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ABSTRACT OF THE DISSERTATION

Impacts of Capacity Drop on Freeway Control

By

Felipe Augusto de Souza

Doctor of Philosophy in Civil Engineering

University of California, Irvine, 2018

Associate Professor Wenlong Jin, Chair

An unfortunate feature of freeway traffic flow at merge bottlenecks is the capacity drop (CD)

phenomenon. It refers to a drop in the bottleneck outflow when a queue forms upstream to

that bottleneck compared to the outflow observed before the formation of the queue. While

its causes and exact mechanism are still open questions, this research concerns in the impacts

of CD and how to mitigate them.

The distinct features of CD in a freeway corridor are assessed based on the behavior of equi-

librium states in a model capable of replicating CD. The impacts are unveiled by comparing

the system properties with and without the CD. The main finding is that the highest outflow

occurs under uncongested equilibrium; however, it may not be reachable depending on the

demands and initial conditions.

The local ramp metering control is investigated into more details. CD imposes a hysteresis

on the system response with respect to the demand level. Also, we analyze the system in

closed loop considering ALINEA, a well-known control algorithm. We establish the stability

range with respect to parameters which is a necessary requirement for the controller to

be effective. Further, we propose an extension of ALINEA to enlarge the stability range

mitigating a performance loss that occurs when the on-ramp and the bottleneck are far

apart.

xiii



Essential aspects of ramp metering are better captured with microscopic models; however,

there were few evidences that such models can replicates CD. To that end, we propose a

parameter calibration procedure that ensures the underlying model properly captures CD.

The approach is tested with loop detector data from a merge bottleneck in which the CD is

consistently observed.

All results with different approaches point to the direction that the existence of CD imposes

additional challenges on the system control. Fortunately, in most cases the effects of CD can

be mitigated with a properly designed control strategy, such as the ones tested and proposed

in this research.
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Chapter 1

Introduction

The freeway is jammed and it backed

up for miles

This car is an oven and baking is wild

Nothing is ever the way it should be

What we deserve we don’t get, you see

Iron Maiden (Man On the Edge)

1.1 Background

Across the transportation field, a key property of the various facilities is capacity. The

Highway Capacity Manual (2010) defines capacity as ”the maximum hourly rate at which

persons or vehicles reasonably can be expected to traverse a point or a uniform section of

a lane or roadway during a given time period under prevailing roadway, traffic, and control

conditions” [93, Section 4-17]. Though some aspects are narrowed down for each application,

this definition is open to some arbitrariness such as ”reasonably expect”, ”prevailing condi-

tions” and the period in which we can safely infer a ”hourly rate”. The ubiquitous usage of

1



the term capacity in transportation may transmit the notion that capacity is a deterministic

and easily measurable variable.

Traffic engineering manuals, such as the Highway Capacity Manual, generally assumes that

the system will serve at capacity whenever the demand into the system is higher or equal

than capacity (e.g., see [93, 10-44]). Definitely, it is a fair assumption in several applications

in transportation. For example, if a toll booth can process two vehicles per minute, the

discharge rate will be exactly that if the incoming demand exceeds that level. Similar

reasoning is applicable to gates at ports, recharging stations for electric vehicles, boarding

and alighting of passengers at transit systems, to name a few.

It has long has been assumed the same behavior of capacity in urban traffic flow. Though

arguably this concept is applicable in some cases, the application at freeway bottleneck is,

at least, nuanced 1. The capacity drop phenomenon phenomenon challenges this notion.

This phenomenon is a consistent drop in the bottleneck outflow when queues are formed

just upstream of that bottleneck compared to the outflow observed before the formation of

that queue. In simple words ”congestion causes more congestion”. This may look intuitive

in traffic, but it is not so obvious when we make analogies for the aforementioned cases

in which the basic behavior of capacity applies. Let’s consider again the aforementioned

example of the tool booth that can discharges 2 vehicles per minute. If during a long period

the demand is almost constant at 1.9 vehicles per minute in average, the system could

experience some small queues due to the randomness of the arrivals, but the queues would

not grow indefinitely as the facility can discharge more vehicles than the average arrival rate

whenever there are queued vehicles. The analogy of the capacity drop in this case would

be the operator processing only 1.8 vehicles per minute, as oppose as to 2 vehicles prior the

formation of the queue, whenever the queue exceeds 10 vehicles. In that case, the system

1The very definition of bottleneck is related to capacity: a point in which the capacity is smaller than
the region immediately upstream making making it the potential places to trigger a congestion. Typical
bottlenecks at freeways are lane drops, but it can also occur at tunnel entrances and sags

2



can operates at full capacity for some period; however, as soon as a queue higher than 10

vehicles forms, the discharge flow rate would drop to a level smaller than the arrival flow

rate and the queue grows indefinitely.

Luckily, this intriguing behavior does not happen at toll booths, but unfortunately it does

happen at freeway bottlenecks. The majority of the research related to freeway traffic flow

does not consider the existence of such phenomenon. For instance, the Highway Capacity

Manual 2010 [93] briefly mentions the existence of the capacity drop at freeways bottlenecks,

but has not changed the quantitative methods for freeways accordingly.

Two publications in early 1990’s [10] and [46] are commonly referred as the founding publi-

cations around this topic. Both have reported a small drop (3-4%) in the flow in a freeway

bottleneck after the onset of queue just upstream to the bottleneck under study. However, it

was not the first time that similar fact was reported; this was a subject for discussion for 30

years [45, Section 2-14] and several research had found confounding conclusions regarding the

existence of the capacity drop. For instance, in a publication of the same research group as

one of the aforementioned publications ([46]), studied the same location one year before and

claimed the capacity drop as a long-standing question as they describe that ”Some studies

have suggested that after a queue forms there is a drop in the maximum flow possible through

a bottleneck. Wattleworth ([133], in 1963) discusses three such studies”. Nonetheless, they

later claim their study does not support this view as ”Figures 3-6 indicate that, although

there is a clear drop in speeds, there is no easily discernible drop in the flow rates at the

time the queue forms. (...) Hence, a significant flow reduction under such circumstances

cannot be deduced from these data.” While they do not necessarily deny its existence, they

say that Wattleworth [133] ”provides a convincing explanation of why this result arises in

some studies, whereas others continue to show a capacity reduction”. In fact, by then the

methods in which the data was processed and analyzed varied from study to study. Some of

the differences were the placement of the detector, upstream or downstream to the bottle-
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neck, the data sample time (30 seconds, 5 minutes, etc), and how to infer that the bottleneck

was queued.

Later, in 1999, it was stated again the drop in the flow after the bottleneck become queued

[17]. Unlike the previous studies in which was based on a time-series of flow, they used

transformed cumulative flow curves [19] from both upstream and downstream detectors in-

stead. The transformed cumulative flow curve turns the visualization and quantification of

the capacity drop easier, perhaps closing the discussion surrounding the existence of the drop

in the queued flow. They used data from the same location as the aforementioned study

([46]) and found consistent drop in the flows of around 9% as oppose to 3-4%. Arguably,

the main contribution of the study is the method based on transformed cumulative curve

solving the issue of inconsistent results regarding the capacity drop. Since then, several other

reports have used such curve to confirm that capacity drop happens at various other loca-

tions. Nonetheless, the complete understanding of its mechanism and how we can mitigate

its effects are still open questions. That perhaps explains why traffic manuals still have not

yet adapted despite these findings.

This dissertation is devoted to the second question: how can we mitigate the effects of the

capacity drop phenomenon? The implication of such phenomenon to freeway control, more

specifically ramp metering, was object of Banks publication just following his previous study

[10]. In [9] it was discussed whether the ”Two-Capacity” (capacity drop) phenomenon is a

basis for ramp metering. The author conclusion is ”that is unlikely”. Around the same time,

field-test in Paris, France they stated that the application of ALINEA showed performance

improvements [44] through ramp metering. Once again repeating the pattern of confounding

conclusions around the same issue, even though both studies had reached a similar difference

in the outflow (3%). Further implementation of ALINEA had also showed modest outflow

increase in other sites [108].

Though these studies have suggested improvements of ramp metering control, the question
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whether ramp metering can recover from the capacity drop was still a doubt. In [18] it

was shown that the ramp metering control could recover a bottleneck from a congested

state, discharging flow below its capacity, to a uncongested state discharging at capacity.

That study used a simple strategy - set the most restrictive metering rate at the on-ramp

once the freeway becomes congested - in order to confirm their hypothesis - which was in

fact confirmed. Therefore, it has been shown that through ramp metering it is possible to

recover higher outflows in a merge bottleneck.

Given that is possible to achieve higher outflows through ramp metering, the following

question is what is the best strategy to do so. This is the central question in which the

research documented here concerns. Though there is plenty of literature on ramp metering,

it still is limited studies addressing the capacity drop phenomenon specifically. That is not

surprising considering the sinuous path on the understanding of such phenomenon.

Nonetheless, there have been recent developments that make this research timely. Namely,

there are traffic flow models that reproduces the capacity phenomenon. That enables the

study of the impact of capacity drop on freeway through assessing analytical properties of the

model such as stability and reachability as well as analyzing performance of ramp metering

control through simulation based on that models. This research aims to reveal fundamental

characteristics of freeway control related to capacity drop based on analysis of traffic flow

models that reproduces the capacity drop phenomenon.

1.2 Research Objectives

The goal of this research is to identify the aspects of capacity drop that are relevant to

different applications of freeway control strategy and how strategies should be designed in

light of such phenomenon. To that end, we focus on fundamental control theory properties
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such as stability, reachability and equilibrium state analysis. The objective is split into:

1. Develop an analytical framework that considers both control variables and

traffic flow models capable of reproducing the capacity drop phenomenon

with a traffic flow model that takes into account control variable, such as metering

rate, and reproduces the capacity drop phenomenon, it is possible to infer about the

interaction between the control strategy and the capacity drop phenomenon. The

investigation can uncover aspects related to the (asymptotic) equilibrium behavior

such as uniqueness, stability and reachability of these states.

2. Propose and analyze control strategies able to appropriately handle the

capacity drop phenomenon

For local ramp metering (i.e., a single bottleneck), the capacity drop phenomenon is the

key aspect affecting the total delay experienced by the travelers. The follow question

can potentially be answered: (i) why an on-ramp should be metered; (ii) if so, when

the on-ramp should be metered; (iii) how the ramp should be metered; and, finally,

(iv) at what conditions will the controller work.

3. Validate the results in microscopic models

Assess whether the results of the aforementioned studies, based on macroscopic model,

also holds in microscopic models. The confidence of the results in the previous analysis

increases if the same result holds in different models. To that end, first it is necessary

how microsimulation models can model the capacity drop for later analyzing it under

ramp metering control.
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1.3 Research outline

This dissertation is organized into eight chapters. This introduction had presented the

background of this research as well as its specific goals. This background is further extended

on chapter 2 in which relevant literature to this research is presented. This research is

at intersection between control theory and traffic flow theory, a sub-section is devoted for

each of these topics. Within traffic flow theory, it is presented the traffic flow models that

is the foundation for the latter analysis. Also, the capacity drop phenomenon is further

detailed and models able to reproduce it are discussed. In control methods, basic concepts

and properties of control system is presented. Also, it is also presented selected control

approaches that have been applied into freeway control.

Chapter 3 presents an analysis of the equilibrium states of a freeway based on the continuous

link transmission model combined with the phenomenological capacity drop model as in

[65]. The equilibrium states are identified and its behavior is characterized with respect to

reachability, stability, and their relationship with performance metrics. By enabling or not

the capacity drop model extension, the specific features of the capacity drop phenomenon are

identified. The mathematical program for identifying the optimal equilibrium is derived for

both cases and a method is provided for the case in which capacity drop cannot be avoided

at all bottlenecks of a corridor. The results are validated with numerical experiments.

Chapter 4 presents the dynamic behavior of a single merge bottleneck controlled by PI-

ALINEA [132]. The dynamics of the bottleneck is described based on an switched ordi-

nary differential equation approximation of the Lighthill-Witham[86]-Richards [113] (LWR)

model. Important characteristics of the system is disclosed such as the hysteresis imposed

by the capacity drop and close solution for reachability and closed-loop stability. The results

are validated in a discretization of the LWR model, the cell transmission model [27].

Chapter 5 proposes a control approach based control strategy suitable for the local ramp

7



metering problem, especially when the distance between the on-ramp and lane drop is long.

In that scenario, the elapsed time between a control action is performed and the time it

interferes the system, referred as to dead time, is long making the control design more

challenging. A Smith Predictor, a long-standing approach in control theory for systems

with long dead-time, is integrated into the controller to overcome such limitation. The

introduction of the Smith Predictor provide two advantages: (i) it enlarges the stability

range of the controller, which is analytically derived; and (ii) the system response is faster.

Numerical experiments confirm the results.

Chapter 6 presents a calibration of microscopic model study in a merge bottleneck based

on loop detector data. Morning-peak data from a merge bottleneck at I-405N was used to

calibrate the various input parameters of the car-following lane-changing model considered.

Gipps [37] car-following model and the lane-changing model used was by Hidas [53]. The

results show the calibrated model is able to reproduce the capacity drop phenomenon with

high accuracy over its different aspects.

Chapter 7 the research is summarized. The current challenges and potential directions for

future work are discussed.
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Chapter 2

Review of Traffic Flow and Capacity

Drop

It’s like a shockwave to your brain. A

voice that makes you go insane.

Myrath (Shockwave)

In this chapter a brief review of aspects related to capacity drop and traffic flow models are

presented. In the first section, the basic building block of this research - a merge bottleneck

- is introduced. The main features of the traffic around a merge bottleneck including the

empirical evidence of the capacity drop, are presented. Later, traffic flow models that can

be used to describe the dynamics on the merge bottleneck are presented. Lastly, models

specific to capacity drop is presented.
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Figure 2.1: Schematic of the bottleneck at I405-N with Jeffrey Road in Irvine, CA

2.1 Merge Bottleneck and the Capacity Drop Phenomenon

The Figure 2.1 presents a schematic of a merge bottleneck or merging segment, as the

Highway Capacity Manual [93] refers to. It contains a merge between the mainline freeway

and on-ramp, and a bottleneck on the reduction of number lanes (lane drop). There might be

other types of connection (freeway-freeway, etc) and other types of bottleneck (sag, tunnel,

etc), but in this research we always assume a scenario exactly as depicted in the figure.

The freeway in its upstream section has N lanes which becomes N + 1 with the on-ramp

acceleration lane. Further downstream the number of lanes reduces again to N . The length

of the merge bottleneck is referred as L which we consider as the distance between the on-

ramp and the lane drop. The position, x, grows in the direction of traffic stream and time

as t.

The arrival demand coming from the upstream is denoted as du(t) defined as number of vehi-

cles per unit time. Similarly, the demand from the on-ramp is denoted by dr(t). Depending
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on the traffic conditions inside the merge, part of the demand may be served with delays.

The flows from on-ramp and mainline that in fact could join the merge zone are denoted as

fr(t) and fu(t), respectively. The outflow is denoted as g(t).

Objective measurements are in general derived from three key variables: mean speed, flow

rate and density. Speed is related to the distance traveled per unit time by a single vehicle

or a group of vehicle. Later the concept of mean speed is further detailed. Flow rate is the

number of vehicles that pass a specific point per unit time. Density is the number of vehicles

per unit time in a give section. All these variables can change in space and time and are tied

through the following identity:

q(x, t) = k(x, t)v(x, t), (2.1)

where q is the flow rate, k the density and v the space mean speed.

The adjective bottleneck to this specific scenario because it is a potential location to start

congestion. Vehicles from the freeway needs to leave the acceleration lane as soon as they

join the freeway due to the eventual end of the lane. If the incoming demand is high, the

gap for changing the lanes become small in such way that vehicles at freeway right-most

lane are forced to slow down if a vehicle in the acceleration lane perform a lane changing

just ahead of them. That turns the right lane congested and the situation spreads to the

middle and right lanes [18] as vehicles through similar mechanism, though the lane changing

maneuvers happens for obtaining speed advantage as oppose to a mandatory lane-changing

due to imminent lane end.

This instant in which the merge becomes congested is often referred to as flow breakdown

[111]. Note however that flow breakdown is not necessarily a reduction in the flow rate of the
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Figure 2.2: Schematic of the bottleneck at I405-N with Jeffrey Road in Irvine, CA

bottleneck. The term probably is coined after the break on the flow stream to a relatively

homogeneous when congested to a specific location in which the flow is slower and more

turbulent.

When the traffic is congested, it is qualitatively clear what happens with each of the variable

in the right hand side of Equation 2.1. When uncongested, the mean speed is high and the

density is low; while it is the opposite when congested. The key question is what happens

with the flow? Or more specific to the merge bottleneck case: when congestion starts at the

merge bottleneck, does it reduce the maximum flow through the lane drop (x = L in Figure

2.1)? This is the question that was surrounding researchers for about 30 years [45].

As it was an empirical question, I will discuss about the capacity drop phenomenon based

on collected data from a merge bottleneck rather than a mathematical description of the

phenomenon. The location in which the data was collected is at I-405N with Jeffrey Road

in Irvine, CA. A schematic of that location is depicted in Figure 7.2 with the location of on-

ramp, upstream and downstream loop detectors. Each loop detector provides occupancy and

flow rate (i.e., counts on the 30 seconds period) with 30 seconds sample time. Occupancy

is share of time in which there was a vehicle on the top of detector during the period.

With some assumptions, there is a direct relationship between occupancy and density. The

important for now is that higher occupancy means higher density.

The data of the morning peak of April-19-2012, obtained through California Performance and

Measurement System (PeMS) [118], is depicted in Figure 7.3. The High-Occupancy-Lane
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Figure 2.3: Observed data at location. Graphs (a) and (b) depict upstream and downstream
occupancies, respectively. Graphs (c) and (d) depict upstream and downstream flow in
vehicles per hour per lane. Graph (e) depicts the T curve for q0 = 2130K vphpl and graph
(f) depicts the upstream an estimation of the upstream demand (dashed) in comparison to
the flow on the upstream detector

data, though also available, are disregarded. The left graphs (a-b) show the occupancies up-

stream (top) and downstream (bottom). The observed counts are on the middle graphs. The

upstream counts (c) include mainline and on-ramp. The downstream counts are according

to the middle bottom graph (d). Note that the downstream is always uncongested as the

downstream occupancy is almost constant throughout the period; however, high occupan-

cies were observed at the upstream detector between 8:00 - 9:00 AM and decreased around

9:00 AM. It means congestion started at the bottleneck, reached the upstream detector, and

dissipated when the upstream demand ceased with the congestion at the upstream detector

being eliminated just after. The dashed line on the upstream and downstream flows (c-d)

refers to the average flow at the downstream between 8:03 - 9:08 AM (q0). Therefore, the flow

breakdown happens around 8:20 AM, or at least, this is the time the queues grow until the

upstream detector. The following question is whether there is any difference in the outflow

curve following the onset of congestion.

Assisted by the the baseline flow, q0, at graph (d) perhaps one could infer a flow slightly

higher between 7:30AM and 8:00AM compared to the next 30 minutes period. It is not

easy to discern, however, if that was due to an inherent variability of counts or a consistent

decrease of the outflow.

However, it becomes clearer on the top right graph (e) in which the transformed cumulative
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curve [19] (T-curve) is plotted. The T-curve, or transformed cumulative curve, is the area

between the outflow and a baseline outflow, q0. The baseline outflow is arbitrary and we

chose it as the average flow during the congested period. This curve has positive slope

whenever the flow is greater than q0 and negative otherwise. Similarly to cumulative curves,

the vertical distance between two T-curves is associated to number vehicles between the

points and horizontal difference related to travel times.

Clearly, the outflow was smaller during the congested period compared to the 20 minutes

interval before the drop in the downstream flow, a decrease from 2350 vphpl to 2130 vphpl

(9.5%), as annotated on the graph. The vertical distance between the two curves increases

between 7AM and 8AM on the congestion build up and decreases around 9AM when the

congestion dissipates. This is smaller outflow following the onset of congestion is the capacity

drop phenomenon [10, 46, 17].

Note how the phenomenon become clearer with the use of the T-curve compared the outflow

time series. This may explain the long standing question regarding the capacity drop phe-

nomenon until 1990’s as the T-curve had not been proposed as a method of analysis. The use

of T-curve is opportune because that circumvents some key issues related to loop detectors:

(i) the traffic measurements are naturally noisy which turns the analysis more intricate; and

(ii) the loop detector reports measurements from a specific point, but the traffic has a spatial

dimension not easily captured by the occupancy data.

About the second issue, one would assume congestion starts around 8:20 AM based on

the upstream occupancy. However, the flow drops down to q0 just at 8:00AM. If one had

identified 8:20AM as the initiation of congestion and compared the downstream flow in the

20 minutes preceding and following that instant, would have found no difference. With the

T-Curve we can easily observe changes in the outflow by the variations in the slope. In

addition, it is possible to infer queue formation by the vertical displacement between the

upstream and downstream curve.
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The capacity drop phenomenon was presented from a empirical point of view. In the next

subsections a literature review of traffic flow models is presented with special attention on the

aspects related to the behavior of the merge bottleneck and the capacity drop phenomenon.

2.2 Review of Traffic Flow Models

There are several approaches to model the dynamics of traffic flow. Nonetheless, most of

model can be classified into one of the following categories [73]:

• Microscopic: refers to models in which each driver or pair vehicle-driver is described

individually.

• Macroscopic: refers to models in which the dynamic is described based on aggregated

variables (such as average density, flow) as oppose to track vehicles individually;

• Mesoscopic: refers to models in which coexist elements of microscopic and macro-

scopic models;

• submicroscopic: refers to models in which sub-items of the pair vehicle-driver is

explicitly modeled such as throttle position and psychologically speed perception;

• network level: this approach is derived of macroscopic models in the sense that deals

with aggregated variables, but the smallest element is an area (a set of roads) instead

of a road or a section of road.

For different applications some type models may be more suitable than others. In particular

to our basic building block, the merge bottleneck, both macroscopic and microscopic models

can be applied. Following, each of this type of models are reviewed with higher attention to

macroscopic models as most of this research was based in such models.
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2.2.1 Microscopic Traffic Flow Models

Microscopic models describe the traffic with the vehicle as a basic unit. A given pair driver-

vehicle takes decisions, such as acceleration and lane changing, based on the position, speed

and acceleration of vehicles on its surrounding.

The main advantage of microscopic models is that the individual vehicle representation

provides a detailed representation of traffic flow. The outputs of such models may include

acceleration, speeds, position and lanes of each vehicle undertook throghout all period of

study. Another advantage of macroscopic models is the simplicity in which heterogeneity

between drivers and vehicles can be incorporated such as different vehicle class (passenger

cars, trucks, buses,etc) and different driving behaviors within a class, such as different desired

speeds and reaction times.

Nevertheless, there are disadvantages on using such models as they require more parameters

to be defined and they are computationally more expensive so that is harder to apply to

large networks. Also, it is not a straightforward task to model the human component of the

driving behavior. Specifically, the lane changing models are a known weakness of microscopic

models [141].

Though there might be more components, to study the merge bottleneck the microscopic

models are combination of car-following and lane-changing models. Consider the subject

vehicle in Figure 2.4 located at the right lane following another vehicle. The car-following

component models the kinematic variables (acceleration, speed, position) of the subject

vehicle based on the same variables of the leader vehicle. The lane-changing component

models when and how the vehicles perform a lane changing based on the current leader and

the potential leader and follower kinematic variables in the adjacent lane.

The first car-following models were proposed in the 1950’s with Pipes [112] models. The
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Figure 2.4: Schematic of car-following models and variables

latter model is a class of models where based on principle in which drivers accelerate or

brakes based on the relative speed and position with respect to the leader vehicle. This class

of model was popular until the 1970’s [12]. Later, the safe-distance models in which are

based on the principle in which vehicles drivers adjust speeds so as to not collide with the

leader. Among them, the Gipps [37] model is one of the most used car-following model.

Lane changing model development started relatively later than car-following model. The

lane changing models in general model two sequential steps: (i) deciding to perform a lane

changing and (ii) undertaking the actions to perform that decision. There are two popular

class of models for structuring decisions. First is rule-based or Gipps-type in which the

decision to change lanes are based on a set of rules. The driver considers two basic aspects:

driving at desired speed and keeping in the correct lane to follow the intended route [141].

Relevant work includes [38, 138, 52]. Second is utility-based in which the various aspects

of lane-changing are converted into an utility function and drivers takes the decision that

maximizes its utility. Relevant work includes [3, 127].

2.2.2 Macroscopic Traffic Flow Models

In macroscopic models, the traffic is described based on aggregated variables either varying in

time or in both space and time as oppose to tracking each vehicle individually. A significant

share of the theory related to traffic flow model is inspired in fluid mechanics.

Though inspired in fluid mechanics, one distinct feature of traffic flow is the speed-density

relationship. This relationship, first proposed by Greenshields [43], postulates that the
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(a) Flow-density relationship
(b) Speed-density relationship

Figure 2.5: Fundamental diagram viewed as (a) flow-density and (b) speed-spacing relation-
ships

average mean speed varies as function of the density (amount of vehicles per unit distance).

