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ABSTRACT OF THE DISSERTATION 
 

Assessing gene effects on the brain and risk for disease with machine learning 

by 
 

Omid Kohannim 

Doctor of Philosophy in Biomedical Engineering 

University of California, Los Angeles, 2012 

Professor Paul M. Thompson, Chair 

 

The advent of neuroimaging has provided an invaluable tool for investigating brain disorders 

with quantitative measurements. Neuroimaging-derived measures can not only serve as 

biomarkers to track the progression of brain disorders like Alzheimer’s disease, but also provide 

quantitative, intermediate phenotypes or endophenotypes close to the biology of disease, which 

can be utilized for finding new genes in association with brain pathology. The latter has led to 

the creation of a new and expanding field called neuroimaging genetics. Most methodologies for 

the application of neuroimaging and other biomarkers to disease diagnosis and clinical trial 

design utilize only single biomarkers. Similarly, in neuroimaging genetics studies, genetic 

variants are typically considered one by one, in association with neuroimaging phenotypes. My 

dissertation introduces new automated, machine learning and multivariate approaches, which 

potentially offer more power to biomarker-based diagnosis and clinical trial design as well as 

discovery and risk prediction in neuroimaging genetics. 
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Chapter 1. Introduction 
 

Background 
 

Neuropsychiatric disorders are the leading causes of disability across the world (Killewo et al., 

2010). Brain imaging modalities such as magnetic resonance imaging (MRI) are becoming 

increasingly important for classifying diagnosis, evaluating prognosis and tracking treatment 

response in patients with neuropsychiatric disorders. They provide detailed, quantitative 

information about brain structure and function, and aspects of ongoing disease processes. 

Measures and maps derived from these neuroimaging modalities have been studied through 

automated machine learning algorithms as potential predictors of disease outcomes. These 

algorithms are first trained with a sufficiently large number of scans from subjects with known 

diagnostic states. The algorithms then mathematically learn the patterns specific to particular 

classes of disease and predict, with a certain accuracy, disease states of new, testing subjects 

from their scans.  

 

Numerous studies of neuropsychiatric disorders have proposed automated diagnostic 

classification algorithms. In the Alzheimer’s disease field, for instance, several studies have been 

based on MRI scans, classifying patients based on whole-brain atrophy patterns (Davatzikos, et 

al., 2009), tissue density differences (Vemuri, et al., 2008) and thickness of the cerebral cortex 

(Lerch, et al., 2008). Automated classifiers based on neuroimaging have also been applied to 

aphasia (Wilson, et al., 2009), autism (Ecker, et al., 2010), psychosis (Koutsouleris, et al., 2009) 

and other disorders. For my dissertation research, I introduce and evaluate a computerized 

algorithm, based on the field of machine learning, that would incorporate not only multiple brain 
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imaging measures, but also biochemical and genetic information (i.e., multiple biomarkers) to 

create more powerful predictions of diagnostic and prognostic outcomes. Such novel, automated, 

multimodal predictors, I propose, may have important applications in future clinical decision 

making. For my dissertation research, I also investigate the application of such a multi-modality 

classifier to clinical trial design. I propose to use an automated diagnostic classifier to predict 

those most likely to decline, thereby reducing the size needed for a trial. This sample size 

reduction, which is also known as enrichment, can potentially make clinical trials more efficient 

and less costly. 

 

In addition to its application in diagnostic classification, brain imaging also offers new 

quantitative phenotypes that may be closer than cognitive assessments to the underlying 

biological mechanisms that lead to disease (Gottesman and Gould, 2003; Meyer-Lindenberg and 

Weinberger, 2006; de Geus et al., 2008; Hall and Smoller et al., 2010; Marenco and Radulescu, 

2010). By studying the associations of genetic factors with phenotypes based on MRI and cutting 

edge imaging techniques such as diffusion tensor imaging (DTI; Thomason and Thompson, 

2010), mechanistically meaningful genetic contributions to brain disorders can be examined. 

Investigating these associations has given way to an expanding field called neuroimaging 

genetics. From a statistical perspective, these studies often take one of two broad approaches:  

(1) univariate or (2) multivariate. Univariate approaches consider associations between one or 

several genetic variants and one or several brain regions (or voxels), independently. Both 

neuroimaging and genetic datasets, however, are very high-dimensional with complex structures. 

There is, therefore, a demand for multivariate methods that may offer improved statistical power 

by jointly considering several genetic variants, or imaging regions (or voxels) or both. This is 
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discussed in more detail in Chapter 4. As part of my dissertation research, I introduce 

multivariate algorithms for gene discovery and risk prediction into the field of neuroimaging 

genetics. Algorithms that consider multiple genetic variants jointly (i.e., multilocus methods), I 

propose, are likely to (1) more powerfully detect new gene effects on brain images, and (2) 

identify profiles of candidate genetic variants to assist prediction of an individual’s brain 

integrity and risk for disease.  

 

Overview of subjects 
 

The data for studies in my dissertation (including all neuroimaging, genetic and other data) come 

from two existing projects with Institutional Review Board approval and National Institute of 

Health funding: (a) the Queensland Twin Study in Australia and (b) the multi-center North 

American Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. For the Queensland 

Twin Study, identical and non-identical twins of all ages, and their siblings, born in or currently 

living in Queensland, Australia are considered. Neuroimaging, high-throughput genotyping, and 

demographic data associated with a group of these subjects (aged 21-28) have been obtained and 

studied. For the five-year, multi-center ADNI project, a cohort of approximately 800 elderly 

subjects, comprising 200 controls, 200 with Alzheimer’s disease, and 400 with mild cognitive 

impairment, are considered. Neuroimaging, including MRI and Positron Emission Tomography 

(PET) data, cerebrospinal fluid marker information from lumbar punctures, as well as genotyping 

and demographic information have been previously collected and are accessible to the public 

(http://www.adni-info.org). 

 

http://www.adni-info.org/
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Organization of dissertation 
 

My dissertation is organized into eight chapters, including the introduction and conclusions. 

Chapter 2 encompasses the specific aims and research strategy proposed for the successfully 

funded National Research Service Award (NRSA) F30, which are identical to the aims and 

strategies in this dissertation. In Chapter 3, automated disease classification with multiple 

biomarkers and its application in clinical trial design is discussed. In Chapter 4, an overview of 

multilocus approaches in genetic analysis of brain images is provided, which serves as a 

transition to the chapters that deal with applying multivariate techniques to neuroimaging 

genetics. Chapters 5 and 6 introduce genome-wide, multilocus approaches based on penalized 

regression techniques to aid in gene discovery and prediction of outcomes. Finally in Chapter 7, 

several neuropsychiatric risk genes are combined with the aim of personalized prediction of 

white matter integrity measured by DTI.  
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Chapter 2. National Research Service Award (NRSA) F30 Proposal 
 
 
Specific Aims 
 

A biomarkers has been defined as “a characteristic that is objectively measured and evaluated as 

an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to 

a therapeutic intervention”, with applications in assigning specific disease diagnoses, assessing 

staging, severity, and prognosis of disease, as well as monitoring of response to interventions 

(e.g., in a drug trial) (Biomarkers Definitions Working Group, 2001). A variety of biomarkers 

are being developed and evaluated for psychiatric and neurological disorders. These include but 

are not limited to measures derived from structural magnetic resonance imaging (MRI), diffusion 

tensor imaging (DTI), functional MRI (fMRI), and molecular imaging methods such as positron 

emission tomography (PET) and single-photon emission computerized tomography (SPECT), 

neurophysiology like electroencephalography (EEG), along with biochemistry.  

 

Different types of biomarkers can supply complementary information useful for diagnosis or 

prognosis. We propose to use novel, automated machine learning-based algorithms, to help 

integrate multimodal biomarker data for diagnostic classification and prognostic prediction, and 

provide a more efficient approach to clinical trial design by selecting subjects with greater 

potential to respond to future therapeutics.  

 

In addition to structural and functional neuroimaging and biochemical biomarkers, there are 

genetic risk factors for many psychiatric disorders that have the promise of serving as 

biomarkers, possibly before standard diagnostic evidence of such disorders is detectable. We 

propose to incorporate candidate genes into a machine learning-based model, to predict a 
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subject’s neuroimaging-derived outcome measures such as white matter integrity. Genotype and 

gene expression signatures from such candidate genes may also help in personalized prediction 

of early risk for brain disorders. 

 

We specifically propose to: 

 

1.1. Develop multi-biomarker classifiers based on neuroimaging, biochemistry, and genetics for 

diagnostic and prognostic prediction of cognitive decline 

 

a. To what extent can classifiers integrate information from neuroimaging measures, biochemical 

markers, and genetic data, to improve prediction of cognitive decline, when compared to 

considering each biomarker alone? We expect to see statistically stronger predictions with 

automated, machine learning-based methods that combine biomarker data, given the complex 

structural, functional and metabolic components of cognitive impairment.  

b. Which sets of biomarkers are more useful for making clinically relevant outcome predictions? 

We expect our classifiers to determine combinations of biomarkers, during varying stages of 

cognitive decline, that contribute most to the prediction of diagnosis and prognosis. 

c. Can such automated multi-biomarker classifiers provide a more statistically powerful means to 

enrichment in a hypothetical clinical trial? We anticipate that our classification approach will 

offer a more efficient design approach for a hypothetical clinical trial through automated 

selection of sub-populations of subjects who are more likely to respond to treatment. 
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1.2. Develop multilocus approaches for gene discovery and personalized prediction of brain 

integrity through neuroimaging measures from DTI 

 

a. Can genome-wide, multivariate approaches that consider multiple loci in joint association with 

neuroimaging measures (e.g., DTI fractional anisotropy) boost power to discover candidate 

genes that affect brain integrity? Standard approaches in discovery often consider association of 

genetic variations with imaging endophenotypes independently; we expect, however, that our 

new multilocus approaches, which take the interdependence between genetic variants (e.g., 

linkage disequilibrium, gene-gene interactions) into account, will help detect new candidate 

genes affecting variations in brain structural and integrity. 

b. How well can a machine learning-based model predict a subject’s personalized brain integrity 

on DTI based on genetics? We anticipate that an automated algorithm would be able to use a 

subject’s unique genetic profile – based on candidate single nucleotide polymorphisms (SNPs) 

that affect white matter integrity – and predict their white matter structural integrity measures 

derived from DTI.  

c. To what extent can new candidate genes affecting brain integrity (e.g., based on Aims 2a and 

2b) help in making clinical predictions of cognitive impairment? Here, by adding new genetic 

information back into classifiers discussed in aim 1, we expect to see further improvements in 

predictive accuracies for pertinent clinical outcomes (e.g., predicting deterioration in cognition 

over a given time interval). 

 

Research Strategy 
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A. Develop multi-biomarker classifiers based on neuroimaging, biochemistry, and genetics for 

diagnostic and prognostic prediction of cognitive decline (Specific Aim 1) 

 

1. Significance 

The search for biomarkers (defined in the “Specific Aims” section) in the fields of psychiatry 

and neurology has been extensive and on the rise, with the increasing need for more quantifiable 

and objective ways of assessing brain disorders (e.g., Singh and Rose, 2009). Various modalities 

of neuroimaging, in particular, now offer new ways to assess structural integrity, connectivity, 

neural processing and metabolic activity in many brain disorders. As neuroimaging measures and 

other candidate biomarkers are discovered for brain disorders, the complexity of the information 

on a patient’s biomarker profile increases; all of them may need to be considered jointly in 

clinical decision making. There may be biomarkers that are redundant or complementary when 

considered together, and the utility of biomarkers may differ at different stages of the temporal 

progression of a brain disorder (Jack et al., 2010). Here we propose to develop and evaluate 

automated algorithms to apply the complex patterns of multiple neuroimaging, biochemical and 

even genetic data from an individual to help predict their personalized degree of advancement in 

the spectrum of disease.  

 

Machine learning algorithms have been repeatedly employed for diagnostic and prognostic 

prediction in the field of neuroimaging. Many focus on using volumetric or map-based measures 

derived from structural magnetic resonance images (MRI) (Davatzikos et al., 2008; Klöppel et 

al., 2008; Sun et al., 2009), and functional MRI (fMRI) (Mourao-Miranda et al., 2005; Zhang et 

al., 2005). Image-based diagnostic classifiers have been tested for a variety of brain disorders 
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and conditions including first-episode psychosis (Sun et al., 2009), schizophrenia (Yoon et al., 

2007), autism (Ecker et al., 2010), and neurodegenerative diseases such as Alzheimer’s disease 

(Davatzikos et al., 2008; Klöppel et al., 2008). Most of these studies consider the voxelwise maps 

of brain images for each subject as features for the machine learning algorithm, and classify the 

subject into a disease state based solely on their scans. What we propose here, however, is the 

application of machine learning to a novel, multimodal approach to the prediction of disease 

states based not only on different modalities of imaging, but also on other presumably 

complementary biomarkers such as those in the cerebrospinal fluid (CSF), along with genotype 

information and gene expression data for risk genes in mental illness. Here, we test our approach 

specifically in subjects with cognitive impairment, but this method can also be generalized to 

mental disorders such as schizophrenia and bipolar disorder by our many collaborators who work 

in these research areas. 

 

What we additionally propose is that a clinical application of such an automated, multi-

biomarker clinical outcome prediction approach is its utility in clinical trial designs. Specifically, 

we aim to reduce the number of subjects needed for a hypothetical clinical trial, through a new, 

machine learning-based, multi-biomarker enrichment strategy. By enrichment, we refer to the 

concept of including subjects in clinical trials who are more advanced in the spectrum of the 

brain disorder under study and would thereby be more likely to respond to the therapy of interest. 

Currently, proposed clinical trial designs that employ enrichment base this subject selection on 

single biomarkers (such as imaging-based measurements) with a specific threshold (Chen et al., 

2007; Hampel et al., 2009; Beckett et al., 2010; Lorenzi et al., 2010). A machine learning 

algorithm that integrates neuroimaging, genetics and other biomarkers can, instead, conduct this 
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selection of subjects through a personalized predicted score for each subject and thereby boost 

statistical power for clinical trials. We admit that it is unlikely that a clinical trial would use a 

complex computer algorithm for subject selection. What is more likely (and highly desirable) is 

that a sub-analysis could also be run assessing effects in people who the classifier predicts as 

most likely to decline. This avoids testing promising treatments in people who are not actually 

deteriorating, which can underestimate the potential for detecting disease modifying effects in 

those who may benefit the most. We have advocated this approach in Kohannim et al. (2010).  

 

2. Approach 

Participants: Subjects from the multi-center Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) project will be considered for this specific aim, for whom various biomarker data 

including neuroimaging-derived measures will be analyzed. This is discussed in more detail in 

the “Protection of Human Subjects” section and on the web (http://www.adni-info.org/). The 

applicant’s mentor, Paul Thompson, has an active subcontract to analyze the ADNI data, but it 

does not cover the scope of work in this proposal (e.g., machine learning for prognosis and 

diagnosis), which is a new direction developed by the applicant Omid Kohannim. Clearly, the 

proposal benefits from the availability of many ongoing analyses of the ADNI dataset in the lab, 

but this effort is distinct from ongoing funded projects in the mentor’s lab.  

 

Combining Biomarkers: We will combine multiple neuroimaging-derived biomarkers in our 

analyses for this aim. Several summary measures will be extracted from structural MRI: (1) 

hippocampal volume measurements in all ADNI subjects from an automated segmentation 

procedure developed in our group (Morra et al., 2009), (2) ventricular volumes already acquired 

http://www.adni-info.org/
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for ADNI using a semi-automated method developed in our group (N=804; Chou et al., 2008), 

and (3) temporal lobe volumetric measures based on tensor-based morphometry (Hua et al., 

2008). In addition to MRI, measurements from PET-FDG for ADNI are also available. CSF 

measures such as amyloid-beta, phosphorylated tau and total tau levels are also available and 

considered as biomarkers in ADNI. Furthermore, ADNI subjects are genotyped as described in 

Saykin et al. (2010) and genetic information such as their Apolipoprotein E (ApoE) genotype can 

also be considered as potential predictors. Notably, we do not include clinical and 

neuropsychological scores (e.g., from mini-mental state examination) as biomarkers for 

prediction of clinical outcome, as this would be circular, since the diagnoses are based on these 

scores. In ADNI, functional MRI, arterial spin labeling and diffusion tensor imaging information 

is also available for subjects, which we will additionally consider in new classifiers, if they show 

promise in tests we will conduct. Furthermore, improvement of diagnostic classification with the 

addition of gene expression data, which is available for subjects at the UCLA Easton Center, to 

neuroimaging, has already been noted in preliminary studies that our collaborators in Dr. Liana 

Apostolova’s research team have published with our help (Apostolova et al., OHBM2011). 

 

Machine Learning-Based Prediction of Clinical Outcomes: There is a wealth of machine learning 

algorithms that can be employed for our multi-biomarker prediction approach. These include but 

are not limited to discriminant analysis, artificial neural networks, decision trees and support 

vector machines. We decided to use the support vector machines (SVM) approach, which 

performs classification by maximizating a margin between diagnostic groups (Vapnik, 1999), 

and can also be used for regression, where continuous outcomes (e.g., clinical scores) can be 

predicted (Smola and Schölkopf, 2004). The main advantages of SVM are that it can handle 
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nonlinear problems (as many real-world relationships among variables are not linear) and unlike 

many other machine learning algorithms, can generalize very well to new datasets (Jain et al., 

2000) - this is key for our approach to have clinical utility. In addition, SVM has been repeatedly 

used in the literature to classify subjects based on neuroimaging (Davatzikos et al., 2008; Ecker 

et al., 2010) and has demonstrated accuracy. There are different metrics to evaluate how well a 

classifier performs on a dataset of interest. We will compute leave-one-out accuracies for our 

classifiers, as this provides an unbiased evaluation (Jain et al., 2000) and is computationally 

feasible for our datasets. We also obtain receiver operating characteristic (ROC) curves, which 

are plots of true positive rates against false positive rates, and compare our classifiers’ 

performance to random classifiers through areas under these curves. Our multimodal 

classification scheme will also be useful for ranking biomarkers. Various feature selection and 

ranking methods exist in machine learning, which we can implement to rank our biomarkers in 

terms of how helpful they are for a particular classification problem. One approach, which we 

will implement, is used for SVM classifiers in particular, where the degree to which each feature 

(or biomarker) contributes to the SVM weight vector determines the biomarker’s ranking order 

(Guyon et al., 2002). 
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Figure 2.1. Dynamic trajectory of iomarkers (adapted from Jack et al., 2010) 

 

 

We tested a pilot version of our multi-biomarker SVM approach in several subsets of the ADNI 

subjects, with a variety of biomarkers including neuroimaging (Kohannim et al., 2010). First, we 

considered the three MRI-based measures mentioned above (hippocampal, ventricular and 

temporal lobe volumes), along with ApoE genotypes, body mass index (BMI) and demographics 

(sex and age) in 737 subjects, for whom all this information was available. In a subset of 465 

training subjects, leave-one-out classification accuracies of 82% and 71% were obtained for 

distinguishing AD from controls and mild cognitive impairment (MCI) from controls, 

respectively. ROC curves for the remaining 272 subjects, set aside solely for testing, displayed 

generalizability for the classifiers with areas under the curve of 0.95 and 0.86 respectively 

(Figure 3.1). These accuracies are comparable to studies with similar approaches (Klöppel et al., 

2008; Vemuri et al., 2008) for AD, but a bit lower for MCI, which may be due to differences 

between the ADNI population and other cohorts, and also due to our use of summary measures 

from imaging instead of voxelwise maps in this analysis. Next, in a smaller subset of the ADNI 

subjects, we considered biochemical markers of CSF amyloid and tau, as well as a temporal lobe 
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summary measure from PET-FDG, in addition to MRI and ApoE. Diagnostic accuracies 

improved with the addition of CSF and PET-FDG separately and even further after adding both. 

The final multimodal classifiers showed 91% accuracy for AD and 76% accuracy for MCI in a 

total of 166 subjects. This demonstrates the potential to integrate biomarkers from different 

sources in making predictions of cognitive status (Specific Aim 1a). We also ranked the above 

biomarkers in their contribution to each classification, and observed that MRI-derived 

biomarkers were more contributory to AD classification and CSF and PET-FDG were more 

helpful for MCI classification. This is consistent with the recently proposed temporal sequence 

of AD biomarkers’ dynamic trajectories (Figure 2.1; Jack et al., 2010) and points to a utility of 

our approach in providing insight to an integrative ranking system for potential biomarkers of 

brain disorders like cognitive impairment (Specific Aim 1b). 

 

Power Analysis: To test the usefulness of our multi-biomarker outcome prediction approach in 

clinical trial designs (Specific Aim 1c), we will be conducting statistical power analyses, where 

the number of subjects needed to detect a clinically pertinent endpoint would be estimated for a 

hypothetical trial. Our goal is to reduce the sample size even further, by selecting the fraction of 

subjects predicted by a multi-biomarker learning algorithm to be most progressed in the 

spectrum of disease. This multivariate approach to enrichment, we propose, would be a 

promising means to making clinical trials for brain disorders more efficient, ethical and cost-

effective. When we tried this approach in the ADNI datasets with SVM, as described above, we 

were able to obtain improvements in the number needed to detect a 25% reduction in annual 

temporal lobe atrophy rates with 80% power and a significance level of 0.05 (Kohannim et al., 
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2010), when compared to previous literature, which compute these sample size estimates with 

single biomarkers like hippocampal volume (cf. Schuff et al., 2009).  

 

B. Develop multilocus approaches for gene discovery and personalized prediction of brain 

integrity through neuroimaging measures from DTI (Specific Aim 2) 

 

1. Significance 

Magnetic resonance diffusion tensor imaging (DTI) was developed in the mid 1990s, and is now 

widely acknowledged as an invaluable tool to study white matter structure and orientation with 

broad applications in neuropsychiatry (Thomason and Thompson, 2011). It is sensitive to MRI 

signal decay due to anisotropic diffusion of water in brain tissue (Basser et al., 1994; Pierpaoli 

and Basser, 1996; Beaulieu et al., 2002). We will assess the standard DTI-derived measures: (1) 

radial and axial diffusivity, in the principal directions of the diffusion ellipsoid, which reflect the 

dense packing of nerve axons and their membranes, and (2) fractional anisotropy (FA), referring 

to the tendency for water to be constrained to diffuse in a specific direction. White matter tracts 

tend to constrain the diffusion of water molecules to be highly anisotropic along the tract 

geometries. 

 

The implication of white matter alterations for mental illness is becoming increasingly clear at 

macrostructural and microstructural levels with the advent of DTI (Thomason and Thompson, 

2011). DTI-based white matter abnormalities have been discovered in schizophrenia at a whole-

brain and a regional level (Lim et al., 1999; Agartz et al., 2001). Anomalies in white matter 

integrity, particularly in prefrontal regions, have also been repeatedly observed through DTI in 
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bipolar disorder (Adler et al., 2004; Adler et al., 2006). Similar structural alterations in white 

matter have been reported in attention-deficit/hyperactivity disorder (ADHD; Ashtari et al., 

2005), autism (Alexander et al., 2007) and other cognitive disorders (Fellgiebel et al., 2004).  

