-
ror cost function [Rumelhart et al., 1986). The teaching signal
was a “1” for the putative expression being portrayed, and “0”
for the other six outputs. Each network in the ensemble uses
different initial random weights, a different random sample of
70 training images (subject to the 10 images per emotion con-
straint), and thus a different hold-out set. Training was halted
when the error on the hold-out set went up over three epochs.
The networks took about 100 epochs to train. We trained 50
such network ensemble “subjects”. All network ensembles
generalized to the “JJ” images with 100% accuracy. “JJ" is
a particularly good subject, in that it is easy to recognize his
expressions, which is why Young et al. used his images for
their human subjects.

To combine the scores of the 11 networks in the ensemble,
a number of different techniques are possible: winner take
all, weighted average output, voting, etc. The method that we
found to consistently give the highest generalization rate is to
use Z scores on a per output basis from the 11 networks. The
“raw” ensemble output for emotion j is:

where o;; is the output of ensemble component network i on
emotion j. This is converted to a Z score:
i = @i
zj = 24—

a;
where @; and o; are the average and standard deviation of the
raw ensemble output for emotion j over all training patterns.
The “final” ensemble output, O; for emotion j, is the softmax
of the Z scores:

e
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*The number *“11” is not critical here, it is used for historical
reasons.
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Figure 4: The top graphs show the neural network responses
for two emotion transitions. The top left graph is Anger-
Disgust and the top right graph shows Sad-Surprise. The cor-
responding bottom graphs show the associated discrimination
which we model as 1 - the cosine between two consecutive
output response vectors.

The output values from the ensemble networks are used to
generate responses to a given stimulus input, corresponding
to a button press in the Megamix study. The highest output
value, max; O, for a particular input image is considered to
be the emotion label of the button pressed.

We can also extract response times from our model. A
standard measure of reaction time of a feed-forward neural
network is to assume that it is proportional to the output
error [Seidenberg and McClelland, 1989]. In our case, since
there is no predetermined correct response to the dissolve
imagery, we simply use the difference between the maximum
output (corresponding to the network’s response), and the
maximum possible output (1.0). Thus, the more uncertain the
E?‘ximum response is (the farther from 1.0), the slower the

To model the discriminability between a pair of stimuli mea-
sured in Megamix Experiment 3, we suppose that each stimu-
lus pattern is processed by the network, and the 7-dimensional
output vectors (the seven O; scores treated as a vector) are
stored. This gives the overall response to the stimulus, with
no decision imposed. The cosine between these two vectors
gives the similarity of the two stimuli to the network. The
more the output varies, the less similar the stimuli will be. We
thus use 1 - cosine as a measure of discriminability.

Finally, to model the ranking of “closest emotions” given
by the subjects in Experiment 4, we simply use their corre-
sponding rank in the output vector.
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Figure 3: Example comparison of the neural network model to the human responses given in
the Megamix study. The emotion sequence is as follows: Happy-Surprise-Afraid-Sad-Disgust-
Angry-Happy. The top graph is the neural network models response. The middle graph shows
the results from the Megamix study. The final plot gives the models response time. Each graph
shows the response as the interpolation values change between the emotion prototypes.

809



Results

The first experiment examines the average response curves
(percentage of subjects giving a particular labeling to a stimu-
lus) as the mixture of the two emotion prototypes varies. The
stimuli presented to both the neural network model and the
human subjects were novel transitional faces. An example
of the average responses for the 50 ensemble networks are
presented at the top of Figure 3. The average response of
40 human subjects to the same sequence of emotion transi-
tions are reproduced from the Megamix study in the middle
graph [Young et al., 1997].

The most striking feature found in both the ensemble model
and the subjects’ responses is very sharp transition regions
from emotion to emotion across the sequence. This is true
for all human transitions including those not shown. For the
model, the transition behavior was also sharp. However, in
nearly half of the instances (7/15) of emotion-emotion tran-
sitions (not involving neutral) the neutral response is stronger
than that of one of the endpoint emotions near the transition.?
In Megamix, they did find intrusions of other emotions in
2/15 of these cases (using a binomial test), but the responses
were lower than the endpoint emotions. We get similar intru-
sions of this type, for example, fear intrudes on surprise in the
Megamix data and in our network. These neutral intrusions
cannot be accounted for by the finer grain of our transitions, as
the average number of images for which neutral is the highest
response near a transition is 3 (i.e., these intrusions span 3
10% step sizes). More likely, the model’s behavior is due to
the use of dissolve faces instead of morphs. Since dissolves
are pure weighted averages, and morphs are inherently non-
linear, it makes sense that some mixes may actually resemble
the neutral prototype more than a morph would, as neutral
is probably the average in pixel space of all emotions. We
plan on rerunning the experiment with image-quality morphs
(currently under construction) to eliminate this possible con-
found.