From the driver point of view, it means that drivers adjust their speeds according to the

spacing they experience with their respective leaders. As density, speed, and flow are tied

by (2.1) this relationship can be seen as speed-density relationship or, as commonly used,

flow-density relationship. In Figure 2.5 an example of fundamental diagram is depicted as

flow-density (a) and speed-density relationship (b). In general it is assumed that speed is

a non-decreasing function of density. The speed for density equal zero is referred to as free

flow speed; similarly, the density in which yields zero speed is referred to as jam density. On

these extremes, the flow is zero either because there is no car (zero density) or because the

cars do not move (zero speed). Capacity, C, in the fundamental diagram is defined as the

maximum outflow; the density that yields capacity flow is the critical density, kc.

Like in fluid mechanics, the system is governed by a partial differential equation due to mass

conservation and the flow identity (Equation (2.1)). Consider a homogeneous road with

length L in which is given the densities profile at time t1 and t2 as depicted in Figure 2.6.

The number of vehicles on the interval x1 ≤ x ≤ x2 is defined by N(t) in which we can

obtain through the integration of the density over space:
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Figure 2.6: Density profiles at different times in a homogeneous road.

N(t) =

∫ x2

x1

k(x, t)dx. (2.2)

Figure 2.6 depicts N(t1). Note by the density profiles that N(t2) is smaller than N(t1). For

mass conservation principle, this reduction of number of vehicles means that the outflow was

higher than the inflow during the period. Following the sample principle, we can describe

the relationship at time t as:

d

dt
N(t) = q(x1, t)− q(x2, t), (2.3)

Substituting (2.2) and (2.3):

∂

∂t

∫ x2

x1

k(x, t)dx = q(x1, t)− q(x2, t) (2.4)
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Taking the limit of x1 → x2 and using the mean value theorem on the left hand side:

∂

∂t
k(x, t)(x2 − x1) = q(x1, t)− q(x2, t)

∂

∂t
k(x, t)(x2 − x1) = (x2 − x1)

q(x1, t)− q(x2, t)

x2 − x1

∂

∂t
k(x, t) = − ∂

∂x
q(x, t)

∂

∂t
k(x, t) +

∂

∂x
q(x, t) = 0

(2.5)

Therefore traffic flow models are governed by a partial differential equation (2.5) which means

that a variation of density in a point is an outcome of the inflow and outflow at that point.

One of earliest model proposed in the literature based on the assumptions of fluid flow and

mass conservation was the Lightwhill-Whitham -Richards (LWR) model back in the 1950’s.

It is the base of a plethora of models proposed ever since.

The Lighthill-Whitham[135]-Richards [113] describes the evolution of flow and density in

space and time. Density, k(x, t), is the state-variable and flow q(x, t) is assumed to be a

function of the density:

q(x, t) = Q(k(x, t)), (2.6)

whereQ(k) is a flow-density relationship often referred as fundamental diagram as depicted in

Figure 2.5 (a). This relationship is the unique aspect of traffic compared to fluids mechanics

and it is derived from the assumption that drivers adjusts speed according to the spacing

to its leading vehicle. With the fundamental diagram assumption the mass conservation
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becomes:

∂

∂t
k(x, t) +

∂

∂x
Q(k(x, t)) = 0, (2.7)

Equation 2.7 is able to describe the traffic dynamics in a homogeneous link (that is, the

fundamental diagram is the same throughout the link). Giving boundary condition, in

which in this case is k(x, t = 0), q(0, t) and q(L, t) and solving (2.7), we obtain k(x, t).

Flows, q(x, t), can be obtained through the fundamental diagram and speed by (2.1).

In order to apply this model to obtain future density and flows, it is also necessary to provide

boundary conditions which includes the initial density k(x, 0) and the boundary flows, q(0, t)

and q(L, t).

Several features of the LWR model resembles the characteristics of traffic empirically ob-

served. Namely, it models in both time and space the initiation and dissipation of congestion

through shock-waves. The solution of the LWR model leads to a piece-wise smooth densities

as t → ∞ with discontinuities between the pieces referred to as shock. These boundaries

or shocks can travel backwards or forwards depending the density and flow upstream and

downstream to that shock.

The basic study scenario of this research presents all these features and also will bring us

the attention of the necessity of additional assumptions for cases in which the solution is not

unique.

Let’s consider a stretch of road with infinite length having 2 lanes for x < 0 and 1 lane for

x > 0 as depicted in Figure 2.7a. For both stretches triangular fundamental diagram are

considered as depicted in Figure 2.7b denoted as Qu(k) and Qd(k) for the upstream and
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(a) Schematic of the case with infinite length free-
way with a lane drop from 2 to 1 lane at x = 0.

(b) Triangular fundamental for upstream and
downstream areas.

Figure 2.7: Schematic of example scenario and fundamental diagram.

downstream sections respectively. The initial density is the following:

k(x, 0) = k1 x ≤ 0

k(x, 0) = kc x > 0

(2.8)

At any point, x, except x = 0, the flow induced by the density is the same at x+ and x−,

and the solution for this case is trivial: k(x) = k1 = k(0). We can verify this from the

flow balance. This solution leads to flow Q(k) at all points an therefore ∂
∂x
q is zero and

therefore the density does not change in time. At x = 0, however, the road characteristics

and the initial conditions are different. Also, observe that Qu(k1) = qu > C which means

the upstream flow is higher than the capacity of downstream stretch. It is a reasonable

assumption that the flow at the boundary will be the maximum possible which in that

case would be q(0, t) = qd = C. This flow corresponds to k(x) = kc in the downstream

section which is exactly equal to the initial condition. At x = 0 the flow just upstream is

qu and downstream is C and by mass conservation (Eq. (2.5)) the density must increase as

∂
∂x
q(x, t)x=0 < 0. In the upstream stretch, the density higher than k1 in which Q−(k) = C is

k2. Therefore, there will be a small portion of the upstream section experiencing k(x) = k2.

As time goes by, there will be more vehicles coming at rate q1, but the flow at x = 0 is
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Figure 2.8: Density solution at different times.

constrained by the downstream capacity, C. Therefore, the length of this congested portion

should increase over time. In Figure 2.8 the shapes of density at times t = 0 < t1 < t2 < t3.

There is a discontinuity (shock) in the density profile in which the density shifts from k1 to k2.

As one can see in the density profile in Figure 2.8, the discontinuity is moving backwards. We

can determine the speed in which this shock travels based on the mass conservation principle.

Considering a section ∆L(t) which starts at x = −∆L, for t = t3 and ends at x = 0, as

depicted in the Figure 2.8, where the interface between the discontinuities lies on this section.

Let’s consider the portion between x = x1 < ∆L(t) ≤ 0. With that assumptions, we know

that at x = 0 the flow is q(0, t) = qd = C and at q(x1, t) = qu. The position of the shock is

denoted as −x1. The number of vehicles on that area, N(t), which by integrating densities:

N(t) = k1(∆L(t)− x1) + k2∆L(t)), (2.9)

and as we know the boundary flow, N(t) evolve as:

N(t) = N(0) + (qu − qd)t, (2.10)

as the boundary of shock-wave remains the same as the shock-wave propagate backwards
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(i.e., k1 for x ≤ ∆L(t) and k2 for x > x1(t)), the speed of the shock-wave will be constant.

Denoting vs the speed of the shock-wave we can write ∆L(t) as:

∆L(t) = −vst, (2.11)

Combining (2.9),(2.10) and (2.11), the only possible value for vs is:

vs =
qd − qu
kd − ku

=
∆q

∆k
, (2.12)

where ∆q = qd − qu and ∆k = kd − ku. Therefore in this example, the congested region

will grow with speed vs. This expression for the shock-wave speed is referred to as Rankine-

Hugoniot condition for conservation of mass.

In LWR model ”queues” are modeled in space and time as one can observe in the density

solution (Figure 2.8). That is, the congested area grows as long as the incoming flow exceeds

the downstream capacity. Queue here is a loose concept as the vehicles actually never stops;

rather, they travel through a portion with significantly lower speeds.

The dissipation of congestion work in a similar manner and the equation (2.12) still holds.

If the upstream flow and density decreases below the downstream value, the speed, vs, will

be greater than zero and the length of the congested area decreases.

Along this example, I mentioned that it is reasonable that the flow at x = 0 should reduce

to downstream capacity (1 lane) as the incoming flow is higher than that value. This was

suggested by Lighthill and Witham [86] in their original paper. However, for different values

of flow, say q(0, t) = 1
2
C, we could construct a density solution in which the mass conservation

24



Figure 2.9: Cell transmission model schematic at a particular time step

equation and the fundamental diagram holds at all points, except at the discontinuities.

Therefore, the solution we obtained is a weak solution of the partial differential equation.

As it is a physical system, we expect that we can find an unique solution that represents

the dynamic of the system. For particular case, entropy conditions should be prescribed in

order to obtain an unique and physical solution of the problem [5]. A common assumption

is to choose the maximum flow possible that does not violate any constraint of the model.

This is the implicit assumption in the previous example. The demand and supply concept

proposed in [27] (as sending and receiving flow) and [78] provides a method to determine the

boundary flow based on this assumption in which is briefly presented next.

The concept of demand and supply [78, 28] was first proposed in the cell transmission model

[27] which is a discretization of the LWR model in both space and time. Nevertheless, the

concept was extended to only-time discretization [139] and to continuous time formulations

[61, 48]. Particularly here we are interested on the flow computation at the boundaries rather

than the particular discretization scheme.

Let’s assume the space is discretized into cell of equal length, ∆x, indexed as j = 1, ..., nj

where x = j∆x, where ∆x. Similarly, the time is discretized into steps i = 1, ..., ni where

t = i∆t. The density at cell j at discrete step i is denoted by k(j, i). This scenario in a

given time is depicted in the Figure 2.9. The goal is to compute the flow from the upstream

to the downstream cell.

Demand is the maximum flow the upstream cell can send to the downstream cell regardless of
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the state of the downstream cell. There are two physical constraints for that: (i) the number

of vehicles cannot exceed the number of vehicles inside the cell, otherwise a negative density

would be observed; and (ii) the flow cannot exceed capacity. For supply the principle is

similar in which the constraints are: (i) adding the received vehicles and the vehicles already

in the cell cannot be higher than the jam density; and (ii) the flow cannot exceed the capacity

of the downstream cell. Demand, supplies and boundary flow are computed as:

D(j, i) = Q(min{k(j, i), kc})

S(j, i) = Q(max{k(j, i), kc})

q(j, i) = min{D(j, i), S(j + 1, i)}

(2.13)

With the same principle, the flow at boundary at any boundary. For example, the flow at

x+ ∆x would be computed and the density at downstream cell would be updated as:

k(j, i+ 1) = k(j, i) +
∆t

∆x
(q(j − 1, i)− q(j, i)) (2.14)

where ∆x and ∆t respect the Courant-Friedrich-Lewy condition [26, 25]. A graphical repre-

sentation of demand and supply can be noticed from the fundamental diagram as in Figure

2.10 Demand is the increasing section of the fundamental diagram; analogously, supply is

the decreasing section of the fundamental diagram.

The computation through demand and supply was presented here as a time-space discretiza-

tion of two homogeneous cells. Nonetheless, the concept has been extended to networks as

in [28], to inhomogeneous roads and in continuous time shown to serve as entropy conditions

to obtain unique solutions. It is not detailed here, nonetheless the intuition to continuous
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Figure 2.10: A fundamental diagram and its associated demand, D(k) and supply, S(k).

can be captured as the above equations with ∆x → 0 and ∆t → 0. Along the same line,

henceforth when I refer to the flow at x, x+ and x− refers to point at limit approaching x

from downstream (x+ > x) and upstream of x (x− < x).

Going back to the example of Figure 2.7a, we can apply the demand and supply at x = 0.

The downstream area (x > 0) is always uncongested and therefore the supply is always the

downstream capacity, C. The upstream area t = 0 would lead to demand qu > C at t = 0

and to the maximum demand (upstream capacity, approximately 2C). At any case, applying

the min operator to compute the boundary flow, would find q(0, t = 0) = C. That is exactly

the same result we have found in the previous sub-section.

The merge bottleneck example shows one of common weakness of the LWR model [107]. In

a situation like the previous example, the flow at x = 0 reduces to the downstream capacity.

However, by the empirical evidence of the capacity drop, we know the outflow is smaller than

the downstream capacity when its upstream section is congested. Second, several extensions
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of the LWR model aiming to capture the capacity drop phenomenon is based on demand

and supply concept. I present some of the LWR model extensions of capacity drop in the

next section.

2.3 Capacity Drop Models

Since the capacity drop phenomenon is a fact, it is imperative that traffic flow models

replicate such phenomenon when modeling a similar situation. Second order models (e.g.,

[95, 8] ) arguably can replicate the effects of capacity drop in a lane drop scenario such as

the one depicted in Figure 2.7a as pointed out in [107], which also points out this specific

case as a deficiency of first-order (LWR) model. However, several extensions of the LWR

model have been proposed to circumvent this deficiency and I introduce some of them here.

Such extensions, in general, model the merging segment (or just a lane drop) as a specific link

with slightly changed dynamics in order to capture the outcomes of the capacity drop. Some

of the models captures the capacity drop phenomenon as an outcome of the combination

of the basic physics governing the system associated to driving behaviors including lane-

changing and bounded acceleration. Others models are conceptual and model the outcomes

based on the relevant state variables based on reasonable assumptions. 1

Throughout this section, the models are being used to compute flow at point x where the

lane drop is located. In addition, C is the downstream capacity.

1The distinction into conceptual ”empirical” and physical model is not common in traffic. This distinction
is based on hydrologic models to compute flow at rivers as in [99] which is very similar to traffic flow.
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Phenomenological Capacity Drop Model

Proposed in [65], it is a conceptual model in which the capacity drop is replicated based

on a simple modification in the conditions in which capacity drop is triggered rather than

modeling the phenomenon itself based on the macroscopic variables. It is based on demand-

supply concepts, but difference lies on the computation of the boundary flows:

q(x, t) =


D(x−, t), D(x−, t) ≤ S(x+, t)

min{S(x+, t), C−}, D(x−, t) > S(x+, t),

(2.15)

where C− is the flow observed when the capacity drop is present in which is referred to

here as congested capacity. Often the value the congested capacity is obtained from the

capacity-drop ratio, defined as:

∆ = 1− C−

C
. (2.16)

The congested capacity is exogenous to the model and should be calibrated for each case.

Note that it does not change the fundamental diagram at any point between x = 0 and x = L;

it actually changes the boundary conditions. Figure 2.11 depicts these two capacities and

specific densities that can help to better understand what is the impact of such phenomenon

on the LWR model.

Assuming the downstream area is uncongested, the downstream supply is the downstream

capacity (i.e., S(x−, t) = C). If the upstream demand exceeds the downstream supply

there will be unserved vehicles and the merging segment become congested. In our previous

example applying the LWR model, the outflow would be capacity. However, in this case

computing flows through (2.15) leads to q(x, t) = C− < C. The downstream section remains
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Figure 2.11: The fundamental diagram with projected densities with capacity drop.

uncongested with the density, k1 associated to flow C− on the uncongested branch of the

fundamental diagram, as depicted in Figure 2.11. Upstream become congested and therefore

the density that emerges on that area is the density that yields C− in the congested branch

of the fundamental diagram. This density value is depicted as k2 in Figure 2.11. Compared

to the LWR model, the outflow is smaller and the congestion is more severe as measured by

a higher density upstream to the bottleneck.

Dissipating the congestion also becomes more difficult. To decrease the number of vehicles

inside the merge is zone is necessary an upstream arrival d(x−, t) < C−. It shows the baffling

effect of the capacity drop: it requires arrivals higher than downstream capacity to trigger

the capacity drop; however, it requires a sharp reduction on the arrival rate to clear the

congestion.

Modified Demand Models

A number of models attempt to capture the effects of capacity drop by changing the demand

function instead of changing the boundary flows. Though a specific model does not introduce
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a driving behavior to justify the modified demand function, others derived derive the demand

based on bounded acceleration and lane changing behaivor.

In [98] they propose a discontinuous demand function that resembles Equation 2.15 of the

phenomenological capacity drop model. The difference on being in the demand function

as oppose to a change in the boundary flow change the behavior in few cases. Specifically,

it changes when the capacity drop is triggered when the supply is between capacity and

congested capacity.

In [115] they propose a linear decreasing demand function when the upstream density exceeds

the critical density in order to capture the outcomes of the capacity drop. Despite they

mention the existence of bounded acceleration, they do not derive the model based on a

specific driving behavior for that study.

In [79] a ”two-phase” model was proposed to introduce bounded acceleration into LWR

model. That is in fact a limitation of the LWR model [81] as in a situation like the previous

examples, when a vehicle crosses a ”shock” (discontinuity) from a congested to uncongested

area (i.e., larger density to low density) it is implicit assumed that vehicles can accordingly

change speeds instantaneously. The two-phase model addresses this aspect by explicitly

modeling the bounded acceleration. In the two-phase model, drivers cannot exceed a maxi-

mum acceleration, denoted by A, which is in the order of 2m/s2. In a recent study [71] they

integrated the constant bounded acceleration into demand-supply framework. The Figure

2.12 was obtained from that study.

Though demand decreases as larger is the upstream density, in the onset of congestion

(i.e., transition from uncongested to congested) the upstream density will converge to an

equilibrium value and the congested capacity is the flow yielded by the equilibrium density.

Decreasing the maximum acceleration rate leads to a decrease of the congested capacity

[122].
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Figure 2.12: Modified demand function for bounded acceleration. Obtained from [71]
.

In [122] extends the demand-supply framework for bounded acceleration to different mi-

croscopic acceleration models. It is proposed a framework in which microscopic acceler-

ation models are transformed into macroscopic demand functions based on two different

mechanisms, instantaneous (within cell) reaction time and (ii) based on the assumption the

information to accelerate travels at finite speed.

The use of different demand and supply function does not limit to bounded acceleration. In

[121] the authors combined both lane changing effects and bounded acceleration to capture

the capacity drop phenomenon. An import aspect of this model is also modeling a decrease

in the outflow due to higher flows from on-ramps which induces more lane changes based on

the model proposed in [57].

32



Chapter 3

Review of Freeway Control Methods

Let it out, take control

Find your way towards the place you

belong

Angra (Storm of Emotions)

In the Chapter 2 details of the traffic flow dynamics were reviewed with special attention

to the capacity drop phenomenon at merge bottlenecks. Nevertheless it was not mentioned

specifically how we can mitigate the effects of capacity drop and how to reduce delays in

the mentioned examples. There are ways in which management systems can interfere in the

traffic dynamics and thereby improving performance.

The most traditional way to interfere in the traffic flow at freeways perhaps is ramp metering

which consists in limiting the on-ramp flow by basically forcing vehicles to experience queues

on on-ramps instead of in the mainline freeway. Nonetheless ramp metering is not the only

one, other strategies include variable speed limits [4] and cooperative merging [96].

In this chapter we review the management strategies in the literature. As several approaches
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in the literature as well as this research are based on control theory methods, a brief review

of control theory is first presented. Later, a review of relevant freeway control methods is

presented.

3.1 Control Theory Concepts

The first definition related to control theory is related to system concept. A dynamic system

has states and outputs that change over time [6] which may be impacted by an external

system through the system inputs. The merge bottleneck of Figure 2.1 fits exactly in this

definition. The output of this system can be the outflow, the state the density in the merging

segment, and the input the metering rate on the on-ramp.

A control system is a set of three components that combined can properly achieve its goals:

control logic, sensor, and actuator. The sensor is the element that provides a quantitative

measurement of the state or the output of the system. In the case of the merge bottleneck,

it can be a loop detector that measures occupancy and flows at a specific location. The

actuator is the element that affects the system. In the case of ramp metering, the actuator

is the signal that informs when the next vehicle can merge in the freeway. Varying the

gap between vehicles we can allow more or less vehicles into the merging segment therefore

changing the flow. The control logic is the strategy that defines how the control system

impacts the system - through its actuators - based on the current system state - provided

by its sensors.

Formally, the information provided by the sensor we refer as the vector y(t) which may

contain one or more outputs (measurements) of the system. The information provided to

the actuator, the control action, is denoted as u(t) which again can be one or several.

The control action is closely related to the system inputs. The control logic is denoted
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Figure 3.1: A schematic representation of a control loop with a process, represented by G,
and a controller, represented by C, a reference signal, and input and output disturbances.

by u(t) = f(y(t), t) which maps how the measurements are translated to control actions.

Finally, the system dynamics is denoted as y(t) = g(u(t), t).

A first distinction in control is whether a system is under open- or closed-loop control.

Open-loop control refers to a controller in which its logic does not depend on the current

measurements of the system, that is, u = f(t). Conversely, a closed loop control refers

to systems in which the control logic does consider the current measurements. The term

feedback refers to using information of the system (i.e., the measurements) to change its

input. It is called closed-loop due to dynamic dependency that arises when the controller

uses information of the system output. Consider a schematic in Figure 3.1. The control

signal u depends in the output y. The output itself depends on the control input through

the system dynamic creating this closed-loop.

The figure depicts 3.1 a basic block diagram of a control system. The system is represented

by the block G, taking as input ũ(t) and output y(t); the controller takes as input e(t) and

computes output u(t). There could be input disturbance, that changes signal u(t) to ũ(t)

and output disturbance that transforms y(t) to ỹ(t). The signal yr is the set-point, that is,

the desired value for y(t). The output y(t) is also referred to as manipulated variable. The

signal u(t) is called the controlled variable.
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Disturbances, du(t), are other inputs that might interfere in the system. It could be a variable

that was not explicitly considered in the model, but may affect the system. In the case of

a merge bottleneck, it is known that weather conditions [47] changes the system dynamics,

but due to various reasons the models does not take into account that fact. The weather

influence in this case can be treated as a disturbance. The output disturbance is often some

uncertainty or errors on the measurements. For example, in the case of a traditional ramp

metering system, the loop detector provides occupancies and flows which may contain errors

due to discretization or miscounts. The output disturbance is denoted as dy(t).

The system or plant, G, can be described in different forms, usually as a differential equation.

For most of the applications, the controller is a linear differential equation in the form:

Nc∑
0

cnu
(nc) =

Mc∑
0

dme
(mc) + C nc = 0, 1, ..., Nc,m = 0, 1...,Mc, (3.1)

where an and bm are real numbers, and x(i) denotes the i-th derivative of variable x. The

advantage to model the system as Equation (3.1) is that it is an ordinary differential equation

(ODE) which solution method as well as closed solutions are known.

If the system cannot be represented as a linear differential equation, the dynamic can be

represented as some function g such as y(t) = g(y(t), u(t)) where y and u in the arguments

refer to the function y and u, not only its value at time t. These systems are harder to deal

with as there is no general solution to the system response. A basic procedure is to find

the equilibrium points of the system, that is, the output y that the system reaches when a

constant input u is applied. We can linearize the system dynamics around an equilibrium
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point (x0, y0) as g(.) = y0 +
∑n

0
∂g
y

(i)
δy(i) +

∑n
0

∂g
u(m) δu

(m)(t).

N∑
0

anδy
(n)(t) =

M∑
0

bmδu
(m)(t) nc = 0, 1, ..., N,m = 0, 1...,M, (3.2)

where coefficients an = ∂g
∂y(n)

and bm = ∂g
∂u(m) . Therefore, only is taken into account a shift

from the equilibrium point and u(t) = u0 + δu(t) and y(t) = y0 + δy(t). From now on, is is

considered the controller and the system is either linear or linearized around an equilibrium

point.

A linear system also has an associated transfer function in the frequency domain. A system

with a single input and output can be described as y
u

= n(s)
d(s)

where n(s) and d(s) are

polynomials.

The transfer function on frequency domain is a continuous representation that depends on

the current value of input and outputs and their derivatives. There is also the discrete

representation when control actions and measurements are updated at times kTs, where Ts

is the sample time and k an integer and the dynamic equation becomes is y(k) = f(y(k −

1), ..., y(k−n), u(k), ..., u(k−m+ 1)). All the analysis and properties derived for continuous

time, especially regarding linear systems, have its counterpart for discrete-time.

For the system described in Equation 3.2 it becomes:

y

u
=
ng(s)

dg(s)
=
bMsM + bM−1sM−1...+ b0

aNsN + aN−1sN−1...+ a0
(3.3)

The controller is C(s) = nc(s)
dc(s)

and the system is G(s) = ng(s)

dg(s)
. Two relationships can be
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derived from the loop depicted in Figure 3.1. The reference to output response:

y(s)

yr(s)
=

nc(s)ng(s)

nc(s)ng(s) + dc(s)dg(s)
, (3.4)

and the disturbance to output:

y(s)

du(s)
=

ng(s)

nc(s)ng(s) + dc(s)dg(s)
(3.5)

Note that the denominator is the same for both cases and the set of roots, λi, determine the

nature of the response. A root λi will have an associated term αie
λit 1 in the response.

The basic goals of a controller is to achieve a desired dynamic (reference to output and

disturbance to output) and robustness to model uncertainties [6]. It can be further divided

in the following list which appears in control system textbooks as [6, 104], but sometimes

with different terminology:

1. stability: the system is stable if considering two close initial conditions, Ya and Yb. For

any b1 > 0 there is a b2 > 0 such that: |Ya − Yb| < b1 =⇒ |Y (t, Ya) − Y (t, Yb)| < b2

for all t > 0 [6]. It means that if the initial conditions are close, the system response

will follow similar trajectories. For linear system it reduces to have the real part of the

roots, λi, lower than zero. Real part negative ensures that the associated exponential

term goes to zero as t→∞.