 

Due to their high heritability (Chiang et al., 2011a), DTI-derived measures of white matter 

integrity can serve as intermediate phenotypes or “endophenotypes” (Meyer-Lindenberg and 

Weinberger, 2006; de Geus et al., 2008; Hall and Smoller, 2010) for powerful genome-wide 

searches for new risk genes in imaging genomics studies (Thompson et al., 2010). Imaging 

genome-wide association studies (GWAS), where imaging-derived endophenotypes are 

regressed against hundreds of thousands of single nucleotide polymorphisms (SNPs), such as 

those conducted by our group and others (Shen et al., 2010; Stein et al., 2010), are popular means 

to discover common genetic variants that may influence brain integrity and disease risk. With 

machine learning methods, SNPs can also be considered jointly in GWAS, where phenomena 

like epistasis and linkage disequilibrium – which render SNPs not independent of each other – 

may be taken into consideration with multilocus approaches (Szymczak et al., 2009). We 

propose the use of novel, multilocus, genome-wide searches for genes that affect brain imaging 

measures to supplement standard imaging GWAS for boosted detection power. 

 

In addition to their use in gene discovery, measures from neuroimaging (e.g., voxelwise and 

region-of-interest FA measures from DTI) can also be used to assess genetic influences on the 

brain in post hoc and candidate gene studies. Several investigators, including our group, have 

already identified genetic variants, such as polymorphisms in the brain-derived neurotrophic 

factor (BDNF; Chiang et al., 2011b), clusterin (CLU; Braskie et al., in press), neuregulin, 
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catechol-O-methyl transferase (COMT), and HFE genes with moderate effects on white matter as 

detected by DTI (see below). White matter structure integrity is highly heritable (Chiang et al., 

2011a) and a multitude of genetic variants are expected to have small influences on this process. 

Genetic polymorphisms, such as those above, can thereby contribute to a significant fraction of 

variability in white matter structure across individuals, which may affect their aggregate risk for 

developing mental illness and neurodegenerative disorders later in life. We propose that through 

a novel machine learning technique, we can assign personalized scores of brain integrity to 

individuals based on their genetic profiles. We will use our machine learning methods to 

integrate information from multiple genetic variations for risk assessment and to predict 

clinically important outcomes. In related work, gene expression profiles have been implemented 

in machine learning algorithms to help predict survival rates in patients with diffuse large B-cell 

lymphoma (Shipp et al., 2002) and that of metastasis and survival in patients with hepatocellular 

carcinoma (Ye et al., 2003). By incorporating a subject’s genetic signature into a machine 

learning algorithm and predicting their DTI-derived measurements, we propose the first 

automated, personalized prediction study of brain integrity assessed through neuroimaging.     

 

2. Approach 

Participants: We will analyze large existing neuroimaging datasets from young adult twins as 

part of our collaboration with the Queensland group led by Margaret Wright in Brisbane 

(Thompson Genetics R01), for whom DTI scans and genotyping information is available.  

 

Image Acquisition and Processing: Structural and diffusion tensor whole-brain MRI scans were 

collected with a 4-Tesla Bruker Medspec MRI scanner. T1-weighted images were obtained with 
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an inversion recovery rapid gradient echo sequence. Acquisition parameters were: 

TI/TR/TE = 700/1500/3.35 ms; flip angle = 8°; slice thickness = 0.9 mm, with a 256×256×256 

acquisition matrix. Diffusion-weighted images were also acquired using single-shot echo planar 

imaging with a twice-refocused spin echo sequence to reduce eddy-current induced distortions. 

Acquisition parameters are optimized to yield the best signal-to-noise ratio for estimation of 

diffusion tensors (Jones et al., 1999). Imaging parameters are: 23 cm field-of-view, TR/TE 

6090/91.7 ms, with a 128 × 128 acquisition matrix. One hundred and five images are acquired 

for each subject: 11 with no diffusion sensitization and 94 diffusion-weighted images with 

gradient directions evenly distributed on the hemisphere. Standard protocols for skull-stripping, 

eddy correction, and adjustment for echo planar imaging artifacts and distortion as well as 

registration to a common coordinate space are then followed with FSL 

(http://www.fmrib.ox.ac.uk/fsl) tools, LONI pipeline automated tools 

(http://pipeline.loni.ucla.edu) and methods developed by our group and others (Leow et al., 

2005; Huang et al., 2008; Jahanshad et al., 2010). 

 

Gene Discovery: Imaging GWAS studies with DTI-based measures may lead to the discovery of 

new genetic risk factors that affect brain integrity. We will use our multivariate techniques for 

imaging GWAS, to boost  statistical power to detect genetic risk factors. In the ADNI dataset, we 

have already found boosted associations for several SNPs in association with MRI-derived 

temporal lobe and hippocampal volume, with the use of a genome-wide, multilocus approach 

based on ridge regression (Hoerl et al., 1975; Kohannim et al., ISBI2011). This method 

associates neighboring SNPs jointly, in sliding windows with imaging measures, thereby 

adjusting for their correlation, which is due to linkage disequilibrium. We will introduce this 

http://www.fmrib.ox.ac.uk/fsl
http://pipeline.loni.ucla.edu/
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multilocus approach for gene discovery in DTI (Specific aim 2a), which may make possible new 

SNP-imaging associations, potentially undetected with standard GWAS.  

 

Figure 2.2. BDNF effects on white matter (adapted from Chiang et al., 2011b). 

 

 

Candidate Genes: As mentioned above, a number of genetic variants have already been 

discovered with strong effects on white matter through DTI by our group and others. The well-

known G196A or Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) 

gene, for instance, was recently discovered by our group to have significant modulatory effects 

on white matter integrity, in the splenium of the corpus callosum, inferior fronto-occipital 

fasciculus, left optic radiation, and corona radiata (Figure 2.2; Chiang et al., 2011b). This 

common variant in BDNF has been reported in many studies to increase one’s risk of developing 

a variety of neuropsychiatric disorders (Sklar et al., 2002; Hall et al., 2003). Additionally, 

carriers of clusterin (CLU) or apolipoprotein J, which is a well-known risk factor for Alzheimer’s 

disease (Harold et al., 2009), were recently discovered by our group to have abnormal DTI 
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measures (Braskie et al., in press). Our team also identified similar influences of neuregulin, 

which is implicated in several brain disorders such as schizophrenia (Williams et al., 2003), 

HFE, which is related to iron metabolism in the brain (Rouault and Cooperman, 2003; Kohannim 

et al., OHBM2011), and FTO, which is associated with obesity (Frayling et al., 2007) and 

reduced brain volume (Ho et al., 2010). Other groups find similar effects for other variants, e.g., 

in the dopamine-related COMT gene (Thomason et al., 2010). In addition to candidate gene 

studies, genome-wide association studies (GWAS) with DTI-derived measures (e.g., average FA 

values across regions of interest) and searches for mechanistically relevant genes can also lead to 

the discovery of more genetic variants that influence white matter architecture. 

 

Figure 2.3. Multi-gene personalized prediction of white matter integrity 

 

 

Personalized prediction of brain integrity: As discussed above, we have obtained a list of 

candidate genes to assess based on prior imaging genetics findings from our group, from 

standard and multivariate GWAS studies (summarized in Braskie et al., in press) and also from 

searches for genes biologically related to white matter structure and development. We will 

incorporate these genetic polymorphisms into a predictive model with machine learning 
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(Specific aim 2b; Figure 2.3), to predict a subject’s personalized “brain integrity score” through 

DTI-based measurements like voxelwise FA.  

 

Figure 2.4. Multi-SNP modeling in DTI 

 

 

A first step toward such a multi-gene imaging predictor would be a standard multiple regression 

model, where the genetic variants are incorporated as predictors, and their joint contribution to 

the prediction of the DTI-based response variables can be studied. We have developed a 
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workflow with the use of the LONI pipeline, which would take subjects’ multiple genotype 

information into account and regress their joint effect on the voxelwise DTI scans, yielding a p-

value map for the combined effect of the SNPs on the subjects’ images. For this pipeline, we also 

had to take the twins and siblings’ relatedness into account. We modified and implemented the 

efficient mixed-model association (EMMA) code developed here at UCLA (Kang et al., 2008) to 

adjust for the subjects’ kinship matrix for each voxelwise association. We tested this voxelwise 

multi-SNP model for the joint effect of two well-known, missense mutations in the HFE gene 

(H63D and C282Y) in 544 twins and siblings (Kohannim et al., OHBM2011). Significant 

associations were not found with C282Y alone, most likely due to its low minor allele frequency 

(~0.05) in our sample. Nevertheless, we discovered significant associations (satisfying multiple 

comparisons correction across voxels) in the genu of the corpus callosum, external capsule, 

superior longitudinal fasciculus and temporal lobe white matter with both C282Y and H63D 

(Figure 2.4A), with effects more extensive than those of H63D alone (Figure 2.4B).  

 

We plan to use a similar multi-SNP, voxelwise computational framework for DTI in the 

Queensland twins and siblings dataset, but include multiple candidate genes, and employ a more 

powerful predictive algorithm based on machine learning (e.g., SVM regression). We will train 

the algorithm with the subject’s genotype signature, and known FA, and test it on a new subject 

for a prediction of FA at a voxelwise basis, using a cross-validation scheme. Instead of p-values 

for joint associations, we will obtain correlations between predicted and known voxelwise 

measures, or ratios of the algorithm’s prediction error divided by a “null machine’s” error (a null 

machine simply predicts the population mean FA at each voxel).  
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As new genetic risk factors are discovered with DTI (Specific aim 2a) and their collective 

contribution to brain integrity is investigated (Specific aim 2b), we will also incorporate this new 

genetic information into the classifiers in aim 1. This will greatly facilitate better predictions of 

prognosis and at potentially earlier stages of cognitive impairment (Specific aim 2c).  
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Chapter 3. Multi-biomarker classification and clinical trial enrichment 
 

Introduction 
 

Alzheimer’s Disease (AD), the most common form of dementia, affects approximately 5.3 

million people in the United States alone, and its prevalence continues to rise (Alzheimer’s 

Association, 2009). Research and therapeutic efforts also focus on subjects with Mild Cognitive 

Impairment (MCI) – an intermediate condition between healthy aging and AD – as they convert 

to AD at a heightened rate of 10-15% per year (Petersen, et al., 1999). Multiple imaging 

biomarkers have been used for quantifying disease progression and measuring various aspects of 

AD pathology, such as amyloid and tau deposition, measured by Positron Emission Tomography 

(PET) and radiotracers that bind to the plaques and tangles in the brain (Klunk, et al., 2004; 

Protas, et al., 2010), metabolic decline or perfusion deficits assessed by fluoro-deoxyglucose 

PET (PET-FDG), brain atrophy on MRI, and risk factors that influence these measures (e.g. 

ApoE, cardiovascular risks, etc.) (Frisoni, et al., 2010; Jack, et al., 2010; Petersen, 2010). 

 

Although the disease can be tracked in many ways, methods are also needed to integrate these 

multiple measures to achieve greater power in diagnosis and prognosis. Machine learning 

algorithms such as linear discriminant analysis, support vector machines, and boosting have 

recently been proposed to combine multiple AD features derived from brain imaging and other 

biomarkers, for AD and MCI classification. Several studies have performed diagnostic 

classification based on MRI scans, using measures such as whole-brain patterns of atrophy 

(Davatzikos, et al., 2009; Mesrob, et al., 2008), tissue densities from voxel-based morphometry 

(Vemuri, et al., 2008) and cortical thickness (Lerch, et al., 2008). Vemuri et al. (2008) assigned 
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overall “scores” for each subject’s MRI – called the Structural Abnormality Index (STAND) - 

based on gray and white matter voxels that best differentiated AD patients from controls. In 

related work, Davatzikos et al. (2009) assigned “scores” to each subject’s MRI scan based on a 

minimal set of brain regions that best discriminated AD from normal controls in a training 

sample; their approached is termed Spatial Pattern of Abnormality for Recognition of Early 

Alzheimer’s disease, or SPARE-ED. 

 

Researchers have also explored adding other predictors to improve the accuracy of MRI for 

computer-assisted diagnosis of AD and MCI, and for predicting whether a person will convert 

from MCI to AD in the near future. PET, for example, offers metabolic or perfusion-based 

information that complements measures of structural atrophy on MRI (Fan, et al., 2008; 

Hinrichs, et al., 2009). Vemuri et al. (2009) adjusted their STAND scores by incorporating 

demographic variables such as age, sex, and ApoE genotype, and this improved their 

classification accuracy. Additionally, MRI-based STAND scores were shown to improve the 

accuracy of CSF biomarkers for predicting cognitive decline, including total tau (t-tau), 

phosphorylated tau (p-tau) and the beta-amyloid isoform, aβ42 (Vemuri, et al., 2009). 

 

It is worth noting that MRI-based machine learning has been used widely for classification not 

only for AD, but also for predicting changes in patients with brain tumors (Lukas, et al., 2004), 

aphasia (Wilson, et al., 2009), autism (Ecker, et al., 2010), psychosis (Koutsouleris, et al., 2009) 

and even for classifying patterns of brain activation in functional MRI (Mourão-Miranda, et al., 

2005). Similar algorithms have been implemented to distinguish AD from other types of 

dementia such as frontotemporal dementia (Davatzikos, et al., 2008; Klöppel, et al., 2008). 
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Support vector machines (SVMs) are one of the most widely-used and effective tools for 

classification of AD and other neurological disorders, and are used in many of the reports listed 

above. We therefore set out to test how well SVMs would perform for classifying patients as 

having AD and MCI based on multiple imaging and biological measures in ADNI, as well as for 

predicting imminent cognitive decline. 

 

A second goal of this paper was to make a conceptual connection between sample size 

requirements for clinical trials and the power of classifiers to predict future decline. By using our 

classifiers to predict those most likely to decline, we tested the hypothesis that this subset might 

experience atrophic rates with greater effect sizes. This concept is termed clinical trial 

enrichment, as it seeks out a sub-sample of subjects who might be better candidates for 

demonstrating therapeutic effects, at least from a statistical standpoint (see Discussion for 

assumptions of this approach).  

 

We recently found that regional numerical summaries derived from tensor-based morphometry 

of longitudinal MRI (over a 1-year interval) can reduce the estimated sample size requirements 

to 48 AD and 88 MCI subjects per arm of a hypothetical clinical trial (treatment versus placebo), 

for detecting a 25% reduction in the mean annual temporal lobe atrophy rate with 80% power 

(Hua, et al., 2009). Power was similar when 3 Tesla or 1.5 Tesla MRI scans were used (Ho, et 

al., 2009); still higher power was possible for trials with longer follow-up intervals (Hua, et al., 

2010b). Other groups report comparable power for measures based on hippocampal volumes 

(Schuff, et al., 2009). Through the use of multi-modality classifiers, these and other similar 

sample size estimates can presumably be reduced still further.  
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In this report, our goals were: (1) to statistically combine baseline MRI measures of 

hippocampal, temporal and ventricular volumes with age, sex, ApoE genotype and body mass 

index (BMI) for AD and MCI classification, (2) to examine how the best-performing predictors 

would be further enhanced by using information on CSF biomarkers and PET-FDG; (3) to 

evaluate this multi-modality approach for predicting cognitive decline in MCI, and, most 

importantly, (4) to assess whether we could expect to reduce clinical trial sample size estimates 

by using our classifiers to target those most likely to decline. Numerous structural MRI-based 

measures, including hippocampal and ventricular volumes, as well as other temporal lobe 

summaries, have already been validated as indicators of AD progression, particularly after the 

MCI stage (Frisoni, et al., 2010). We hypothesized that using multiple MRI summaries (rather 

than choosing one) might offer complementary information to classify patients into the correct 

diagnostic categories and predict cognitive decline, thereby providing a new way to boost the 

power of clinical trials.  

 

Methods 
 
A. Subjects 

Baseline neuroimaging and biomarker data were downloaded from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) public database (http://www.loni.ucla.edu/ADNI/Data/) on or 

before November 20, 2009 and reflect the status of the database at that point; as data collection is 

ongoing. ADNI is a large five-year study launched in 2004 with the primary goal of testing 

whether serial MRI, PET, other biological markers, and clinical and neuropsychological 

assessments at multiple sites (as in a typical clinical trial), can replicate results from smaller 

single site studies measuring the progression of MCI and early AD. More sensitive and specific 

http://www.loni.ucla.edu/ADNI/Data/
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markers of early AD progression is will help to monitor the effectiveness of new treatments, and 

lessen the time and cost of clinical trials.  

Available Data for Baseline Subjects.    In what follows, sample sizes for analyses using different 

predictors are slightly different, as the study is ongoing and not all measures could be collected 

from all ADNI subjects. For our classification study based on baseline MRI numerical 

summaries, ApoE, age, sex and BMI, data were available from 737 ADNI subjects (158 AD: 

75.4 ± 7.4 years of age, 366 MCI: 74.8 ± 7.3 years of age, and 213 controls: 76.0 ± 5.1 years of 

age). To equalize the sex distribution, we reduced the MCI subject set to a group of 264 sex-

matched subjects. As there were 102 more men than women in the MCI group, we ranked the 

MCI males based on numbers assigned to them via a computerized random number generator 

and removed the first 102 to ensure that the elimination process was random and unbiased. A 

similar method was implemented for the other MCI groups as well.  For our next classification 

study, we were limited by the availability of PET-FDG and CSF data, so our studies included 

subsets of the subjects considered above (328 subjects after adding only CSF, 364 subjects after 

adding only PET-FDG, and 166 subjects after adding both CSF and PET-FDG). For the first part 

of the cognitive decline prediction study, we considered 64 sex-matched MCI subjects, of whom 

12 converted to AD in 12 months. 64 subjects remained after selecting MCI subjects who had all 

biomarker information and equalizing the distribution of sex. The fraction of converters here 

(18.75%) is a slightly higher than the previously estimated rate of conversion in ADNI (13% 

according to Petersen et al., 2010); the rate is marginally higher as a subgroup of male non-

converters was excluded to allow sex matching. A larger sample of 129 sex matched MCI 

subjects with a reduced number of biomarkers was considered for the second part of the same 

study, 22 of whom (17.05%) converted to AD within 12 months. Sex matching was performed 
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through a random elimination process as described above. The subjects and biomarkers included 

in each study are summarized in Table 3.1. 

 

Table 3.1. ADNI subjects and biomarkers included in each study. Here we outline the subject samples analyzed for 
different classification tests. Subjects are split into independent training and testing samples to ensure correct 
evaluation of classifier performance. MRI denotes that a 1.5T MRI scan was available; BMI denotes body mass 
index. CSF denotes that CSF-derived biomarkers were available.   

 

  Number of Subjects (Training + Testing) 
Study Biomarkers AD MCI CN 

1 MRI, Age, ApoE, Sex, BMI 158 (118 + 40) 264 (184 + 80) 213 (163 + 50) 

2a MRI, Age, ApoE, CSF 77 (57 + 20) 158 (118 + 40) 93 (68 + 25) 

2b MRI, Age, ApoE, PET-FDG 79 (59 + 20) 191 (146 + 45) 94 (74 + 20) 

2c MRI, Age, ApoE, CSF, PET-FDG 40 (20 + 20) 83 (43 + 40) 43 (23 + 20) 

3a MRI, Age, ApoE, CSF, PET-FDG - 64 (41 + 23) - 

3b MRI, ApoE, PET-FDG - 129 (67 + 62) - 
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B. Biomarkers 

For each subject, the biomarkers we considered included three MRI-derived numerical 

summaries, a PET-FDG numerical summary, and three CSF biomarkers (t-tau, p-tau and aβ42), 

ApoE genotype (coded as 0, 1, or 2 for the number of E4 alleles), sex (coded as 0 or 1), age, and 

BMI. In addition to MRI, PET-FDG and CSF can provide important functional and pathological 

information on AD progression (Jack, et al., 2010). We also considered ApoE genotype (coded 

as 0, 1 or 2 for the number of E4 alleles), age, sex and BMI, as each can influence AD risk 

(Corder, et al., 1993, Lindsay, et al., 2002, Azad, et al., 2007, Buchman, et al., 2005). BMI was 

included as a number of recent studies found that higher BMI is associated with greater brain 

atrophy in normal elderly subjects (Raji, et al., 2009), and in MCI and AD (Ho, et al., 2010b). 

This effect still holds true after accounting for the effects of hypertension, diabetes, and the level 

of white matter hyperintensities (Ho, et al., 2010b) on the brain. In addition, a commonly carried 

risk gene for obesity, FTO, was recently reported to be associated with the level of brain atrophy 

in the ADNI cohort (Ho, et al., 2010a), so we included BMI as it is a cardiovascular risk factor 

associated with brain atrophy.  Clinical biomarkers that were used in ADNI to determine 

diagnosis, such as the sum of boxes Clinical Dementia Rating (sobCDR) and other similar 

measures are used by physicians for making diagnoses and were therefore not used as features 

for classification to avoid circular inference. In fact, using sobCDR alone for classification led to 

almost perfect classification accuracy, as accuracy here is judged in terms of agreement with 

clinical diagnosis, the best available proxy when post mortem neuropathological data is not yet 

available. Instead, the annual rate of change in sobCDR was used as an outcome measure of 

cognitive decline to help define conversion from MCI to AD. 
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The MRI features included numerical summaries from the hippocampus, lateral ventricles and a 

TBM-derived measure of atrophy in the temporal lobes. The hippocampal summaries were 

volumes generated from an automatic segmentation method that we developed based on machine 

learning; we recently validated this method against manual gold standards (Morra, et al., 2008; 

Morra, et al., 2009; Morra, et al., 2010). The ventricular summaries were volumes acquired from 

a semi-automated, multi-atlas segmentation technique that we developed (multi-atlas fluid image 

alignment or MAFIA; (Chou, et al., 2008)). The temporal lobe summaries were obtained from an 

anatomically defined region-of-interest (ROI) on three-dimensional atrophy maps generated with 

tensor-based morphometry (Hua, et al., 2008a; Hua, et al., 2008b). PET-FDG numerical 

summaries were based on a pre-defined temporal lobe ROI (Landau, et al., 2009). All imaging 

summaries were averaged for the lobes in the left and right brain hemispheres. 

 

CSF samples were obtained through lumbar puncture, after an overnight fast. Samples from 

various sites were transferred, on dry ice, to the ADNI Biomarker Core Laboratory at the 

University of Pennsylvania Medical Center, where the levels of t-tau, p-tau and aβ42 are 

measured with a multiplex immunoassay platform under the direction of Drs. Leslie Shaw and 

John Trojanowski. ApoE genotyping was performed on DNA samples from subjects’ blood. 

Genomic DNA samples were analyzed using the Human610-Quad BeadChip (Illumina, Inc. San 

Diego, CA) at the University of Pennsylvania. Demographic data were obtained from 

https://www.loni.ucla.edu/ADNI/Data/. It should be emphasized that only baseline values of 

the biomarkers were used for prediction.  