The final graph in Figure 3 presents the ensembles’ sim-
ulated reaction time (RT) for the same emotion sequence.
Young et al. found the resulting RT curves were scalloped,
with the fastest RT's near the prototype emotion and drop-
ping off farther from the prototype. In the lower panel, we
show the network RT's for the responses for any emotion for
which the model subject response curve was over 23% (the
cutoff they used for their plots; unfortunately, we were un-
able to obtain the human data to plot here). These curves
show the same scallop shape as in the Megamix paper. Fig-
ure 4 presents two examples of the ensemble models’ stimu-
lus discrimination. The top graphs show the subject response
curves for two pairs of emotions and the bottom graphs de-
picts the discrimination score (1 - cosine of the two output
vectors). The curves demonstrate that the model is most
sensitive to stimulus changes near the boundary, which was
also true for discrimination tests on human subjects. The
model also showed that the mean discriminability score of
0.45 (0.31) for transitions (90-70,30-10) near prototypes was
significantly different (z=26.0,p<.01) using a normal test for
different means [Keeping, 1995] than the score of 0.69 (0.29),
for transitions far from the prototype (70-50,50-30). This too
was significant in the Megamix study [Young et al., 1997].

*In fact, in some sense, we are putting our worst foot forward here,
in that we also modeled their Experiment 1 (data not shown) which
was a six-way forced choice not including neutral. There, only three
of fifteen (3/15) transitions resulted in an emotion response more
prominent than either end point, and these were restricted to one
image in the sequence.
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Figure 5: This graph compares the neural network model and
the actual human scores from the Megamix study, computed
by the same method. The plots represent the average rating
subjects give to the emotion in a face as it falls further from a
given anchor prototype (see text for details). The emotions are
lumped into two classes, the related emotion (the one being
mixed with the prototype) and the unrelated emotions. Both
the neural network model and the human subjects exhibit
a steep rise in prominence for the related emotion with no
detectable increase for unrelated emotions.

Experiments 1-3 of Megamix strongly support categorical
perception of emotion categories. In Experiment 4, Young
et al. considered to what extent subjects were nevertheless
sensitive to the other category being mixed into the image.
For example, can the subjects perceive the anger in a 90%
happy/10% angry morph, even though they respond “happy”
to the image? As described earlier, they asked the subjects
to give three responses to an image: which emotion it was
closest to, then the next closest emotion, then the next. They
scored the three responses as 3, 2, and 1, and subtracted off the
average score for the dominant prototype as described earlier.
These difference scores were then averaged across subjects for
the “prototype being moved towards” (they call this the “far
prototype”). The scores for the other four unrelated emotion
categories (those not represented in the morph) were averaged
together as well. These two scores were then averaged across
all transitions, and plotted. Their data is shown as the dashed
lines in Figure 5.

We used the same methodology for our networks, using
the rank order of the network outputs to extract scores. The
results are shown in Figure 5 as the solid lines. The unfilled
circles and squares show the difference scores for the four
emotions not represented in the dissolves or morphs. As can
be seen from the Figure, the network data lies right on top of
the human data in this case.

Discussion

We have shown that a feed forward neural network model
using a feature based representation of the face (projections
of feature regions on a fixed filter set) accounts for the obser-
vations found in the human study. Specifically, the models
exhibitcategorical responses: sharp transitions in the response
curves and higher discrimination across category boundaries.
The scallop shape in the human RT’s was also modeled by
the same network. In addition, the models show a very good
match to the human subjects’ sensitivity to the non-dominant



prototype being mixed into the images. Unlike the classical
account of categorical perception, humans were able to make
intra-categorical distinctions, and these results were reflected
in the model as well.

The point of departure between our model and the data is the
intrusion of neutral responses in our replication of their Exper-
iment 2 (not as prevalent in our Experiment 1, see footnote4).
We believe that this difference is due to the way in which
we constructed our faces; simple pixel averages are more
likely to be like neutral images than true morphs, which do
not fall on straight lines between the endpoints in perceptual
space [Busey, 1997]. We plan to verify this conjecture by
applying our model to image-quality morphs in future work.

These results show that a neural network classifier, with
no access to the biological constraints that are presumably
imposed on the human emotion processor, and no access to
the surrounding culture except to the extent that the network is
instructed to carve up the input space into the same categories,
can nevertheless simulate fairly well the human responses to
emotional expressions.

Neural network modelers may object that, given the way we
extracted the various response variables, of course the results
would come out this way. For example, because the output
vector is changing the most at category boundaries, our mea-
sure of discrimination will be highest there. In other words, it
is “embarrassingly easy” to account for these results. Rather
than an embarrassment, we suggest that the model is there-
fore a natural explanation of the phenomenon of categorical
perception.

The reason that the neural network shows categorical per-
ception is simple. Early in training, the network does not
show steep boundaries between the classes, so the change in
responses along a transition is more shallow. As learning
progresses, reducing the error corresponds to sharpening the
boundaries between the categories. Thus the region of am-
biguity is shortened. However, different exemplars give dif-
ferent results. Easily identified emotions, as in the JI images,
give rise to steeper response changes than morphs between
other subjects whose portrayals are not as pronounced. This
is in agreement with other studies [Reale and Keil, 1995] that
show familiarity with the endpoints determines the steepness
of the transition in human subjects.

In future work, we intend to show that our model provides a
nearly complete account of the perception-classification pro-
cess in that it learns to classify emotions. This is of interest
because recent work has shown that, in the case of iden-
tity [Beale and Keil, 1995] (but not shown so far for emo-
tions) perception of identity is non-categorical for unfamiliar
stimuli, but is categorical for familiar stimuli. This suggests
that categorical perception is a phenomenon that naturally
falls out of a learning process that puts increasingly sharper
boundaries between stimulus categories as they become more
familiar.
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