2. tracking performance: refers to how close the system output remains to a desired

output or reference output yr(t). Often the signal e(t) = yr(t)− y(t) is called tracking

1It changes for repeated roots, but it is not detailed this case here.
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error [6]. It is referred in this document as steady-state tracking or only tracking when

e = 0 as t→∞.

3. robustness to model uncertainty: refers to the capability of the system to keep reason-

able performance when the dynamic of the system is not exactly the same as modeled.

Lets assume the controller was designed based on a nominal model dynamics, G(s).

However, in practice the dynamic is slightly different, denoted as G̃(s). The controller

is robust if it ensures stability and steady-state tracking even when the system dynam-

ics, G̃(s) is different from the nominal dynamic, G(s)

4. disturbance rejection: related to whether the controller ensures tracking performance

in presence of disturbances, that is, when du(t) 6= 0 is not zero.

Stability is necessary for achieving all others. The other goals might not be achieved for

a controller given the system dynamic and they are somehow conflicting. A good tracking

performance might be achieved at expense of lower robustness to model uncertainty, for

example.

The performance of a ramp metering algorithm in terms of traffic flow variables, for example

minimizing delay or maximizing throughput will depend on these items. The performance

in terms of throughput and delay is related to tracking performance. As there are inherent

stochastic components on the model. For example, the relationship between flow and density

is assumed to be fixed in traffic, but actually is scattered which leads to the necessity of

robustness. The upstream demand, which is uncontrolled, can change over time and it is

desirable to ensure performance even when it changes. Therefore it is worth investigating

these properties as all of them have impact in the overall performance.

Modeling the controller and the system as transfer functions are useful for systems with a

single input and output. The system can have multiple inputs and outputs. For example,
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one case of multiple inputs and outputs is the control of multiple on-ramps based on the

information of several detectors.

For this case, the system has a state-vector, x containing n states. The input also becomes

a vector, u with m components. The measurements are represented in the vector y that has

p elements. The representation is the following [6]:

dx

dt
= Ax +Bu

y = Cx +Du,

(3.6)

while in discrete time:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

(3.7)

In state-space representation it is possible deal with multiple variables at same time. While

for single input and output system the analysis is done based on the root of the closed loop

polynomial, in state-space the analysis is similar but looking to the eigenvalues. A common

scheme in continuous time is to have C = I, and set u = −Kx the dynamic reduces to

dx
dt

= (A − BK)x and performance and stability are analyzed based on the eigenvalues of

matrix A−BK.

All concepts are the same or extended to a general case in the state-space representation.

However, there are two properties that can be established in this representation that are

trivial for SISO systems: reachability/controllability and observability.

40



Reachability and controllability are often interchangeable, it is followed here the definition

in [6]. Reachability is whether an arbitrary state x1 can be be achieved through an arbitrary

u(t), 0 ≤ t ≤ τ , with a given initial condition x0; whereas controllability it is related to

reach the origin, x1 = 0 from x0. Both are equivalent for linear and unconstrained systems.

Let Wr =

[
B AB ... An−1B

]
, it is possible to reach any point in the state space with the

matrix Wr has n linear independent columns. As it can reach any point in the state-space

(reachability), it can reach the origin (controllability).

Note that reachability is whether is possible to achieve a state, but it is not guaranteed that

it will remain there. Those are the equilibrium points that is defined as [6]:

Eq = {xe : Axe +Bue = 0}. (3.8)

That is, the set of points, xe, that can be reached with dx/dt = 0.

Another property is observability which is related to reconstruct x based on measurements y

and the control inputs u. Sometimes it is not possible to measure all states, but based on the

system dynamic it might be possible to estimate the ones that are not measured. For linear

systems, testing observability is similar to reachability. Let Wo =

[
C CA ... CAn−1

]T
, it is

observable when the matrix Wo has n linearly independent rows.

PID control is the most used feedback control in engineering system [6]. The PID controller

computes the control signal u based on the error signal e(t) = yr(t)−y(t). The control signal
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u has three different terms, proportional to current, integral and derivative of e(t):

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
, (3.9)

where parameter Kp is the proportional gain, Ki the integral gain and Kd derivative gain.

The set-point yr should also be defined, but it can change at any moment whereas, tradi-

tionally, the gains are fixed or rarely change.

If for a given Kp, Ki, and Kd the system in closed loop is stable, all the properties are

achieved with the PID controller. Tracking is achieved as it yields a constant u(t) when

e(t) = 0 and therefore y(t) = yr(t). With the same reasoning, it can be shown that any

constant disturbance du(t) = du will be rejected and eventually e(t) = 0. Also, as it does

not depend explicitly on the model, it is also robust as long as it is stable, at least for linear

or linearized systems.

The facts that it is simple and yet able to guarantee basic performance requirements are

some the reasons to be widely applied and studied. The control problem becomes choosing

Kp, Ki and Kd that ensures, at least, stability. Usually there is a region in which it is stable,

choosing the exact values then depend on the requirements of the specific application. Large

gains in general lead to faster response, but usually it is less robust to model uncertainty.

Although it has several advantages, there are also disadvantages that can prevent PID con-

trollers to be used in specific applications:

1. it is not straightforward to guarantee stability for non-linear systems;

2. oftentimes stability is ensured, but at expense of a slow response to disturbances;

3. slow responses in systems with dead-time [103];
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4. often there might exist operational constraints such as maximum and minimum values

on u, but operations constraints are not explicitly considered in PID controllers.

When one or some of these disadvantages are crucial, other techniques might be considered to

improve performance such as adaptive control, SWARM and model predictive control. The

first two are similar. Adaptive control [7] tries to obtain approximate the a time-dependent

and local dynamic based on the past inputs and outputs of the system. As the parameters

are obtained, Kp, Ki and Kd are changed according to the current dynamic. It leads to good

performance when the system in fact are time-varying or the dynamic is non-linear, but a

time-varying linear dynamic is a good approximation of the system. SWARM [106] has a

similar scheme where the current dynamic is approximated based on updated measurements.

Model Predictive control (MPC) is a class of technique in which an explicit model of the

system is used to obtain the control actions [14] unlike the PID controller. The rationale of

the system is to use the knowledge of the system dynamics to obtain control actions that

optimizes the system performance. One common example of model predictive control is the

rolling-horizon approach which has been applied into some freeway control methods which

will be presented in the next section.

3.2 Review of Ramp Metering Algorithms

Several ramp metering algorithms have been proposed using different control techniques.

Here some relevant algorithms is presented divided in local and coordinated control. The

latter refers to control strategies intended to control a single bottleneck while the latter refers

to strategies intended to multiple bottlenecks.
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3.2.1 Local Control Algorithms

For the two control strategies presented here it is considered a merge bottleneck as Figure 2.1

where the local controller is setting the metering rate r(t) defined as the number of vehicles

allowed into the freeway per unit time.

The Demand-Capacity Algorithm

The demand-capacity was a quite-popular strategy in United States [109], though there

is no recent literature regarding this strategy. The reason to be presented is that it can

provide some intuition concerning the aforementioned aspects of control systems such as

model uncertainty and controller robustness.

The goal of the Demand-Capacity algorithm is to balance upstream demand with down-

stream capacity through the following control law:

r(t) =


C − du(t) if k(0, t) ≤ kc

rmin if k(0, t) > kc,

(3.10)

where C refers to downstream capacity, kc the downstream critical density and rmin is the

minimum metering rate, the most restrictive metering rate, which is applied whenever the

demand exceeds capacity. The measurement at x = 0 is provided by a loop detector at that

location. The rationale of the strategy is straightforward: drive the system to discharge at

capacity when uncongested; when congested, limit as much as possible vehicles to enter the

freeway to turn the freeway uncongested again.

We can qualitatively analyze the behavior of a local ramp-metering system when controlled
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by the demand-capacity algorithm assuming LWR model dynamics combined with the phe-

nomenological capacity drop model [65]. In the first analysis, we also assume that we have

a perfectly calibrated fundamental diagram and therefore we know the true value of C and

kc. With all these assumptions, the control law (3.10) ensures that the sum of the on-ramp

and upstream demand never exceeds capacity. Therefore, the system remains uncongested

as long as the initial condition was uncongested. The control law also ensures the system

discharges at capacity or the total demand which is also desirable. Therefore, as long as an

unexpected event happens to the system, the demand-capacity would perform reasonably

well.

However, when the system experience some congestion the response may not be appropriate.

The congestion starts at x = L while the detector is located at x = 0. It means that the

congestion is only sensed when the congestion reaches the upstream detector. Therefore,

the system operates as if it was uncongested even though there is some congestion on the

merging segment which is undesirable. Even if congestion reaches x = 0, at that moment the

minimum metering rate would be applied which may mitigate the congestion momentarily.

If through r = rmin the congestion can be mitigated, it would return to the uncongested

mode as soon as at x = 0 become uncongested while there might be congestion between

x = 0 and x = L. Therefore, the control would return to the uncongested mode again,

before clearing all the congestion in the merging segment.

One could argue that it is a minor drawback as it would never occur as the system is initially

uncongested. The fact is that the system has an inherent stochasticity. It is unavoidable

that at some point the system will discharge slightly less than capacity for few minutes

which is enough time to build up a small congestion. With some congestion the outflow can

further reduce due to capacity drop phenomenon. There is no mechanism on this algorithm

to prevent this situation.

We can also analyze the system when there is over or underestimation of the downstream

45



capacity. Lets consider the overestimation case in which is assumed that the actual down-

stream capacity is C and the demand-capacity algorithm considers a capacity C̃ such as

C̃ > C. In that case the demand-capacity allows more vehicles than downstream capacity.

This excess of vehicles, probably small, will start from the downstream boundary, at x = L

and will slowly propagate backwards until x = 0. At this moment the density will be higher

than critical and rmin is applied. Then, the demand will be lower than downstream capacity

and the shock wave propagates forward and the density at the upstream detector fall below

the critical before the congestion has been dissipated. Again, as the capacity is underesti-

mated, it allows more vehicle and the shock wave start to propagate back again and this

cycle continues as long as the upstream and ramp demand is high enough. Therefore this

strategy is not robust if downstream capacity is underestimated. Case it is overestimated,

it might not use some available capacity which is also not desirable.

In summary there is no clear feedback mechanism in the Demand-Capacity algorithm; in

[109] it is defined as a feed-forward, instead of feedback, algorithm. Feed-forward means that

the controller compensates for a measurable disturbance of the system, in which in this case

is variations in the upstream demand. The feed-forward may or may not be combined with

a feedback control.

The relationship between this algorithm with this dissertation is the following. It is an

important example of an algorithm that starts from a sound principle - avoid the inflow to

exceed capacity in order to avoid congestion - and works properly in a nominal case, but

it does not keep good performance when it does not operate in ideal conditions which in

this case are: system initially congested and not robust to slight changes in the parameter.

We could reach this conclusion by analyzing the system response considering the system

dynamics and the control law which is one of the goals of this research.

46



ALINEA

ALINEA proposed in [91] is a method based on PID controllers from control theory, instead

of a switched control-law as the demand-capacity algorithm. In that regard it inherits the

advantages of the PID controllers. Another key difference with respect to the demand-

capacity algorithm is the manipulated variable, y(t). Instead of considering measurements

of upstream flow, ALINEA use the information of the occupancy 2 just downstream to the

bottleneck.

The original ALINEA is an I-controller. Here it is considered the PI-ALINEA extension[132],

where the PI-controller, a special case of PID with Kd = 0. The error signal e(t) is the

difference between the current density k(t) and the target density ko(t):

e(t) = ko(t)− k(t). (3.11)

In addition, the control signal r(t) is bounded, leading to:

r(t) = Kp(ko − k(t)) +

∫ t

0

(ko − k(τ))dτ

rmin ≤ r(t) ≤ Cr,

(3.12)

where Cr is the on-ramp capacity.

Thus to design a PI-ALINEA, we need to determine the following parameters: the coefficients

Kp and Ki, the target density, ko(t), and the minimum metering rate rmin.

The target occupancy is ko = kc or close to it so keeping the mainline close to capacity and

still uncongested. The rationale behind the PI-Controller is that the integral terms ensures

that r(t) will be constant only if e(t) = 0 and therefore ko = kc. Lower values of k(t) leads

2Occupancy is the percentage of time in which a traffic detector senses the presence of a vehicle in a
period of time. It is closely related to density.
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the system to increase the metering rate. Similarly, it decreases the metering rate if density

is higher than critical.

For the theoretical point of view, ALINEA has one disadvantage. A sudden increase in

the upstream demand will be detected only after reaching the downstream boundary which

may cause a queue to form and thereby increasing the occupancy. Only at this point the

controller will start to decrease r(t). The response time depends on Kp and Ki. On the

other hand, ALINEA uses only a single traffic model parameter: the critical density. It is

able to accordingly clear a formed queue only by trying to push the system to the critical

density.

Nonetheless, it is possible that the value of ko is not exactly equal to the critical density.

In the case of ALINEA if one overestimates kc can lead to an erratic behavior. The reason

is that a density slightly higher than kc is not an equilibrium point assuming that LWR

model on the lane drop scenario. As it becomes congested, k = k1 and the PI-Controller

will decrease the metering rate until it becomes uncongested again. Then, it will allow more

vehicles again and the cycle will repeat over time. The difference to Demand-Capacity it

responds as the congestion starts and completely clears the congestion while in the Demand-

Capacity it clears the congestion on the upstream boundary, but increases again the metering

rate with, possibly, a congestion inside the merge zone.

With the capacity drop phenomenon the impact of this switching behavior is greater. That

is, probably, the reason a slightly under critical target occupancy yields better results in field

deployments [108].

A study of ramp metering using the link queue model and considering ALINEA as the ramp

metering algorithm is presented in Chapter 5.
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3.2.2 Coordinated Control Algorithms

ZONE and Stratified Algorithm

The Minnesota Department of Transportation (Mn DOT) has been applying ramp metering

since early 1970s [137]. The ZONE metering strategy had been in operation for years. After

some public complaining, the Mn DOT conducted an 8-weeks shutdown in order to assess the

effectiveness of the ramp metering strategy that had been in operation. The conclusions were

that the ZONE strategy had been providing overall benefits, but it was true that delays on

on-ramps were large. It lead to the development of a new algorithm that keeps main features

of the ZONE, but is able to overcome some of the issues. Both are briefly presented here

based on [137].

The ZONE algorithm divides the controlled section of the freeway into zones. It is defined

as a region where upstream works in free-flow and a downstream bottleneck. The goal is

to balance in- and out-fluxes in this zone and therefore keeping a constant density in those

areas. The conservation equation is the following:

M + F + A+ U = X +B + S, (3.13)

where M is the total local-access ramp volume, F is total freeway-to-freeway volume to be

controlled, A is the measured upstream mainline volume, U the total measured non metered

entrance ramp volume, X total exit ramp volumes, B downstream bottleneck capacity, and

S the spare capacity representing ”space available” within the zone.

The goal is to regulate flows at all zones. The metering rate has impact in the zone and also

in downstream zones. It is computed the on-ramp flux M in order to balance a flow within
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the zone and another to match a system goal (some downstream zone). The most restrictive

of both is applied. The flow M is then converted to the flow for each on-ramp inside the

zone.

In order to avoid large delays on on-ramps, a different mechanism was introduce to avoid

too restrictive metering rates for long periods.

The stratified algorithm follows the same principles. The main differences are that ramps

can be inside different overlapping zones and still follows the concept that ramp flows should

be split in the on-ramps inside a zone and the most restrictive is applied. Also, there is also

the layer concept. A zone is grouped with more zones as the layer level increases and the

level of coordination decreases as the layer increases. The coordination goal is to balance

volume to downstream layers.

To avoid long queues at on-ramp, the minimum release rate was introduced. Queues at

on-ramp are estimated based on detectors at on-ramp, one upstream and one downstream.

The minimum release rate is proportional to the queue length therefore if queue grows the

metering rates increase as well.

In both algorithms, from the control and model point of view it uses simple concepts. The

method to compute metering rate is similar to a P-Controller, but it is non linear because it is

computed a metering rate for an on-ramp several times and the minimum is applied. As the

goal is to balance inflow and outflow, the consequence is a constant density and therefore

it might not be able to clear an already formed congestion similarly to demand-capacity

algorithm.

Also, all the relationships are based in steady state flows. On-ramps flows impact downstream

zones, but at different times, but it is not taken into account. This effect is better modeled

in model based approaches.
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Model Predictive Control Algorithms

In the last decade, several ramp metering algorithms that can be classified as model predictive

control. Most approaches addressing freeway control is based on macroscopic models similar

to the presented in Section 2.2. For related problems, such as traffic signal control, both

macroscopic and microscopic models are being used. Rhodes [97], for example, is predictive

but would be classified as microscopic. Similar approaches are [13] and goes back to OPAC

[35]. While macroscopic, the TUC-MPC [2], a similar in [88], and [77]. Common to all of

them, the dynamic is based on aggregated flow in times in the order of one cycle.

In similar problems to ramp metering, such as variable speed limit, model predictive control

is also been used. In [51] the METANET model is used; using the same model, [15] also

address coordinated control through variable speed limit. There also work addressing both

variable speed limit and ramp metering [90, 16, 50].

Some work addressing the ramp metering problem are presented together with two recent

ones that address the same problem, but considers the capacity drop in the following sub-

sections.

Advanced Motorway Optimal Control The Advanced Motorway Optimal Control first

proposed in [75] which analyzed the open-loop optimal given an initial condition. More

recently [110], the same model was integrated into ramp metering control as an upper layer

and ALINEA was used for local control, an hierarchical control approach.

The prediction model is based on METANET tool [95] which is based on the Payne-Witham
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model with few modifications, the segment i of link m is described as:

ρm,i(k + 1) = ρm,i +
T

LmΛm

[qm,i−1 − qm,i(k)]

qm,i(k) = ρm,i(k)vm,i(k)Λm

vm,i(k + 1) = vm,i(k) +
T

τ
(V [ρm,i(k)]− vm,i(k))+

T

Lm
[vm,i−1(k)− vm,i(k)]vm,i(k)− νT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ

V [ρm,i(k)] = vf,mexp[−
1

αm
(
ρm,i(k)

ρcr,m
)αm ]

(3.14)

where ρm,i (in models was used k, here k is the time step index) is the density of the segment

i of link m, ρcr,m is the critical density,vf,m is the free-flow speed, αm a parameter of the

fundamental diagram assumed on link m, τ a time constant, ν an anticipation constant, qm,i

the flow leaving segment i to segment i+1, vm,i is the space mean speed within the segment,

and T the time-step. On the third equation, vm,i two terms were added in order to consider

speed decrease on merges with lane-drop.

Input links, on-ramps, receives a demand do and forward into a specific segment of the freeway

network. The outflow of an on-ramp is q0 depends in the traffic condition of the segment

(m, i) and the metering rate and the input link has a queue ω0, following the following

conservation equation:

ω0(k + 1) = ω0(k) + T [d0(k)− q0(k)]

qo(k) = r0(k)q̂0(k),

(3.15)
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where q̂0 is the non-metered flow, determined as:

ˆq0(k) = min(d0(k) + ω0(k)/T,Q0 min(1,
ρmax − ρm,i
ρmax − ρcr,m

)), (3.16)

where Qo is the freeway capacity. The flow through on-ramps is the minimum between the

demand (i.e., the queue added the arriving vehicles) and the traffic condition on the freeway

segment. Also, note the metering rate, r0, is the ratio between allowed flow and non metered

flow, ranging from a pre-defined minimum, rmin, to 1.

A node model is also introduced at the junctions to determine each flow on such segments,

but it is not detailed in this review.

Therefore, combining all the equation it is possible to compute the state variables ρm,i(k+1),

vim(k+1), ωoj(k+1) from the values of those variables at time-step, demands, and metering

rates at k and recursively to k + 2, ..., k + Kp where Kp is the horizon. The goal is to

minimize total time spent on the freeway and at the on-ramps:

J = T

Kp−1∑
k=1

∑
∀m

∑
∀i

ρm,i(k)LmΛm+T

Kp−1∑
k=1

∑
∀o

wo(k)+

Kp−1∑
k=2

j1(r(k), r(k−1))+

Kp−1∑
k=1

j2(w(k)),

(3.17)

where the first and second terms are the total time spent on the freeway and on-ramps; j1

and j2 are penalty functions to avoid oscillations on the metering rate and queues longer

than a pre-defined values on on-ramps respectively.

The output of the problem provides flows qm,i at each segment of the network. At the

junctions, ALINEA is used to control the on-ramps, but with target density based on density
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that yields the desired out-flow. It might occur on this approach, a target density higher

than critical. If the predicted flow is lower than capacity, a small change on the metering

rate assures that the metering rate will be higher than the on-ramp demand.

In this approach the optimization problem is solved less often than the local controllers

sample time applying the ALINEA algorithm. This allows for larger computational time

while still controlling the on-ramps. Hierarchical control is a common architecture in control

systems [116].

Even though it was not compared with other coordinated algorithms, the results were better

than applying only ALINEA on on-ramp without the upper layer. The same research group

had previously tested coordinated ramp metering based on state-feedback, METALINE [108],

addressing the same freeway, but there is no a comparison between both in the paper.

There are few points worthing mentioning from the control point of view. First, it uses

a second-order model in which properties equilibrium points and their stability are not

trivial. To guarantee stability in model predictive control, the basic three methods are based

on either push the system into their equilibrium points through a equality, a terminal set

constraint or a terminal cost. Clearly, none of them was adopted. Therefore, in this approach

stability is not guaranteed and also not discussed. Second, even though it was recognized that

demands and parameters are stochastic, a systematic analysis on the variation of demands

and parameters were not conducted.

The lack of stability can be seen as a major drawback, but it is a common situation with

non-linear systems, as it becomes harder to obtain proof of stability. As the local controllers

are stable and the objective function has a penalty term to avoid oscillations on the metering

rates, it probably leads to a stable behavior. On the other hand, a given sequence of control

action can be optimal, but not stable. This is one of the first observations in the theory of

optimal control: ”optimality does not imply stability” [67], even though regarding a different
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scheme.

Optimal Ramp Metering using Asymmetric Cell Transmission Model Proposed

in [41] use as a model the asymmetric cell transmission model. An Optimization problem is

solved given initial condition and demands traffic dynamic for a given period.

The problem of obtaining set of optimal metering rates based on known demand and freeway

parameters is object of study since 1960’s. In [134] a linear programming was proposed

considering demands origin and destination (for each on-ramp it is known the ratio of vehicles

that leave on all downstream off-ramps). Back then, it was not considered an initial state

(density) on the freeway, but considered capacities. An advance on the same direction

was given in [140] which a dynamic model was introduced and optimality conditions were

provided for some specific cases, mainly constant demands (or ”uniform congestion”) and

also went further by providing an optimal given a set of known demands at each on-ramp.

In [41] the problem is conceptually the same: finding an optimal set of metering rates given

known dynamic freeway model, CTM in this case and also has shown. As cell transmission

model is non-linear due to the min operator, they also provided a simplification in which is

possible to solve a convex optimization problem that yields close (but not equal) results.

The main difference between the asymmetric and classic cell transmission model is the treat-

ment of merges that only has ”asymmetric connections” where minor branches feeds a major

branch. It is not clear from the manuscript, but cells may have different lengths. In this case

∆t should be chosen accordingly based on the smallest cell length. Each cell has at most one

on-ramp and off-ramp and if it has both, the on-ramp must be upstream of the off-ramp.

The cell transmission model is modeled as optimization problem. The focus in this summary

is in what it differs or extends from what was already presented in Section 2.2. It is assumed

split ratios, βi in the interval [0, 1] at the off-ramp of segment i that keeps at the freeway
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to the segment i + 1; the ratio β̄i = 1 − βi leaves through the off-ramp. The metering

rate changes supply and demand scaled by a parameter γ. Both together lead to a slightly

different supply and demand functions:

On-ramps are modeled as queues in which evolves based on the arrival demand on-ramps

and the flow into the freeway. Constraints on metering rates (maximum and minimum) and

queue (maximum) are also present.

Two terms are considered in the objective function, the Total Time Spent (TTS) and Total

Distance Traveled (TTD):

TTT =
∑
j

∑
i

ki(j) +
∑
j

∑
i

wi(j)

TTD =
∑
j

∑
i

qi(j) +
∑
j

∑
i

ri(j),

J = TTT − µTTD

(3.18)

where wi(j) is the queue on-ramp i in time-step j. They show that TTD is a prescribed

value under fixed metering rates and demands. The objective function favors larger travel

distances with smaller travel times. They ensure in the optimization problem a ”cool down”

period appended to the end of the optimization time-window in which all demands are set

to zero.

They solve three optimization problems, the full non-linear cell transmission model with the

stated assumptions, one without queue length bounds and simplified on-ramp flows and a

third with the queue bounds and simplified on-ramp flows. It is shown that solving the

simplified problems it is possible to achieve similar performance.

Regarding the control, the main conclusion is that the maximum queue on-ramps imposes
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an additional challenge and in that case it might not be possible to keep all the freeway

segments uncongested.