 

C. Support Vector Machines 

https://www.loni.ucla.edu/ADNI/Data/
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SVMs are a type of machine learning or pattern recognition method that can be used to classify a 

dataset into different groups, based on multiple features, or measures, available for each subject 

(see e.g., Morra et al., 2009b). As with linear discriminant analysis, a number of observations 

about a subject (here the imaging and other measures) may be assembled into a vector, with as 

many components as there are measures. Then a mathematical function is estimated (or 

“learned”) that best combines these features to give an output that indicates, as accurately as 

possible, which group the individual belongs to. For an introduction to SVM - comparing it to 

simpler methods such as linear discriminant analysis (LDA) - please see our tutorial (Morra et 

al., 2009b). As mentioned in the introduction, SVM was chosen as a machine learning algorithm 

for this report due to its successful performance in the previous AD literature (Davatzikos, et al., 

2009, Fan, et al., 2008, Mesrob, et al., 2008, Vemuri, et al., 2008), and for other neurobiological 

applications (Ecker, et al., 2010, Koutsouleris, et al., 2009, Wilson, et al., 2009). SVMs may be 

considered as a generalization of linear regression, which use a supervised learning method to fit 

a classification function to the data in a training set of labeled observations. Other types of 

classifiers, such as adaptive boosting (Freund and Schapire, 1999; Morra et al., 2010), may also 

be useful for subject classification based on multiple biomarker measures, as they optimally 

combine predictors that individually perform weakly, but perform strongly in combination.  

SVM is formulated as an optimization problem. Given a set of training data with corresponding 

class labels, a hyperplane is sought that maximizes the margin (a measure of the ability to 

differentiate) between different classes. This hyperplane, computed from a training set of 

example data, can then be utilized to classify newly presented (independent) testing data sets. 

Data consist of a set of vectors (x1, …, xn) where each vector contains a number of features and 

the class labels are scalars (y1, …, yn) where yi is either 1 or -1 in a 2-class problem. The 
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optimization problem for a linear SVM is written as min 
2

2
1 w  subject to ( ) 1≥+⋅ bwxy ii , 

where w and b represent the normal vector to and the intercept of the hyperplane respectively. 

For cases where a linear surface (hyperplane) cannot effectively separate the data, nonlinear 

kernels, such as radial basis functions (RBFs), are incorporated into the optimization problem. 

Additionally, “slack variables” may be introduced with a tunable parameter, C, to allow for a 

balance between misclassifications and the width of the margin. With this modification, the 

optimization problem may be restated as min ∑+
i iCw ξ2

2
1 subject to ( ) iii bwxy ξ−≥+⋅ 1 , 

where ξi is the slack variable for each i (Vapnik, 1998, Burges, 1998). SVMs may also be 

utilized for regression, where instead of a binary output, it would predict a continuous output for 

each subject’s input vector, x. We performed our experiments using the LS-SVM package for 

classification and regression (Suykens and Vandewalle, 1999) in Matlab (MathWorks, Natick, 

MA). 

 

D. Training and Testing 

We divided AD, MCI and control subjects randomly into training and testing sets as shown in 

Table 3.1. The training sets were used for parameter optimization (regularization parameter C 

for a linear kernel; C and kernel-specific parameter, σ, for an RBF kernel) and for leave-one-out 

cross-validation. The SVM models were tested on independent testing sets to ensure 

generalizability. Receiver operating characteristic (ROC) curves were obtained to demonstrate 

the trade-off between sensitivity and specificity. ROC curves were compared, to evaluate 

different classifiers, using a statistical method developed for ROC analysis (Hanley and McNeil, 

1983) in the MedCalc Statistical Software (MedCalc, Mariakerke, Belgium). When SVM was 
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implemented for prediction instead of classification, mean squared errors were used for 

comparison, instead of misclassification errors. 

 

E. Power Analysis 

A power analysis was defined by the ADNI Biostatistics Core to estimate the sample size 

required to detect a 25% reduction in the mean annual rate of atrophy, using a two-sided test and 

standard significance level (α=0.05) for a hypothetical two-arm study (treatment versus placebo), 

with 80% power (this number is referred to as n80, and smaller numbers are better). The formula 

is 
2

2
2/1

2

)25.0(

)(2

β

σ α powerzz
n

+
= − , where σ and β refer to the mean and standard deviation in the 

atrophic rates respectively, α is set to be 0.05, and the desired power is 80%. Atrophic rates were 

determined based on a statistically-defined ROI by training on 22 AD subjects, as described 

more fully in (Hua, et al., 2009). Brain atrophy rates measured by MRI correlate with the 

progression of Alzheimer’s disease, and offer baseline and transitional predictive power for 

diagnosis, making them clinically relevant endpoints for power analysis (Duara, et al., 2008, 

Fox, et al., 2000, Jack, et al., 2004). 

 

Results 
 

A. AD and MCI Classification based on MRI markers, ApoE genotype and demographic 

information 

We first used the 3 MRI-derived summaries, ApoE genotype and demographic variables (age, 

sex and BMI) for AD and MCI classification with 635 ADNI subjects. SVM training was 

performed with all seven features using a linear kernel with C = 1, and the contributions of the 
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different biomarkers were put into a rank order (best to worst) based on their SVM weights, 

assessed by wi
2 in the notation of SVM described in the methods. The rank orders are shown in 

Table 3.2.  

 

Table 3.2. Rank order list with relative SVM weights for MRI, ApoE, Age, Sex and BMI in AD and MCI 
classification. Hippocampal volumes were the most influential feature for differentiating AD from controls, closely 
followed by ApoE genotype, which outperformed all the other MRI-derived markers. For classifying subjects as 
either MCI or controls, the exact same features were useful, in the same order of priority. This is somewhat in line 
with expectation, as hippocampal volume is so widely used and is perhaps the most well-validated MRI measure in 
AD studies. This rank order refers to a situation in which all measures are used jointly for classification. Also, the 
gray highlighted measures are the ones that, when used jointly, gave the best classification accuracy in our 
independent test datasets (see Figure 3.1 for ROC curves).  

 Biomarker 

Rank AD vs. control 
(weight / wi

2) 
MCI vs. control 
(weight / wi

2) 
1 MRI Hipa 

0.1664 
MRI Hip 
0.1045 

2 ApoE 
0.1063 

ApoE 
0.0938 

3 Age 
0.0369 

Age 
0.0188 

4 MRI Ventb 

0.0349 
MRI Vent 

0.0103 
5 MRI Tempc 

0.0210 
MRI Temp 

0.0045 
6 BMI 

0.0147 
BMI 

0.0019 
7 Sex 

0.0013 
Sex 

0.0009 
   

aHippocampal volume summary 
bVentricular volume summary 
cTemporal lobe summary from tensor-based morphometry (TBM) 
Groups of biomarkers yielding the highest leave-one-out accuracy 
are highlighted. 
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We then aimed to find the top N (N ranging from 1 to 7) features that yielded the highest leave-

one-out accuracy in the training set, using an RBF kernel with parameter optimization. Both 

linear and RBF kernels identified the same set of top features, but the RBF kernel gave better 

performance, so we only present those results here. For AD vs. control, the best combination 

included the top 4 features (baseline hippocampal and ventricular volumes, as well as ApoE and 

age); this joint classifier yielded a leave-one-out accuracy of 82.21% correct classification, with 

a corresponding area under the ROC curve (AUC) of 0.945, which is relatively high. For 

classifying MCI vs. control, the best feature combination consisted of the top 3 (baseline 

hippocampal volume, ApoE and age), which gave 70.89% accurate classification, with a 

corresponding area under the ROC curve of 0.860. As expected, MCI classification accuracy was 

slightly poorer than AD classification, as there is substantial overlap on all known measures, 

between MCI and normal aging. The best biomarker sets for each classification are highlighted 

in Table 3.2. Figure 3.1 shows the ROC curves. In Table 3.2, only a subset of features was 

actually used: the best classifiers did not include BMI, sex, and the TBM-derived numeric 

summary. Also in Table 3.2, it is interesting that ventricular volume was helpful for the AD 

classification problem but not for distinguishing MCI from controls. This is reasonable given 

past findings by ourselves and others that ventricular expansion in MCI is relatively mild; there 

is also substantial cross-subject variation in ventricular volume, even in healthy subjects (Chou, 

et al., 2009b), and this may throw off a classifier’s accuracy unless the disease effect outweighs 

this natural variation (Chou, et al., 2008; Chou, et al., 2009a; Chou, et al., 2009b). 
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Figure 3.1. ROC curves for AD and MCI classification. These curves show 
the trade-off between specificity and sensitivity for classifiers that best 
distinguished MCI from controls (red curve) and AD from controls (blue 
curve). The AD classifier used 4 measures and the MCI classifier only used 
3. These evaluations are based on finding the top set of features that yielded 
the highest leave-one-out accuracies on the training set. The curves 
gradually rise, meaning that there is a natural trade-off: the parameters of 
the classifier’s decision boundary can be adjusted to be stricter or more 
lenient.  For stricter classification settings, false positive classifications will 
decrease but so will the rate of true positives. Curves are slightly jagged and 
not perfectly smooth as they are based on a finite set of test data; with more 
data, they would be smoother.    

 

 

 

B. Adding PET-FDG and CSF for multi-modality classification 

In this study, our goal was to compare the predictive power from the best combination of 

features obtained above, which included MRI, ApoE, and age, to that obtained when also 

including the PET-FDG temporal summary and CSF biomarkers. This may seem like an artificial 

distinction between two lists of biomarkers, but, from a practical point of view, the first classifier 

could be applied to a study that only used MRI, while the extended classifier would also need 

PET scans and lumbar puncture to be performed. Although using more features is almost 



 

44 

certainly better statistically, we wanted to assess how much difference it made, given the added 

expense, logistics, and possible attrition effects of performing multiple assessments.  

Here, we considered three subsets of the ADNI subjects (N=328 when adding CSF alone, N=364 

when adding PET-FDG alone, and N=166 when adding both CSF and PET-FDG) of the ADNI 

subjects, for whom the data from these additional diagnostic modalities were available. We 

applied the same ranking algorithm based on SVM weights and obtained rank orders for the 

biomarkers, with CSF and PET-FDG taken into account. We found the top set of biomarkers 

yielding the highest leave-one-out accuracies on the training set for each classification. The rank 

orders and best sets of biomarkers are displayed in Table 3.3. CSF t-tau and aβ42 were included 

in the best set of biomarkers for both AD and MCI classification. PET-FDG also contributed 

substantially to AD and MCI classification. The remaining top biomarkers were essentially the 

same as the ones identified in the above study.  

It may seem paradoxical that when we list the biomarkers in order of priority (Table 3.3) some 

of them are listed even though they are not ultimately used in the best-performing classifier (only 

the lists of features in gray are used in the best classifier). The reason this occurs is that when all 

features are included, some features are given non-zero weights, which means that they are 

useful for classifying the training set. Even so, these features may give no detectable 

improvement in classifying the test set, so they were dropped from the final classifier. This does 

not mean that they are not useful predictors under any circumstances; it just means that in this 

sample, they did not improve classification accuracy on the independent evaluation data. 
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Table 3.3. Rank order list with relative SVM weights for MRI, ApoE, Age, Sex, BMI and either (a) CSF or (b) 
PET-FDG, for AD and MCI classification. Biomarkers are ranked according to their relative weights (contributions) 
in an SVM classifier that includes them all. A secondary question is which subset of these gives best classification 
accuracy, and this sublist is shown in gray. In these sublists, some features are omitted as adding them does not 
improve classification accuracy. Of the CSF markers, p-tau is relatively unhelpful but both t-tau and aβ42 provide 
independent predictive value. PET-FDG is a useful feature; whether it ranks above MRI hippocampal measures or 
not depends on whether the task is MCI or AD classification (hippocampal volume is slightly more useful than PET 
for MCI). PET measures are also somewhat correlated with MRI measures, so that when they are both included, 
each absorbs some of the variance; this may explain why ApoE genotype rises to the top of the predictors in terms of 
its independent contribution when MRI and PET are both included (last two columns).   
 

 Biomarker 

 a. MRI + CSF b. MRI + PET-FDG 

Rank AD vs. control 
(weight / wi

2) 
MCI vs. 
control 

(weight / wi
2) 

AD vs. control 
(weight / wi

2) 
MCI vs. 
control 

(weight / wi
2) 

1 MRI Hipa 

0.0794 
MRI Hip 
0.0519 

ApoE 
0.1529 

ApoE 
0.0929 

2 CSF t-tau 
0.0614 

CSF aβ42 

0.0313 
PET-FDG 

0.1022 
MRI Hip 
0.0354 

3 CSF aβ42 

0.0505 
Age 

0.0308 
MRI Hip 
0.0846 

PET-FDG 
0.0289 

4 ApoE 
0.0268 

ApoE 
0.0292 

MRI Vent 
0.0181 

Age 
0.0161 

5 MRI Ventb 

0.0238 
CSF t-tau 

0.0231 
Age 

0.0080 
MRI Temp 

0.0075 
6 Age 

0.0210 
Sex 

0.0157 
MRI Temp 

0.0057 
Sex 

0.0036 
7 MRI Tempc 

0.0163 
MRI Temp 

0.0085 
BMI 

0.0010 
MRI Vent 

0.0021 
8 BMI 

0.0077 
BMI 

0.0017 
Sex 

0.0004 
BMI 

0.0020 
9 CSF p-tau 

0.0003 
CSF p-tau 

0.0014 
  

10 Sex 
0.0001 

MRI Vent 
0.0013 

  

     

aHippocampal volume summary 
bVentricular volume summary 
cTemporal lobe summary from tensor-based morphometry (TBM) 
Sets of biomarkers yielding the highest leave-one-out accuracy are highlighted. 
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We then compared the performance of AD and MCI classifiers trained with the top biomarkers 

from the previous (N=635) study to those trained with the top biomarkers that included either 

CSF or the PET-FDG temporal summary or with both combined. Comparison of leave-one-out 

accuracies on the training set improved classification, implying that PET-FDG and CSF provide 

complementary information to MRI, ApoE and age. Leave-one-out accuracies for AD vs. control 

improved by 6.4%, 3.8%, and 11.6% by adding CSF alone, PET alone and both CSF and PET 

respectively. The corresponding improvements for MCI vs. control were 2.3%, 2.7%, and 4.6%. 

 

When we compared the ROC curve AUCs, however, the improvement obtained by adding CSF, 

PET-FDG or both measures to the MRI measures was not statistically significant (p values > 

0.05; Table 3.4). This lack of statistical significance may be due to the small size of the testing 

sets. If, however, this lack of significance is verified in even larger studies, it could have 

considerable implications for clinical trials in terms of total cost, efficiency and adverse effects. 
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Table 3.4. Comparison of AD and MCI classification accuracy and false positive/false negative trade-offs (ROC 
analyses) for classifiers that use different types of information: MRI, MRI+CSF, MRI+PET-FDG, and 
MRI+CSF+PET-FDG. Information for the top MRI classifier is listed twice, because MRI data were available for all 
ADNI subjects, but CSF and PET data were available only for a subset of those who had MRI. So it is only fair to 
report the classification accuracy on the full sample of MRIs, as well as on the subsamples in which head-to-head 
comparisons could be made with classifiers that also included the available CSF and PET data. The classifiers 
include ApoE and age, but not sex or BMI as the latter two did not contribute to the classification accuracies. 

 

 AD versus control MCI versus control 

Biomarkers 

LOOCV  
Accuracy 

ROC  
AUC ± SE 

∆ AUCa  
(p value) 

LOOCV 
Accuracy 

ROC  
AUC ± SE 

∆ AUC  
(p value) 

Top MRIb 0.8160 
0.8940  

± 0.0499 - 0.8421 
0.8350 

 ± 0.0632 - 

Top MRI+CSFc 0.8800 
0.9560  

± 0.0273 
0.0620  
(0.191) 0.8647 

0.8125  
± 0.0672 

0.0225 
 (0.722) 

Top MRIb 0.7634 
0.7760  

± 0.0585 - 0.7227 
0.7067  

± 0.0696 - 

Top MRI+PET-FDGd 0.8011 
0.7820  

± 0.0580 
0.0060  
(0.906) 0.7500 

0.7444  
± 0.0672 

0.0377  
(0.382) 

Top MRIb 0.7907 
0.8850  

± 0.0501 - 0.7121 
0.7488 

 ± 0.0649 - 

Top MRI+CSF+PET-FDGe 0.9070 
0.9175  

± 0.0413 
0.0325  
(0.357) 0.7576 

0.7688 
 ± 0.0669 

0.0200  
(0.709) 

aAUC difference relative to using the top MRI-based classifier only  
bTop biomarkers identified in the N=635 study with MRI 
cTop biomarkers identified in the N=328 study with MRI and CSF 
dTop biomarkers identified in the N=364 study with MRI and PET-FDG 
eTop biomarkers identified in the N=166 study with MRI, CSF and PET-FDG 
LOOCV: leave-one-out cross-validation 
 
 

C. Boosting Power for Clinical Trials  

A novel use of classifiers is to identify subjects who are more likely to decline. Under some 

reasonable assumptions (see Discussion), this can lead to larger effect sizes for detecting changes 

in biomarkers over time; this may also be useful for reducing sample size requirements for 

clinical trials of potential disease-modifying therapies. In the past, several authors have 

suggested that people in the lowest 50% (or some other quantile) of hippocampal volume are 

more likely to show future decline, both clinically (e.g., conversion from MCI to AD) and on 

imaging (see, e.g., Frisoni et al, 2010). Of course, this idea could be generalized to defining a 

sample based on the k% of subjects that a classifier declares as most likely to decline clinically in 
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the future. Such a classifier could include not just MRI but any biomarker relevant for improving 

prediction.  

  

As such, we computed minimum sample size estimates (n80) for the top k percent of subjects 

(for different values of k noted below) classified as most likely to have AD with our best AD 

classifier, using MRI hippocampal and ventricular summaries, ApoE and age as features. This 

k% of people are subjects in the independent test datasets (not used to train the classifier) who 

are assigned by the classifier to the AD class; they are those classified as AD who are farthest 

from the “SVM classifier decision boundary”. We did not include PET-FDG and CSF 

biomarkers here, since adding these covariates limited our sample size and, as shown above, did 

not significantly improve classification in our tests. The subjects were ranked based on the SVM 

classifier output, the arithmetic sign of which determines the class assigned to each subject. A 

few AD subjects were excluded from the training and testing sets to avoid any overlap with the 

training set used in our prior report (Hua, et al., 2009) for creating the statistical ROIs. The 

results are shown in Figure 3.2a. When k is less than about 33%, the power estimates for AD 

subjects are improved compared to the minimal sample size of 48 AD subjects reported by Hua 

et al. (2009). There is a drop in the sample sizes needed to show a specific slowing effect, as the 

more AD-like subjects are selected. This has to be weighed against other factors (see 

Discussion), but it is interesting that the changes in these subjects have a greater effect size. It is 

also by no means obvious in advance that these subjects would give greater effect sizes. For the 

effect size to be greater, the changes have to be large and their variance has to be small; 

restricting the sample did not lead to an increase in the variability of the change measures 

sufficient to deplete effect sizes.  
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We could use the classifiers in many different ways to define a subsample – the diagnostic 

classifiers single out those who are most likely, based on all their imaging measures, to fall into a 

specific diagnostic category (e.g., AD). We also tested the benefit of defining a subsample of 

subjects with a classifier trained to identify likely decliners, based on all their imaging measures 

and other biomarkers, all at baseline.  

 

To obtain similar n80 estimates for MCI subjects predicted to undergo cognitive decline, we 

considered 64 MCI subjects using MRI measures (3 features), PET-FDG, CSF biomarkers (3 

features), ApoE and age. Here, the output of the SVM algorithm was set to be the 12-month rate 

of change in sobCDR, instead of a binary output for the classification approach used in the 

studies above. Training with all possible 29-1 feature combinations using a linear kernel 

(parameter C = 1) revealed PET-FDG, MRI ventricular and temporal summaries, and ApoE as 

the best set of features, with the lowest mean squared error on the testing set.  

 

To increase our sample size for evaluating this classifier, we considered a larger group of 129 

MCI subjects with only the four features identified above and trained a model that predicted the 

rate of sobCDR change in a novel testing set. We ranked the testing MCI subjects in order of 

predicted cognitive decline and computed n80 estimates for the top k% percent (for different 

values of k) of MCI subjects who the classifier predicted to be most likely to decline within a 

year (Figure 3.2b). The n80 values were even lower than the 88 MCI individuals we reported 

before as the minimal sample size for MCI (Hua, et al., 2009). In addition to sample size 

estimates reported by Hua et al. (2009), similar estimates have also been made by other 
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investigators such as Fox, et al. (2000), Jack, et al. (2004) and Schuff, et al. (2009), and we were 

able to improve upon these too with our approach. 

 

Figure 3.2. n80 estimates (i.e., sample sizes required to detect a 25% slowing of the rate of atrophy with 80% 
power) as a function of restricting the sample to likely decliners. (a) Samples are based on the top k% classified, 
based on all biomarkers, as most likely to have AD (lower k gives smaller samples). (b) Here samples are based on 
the top k% of MCI subjects predicted by the classifier as most likely to decline (again lower values of k give 
dramatically lower samples).  If only one-third of the most likely decliners were kept, in a sub-analysis based on the 
classifier’s predictions, then the sample size needed (n80) for an MCI trial would only be around 30 subjects per arm 
(see Discussion for caveats of this approach).  

 

 

In this report, we have considered AD and MCI classification as well as prediction of MCI 

conversion. Classifiers can also be trained to distinguish MCI converters from diagnostic groups 

other than MCI. For instance, when we performed classification with a small group of 12 MCI 

converters versus 12 healthy controls using all features in our study, we obtained a reasonably 

promising 71% accuracy, as this discrimination is more challenging than separating AD patients 

from controls. 

 

In general, however, we do not want to discriminate MCI decliners from groups other than MCI 

for the prediction of later decline. We assumed here that MCI diagnosis was given, and we aimed 

to predict who would decline within that group. Predicting decline in a mixed group of controls 

and MCIs is a little easier, as the knowledge that a person is MCI is already fairly good evidence 
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that future decline is likely. Because of that, we wanted to assess the specific additive value of 

neuroimaging markers once a person is diagnosed as MCI (and it is reasonably helpful). 