It is provided proofs about the solution of non-linear problems and its relaxations opening

possibilities to solve a linear model instead of a non-linear problem. As one of the challenges

of Model Predictive Control is the computational time to obtain a solution, it is an impor-

tant issue addressed. Simplifying (or adapting the model to fit into a specific structure) the

optimization problem or stopping the algorithm before it reaches the optimal solution was

shown to be a reasonable strategy and almost optimal in control systems[129]. Probably the

same happens on freeway control given the uncertainties as demands, split ratios, measure-

ments errors which solving very accurately a given optimization problem might not yield

advantages comparing to an approximate solution.
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Chapter 4

Impacts of capacity drop on

equilibrium states of freeway corridors

The killing fields, the grinding wheels

Crushed by equilibrium

Iron Maiden (Out of the Silent Planet

4.1 Introduction

Congestion on freeways is a common experience on metropolitan areas around the world and

leads to longer travel times, higher fuel consumption and air pollutant emissions. Ramp me-

tering is one of the possible methods to mitigate congestion and its impacts as corroborated

by both field deployments [108, 84] and simulation studies [55, 41, 110]. A well designed

ramp metering control strategy can help to avoid two mechanisms that arise in congested

traffic [109]:

(i) Queue spill back: this relates to the impact of congestion initiated on a given bottleneck
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on vehicles exiting upstream of that bottleneck. Congestion on freeway often starts

at a bottleneck, often a lane drop bottleneck after the merge with an on-ramp. If the

total flow coming from the mainline freeway and on-ramp is higher than the bottleneck

capacity, congestion will start at the lane drop bottleneck and propagate backwards.

If the congestion reaches one or more upstream off-ramps, vehicles upstream to that

off-ramps will have to slow down due to the congestion ahead. Thus the vehicles

leaving at that off-ramp experience delay even though they will not travel through

the bottleneck. Storing vehicles on on-ramps may prevent or delay congestion from

reaching the upstream off-ramps and therefore help to reduce the total travel time.

(ii) Capacity drop phenomenon: this refers to a drop in the bottleneck flow rate below

its capacity after the onset of congestion at that bottleneck given that the bottleneck

flow is not being affected by the traffic conditions downstream to it [17]. In that case,

keeping the bottleneck uncongested through ramp metering and other control methods

avoids the drop in the flow rate and therefore helps to reduce the travel delay.

While the queue spill back mechanism is well understood, the same is not true about the

capacity drop phenomenon [18]. The first studies that described the phenomenon with

empirical data date from 1990’s [11, 46, 17] and there is still not clear consensus of its exact

mechanism. An evidence of the lack of consensus is the existence of capacity drop models

based on different driving behavior such as bounded acceleration [71], drivers heterogeneity

[22], and lane changing [76]. As consequence, it is still unclear the impact of the capacity

drop phenomenon on the performance and design of freeway control strategies.

Nonetheless, there has been increasing interest on the impacts of capacity drop into freeway

control. In [18] it was empirically shown that it is possible to recover the capacity outflow of

a merge bottleneck through ramp metering. In other studies, stochastic models have been

proposed to predict the probability of capacity drop (flow breakdown) being triggered based

on current traffic conditions ([32, 74]) and these models have been considered in developing
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control strategies [34]. Deterministic models have also been proposed [65, 82, 83] and recently

some of these models were integrated into model based control strategies [98, 92].

In this study we attempt to examine the impacts of capacity drop on the performance of

a freeway corridor in asymptotic equilibrium (stationary) states. In particular, we are in-

terested in properties such as uniqueness, stability, and reachability of these states. These

properties are important because they can answer some key questions related to freeway

control. Uniqueness can answer whether there is only one equilibrium state that achieves

the best performance. Stability can answer whether small variations on inputs and system

dynamics will steer the system back to, as opposed to drifting away, from a desired equi-

librium state. Reachability answer the question whether it is possible to steer the system

to the desirable equilibrium state for given boundary conditions. Understanding the system

behavior regarding such properties can help on the design of new control strategies as well

as on the analysis of control strategies that have already been proposed in the literature.

The study object is depicted in Figure 4.1. The freeway contain M blocks of alternating

merge and diverge segments, indexed as 1, 1′, 2, 2′, ..., I ′, I where i refers to the diverging

segment of i−th block; similarly, i′ refers to the merging segment of the same block. Vehicles

join the freeway through the on-ramps, assumed to be metered, and from section 0, which is

not metered. Vehicles exit the freeway through the off-ramps and on the very last section, I ′.

This work is an extension of [42] in which they also studied the equilibrium properties in a

freeway corridor assuming cell transmission model dynamics [28]. The fundamental difference

of this study is considering the capacity drop phenomenon on the analysis. To that end,

we adapted a capacity drop model for lane drop bottlenecks [65] to merge bottlenecks and

integrated that on the link transmission model [139] to perform the analysis. The system is

analyzed for two cases, without and with capacity drop, enabling us to identify the distinct

features imposed by the capacity drop.

The rest of the paper is organized as follows. In Section 2 we introduce fundamental concepts
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Figure 4.1: Schematic of freeway with alternating on- and off-ramps.

used in the following analysis showing how they impact the study object. In Section 3 we

present the link transmission model [139] which is used for the analysis. In Section 4, the

system properties are analyzed without considering the capacity drop phenomenon and in

Section 5 a similar analysis is presented, but considering the capacity drop phenomenon.

Finally, in Section 5 we state our conclusions and the implications for future work.

4.2 Equilibrium state definition and its Properties

While in the later analysis is based on the link transmission model, the concepts related to

equilibrium states holds regardless of the model assumed with the same intuitive interpre-

tation and practical relevance. The definitions are model-agnostic and therefore applicable

also on different models. In this section we introduce the concept of equilibrium along with

its properties on a freeway corridor.

The notation used throughout this document is summarized in Table 5.1 with the related

description and unit. In addition to that, the same symbols with bold letters refers to a

vector of the appropriate dimensions comprising all the individual elements.

The freeway corridor is split into I blocks containing a merge and a diverge segment in each

block. Each segment has a set of state variables xi and the vector x = [x1,x1′ ,x2,x2′ , ...,xI′ ]

contains all the state variables of the system. The demand is defined as the vector d =

[d0, d1, d2, ..., dI ] where d0 is the upstream demand and not metered where all the following are

the on-ramp demands assumed to be metered under constant metering rate u = [u1, ..., uI ].

Both, demands and metering rates, are assumed to be constant.
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Symbol Description unit
qi(t), gri(t) Flow from section i to i+ 1 at time t, flow on on-ramp i veh/s
fi(t), gi(t) Inflow and outflow on section i veh/s
λi(t), γi(t), Link queue and vacancy at section i
Di,Dri, Si Demand, on-ramp demand, and supply of section i veh/s
Ci, C

−
i ,Cri, Capacity, congested capacity, and on-ramp capacity veh/s

ui(t), u
min
i metering rate, minimum metering rate veh/s

βi ratio of vehicles on link i that leaves the freeway at section i -

∆i Relative capacity drop (∆i = 1− C−i
Ci

) -

Table 4.1: Notation
.

The system dynamics is defined as:

d

dt
x(t) = Φ(x(t),u,d, ψ)

s.t.

x(0) = x0

(4.1)

where the function Φ describes the system dynamics based on current state, metering rates,

and demand. It is also considered the vector ψ with any further parameters that are model-

specific such as fundamental diagram parameters, turning ratios, capacity drop ratio and so

on. The system outputs is a scalar y(t) consisting in our case as the sum of outflows on

off-ramps at sections 1 to I+1. There is an unique relationship between the state variables

and the system output:

y(t) = C(x(t),u,d, ψ). (4.2)
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The system (4.1) is in equilibrium when:

d

dt
x(t) = 0 (4.3)

which is equivalent to Φ(x(t),u,d, ψ) = 0. It is assumed the function X and Y such that:

xeq = X(x0,u,d, ψ)

yeq = Y (x0,u,d, ψ)

(4.4)

The reason we defined outflow, y, as the output is its direct relationship with total time

spent. We can compute the cumulative arrival as:

Ai(t) =
I∑
i=0

∫ t

0

didτ = t
I∑
i=0

di, (4.5)

similarly the departure curve can be written as:

Ao(t) = A0 +

∫ t

t0

yeqdτ = A0 + (t− t0)yeq (4.6)

where t0 is the instant in which it reaches the equilibrium and A0 is the number of vehicles

discharged up to time t0. Thus, we can use basic queuing theory relationship to compute
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the total time spent (TTS):

TTS =

∫ t

0

[
Ai(τ)− Ao(τ)

]
dτ (4.7)

as is not possible to change the cumulative arrivals curve, the total time spent is decreased

when the outflow is maximized 1. Therefore, the optimal equilibrium is defined as:

y? = max
u,x0

Y (x0,u,d, ψ). (4.8)

The classic formulation presented by [134] is consistent with this definition. On that for-

mulation the goal was to maximize on-ramp flows - which in equilibrium is equivalent to

maximizing outflow - while keeping mainline flows not exceeding the capacity at any section.

The formulation for obtaining optimal flows without capacity drop presented on Section 4

is very similar to that work.

The maximum outflow y? is reachable from initial state x0 if:

max
u

Y (x0,u,d, ψ) = y?, (4.9)

and y? is defined as reachable if it is reachable from any x0

The system is defined to be stable with respect to initial states if for a small δ there is a ε

1Similar relationship and reasoning based on the cumulative arrivals and departures is presented in ([89],
Equation 14)
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such that:

||X(x0,u,d, ψ)−X(x0 + ε,u,d, ψ)|| ≤ δ (4.10)

which resembles Lyapunov Stability [6], but note this definition is only related to the equilib-

rium relationship. Lyapunov stability requires all trajectory x(t) to be close to equilibrium

and this definition only requires as t→∞.

Similarly, the system output is stable with respect to initial states if for a small δ there is a

ε such that:

||Y (x0,u,d, ψ)− Y (x0 + ε,u,d, ψ)|| ≤ δ (4.11)

It is defined similarly stability with respect to demands, d, and metering rates, u. This

definition conceptually assesses the impact of small variations around an equilibrium. It is

unstable when for small variations the system will drift away from the equilibrium leading

to a completely different state and outflows. It is desirable that the equilibrium state of

highest outflow to be stable because the system keeps discharging close to its maximum even

in the presence of small disturbances. It does not happen with an unstable equilibrium and

therefore it is unlikely to be observed [29].

Finally, another important property is uniqueness in which our case can be looked from

different perspectives. The optimal output is unique with respect to metering rates if y? can

be achieved with only one u. Similarly, yeq is unique with respect to state if it can only be

achieved by only one xeq.
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4.3 Traffic Flow Model

On this study the dynamics on the mainline freeway is based on the link transmission model

[139]. On the merge bottlenecks, the model is extended with a phenomenological capacity

drop model from [65]. First, we detail the link dynamics on on-ramps and mainline freeway

and later we introduce the node models on merges and diverges used to compute boundary

flows.

4.3.1 Link Transmission Model

The state variables on the link transmission model is the upstream and downstream cumula-

tive curves, similarly the Newell’s model [100] which the link transmission model is derived

from. On this study, however, we present an equivalent formulation [61, 63] based on queue

and vacancy size in each link rather than upstream and downstream cumulative flows.

Each link has three parameters three parameters associated to the fundamental diagram

[100]: the free-flow speed, Vi, the shock-wave traveling speed, Wi, and the jam density, Ki.

These three parameters defines the critical density Kci = ViWi

Vi+Wi
and the capacity Ci = ViKci.

Additionally, the link length is denoted as Li.

Each link has two state variables, the queue (λi), and vacancy, (γi) which evolve as:

d

dt
λi(t) = fi(t−

Li
Vi

)− gi(t)

d

dt
γi(t) = gi(t−

Li
Wi

)− fi(t)
(4.12)

where the boundary condition is determined by the initial queue, λi(0), vacancy size, γi(0),
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the upstream flows, fi, on the period −Li
Vi
≤ t < 0 and downstream flows, gi, on the period

− Li
Wi
≤ t < 0. If the link is initially empty with fi(t) = gi(t) = 0 for t < 0 corresponds to

λi = 0 and γemptyi = KiLi, which we refer as holding capacity.

Supply and demand is computed based on the state variables:

Di(t) = min{fi(t−
Li
Vi

) +H(λi(t)), Ci}

Si(t) = min{gi(t−
Li
Wi

) +H(γi(t)), Ci}
(4.13)

where H(y), with y > 0, is the indicator function:

H(y) = lim
∆t→0+

y

∆t
=


0, y = 0,

∞, y > 0.

(4.14)

The on-ramp dynamics is not modeled explicitly and it is assumed a time dependent di(t)

at each on-ramp. The on-ramp flow can be metered by the metering rate ui(t) which is

assumed to be on the interval

min{di(t), umini } ≤ ui(t) ≤ min{di(t), Cri}}, (4.15)

where umini is the minimum metering rate at on-ramp i, Cri is the on-ramp capacity. With

ui(t) on that range the on-ramp demand is determined by ui(t). The boundary flows are

computed based on demand and supplies and are detailed on the following sub-sections.
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4.3.2 Computation of Flows at Nodes

On the freeway under study, for each block there is a diverge node (on link i) and a merge

node (on link i′). Flows are also needed to be computed at lane drop bottlenecks. A

schematic with the related variables of a freeway block is depicted on Figure 4.2.

Figure 4.2: Schematic of a building block and variables associated to boundary flows com-
putation

We refer qi as the flow on link i that remains on the freeway, therefore the flows in each link

become:

fi(t) = q(i−1)′ (t) + ui−1(t)

gi(t) = qi(t) + yi(t)

fi′(t) = qi(t)

gi′(t) = qi′(t)

(4.16)

and each demand and supply can be computed based on these flows, queues and vacancies

from (4.13). We show in the next sub-sections how the flows are computed on the merge

and diverge case.

On that case the downstream supply, Si+1 is serving both the upstream traffic demand,
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Di′ and the on-ramp demand, ui. A distribution scheme is necessary when the sum of the

demands exceeds the downstream supply. In this study, it is assumed absolute priority to

the on-ramp [56] and the flows on the merge when the capacity drop is not considered as:

gri = min{ui, Si+1}, (on-ramp flow no capacity drop case)

qi′ = min{Di′ , Si+1 − gri} (mainline flow no capacity drop case),

(4.17)

where gri is the outflow of the on-ramp. Therefore, the on-ramp is first served and the

remaining supply can serve the upstream flow.

When the capacity drop is considered the flow computation is slightly different. We integrate

the capacity drop model from [61] in which the total flow is reduced when the total demand

exceeds the downstream supply. Defining S̃i+1 as effective supply computed as:

S̃i+1 = min{Si+1, Ci+1(1−∆i+1δ(Di′ + ui − Si+1))} (4.18)

where δ(x) is the step function:

δ(x) =


0, x ≤ 0

1, x > 0,

(4.19)

The flows can be computed based on the effective supply, S̃i+1 rather than the downstream
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supply, Si+1:

gri = min{ui, S̃i+1}, (on-ramp flow capacity drop case)

qi′ = min{Di′ , S̃i+1 − gri} (mainline flow no capacity drop case),

(4.20)

Note that the flow computation is neither modified demand or supply as S̃i+1 depends on

both upstream demand and downstream supply. Therefore, whenever the upstream demand

is greater than the downstream supply the flow rate will be bounded by Ci+1(1 − ∆i+1),

modeling the capacity drop phenomenon. When the downstream supply is enough to serve

the upstream demand, the maximum flow is the downstream supply.

On the diverge node, we assume that the off-ramp has always enough supply to serve the in-

coming flow. So in this case the flow is determined by the upstream demand and downstream

supply:

qi = min{Di(1− βi), S(i+1)′} = min{Di(1− β̂i), S(i+1)′}

yi = qiβi

(4.21)

where β̂i = 1− βi is the proportion vehicle traveling at freeway at link i that remains at the

freeway after on-ramp at link i.

4.3.3 Properties of Equilibrium States in a Link and in a block

Based on the link dynamics and the node models, we show some basic properties of the

equilibrium on a general links and along a merge-diverge block. The properties shown in
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this subsection will be used when presenting the equilibrium properties along the whole

corridor.

Part of the following discussion is also present in [61] and [59] regarding the stationary states

on a link. A link reaches an equilibrium on time t0 if the following holds:

d

dt
λi(t) = 0 t > t0

d

dt
γi(t) = 0 t > t0 (4.22)

Lemma 4.1. An equilibrium is reached with fi(t) = gi(t) = zi.

Proof. From (4.12) and (4.22) follows that fi(t) = gi(t) = zi(t) for t > t0. When, for a given

t1 > t0, z(t−1 ) 6= z(t+2 ), leads to λ(t−1 ) 6= λ(t+1 ) and γ(t−1 ) 6= γ(t+1 ) drifting away from the

equilibrium. Therefore to remain at the equilibrium, fi(t) = gi(t) = zi(t) = zi for t > t0.

This is equivalent to ([61], Theorem 4.2). On the link transmission model, the flow zi can be

achieved either by the uncongested or congested side of the triangular fundamental diagram,

except when at capacity in which the relationship is unique. From a given stationary state,

with flow, zi, queue, λi, and vacancy γi we can obtain the density over space.

Let’s Assume the link i initially empty at t = 0. In this situation γi(0) = KiLi, λi = 0,

and the inflow for t > 0 fi(t) = Di = zi ≤ Ci. Assuming there is enough supply on the

downstream link, the outflow will be gi(t) = zi for t ≥ Li
Vi

and 0 for t < Li
Vi

. From mass
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conservation, the number of vehicles Ni(t) inside the link i is given by:

Ni(t) = Ni(0) +

∫ t

0

fi(t)dt−
∫ t

0

gi(t)dt, (4.23)

The queue, from (4.12), is computed as:

λi(t) = λi(0) +

∫ t

0

fi(t−
Li
Vi

)−
∫ t

0

gi(t)dt, (4.24)

as it is assumed links initially empty, we can find a relationship between the number of

vehicles inside the link and the queue:

Ni(t) = λi(t) +

∫ t

t−Li
Vi

f(t)dt = λi(t) + zi
Li
Vi
. (4.25)

In the case the link is uncongested and therefore λi(t) = 0, the density on the link,kui (zi),

can be computed as:

kui (zi) =
Ni(t)

Li
=
zi
Vi
, (4.26)

corresponding to the uncongested branch of the triangular fundamental diagram.

Now let’s assume similar situation with downstream supply as such that gi(t) = zi for t > Li
Vi

,

but with a higher upstream demand: Di = fi = zi + ε with ε > 0. In such situation, the
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vacancy and queue for t > Li
Wi

evolve as:

λi(t) = ε(t− Li
Vi

)

γi(t) = KiLi + zi(t−
Li
Vi
− Li
Wi

)− (zi + ε)t

(4.27)

which the queue will steadily grow and the vacancy will decrease. Considering it decreases

until an arbitrary γi taking time t1 such that:

t1 =
KiLi − γi

ε
− zi
ε

(
Li
Vi

+
Li
Wi

), (4.28)

and onwards fi = gi = zi. The queue will settle after at time t = t1 + Li
Vi

with value:

λi(t1 +
Li
Vi

) = KiLi − γi − zi(
Li
Vi

+
Li
Wi

). (4.29)

In particular, the maximum queue in equilibrium for flow zi is then:

λmaxi (zi) = KiLi − zi(
Li
Vi

+
Li
Wi

) (4.30)
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From the maximum queue, we can plug into (4.25) to compute the congested density, kci (zi):

kci (zi) =
Ni

Li
= Ki −

zi
Wi

, (4.31)

which corresponds to the congested branch of the triangular fundamental diagram. Observe

from (4.29) the unique relationship between queue and vacancy in equilibrium. Therefore

we need just one of the state variables; having, for example, λi we can compute γi, Di and

Si.

For any intermediary equilibrium state with γi > 0 and λi > 0, we define αi such that:

αi = 1− λi
λmaxi (zi)

(4.32)

as the uncongested fraction of the road. Considering the position v along the link, being

w = 0 the upstream end and w = Li, we can write the density in stationary state as:

ki(w) = H(αiLi − w)kui (zi) + (1−H(αiLi − w))kci (zi) (4.33)

where H(·) is the Heaviside function. Assuming a link subject to total upstream demand Di,

no off-ramp flow (i.e., βi = 0), upstream supply Si+1, and with queue and vacancy defining

αi can reach 4 types of equilibrium states [61, 59]:

• Strictly under-critical (SUC): flow below capacity with the whole link uncongested

which corresponds to Di < Si+1, αi = 1 (λi = 0);
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• Strictly over-critical (SOC): flow below capacity with the whole link congested which

corresponds to Di > Si+1 < Ci, αi = 0 (γi = 0);

• Critical (C): flow, gi, at capacity and the whole link is at critical density which corre-

sponds to gi = Ci = Di = Si+1, λi = γi = 0 (αi is undetermined in this case);

• Zero-speed shock-wave (ZS): flow under capacity, the downstream end of the link con-

gested while the upstream end of the link is uncongested. This corresponds to gi < Ci,

Di = Si+1 and αi ∈ (0, 1).

Now we study the diverge node and its two related links where the link upstream of the

off-ramp is i and downstream of the off-ramp the link (i′). We are assuming throughout this

study the same road characteristics on both links.

Lemma 4.2. At equilibrium, λi > 0 =⇒ λi′ = λmaxi′

Proof. Let an initial state with λi(0) > 0 and λi′ = 0. It leads to supply Si′ = Ci′ = Ci

which will lead to gi = Ci; if fi < Ci it will lead to λi = 0 eventually. If fi = Ci, it is the

critical case and the vacancy will be reduced until λi = γi = 0. With λi′ = λmaxi′ , Si′ = qi′

which can lead to Di > Si′ and is the only equilibrium case with λi > 0.

In other words, with supply at capacity, there will be no queue on the link upstream of

the off-ramp. To our discussion, it means that for computing the upstream supply, Si, at

equilibrium can be based on λi = λi + λi′ where λi is the queue associated with the i − th

block. We also define onwards βi = βi (β̂i = β̂i), gr
i = gri, and ui = ui. We can compute

λi,max(qi, fri) as:

λi,max(qi, gri) = λmaxi′ (qi) + λmaxi (
qi

β̂i
), (4.34)
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where the flow on the merge link is qi′ = qi and the flow on the diverge link is qi = qi

β̂i
. The

maximum queues is given by (4.30). We can recover the individual queues from λi as:

λi′(q
i) = min{λi, λmaxi′ (qi)}

λi(q
i) = max{0, λi − λmaxi′ (qi)}

(4.35)

We can therefore compute the supply of the block based on λi:

Si = min{ q
i

β̂i
+H(λi − λi,max), Ci}. (4.36)

Therefore given known on-ramp flows and turning ratios at the diverge nodes, we can deal

with only the aggregated queue on a block merge-diverge. Onwards, we base our analysis

assuming as state variables the bottleneck queue λi with associated outflow qi = qi′ . Assum-

ing the changes on the queues happened on a higher time scale compared to free-flow and

shock-wave travel times, the queue evolve as:

d

dt
λi(t) = qi−1(t) + gri−1(t)− yi(t)− qi(t) = β̂i(qi−1(t) + gri−1(t))− qi(t). (4.37)
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4.4 Equilibrium, Stability and Reachability Without

Capacity Drop

In this section the properties of the equilibrium states of a freeway corridor. First, we

analyzed the model and show the properties and later we confirm the results with numerical

experiments.

4.4.1 Model Analysis

We now use the link transmission model presented on Section 4.3 to analyze the system with-

out capacity drop. This scenario is very similar to [42] and the properties shown are equiv-

alent. One assumption made is that the metering rate is in the range min{umin,i, Si+1} ≤

ui ≤ min{di, Si+1} and in that case gri = ui on all on-ramps.

The equilibrium condition for a single link is given by (4.22). It is assumed known and

constant metering rates u = [u1, u2, ..., uI ] and upstream demand, d0. We are considering as

state variables the bottlenecks queues, λi. It is considered equilibrium if all bottlenecks are

in equilibrium. In this case, the equilibrium is reached at time t0 if:

d

dt
λi(t) = 0, t > t0 i = 1, ..., I, (4.38)

which plugging into (4.37) and with all variables not varying in time:

qi = β̂i(qi−1 + ui−1). (4.39)
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Applying recursively for i− 1 as function of i− 2 to the first section we can find qi in terms

of the on-ramp flows and upstream flow q0:

qi = β̂0iq0 +
i−1∑
k=1

ukβ̂ki i ≥ 1 (4.40)

where q0 is the upstream flow into the first section and β̂ki := β̂k+1...β̂i is the share of the

vehicles traveling or enter at on-ramp k that are still traveling on section i. We also define:

qi(j, qj) =


qjβ̂ji +

∑i−1
k=j u

kβ̂ki i > j

qj

β̂ij
−
∑i−1

k=j u
kβ̂jk i < j

(4.41)

as the resulting flow on section i given section j flow is qj. A pair (q, λ) if the boundary

flows based on states λ leads to flows q. Applying that on the merges:

qi = min{Di(λi), Si+1(λi+1)− ui}

= min{qi +H(λi), Ci,
1

β̂i+1
qi+1 +H(λi+1,max − λi+1)− ui, Ci+1 − ui}

= min{qi +H(λi), Ci, qi +H(λi+1,max − λi+1), Ci+1 − ui}

(4.42)

Observe from (4.40) that λi > 0 leads to Di = min{qi + H(λi), Ci} = Ci. As for qi = Ci

would be a critical equilibrium in a link and for that case λi = 0, necessarily Si+1−ui < Ci.

The flow in that case will be qi = Si+1 − ui = min{Ci+1 − ui, qi + H(λi+1,max − λi+1)}. If

Ci+1 − ui < qi + H(λi+1,max − λi+1)} corresponds to the active bottleneck case with the

congestion starting just at bottleneck i. Otherwise, it corresponds to the queue spill-back
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mechanism and qi is the remaining supply of a queue that has started on an active bottleneck

downstream of section i.

In the case of the queue spill-back case, the Lemma 4.2 applies and the state can be grouped

with its downstream active bottleneck as in Equation (4.35), but grouping queues of different

blocks instead of grouping the two queues of the same block. This means the state of the

freeway corridor is determined by the active bottleneck queues. It is consistent with [42]

that having K active bottlenecks, the system state can be given by its related K queues

Λ = [Λ1,Λ2, ...,ΛK ].

We define d̂i the reflected demand into bottleneck i computed as:

d̂i = β̂0id0 +
i∑

k=1

ukβ̂ki (4.43)

which is the flow induced by the demand into section i + 1 by on-ramps and upstream

demands.

Lemma 4.3. d̂i < Ci+1 there is an unique equilibrium with qi = di − ui and λ = 0

Proof. If all sections starts congested, the bottleneck I will have flow q̄I = CI+1−uI leading

eventually to supply SI = 1
βi
q̄I ; the bottleneck I − 1 flow will be q̄I−1 = qi−1(I, qI) =

1
βi
q̄I−uI−1 and similarly to the very first section. At the first section d0 <

1
β1
q̄1 = 1

β1
q1(I, qI)

and d
dt
λ1(t) < 0 until λ1 = 0 and later q1 = β1d0 = d̂1−u1 which in turn leads to d

dt
λ2(t) < 0

until clear the queue and q2 = β2β1d0 + β2u
1 = d̃2 − u2 and then successively until section

I.

Lemma 4.3 shows that regardless of initial conditions, eventually at some upstream link

(and it was shown to the worst case), the upstream demand will be strictly smaller than
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downstream supply and the queue is dissipated followed by a smaller flow to the upstream

link. This then lead to smaller demand downstream repeating this process until congestion

at all sections is relieved. In case up to link i is initially congested, qi = min{d̂i−ui, Ci+1} =

d̂i − ui as d̃i < Ci+1 and the link remains uncongested.

Lemma 4.4. For d̂i < Ci+1 ∀i 6= j and d̂j > Cj+1 there is an unique equilibrium with

flows qj = Cj+1− uj and qi(j, qj) fori 6= j and queues λi = λi,max(qi) for i ≤ j and λi = 0

for i > j.

Proof. From section 1 to j − 1 Lemma 1 applies and would have no queues if λj < λj,max.

At section j, d̂j > Cj+1 leading to qj = Cj+1 − uj and d
dt
λj(t) > 0. Queue grows until their

maximum and then reducing supply and qj−1 = qj−1(j, qj) successively until the first section

in which q0 < d0. Downstream to section j, from Lemma 4.3 λi = 0 as d̂i + ui < Ci+1 from

Lemma 4.3.

Therefore, when one bottleneck has reflected demand strictly higher than its downstream

capacity, the congestion will start at that bottleneck and propagate until the first section

eventually leading to q0 < d0.

Lemma 4.5. For d̂i < Ci+1 ∀i 6= j and d̂j = Cj+1 there is an unique equilibrium with

flows qj = Cj+1 − uj and qi(j, qj) = d̃i − ui fori 6= j and queues λi depending on λ(0) for

i ≤ j and λi = 0 for i > j.

Proof. It follows Lemma 4.4, but at section j, qj = Cj+1−uj. Case λi(0) = 0 for all i < j, it

leads to d
dt
λj(t) = 0 and therefore λj(t) = λj(0) and λi(0) for i 6= j. The dependency on λ(0)

we show with a counterexample. Let the initial state be the same λj(0), but λj−1(0) > 0.

It leads immediately to qj(t) = Cj+1 − uj and qj−1(t) = Cj − uj−1 > qj−1(j, qj) leading

to d
dt
λj−1(t) < 0 and d

dt
λj(t) > 0 until either λj(t) = λj,max(qj) or λj−1(t) = 0 reaching

equilibrium afterwards.
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Note that for any section i < j the Lemma 4.2 applies as d̂i < Ci+1 and there will be queues in

equilibrium at section i only if the section i+1 is at its maximum. For λj,max(qj) > λj(0) > 0

and λi(0) = 0 for i 6= j. In that case, λ(t) = λ(0). The counterexample case, with

0 < λj(0) < λj,max and 0 < λj−1(0) < λj−1,max the queue on j − 1 is transferred to section j

until it clears queue j − 1 or queue at section j is at maximum. What happens in this case

is that the vehicles queued upstream of section j that remains at the corridor after section j

will remain queued, but the queue starts from section j and Lemma 4.7 applies. Therefore,

we can combine queues as Eq. (4.35) for queue j − 1 and j and then the combined queue

with j − 2 until the first section resulting in:

Λ1(t) =

j∑
1

λj(t)

λj(t) = min{Λj(t), λj,max(qj = Cj+1 − uj)}

λj−1 = min{Λj(t)− λj(t), λj−1,max(qj−1(j, qj))}

...

λ1 = min{Λj(t)−
j∑
i=2

λi(t), λ1,max(q1(j, qj))}

(4.44)

Lemma 4.6. For λ(0) respecting (4.44) and d̂i+ < Ci+1 ∀i 6= j and d̂j + grj = Cj+1, the

equilibrium is reached with Λ1(t) = Λ1(0).

Proof. Immediately qi = d̂i − ui and d
dt
λi(t) = 0 for all sections and therefore d

dt
Λ1(t) = 0

and Λ1(t) = Λ1(0).

In all previous cases it was assumed that at one specific bottleneck the reflected demand,

d̂, was equal or exceeded the downstream capacity. We now extend to the case in which

happens in multiple bottlenecks.
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Lemma 4.7. If d̂i ≥ Ci+1 for i < j, d̂j ≥ Cj+1 and for some k > j qk(j, Cj+1 − uj) + uk >

Ck+1, the active bottleneck k and the queue state is based on k.

Proof. In that case, the flow at section k is qk = Ck+1 − uk, the queues grows from section

k and eventually Sj+1 = qj(k, qk) + uj < Cj+1 therefore the active bottleneck is k.

In that case the queue starts from section k and will propagate until section 1 as Lemma 4.4

holds.

Lemma 4.8. If d̂i ≥ Ci+1 for i < j, d̂j ≥ Cj+1 and for some k qk(j, Cj+1−uj)+uk = Ck+1,

with queues from j + 1 to k merged as (4.44) as Λ2(t) = λj+1(t) + ...λk(t) the state is

Λ2(t) = Λ2(0).

Proof. It follows from Lemma 4.7 by split the sections j + 1 to k, numbered 1 to k − j, as

independent corridor with upstream flow d0 = Cj+1

From section k, it is possible that Lemma 4.8 holds successively into downstream sections.

However, note that if Lemma 4.7 holds, all independent corridors are again merged to that

bottleneck. With that the equilibrium states are qualitatively characterized. We identify

the most downstream overcritical bottleneck, define as k1, by checking from the first to the

last section as follows:

q0 = d0, k0 = 0

qj = min{β̂j(qj−1 + uj−1), Cj+1 − uj}, j = 1, ..., I

k0 = j if Cj+1 − uj > β̂j(qj−1 + uj−1)

(4.45)

The corridor will be completely congested from section k1 until section 0. Note that if the
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section if k1 = I, the whole corridor congested is the unique equilibrium. After k1, k2, ...,

km can be found from Lemma 4.8 with j = k0 and k1, ..., km, ..., kM are sections in which

qm(k0, q
k0) + ukm = Ckm+1. Therefore, the queues from k0 + 1 to k1 can be grouped as Λ1,

from k1 + 1tok2 as Λ2 until ΛM and in equilibrium the system state can be given by its

related M active bottlenecks queues Λ = [Λ1,Λ2, ...,ΛM ]. This transformation is equivalent

of ([42], Theorem 4.1).

Note it is consistent with the trivial cases. If d̂i + ui < Ci+1, k0 = 0 and M = 0 is the case

with an unique uncongested equilibrium. If k0 = I, M = 0, the whole corridor is congested.

Figure 4.3 illustrate a case in with k0 > 0 and M = 2.

Figure 4.3: Representation of state based on the active bottlenecks with M = 2

We now can show the qualitative aspects of the equilibrium such as stability, reachability,

and uniqueness. The total outflow can be computed, in equilibrium, as:

y = q0 +
I∑
i=1

ui (4.46)

which is total inflow entering the corridor as in equilibrium the inflow and outflow are

balanced. We are considering a given equilibrium as a pair (λeq,u) with its associated yeq.

Similarly, it is referred as ỹeq, λ̃ and q̃ an equilibrium reached with a perturbation in the

state or inputs. Also, a λ defines a Λ and vice-versa.

Theorem 4.9. The system state and output is stable with respect to the initial states.

Proof. Consider a pair (Λeq). Case with M = 0 and k = 0 the equilibrium is no queues and

the system returns to the uncongested equilibrium based on Lemma 4.3 and for M = 0 and
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k = I it returns to the complete congested equilibrium based on Lemma 4.4 and 4.7. For the

cases with k > 0, for each bottleneck Λk(0) = Λk
eq + ε leads to Λk(t) = Λk(0) from 4.6 with

no change on inflows and outflows. Therefore for all cases exist a δ respecting inequalities

(4.10) and (4.11).

Basically, if it starts either completely congested or uncongested (k = 0) the system returns

to the previous equilibrium state. For k > 0 the perturbation on the initial state remains

unchanged. It follows intuition in each case, if the demand is smaller than capacity, any

queue that just builds up (say, following a small incident) is cleared afterwards. In the case

of demands higher than capacity, a small decrease on the queue (say, following some periods

of higher bottleneck outflow) will be followed by a return to the maximum queue. If demand

and capacity are almost the same, a perturbation on the initial state remains untouched.

That is, if the queue grew after a period of smaller outflow, the system will remain close to

this state of larger queue.

In the case of perturbation on the input flows the behavior is different with respect to the

impact of perturbation on the system states, but similar with respect to the output. We

define the on-ramp i as under critical on-ramp if d̂j < Cj+1 for i ≥ j, critical if d̂j = Cj+1

for i ≥ j and overcritical if d̂j > Cj+1 for i ≥ j.

Lemma 4.10. The system state and output is stable with respect to perturbation on an under

critical on-ramp.

Proof. An equilibrium in this case is d̂j < Cj+1, λ = 0, and flows qj = d̂j − uj for j > i.

If ũi = ui + ε leads to d̃j + εβi,j < Cj+1. From Lemma 4.3, the equilibrium is λ = 0

(λ̃eq − λeq = 0) and ỹeq − yeq = ε.

Lemma 4.11. The system state is unstable for a perturbation in a critical on-ramp while

the output is stable for the same perturbation.
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Proof. An equilibrium with states λeq with input i at on-ramp i and d̂j = Cj+1 for j > i.

With ũi = ui + ε leads to d̃j + εβi,j 6= Cj+1. If ε > 0 it leads to λk = λmax for k < j by

Lemma 4.4 and if ε < 0 to λ = 0 for i < k ≤ j by Lemma 4.3. Therefore there is no ε such

that |λkeq − λ̃keq| < δ for small δ. Regarding the output, for ε < 0, ỹeq − yeq = ε and for ε > 0,

ỹeq = yeq + ε− (q0(j, Cj+1)− q̃0(j, Cj+1)) = yeq − ε1−β0i

β0i .

The interpretation of Lemma 4.11 is that in a scenario leading to demand equal to capacity for

some bottleneck, a small increase (decrease) in the demand will turn section fully congested

(uncongested), but with rather small change in the total outflow. It means that a congested

freeway does not necessarily means that it is leading to larger delays.

Lemma 4.12. The system state and output is stable with respect to perturbation on an over

critical on-ramp.

Proof. It keeps λeq = λieq = λ̃ieq = λi,max for i < j from Lemma 4.4 as d̂j ≥ Cj+1 from

where j is the active bottleneck. The change in the outflow is ỹeq = yeq + ε− (q0(j, Cj+1)−

q̃0(j, Cj+1)) = yeq − ε1−β0i

β0i .

From Lemmas 4.10,4.11 and 4.12 we can conclude the output is always stable. Again, the

importance is that variations on the on-ramp flows will never lead to large changes in the

total outflow of the corridor. On the case of a critical on-ramp, the freeway can turn from

completely uncongested to congested with a small decrease in the on-ramp flows but the

impact in the total outflow is marginal.

After establishing basic properties of equilibrium states without the presence of capacity drop

phenomenon, we now turn the discussion to the properties of equilibrium states regarding

performance. Questions to related to this is whether there is optimal equilibrium, whether

it is unique and whether we can settle the system at that equilibrium based on given initial

conditions.
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In this problem, we want to maximize outflow y by changing the on-ramp flows u. The flows

in equilibrium state is given by (4.40) with uk given by the control, but q0 is not controlled.

Also observe from (4.42) that flows respecting (4.40) that does not exceed downstream

capacity (i.e., qi < Ci+1 − ui) always has enough supply due to downstream queue as (as

Si+i = min{qi + H(λi+1,max − λi+1, Ci+i}). In that case, we can formulate the problem of

optimal equilibrium as:

P1 : max
u,q0

y = q0 +
I∑
i=1

ui s.t.

min{ui,min, di} ≤ ui ≤ min{ui,max, di} i = 1, ..., I

qi = β̂0iq0 +
i−1∑
k=1

ukβ̂ki i = 1, ..., I

qi + ui = β̂0iq0 +
i∑

k=1

ukβ̂ki ≤ Ci+1 i = 1, ..., I

q0 = min{ q
1

β1
, d0}

(4.47)

The optimization problem (4.47) resembles the classic linear programming formulation in

[134]. The only conceptual difference is the possibility of part of the upstream demand not

being served. Observe that with min operator on Eq. (4.47) the optimization problem is not

convex.

Theorem 4.13. The x = min{a, b} operator on (4.47) can be exchanged by two linear

inequalities x ≤ a and x ≤ b.

Proof. An initial solution to the problem is u = umin. The remaining set of constraint is

β̂0iq0 +
∑i

k=1 u
kβ̂ki < Ci+1. For any section i, the highest increase in the objective is to
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add flow on the on-ramp j such βji is the smallest. As βi−1,i > βi−2,i... > β1,i therefore

the solution is obtained by increasing in order q0,u1, u2..., uI . Therefore, the min is always

attained as the optimal solution is the higher value possible of q0 in the feasible set.

Therefore the problem (4.47) can be solved through a linear programming solver. The

optimal equilibrium is achieved by the u that solves (4.47). Also see from the structure of

the problem that whenever there are enough demand, the optimal solution will be binding

with qi + ui = Ci+1 in one or more bottlenecks.

Another aspect worth pointing out is the lack of dependence of the optimal equilibrium with

respect to initial initial state. The optimal outflow can be reached either from λeq = 0 or

λ = λmax or any intermediate state.

Lemma 4.14. The optimal u? is unique if βi > 0 ∀i

Proof. It follows from Theorem 4.13 that the optimal is always reached by increasing on-

ramp flows from upstream to downstream whenever β̂i−1,j < β̂i,j which holds for βi > 0.

Therefore, without capacity drop the ramp metering control problem has all desirable prop-

erties in equilibrium: it is stable, reachable and unique. We confirm all these properties with

numerical experiments in the next sub-section.

4.4.2 Numerical Experiments

We verify the results using the link transmission model in a small network with I = 2 with

β1 = 0 and β2 = 0.1. All the blocks have the same parameters with all the links with length

L = 600m, free-flow speed V = 30m/s, shock-wave speed ω = 1
5
V and kj = 3/10 veh/m (≈

3 lanes). With that parameters, the capacity is C = 1.5veh/s. Demands are d1 = d2 = 0.3C
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and d0 = 0.8C and minimum metering rates are all and set to ui,min = umin = 0.1C. The

total simulation time is 3 hours.

The optimal on this case is let the first bottleneck flow to capacity (i.e., u1 ≥ C − d0) and

u2 = Cβ2. Setting u1 > C − d0 will make the first bottleneck congested, but will not affect

the outflow as there is no vehicle leaving the freeway upstream to that bottleneck (β1 = 0).

Increasing u2 would be harmful because the total outflow would decrease. We show on Figure

the total outflow and contour plot for 4 cases:

• case (a) - with u1 = C − d0 and u2 = Cβ2;

• case (b) - with u1 = 1.01(C − d0) and u2 = Cβ2;

• case (c) - with u1 = C − d0 and u2 = 1.2Cβ2;

• case (d) - three different demand patterns. First third of the simulation with u1 =

1.01(C − d0) and u2 = 1.2Cβ2, second third with u1 = 1.01(C − d0) and u2 = Cβ2,

and the last third with u1 = 0.95(C − d0) and u2 = 0.95Cβ2.

The higher metering rate than optimal on case (c) throughout all the simulation should lead

to the smaller outflow in all cases through the same principle in Eq. (4.20). On Figure 4.4

the queues (top and middle graphs) for each case and the total outflow and cumulative flow

in oblique coordinates on the bottom graphs. The oblique coordinate (bottom right) helps

us to see the cumulative effect of the flow compared to a baseline flow in which we picked

1.09C.

Both cases (a) and (b) leads to exactly same outflow as the outflow and cumulative flow curves

for each case exactly overlaps, but the first bottleneck is congested on case (b). However,

observe the comparison between case (c) and (d) on the first third of the simulation. The

case (c) the queue starts from section 3 and spills back until the very first section. Observe it
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Figure 4.4: Cumulative outflow for each of experiment with no-capacity drop.

follows Lemma 4.2 and queues appears on upstream links once the queue on the downstream

reaches its maximum. The outflow starts at the maximum and decreases around t = 800s

when the queue reaches the off-ramp. Case (d) leads it to start with two active bottlenecks

with λ1 and λ2 increasing on the beginning, but the queue of the downstream hits the

bottleneck and the both queues are combined (Lemma 4.7) and when the equilibrium in

the fist half is reached (around t = 2000s) there is a single queue on the whole corridor.

However, on case (d) the metering rates are set exactly as the case (b) and, like case (b),

the maximum outflow was reached after the it, but with queues in both bottlenecks. This

confirms it is always reachable regardless of the initial state.

The results also depicts the behavior with respect to small perturbation. From case (a) to

(b) a small perturbation on u1 turned the first section completely congested. Similar to case

(d) in which towards the end of the simulation a small perturbation on both on-ramp flows
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relieved the congestion. However, the variations in the total outflow were rather small for

each case which confirms that the output is stable.

4.5 Equilibrium, Stability and Reachability With Ca-

pacity Drop

We now look to the equilibrium properties for the case in which capacity drop is considered.

In the following sub-section we analyze the system model considering the capacity drop

model and then later we confirm the results with numerical experiments.

4.5.1 Model Analysis

The relationships for equilibrium flows still holds for the capacity drop case and more specif-

ically we can use (4.40) and (4.41). The fundamental difference regarding the capacity drop

is the relationship between flows and queues on the merges in equilibrium is given by:

qi = min{Di, S̃(i+1)′ − ui}

= min{qi +H(λi), Ci,
1

β̂i+1
qi+1 +H(λi+1,max − λi+1)− ui, Ci+1(1−∆i+1δ(x))− ui}

= min{qi +H(λi), Ci, qi +H(λi+1,max − λi+1), Ci+1(1−∆i+1δ(x))− ui},
(4.48)

where x = Di + ui − Si+1. The demand, Di, and supply, Si+1, depend on the queues λi and

λi+1 respectively. Assuming Ci = Ci+1, the computation of x can be divided based on the

queues:
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1. λi = 0, λi+1 < λi+1,max: x = qi + ui − Ci+1,

2. λi = 0, λi+1 = λi+1,max: x = qi + ui − qi = ui > 0,

3. λi > 0, λi+1 < λi+1,max: x = Ci + ui − Ci+1 = ui > 0,

4. λi > 0, λi+1 = λi+1,max: x = Ci + ui − qi = ui + (Ci − qi) > ui > 0.

Note that only the first case can lead to x < 0 with qi + ui < Ci+1; all other cases the flow

in equilibrium will be bounded by the dropped capacity. Nonetheless, the flow computation

for λi > 0 follows the same pattern as the no capacity drop case. The queue spill-back case

is when λi+1 = λi,max and the flow at segment i decreases as soon as the queue at bottleneck

i+ 1 reaches its maximum. The active bottleneck case happens when the upstream demand

exceeds the downstream supply and in that case qi = Ci(1−∆i+1)−ui and queues will grow.

We now highlight the differences between the case in which the capacity drop is not consid-

ered.

Lemma 4.15. For I = 1 and C2(1−∆2) < d̂1 < C2, there exist an uncongested equilibrium

with λ1 = 0 and qi = d̂1 for λ1(0) = 0 and a congested equilibrium with qi = C2(1−∆2)−u1

and λ1 = λ1,max for λ1(0) > 0.

Proof. If λ1(0) = 0, applying in (4.48) with D1 = d̂1 leads to q1 = d̂1 and λ1(t) = 0. For

λ1(0) > 0, D1 = C1 and q1 = C2(1−∆2) and d
dt
λ1(t) > 0 growing until λ1 = λ1,max.

Lemma 4.15, though restricted to a single bottleneck, shows that the flows are dependent on

the initial state unlike the case without capacity drop. It also contradicts Lemma 4.3 and

therefore an uncongested equilibrium is not necessarily reached by setting d̂i < Ci+1 at all

bottlenecks.

Lemma 4.16. d̂i < Ci+1(1 − ∆i+1) there is an unique equilibrium with qi = di − ui and

λ = 0
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Proof. Follows the same condition and proof as Lemma 4.3

Lemma 4.16 is the counterpart of 4.3, but an uncongested equilibrium is only guaranteed

with reflected demand smaller than the dropped capacity rather than capacity. When that

happens, any perturbation that causes a congestion eventually is relieved; otherwise, if d̂i >

Ci+1(1−∆i+1) the queue would grow once the section i becomes congested.

Lemma 4.15 was limited to a single bottleneck because the propagation of the congestion

upstream to that bottleneck is also different. Without capacity drop, whenever d̂i < Ci+1,

the section 1 to i will be congested when the equilibrium is reached by Lemma 4.4.

Lemma 4.17. For an active bottleneck i with 0 < λi(t) < λi,max with qi = Ci+1(1−∆i+1)−

ui+1 > d̂i − ui, the active bottleneck becomes i − 1 if Ci(1 − ∆i) <
1

β̂i
[Ci+i(1 − ∆i+1) − ui]

leading to d
dt
λi(t) < 0 and d

dt
λi−1(t) > 0.

Proof. Once λi(t) = λi,max the flow qi−1 + ui−1 = min{Si, Ci(1 − ∆i)} = min{ 1

β̂i
[Ci+1(1 −

∆i+1) − ui], Ci(1 − ∆i)} and for Ci(1 − ∆i) < Si leads to qi−1 + ui−1 < 1

β̂i
qi and therefore

d
dt
λi(t) < 0 which decreases until λi = 0.

The outcome given by Lemma 4.17 is counterintuitive. When a congestion that started at

section i reaches the section i − 1 can trigger the capacity drop at the upstream section

i− 1. If the flow fall belows the downstream supply, it will relieve the congestion at section

i. It means that a congestion that has started in a given segment may reach an uncongested

equilibrium. Note however that this uncongested equilibrium has smaller outflow compared

to what would be observed should that segment remains an active bottleneck. The congestion

is moved upstream and become more severe. Also, either way the upstream section i − 1

becomes congested. After queue grows to its maximum on section i−1, the section i−2 will

become congested all the way to the section 1. Therefore, similar to the analysis without
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capacity drop, the congestion propagates until the very first section, but not necessarily all

sections will remain congested.

Lemma 4.18. An initially uncongested freeway with d̂i > Ci+1 and d̂k ≤ Ck+1 for i 6= k

reaches an equilibrium with active bottleneck j (1 ≤ j ≤ i)) with λi = λi,max for i ≤ j and

λi = 0 for i > j and qi = qi(j, Cj+1(1−∆j+1)− uj) ∀i.

Proof. Starting with j = i and set j = j − 1 if Lemma 4.17 applies and section j becomes

uncongested. Applying recursively to j − 1,j − 2..,1, j will be one in which congestion was

triggered and qk(j, qj) < Ck+1(1−∆k+1)− uk for k < j.

Therefore, an equilibrium will be reached, but it depends on the bottleneck interactions

which sections will be eventually congested. Observe that all previous derivation was related

to the triggering of the capacity drop and a reduction of the bottleneck flow from capacity to

dropped capacity. The increase of the queues is much faster compared to without capacity

drop case and if the inflow does not change, the congestion reaches the first section also

faster.

In the case without capacity drop, the bottleneck with i subject d̂i = Ci+1 can reach equi-

librium with qi = Ci+1 − ui with queues that can vary from zero to all upstream sections

congested. However, when capacity drop is present this equilibrium only exists for λi = 0.