 

Discussion 
 

We explored the power of several baseline biomarkers for AD and MCI, used jointly for 

diagnostic classification and for predicting future (1-year) cognitive decline in MCI. We also 

showed how to apply the multi-modality classifiers to choose sub-samples of subjects for 

boosting power in clinical trials. We determined combinations of regional MRI numerical 

summaries with demographic variables and ApoE that best classified AD vs. control and MCI vs. 

control. The top set of complementary biomarkers for AD classification (when used together) 

were the MRI hippocampal volume summary (measured with the method of Morra et al., 2008), 

ApoE genotype, age and the MRI ventricular summary (measured with the method of Chou et 

al., 2009) in that order, resulting in an 82.21% accuracy, and an ROC AUC of 0.945, which is 

quite strong. Biologically, hippocampal atrophy and ventricular enlargement are established 

manifestations of AD pathology, and the two structures are routinely monitored via MRI for AD 

clinical trials (Frisoni, et al., 2010). ApoE and advancing age are also well-known risk factors for 

AD (Carlsson, et al., 2009), and age is associated with atrophic rates in ADNI (Hua, et al., 

2010a). The best set of features identified agrees with the AD literature. The one exception is the 

MRI temporal lobe summary, which did not improve classification power. This is not entirely 

surprising as it is quite highly correlated with the other two measures of atrophy (hippocampal 

and ventricular volume), so it may not add very much independent information for diagnostic 

classification. As expected, MCI classification was less accurate, and ventricular summaries 

were not as helpful; the best MCI diagnostic classifier only used hippocampal volume, ApoE 
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genotype and age (Frisoni, et al., 2010; Petersen, 2010). When compared to accuracy results 

reported by groups such as Vemuri et al. (2008), Klöppel et al. (2008) and Fan et al. (2008), our 

accuracies may seem a bit low. Perhaps, the main reason the accuracy values are not so high is 

that we are using numerical summary measures (single values for each imaging modality) as 

opposed to voxel-wise maps (which are implemented in papers that report higher accuracies). 

Even so, it is difficult to compare the results across papers as different subject samples are used. 

For example, ADNI considers only AD patients with relatively mild AD, and classification of 

AD is clearly easier in cohorts with a greater proportion of more severely affected patients. Even 

so, a fair comparison of accuracies between our study and others is difficult, not only because of 

sample variation, but also due to the fact that we utilized numerical summaries for imaging 

modalities, instead of voxel-wise maps. Even so, if some future classifier performs better, it 

could also be used to boost power using the same subpopulation selection method shown here. 

 

By separately adding CSF biomarkers and PET-FDG as covariates for classification, where 

available, we obtained new rank order lists. These demonstrated how much the additional 

diagnostic measures contributed to AD and MCI classification, at least with this type of 

classifier. Different classes of AD biomarkers have dynamic trajectories that are thought to be 

temporally ordered with respect to the progression of the disease; in general, markers of amyloid 

deposition are thought to rise earlier than markers of neurodegeneration detectable on MRI, and 

these in turn become abnormal before tests of clinical function (Braskie, et al., 2008; Jack, et al., 

2010; Petersen, 2010; Protas, et al., 2010).  
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It is therefore plausible to expect classifiers to perform best with biomarkers that are maximally 

dynamic during the stages of disease being considered; measurement reproducibility and 

precision are  important. The top feature lists are generally consistent with this hypothesis, as 

MRI contributes more strongly to AD classification, whereas PET-FDG and CSF biomarkers, 

particularly aβ42, play more important roles in MCI classification. The observation that CSF tau 

levels were more important for AD classification, and CSF aβ42 more contributory to MCI 

classification is also consistent with Jack et al.’s model, in which the dynamic range of aβ42 

precedes that of tau in the progression of AD. ApoE is consistently included among the best 

biomarkers for both AD and MCI classification, which agrees with another component of the 

Jack et al. (2010) hypothesis, stating that carrying E4 alleles may shift the sequence of biomarker 

activities to earlier time points relative to the onset of overtly detectable clinical symptoms.  

 

Predicting future decline in MCI subjects is more challenging than AD and MCI classification, 

as differences among MCI subjects are subtle. Instead of approaching this problem with a binary 

classifier, we adapted the algorithm to predict a continuous cognitive outcome, which is the 12-

month change in sobCDR. The baseline PET-FDG temporal summary, MRI temporal and 

ventricular summaries, and ApoE, were the best predictors of future cognitive decline in MCI 

(assessed over a 1-year follow-up interval). The combination of PET-FDG and ApoE genotype 

has been previously shown to provide good accuracy for predicting MCI conversion (Mosconi, et 

al., 2004). MRI-based temporal and ventricular volumes have also been reported for their 

predictive power in MCI subjects (Fleisher, et al., 2008; Korf, et al., 2004). It is mechanistically 

reasonable for this combination of structural, functional and genetic information to supply 

complementary predictive power. By using a multi-modality regression approach to predicting 
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cognitive decline in ADNI subjects, a very recent study found that a linear combination of MRI 

and PET-FDG was a better predictor of cognitive decline than CSF biomarkers (Walhovd, et al., 

2010), consistent with our best set of biomarkers. Unexpectedly, however, the MRI hippocampal 

summaries were not incorporated into our predictive model, which is surprising as hippocampal 

volume can be useful for prediction of MCI progression to AD (Apostolova, et al., 2006a; 

Apostolova, et al., 2006b; Apostolova, et al., 2007; Frisoni, et al., 2010). The presence of 

detectable extra-hippocampal atrophy (e.g. in the ventricles and white matter) may also be good 

predictors of whether an MCI patient is deteriorating.   

 

Our choice of brain regions and imaging measures to analyze was based on discussions among 

the ADNI Clinical, MRI and PET Cores. We chose imaging measures that had been used 

successfully in the past for disease classification or to monitor disease progression, preferring 

those measures that could be derived efficiently from a large dataset, without substantial manual 

interaction with the images. Clinical ratings were based on those widely used in clinical trials 

(CDR and MMSE), and the CSF biomarker measures were those found to be most promising in 

pilot studies (Shaw, et al., 2009). Needless to say, more brain regions or alternative cognitive 

tests could be proposed, and could be added to those analyzed here to boost performance even 

further. Specifically, in conference abstracts, Alexander, et al. (2008) and Zhang, et al. (2008) 

have advocated a multivariate network analysis in which a very large number of regional brain 

volumes are jointly used as predictors, in an SVM model. Other groups have parcellated the 

brain into a large number of subregions, but found that temporal lobe regions showed the greatest 

disease-related changes and significantly outperformed any of the clinical or cognitive measures 

examined for both AD and MCI (Holland, et al., 2009). To single out brain regions that are most 
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promising for analysis of disease-related brain change, we also focused on pre-selecting voxels 

in maps of brain change that show greatest effect sizes in independent samples. We and others 

have found that a classifier can be given and entire brain image, and from it can derive the voxels 

whose signals are most promising for group classification (Sun, et al., 2009). By comparing 

different imaging measures (voxel-based, ROI-based, or surface-based; Gutman, et al., 2008), 

and different classifiers (SVM versus others), future studies may be able to gauge which aspects 

of the classifier (its mathematical design or the features used) are most relevant for boosting 

performance.   

 

In addition to scanning all the subjects with MRI at 1.5 T field strength, one quarter of ADNI’s 

subjects also received 3 T scans. In prior work (Ho et al., 2009), we studied 110 ADNI subjects 

scanned longitudinally at both 3 and 1.5 T, across a one-year interval. Our power analyses found 

that 37 AD and 108 MCI subjects would be needed at 1.5 T versus 49 AD and 166 MCI subjects 

at 3 T, to detect a 25% slowing of atrophy with 80% power, but these estimates did not differ 

significantly with field strengths. At both field strengths, temporal lobe atrophy rates were highly 

correlated with interval decline in Alzheimer's Disease Assessment Scale-cognitive subscale 

(ADAS-cog), mini-mental status exam (MMSE), and Clinical Dementia Rating sum-of-boxes 

(sobCDR) scores. To avoid modeling the effects of scanner field strength as a confound, here we 

used the 1.5T ADNI data only. Some additional work may be needed to show that 3T scanners 

perform equally well for all biomarkers assessed here. The few ADNI studies that have assessed 

the field strength effect (Ho et al., 2009; Kruggel et al., 2010) suggest that 1.5 and 3 T scanners 

did not significantly differ in their power to detect neurodegenerative changes over a year. 

 



 

56 

Some clinical measures, such as the Clinical Dementia Rating (sobCDR), were not used as 

features for classification to avoid circular inference. Since these measures are used in making a 

diagnosis, it would be circular to incorporate them into our diagnostic classifiers and then test 

their empirical accuracy relative to the diagnosis given by physicians in the clinic. Even so, if 

used in practice to assist diagnosis, a classifier could use more cognitive measures – including 

those conventionally used for diagnosis and any other relevant information.  Even so, the 

diagnostic accuracy of such a classifier could not then be “independently” validated in the same 

way as we did here. Doing so would require some other form of independent diagnostic ground 

truth, not used by the classifier, such as autopsy confirmation of characteristic signs of AD 

neuropathology. This could in principle be done, but neuropathology is not available in large 

numbers for the ADNI cohort.  

 

A major clinical application of disease classifiers is for boosting power for clinical trial by 

reducing sample size estimates required to observe therapeutic effects. The idea of targeting a 

subgroup for analysis of treatment effects is not new (Frisoni, et al., 2010). In fact, a drug trial 

for prodromal AD is currently recruiting subjects, with an inclusion criterion based on CSF aβ42  

and t-tau (http://clinicaltrials.gov/ct2/show/NCT00890890?term=bms+alzheimer%27s&rank=2). 

It appears new, however, to base the selection on a machine learning-based classifier that 

combines numerous biomarkers, which include neuroimaging measures. Combinations of 

disease markers are more likely to achieve sample size reductions than using single measures, 

such as subpopulation selection based on hippocampal volume only (of course statistical power 

must be traded off against the logistical complexity and cost of collecting and analyzing multiple 

biomarker assessments). When we considered the subset of subjects classified as most likely to 
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have AD by our multi-feature AD classifier, and the most likely decliners in MCI, we were able 

to reduce the n80 estimates to fewer than 40 subjects for both AD and MCI, improving on those 

estimates we reported before (Ho, et al., 2009; Hua, et al., 2009; Hua, et al., 2010b). This result 

supports the concept of clinical trial enrichment, which has been previously advocated 

(Cummings, et al., 2007; Frisoni, et al., 2010; Hampel and Broich, 2009). Our enrichment 

strategy works because the subpopulation of subjects who are more likely to decline are selected 

based on disease classifiers and outcome predictors that integrate information from a number of 

complementary biomarkers.  

 

We chose to compute sample sizes needed to detect a 25% slowing of atrophy with 80% power. 

While 25% is a reasonable target for a treatment that aims to slow atrophy, the exact number 

chosen is arbitrary. It is simple to compute sample size estimates for other percentage reductions 

in the atrophic rate, such as 5% or 50%, for example. As we noted in Hua, et al. (2010b), 

treatments may slow atrophy to different degrees, which may be denoted by k%, for different k. 

The sample size estimates required to detect a k% slowing of atrophy may be easily derived by 

multiplying the sample size estimates (n80) in this paper by (25/k)2, as the numbers follow an 

inverse-square law. For example, 4 times as many subjects would be needed to detect a 12.5% 

slowing of atrophy (half of 25%), versus a 25% slowing of atrophy (Ho, et al., 2009). The 

quadratic relationship between the sample size estimates and the percentage atrophic rate is 

illustrated in (Hua, et al., 2010b). Similarly, the results of this paper can be easily translated to 

studies aiming to detect a different level of treatment effect, and our findings remain unaffected 

as multiplying the variables by a constant (25/k)2 does not alter the ranking of the effect sizes in 

the statistical tests (it is a monotone transformation, i.e., it preserves the rank order). 
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As a caveat, the n80 “minimal sample size” measure is practical but has limitations: first, it is 

based on changes in the patient groups only, and not their difference from controls; second, it 

assumes that a treatment would slow atrophy in the same places as it normally occurs, with the 

clinical outcome as observing an untreated sample with less atrophy. Finally, any treatment 

effects in a sub-analysis might only apply to people who fit the selection criteria for that sub-

analysis; even so, evidence of an effect in a sub-analysis might suffice to initiate a broader study.   

 

The approach and results reported here are relevant to future work in the neuroimaging of AD in 

several ways. First, several authors advocate “enrichment” in clinical trials by trying to select 

those most likely to decline, based on clinical criteria, or occasionally based on imaging criteria. 

This can be done by applying thresholds or cut-offs to volumetric measures on MRI scans, such 

as hippocampal volume, but here we advocate using the full armory of imaging and CSF 

measures to classify subjects first, and then use the classifier’s output to select subpopulations 

for later statistical testing.  

 

Although this may seem like basing the statistical approach in part on the data collected, rather 

than specifying it all in advance of the study, this approach would identify subjects whose 

imaging data made them most likely to show treatment effects, regardless of the treatment. A 

similar approach to boost the power of imaging biomarkers is voxel-set pre-selection, which 

substantially boosts power to detect the slowing of atrophy (Hua, et al., 2010; Chen, et al., 2010).  
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For these statistically-guided measures to be widely adopted as outcome measures in clinical 

trials, there needs to be some flexibility on the part of regulatory bodies that some features of the 

data collected may play a role in establishing which measures or subjects are evaluated. The 

analysis strategy can then adapt to the incoming data, and can exploit the power of Bayesian 

statistics and machine learning to obtain more powerful measures. It is quite defensible - and 

even advisable - for these machine learning approaches to be used, so long as the independence 

of statistical training and test samples is rigorously maintained.  

 

A limitation of our study is that sample sizes become small when multiple imaging modalities 

and biomarkers are considered. In longitudinal studies especially, assessments of many kinds 

bring added costs, complexity, logistical difficulty, subject burden, and subject attrition 

(although in ADNI, attrition rates are only around 7% per year). Larger cohorts of subjects with 

available data from multiple biomarkers would allow more powerful classifiers and predictors to 

be developed, incorporating the best combinations of available diagnostic tools. More accurate 

ranking of biomarkers for verifying the details of Jack et al.’s temporal sequence hypothesis 

would become feasible. In addition, future studies will include additional diagnostic modalities 

such as Pittsburgh compound B (PiB), diffusion tensor imaging (DTI), arterial spin labeling 

(ASL) and resting state functional MRI for disease classification. PiB has been collected in a 

small subsample of ADNI subjects, but we did not evaluate it here as requiring all biomarkers 

would have further limited our sample sizes. Another future direction would be to employ 

machine learning algorithms other than SVM (e.g., boosting; Morra et al., 2009b), or classifiers 

based on features in voxel-based maps (Sun, et al., 2009), to improve classification and 

prediction accuracy. More powerful classifiers may then be implemented to improve upon our 
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clinical trial boosting results. Furthermore, machine learning can perhaps be used to discover 

genetic (Stein, et al., 2009; Stein, et al., 2010), epidemiological and physiological factors that 

influence the progression of AD. 
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Chapter 4. Multilocus analysis of brain images 
 

Introduction 
 

Over the past decade, public and private funding institutions have invested billions of dollars in 

the fields of human neuroimaging and genetics (Akil et al., 2010). Recently, researchers have 

sought to use quantitative measures from brain images to test how genetic variation influences 

the brain. Imaging measures are thought to have a simpler genetic architecture than diagnostic 

measures based on cognitive or clinical assessments (Gottesman and Gould, 2003). In other 

words, the penetrance of an individual genetic polymorphism is expected to be higher at the 

imaging level than at the diagnostic level.  As such, imaging-derived traits may offer more power 

to detect how specific genes contribute to brain disease.  Genetic analysis of images has been 

used to discover how susceptibility genes affect brain integrity (Braskie et al., 2011b). Recent 

studies have revealed gene effects operating within an entire population, in the form of a 3D 

brain map (Thompson et al., 2001; Stein et al., 2010a; Hibar et al., 2011).  

 

Optimally merging these two well-developed fields requires innovative mathematics and 

computational methods, guided by genomics and neuroscience. Imaging genetics is still a 

nascent field, and many studies are relatively simplistic - they generally test how a single genetic 

variant, or a small set of such variants (usually single nucleotide polymorphisms, or SNPs) are 

associated with a single summary measure of the brain. These studies begin to bridge the gap 

between the two fields, but do not take full advantage of advanced methods from either field, 

which can survey the entire genome or allow an image-wide search. By contrast, multivariate 

statistical methods such as machine learning and sparse regression can handle high dimensional 
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datasets. Many of these are being adapted to analyze a range of brain processes and biological 

markers of disease.  

 

In this review, we summarize the recent evolution of imaging genetics, from candidate gene 

studies to multilocus methods and genome-wide searches to genome-wide, image-wide searches. 

We explain how images are used in different ways, ranging from single region-of-interest 

methods - that assess the volume or shape of a specific brain region, such as the hippocampus - 

to voxelwise approaches that survey the whole brain at once in 3D. In these efforts, multivariate, 

“multilocus” techniques can model how several genetic variants affect the brain at once. 

Specialized approaches - such as sparse coding methods - can simultaneously handle the high 

dimensionality and high degree of correlation observed across the genome and in image-derived 

maps. 

 

Candidate Gene Studies 
 

In studies that scan a large number of patients or controls, candidate gene studies have often been 

used to assess genetic effects on the brain. This approach is appealing as one can test biologically 

plausible hypotheses and determine how specific, well-studied genetic variations affect brain 

structure and function. Early studies, for instance, explored how genes related to serotonin 

transport affected measures extracted from single-photon emission computed tomography 

(SPECT) and functional magnetic resonance imaging (fMRI; Heinz et al., 2000; Hariri et al., 

2002). Serotonin’s role in neurotransmission and neuromodulation - and the well-known 

anatomy of the monoamine systems - made it possible to frame and confirm testable hypotheses 

for pertinent regions such as the raphe nuclei and amygdala (Munafo et al., 2008). 
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Candidate gene studies, such as those above, may assess a single measure derived from a specific 

region of interest (ROI) in the image. This may be the whole brain, or a subregion such as the 

gray matter, or the volume or mean activation of a subcortical region. More recently, voxel-by-

voxel searches have been conducted to assess candidate gene effects throughout the whole brain 

in 3D. This unbiased search across the brain makes no prior assumptions on which regions may 

be affected. Statistical maps are also widely used in neuroimaging. Spatial statistics, such as 

PCA or ICA, may also be performed for dimension reduction, and multiple comparisons 

corrections, such as the false discovery rate method, can help to decide if a pattern of gene 

effects is significant across the voxels searched. For example, Ho et al. investigated the effects of 

a proxy SNP in the fat mass and obesity-associated (FTO) gene reliably associated with 

increased risk for obesity (rs3751812) (Frayling et al., 2007) on brain structure. They used MRI 

along with tensor-based morphometry, to evaluate 206 healthy elderly subjects. FTO risk allele 

carriers had lower frontal and occipital lobe volumes (Figure 4.1). In such studies, maps of 

statistical associations are created by performing separate association tests at each imaging voxel 

in the brain. As the number of statistical tests is very large, a standard correction for multiple 

comparisons can be used, such as the False Discovery Rate method (FDR; Benjamin and 

Hochberg, 1995) or its more advanced variants such as topological FDR (Chumbley et al., 2009), 

which consider the geometry of the effects. These corrections assess how likely it is that the 

overall pattern of associations could be observed by chance. Voxel-based analyses may also be 

informed by prior hypotheses: regions of interest may be defined as search regions, such as the 

temporal lobes, to include prior information on the expected location or patterns of effects (Stein 

et al., 2010a).    
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Figure 4.1. P-values (corrected using the false discovery rate method; left panel) and corresponding regression 
coefficients (right) show the statistical associations between a candidate single nucleotide polymorphism in the FTO 
gene (which is associated with higher risk of obesity) and tensor-based morphometry maps derived from anatomical 
MRI scans of the brain. Significant associations with regional brain volumes are detected in the occipital and frontal 
lobes. Clearly, if other regions had been specified in advance as the target of study, association effects may have 
been missed. Adapted from Ho et al. (2010). 

 

Brain imaging measures used in genetic studies should ideally be highly heritable and be 

genetically related to a biological process affected by genetic variation, such as a disease process 

(Gottesman and Gould, 2003; Glahn et al., 2007; Winkler et al., 2010). Some argue that the use 

of imaging endophenotypes should boost power to detect genetic variants that have reliable but 

small effects on disease status (Meyer-Lindenberg and Weinberger, 2006). One neuroimaging 

modality that shows great promise in candidate gene studies is diffusion tensor imaging (DTI), 

which assesses the fiber integrity of the brain’s white matter. DTI is based on the observation 

that myelination restricts water diffusion, and disease processes typically increase water 

diffusion across cell membranes (Beaulieu, 2002). Some DTI-derived measures, such as the 

fractional anisotropy of diffusion (FA), are widely accepted as measuring brain integrity. FA is 

highly heritable (Chiang et al., 2009; Kochunov et al., 2010) and is consistently altered in a range 
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of developmental and psychiatric disorders (Thomason and Thompson, 2011). Candidate 

polymorphisms already associated with brain disorders may be surveyed to discover associations 

with maps of DTI parameters such as fractional anisotropy. One recent DTI study of young 

healthy adults (Braskie et al., 2011a), studied the voxelwise effects of the rs11136000 SNP in the 

recently discovered Alzheimer’s disease (AD) risk gene, CLU. Significant associations were 

detected in several anatomical regions that undergo atrophy in AD (Figure 4.2). In similar 

candidate gene studies using DTI, other genes such as BDNF (Chiang et al., 2011a) and COMT 

(Thomason et al., 2010) have been found to influence white matter structure, with carriers of one 

variant showing consistently higher or lower FA. 

 

Figure 4.2. Corrected p-values (A) and regression coefficients (B) are shown for the voxelwise effects of a 
candidate polymorphism in the CLU gene – a highly prevalent Alzheimer’s susceptibility gene – on fractional 
anisotropy maps derived from DTI scans of 398 young adults. The axial slice shows the extensive influence of the 
genetic variant on white matter structure. Adapted from Braskie et al. (2011a). 
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Genome-wide associations with single imaging measures 
  

Candidate gene studies have successfully discovered patterns of brain differences associated with 

genetic variants whose function is relatively well known (such as ApoE, for example - a risk 

gene for late-onset Alzheimer’s disease; Shaw et al., 2007). The choice of a candidate gene, 

however, requires a strong prior hypothesis, and most of the genetic determinants of the highly 

heritable imaging measures (connectivity or cortical thickness, for example) are unknown. In 

most candidate gene studies in imaging, there is a correction for multiple comparisons to control 

the rate of false discoveries across the image, but this does not take into account the genetic 

variant tested, or the fact that it could have been selected from a wide list of possibly associated 

genes. In genetics, and by extension imaging genetics, there is a high risk of false positive 

findings unless appropriate corrections are made. Moving beyond candidate gene studies to an 

unbiased search of the whole genome clearly requires an appropriate genome-wide significance 

criterion. Otherwise, many false positive associations will be reported that would not be 

replicated in the future (Ioannidis, 2005). 

 

Genome-wide association (GWA) studies typically assess associations between hundreds of 

thousands of SNPs and a phenotype of interest (such as a disease, or a specific image-derived 

measure). GWA studies have discovered hundreds of common risk loci for diseases and traits in 

recent years (Hindorff et al., 2009). GWA studies are frequently conducted for discrete, case-

control phenotypes, such as the diagnosis of a specific disease (such as Alzheimer’s disease or 

schizophrenia vs. healthy control). These studies, however, are limited as participants do not 

always fall clearly into unique diagnostic categories, and may vary in dimensions not relevant to 
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disease (Pearson and Manolio, 2008). For neuropsychiatric disorders in particular, symptoms 

expressed by members of specific diagnostic groups may be highly heterogeneous – and there 

may also be substantial co-morbidity and overlap in symptom profiles across disorders 

(Psychiatric GWAS Consortium, 2009; Hall and Smoller, 2010). 