If a perturbation happens that leads to λi > 0, λi will start to grow at rate of Ci+1∆i+1 and

the outflow becomes different. Take into account this difference, we classify bottlenecks into:

Every bottleneck in equilibrium can be classified into one of them and different types can

coexist in a corridor similar to the without capacity drop case. There can be only one over-

critical and it leads the congestion propagates until the first section. Downstream to the

congested over-critical there might be any combination of the other types. The structure as

Figure 4.3 remains exactly the same.
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Classification Condition St wrt demand St wrt. state

U-UC d̂i < Ci+1 and λi(0) = 0 stable stable if d̂i < Ci+1,−

U-C d̂i = Ci+1 and λi(0) = 0 unstable unstable

C-OC d̂i > Ci+1,− and λi(0) > 0 stable stable

C-C d̂i = Ci+1,− and λi(0) > 0 stable stable

Table 4.2: Classification, condition and stability with respect to perturbation in demand and
state for the different types of equilibrium. U refers to uncongested, C refer to congested,
OC to over-critical and C to critical, Ci+1,− = Ci+1(1−∆i+1). Proofs are on appendix.

The optimal equilibrium can be found with P1 (4.47). The difference in the case of capacity

drop is that whenever qi + ui > Ci+1(1−∆i+1) it can only be achieved with the bottleneck

being uncongested. To turn the bottleneck uncongested it is necessary to have flows under

the dropped capacity until the queues are dissipated. Let d̂i,min the demand induced on

bottleneck i by applying the minimum metering rate at all on-ramps and d̂i,? the demand

induced on the same bottleneck by applying the optimal metering rate u?.

Lemma 4.19. An optimal equilibrium y? through metering rates u? is always reachable if

d̂i,min < Ci+1(1−∆i+1) for all i such that d̂i,? > Ci+1(1−∆i+1).

Proof. By applying umin will turn all the sections uncongested through Lemma 4.3. Once

uncongested, u? can be applied.

The counterpart of Lemma 4.19 is that the optimal equilibrium point may not be reachable if

d̂i,min ≥ Ci+1(1−∆i+1) for some i. In that case, it is not possible to relieve an already formed

congestion. Therefore, the reachability property, unlike the without capacity drop case, is

also dependent on the initial conditions. The useful question under this situation is ”what

is the optimal reachable equilibrium state?”. To answer that question we can formulate the

problem in order to consider the initial condition.

The process to find the optimal equilibrium in that case is more complex. We assume without

loss of generality that there is either zero or one active bottleneck in the optimal solution; it
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is possible an equilibrium state with more than one active bottleneck but they are essentially

equivalent to a single bottleneck located at the farthest downstream bottleneck as the section

flows are the same. In that case we want to find what is the active bottleneck, k0, and the

flows, u, that leads to the optimal flow given demands, d, minimum metering rates, umin,

capacities, C and drop ratios, ∆. Further, the initial condition is represented as the current

most downstream congested bottleneck, labeled as v. We also assume that all sections are

initially uncongested and di.min > Ci+1 for some section i, this last assumption also imply

that the solution given by P1 is not feasible.

Therefore, our problem is to choose the section k0 that will be the active bottleneck and

what is the control input u for that case. The problem P2(k1) (4.49), if feasible, return

the control sequence in which the section k1 is the only one over capacity and therefore the

active bottleneck. It P2 is not feasible, there is no control sequence that turns the section

k1 congested while not leading to some downstream section become congested at the same

time.

Once P2(k0) is found to be feasible, the total flow and the optimal sequence is given by

P3(k0) . The optimal flow will be the highest y(k0) for all values of k0 feasible. In order

to drive the system to that state, the sequence given by P2(k0) is applied and once in that

state, the sequence given by P3(k0) should be applied. We first assumed that all sections

are initially uncongested; the congestion may be relieved through umin. If that is the case,

the uncongested equilibrium exists and the optimal is given by P1. If the congestion cannot

be relieved, the problem is equivalent to consider only the downstream sections of v with

d0 = Cv+1(1−∆v+1) to obtain the optimal flows.

The optimal given by P3(k0) follows similar properties to the original problem without capac-

ity drop. The optimal is obtained by optimizing upstream flows which means that ui = umin

for i < k1 and the same structure of the optimal of P1 in downstream sections with metering
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rates increasing from upstream to downstream so as to flow not exceed capacity.

P2(k0) : max
u,q0,e

e s.t.

min{ui,min, di} ≤ ui ≤ min{ui,max, di} i = 1, ..., I

qi = β̂0iq0 +
i−1∑
k=1

ukβ̂ki i = 1, ..., I

qi + ui = β̂0iq0 +
i∑

k=1

ukβ̂ki ≤ Ci+1 i = 1, ., k0 − 1, k0 + 1, .., I

qk0 + uk0 = Ck0+1

q0 =
q1

β1

e < Ci+1 − qi − ui i 6= k1

e > 0

(4.49)

P3(k1) : max
u,q0

y?(k1) = q0 +
∑
i=1

Iui e s.t.

min{ui,min, di} ≤ ui ≤ min{ui,max, di} i = 1, ..., I

qi = β̂0iq0 +
i−1∑
k=1

ukβ̂ki i = 1, ..., I

qi + ui = β̂0iq0 +
i∑

k=1

ukβ̂ki ≤ Ci+1(1−∆i+1) i = 1, ., k0

qi + ui = β̂0iq0 +
i∑

k=1

ukβ̂ki ≤ Ci+1 k0 + 1, .., I

qk0 + uk0 = Ck0+1

q0 =
q1

β1

(4.50)
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4.5.2 Numerical Experiments

We use the same two bottleneck scenarios to verify the analytical results with capacity drop

under a similar scenario compared to without capacity drop case. The upstream demand is

d0 = 0.8C while at on-ramps d1 = d2 = 0.3C. The turning ratios at off-ramps are also the

same with β1 = 0 and β2 = 0.1. The baseline scenario is the optimal pattern for such case

which is:

q?0 = d0

u?1 = 0.2C

u?2 = 0.1C

(4.51)

Compared to this case, we show the results for relatively small perturbations in some of the

pattern. The total simulation time T = 50kseconds. For all cases q̃1(40K) = q1(40K) −

0.02C, that is, a small perturbation occurs at t = 40000s leading to a slightly smaller outflow

at that time step. This setting is tested in 4 different cases:

• case (a) - the optimal pattern;

• case (b) - u2(t) = u?2 + 0.01C for T/3 < t < 2T/3 and as the optimal pattern otherwise

• case (c) - u1(t) = u?1 + 0.01C for t > 2T/3 and as the optimal pattern otherwise;

• case (d) - u1(t) = u? and u2(t) = u? but on that case the upstream demand is set to

d0 = 0.75C

The case (a) is the optimal pattern and would lead to the highest outflow if no disturbances

happen. Cases (b) and (c) lead to demand over capacity when its respective metering rates
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change. Case (d) follow the optimal pattern as (a) but observe the upstream demand is

smaller. The results are shown in Figure 4.5. The pattern (a) had no queues until the

disturbance at segment 1 which had triggered the capacity drop and reduced the flow. As

the demand was close to capacity at the bottleneck 1 it is an unstable case and there was

a sudden drop on the total outflow. The same instability is present on cases (c) and (d)

and the flow drops as soon as the disturbance in u2 (case b) and u1 (case c) is applied.

Observe the difference between case (a) and (d); the case (d) is stable with respect to small

disturbances as the flow is not at capacity on the first bottleneck. Therefore, when the

disturbance occurred (a slightly smaller outflow), it has just slightly increased the outflow

in the previous time steps.
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Figure 4.5: Cumulative outflow for each case considering the capacity drop.

Now we verify the reachability and stability results. All the numerical experiments so far

the uncongested equilibrium existed, but we have shown that it may not be case. Also, the
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reachability property is dependent on the initial state and the minimum metering rates. We

show these properties by comparing a set of four similar cases. The demands are:

d0 =


0.85C t < T/3

0.94C T/3 ≤ t ≤ 2T/3

0.7C t > 2T/3

d1 = 0.2C

d2 = 0.2C

(4.52)

Similarly to the previous experiments, ∆1 = ∆2 = ∆ = 0.1, β1 = 0, β2 = 0.04. The cases

differ on the following:

• case (a) - ui,min = 0.08C with all sections initially uncongested. Optimal policy applied

considering the capacity drop phenomenon (P2 and P3)

• case (b) - ui,min = 0.08C with section 2 initially congested. Optimal policy applied

considering the capacity drop phenomenon (P2 and P3);

• case (c) - ui,min = 0.04C with section 2 initially congested. Optimal policy applied

considering the capacity drop phenomenon (P2 and P3);

• case (d) - ui,min = 0.08C with all sections initially uncongested. Optimal policy applied

without considering the capacity drop phenomenon (P1)

The results are shown in Figure 4.6. In case (a) the metering rates were set so as to yield

capacity flow on sections 1 and 2 for the first upstream demand pattern. When the upstream

demand slightly increases, it is not possible to keep both sections congested and the optimal
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policy is to keep the first bottleneck congested while leaving the second bottleneck uncon-

gested. Observe that by doing so it is possible to increase the metering rates of the second

on-ramp. In case (b) the section 2 is initially congested and it is not possible to relieve the

congestion with the minimum metering rates. In this experiment there was nothing the con-

troller could do to avoid the congestion. However, observe the case (c) where it starts from

similar situation, but the congestion is relieved as the minimum metering rates is similar.

Following that, it follows similar pattern as case (a). Case (d) neglects the capacity drop.

That was not harmful while it was possible to keep both sections uncongested, but it lead

to capacity drop being triggered at section 2 and to a smaller outflow overall compared to

cases (a) and (c).

One important aspect of this case, though simple, is that the capacity drop being forced at

section 1 did not significantly change the outflow. In this specific case, the smaller outflow on

the first section could be compensated by a higher metering rates at the following section.

The impact in this case is a smaller outflow through the second off-ramp which is in the

order of ∆1β
2 ≈ 0.4%. This suggests that the impact of capacity drop can be significantly

undermined even if its occurrence is unavoidable.

4.6 Conclusions

An analysis of equilibrium states on freeways based on the link transmission model combined

with a capacity drop was presented. Properties of the equilibrium states was derived from

the model and the impacts of the capacity drop phenomenon was highlighted by comparing

with no capacity drop case. Also, we presented the optimization problems to obtain optimal

equilibrium states.

Compared to a previous study [42], the capacity drop changes on the following. First, the
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Figure 4.6: Queues and metering rates for each of the four cases. At bottom left the total
outflow and bottom right the oblique cumulative curves.

active bottleneck flows are not unique. If there is no capacity drop, the active bottleneck

flows are unique - at capacity - regardless of the queues. Second, the output is unstable with

respect to disturbance in the states and control if the flow at some bottleneck is close to

capacity. It is different compared to without capacity drop case in which it is always stable.

Third, the optimal equilibrium state may not be reachable depending on the upstream

demand and initial state.

We presented two optimization problems for obtaining optimal equilibrium states. As un-

congested equilibrium states may not be reachable, the goal turns to find the best reachable

state given the initial state. This is particular interesting because it is often the case in

several freeways especially in peak hours. Even if possible to keep uncongested with small

metering rates, the queues on on-ramps grows quickly and later the metering rates must be
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increased due to the queue override rule. On that situation, it is possible to find the optimal

given the current operational situation. On the two bottlenecks scenario, it was possible to

achieve an outflow just 0.5% smaller than the uncongested equilibrium.

On future studies we will be interested on the equilibrium states based on origin-destination

demands. With the emergence of connected vehicles it may not be a strong assumption

the knowledge of origin-destination matrix. Also, the problem of reachability is due to the

uncontrolled upstream demand. We would like to study the effect of variable speed limits

on this scenario to confirm whether with both types of control an optimal equilibrium state

is always reachable.
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Chapter 5

Reachability and Stability of A Local

Ramp Metering System

So they push me then from side to side.

They’re pushing ’til there’s nothing

more to hear

Helloween (I Want Out)

5.1 Introduction

Severe traffic congestion usually occurs during peak hours and causes delays, higher fuel

consumption, and air pollution [117]. Ramp metering is one of the possible techniques to

improve freeway performance. Significant reductions in total travel time have been observed

in field deployments (e.g, [108],[84]) and simulation studies (e.g., [55], [124], [110]). Reducing

congestion can also provide safety benefits [39]. There are two mechanisms that cause a

reduction in total travel time.
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The first is related to the queue spill back mechanism. When a queue starts from a bottleneck,

propagates upstream and reaches an upstream off-ramp, vehicles leaving at that off-ramp

are delayed due to congestion ahead [109]. These vehicles leaving on that off-ramp do

not go through the bottleneck, but are nonetheless impacted. Holding vehicles on on-ramps

might prevent, or at least postpone, the queue from reaching that off-ramp and consequently

reducing the total travel time.

The second is the capacity drop phenomenon, a drop in the discharge flow rate of a merge

bottleneck when its upstream section gets congested [17] while its downstream section is

uncongested. The magnitude of the drop varies and a typical value is around 10% [24]. As

the flow rate is lower, the bottleneck takes longer to discharge the same amount of vehicles,

thereby increasing the total travel time. Again, storing the vehicles on on-ramps might

prevent or postpone the onset of the congestion and therefore keep longer discharging at

capacity.

Several field deployments have confirmed the benefits of ramp metering. An evocative case

is that of the Twin Cities in Minnesota in which the meters were turned off for a period of

two weeks in order to assess the impacts of ramp metering [84] on several metrics. On the

four freeways studied, the travel time were smaller when the meters were operating, ranging

from around 2% to as high as 36% ([84], Table 3). Significant benefits were also reported in

[108, 31].

The benefits on these cases are a combination of avoiding queue spill back and capacity drop

phenomenon; however, it is not an easy task to quantify the share of each mechanism on

the overall improvement [107]. This difficult to breakdown the effects might explain why

few empirical studies have related the relationship between ramp metering and capacity

drop. An important study is reported in [18] that shows that through a more restrictive

metering rate, it is possible to recover the discharge flow rate to capacity on a isolated merge

bottleneck.
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Simulation studies have considered the effect of the capacity drop implicitly or explicitly.

Using second order models, in [119] it was shown that variations of ALINEA were able to

sustain a higher outflow for local control. Similar models have been used for coordinated

control as in [110, 75]. More recently, capacity drop was taken explicitly and integrated in

model based controllers (see [49, 92]).

However, no study has combined a model in order to analytically study the effect of capacity

drop on the system dynamics controlled by an on-ramp meter. Through these studies, system

properties can be established in closed form solution helping us to understand important

features of the system. This ultimately can be used to specify requirements to warranty a

meter and parameter tuning of established algorithm. A better understanding may also give

insights into the design of new algorithms.

Nonetheless, there are relevant and recent analytical studies on ramp metering. An interest-

ing study on closed-loop ramp metering and its operating regime is reported in [40]. Using

cell transmission models [28] with few cells, it was shown that different ramp metering al-

gorithms can be analyzed from operation ”modes” and its transitions. It was established

controllability and observability with respect to detector placement. The analysis, the au-

thors claim, suggests that ALINEA [91] is a superior strategy compared to %-Occ [1].

The set of equilibrium states and their characteristics in a single freeway was studied in

[42]. It was shown that all equilibrium states leads to the same flow rate on the bottlenecks,

but keeping those bottlenecks uncongested is beneficial as it diminishes the aforementioned

queue spill back effect. They show that through ramp metering, it is possible to steer the

system to an uncongested equilibrium state and therefore reducing delays.

Closed loop stability for ramp metering also has been the subject of recent research, in par-

ticular on ALINEA and its variations. Through linearization and Lyapunov theory, stability

is established for PI-ALINEA in [130]. For PI-Controllers and a class of systems that local
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ramp metering fits in, stability was also derived in [69]. The aforementioned study [40] also

establishes stability range for ALINEA.

All of these studies have not considered the capacity drop. Its understanding is an essential

step in order to analyze and design ramp metering algorithms especially for local ramp

metering control. We attempt to fill some of the gaps by analytically studying essential open

and closed loop (with PI-ALINEA control law) properties. This is enabled by using models

that are simple and yet capable of reproducing essential traffic flow characteristics. A link

queue model [58] is used for the traffic dynamics inside the merging segment. This model

is an approximation of the LWR model and extends the cell demand and supply [28, 80]

functions to a link. Second, a simple model is incorporated to replicate the outcome of

the capacity drop phenomenon at a merge bottleneck [66], that is, a decrease in flow after

following the onset of congestion. The combined model leads to a switched linear ordinary

differential equation [85]. We were able to establish the following:

1. the system has hysterical nature with respect to the demand pattern. Demand higher

than the capacity triggers the congestion; however, in order to clear a formed conges-

tion, it is necessary a demand lower than the current discharge flow rate, which is lower

than the capacity;

2. depending on the amount of the capacity drop, it might not be possible for a local

ramp controller to eliminate the congestion. In this situation, while the meter can at

some extent change the proportion of the delays on on-ramp and mainline freeway, it

is not able to clear the congestion; and

3. if the controller is able to effectively eliminate the congestion, the stability region of

the widely applied and studied (PI-)ALINEA algorithm is derived.

The rest of the paper is organized as follows. In Section 2 the system’s model is presented. In

Section 3 the impact of the capacity drop on performance is presented. In Section 4 we show
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when ramp metering is effective by analyzing the system’s equilibrium states, its transitions,

and reachability. In Section 5, the closed-loop system are analyzed and it was shown the

range of parameters in which conditions PI-ALINEA is stable and reach an optimal state,

uncongested and discharging at capacity. In Section 6, the controller stability region based on

Link Queue Model is compared to its counterpart in using cell transmission model. Finally,

Section 7 has the conclusions and future work.

5.2 System Description and Model

The system under study is depicted in Figure 5.1 referred as a merge bottleneck containing

three components: a merge of the on-ramp and freeway streams at x = 0, a bottleneck (lane

drop) located downstream, at x = L, where the on-ramp acceleration lane ends, and the

merging segment is the area between them. On the upstream boundary and on-ramp any

unserved traffic is modeled as point queues [63].

Merge Bottleneck

Merging Segment

Figure 5.1: Schematic of merge bottleneck and the model variables.

The state variable is the average density on the merge bottleneck, k(t). Longitudinal and

lateral variations inside this zone are ignored. The inputs demands are the mainline demand,

du(t), and the on-ramp demand, dr(t). Total demand is denoted by d(t) = du(t) + dr(t).

The demand can be limited by the metering rate, r(t). In addition, fu(t) is the mainline
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Symbol Description units

du(t), dr(t), d(t), d̂(t) Upstream, ramp, total, controlled demand veh/s
fu(t), fr(t), f(t), g(t) Upstream, ramp, total in-flux, out-flux veh/s

D, S Demand, supply veh/s
Qu, Qr Upstream, on-ramp queues veh
r(t), rmin current, minimum metering rate veh/s

k(t), kc,kj, ko Current, critical, jam, target density veh/m
C (Cl), kcd Downstream (per lane) capacity veh/s

kcd Critical density downstream veh/m
∆ Relative drop amount veh/s
k1, k̄ congested and uncongested for g = C(1−∆) veh/m
vf , ω free flow, shock-wave speed m/s
Kp Proportional gain of PI controller m/s
Ki Integral gain of PI controller m/s2

x(t) Excess density (k(t)− kcd) veh/m
v(t) Excess metering rate veh/s
L Merge bottleneck length m

Table 5.1: Notation
.

in-flux, fr(t) the on-ramp in-flux, and g(t) the out-flux. Table 5.1 summarizes the notation

used.

The traffic dynamics inside the merging segment can be described by the Lighthill-Whitham-

Richards (LWR) model [86, 113], which has been successfully applied to analyze the initial-

ization, propagation, and dissipation of traffic congestion with spatial and temporal density

waves (kinematic waves). However, the LWR model is a partial differential equation, more

specifically a hyperbolic conservation law for which the control problem is not well studied.

In this study, we resort to an approximation, the Link-Queue Model (LQM) [58], which only

considers dynamical variations of spatially average densities and is therefore an ordinary

differential equation. In [54], this model has been successfully applied to analyze and design

the variable speed limit strategy and the results are validated in the LWR model through

Cell Transmission Model simulation. Thus we follow the same approach by studying the
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control of merge bottlenecks with the LQM:

k̇(t) =
1

L
(f(t)− g(t)), (5.1)

where f(t) and g(t) are the in and out-fluxes. Equation (5.1) can be viewed as a reservoir

in which level increases or decreases based on the in- and out-fluxes difference. The fluxes

are computed based on demand and supply concepts [28, 80]:

D(t) = min {vfk(t), vfkc}

S(t) = min {vfkc, ω(kj − k(t))},
(5.2)

which are respectively the increasing and decreasing parts of the triangular fundamental

diagram [100]:

q(k) = min {vfk, ω(kj − k)}, (5.3)

where q(k) is the flow-rate, vf is the free flow speed, kj the jam density, and ω the shock-wave

speed. The density which yields maximum flow is kc =
ωkj
vf+ω

; at this point the flow is the ca-

pacity, C = vfkc. Ramp, acceleration lane, and freeway lanes share the same characteristics,

as vf and ω. After the lane drop it is assumed the same per-lane fundamental diagram holds.

The per-lane capacity is denoted by Cl. Also, hereafter C refers to downstream capacity

unless stated otherwise. The density that yields capacity is k = kcd. Figure 5.2 presents

the fundamental diagram at each segment. In addition, the on-ramp lane has a capacity

Cr = Cl.
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C

C(1-Δ)

q(k)

Up/Downstream

merge

Figure 5.2: Fundamental diagram of upstream/downstream and merging segments.

On the upstream and on-ramp unserved vehicle are modeled as point queues:

Q̇u(t) = du(t)− fu(t)

Q̇r(t) = dr(t)− fr(t),
(5.4)

which demands are computed [63]:

Du(t) = min{Qu(t) + du(t), vfkc}

Dr(t) = min{Qr(t) + dr(t), r(t), Cr},
(5.5)

note that the upstream demand can be limited by the metering rate.

With upstream demands fluxes are computed. It is assumed absolute priority for the on-
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ramp:

fr(t) = min{Dr(t), S(t)}, (5.6)

and the remaining supply can serve the upstream demand:

fu(t) = min{Du(t), S(t)− fr(t)}, (5.7)

and the total in-flux is f(t) = fu(t) + fr(t). We also denote as Dm(t) = Du(t) +Dr(t) as the

total demand on the merge. Note that f(t) = min{Dm(t), S(t)}.

At the downstream boundary of the merging segment, the out-flux is determined by:

g(t) = min {D(t), C(1−∆H(k(t)− kcd))}, (5.8)

where H(x) is the Heaviside function:

H(x) =


1 if x ≥ 0,

0 if x < 0,

(5.9)

and ∆ is the capacity drop ratio.

It is assumed that there is no congestion on the downstream mainline freeway, i.e., the

merge bottleneck is active. Note that the capacity drop model proposed in [66] is used

here to replicate the capacity drop phenomenon: when there is no queue on the merging

segment, the out-flux can reach the downstream capacity, but if a queue forms, the out-flux
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is the dropped capacity g(t) = C(1−∆). An important aspect is that the drop ratio, ∆, is

exogenous and should be determined for each case.

In the following two sections we use this model to show the impact of the capacity drop and

the conditions in which ramp metering is effective.

5.3 Why Ramp Metering? The Impact of the Capacity

Drop on The Delay

From the presented model, it is possible to assess the impact of capacity drop by comparing

the drop (∆ > 0) and no-drop case (∆ = 0). It is assumed that any transitory period is small

compared to the total time considered. There are two cases. One discharging at capacity,

C, and another at dropped capacity, C(1 − ∆). The total demand, d = du + dr = αC is

assumed to be over capacity (i.e., α > 1) by t = T and zero thereafter.

In Figure 5.3 cumulative curves N(t) are depicted. The continuous line is the cumulative

arrival. The dashed lines are the departure rates for the case in which it discharges at

capacity, C and the case discharging at dropped capacity, C(1−∆). The vertical difference

between the arrival and departure curve is the instantaneous queue. This queue could be at

on-ramp, mainline, or both depending on the upstream and ramp demand and the metering

rates.

The area between the arrival and departure curve are the total delay:

Dnd =
1

2
CT 2

[
(α− 1)α

]
Dd =

1

2
CT 2

[
(α + ∆− 1)α

1−∆

] (5.10)
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Figure 5.3: Arrival (continuous) and departure (dashed) cumulative curves. The outflow
(departure) could be either at capacity, C, or at dropped capacity, C(1−∆).

The relative improvement of avoiding the capacity drop is given by:

D(%) = 1− Dnd

Dd

=
α∆

α + ∆− 1
(5.11)

For example, if α = 1.1 (that is, demand 10 % higher than capacity) and ∆ = 0.05, the

improvement is 36%; if the drop amount ∆ = 0.1, the difference goes to 55%. Therefore, a

well designed ramp meter can drastically decrease the delay. The question turns to which

conditions should be satisfied to achieve such reduction.

5.4 When Ramp Metering is effective? The Equilib-

rium States and Reachability Property

We consider the meter effective when it is able to reduce the total delay. As it is assumed

that the metering rate cannot change the demand, the delay will be lower as the outflow
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increases. Therefore, in equilibrium it is desired to discharge at capacity when there is

enough demand. When the demand is below capacity, the system should be able to remain

uncongested and discharge all vehicles with no delay.

First, we show the equilibrium states and its characteristics. It is shown that keeping at

uncongested equilibrium states is beneficial as the outflow is always higher. Then, we show

in which conditions it is possible to lead the system to the uncongested equilibrium state.

5.4.1 The equilibrium states and their Behavior

We analyze the equilibrium states of the systems subject to constant metering rate (r = Cr

for no control case) and ignoring the on-ramp and mainline queues. In this case the total

demand is constant:

Dm = d̂ = du + min(r, dr). (5.12)

given an initial state and constant demands. The system reaches equilibrium states classified

as follows:

State 1 If d̂ < C(1−∆), the system reaches an uncongested equilibrium density keq = d̂
vf
< k1

from any initial state.

State 2 If C(1 − ∆) ≤ d̂ ≤ C, the system reaches an uncongested equilibrium density keq =

d̂
vf
∈ [k1, kcd] from an initial state k(0) ≤ kcd.

State 3 If C(1−∆) ≤ d̂ ≤ C, the system reaches a congested equilibrium density keq = k̄ from

an initial state k(0) > kcd.
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Figure 5.4: Transition in equilibrium states subject to the change in the demand level.
Uncongested states are 1 and 2; congested states are 3 and 4.

State 4 If d̂ > C, the system reaches a congested equilibrium density keq = k̄ from any initial

state.

Even though the model is based on continuous variables, its essential operating regimes and

its transitions can be characterized by a finite state machine, depicted in Figure 5.4. The

system shifts to state 1 whenever d̂ < C(1 − ∆) it if is initially either at state 2 or 3.

Similarly, reaches state 4 when d̂ > C from states 2 or 3. However, it shifts to state 2 when

C(1 −∆) ≤ d̂ ≤ C and initially at state 1. Likewise, reaches state 3 for the same demand

level, but initially on state 4.

A complete cycle can be done clockwise, but it is not possible on the other way around. This

fact shows the inherent hysteresis: when the system is initially at state 2, it is necessary a

demand greater than capacity (d̂ > C) to reach state 3; however, it is necessary demands

lower than the dropped capacity (i.e., d̂ < C(1−∆)) to return to state 1 again and then a

demand to C(1−∆) ≤ d̂ ≤ C to settle at state 2. It is not possible to switch between state

3 and 2 without state 1 as intermediate.

It is clear that keeping in state 2 has advantages over state 3. In state 2 yields higher out-flux

while keep the bottleneck uncongested. However, to shift state 3 to 2 is not straightforward.

It needs a sharp reduction on the demand to shift to state 1 and then the demand can be

increased to levels higher than C(1 − ∆) again which then the out-flux will be higher and
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the merging segment uncongested.

The hysteretical nature of transportation networks has been discussed with empirical evi-

dence in [36]. However, the difference is that on that study the hysteresis is an outcome of

the queue spill back mechanism while in this study it is an outcome of the capacity drop

phenomenon. The queue spill back mechanism reduces the out-flux of upstream links when

the congestion propagates until of an upstream boundary . The capacity drop reduces the

flow to downstream links when its downstream boundary is congested.

Equilibrium States Classification

The equilibrium state can be characterized over different aspects regarding its equilibrium.

We analyze for convergence and stability.

Under constant demand, the system is convergent [42]: given constant demand d, it always

converges to one equilibrium state, either the keq,u = d̂
vf

or congested keq,c = k̄. Any density

in the interval (kcd, k̄) is an unstable equilibrium state for d̂ = C(1−∆).

For stability, we analyze based on Lyapunov stability [6] in which an equilibrium state is

stable if the initial condition is close to an equilibrium, it will remain close to this equilibrium.

This analysis could be with respect to density and the demand.

With respect to demand level, there are two cases in which it fails. It initially at critical

density and d̂ = C, a demand d̂ + γ where γ is small and greater than zero will lead the

system to the congested equilibrium k̄. Likewise, if k(0) > kcd and d̂ = C(1−∆); a demand

d̂ − γ will lead the system to k = d̂−γ
vf

<< k̄. Both cases, with a small perturbation on

demand, the system settle far away from its equilibrium. In this sense, it can be classified

as bistable: the system has two distinct equilibrium points depending on the sign of the

perturbation on the demand.
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The same is true for a small perturbation on the density. If C(1−∆) ≤ d̂ ≤ C and k = kcd.

A small perturbation positive on density leads to k̄ while a negative leads to keq,u = d
vf

.

Figure 5.5 depicts the bifurcation diagram considering d as bifurcation parameter [136].

Continuous line represents stable equilibrium and dashed lines unstable equilibrium. Bifur-

cations have been discussed for traffic network in [29] and [60]. The existence of multiple

stationary states in a network in [62] and multiple equilibrium states in a single freeway as

in [42] implies bifurcations. However, all of them the underlying principle is a queue spill

back effect which means that flows reduces on upstream links or sections due to a congestion

downstream. In this case, the possibility of multiple equilibrium states arise in a single merge

and affects also the downstream flow.

As mentioned and it also can be seen on the bifurcation diagram that k(0) > kcd and C(1−∆)

is an unstable equilibrium state. The fact it is unstable it does not change the operation

regimes in 5.4 as the stable equilibrium states are the ones likelier to be observed in practice

[29] and therefore more important to be studied.

5.4.2 Reachability with dynamic metering rates

As we have shown, for demands between the capacity and the dropped capacity, the system

can be either congested or uncongested. In order to shift it is needed a demand lower than

the dropped capacity for a sustained period. As the metering rate can limit the on-ramp

demand, we ask the following question: in which condition the ramp meter is able to avoid

the congestion? If initially congested, in which condition is it possible to dissipate the

congestion?

We use the terminology of control theory in which reachability is the capability to reach

an arbitrary state 1 through any function r(t) [6] that satisfies the constraints (this case

1The term controllability and reachability are often exchangeable depending on the textbook [6], here we
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Figure 5.5: Bifurcation diagram: the set of equilibrium states for varying demands.

rmin ≤ r(t) ≤ Cr). When there exists at least one r(t) that satisfies this condition, the state

it is reachable. For unconstrained linear systems, a general test is often used [68]. However,

the system under analysis is switched and r(t) constrained.

In this case, the goal is to keep the system uncongested and therefore discharging at capacity.

Then, the test consists in keeping k(t) ≤ kcd. Let Z the set of points such k(t) ≤ kcd, then

Z is reachable if the controller is able to lead the system to at least one element of Z. We

assume constant demands, either upstream, du(t) = du, or ramp, dr = (t) = dr.

Theorem 5.1. Z is reachable for du < C(1−∆)− rmin for any initial condition.

Proof. If k(t0) > k1, g(t) = C(1−∆). Setting r(t) = rmin, f(t) = min{vfkc, ω(kj−k(t), du+

rmin}. As long as du < C(1 −∆) − rmin, f(t) < C(1 −∆) and ˙k(t) < 0 and eventually, at

t = t1, k ≤ kcd. Once it is uncongested, either initially or at t = t1, it will remain so as

follow the definition as in [126]: controllability is related to reaching the origin and reachability is related to
an arbitrary state.
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long as r(t) ≤ C − du because ˙k(t) = 1
L

(f(t)−min (C, vfk(t)) and g(t) ≥ f(t) at boundary,

k = kcd, and ˙k(t) ≤ 0 so k(t) ≤ kcd for t > t1.

Theorem 5.2. Z is reachable for du < C − rmin if k(t0) < kcd

Proof. With r(t) = C − rmin, follows the same condition of Theorem 5.1 for t > t1.

Outside this region, the controller is no longer effective. For example, if the system is in

State 3 and du > C − (1−∆)− rmin, even with r(t) = rmin it does not switch to any of the

uncongested states (1 or 2). In this case, a drop in the upstream demand, du, is necessary

to relieve the congestion.

Though still able to control k(t), there might exist unserved demand. In order to keep at full

capacity, the metering rate can be set to levels lower than ramp demand forming a queue

that may spillover to local streets.

Theorem 5.3. For Z reachable, all demand is served for d < C.

Proof. If Z is reachable implies that eventually k(t) ≤ kcd and it can operate at capacity.

After this instant, r(t) = C − du(t) can be set. The maximum influx is f(t) = du + min(C −

du, dr) and therefore f(t) ≤ du(t) + C − du, thus f(t) ≤ C. If d = du + dr < C, then

dr < C − du, so r(t) ≥ dr and both upstream and ramp demand are served.

When demand exceeds capacity, queues will grow either on on-ramp or upstream. In case

du + dr > C, setting the metering rate as r = C − du the upstream and ramp flux would be

fu = du and fr = r respectively. The on-ramp queue would evolve as:

Q̇r = dr(t)− fr(t) = dr − r = du + dr − C ≥ 0, (5.13)
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The queue would steadily increase. In practice, this queue has a maximum length in order

to avoid the congestion to spill over to local streets. Often, the meter has a queue override

feature that forces a higher metering rate to avoid long queues on on-ramps (see Equation

(5.11)). It is not considered explicitly in this study. However, at this point either delay will

increase on local streets, due to queue spill back, or at mainline due to the capacity drop.

When reachability is not guaranteed, the control system is able, at some extent, to change

the share of the delays on on-ramp or mainline freeway, but it will discharge at dropped

capacity.

This result, while in this case for a single merge, differs from [42]. On that study, it was

shown that there could be multiple equilibrium states for a bottleneck with demand larger

than capacity. As the capacity drop phenomenon was not considered, the resulting flow

rate at the bottleneck is unique and always at capacity. Considering the capacity drop

phenomenon, the flow rate is lower when the bottleneck is congested.

Also on that study, it was proven that it is possible to steer the system towards the uncon-

gested equilibrium state. It is a similar to what we defined on this study for reachability.

One of the differences is a minimum metering rate introduced in this study. Nonetheless,

even for r = rmin = 0 if du > C(1−∆) it is not possible to dissipate the congestion.

On the case of coordinated control, du is function of metering rates on upstream on-ramps

on previous time. Clearly, if rmin = 0 on all on-ramps it is possible to induce a du = 0 <

C(1 − ∆). However, if the flow induced by rmin ≥ 0 on all upstream on-ramps lies in the

interval (C(1−∆), C) it is possible to avoid the capacity drop, but not recover from it.

This also shows the impact of the minimum metering rate. A higher minimum metering

rates can make Z not reachable. For this purpose, ideally rmin = 0; however, usually

agencies might impose higher minimum metering rates due to other operational issues, such

as Caltrans in California [123].
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5.5 How lead the system to the desired state? Closed-

Loop Analysis

The model equations are combined with PI-ALINEA [132] in order to analyze the response

in closed-loop. First, the PI-ALINEA algorithm is briefly described. Second, the choice of

set-point, ko, and the equilibrium states are discussed. Then, we show for which parameters,

Kp and Ki, the system in closed loop is stable. A Poincaré map analysis is presented for the

case which the response is oscillatory.

5.5.1 PI-ALINEA

ALINEA [91] is a feedback control algorithm based on PID Controller family. The metering

rate is updated based on the observed occupancy close to the lane-drop location. While

the traditional ALINEA [91] is an I-controller, in this study we consider the extended PI-

ALINEA [132], which it is used a PI-Controller rather than an I-Controller. Also, the

ALINEA control law is considered in discrete time. In this study we consider the continuous

PI-Controller, given by [6]:

r(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ, (5.14)

where Kp and Ki are the proportional and integral coefficients respectively, and the error,

e(t), is the difference between the real-time density k(t) and the target density ko(t):

e(t) = ko(t)− k(t). (5.15)
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In addition, the control signal r(t) is bounded:

rmin ≤ r(t) ≤ Cr. (5.16)

Thus, it is necessary to determine the following parameters: the coefficients Kp and Ki, the

target density ko(t), and the minimum metering rate rmin.

5.5.2 Set-Point Specification and Equilibrium States

From the analysis of equilibrium states, the fundamental diagram, and the PI-ALINEA

control law (Eq. 6.8), we can find the optimal set point from the following observations:

1. if d > C the maximum out-flux is when k(t) = kcd with out-flux g(t) = C;

2. if d ≤ C and k(t) ≥ kcd the system could have been operating with the same out-flux,

but at free-flow speed (k ≤ kcd). In this case any set point less or equal to kcd will

force the freeway to operate at free-flow speed; and

3. if d ≤ C and k(t) ≤ kcd the system will not operate at capacity; however, any control

action in the direction of a higher flux (i.e., increase of metering rate) is always desirable

or at least does not affect the performance. The integral effect will push the metering

rate to r(t) = Cr as long as the set point, ko, is such that k(t) < ko ≤ kcd.

Therefore, the set point ko = kcd always leads the system to its maximum throughput in

steady state, considering no fluctuation in demand or modeling errors.

The equilibrium states depend on the PI-controller set-point and demand. From Equation

(6.8), the PI-Controller holds constant metering rate r(t) when e(t) = 0, as long as Ki > 0.
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In other words, the PI-Controller assures that the only equilibrium point is k(t) = ko = kcd.

However, this state may not be reachable depending on demand patterns.

If the demand is high enough to not match the reachability condition (see Section 5.4.2),

it is not possible to prevent the capacity drop phenomenon. Indeed, when k(t) > kcd, r(t)

will steadily decrease until the lower bound r(t) = rmin. Once du(t) > C(1−∆)− rmin, the

influx will be higher than out-flux until k(t) = k̄, which is the equilibrium state in this case.

Once Z is reachable again (i.e., du < C(1−∆)− rmin), the density decreases and eventually

k(t) ≤ kcd.

On the other hand, the set-point might not be reached for low demands. For k(t) < kcd the

metering rate will steadily increase until the upper bound r(t) = Cr, but as long as d(t) < C

it is always possible to serve the demand and the equilibrium state is k(t) = d(t)
vf

.

5.5.3 Closed Loop Response and Stability

For stability analysis, we assume:

1. Z is reachable so that there is a r(t) that can lead to the set point;

2. the ramp flux is determined by the metering rate (i.e., fr(t) = min (r(t), dr(t)) = r(t)).

The on-ramp queue evolve as Q̇r(t) = dr(t)− r(t) and will not be included in the state

space modeling;

3. the upstream queue is ignored and assumed to be zero and fu(t) = du(t). In this case

it is implicitly assumed that du(t) reflect any queue or unserved vehicles up to time t.

Also, the upstream demand is split in a constant and a variable term: du(t) = du0 + δ(t) and

we define excess density as x(t) = k(t)− kcd and excess demand as v(t) = r(t) + du0 − C.
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Combining equations (5.1), (5.6), (5.8), and the control law (6.8), the system can be described

as:

˙x(t) =
1

L
(r(t) + du0 + δ(t)− vfx(t)− C)

˙r(t) = −Kp

L
(r(t) + du0 + δ(t)− vfx(t)− C)−Kix(t),

(5.17)

which is valid for x(t) ≤ 0. Similarly, for x(t) > 0:

˙x(t) =
1

L
(r(t) + du0 + δ(t)− C(1−∆))

˙r(t) = −Kp

L
(r(t) + du0 + δ(t)− C(1−∆))−Kix(t).

(5.18)

Setting excess density and demand as the state variables, Y (t) = [x(t), v(t)]T , we have the

following switched affine system [87]:

Ẏ = A1Y +B1 + Pδ(t), x(t) ≤ 0, (5.19a)

Ẏ = A2Y +B2 + Pδ(t), x(t) > 0, (5.19b)

where

A1 =

 −vf
L

1
L

Kp
L
vf −Ki −Kp

L

, B1 =

0

0

, P =

 1
L

−Kp
L

,
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A2 =

 0 1
L

−Ki −Kp
L

 , and B2 =

 C∆
L

−KpC∆

L

.

The demand variation is treated as perturbation, δ(t), which is assumed zero throughout

this analysis. The equilibrium points are Y ?
1 (t) = [0, 0]T for (5.19a) and Y ?

2 (t) = [0,−C∆]T

for (5.19b). In both cases x = 0 is the equilibrium point; however, Y ?
1 is ideal because the

out-flux is greater.

Locally, the dynamic is determined by the eigenvalues of the respective matrix Ak (k = 1, 2):

λ(A1) = σ1n ± jω1 =
−vf+Kp

L
±
√

(vf+Kp)2

L2 − −4Ki
L

2
, (5.20a)

λ(A2) = σ2n ± jω2 =
−Kp

L
±
√

K2
p

L2 − −4Ki
L

2
, (5.20b)

where λ(Ak) denotes the eigenvalues of matrix Ak.

Through the nature of the eigenvalues in respect to the sign of its real part and whether it

is a complex number and the initial condition after switching between regimes, the stability

is derived. The complete derivation is in Section 5.8.

The stability is guaranteed by two basic condition. After switching from congested to un-

congested state, it remains uncongested and converges to Y ?
1 . Also, if initially congested it

should be guaranteed that the system will eventually switch to the uncongested state.

The first condition is guaranteed by real and negative eigenvalues of A1. While it is possible
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a switch to the congested state depending on the initial conditions, an eventual transition

back to the uncongested state always will be Y (0) = [0,−C∆ + ε], ε > 0 and for this initial

condition real and negative eigenvalues will lead the system to the origin.

The second condition, is to assure that the system initially congested eventually switches to

the uncongested regime. In this case, a real and negative eigenvalue can settle the system

on the congested equilibrium state congested side. Complex eigenvalues assures that it does

not happen. In the specific case where eigenvalues are real and positive, the system always

switches back as long as Ki > 0 due to the saturation. As the real part is positive, the system

initially diverges from x = 0 and reaches r(t) = Cr; at this point Kpx(t) keeps constant while

the integral term increases; when the integral term exceeds the proportional, the system is

pushed back to the uncongested side.

Combining all these cases, the system is stable and converge to Y ?
1 when:

Kp > −vf

H(Kp)
K2
p

4L
≤ Ki ≤

(vf +Kp)
2

4L

(5.21)

An interesting fact is that the drop amount, ∆, does not influence the eigenvalues. So, these

results would be the same as long as the drop amount is greater than zero.

Another addressed case is when eigenvalues of A1 and A2 are all complex numbers. In this

case, whatever the initial conditions, it has x(t) = ansin(ωnt) and it always cross the line

x = 0 at π
ωn

. In the new region, it changes ωn and an, but not the functional form and it

always switches back after half a period. We use Poincaré Map [136] analysis to study the

behavior of the oscillations over multiple cycles.

Consider the Figure 5.6, we assume the initial condition at Y (0) = [0, v1]T . It follows a
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sinusoidal trajectory and intercepts again x = 0 in the point Y2 = [0, v2]. This process

repeats until point Y3 = [0, v3]T and so on. At each segment, vi = f1(vi−1) and therefore

vi = f2(vi−2). After obtaining f2(v) it is possible to compute when it will cross the segment

x = 0 coming from the same dynamic region after n cycles and what is the asymptotic

behavior when n approaches infinity.

With the response given by Equation 5.32 and (5.33) and (5.34), v2 and v3 are obtained:

v2 = Y (
π

ω1

) =
v1

ω1L
e
πσ1
ω1 ,

v3 = Y (
π

ω1

+
π

ω2

) = (
v2 + C∆

ω1L
)e

πσ2
ω2 .

(5.22)

Combining both equations:

v3 = v1e
πσ1
ω1

+
πσ2
ω2 + C∆e

πσ2
ω2 . (5.23)

Equation (5.23) has one fixed point (v1 = v3 = v?) at v? = C∆e
πσ2
ω2

1−e
πσ1
ω1

+
πσ2
ω2

, configuring a stable

limit cycle. Also note that if πσ1
ω1

+ πσ2
ω2

is positive, the trajectories will increase over time;

when negative it asymptotically goes to v?. The period is π
ω1

+ π
ω2

.

On the other hand, for πσ1
ω1

+ πσ2
ω2

is negative, the system will approach v = v? as t→∞.

5.5.4 Numerical Examples

It is considered a section of freeway with four lanes, dropping to three as depicted in Figure

5.1. The length of merging segment is L = 600m, vf = 30m/s, ω = 35/8m/s, and kj =
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Figure 5.6: Phase diagram x(t)xv(t) with initial condition in Y (0) = [0, v1]T .

4/7veh/m. In these conditions, kc = 4/55veh/m and the downstream capacity is C = 3
4
vfkc

and drop magnitude ∆ = 10%. The controller is set with set-point x̄ = 0 (kcd) and rmin = 0.

Euler’s method with 1 second time-step was used as discretization method as it is modeled

in continuous time.

There are a lower and upper bound for Ki given a valid Kp in the region defined in (5.21).

To analyze both, we do two sets of experiments, one for the lower and another for the upper

bound. All cases, demands are du = 0.8C and dr = 0.2C and the proportional gain is

Kp = 10.

For the upper bound, we set the initial conditions close to Y ?
2 , Y (0) = Y ?

2 + ε where ε =

[0.01kcd, 0.01C]T . It expected to be stable for Ki <
16
24

. We consider two cases, Ki = 15
24

and

Ki = 17
24

. The simulation-time is 3000 seconds.

While for the lower bound, we set the initial conditions as k(0) = 1.5kcd and r(t) = C(1 −

∆) − du(t). For Ki <
1
24

the eigenvalues are negative real numbers and we expect to not

switch from one side of the half-plane to another; when greater, it is expected to switch from

congested to uncongested region, but not the other way around. It is considered Ki = 1
23

and Ki = 1
25

. The simulation time is 6000 seconds.
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The results are as expected. For the upper-bound, both cases have similar trajectories until

the vicinity of the origin, but for Ki = 17
24

the system response is oscillatory and cross the

segment x = 0, which it is not the case for Ki = 15
24

. While in the lower bound case, both

converge to one of the equilibrium points at x = 0, but the out-flux are different, as it is

possible to observe on the out-flux graph.

Note that the case (b) is a stable limit cycle. As σ1 and σ2 are negative, then πσ1
ω1

+ πσ2
ω2

is also negative. In that case, it will oscillate with increasing trajectories if v(0) < v? and

increasing when v(0) > v? and eventually reach v(t) = v?. These two cases are depicted in

Figure 5.10.

5.6 Validation of the Results in Cell Transmission Model

All the analyses in this study was based in the Link Queue Model with the capacity drop ex-

tension. It is approximation of the LWR model and capable of reproducing the fundamental

features of kinematic wave model: demand and supply derived from fundamental diagram

and flux functions at junctions [58].

The fact that it is based in ordinary differential equations instead of partial differential

equations allowed us to thoroughly analyze the system, especially in closed loop as PI-

ALINEA algorithm is itself an ordinary differential equation and the solution to the LWR

model considering metering rates based on the downstream density is not known. On the

other hand, the Link Queue Model any dynamic that might arise from spatially different

densities inside the merging segment is ignored. In this section we validate the results

obtained on a model closer to the LWR model, the cell transmission model [28] (CTM).

In the CTM method the discretization is both in time and space. A link of length L is split

into n cells of ∆x = L
n

, time step size is ∆t and the state variable is the average density
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within a cell in a given time step, ki(t), density on cell i on time interval [t, t + ∆t]. Cell

length and step sizes should yield CFL number lower than or equal to 1 [25] (i.e., vf
∆t
∆x
≤ 1).

As vf = 30m/s, we keep the same time step as the previous experiments, ∆t = 1s, then

∆x = 30m and n = 20.

For each cell demand, Di, and supply, Si, are defined as:

Di = min (vfk
i, vfkc) i = 1, ..., n

Si = min (vfkc, ω(kj − ki)) i = 1, ..., n (5.24)

The downstream portion is assumed to be uncongested and its supply is the downstream

capacity:

Sn+1 = C. (5.25)

For all cells, except at the downstream boundary, the flux is the inter cell flux is the minimum

between the demand of the downstream cell and supply of the upstream cell:

qi,i+1 = min(Di, Si+1), i = 1, ..., n. (5.26)

For the last cell, the phenomenological capacity drop model is integrated to compute the

130



flux:

qn,n+1 = min(Dn, Sn+1, C(1−∆H(Dn − Sn+1))) (5.27)

Therefore the out-flux is lower when demand, Dn is greater than supply, Sn+1.

To compute the in-flux at the first cell, it depends on upstream and ramp demand as well

as the metering rate:

qr,1 = min (r,Qr + dr, S1),

q0−,1 = min{du +Qu, S1 − qr,1},

q.,1 = qr,1 + q0−,1,

(5.28)

where qr,1, q0−,1 and q.,1 are the ramp, upstream and total flux to the first cell respectively.

With all fluxes computed, the density for each cell is updated:

ki(t+ ∆t) = ki(t) +
∆t

∆x
(qi−1,i(t)− qi,i+1(t)) i = 1, ..., n (5.29)
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5.6.1 Verification of Stability

To validate the stability in this case, the upstream demand is constant, du(t) = 0.8C, and

ramp demand:

dr(t) = 0 0 < t ≤ 300s

dr(t) = 0.25C t > 300s,

(5.30)

and all other parameters are the same as the previous cases. Thus, it is expected an increasing

metering rate in the beginning and then a sudden increase on the ramp demand leads to the

congested regime. At this point, the controller must push the system to the uncongested

state again and eventually allowing the out-flux close to capacity. We are looking if the

system remains sufficiently close and almost steady at Y ?
1 , for a long time. The simulation

time is 5 hours (18000 seconds).

The criterion of stability is based on the last hour of simulation. It is computed the average

out-flux, ḡ and the normalized standard deviation of the density σ(kn) and it is considered

stable if ḡ ≥ 0.97C, ensuring discharging close to capacity, and σ(kn) < 10−4, ensuring that

it is close to a steady state.

With and without capacity drop effect cases were simulated so is possible to analyze its

impact. The stability region for no capacity drop effect is on the Appendix. Figure 5.11

shows the result obtained. Blue dots show CTM with, red dots CTM without capacity

drop, the black straight line is the stability region for LQM without capacity drop, and blue

straight lines is the same model but with capacity drop. In the case where of no capacity

drop, it is stable for Ki > 0 and kp > −vf/2 and the regions coincide for lower values of Kp.