  

Measures derived from brain images in principle are closer to the underlying biology of gene 

action, offering an alternative target for genome-wide searches, by serving as intermediate 

phenotypes or endophenotypes for GWA studies (Gottesman and Gould, 2003; Hall and Smoller, 

2010). Several imaging GWA scans have been published: Potkin et al. (2009b) identified SNPs 

in two genes (RSRC1 and ARHGAP18) that showed associations with a blood-oxygen-level 

dependent (BOLD) contrast measure from a brain region implicated in schizophrenia. Similarly, 

Stein et al. (2010a) discovered a SNP in the GRIN2B gene (rs10845840) and an intergenic SNP 

(rs2456930) associated with an MRI-derived tensor-based morphometry (TBM) measure of 

temporal lobe volume in 740 elderly subjects from the Alzheimer’s Disease Neuroimaging 

Initiative. In these and other studies, linear regressions are used to assess the additive or 

dominant allelic effect of each SNP, after adjusting for covariates such as age and sex, and the 

confounding effects of population stratification (e.g., Potkin et al., 2009a). This yields p-values 

assessing the evidence for the association of each SNP with the imaging summary chosen. The 

overall significance of any one SNP effect is then assessed through a form of genome-wide 

correction for multiple comparisons. Commonly, a nominal p-value less than 5x10-8 is used. 

  

The GWA study design has been extended to analyze whole images, but one of the shortcomings 

of all GWAS studies is their limited power (or alternatively, the large sample sizes needed) to 
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detect relevant gene variants. Most SNPs affecting the brain have modest effect sizes (often 

explaining <1% of the variance in a quantitative phenotype). Meta-analysis can provide added 

statistical power to discover variants with small effects. Replication, and meta-analysis in 

particular, have been widely embraced as a way to aggregate evidence from multiple genetic 

studies, including studies of disease risk, and normally-varying traits such as height (de Baaker et 

al., 2008; McCarthy et al., 2008; Zeggini and Ioannidis, 2009; Yang et al., 2010).  

 

Even so, most imaging GWA studies consider under a thousand subjects, so are limited in 

detection power. This led many researchers in the field to band together to search for relevant 

genetic associations with imaging traits meta-analytically, in many large samples. One promising 

initiative is called Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) and is 

currently accepting research groups who want to become involved in meta-analytic imaging 

genomics projects (http://enigma.loni.ucla.edu/). The ENIGMA pilot project is a large meta-

analysis to discover genes associated with hippocampal volume on brain MRI in over 9,000 

subjects scanned by 21 research centers (Stein et al., submitted). Future imaging genetics studies 

may rely on large meta-analyses and international collaborations to overcome the low power and 

relatively small effect sizes. However, some genetic associations can be found and replicated 

without vast meta-analytic approaches like ENIGMA. For example, Stein et al. (2011) 

discovered and replicated an association between caudate volume and the SNP rs163030 located 

in and around two genes, WDR41 and PDE8B. These genes are involved in dopamine signaling 

and development; a Mendelian mutation in one leads to severe caudate atrophy. Similarly, 

Joyner et al., (2009) replicated an association with cortical surface area in a common variant 
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(rs2239464) of the MECP2 gene, which is linked to microencephaly and other morphological 

brain disorders.  

  

Genetic Analysis of Mass Univariate Imaging Phenotypes 
 

Studying a single imaging measure with a genome-wide search is as limited as picking a single 

candidate gene from the entire genome – it may not fully reflect how a given genetic variant 

influences the brain, or it may miss an important effect by being too restrictive. Important links 

may be overlooked if a gene variant influences a brain feature present but not measured in the 

images. To broaden the range of measures surveyed in each image, Shen et al. (2010) studied 

patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) using whole-brain 

voxel-based morphometry (VBM; Good et al., 2001) and split the brain into 142 cortical and 

subcortical ROIs using the segmentation software package FreeSurfer (Fischl et al., 2002). The 

VBM measure within each region of interest was averaged for each subject and those values 

were used as traits for GWA scans. One SNP, rs6463843, from the NXPH1 gene, was 

significantly associated with grey matter density in the hippocampus, and had broad 

morphometric effects in a post-hoc exploratory analysis. While this study found plausible results, 

the computation of summaries from regions of interest may miss patterns of effects that lie only 

partially within the chosen regions of interest. As such, a combination of map-based and ROI-

based methods seems ideal.  

  

Some researchers have combined unbiased tests of association across the genome with unbiased 

searches of the entire brain, instead of relying on summary measures derived from regions of 

interest. Combining GWA scans with an image-wide search is computationally intensive, 
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requiring new methods to handle the high dimensionality and multiple statistical comparisons. 

3D brain images may contain over 100,000 voxels, and a completely unbiased search may test up 

to 1 million SNPs for association at each voxel. This is extremely computationally intensive, but 

can be completed in a feasible time frame if the process is parallelized. Stein et al. (2010b) 

performed a full GWA scan at each voxel in maps of regional brain volume calculated by tensor-

based morphometry (TBM; Leow et al., 2005). 16 billion tests of association were conducted – 

in a so-called “voxelwise genome-wide association study” (vGWAS). To accommodate the huge 

number of statistical tests performed, only the most highly associated SNP at each voxel was 

stored. The p-value distribution for the top SNP was modeled as a beta distribution, Beta(1, n), 

where n is an estimate of the effective number of independent tests performed (Ewens and Grant, 

2001). The resulting distribution of minimum p-values across the genome, assembled from 

voxels across the image, was transformed into a uniform distribution in the null case for multiple 

comparisons correction across the image. FDR was used to correct for multiple comparisons 

across the image, and to assess whether credible effects had been detected (Benjamini and 

Hochberg, 1995). Several top SNPs were associated with moderate regional brain volume 

differences; many were in genes that are expressed in the brain (Figure 4.3). However, no SNPs 

passed the strict correction for multiple comparisons. The Stein et al. study was a proof of 

concept, showing that a completely unbiased search of the genome is feasible with imaging 

phenotypes. However, the huge correction for multiple comparisons across the image and 

genome are practically insurmountable unless the effect size or cohort size is very large. In 

addition, the vGWA study required 27 hours when spread across 500 CPUs; this is more 

computational power than most researchers typically have access to. Clearly, an optimal balance 

must be made between pure discovery methods, unconstrained by prior hypotheses, and those 



 

76 

that invoke prior biological information to boost power and reduce the multiple comparisons 

correction.  

 

Figure 4.3. The 5 most highly associated SNPs identified by vGWAS are shown on slices of an averaged brain MRI 
template, indicating regions where these SNPs were the most highly associated out of all SNPs (in purple). 
Coordinates refer to the ICBM standard space, and the cohort is the ADNI sample. Adapted from Stein et al., 2010a.  
 

 

 

Multivariate imaging genetics methods  
 

Multivariate methods can be used to assess the joint effect of multiple genetic variants 

simultaneously, and are widely used in genetics (Phillips and Belknap, 2002; Gianola et al., 

2002; Cantor et al., 2010). For example, set-based permutation methods use gene annotation 

information and linkage disequilibrium values to group univariate p-values from traditional 

GWA studies into gene-based test statistics (Hoh et al., 2001; Purcell et al., 2007). Set-based 

approaches use prior information on gene structure to incorporate all genotyped SNPs in a given 
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gene into a single test statistic. This can offer, in some cases, greater power than univariate 

statistical tests to detect SNP effects. Combining univariate p-values into a single gene-based test 

also reduces the total number of tests performed, alleviating the multiple comparisons correction. 

It can also aggregate the cumulative evidence of association across a gene block to account for 

allelic heterogeneity (Hoh et al., 2001). Individual SNP p-values may not achieve the genome-

wide significance level for a traditional GWA study (nominally p<5x10-8), but if several SNPs in 

the same LD block show moderate association, the combined evidence for association may be 

enough to beat a gene-wide significance level (nominally p<5x10-6). For example, one study 

examined SNPs from the SORL1 gene for association with hippocampal volume in healthy 

elderly controls (Bralten et al., 2011). While they did not find evidence for association of 

individual SNPs in a discovery and replication dataset, a gene-based test found evidence of 

association in both datasets. Some set-based statistics may be derived from the separate p-values 

from the individual univariate tests, enabling post-hoc analysis of published studies. A major 

issue in applying set-based statistics in imaging genetics is that the permutation procedure 

applied across SNP groupings would be very computationally intensive. Set-based methods are 

currently not feasible to apply at >100,000 voxels, as a single gene test takes around 5 min (or 

22.8 years to test a single gene at every voxel of the full brain on one CPU). In addition, 

combining SNPs by p-value may miss an important effect where a set of SNPs from the same 

gene have moderate covariance, but explain different portions of variance in the phenotype. In 

other words, if they were considered together in the same model, the overall variance explained 

may be greater than its univariate significance level would imply. 
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An alternative to set-based methods is to group SNPs into a single statistical model and then test 

that model for overall association. One classical example of this strategy is multiple linear 

regression (MLR). However, a problem with applying MLR to genetic data is that SNPs tend to 

be highly correlated, as they co-segregate in haplotype blocks (Frazer et al., 2007). The MLR is 

highly sensitive to collinearity among predictors; the inversion step in calculating regression 

coefficients involves a matrix that is not full rank as the variables are collinear. This leads to 

wildly inaccurate Beta value estimates and standard errors (Kleinbaum, 2007). To avoid 

collinearity in multivariate analysis of genetic data, dimensionality is often reduced using sparse 

regression methods, such as penalized or principal components regression.  

 

Some data reduction methods compute a new set of statistically orthogonal variables, for 

inclusion in a classical MLR model. A data reduction method such as principal components 

analysis (PCA) transforms a matrix of SNP predictors into a new orthogonal set of predictors, 

ranked in descending order based on the amount of the variance in the data that each component 

explains (Jolliffe, 2005). The output of PCA is typically a matrix that explains the same amount 

of the overall variance as the original predictors, but without the collinearity. As the individual 

components are sorted by amount of variance they explain, the resulting statistical models can 

strike an efficient balance between the total variance explained (the number of components to 

include) and the number of degrees of freedom used (model complexity increases as more 

variance components are included).  

 

One method, known as principal components regression (PCReg) first performs PCA on a set of 

predictors. It then builds a multiple partial-F regression model where the number of components 
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included is based on the desired proportion of variance to be explained (Massy, 1965). Wang and 

Abbott (2008) used PCReg to group SNPs into a single multivariate test statistic. Hibar et al. 

(2011) extended this method to be applicable to images, conducting gene-based tests at each 

voxel with PCReg. They used an automated method (Altshuler et al., 2005; Hemminger et al., 

2006; Hinrichs et al., 2006) to group SNPs based on gene membership, resulting in 18,044 

unique genes. Using the set of SNPs in each individual gene as predictors, Hibar et al. used 

PCReg to assess the degree of association for every gene at every voxel in the full brain. The 

resulting method was termed a voxelwise “gene-wide” association study (vGeneWAS). By 

compressing the SNPs into gene-based tests, the total number of tests was reduced to around 500 

million tests from the 16 billion tests in vGWAS. However, even with this much smaller number 

of tests, no genes identified passed correction for multiple comparisons. The most highly 

associated gene, GAB2, showed strong credibility as it is consistently associated with 

neurodegenerative disorders such as Alzheimer’s disease (Reiman et al., 2007). In addition, 

Hibar et al., (2011) simulated full-brain parametric maps using statistical priors based on their 

observed data to show that observed clusters of associated genes were larger than would be 

expected by chance. This provides evidence that vGeneWAS is a valid and powerful multivariate 

method to detect gene effects in full brain neuroimaging data. A head-to-head comparison of 

vGWAS and vGeneWAS was also performed on the same datasets. The cumulative distribution 

function (CDF) plots of p-values for each study show that the false discovery rate in the 

multivariate vGeneWAS was controlled at a lower rate than in the mass univariate vGWAS 

method (Figure 4.4). 
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Figure 4.4. Cumulative distribution function (CDF) plot of corrected p-values from vGeneWAS (Hibar et al., 2011) 
and vGWAS (Stein et al., 2010) analyses. vGWAS could only be controlled for false-positives at q=0.50 threshold, 
while vGeneWAS could be controlled for false-positives at q=0.30. The difference in q-value thresholds for the 
CDF of the p-values obtained from both studies on the same dataset suggests that the gene-based analysis is more 
powerful, though neither study controlled the false-positive rate at the nominal q=0.05 threshold.  
 

 

 

An extension of PCReg and other data reduction techniques is to perform data reduction on both 

the genome and the 3D brain imaging traits. One approach that appears to be promising is 

parallel independent components analysis (Parallel ICA or PICA; Liu et al., 2009). Parallel ICA 

works by first performing PCA on a set of SNPs and also a different PCA on a voxelwise 

imaging measure. Next, a modified version of ICA is applied to both modalities and independent 

factors from each modality are chosen simultaneously by a correlation measure (hence “parallel” 

ICA). Selecting imaging features and SNPs together can be more powerful than mass univariate 

tests of voxelwise imaging traits as the total number of tests is greatly reduced. For example, Lui 
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et al. (2009) used pre-processed fMRI maps from 43 healthy controls and 20 schizophrenia 

patients and a preselected set of 384 SNPs chosen for their potential associations with 

schizophrenia. Via a t-test, Lui et al. (2009) demonstrated that genetic components (p = 0.001) 

and fMRI BOLD (p = 0.0006) response loadings from parallel ICA were able to distinguish 

healthy subjects from patients with schizophrenia, with reasonable accuracy. Similar approaches 

have been applied to structural MRI (Jagannathan et al., 2010). The PICA method is quite 

promising, but several challenges remain. As Parallel ICA requires an initial round of PCA, it is 

difficult to recover which SNP sets are contributing to a given component and similarly it is 

difficult to localize the 3D spatial effect contributing to each component from the image. This 

may make it difficult to interpret and replicate specific findings. In addition, it is not clear how 

data reduction methods will perform with whole genome and full brain data. Lui et al. (2009) and 

Jagannathan et al., (2010) both performed considerable downsampling of the images, reducing 

the total number of voxels included in the Parallel ICA model. In addition, both studies tested 

only small sets of pre-selected SNPs instead of data from the full genome, or a standard 500,000 

SNP genome-wide scan. The power of Parallel ICA to find common components may be greatly 

reduced if there is additional noise from genome-wide data. Lui et al. (2009) found that as the 

amount of random noise increased, so did the number of independent components. As the 

number of independent components increases, the power to detect associations decreases. Also 

querying full brain phenotypes for effects of genetic variants, another recently proposed 

multivariate method by Chiang et al. (2011b), identified patterns of voxels in a DTI image with a 

common genetic determination, and aggregated them to boost power in GWA (Figure 4.5). 

Approximately 5,000 brain regions were selected, where genetic influences accounted for >60% 

of the total variation of white matter integrity. From these, a 5,000 x 5,000 correlation matrix 
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was obtained. Hierarchical clustering was used to select the largest clusters, and these voxels 

were defined to be ROIs. The mean FAs for these ROIs were then tested for evidence of 

association with all SNPs genotyped across the genome. By identifying a genetic network that 

influences white matter integrity over multiple brain regions, Chiang et al. (2011b) were able to 

boost power to detect associations between FA in these brain areas and SNPs from the whole 

genome. In all, they identified 24 SNPs with genome-wide significance, which is unusual for a 

study with fewer than 1000 subjects. To ensure the findings are not false positives, however, 

simulations of imaging and genomic data may be necessary (as carried out by Vounou et al., see 

below). 

 

Figure 4.5. Clustering regions of a brain image that have common genetic determination. In a DTI study of twins, 
the known kinship structure made it possible to estimate the genetic correlation matrix and a “topological overlap 
(TO)” index matrix. This was used to gauge the similarity of genetic influences on all pairs of brain regions (A). 
The 18 largest clusters – parts of the image with common genetic influences – were selected as regions of interest 
(ROIs) for GWAS. By associating the mean white matter integrity of these regions with genetic variants, a genetic 
interconnection network was obtained (B), where each network node represents a single SNP (colored circles). The 
figure shows only those SNPs associated with white matter integrity in at least one ROI with a significance P-value 
< 10-5. SNPs whose associations reach genome-wide significance are colored in red, with their names labeled. White 
lines indicate that SNPs are “connected”, i.e., their effects on white matter integrity are strongly correlated. Adapted 
from Chiang et al., 2010b. 
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Variants near each other on the genome can be highly correlated due to linkage disequilibrium. 

This leads to problems if all variants are included in a standard multiple regression model to 

predict the values of a trait. To address this, many new mathematical methods have been used to 

handle the high dimensionality in the genome (a p>>n problem) and interactions between genetic 

variants. These include penalized and sparse regression techniques, such as ridge regression 

(Hoerl, 1962), the least absolute shrinkage and selection operator (LASSO; Tibshirani, 1996), the 

elastic net (Zou and Hastie, 2005) and penalized orthogonal-components regression (Zhang et 

al., 2009; Malo et al, 2008; Cho et al., 2009; Lin et al., 2009; Chen et al., 2010). The various 

penalty terms (e.g., L1 in LASSO and L2 in ridge) in the regularized regression methods can 

incorporate large numbers of correlated variants with possible interaction terms, in single 

models. These methods show high statistical power in analyses with both real and simulated 

data. Although these studies are almost invariably applied to case-control GWA studies, similar 

approaches may be applied to imaging phenotypes. Kohannim et al. (2011a), for instance, 

implemented ridge regression to study the association of genomic scanning windows with MRI-

derived temporal lobe and hippocampal volume. They reported boosting of power in detecting 

effects of several SNPs, when compared to univariate imaging GWA. One statistical challenge of 

such sliding-window approaches is finding optimal window sizes, which can capture the 

correlation structure in the genomic data without adding excessive degrees of freedom to the 

model. Kohannim et al. considered several fixed, scanning window sizes (50, 100, 500 and 1000 

Kbp) in their study, and found boosting of power in detecting SNPs with different window sizes 

for different genomic regions. A more flexible approach may incorporate information such as the 

sample size and variant-specific LD structure into the selection of optimal window sizes for each 
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genomic region (e.g., Li et al., 2007). This could ensure that SNPs are not missed due to 

inappropriate window sizes. In addition, L1-driven methods, such as LASSO, may provide 

greater detection power by selecting sparse sets of genomic variants in association with imaging 

measures (Kohannim et al., submitted). As discussed above, however, multivariate methods can 

be applied not only to the genome, but also to the images, which are also high dimensional and 

show high spatial correlations. Sparse and penalized models can be useful in these situations as 

well. In 2010, Vounou et al. applied a sparse reduced-rank regression (sRRR) method to detect 

whole genome-whole image associations. They computed a matrix of regression coefficients, C, 

whose rank was p (number of SNP genotypes) times q (the number of imaging phenotypes, or 

pre-defined anatomical ROIs in their case). They reduced the rank of this large matrix to r, by 

factorizing the matrix into the product of a p x r matrix, B, and an r x q matrix, A, and 

constraining A and B to be sparse (Figure 4.6). To evaluate the power of their method and 

compare it to that of mass univariate modeling, Vounou et al. generated realistic, simulated 

imaging and genetic data. Using the FREGENE (FoRward Evolution of GENomic rEgions) 

software, and the ADNI baseline T1-weighted MRI dataset, they obtained a simulated dataset, to 

which they introduced genetic effects in a number of ROIs. It was not feasible for the 

investigators to consider all possible genetic effect sizes and sample sizes, but they were able to 

show boosted power for all parameter settings they explored. Setting the desired, reduced rank r 

equal to 2 or 3, they obtained higher sensitivities with sRRR at any given specificity for a sample 

size of 500. When they increased the sample size from 500 to 1000, they noted gains in 

sensitivities with sRRR, which were more considerable than the merely linear gains obtained 

with univariate modeling. They also demonstrated that boosted sensitivities obtained with sRRR 

increase with higher numbers of SNPs; sensitivity ratios (sRRR / mass univariate modeling) 
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could be boosted even further to ratios far exceeding 5 (observed with 40,000 SNPs) with 

numbers of SNPs considered in a typical GWAS (e.g., 500,000 SNPs). Direct power 

comparisons between association methods on DNA microarray data show that models that 

incorporate linear combinations of variables perform better than those that perform simple data 

reduction (Bovelstad et a., 2007). Bovelstad et al., found that the penalized method, ridge 

regression, was more powerful than LASSO, PCReg, supervised PCReg, and partial least squares 

regression (PLS), when it comes to predicting survival rates in cancer patients from DNA 

microarray data. In the future, direct comparisons of methods on imaging genetics data could 

inform the direction of new methods development.  
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Figure 4.6. Imaging and genomic data are incorporated into a sparse, reduced-rank regression model, where regions 
of interest (ROIs) and single nucleotide polymorphisms (SNPs) attain sparse coefficients, simultaneously. This 
approach can select pertinent SNPs and ROIs. In simulations, it demonstrates higher power than mass univariate 
models for detecting effects of genetic variants. Adapted with authors’ and publishers’ permission from Vounou et 
al. (2010). 

 

 

Comprehensive modeling of whole-brain voxelwise and genome-wide data remains challenging, 

due to the high dimensionality of the data. This causes both statistical and computational 

problems. Recently, there have been new developments applying sparse regression methods to 

genome-wide data; one such method is iterative sure independence screening (ISIS; Fan and Lv, 

2009; Fan and Song, 2010; He and Lin, 2011). ISIS is an iterative selection procedure that builds 

a marginal model using the cyclic coordinate descent (CCD; Friedman et al., 2010) algorithm 

with the LASSO and combines it with a conditional model of interactions based on pairwise 
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correlations. The combined model has lower dimensionality, but effects of individual SNPs are 

still identifiable, as are SNP-SNP interactions. This method appears to be promising for 

discovery-based searches of the genome. ISIS has not yet been applied to brain images, but it 

should be feasible. Methods such as ISIS could also be modified to jointly select imaging 

phenotypes and genomic data as done by Vounou et al., but without first having to select regions 

of interest or only a small subset of SNPs from the genome. 

 

Conclusion 
 

The field of imaging genetics started with candidate gene studies, where hypotheses about gene 

action on brain structure and function could be tested in a novel way. More recently, candidate 

gene studies have been extended to investigate voxelwise associations between genetic variants 

and images of the brain, to map 3D profiles of genetic effects without requiring a priori selection 

of regions of interest.  

 

To consider the entirety of the genome and discover potentially new variants, however, GWA 

studies have been introduced to the field of imaging genetics. In these studies, quantitative 

measures derived from images are considered as intermediate phenotypes, which are in some 

respects closer to the underlying biology of brain disorders and processes of interest.  Despite 

their unbiased consideration of the whole genome, the standard, univariate GWA approach 

considers only one SNP at a time and has several limitations. From a genetic perspective, it does 

not take into account the interdependence between genetic variants due to linkage 

disequilibrium; and in regard to imaging, such studies typically rely on single summary measures 

from images, which only weakly represent the wealth of information in a full 3D scan. 
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Among the most promising applications of imaging genetics are those that use sparse methods to 

reduce the data dimensionality. Sparse methods create efficient models, and boost power to 

identify patterns of association. A major advantage of penalized or sparse regression methods is 

that they accommodate collinearity inherent in the genome and in the images, but they still offer 

a familiar regression framework to accommodate covariates and confounding variables. 

Penalized regression models may include a large number of genetic predictors. This may 

discover genetic effects undetected by other data reduction methods, such as PICA and PCReg. 

For studies of large 3D statistical maps of imaging phenotypes, methods to penalize the selection 

of both voxels from the image and associated genetic variants from the genome seem to have 

higher power than related discovery-based methods. Even so, this is largely an empirical 

question that depends on the structure of the true signal. Indeed, Vounou et al. demonstrated the 

increased power of the sRRR method, which favors the selection of an efficient set of regions of 

interest and a reduced number of SNPs has increased power. A major limitation of penalized 

methods is that they may fail to converge on a solution when the data dimensions are very high. 

Even methods designed for p >> n problems such as least angle regression (Effron et al., 2004) 

tend to fail when given a full 3D imaging phenotype. This illustrates why current 

implementations of penalized regression in imaging genetics often rely on prior “groupings” of 

voxels or sliding windows in the genome. These prior groupings do not appear to be motivated 

by strong prior hypotheses, but by limitations in the statistical modeling. Methods similar to ISIS 

(Fan and Lv, 2009; Fan and Song, 2010; He and Lin, 2011) designed for ultra-high dimensional 

datasets will likely be useful for future imaging genetics projects.  
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Once we have a set of validated genetic variants that affect the brain, multivariate models may be 

used to combine imaging, genetics, and other physiological biomarkers to predict outcomes in 

patients with brain disorders. The resulting combination of imaging and genetic data, with other 

biomarkers, can be used to predict an individual’s personalized aggregate risk for specific types 

of brain disorders. As genomic and proteomic data are added, prognosis and diagnosis may be 

possible at an earlier stage or more accurate than is possible with current biomarkers. Machine 

learning algorithms (e.g., decision trees, support vector machines, and neural networks) have 

shown promise for making disease predictions from genomic and proteomic data (Cruz and 

Wishart, 2006). Similar approaches may be useful in psychiatry research, and neuroimaging 

measures such as fiber anisotropy from diffusion imaging may help in making early predictions 

of brain integrity from genes. In a recent, preliminary study, our group incorporated several 

candidate polymorphisms in a multi-SNP, machine learning model, to predict personal measures 

of fiber integrity in the corpus callosum (Kohannim et al., 2011b). Ideally, by incorporating both 

genomic and proteomic data from larger cohorts, one may be able to obtain personalized 

“scores” for brain integrity from biomarker profiles. This has considerable implications for 

prevention and early treatment of brain pathology. 
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Chapter 5. Multilocus genome-wide scan with ridge regression for gene discovery 
 

Introduction 
 

Imaging genetics is a new, emerging field in biomedical imaging. It aims to discover specific 

genetic variants, such as SNPs, that account for differences in anatomy and function. Analysis of 

image databases may pick up gene effects more efficiently than analysis of clinical or behavioral 

test scores, as imaging measures have high precision and reproducibility. Many image-derived 

measures such as hippocampal and caudate volumes are highly heritable and may be more 

directly influenced by genetic variation (Thompson et al., 2010). Already, genome-wide 

association studies (GWAS) of large MRI datasets (e.g., ADNI; N=740 subjects) have identified 

new candidate Alzheimer’s Disease (AD) risk genes including GRIN2B (Stein et al., 2010) and 

TOMM40 (Potkin et al., 2009) that are associated with regional brain volumes.  

 

Several international efforts, such as the Enigma project (http://enigma.loni.ucla.edu) are 

currently searching for genetic variants that affect brain structure and function, using databases 

of up to 10,000 images (The ENIGMA Consortium, 2011). Imaging GWAS studies, so far, only 

consider the independent effect of each variation in the genome. This ignores useful information 

from multiple SNPs in the same gene, and across the genome. Many brain measures are 

heritable; each SNP has a weak effect on its own, but moderate to strong effects are likely when 

all SNP effects are aggregated across the whole genome. To model effects of large numbers of 

predictors with weak effects, machine learning approaches, including penalized regression, 

artificial neural networks, support vector machines, and adaptive boosting methods, have been 

introduced for GWAS in the last few years. These so-called multi-locus genetic methods model 

http://enigma.loni.ucla.edu/
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the combined effect of large numbers of SNPs, to explain more of the genetic contribution to 

particular phenotypes (Szymczak et al., 2009). These approaches have been applied to several 

phenotypes related to rheumatoid arthritis (Sun et al., 2009) and coronary heart disease (Kim et 

al., 2009), but they have not yet been applied to the analysis of brain image databases.  

 

Ridge regression (Hoerl, 1959; Hoerl, 1962; Hoerl and Kennard, 1970) is one of several 

penalized regression methods for high-dimensional data analysis. Ridge regression works in 

many situations where ordinary multiple regression breaks down. It handles large numbers of 

highly correlated predictors, such as SNPs. Malo et al. (2008) showed that ridge regression tends 

to outperform standard, univariate regression in GWAS studies, except when only one single 

SNP affects the measures of interest. Ridge regression has been previously applied to the study 

of multiple SNPs (Malo et al., 2008; Sun et al., 2009), but not at a genome-wide level, and not in 

the field of imaging. Here, we apply this modified multiple regression approach to a genome-

wide analysis of the baseline brain MRI data from ADNI. We set out to find SNPs associated 

with measures of temporal lobe volume, and hippocampal volume, based on structural MRI. We 

hypothesize that our novel, genome-wide, penalized regression GWAS approach would help 

identify new candidate SNPs associated with imaging measures, including SNPs missed using 

standard univariate GWAS, which tests them independently. 

 

Methods 
 

A. Structural MRI Measures  

All subjects were scanned with a standard MRI protocol developed for ADNI. Hippocampal 

volumes were generated by an automatic segmentation method developed by our group, based on 
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adaptive boosting (Morra et al., 2008). Temporal lobe volumes were derived from an 

anatomically defined region-of-interest (ROI) on three-dimensional atrophy maps generated with 

tensor-based morphometry (TBM), a well-established method for mapping volumetric 

differences in the brain (Hua et al., 2008). Data were available for 740 ADNI subjects (173 AD, 

361 MCI, 206 controls; 438 men/302 women; mean ± SD age: 75.55 ± 6.79 years). MRI-derived 

measures of hippocampal volume were computed for a subset of 696 ADNI subjects (162 AD, 

343 MCI, 191 controls; 405 men/ 291 women; mean ± SD age: 75.36 ± 6.77 years). These 

measures were adjusted for sex and age. 

 

B. Genotypes  

Genotyping procedures for ADNI are thoroughly described in Saykin et al. (2010). As described 

in Stein et al. (2010b), genotypes were imputed to remove missing information and to compute 

the effective number of statistical tests across the genome; we also extracted SNPs that had 

minor allele frequencies greater than 10%, and Hardy-Weinberg equilibrium p-values more strict 

than 5.7 x 10-7.  

 

C. Ridge Regression  

Hoerl introduced ridge regression as a variant of multiple regression (Hoerl, 1959; Hoerl, 1962; 

Hoerl and Kennard, 1970). It is designed to handle high-dimensional data, in cases where high 

correlations among the predictors would lead standard multiple regression methods to fail. 

Several variants of the same method were independently discovered in separate branches of 

mathematics and statistics. Tikhonov regularization (Tikhonov and Arsenin, 1977) is a related 
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concept, for solving inverse problems. It enforces solutions to be smooth, by minimizing a 

penalty function that controls the regularity of the solution.  

 

In standard multiple regression, coefficients, βi, are obtained by minimizing the residual sum of 

squares of the data, after fitting the regression model, which yields: 

YXXX tt 1)( −=β  (1) 

Here X is an n x p matrix of p predictors or SNPs and Y is an n-dimensional vector of imaging 

measures obtained from n subjects. In analyses such as ours, where there are many highly 

correlated predictors, standard multiple regression fails because the Xt X matrix is highly ill-

conditioned or not invertible. 

 

Ridge regression addresses this by introducing a positive shrinkage parameter, λ, to obtain 

regression coefficients as follows: 

YXIXX tt 1)( −+= λβ  (2) 

Here I is the p x p identity matrix. As its name suggests, λ constrains the size of the regression 

coefficients by shrinking their variance to a specific, tunable extent. The idea of solving a 

regression equation with coefficients that are as small as possible (and forcing some to zero) is 

highly related to compressed sensing in computer vision (Donoho, 2006) or “L1-norm” 

minimization methods in mathematics, such as Bregman splitting (Goldstein and Osher, 2008). 

Coefficients are standardized after dividing them by their standard errors, which are the square 

roots of the diagonal elements of the variance-covariance matrix: 

211 )()()var( σλλβ −− ++= IXXXXIXX ttt  (3) 
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(Chatterjee and Price, 1977). Although we implemented this more traditional form of the 

variance-covariance matrix for our ridge regression analyses, other studies have considered 

alternative forms of this matrix, such as: 

12 )()var( −+= IXX t λσβ   (4) 

(Halawa and Bassiouni, 2000). P-values are then obtained from the t-distributed standardized 

coefficients, using the following formula to compute the effective number of degrees of freedom 

(EDF), formulated specifically for ridge regression (Malo et al., 2008): 

))(( 1 tt XIXXXtraceEDF −+= λ  (5) 

 

As the ridge regression shrinkage parameter, λ, gets closer to zero, the model behaves more like 

multiple regression with a similar coefficient of determination (R2). As λ approaches infinity, the 

model acts more similarly to univariate regression and the R2 or predictability of the model 

decreases. There is a need to find the optimal shrinkage parameter, offering sufficient shrinkage 

to allow for multi-collinearity, but not so high that the model loses its predictive ability. Several 

statistical methods exist to select the best shrinkage parameter for a ridge regression model. 

These include the Hoerl, Kennard and Baldwin estimator (Hoerl et al., 1975), and the Lawless 

and Wang estimator (Lawless and Wang, 1976). Here, we base our shrinkage estimation on the 

latter estimator (LW estimator, below), which, through a Bayesian approach, estimates λ as 

follows: 

∑=
i i

t
i Qp 22 )(/ βεσλ  (6) 

 

Here, the εi are eigenvalues of Xt X, Q is a p x p matrix, with the eigenvectors of Xt X as column 

vectors, and β represents the vector of standard multiple regression coefficients.  
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To illustrate the concept of ridge regression and test how the LW estimator performs with our 

data, we considered six SNPs in various incrementally decreasing levels of linkage 

disequilibrium, or correlation, with rs10845840, a SNP in the GRIN2B gene that our team 

previously identified with standard GWAS to be associated with temporal lobe volume (Stein et 

al., 2010). We investigated how the ridge regression shrinkage parameter affected the power to 

detect the effect of the main SNP of interest, when other adjacent SNPs were added to the model. 

By randomly permuting the imaging data 10,000 times (i.e., assigning the images to the wrong 

subjects), we ensured that the reference distribution of t statistics was appropriate for assessing 

significance (results are shown in Figure 5.1). 
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Figure 5.1. (a) The degrees of statistical correlation, across subjects, of the selected GRIN2B SNPs are shown with 
respect to rs10845840. In genetics, this is known as linkage disequilibrium (LD). (b) shows the distribution 
(histogram) of standardized ridge regression coefficients with shuffled phenotypes, along with a t-distribution with 
the same effective number of degrees of freedom (curve). The point of this experiment is to show that when the data 
are null, by construction, the t-statistic computed from the ridge regression formula correctly controls for false 
positive associations in null data. (c) Ridge regression P-values are graphed against the level of shrinkage. Each 
color represents a SNP, corresponding to panel (a). The gray line represents the optimal shrinkage determined by the 
LW estimator. (d) The regression model’s R2 is plotted against the degree of shrinkage; the thin gray line is as is in 
panel (c). With the optimized level of shrinkage identified via the LW estimator, there is a negligible loss in the 
model’s predictive ability. 
 

 

 

 

We performed ridge regression analyses separately for each imaging measure, for different 

“windows” or genomic regions of interest. In other words, we used a window-based scan of the 

genome, considering all nearby SNPs that are in high LD with a given SNP at the center of the 

window, as advocated by Malo et al. (2008). Windows were created by considering all SNPs that 



 

104 

passed a liberal, univariate GWAS p-value threshold of 0.10, along with their neighboring SNPs 

within a fixed distance, in single ridge regression models with the optimal shrinkage parameters. 

We tried a range of fixed window sizes (50 Kbp, 100 Kbp, 500 Kbp, and 1 Mbp) around the 

SNPs of interest. Here Kbp and Mbp denote thousands or millions of base pairs on the genome. 

 

D. Multiple Comparisons 

To correct for multiple comparisons, we divided the nominal p-value threshold of 0.05 by an 

estimate of the effective number of statistical tests across the genome. The effective number of 

tests (Meff) was calculated for each chromosome using the simpleM program, as detailed in Stein 

et al. (2010b). To perform post hoc, exploratory tests on the top SNPs, we created voxelwise 

statistical maps using standard linear regression. To correct for multiple spatial comparisons, we 

used the standard False Discovery Rate method (FDR; Benjamini and Hochberg, 1995).   

 

Results 
 

As described in the methods, the corrected p-value threshold was set to be 0.05 divided by the 

effective number of tests (i.e., 264,889), which is 1.89 x 10-7. None of the 437,607 SNPs in our 

study passed this threshold in association with hippocampal volume with standard, univariate 

GWAS. By using our genomic scanning of SNP windows using ridge regression, we were able 

to identify two intergenic SNPs (rs2912975 and rs4747490) that passed the stringent “genome-

wide” significance threshold (i.e., correcting for all the statistical tests across the genome). As 

mentioned in the methods, several genomic window sizes were used, which yield different p-

values for their corresponding SNPs. Below, we report the most significant p-values for the 

SNPs that passed the genome-wide p-value threshold. 
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The rs2912975 polymorphism on chromosome 7 was significantly associated with hippocampal 

volume (p-value = 4.98 x 10-8), along with its neighboring SNP, with which it is almost perfectly 

correlated. The SNP is located close to a predicted, regulatory sequence of DNA. Univariate 

GWAS yielded a non-significant p-value of 1.19 x 10-2 for this SNP on chromosome 7. We 

plotted the ridge regression p-values from a scanning window with rs2912975 and its neighbors 

as an example of boosted genomic association power from ridge regression, along with the 

standard GWAS p-values for the same SNPs (Figure 5.2). In addition, another intergenic SNP, 

rs4747490, on chromosome 10, was significantly associated with hippocampal volume. In the 

temporal lobe volume analysis, our genomic scanning of SNP windows with ridge regression 

boosted the significance of the intergenic, likely regulatory rs2456930 SNP on chromosome 15 

closer to the significance threshold.  
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Figure 5.2. The rs2912975 SNP has a p-value of 1.19 x 10-2 with standard, univariate GWAS, 
when correlated with hippocampal volume (top panel). In a ridge regression model, when 
considered along with SNPs in its vicinity, the same SNP has a genome-wide significant p-value 
of 4.98 x 10-8 (ridge regression p-values for a scanning window containing this SNP are displayed 
in the bottom panel; the top SNP is rs2912975). 

 

 

 

 

Since the rs10845840 SNP in the GRIN2B gene is statistically significant in its association with 

temporal lobe volume with standard univariate GWAS (Stein et al., 2010), we expected its 

significance to be also detected with our genome-wide ridge regression scanning technique, 

possibly at a boosted level. This was not the case, however. Therefore, we looked more closely at 

the ridge regression windows centered at this SNP. We found that although rs10845840 was the 

top SNP at 50Kbp and 100Kbp scanning windows, another SNP in the GRIN2B gene 

(rs1805502) was the most significant SNP in the larger window sizes of 500Kbp and 1Mbp. In 
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fact, in the 500-Kbp window, rs1805502 had a more significant p-value (7.51 x 10-5) than its 

univariate p-value of 9.08 x 10-5. The rs1805502 SNP resides in the 3’-untranslated region (UTR) 

of the GRIN2B gene, almost 200Kbp away from rs10845840. The two SNPs are not in LD with 

each other, i.e. they are not statistically correlated in the population (r2 = 0.006), and may 

therefore represent two independent contributions of the GRIN2B gene to the temporal lobe 

volume phenotype. To further explore this, we considered rs1805502 along with rs10845840 in a 

standard, multiple regression model (with no other SNPs). Both SNPs obtained p-values < 0.001, 

with minor alleles having effects in opposite directions. All other SNPs around rs10845840, even 

in our largest window size of 1Mbp, had p-values > 0.001 when they were paired with 

rs10845840 in standard, multiple regression models.      

 

In post hoc, exploratory tests, we evaluated more closely the effects of the genetic variants that 

ridge regression found to be strongly associated with our MRI-based summary measures. We 

performed voxel-by-voxel association studies using TBM. SNPs were coded in an additive 

fashion (0, 1 or 2 for the number of minor alleles). Volumetric differences at each voxel were 

correlated with the SNPs separately using standard regression, after adjusting for age and sex. 

We found that rs2456930 showed significant effects (FDR critical p-value of 0.023) in the 

temporal lobe voxels, using both temporal lobes as the search regions of interest (Figure 5.4), 

and at the whole-brain level, with an FDR critical p-value of 3.71 x 10-3 (i.e., the highest P value 

threshold that controls the FDR at the conventional 5% rate). Furthermore, the rs2912992 SNP 

had a significant association (with an FDR critical p-value of 0.0099) selectively within the left 

hippocampal voxels (Figure 5.3), although it did not pass FDR for both hippocampi or for the 
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right hippocampus. Replication studies and meta-analyses in even larger samples are underway, 

to confirm this.  

 

Figure 5.3. TBM reveals the profile of statistically significant effects of 
rs2912975 on the left hippocampus. FDR was used to correct for multiple 
comparisons in the left hippocampal voxels, using a binary mask. The image is 
in radiological convention (the right side of the image shows the left side of the 
subject’s brain). 

 

 
Figure 5.4. TBM reveals the profile of statistically significant effects of the 
rs2456930 polymorphism on the temporal lobes. FDR was used to correct for 
multiple comparisons in the temporal lobe voxels, using a binary mask for the 
temporal lobes. The image is in radiological convention (the right side of the 
image shows the left side of the subject’s brain). 
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Conclusion 
 

We applied a novel, genome-wide, ridge regression approach to study the association of multiple 

SNPs with imaging phenotypes. We identified three SNPs with significant or near genome-wide 

significant effects on MRI-derived hippocampal volume and temporal lobe volume measures. In 

some but not all cases, associations were boosted in power relative to standard, univariate 

genome-wide association analyses. In addition, two of the three SNPs we identified had 

significant voxelwise effects in post hoc analyses and are located near regulatory DNA 

sequences, making them potentially important genetic variants for influencing brain structure in 

large populations. 
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Chapter 6. Prediction of temporal lobe volume on MRI from genotypes with elastic net 
 

Introduction 
 

Many early studies in imaging genetics explored univariate associations between genotypes and 

imaging measures, assuming each gene acted independently. One disadvantage of such studies is 

their limited statistical power to detect gene effects on the brain. Meta-analyses such as the 

Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) project (The ENIGMA 

Consortium, 2011) have boosted statistical power, by analyzing MRI and genome-wide genotype 

data from over 20,000 subjects, gaining power from very large sample sizes. Multivariate 

approaches, which simultaneously consider entire sets of genotypes, sets of voxels in an image, 

or both, have also become more popular (Hibar et al. 2011a), as they also handle potential 

problems in high-dimensional data, such as highly correlated predictors, where almost all have 

no detectable effects.  

 

In Hibar et al. (2011a), we reviewed several recent multivariate, imaging genetics studies that 

applied principal component regression (Hibar et al., 2011b), sparse reduced rank regression 

(Vounou et al., 2010), or independent components analysis (Liu et al., 2009) to discover genetic 

influences on the brain that would have been missed by using only univariate techniques. 

Regularized, sparse regression methods, in particular, use penalty terms to tackle the problems of 

high dimensionality (e.g., having more predictors than samples), multiple highly correlated 

measures, and multiple comparisons across an image, the genome, or both. The “elastic net” 

combines L1- and L2-norm regularization and benefits from the advantages of both methods, to 

handle high-dimensional, highly correlated data. The algorithm takes advantage of the sparsity 



 

112 

properties of L1 (Least Absolute Shrinkage and Selection Operator, or LASSO), along with the 

stability of L2 (ridge) regression (Zou and Hastie, 2005). Here, we introduce an elastic net 

approach to predict an imaging measure from top genotypes. We aim to  incorporate top genetic 

variants (i.e., single nucleotide polymorphisms or SNPs), screened based on univariate genome-

wide search (as in a genome-wide association analysis or GWAS), into an elastic net model, to 

predict temporal lobe volume on MRI. Recently, the elastic net has been applied to genomics 

(Cho et al., 2009; Cho et al., 2010) for jointly considering genetic polymorphisms as well as 

imaging (Bunea et al., 2011), to integrate large numbers of imaging and clinical predictors. More 

recently, the algorithm has also been used to detect multi-SNP associations with hippocampal 

surface morphometry (Wan et al., 2011), and to integrate imaging and proteomic data in 

Alzheimer’s disease (Shen et al., 2011). 

 

We hypothesize that this doubly regularized, multivariate regression method would allow us to 

make significant predictions of MRI-derived temporal lobe volume from genotypes. This 

predictive approach, we propose, may have implications for early, personalized risk assessment 

of brain disorders such as Alzheimer’s disease, where the temporal lobes undergo significant 

atrophy. 

 

Methods 
 

A. MRI Measures  

ADNI subjects were scanned with a standard MRI protocol optimized for reproducibility and 

consistency across 58 sites in North America. Temporal lobe volumes were derived from an 

anatomically defined region-of-interest (ROI) on three-dimensional maps of relative volumes 
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generated with tensor-based morphometry (TBM), a well-established method to map volumetric 

differences in the brain (Hua et al., 2008). Temporal lobe volume is particularly interesting, as 

this structure is prone to atrophy in Alzheimer’s disease (AD). There is interest in discovering 

genes that may promote or resist the atrophy, or contribute to normal variations in its volume. A 

total of 740 subjects with both imaging and genotype data were included (173 with AD, 361 with 

mild cognitive impairment or MCI, and 206 cognitively healthy controls; 438 men and 302 

women; mean ± SD age: 75.55 ± 6.79 years).  

 

B. Genotypes 

Genotyping procedures for ADNI are described in Saykin et al. (2010). SNPs with minor allele 

frequencies less than 0.01 and Hardy-Weinberg equilibrium p-values less strict than 5.7 x 10-7 

were excluded. Genotypes were imputed to infer missing information. 

 

C. Elastic net method  

The elastic net (Zou and Hastie, 2005) is a form of penalized regression, where both L1 and L2 

regularizations are introduced into the standard multiple linear regression model, as formulated 

below for n subjects and p predictors: 

2

211
2* minarg βλβλββ

β
++−= Xy  (1) 

Here, y represents the vector whose n components are the imaging measure for each subject, 

after adjusting for sex and age (residuals of regression). X is the n x p matrix of genotypes for top 

genetic variants across the genome. β* represents the vector of fitted regression coefficients for 

each SNP’s effect on the imaging measure. λ1 is a positive weighting parameter on the L1 

penalty, which promotes sparsity in the resulting set of fitted regression coefficients, as many 
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coefficients are likely to be exactly zero. λ2 is a positive weighting parameter on the L2 penalty, 

which promotes stability in the regularization path and precludes a limit on how many variables 

are selected (in strict LASSO, at most n variables can be selected in an n by p case).  

 

In ten separate experiments (Figure 6.1), we randomly split the data into training sets with 3n/4 

and testing sets with n/4 subjects. Standard univariate associations were performed for all 

~500,000 genotyped variants with the imaging measure, using the training set only, and top 

4,000 SNPs were then fed into the elastic net algorithm. This is a common pre-screening step 

that has been used in similar contexts (Cho et al., 2010). Leave-one-out cross-validation was 

performed within the training sets to determine the optimal penalty parameters with the mean 

squared error criterion. Both λ1 and α are optimized with a grid search, where a = λ2 / (λ1 + λ2), 

such that the penalty term of (1), P, is restated as below: 

( )
1

2
1 βαβα −+=P    (2) 

 

Mean squared error is commonly minimized for parameter tuning using cross-validation, 

similarly to previous studies in this context (Shen et al., 2011; Wan et al., 2011). To avoid bias, 

cross-validation for selecting hyperparameters is done separately from evaluation of the model. 

Models trained to have optimal penalty parameters were tested on the test sets to obtain mean 

squared errors for predicting the imaging measure from genotypes. For our analyses, we used the 

‘glmnet’ package (Friedman et al., 2010) implemented in R (http://cran.r-project.org). This 

optimizes model fitting parameters via an efficient, coordinate descent algorithm.  

 

http://cran.r-project.org/
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A similar procedure was repeated 100,000 times. To reduce computational time, unlike the actual 

experiments, only the optimal penalty parameters were used and a fixed set of top 4,000 SNPs 

from a univariate genome-wide search were incorporated into the models. Imaging measures 

were randomly assigned to all subjects, after which the data was randomly split into training and 

testing sets as above. Mean squared errors for prediction of test set temporal lobe volumes were 

then obtained for each permutation. 

 

Figure 6.1. Validation framework. Different loops of cross-validation are necessary to prevent 
over-fitting of a predictive model. We pre-screen the single nucleotide polymorphisms (SNPs) for 
dimension reduction, and elastic net parameter optimization, is only performed within the training 
data. The mean squared errors of predictions in 10 separate trials on independent test sets are 
averaged. LOOCV = Leave-one-out cross-validation.  

full n by p 
imaging 

genetics data training set 

(3n/4 subjects)

testing set (n/4 subjects)

repeat for 10 trials

screen SNPs 
with 

univariate 
regression

optimize 
elastic net 
(LOOCV)

 

 

Standard multiple regression cannot be used in our scenario, as the multivariate analysis for all 

top SNPs would fail (i.e., the model fitting equation would be ill-conditioned), as there are many 

more variants than subjects (p >> n problem).  
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To perform post-hoc, exploratory tests on our top SNPs, we created voxelwise statistical maps to 

reveal the spatial profile of associations with regional brain volumes. We fitted linear 

associations at each voxel, adjusted for covariates (sex and age). To correct for multiple spatial 

comparisons, we used a regional False Discovery Rate (FDR) method, which is now fairly 

standard in neuroimaging (Langers et al., 2007). 

 

Results 
 

We averaged the mean squared errors of the optimized predictive models on test sets. An average 

mean squared error of 3,147 was obtained with the elastic net predictor in independent sets of 

test subjects. The average mean squared error in the 100,000 permutations was 4,257 with a 

standard deviation of 397. Compared to the distribution of the errors across the permutations 

(Figure 6.2), the p-value is found to be close to 0.001.  
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Figure 6.2. Distribution of mean squared errors for the 105 simulations 
conducted with the optimal elastic net parameters. Errors are 
approximately normally distributed (mean, 4,257; SD: 397). 131 
permutations had errors smaller than our predictive model’s error (red 
line), yielding an empirical p-value ~ 0.001. 
 

 

 

 

To investigate which genetic variants contributed most to the predictions, we examined the 

average absolute values of coefficients for each fitted predictor. Out of the 4,000 variants 

incorporated into the elastic net models in each of the ten trials, 105 were screened for all trials. 

We investigated the coefficients obtained by these SNPs. The top ten are shown in Table 6.1. To 

ensure that the findings were robust, we also counted the number of times the variants received 

nonzero coefficients across the ten runs (Table 6.1). With permutations, each SNP obtained a 

nonzero coefficient only about 2.0 ± 0.5 SD times, on average. 
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Table 6.1. List of single nucleotide polymorphisms (SNPs) with the highest 
contribution to the elastic net models predicting temporal lobe volume on MRI. 
These ten SNPs had the largest elastic net coefficients (absolute values), and 
their selection was robust, as they obtained nonzero coefficients at least 8 out of 
the 10 total trials. Corresponding gene names and chromosome numbers are 
displayed for the variants.  
 

SNP Gene Chr |β|average 
|β|>0 
count 

rs2456930 - 15 2.32 10 
rs10518480 - 4 1.96 10 
rs17476752 - 5 1.78 9 
rs9933137 RBFOX1 16 1.75 8 
rs10845840 GRIN2B 12 1.64 9 
rs997972 - 20 1.50 9 
rs1929933 GLDC 9 1.44 9 
rs1564348 SLC22A1 6 1.41 9 
rs309800 - 4 1.37 10 
rs11204135  8 1.33 10 
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We noted that rs10845840 in the GRIN2B gene and the intergenic rs2456930, which were the top 

findings with a univariate genome-wide search (Stein et al., 2010), also appeared in our top list, 

which is a re-assuring validation. Interestingly, rs9933137 in the RBFOX1 gene also obtained a 

very high mean |β| and outperformed the top univariate SNP in GRIN2B. To explore the profile 

of effects of the RBFOX1 SNP on temporal lobes in more detail, we performed an exploratory, 

post-hoc voxelwise test, shown in Figure 6.3.  

 

Figure 6.3. The post-hoc voxelwise effects of the RBFOX1 rs9933137 polymorphism are shown 
on TBM-derived maps of the temporal lobes, using linear regression. Volumetric change at each 
voxel is linearly regressed against the genetic variant, along with covariates such as sex and age. 
P-values for the associations are corrected for multiple spatial comparisons using regional false 
discovery rate (FDR). Warmer colors represent more significant effects. Images are in radiological 
convention. Results survived multiple comparisons correction across both lobes, but the left 
temporal lobe showed stronger effects (also seen in the left sagittal slice). Although this does not 
add new information to the multivariate, prediction study, it confirms that the highly predictive 
polymorphism’s diffuse effects on the temporal lobes at a voxel-by-voxel basis.   

 
 

Conclusion 
 

We proposed a multivariate model to predict an imaging measure from genotypes, using L1-L2 

regularized regression, also known as the elastic net. We split 740 ADNI subjects into training 

and test sets in ten separate trials. We optimized elastic net parameters in the training set using 
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leave-one-out cross-validation, and predictions were made on the independent test sets. This is a 

rigorous predictive framework, as it avoids the overfitting that can arise if training data are used 

for testing. We also compared the performance of our predictor with that of 105 permutations, 

where MRI measures were randomly assigned to the subjects. Our predictions were significantly 

better than those made by random models. Although the main goal of our study was prediction 

rather than discovery, we also looked for the variants that most strongly contributed to the 

predictions. Using average elastic net coefficients as a metric, we found a single nucleotide 

polymorphism in the RBFOX1 gene to be most contributory to the predictive models, which also 

showed significant 3D effects on the temporal lobes. This gene, also known as A2BP1, has been 

previously characterized as an autism risk gene (Martin et al., 2007), and regulates neuronal 

excitation in the brain (Gehman et al., 2011). Interestingly, it has also been discovered in another 

sparse regression imaging genetics study as a highly significant gene (Vounou et al., 2011). 

Future studies are needed to compare the performance of this predictor with other multivariate 

techniques. Pre-screening of genetic variants, which was done as a way of reducing 

dimensionality similarly to previous studies (Cho et al., 2010), may be a limitation, as it might 

lead to missing potential effects from contributory genes. Furthermore, applying multi-voxel 

methods (Liu et al., 2009; Vounou et al., 2010; Vounou et al., 2011) and incorporating biological 

pathway information may yield more statistically powerful predictions.   
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Chapter 7. Multi-gene prediction of white matter structure 
 

Introduction 
 

Diffusion tensor imaging (DTI) is widely acknowledged as a useful tool for studying the white 

matter microstructure of the living brain. By mapping the diffusion of water through the brain’s 

fibers, DTI can recover major fiber pathways in the brain, and patterns of anatomical 

connectivity, with broad applications in psychiatry, neurology and brain mapping (Thomason 

and Thompson, 2011). DTI-based white matter abnormalities are widely reported in 

developmental and degenerative brain diseases including Alzheimer’s disease and mild cognitive 

impairment (Fellgiebel et al, 2004; Naggara et al, 2006; Oishi et al, 2011), schizophrenia (White 

et al, 2008; Ellison-Wright and Bullmore, 2009; Patel et al, 2011), bipolar disorder (Sussman et 

al, 2009; Heng et al, 2010), attention-deficit/hyperactivity disorder (ADHD; Konrad et al, 2010), 

and autism (Alexander et al, 2007; Ke et al, 2009). These studies show the utility of DTI in 

neuropsychiatric research. In several studies, treatment of neuropsychiatric patients has also been 

associated with changes in DTI measures (Versace et al, 2008; Yoo et al, 2007). This also shows 

the promise of DTI for understanding therapeutic effects.  

 

Measures of white matter integrity derived from DTI, such as fractional anisotropy (FA), are 

highly heritable (Lee et al, 2008; Chiang et al, 2009; Kochunov et al, 2010; Lee et al, 2010; Patel 

et al, 2010; Chiang et al, 2011b). As such, they may be useful as intermediate measures or 

“endophenotypes” (Meyer-Lindenberg and Weinberger, 2006; de Geus et al, 2008; Hall and 

Smoller, 2010; Marenco and Radulescu, 2010) for assessing genetic influences on the brain. 

Several commonly-carried genetic variants have already been identified that exert small effects 
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on the brain’s white matter as detected by DTI. These include highly prevalent polymorphisms in 

genes coding for brain-derived neurotrophic factor (BDNF; Chiang et al, 2011a), clusterin (CLU; 

Braskie et al, 2011b), the neuregulin 1 receptor (ErbB4; Konrad et al, 2009), neurotrophic 

tyrosine kinase receptor, type 1 (NTRK1; Braskie et al, 2011a), catechol-O-methyl transferase 

(COMT; Thomason et al, 2010), and the hemochromatosis gene, HFE (Jahanshad et al, 2012a). 

We therefore considered these genes as candidates in this study.  

 

The molecular and cellular effects of these genes and their protein products have been 

extensively investigated. COMT is a well-studied gene and codes for one of a group of enzymes 

that degrade catecholamines. Catecholamine levels are altered in many neuropsychiatric 

disorders, thereby making this molecule an ideal target for medications. Several of the genes 

above are also well-known for their role in brain development. BDNF’s protein product is a 

neural growth factor or neurotrophin, vital for the healthy development and maintenance of the 

nervous system (Binder and Scharfman, 2004). Similarly, NTRK1 codes for TrkA, which belongs 

to a tyrosine kinase receptor family, to which neurotrophin growth factors bind. Neurotrophins 

and their receptors, not surprisingly, are also important in neuropsychiatric disease and may offer 

new therapeutic targets in the form of small-molecule antagonists or mimickers (Allen and 

Dawbarn, 2006). ErbB4 encodes another tyrosine kinase receptor, which by binding to its ligand, 

neuregulin-1 (coded by NRG1), participates in neural modulation and development and is 

thought to contribute to the pathophysiology of schizophrenia (Hahn et al, 2006). Lastly, HFE 

and CLU contain polymorphisms that increase the risk for neurodegenerative disease. Their 

protein products regulate iron metabolism – important in brain aging (Bartzokis et al, 2011) – 

and beta-amyloid metabolism (DeMattos et al, 2002), respectively. 
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White matter structure is certainly influenced by non-genetic factors such as age (Chiang et al, 

2011b), and sex differences (which are partly genetic and nongenetic), but we expect a moderate 

and significant proportion of an individual’s white matter integrity to be predictable from their 

genetic profiles. This is corroborated by DTI findings of high heritability for white matter 

microstructure. As mentioned above, individual effects of single genetic variants on white matter 

structure have been explored, but a multilocus approach has not yet been taken. The utility of a 

multilocus candidate gene model in predicting an imaging-derived outcome was recently 

explored in the context of structural MRI (Biffi et al, 2010) and functional MRI (Nikolova et al, 

2011), but its applications in diffusion tensor imaging and detailed three-dimensional maps of 

brain structure appear novel. In this paper, we incorporate a subject’s genetic signature, at key 

loci, into a multilocus model. We hypothesize that this would help predict brain integrity, as 

measured by DTI-derived FA, more powerfully than a single-locus genetic test. We focus on the 

corpus callosum, as it is the largest white matter structure in the brain, easy to examine at the 

brain’s midline, highly heritable (Chiang et al, 2009; Brouwer et al, 2010; Kochunov et al, 

2010), and well-studied in neurology and psychiatry as the primary commissure connecting the 

two brain hemispheres (Foong et al, 2000; Alexander et al, 2007). We chose FA as the DTI 

measure of white matter structure, as it has been shown to have higher heritability than other DTI 

parameters, such as radial and axial diffusivity (Kochunov et al, 2010). 

 

Methods 
 

A. Participants 
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A total of 395 subjects (23.7 ± 2.2 years of age; 143 men and 252 women; 47 siblings, 141 

monozygotic twins (49 pairs and 43 singles) and 207 dizygotic twins (1 triplet, 70 pairs and 64 

singles) from the Brisbane young adult twins and siblings study (de Zubicaray et al, 2008) were 

included in our study, for whom both 105-gradient DTI scans and genome-wide genotype 

information were available. All twins in this study are Australians of European descent. 

Previously, principal component analysis was conducted in this cohort for population 

stratification analysis and correction (Medland et al, 2009). Subjects who were more than six 

standard deviations from either of the top two average reference principal component scores – 

derived from non-Australian European populations – were identified as ancestry outliers and 

excluded from analysis. The first two principal components refer to differences between Africans 

and non-Africans and to differences between East Asians and others, respectively. Due to 

migration patterns and the fact that this sample was originally recruited to study mole patterns, 

exclusions are usually due to Asian or Polynesian ancestry. All subjects were screened to 

exclude cases of pathology known to affect brain structure. Additionally, no subjects had a first-

degree relative with a psychiatric disorder or reported a history of significant head injury, a 

neurological or psychiatric illness, substance abuse or dependence. 

 

B. Diffusion Tensor Imaging 

Whole-brain diffusion tensor MRI scans were collected with a 4-Tesla Bruker Medspec MRI 

scanner. Images were acquired using single-shot echo planar imaging with a twice-refocused 

spin echo sequence to reduce eddy-current induced distortions. Acquisition parameters were 

optimized to yield the best signal-to-noise ratio for estimation of diffusion tensors (Jones et al, 

1999). Imaging parameters were: 23 cm field-of-view, TR/TE 6090/91.7 ms, with a 128 × 128 
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acquisition matrix. 105 images were acquired for each subject: 11 with no diffusion sensitization 

and 94 diffusion-weighted images with gradient directions evenly distributed on the hemisphere. 

Standard protocols for skull-stripping and eddy current distortion correction are performed using 

FSL (http://www.fmrib.ox.ac.uk/fsl) and we adjusted for echo planar imaging distortions as 

detailed in prior studies (Leow et al, 2005; Jahanshad et al, 2010). FSL was also used to 

calculate tensors and scalar maps of fractional anisotropy (FA) from the corrected images. The 

LONI pipeline (http://pipeline.loni.ucla.edu) was used to parallelize the preprocessing steps.  

 

A mean deformation template (MDT) was created for the DTI scans, to which subjects’ FA maps 

(obtained from DWI elastically aligned to their high resolution T1-weighted anatomical scan) 

were registered as in Jahanshad et al (2010), using a 3D elastic warping technique with a mutual 

information cost function (Leow et al, 2005). The MDT and the registered FA maps were then 

thresholded at 0.25, as FA measures below this threshold may reflect contributions from non-

white matter in healthy-appearing white matter. After registering the FA maps across subjects, 

all FA images were smoothed with a Gaussian filter with a 7-mm isotropic full-width at half max 

(FWHM). The structure of the corpus callosum was identified automatically by using the Johns 

Hopkins University (JHU) white matter atlas (ICBM DTI 81; Mori et al, 2008), which tracks its 

3D extent, extending laterally from the midline (Figure 7.1).  The atlas FA image was linearly 

and then elastically registered to our study specific FA-MDT; the transformation and 

deformation map was then applied to the JHU set of labels using nearest-neighbor interpolation 

to avoid intermixing of labels. The full label (composed of three regions: splenium, body, and 

genu) of the corpus callosum was then accurately extracted. This avoided subjectivity and rater 

dependency in defining the limits of the corpus callosum.  
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Figure 7.1. The three-dimensional structure of the corpus callosum, as defined by the Johns Hopkins University 
(JHU) white matter atlas is displayed in axial, coronal and sagittal views in blue, overlaid on a mean deformation 
template of the brain. 

 

 

C. Genotyping and Selection of Candidate SNPs 

We considered six candidate SNPs listed in Table 7.1 due to the recent imaging genetics 

discoveries outlined in the introduction. These particular genetic variants are located in six 

different genes. All have been linked to structural differences detectable with DTI. Several of 

these polymorphisms (i.e., rs6265 in BDNF, rs6336 in NTRK1, rs4680 in COMT and rs1799945 

in HFE) are exonic variants and lead to amino acid changes in the protein products of these 

genes (val→met, his→tyr, val→met and his→asp, respectively). These have been well-studied 

in the neuropsychiatric literature (Egan et al, 2003; Zecca et al, 2004; Tunbridge et al, 2006; van 

Schijndel et al, 2011). The remaining candidate SNPs do not cause missense mutations, but have 

been discovered in genome-wide association and genetic risk studies of neuropsychiatric disease 

(Lambert et al, 2009; Silberberg et al, 2006; Konrad et al, 2009). To obtain genotype 

information, genomic DNA samples were analyzed on the Human610-Quad BeadChip 

(Illumina) according to the manufacturer’s protocols (Infinium HD Assay; Super Protocol Guide; 

Rev. A, May 2008). Additionally, imputation was performed by mapping the genotyped 
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information to HapMap (Release 22 Build 36) using the Mach software 

(http://www.sph.umich.edu/csg/abecasis/MACH/index.html). All candidate SNPs passed a 

platform-specific quality control score (>0.7) and genotype call rate (>0.95). 

 

D. Statistical Analysis 

Linear mixed-effects models were used to study the joint and individual associations of 

genotypes with imaging measures, to take into account the relatedness between the subjects. For 

n subjects and p independent predictors (SNPs or other covariates), regression coefficients (β) 

were obtained, using the efficient mixed-model association (EMMA) software with restricted 

maximum likelihood estimation (Kang et al, 2008), according to the formula: 

εβ ++= ZbXy  

Here, y represents an n-component vector of voxelwise or mean FA measures, X is a matrix of 

SNP genotypes (coded additively as 0, 1 or 2 for the number of minor alleles) and/or covariates 

(e.g., sex and age), Z is the identity matrix, and b is a vector of random effects with a variance of 

σg
2K, where K is the n by n kinship matrix for the twins and siblings (here, monozygotic twins 

are coded as 1, dizygotic twins and siblings as 0.5, and unrelated subjects as 0, corresponding to 

the expected proportion of their shared genetic polymorphisms, respectively). ε is a matrix of 

residual effects with a variance of σe
2I, and I is an identity matrix. P-values for the significance 

of individual and joint SNP associations with FA were assessed using an F-test, according to the 

formula, 
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where RSS represents the residual sum-of-squares, a reduced model includes only covariates, and 

a full model contains both SNPs and covariates. For all statistical analyses, the LONI pipeline 

http://www.sph.umich.edu/csg/abecasis/MACH/index.html
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(http://pipeline.loni.ucla.edu/) was used for parallelization on a multi-CPU grid computer. The 

standard false discovery rate (FDR) method (Benjamini and Hochberg, 1995) was used for 

multiple comparison correction across voxels in the corpus callosum. 

 

Results 
 

We assessed six candidate SNPs that have recently been implicated, to varying degrees, in 

affecting the brain, at the gross anatomical or microstructural level. We first used linear mixed-

effects models to regress each subject’s genotype at each candidate SNP against average FA 

measures across the corpus callosum (all callosal voxels with an FA above 0.25), to study their 

individual effects on white matter integrity. The regression β- and p-values for each SNP on its 

own, treated as an independent predictor, are shown in Table 7.1.  

 
Table 7.1. Associations of single SNPs with mean callosal FA. Candidate single nucleotide polymorphisms (SNPs) 
are listed with corresponding gene names and chromosome numbers. Minor allele frequencies (MAFs) were 
estimated from unrelated subjects in our dataset, for each genetic variant; the resulting MAF estimates were, in all 
cases, comparable to corresponding MAF estimates reported in the literature. P-values arising from tests of 
deviation from Hardy-Weinberg Equilibrium (HWE) are also reported for each SNP, none of which were 
significant. Linear regression coefficients, β, are also shown (with directions of effect corresponding to the number 
of minor alleles). P-values report the significance of association of each SNP with the average fractional anisotropy 
(FA) across the corpus callosum (CC). The top three genes have SNPs that are each predictive of CC integrity on 
their own, while the others individually do not, at least in this sample. 
 

SNP Gene Chromosome MAF HWE p-value Β (p-value) 
rs6336 NTRK1 1 0.04 0.062 -0.015 (0.0066) 
rs11136000 CLU 8 0.45 0.072 0.0051 (0.037) 
rs839523 ErbB4 2 0.30 0.42 0.0053 (0.036) 
rs4680 COMT 22 0.48 0.50 0.0039 (0.11) 
rs1799945 HFE 6 0.16 0.10 0.0032 (0.29) 
rs6265 BDNF 11 0.21 0.085 0.00031 (0.91) 
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We then assessed the joint effect of our set of candidate SNPs on the corpus callosum, using a 

partial F-test and linear mixed-effects model to compute p-values. When regressed against 

average FA across the corpus callosum, a 5-SNP model with NTRK1, CLU, COMT, ErbB4 and 

HFE containing top SNPs explained 5.6% of the variance in FA (p=0.0001; model included sex 

and age; a model including only sex and age explained 0.42% of the variance). Prediction of 

mean callosal FA was improved by adding candidate SNPs in a stepwise fashion (Table 7.2). 

Addition of the BDNF SNP, however, did not improve the model. To ensure multicollinearity 

was not present among the genotypes, we looked the correlation structure between the candidate 

SNPs, and none was correlated with any of the others (Table 7.3). 

 

Table 7.2. Multilocus effects on average callosal FA and 3-dimensional maps of the corpus callosum. Groups of 
candidate single nucleotide polymorphisms (SNPs) are considered in joint association with mean callosal FA and 
voxelwise FA measures in the corpus callosum, in a stepwise fashion, adding SNPs in order of their individual 
effects (strongest to weakest). For mean FA, the fractions of variability explained by the top SNPs are shown, using 
the multiple regression R2. For voxelwise results, we show the critical p-value thresholds after correcting for 
multiple comparisons with the false discovery rate (FDR) method, the number of voxels passing FDR at the critical 
thresholds (also as a percentage of all callosal voxels), the number of voxels with joint effect p-values less than 
p=0.05 (also as a percentage of all callosal voxels) and the minimum joint effect p-values across the corpus 
callosum. Values are displayed for each progressively expanding set of SNP predictors. For all associations, we 
adjusted for sex and age at each voxel; we accounted for kinship structure via mixed-effects models. 
 

 Mean callosal FA 3D maps of the corpus callosum 

No. of top SNPs R2  critical FDR p voxels below 
 critical p 

voxels with  
p<0.05 minimum p 

1 0.031 3.49 x 10-2 4303  (70%) 4709  (77%) 1.49 x 10-5 
2 0.039 4.02 x 10-2 4946  (80%) 5147  (84%) 8.54 x 10-7 
3 0.046 3.96 x 10-2 4874  (79%) 5080  (83%) 1.23 x 10-6 
4 0.052 4.06 x 10-2 5003  (81%) 5164  (84%) 1.54 x 10-6 
5 0.056 4.08 x 10-2 5024  (82%) 5184  (84%) 1.25 x 10-6 
6 0.056 3.66 x 10-2 4501  (73%) 4830  (79%) 4.25 x 10-6 
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We also investigated the combined influence of the candidate SNPs on more detailed, spatial 

maps of the corpus callosum. In a stepwise fashion, in order of the SNPs’ individual effects 

(strongest to weakest, as shown in Table 7.1), we studied multilocus effects on voxel-by-voxel 

maps of callosal white matter structure are shown in Table 7.2. The 5-SNP model showed the 

most widespread, statistically significant influence on the corpus callosum, where 82% of voxels 

(encompassing the callosal body, genu and splenium) survived the false discovery rate (FDR) 

correction for multiple comparisons across all callosal voxels, at a critical p-value threshold of 

0.041 (Figure 7.2); we note that in FDR, a higher critical p-value denotes a stronger effect, as it 

is the highest threshold that controls the FDR; as such this effect is widespread and strong. Both 

the number of statistically significant voxels and the critical p-value threshold were strongest for 

the 5-SNP model. Figure 2 also shows the voxelwise distribution of the fraction of variance 

explained by the 5-SNP model in the corpus callosum. 
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Figure 7.2. Voxelwise R2 and p-values are shown in three representative sagittal slices for the joint effect of 5 SNPs 
in the NTRK1, CLU, COMT, ErbB4 and HFE genes on the corpus callosum microstructure, measured by DTI 
fractional anisotropy (FA). (A) The coefficient of determination (R2) or predictability of the 5-SNP model at each 
voxel is shown in the selected slices. Warmer colors represent higher fractions of variance in FA explained by the 
multi-SNP model. (B) P-values are shown for the 5-SNP model at each voxel; maps are corrected for multiple 
comparisons across voxels by applying a critical p-value threshold to control the FDR. Warmer colors represent 
more significant associations (greater effect sizes). For associations at each voxel, we adjusted for any effects of sex 
and age, and accounted for kinship structure via mixed-effects models. 
 

 

 

In addition to the additive, linear model, we included two-way SNP-SNP interactions in the 

mean callosal FA mixed-effect model. No significant interactions were found (Table 7.4). We 

also explored prediction of voxel-by-voxel FA from the 5 SNPs using two popular machine 

learning models (support vector regression and artificial neural networks; see Supplementary 

Methods), within a cross-validation framework, which similarly to the mixed-effect model, led to 
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statistically significant predictions across the corpus callosum (Figure 7.3). At each voxel, 

mean-squared errors of predictions of FA were obtained from the candidate genotypes. The 

artificial neural network and support vector regression models’ predictive errors were then 

compared to those of null predictors (i.e., where FA is randomly assigned to subjects) through 

permutations. The learning models were found to be statistically significant across 75% and 40% 

of the corpus callosum voxels, after correcting for multiple comparisons, with critical p-value 

thresholds of 0.037 and 0.019, respectively. 

 

Discussion 
 

In this work, we aimed to predict neuroanatomical white matter structure based on multiple 

genetic risk factors, while covarying for sex and age. Five of the six candidate polymorphisms 

that we considered in the study - CLU (Braskie et al, 2011b), ErbB4 (Konrad et al, 2009), 

NTRK1 (Braskie et al, 2011a), COMT (Thomason et al, 2010) and HFE (Jahanshad et al, 2012a) 

– explained close to 6% of the variability in mean callosal FA, using a linear mixed-effect model. 

This is a considerable fraction of the variance explained by only a few SNPs, taking into account 

the complexity of the structure and the non-genetic factors that influence it. It is also comparable 

to previous findings in the literature for multilocus models of a brain imaging phenotype. Biffi et 

al (2010) found that 3% of the variance in MRI-derived volumes of several brain regions could 

be explained from a number of candidate genes for Alzheimer’s disease. Nikolova et al (2011) 

showed 11% of the variance in ventral striatal reactivity could be explained from their panel of 

five polymorphisms. We also found that our candidate polymorphisms displayed extensive, 

significant effects on 82% of the volume of the corpus callosum, when cumulatively modeled at 

a voxelwise FA basis, which captures more spatial detail than an average measure of FA across 
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the corpus callosum. We also confirmed significant predictions across the corpus callosum from 

the 5 SNPs using multilocus machine learning models. These yielded similar predictions, but 

were less spatially widespread, as only a subset of subjects were considered who were unrelated 

to each other.  

 

We focused on DTI-derived fractional anisotropy (FA) of the corpus callosum as our imaging 

measure in this study. The corpus callosum is the largest white matter structure in the brain, 

containing over 300 million axons (Hofer and Frahm, 2006). This fiber bundle transfers motor, 

sensory and cognitive information between the two cerebral hemispheres (Huang et al, 2005). 

With the advent of diffusion tensor imaging, it has become increasingly clear that the structure of 

the corpus callosum is impaired in several brain disorders. In a recent meta-analysis, for instance, 

Patel et al (2011) concluded that the splenium of the corpus callosum has significantly lower FA 

in patients with schizophrenia versus controls. Recent DTI studies have also identified callosal 

abnormalities in patients with other brain disorders such as bipolar disorder (Benedetti et al, 

2011), post-traumatic stress disorder (Jackowski et al, 2008) and autism (Alexander et al, 2007). 

It would therefore be beneficial, clinically, to know an individual’s personalized genetic risk for 

a corpus callosum structural abnormality. In addition, the microstructure of the corpus callosum 

has been shown to be highly heritable in studies including those with the same Australian twins 

as in this paper. Chiang et al (2009) mapped out genetic contributions to white matter structure 

in the Australian twins and discovered significant voxelwise effects in the callosal genu and 

splenium. In that paper, a classical twin design was used to estimate the overall genetic 

contribution to the observed variance, but effects of specific SNPs were not assessed or modeled. 

Similarly, Kochunov et al (2010) found mean FA values from the corpus, body and genu of the 
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corpus callosum were highly heritable (all with h2 > 0.5) in members of the San Antonio Family 

Study. Similar results have also been reported in studies of young children (Brouwer et al, 2010) 

and in older individuals (e.g., Pfefferbaum et al, 2001). Recently, it was also shown in the same 

Australian population as ours that the heritability of callosal FA, particularly in the genu, is high 

regardless of imaging protocol differences (Jahanshad et al, 2012b). Here, we show that 

predictions of microstructural measures may be made based on a few common polymorphisms. 

We focused on the corpus callosum here, but our results may also have implications for other 

white matter tracts in the brain. The millions of axons in the corpus callosum connect numerous 

regions of the brain with each other. Genetic variants that affect this brain structure may also 

have roles in other white matter regions. 

 

We selected six candidate SNPs for our study based on their reported individual effects on white 

matter structure on DTI and their importance in neuropsychiatric disease. The val158met 

missense mutation resulting from the candidate SNP in COMT causes reduced degradation and 

thus increased availability of dopamine, thereby leading to alterations in reward experience, 

executive function and working memory, with implications on risk for neuropsychiatric disease 

and differential response to therapy (Tunbridge et al, 2006; Wichers et al, 2008). BDNF’s 

val66met polymorphism, which affects the neurotrophin’s secretion and its function in long-term 

potentiation, has been investigated in many studies and shown to alter memory performance at a 

young age, among other associations with neuropsychiatric disease (Egan et al, 2003; Hariri et 

al, 2003). Similarly, although not as fully characterized, the candidate SNP in the neurotrophin 

receptor gene, NTRK1, leads to a his598tyr amino acid change in the kinase domain of TrkA, and 

has been significantly associated with risk for schizophrenia (van Schijndel et al, 2009; van 
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Schijndel et al, 2011). In our study, this SNP had the strongest effect of all candidates on white 

matter structure. We also found subjects with greater numbers of minor alleles of the NTRK1 

polymorphism had lower FA, which is consistent with data suggesting that the minor allele is 

over-represented in schizophrenia patients (van Schijndel et al, 2011). Another receptor gene we 

considered was the neuregulin receptor, ErbB4, with an intronic variant associated with 

schizophrenia risk in several studies (Konrad et al, 2009; Nicodemus et al, 2006, Silderberg et 

al, 2006). Another intronic variant, rs11136000, in CLU has been discovered and replicated in 

genome-wide association studies of Alzheimer’s disease (Lambert et al, 2009). Similarly, the 

his63asp mutation in iron-related HFE gene has been linked to Alzheimer’s disease, along with 

other neurodegenerative disorders (Connor and Lee, 2006). We found all variants except for the 

one in BDNF contributed additively to prediction of average callosal FA as well as three-

dimensional maps of voxelwise FA across the corpus callosum.  

 

Personalized prediction of individuals’ disease-related measures is being advocated by some as a 

vital component of future diagnosis and treatment of brain disorders (Koslow et al, 2010). Some 

of the genetic variation may account for some of the broad heterogeneity in patients’ disease 

status (Cummings, 2000; Folstein and Rosen-Sheidley, 2001) and the extent to which they 

respond to therapy (Gordon, 2007). Multilocus models are particularly appealing for 

personalized prediction of disease. Several groups have explored multilocus models of candidate 

risk variants in the context of brain disorders. Carayol et al (2010), for instance, reported on the 

cumulative effect of four candidate SNPs on the risk for autism, using a case-control approach. 

These models are beginning to be applied to brain imaging in the context of neuropsychiatric 



 

138 

disorders (Biffi et al, 2010; Hibar et al, 2011a; Nikolova et al, 2011), and may provide more 

biologically meaningful predictions with implications for personalized diagnosis and therapy. 

 

Future studies are needed to replicate our findings in independent cohorts of subjects, even 

though we found significant predictions using cross-validation in the SVM and ANN analyses. In 

addition, as new candidate gene studies and genome-wide searches using DTI measures (e.g., 

Kochunov et al, 2011) identify effects of new variants, candidate genes may be added or 

removed from this panel, to better predict white matter integrity. We did not find evidence for 

two-way interactions between the SNPs in our study, which is probably reasonable, as the SNPs 

are likely contributing independently and additively to white matter integrity, and interactions 

are second-order effects (modulations of the main effect of a gene) that may require large 

samples to identify, if present at all. Such interactions, however, may be identified in follow-up 

studies particularly with SNPs that directly share the same pathway, like NTRK2 and BDNF 

(Perroud et al, 2009), NRG1 and ErbB4 (Nicodemus et al, 2010) or COMT and 5-HTTLPR 

(Borroni et al, 2006). In this paper, we took a voxelwise approach to study genetic associations 

with FA. In addition to voxelwise maps of FA, tract- and fiber-based measures from diffusion 

imaging may also be considered as predictive outputs. Such measures, along with multivariate 

methods that simultaneously consider not only multiple genes, but also multiple voxels (Vounou 

et al, 2010; Hibar et al, 2011b; Wan et al, 2011) may help provide more statistical power. For 

instance, our voxelwise, multilocus model improved only slightly beyond the 2-SNP model with 

polymorphisms in NTRK1 and CLU. This may be due to the strong effects of NTRK1 and CLU 

SNPs on their own, but it may also be because multiple variants do not necessarily affect the 

same exact voxels. This may make it difficult to obtain substantially more expansive voxelwise 
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effects by adding more variants to the model. Here, we considered genetic polymorphisms as 

predictors, and these explained a small but significant proportion of the heritable variation in 

white matter structure across young, healthy individuals. Although it remains to be determined, it 

is plausible that a measure of white matter integrity, such as DTI-derived FA, relates to a 

person’s lifetime risk for developing mental and neurodegenerative disorders, especially for 

disorders in which FA is abnormally low.  

 

Supplementary Information 
 

Machine Learning 

Artificial neural networks (ANNs) comprise a group of machine learning algorithms, in which 

input patterns, or nodes, are connected, weighted, and translated into output nodes via an 

activation function. ANNs are generally formulated as )),(( wxfy ϕ= , where y, x, and w 

represent the input, output and weights respectively, and φ typically represents a linear 

combination of the inputs. f is the activation function, typically a logistic function. We 

implemented a three-layer ANN, consisting of an input layer with SNPs and covariates, an 

output layer with DTI-derived FA measures, and a hidden layer, using the ‘nnet’ package 

(Venables and Ripley, 2002) in R (http://cran.r-project.org). We also included weight decay 

regularization in the ANN, which introduces an upper bound on the sum of the squares of the 

weights (Hinton 1986), and is related to the regularization used in penalized regression or ridge 

regression (Hoerl, 1962), and helps with the machine’s generalizability (Jain et al, 2000). 

 

Support vector regression (SVR) is another machine learning algorithm related to support vector 

machines (Vapnik, 1995). Training with patterns (SNP genotype profiles, along with sex and 

http://cran.r-project.org/
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age, in our case) and known outcomes (DTI-derived FA, in this study) leads to the construction 

of a hyperplane, which is then applied to predict outcomes in testing patterns. The traditional ε-

SVR is formulated so that the differences between observed and predicted measures are to be no 

greater than the parameter ε. We implemented the newer ν-SVR algorithm within the ‘e1071’ 

package (Dimitriadou et al, 2005) in R. ν-SVR modifies the optimization formulation of ε-SVR 

through the ν parameter, which introduces a lower bound on the fraction of predictions allowed 

to deviate by more than ε from observed measures (Basak et al, 2007). The modified 

optimization problem is: 
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Statistical significance of predictions was obtained by running ANN and SVR processes 1,000 

times, on permuted measures (the voxelwise FA measures or outputs were scrambled across the 

subjects), and leave-one-out predictive errors were obtained at every voxel for each permutation. 
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Table 7.3. Correlation (measured by r2) between the six candidate single nucleotide polymorphisms is shown to 
ensure multicollinearity does not affect regression results. This analysis was performed on a subset of 246 subjects, 
not related to each other, to avoid bias due to subject kinship. 
 

SNPs rs11136000 rs6336 rs4680 rs839523 rs6265 rs1799945 
rs11136000 1      

rs6336 5.74x10-3 1     
rs4680 5.92x10-5 4.39x10-4 1    

rs839523 1.16x10-2 2.42x10-3 2.62x10-3 1   
rs6265 3.76x10-3 1.94x10-3 1.58x10-2 6.64x10-6 1  

rs1799945 2.60x10-3 1.95x10-3 2.39x10-3 1.83x10-3 3.45x10-3 1 
 
 
 
Table 7.4. All possible two-way interactions between the candidate SNPs are included in a multiple linear mixed-
effects model. Candidate SNPs are denoted by their corresponding gene. Individual SNP genotypes, sex and age are 
also included along with all interaction terms in the mixed-effects regression model. No interaction terms are 
significant after correction for multiple comparisons. 
 

SNP x SNP β P-value 
CLU x HFE 4.28 x 10-3 3.39 x 10-1 

CLU x NTRK1 6.90 x 10-4 9.40 x 10-1 
CLU x COMT -1.50 x 10-3 6.79 x 10-1 
CLU x ErbB4 -7.33 x 10-3 5.59 x 10-2 
CLU x BDNF -1.37 x 10-3 7.50 x 10-1 
HFE x NTRK1 -3.89 x 10-3 7.94 x 10-1 
HFE x COMT 8.67 x 10-3 4.94 x 10-2 
HFE x ErbB4 -6.43 x 10-3 1.66 x 10-1 
HFE x BDNF 9.31 x 10-3 3.70 x 10-2 

NTRK1 x COMT 9.52 x 10-3 4.17 x 10-1 
NTRK1 x ErbB4 -4.21 x 10-3 6.20 x 10-1 
NTRK1 x BDNF 2.29 x 10-4 9.81 x 10-1 
COMT x ErbB4 4.40 x 10-3 2.37 x 10-1 
COMT x BDNF -3.66 x 10-3 3.48 x 10-1 
ErbB4 x BDNF -4.89 x 10-4 9.08 x 10-1 
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Figure 7.3. (A) Genotypes for 5 candidate SNPs in the NTRK1, CLU, COMT, ErbB4 and HFE genes are 
incorporated into an artificial neural network (ANN) model to predict voxelwise FA measures. The ANN’s mean 
squared error (MSE) was divided by the MSE for a null predictor that outputs an average FA for the voxel. 
Permutation tests were conducted at each voxel to assess the significance of the predictive model. Permutation-
based p-values are shown for three sagittal FA slices. Warmer colors represent more statistically significant 
predictions. (B) Genotypes for the 5 candidate SNPs are incorporated into a support vector regression (SVR) model 
to predict voxelwise FA measures. The model is evaluated as in (A). For both (A) and (B), analyses are performed 
only in a subset of 246 subjects, who are not related to each other, in order to avoid their kinship as a confounding 
factor.   
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Chapter 8. Conclusions and future directions 
 

For the first aim of my dissertation research, I pursued an automated classification algorithm, 

which would combine information from various biomarkers, including neuroimaging, 

biochemistry and genetics. As discussed in Chapter 3, we showed that such an approach based 

on machine learning can successfully integrate multiple biomarker modalities (e.g., magnetic 

resonance imaging, positron emission tomography, cerebrospinal fluid markers and genotyping) 

and provide reasonably high accuracies in diagnostic classification. In this particular case, we 

considered an Alzheimer’s disease classifier, although this approach can be generalized to other 

disorders as well. In addition to accurate classification, we also showed that our classifier can 

help identify which biomarkers are more useful for which stages of disease. Lastly, we 

demonstrated that our multi-biomarker classification approach can be useful in selection of 

subjects for clinical trials. Fractions of subjects predicted by the automated classifier to be more 

advanced in the disease may be more likely to respond to treatment. This approach can therefore 

potentially reduce sample size requirements for trials. Future studies may find similar approaches 

useful in other disorders, where biomarkers specific to the disease and disease trajectory may be 

combined. More sophisticated machine learning algorithms may also be pursued, which can 

more powerfully combine diverse sources of biomarker data. Integration of information from 

novel biomarker such as new brain imaging modalities, high-throughput genotyping, gene 

expression and proteomics may also be of considerable value for Alzheimer’s disease and other 

brain disorders. We and our collaborators have been pursuing several of these directions in 

ongoing, follow-up studies.  
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For the second aim of my graduate research, I explored new multilocus techniques to apply to 

the field of neuroimaging genetics. As reviewed in Chapter 4, these techniques consider multiple 

genetic variants jointly in association with images and imaging measures. Since they are often 

designed to better handle high-dimensional data and the interdependence between data elements 

(e.g., genetic variants), these techniques may provide more power than their alternative, 

univariate methods. As discussed in Chapter 5, we utilized a penalized regression method to 

explore the multilocus association of genomic regions with neuroimaging measures. We showed 

that several genetic variants were detected with higher statistical power, demonstrating the 

method’s applicability in gene discovery. As shown in Chapter 6, we took another penalized 

regression approach to prediction of a neuroimaging measure from thousands of genotypes. We 

demonstrated that we can make signification predictions with this approach and also identify top 

genetic variants that contribute most to the predictions. Our multilocus neuroimaging genetic 

approaches and similar methods may be applied to other measures derived from neuroimaging in 

the future. We have been investigating other penalized regression methods in ongoing studies. 

Future research is needed to compare the statistical power of various penalized regression and 

related algorithms in the context of neuroimaging genetics. As reviewed in Chapter 4, there are 

already multivariate methods that simultaneously consider not only genotypes, but also whole 

images at a voxel-by-voxel basis. Application of these methods to new images and disorders may 

lead to exciting genetic discoveries. Meta-analysis neuroimaging genetics approaches such as 

ENIGMA (mentioned in Chapters 4-6) are also invaluable in future gene discovery and 

exploration, as they provide high statistical power due to the uniquely large numbers of subjects 

with imaging and genetic data. 
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For the third aim of my dissertation research, I pursued an automated predictor of brain integrity 

from genotype profiles. As discussed in Chapter 7, multiple common genetic variants were 

considered as neuropsychiatric risk candidates for the prediction of white matter integrity on 

DTI. We showed that several of our candidate single nucleotide polymorphisms jointly led to 

statistically significant predictions of fractional anisotropy on DTI. This was illustrated in maps 

of white matter microstructure as well as average fractional anisotropy across the corpus 

callosum. We explored several algorithms (mixed-effects multiple regression, support vector 

regression and artificial neural networks), all of which led to statistically significant predictions 

of brain integrity from the genotype signatures. Our approach has potential implications for early 

risk assessment of neuropsychiatric disorders, many of which cause white matter anomalies on 

DTI. Future research is needed to replicate our findings; candidate genes may also be added to or 

subtracted from our panel. Similarly to the case with my second dissertation research aim, 

multivariate approaches that consider imaging maps as a whole (as opposed to treating voxels 

independently) may improve such predictors of brain integrity. We explored white matter 

integrity in young, healthy adults. Future research may also find multilocus predictors of white 

matter structure anomaly patterns specific to particular (stages of) neuropsychiatric disorders. 

Ideally, such investigation of genes and images together would lead to highly personalized 

diagnostic, prognostic and therapeutic protocols in the near future. 
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