Especially for the case where capacity drop occurs, the stability region analytically obtained
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Variable [0s,450s) [450s,900s) [900s,1350s) [1350s,1800s)
dr(t) 0.1C 0.1C 0.1C 0.1C
du1(t) 0.9C 0.96C 0.83C 0.7C
du2(t) 0.9C 0.96C 0.86C 0.67C

Table 5.2: Demands
.

is a good approximation. Note that both Ki and Kp has a maximum value in the CTM case

which is not the case for LQM in which Kp and Ki can grow as long as it respects Equation

(5.21). There are two reasons for that.

First, in CTM there is an inherent dead-time between a change in the metering rate and the

instant that the density changes in its response. It makes the control prone to oscillations

and reduces the stability region [103]. It is a relatively small dead time compared with, for

example, the control time step, but it makes harder to avoid oscillations which in the end

triggers the capacity drop phenomenon.

Second, from matrix P in Equation (5.19), any not modeled dynamic implies δ(t) 6= 0 and

it is amplified by Kp/L, therefore as Kp increases the higher is the impact of any deviation

between both models. Even respecting the stability region, it is expected that Kp cannot

grow indefinitely in practice.

5.6.2 Reachability

The reachability conditions established in Section 5.4.2 was related to the upstream demand

and the drop amount. Therefore in this case we keep the ramp demand constant and vary

the upstream demand for two demand pattern such that the total demand over the period

of the simulation is the same.

The minimum metering rate is rmin = 0.05C and dr(t) = 0.1C. The upstream demand

and ramp demands are in Table 5.2. In the beginning, Z is reachable and it is possible to
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Case Mainline TTS (veh-s) On-Ramp TTS (veh-s) TTS (veh-s)
Reachable (1) 2673 7732 10405

Not Reachable (2) 23302 41586 64883
(%) -88% -81% -84%

Table 5.3: Performance Metrics for each case
.

discharge at capacity; on the interval [450, 900) it is not possible to avoid a congestion as

du + rmin > C. On the interval [900s, 1350s) the first demand pattern leads to Z reachable

while the second does not. Note that both cases have the same total demand.

The results are shown in Figure 5.12. After t = 900s the congestion starts to dissipate which

eventually allow an increase on the metering rate and discharge more vehicles. On the other

hand, for the second demand pattern, the first increase also leads to the congested regime;

however, it decreases to a level lower than the dropped capacity and the controller is able to

dissipate the congestion. After that the controller is able to clear the on-ramp queue.

The performance metrics for this case is presented at Table 5.3. A small perturbation on

the demand leads to a large difference on the total time spent. In this specific case the total

time spent increased around 6 times controlled exactly by the same algorithm.

While it might seem a simple example, it can be the underlying principle to fairly high day

to day variation on congestion at the same place. A small changes on the upstream demand

might impair the capability of the system to avoid or alleviate the congestion resulting in

smaller out-flux.

5.7 Conclusion

In this study, by combining a simple link queue model to describe the traffic dynamics of a

merge bottleneck, we were able to show analytically the hysteresis imposed by the capacity
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drop phenomenon, the reduced reachability region, and the stability range when the merge

is controlled by PI-ALINEA.

The reachability is a direct consequence of the hysteresis imposed by the capacity drop

phenomenon. The maximum metering rate in which the capacity drop can be avoided is

greater than the metering rate necessary to recover from the capacity drop. A quite possible

scenario is being possible to avoid the capacity drop, but if a disturbance on the system leads

to capacity drop, it might not be possible to recover from it unless the upstream demand

ceases. This result is general and regardless of the control strategy.

This is a disadvantage of ramp metering compared to variable speed limit. A reduced speed

lower the upstream flow while a lower metering rate reduces the ramp flow. In general, the

ramp demand is a small share of the total demand and acting only on the ramp demand

may not be enough. On the other hand, variable speed limit moves the congestion upstream

which can hit upstream off-ramps first which in not the case for ramp metering in which the

congestion is moved to the on-ramp.

We derived the stability range for the (PI-)ALINEA, one of the most studied ramp meter-

ing algorithms. Considering the capacity drop phenomenon, ALINEA can lead the system

to the density in which yields maximum throughput if it is in the stability region, that

is, theoretically, the target density can be the critical downstream density. In practice, a

”slightly undercritical” [108] is set. From the proposed model and experiments a possible

reason is the following is the asymmetrical effect of a small disturbance. A small decrease on

the upstream demand leads to a small decrease on the out-flux. However, a small increase

can trigger the capacity drop phenomenon and severely decrease the out-flux. Therefore, a

slightly undercritical target occupancy avoids the capacity drop at expense of lower out-flux.

The effect of target occupancy subject to random arrivals and varying parameters is subject

of future studies.
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We will also be considering the impacts of the on-ramp queue overriding rule as well as

practical implementation issues such as detector placement and controller time steps.

5.8 Appendix - Stability Region Derivation

The stability is assessed by each possible combination of eigenvalues of A1 and A2. Real

and negative, saddle, complex number, and real and positive. For two different matrices and

4 classification, it is possible 16 combinations; however, some of the combinations are not

possible.

We are interested in given initial conditions, Y (0) = [x(0), v(0)]T , eventually will reach the

origin in steady state, Y (t) = [0, 0] as t→∞ assuming reachability condition (Section 5.4.2)

and fr(t) = r(t).

Recall that the model in closed loop is a switch affine system with two state variables. For

x(t) ≤ 0 the state transition matrix is A1, and for x(t) > 0 it is A2. The eigenvalues and

eigenvector defines the response. The eigenvalues can be:

1. real numbers. The system response is described by equation (5.31). The constants c1

and c2 are obtained by the initial condition.

Y (t) = c1

r11

r12

 eσk1t + c2

r21

r22

 eσk2t + Y ?
n , (5.31)

where r1j denotes the elements of eigenvectors associated to σk1; similarly for r2j and

σk2.

When the eigenvalues are negative (σkn < 0) it is stable node and reaches the equi-

librium in both cases. In the uncongested region it corresponds to Kp > −vf and
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0 < Ki <
(vf+Kp)2

4L
, while for congested Kp > 0 and 0 < Ki <

K2
p

4L
.

2. complex numbers. In this case the system response is oscillatory, given by:

x(t) = a1e
σntsin(ωnt) + a2e

σntcos(ωnt) + yn1

v(t) = a3e
σntsin(ωnt) + a4e

σntcos(ωnt) + yn2,

(5.32)

where Y ?
n = [yn1, yn2]T .

Once the transition between states is at x = 0 and yn1 = 0, it switches with frequency

ωn. It will be oscillatory for uncongested if Ki >
(vf+Kp)2

4L
, while congested for Ki >

K2
p

4L
.

Note that there is a region when it is complex for congested and it is not for uncon-

gested. In that case, the system initially congested eventually switches to uncongested

and never switches back.

Assuming initial conditions after it has just switched, Yn(0) = [0, v0], the constants for

uncongested case are:

a1 =
v0

ω1L
a2 = 0 a3 = − v0

ω1

[
Kp

L
+ σ1] a4 = v0. (5.33)

while for congested:

a1 =
v0 − C∆

ω2L
a2 = 0 a3 = − v0

ω2

[
Kp

L
+ σ2] a4 = v0 − C∆. (5.34)

3. real and identical. The response is critically damped, given by:

x(t) = a1e
σnt + a2te

σnt + yn1

v(t) = a3e
σnt + a4te

σnt + yn2,

(5.35)
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where constants ai are chosen so as to respect the initial conditions.

First, we show that Y ?
1 is reached only from the uncongested region and then we split the

analysis in how to ensure that the system initially uncongested converges to Y ?
1 and how to

push the system from congested to uncongested state.

Theorem 5.4. The system cannot reach Y ?
1 from the congested state x(0) > 0.

Proof. Assuming an initial condition, Y (0), close to Y ?
1 , to reach Y ?

1 , x(0) must be decreasing.

Let Y (0) = [x(0), v(0)]T such that x(0) → 0+ and v(0) → 0. From Equation (5.19b), x

(ẋ < 0) is decreasing for v(0) ≤ −C∆, but it is a contradiction since v(0) → 0, for C > 0

and ∆ > 0.

Theorem 5.5. For uncongested initial condition x(0) < 0, a transition to the congested

state at time t, x(0) > 0, occurs only if v(t) > 0.

Proof. Let Y (0) = [x(0), v(0)]T such that x(0) → 0−. From Equation (5.19a), x (ẋ > 0) is

increasing for v(t) > vfx(t). As x(t)→ 0 then v(t) > 0.

Theorem 5.4 shows that the system reaches Y ?
1 only from uncongested state and, if it switches

from uncogested to congested at time ts1, the initial condition will be Y (ts1) = [0, v(ts1)]T

and v(ts1) < −C∆. From Theorem 5.5, a transition from uncongested to congested at time

ts2 implies the initial conditions is Y (ts2) = [0, v(ts2)]T , v(ts2) such that v(ts2) > 0.

The nature of response is determined by the eigenvalues (Eq. (5.20a)). If they are complex

numbers, the response is oscillatory with center at Y ?
1 and eventually cross x = 0 for any

initial condition different from Y ?
1 . Case they are distinct and one of them is greater than
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zero, it diverges from Y ?
1 . If the eigenvalues are identical and negative the response is:

x(t) = c1e
σ1∗t+ c2te

σ1∗ , (5.36)

which solution is c1 = x(0) and c2 =
−vfx(0)

Lσ1∗
+ v(0)

Lσ1∗
−x(0). Note that if c1 and c2 have opposite

signs, x(t) eventually changes the sign and switches to congested state, but note that for

initial condition Y (0) = [0, v(0)]T , v(0) < −C∆ it does not. Finally, two distinct eigenvalues

σ11 < σ12 ≤ 0 the response is given by Eq. (5.31), r1 = [1, σ11 +
vf
L

]T , r2 = [1, σ12 +
vf
L

]T ,and

for initial condition Y (0) = [0, v(0)]T , c1 = −c2 = v(0)
σ11−σ12 and x(t) ≤ 0 and also does not

change signs for v(0) < 0.

Therefore, for these two cases, for a given initial condition there could be two possibilities.

It can converge monotonically to Y ?
1 or at some instant t0 change the sign. In this case, if it

switches back from uncongested to congested at time t = t1, from Theorem 5.4, the initial

condition will be v(0) < 0 which was shown that goes to Y ?
1 .

We also look for the eigenvalues to analyze when the system is congested. First we consider

the case of two real non-positive eigenvalues of A2 (σ21 < σ22 < 0) with initial conditions

Y (0) = [0,−C∆− ε]T , with ε > 0, which response is given by:

Y (t) = c1

 1

σ21L

 eσ21t + c2

 1

σ22L

 eσ22t, (5.37)

where c1 = ε
σ22−σ21 which eventually switches, but it would not if ε < 0. Therefore, real

negative eigenvalues may not switch to uncongested state depending on the initial conditions.

If one is positive, it diverges from x = 0 and also does not switch.
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If eigenvalues of A2 are complex, the response is given by Equation (5.32) and, applying the

constants in (5.34), x(t) = v0−C∆
w1L

eσ2tsin(ω2t) and it eventually switches to uncongested state

again at t = π
ω2

.

In all cases presented the fact r(t) is constrained was ignored, but it plays a role in one

additional case. If Kp < 0 and Ki > 0, there is a positive and a negative real eigenvalue which

is classified as saddle. This case, having a positive eigenvalue the trajectory goes farther away

from x = 0 with r(t) increasing as it becomes more congested until r(t) = Cr. At this point

r(t) stops changing, but as Ki > 0 the metering rate will decrease as Ki(kcd − k) < 0 until

the metering rate is able to make f(t) < g(t) decreasing the density until it switches to the

uncongested region. Then, two real and negative eigenvalues will make it converge to Y ?
1 .

A schematic for these combinations of initial conditions and eigenvalues type can be seen in

Figure 5.13. For complex eigenvalues, blue lines, the system switch from one state to another

regardless of the initial condition. When is real and negative, the system may or may not

switch to another state depending on the initial conditions. The shaded area represents

the initial conditions which it does switch. The red line represents the case which it has a

positive and a negative eigenvalue in congested area (Kp < 0 and Ki > 0). Note that after

switching it necessarily converges to respective equilibrium point if the eigenvalues are real

and negative inside the area it just switched to.

Combining all these observations, the system will converge to Y ?
1 if eigenvalues of A1 are

real and negative, which ensures that it goes to Y ?
1 after switching from congested state, and

eigenvalues of A2 must be complex or saddle (Ki > 0 and Kp < 0) to ensure that it will

eventually converge to Y ?
1 regardless of the initial condition. It defines the following stability

140



region:

Kp > −vf

H(Kp)
K2
p

4L
≤ Ki ≤

(vf +Kp)
2

4L

(5.38)

5.8.1 No Capacity Drop Effect

All derivations in this study was considering the capacity drop phenomenon. In this sub-

section the analysis is extended to the case where ∆ = 0 and there is no capacity drop

effect.

The system in this case is still switched; however, the origin is the equilibrium point in both

regimes. The difference is that g(t) = C when congested and g = vfkcd; in the boundary

both values are the same. The Poincaré map analysis is also valid for that case, but note

that ∆ = 0 and σk < 0, v? = 0 as long as πσ1
ω1

+ πσ2
ω2

< 0, therefore achieving the desired

state.

Thus, for no capacity drop effect, it will be stable inside the region in Equation 5.21, but

adding two combinations of eigenvalues: real and negative of both A1 and A2, and complex

numbers with decreasing trajectories. For positive Kp and Ki both sides have real negative

components and therefore is stable. For Kp > −vf/2 and
(vf+Kp)2

4L
both sides are complex

with decreasing trajectories and therefore stable, which is not the case for lower values of

Kp < −vf/2 which case the same conditions as in Equation 5.21 holds. Combining all cases,
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the stability region becomes:

Ki > 0 Kp > −
vf
2

0 ≤ Ki ≤
(vf +Kp)

2

4L
Kp ≤ −

vf
2
.

(5.39)

Positive values of Ki and Kp always lead to stability in closed loop; Kp can be negative, but

the region is stricter in this case. Two aspects are worth mentioning in this result. First, the

discretization was not considered. It changes the closed loop dynamic if the output variable,

k(t), can present large variation between two successive sampling times which in this case it

would happen as Kp become much greater than vf .

Second, this analysis assumes triangular fundamental diagram, but it can be extended to

piece-wise linear if one changes vf by dq
dk

close to maximum out-flux in the FD. For example,

with trapezoidal FD it would be Ki, Kp > 0. Therefore, this result should be understood that

with suitable controller time-step and gains that do not lead the time-response to something

closer to the time-step, the system is stable 2.

The interesting point in this case is a smaller stability region when the capacity drop is

considered. Even though this result was derived from some assumptions and in a simplified

model, experiments using the Cell Transmission-Model (Section 5.6) also shows that both

regions are in fact different.

2It is still valid for traditional ALINEA which sample time is usually in the same magnitude of L/vf which
the time-constant (real part of the inverse of the largest eigenvalue) in closed loop should be, at most, higher
than the sample time. In [130] a similar analysis for this case (i.e. without CD) is done in discrete-time
which takes the discretization into account.
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(a) Phase Plane for Ki = 15
24 and Ki = 17

24 .
(b) Normalized density, out-flux, and metering
rates for Ki = 15

24 and Ki = 17
24 .

(c) Phase Plane for Ki = 1
25 and Ki = 1

23 .
(d) Normalized density, out-flux, and metering
rates for Ki = 1

25 and Ki = 1
23 .

Figure 5.7: In (a) and (b) blue line is Ki = 15
24

and dashed lines Ki = 17
24

. The stable case,
blue line, it goes to Y ?

1 , while the unstable case it keeps oscillating. Note in the phase plane
(a), it follows the same trajectory multiple times as it can be observed in (b) and the dashed
lines became continuous. In (c) and (d) blue line corresponds to Ki = 1

25
, and dashed to

Ki = 1
23

. Both follow similar trajectory, but when Ki = 1
25

, Y ?
2 is a equilibrium point,

whereas for Ki = 1
23

it is not and goes to Y ?
1 instead.
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Figure 5.8: v0 < v? Figure 5.9: v0 > v?

Figure 5.10: Oscillating Trajectories for (a) v0 < v? and (b) v0 > v?.

Figure 5.11: Analytical stability region using LQM (straight lines) and dots are the stability
through CTM simulation, blue for ∆ = 10% and red for ∆ = 0%.
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Figure 5.12: Density (top left), demands and metering rates (top right), ramp and out fluxes
(bottom left), and on-ramp queue (bottom right).

Figure 5.13: Path that the system can follow depending on eigenvalues nature and initial
condition. The blue lines represent complex eigenvalues, black real and negative, and red
saddle (Ki > 0 and Kp < 0). The shaded area represents the region where the system with
real and negative eigenvalues switches to the another state.
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Chapter 6

Integrating a Smith Predictor into

Control of Freeways

I’m the master of the universe

And I have seen it all before

Before the war

Helloween (Before the War)

Ramp metering is a freeway management technique that aims to limit on-ramp demand in

order to alleviate congestion in the mainline freeway. This action might seem to simply shift

of congestion from the mainline freeway to the on-ramp, but its benefits are twofold. First, it

has been empirically observed that the maximum mainline freeway discharge rate (capacity)

drops with the onset of congestion [24]. Therefore, when the mainline is uncongested its dis-

charge rate is higher. Second, if the congestion grows backwards until an upstream off-ramp,

vehicles exiting at that location, which would not be impacted if there was no congestion

ahead, take longer to leave the freeway and therefore increasing the total time spent [109].

Figure 6.1 depicts a typical ramp metering scenario, a merge bottleneck consisting of a
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mainline freeway merging with an on-ramp, whose lane eventually drops downstream at

x = L. The controller sets the metering rate, r(t), which determines the maximum flow

rate on the on-ramp. Many ramp metering algorithms have been proposed and they vary by

the extent of the application and complexity, control objectives, feedback information and

control logic. The simplest is to implement a fixed metering rate based on the predicted

demand for different periods of time. The most sophisticated method is metering rates

updated dynamically for either only a single location or multiple on-ramps when the goal is

to achieve an optimal at the system level [55]. Here we are interested in the feedback control

by adjusting metering rates based on the measurements from detectors placed at specific

locations.

ALINEA is one of the most widely studied ramp metering algorithms [91]. It is based on

the feedback control logic, in which the observed occupancy is fed back to a PI controller so

that the system can settle down at a desired state. Ideally, two goals can be achieved with

the ramp metering algorithm: keeping the freeway uncongested (at the desired level) and

with inflow not exceeding the maximum outflow (capacity). In this scheme, the upstream

demand is not directly measured, and its variation is treated as disturbance. ALINEA is

originally based on an I-controller; recently, ALINEA was extended to a PI-Controller in

order to achieve better performance when the lane drop is far from the on-ramp [132], which

is the case we address here.

ALINEA requires a detector placed close to lane drop location, at x = L on Figure 6.1,

and any change in the metering rate is sensed after the time vehicles take to cross the whole

section. This travel time between the on-ramp and the detector is the cause of the dead time.

A dead time is a the time elapsed between a control action being performed and the system

present any variation in response to this change. In that case, it is riskier an overreaction

of the controller. It may keep prescribing corrective measures because the system output

is not at the desired state, but the past control action might have been sufficient and the
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Figure 6.1: The merge bottleneck: A freeway merging with an on-ramp with a downstream
lane drop bottleneck.

additional effort leads to an undesired oscillation and even to instability if the overreaction is

high enough. In order to avoid these effects, the controller response should be slower which

ultimately can have effect on performance.

Our goal is to undermine the effects of the dead time by integrating a Smith Predictor into

the controller. The Smith Predictor and its modifications has been used in different areas

and especially in industrial processes [102] to overcome the effects of the dead time, but to

the best our knowledge has not been applied to freeway control. It explicitly uses a model

of the system to compute future outputs in order to compensate the dead time. If there are

no modeling errors, the effect of dead time is completely eliminated and the performance of

the PI-Controller is recovered as though the system did not have any dead time [103].

In this study, we describe the dynamics of the traffic system with the Link Transmission

Model [139], and capture the capacity drop phenomenon with a discontinuous boundary flux

function [66]. We show that incorporating a Smith Predictor into ALINEA can provide two

major benefits. First, the response to disturbance, which is the primary goal of ALINEA,

can be improved. Second, the stability region, which in the literature was obtained through

a first order differential equation approximation (e.g.[130, 30]), can be found analytically
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considering a more complex and realistic model. Numerical experiments confirm the analyt-

ical results and the Smith Predictor is able to achieve better performance even with model

uncertainties.

6.1 The System Model

The most established dynamic traffic model is the Lighthill-Witham [86], and Richards [113]

(LWR) model which is inspired in hydrodynamic theory. It is a macroscopic model which

describes the evolution of macroscopic variables (average density, flow, and speed) in time

and space. The two basic principles are vehicle conservation and an unique relationship

between density flow referred as fundamental diagram. The solution of the model provides

flows and density in space and time.

We consider in this study the link transmission model [139] (LTM). This model is based

on the Newell’s formulation of the LWR model [100]. The main assumption is a triangular

fundamental diagram. We stick with this model for two reasons. First, the dead time is

clearer on this formulation although the results would still apply for other fundamental dia-

gram relationships. Second, the control strategy needs a prediction model and the triangular

shape leads to a simpler and yet efficient prediction model.

The triangular fundamental diagram [100] is given by:

Q(ρ) = min {vfρ, ω(ρj − ρ)}, (6.1)

where Q is flow, ρ density, vf free-flow speed, ρj jam density (a density in which vehicles are

so close that do not move), and ω the shock-wave speed, the density which yields maximum

flow is kc =
ρjω

vf+ω
and maximum flow is C = vfρc. Figure 6.2 depicts this relationship.
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Figure 6.2: The triangular and a general traffic fundamental diagram, the relationship be-
tween flow and density.

On the link transmission model the state variables are the upstream, F (k), and downstream,

G(k), cumulative flows computed at discrete steps k such that time t is t = k∆t where ∆t

is the time step. The state variables are updated based on the flows:

F (k + 1) = F (k) + f(k)

G(k + 1) = G(k) + g(k)

(6.2)

where f(k) and g(k) are the upstream and downstream flows respectively.

Similarly to the cell transmission [28] model, flows are computed through demand and supply
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[28, 80]. For each link at every time step, demand, D, and supply, S, are computed:

D(k) = min{F (k − T1 + 1)−G(k), C∆t}

S(k) = min{G(k − T2 + 1) + ρjL− F (k), C∆t} (6.3)

where T1 = b vf
L∆t
c and T2 = b ω

L∆t
c are the free-flow and shock-wave traveling speeds re-

spectively. Flows at each boundary are computed based on the upstream demand and

downstream supply. In the case of ramp metering, there are the on-ramp demand, dr(k),

that may be limited by the metering rate, r(k), and upstream demand, du(k).The upstream

demand is computed as:

Du(k) = du(k) + min{r(k), Qr(k) + dr(k)}, (6.4)

where du(k) and dr(k) can be given as boundary conditions or computed as (6.3) if modeled

as links. At the downstream end, it is assumed that is uncongested and the supply is

determined by the downstream capacity:

Sd(k) = Sd = Cd∆t. (6.5)
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On the upstream boundary the flow is computed as:

f(k) = min{Du(k), S(k)} (6.6)

where it is assumed absolute priority to the on-ramp so fr(k) = min{r(k), dr(k), f(k)} and

the remaining flow the upstream section, fu(t) = f(t)− fr(t). On the downstream end it is

similar, though we integrate the capacity drop model from [66]:

g(k) =


D(k), D(k) ≤ Sd

Cd(1−∆) D(k) > Sd.

(6.7)

If the demand is lower than downstream supply (capacity), the flow is the demand and

there is no unserved demand. When demand is greater than capacity, there will be unserved

demand on the downstream end and congestion arises. The decreased flow is modeled in

order to replicate the capacity drop phenomenon [17], a drop in the downstream flow when

its upstream section becomes congested. Figure 6.2 depicts these two possible fluxes.

6.2 Closed Loop Analysis

In this section we present the baseline control strategy, the ALINEA control algorithm.

Following, we show that the distance between the on-ramp and the bottleneck is large,

there might be significant dead time on the control loop that can undermine the controller’s

performance. After, we show that by integrating a Smith Predictor into the control strategy

the effect of dead-time can be mitigated allowing a faster response.
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6.2.1 Control Strategy

Our base control strategy is, the (PI-)ALINEA [91, 132]. Probably the most studied ramp

meteriing algorithm. It is simple and yet powerful. Several field deployments have reported

good performance of PI-ALINEA for local ramp metering control. Traditionally ALINEA is

based on a I-Controller of the control theory [6]; more recently it has extended to a PI-Control

[132].

We consider the PI-ALINEA on this study. The metering rate is updated based on the

downstream occupancy measured by loop detectors placed closed to the lane-drop (x = L

at Figure 6.1). The reason to feedback occupancy as it is directly related to density. Here

we assume that the downstream density,ρD(t), is directly measured and the metering rate is

updated as:

r(i) = r(i− 1) + TsKi(ρo − ρD(i)) +Kp(ρ
D(i− 1)− ρD(i))

, rmin ≤ r(k) ≤ Cr,

(6.8)

where the minimum metering rate, rmin, is a value defined due to operational constraints (if

too low it is less likely that all drivers entering the freeway would respect the signal), and

Cr is the capacity of ramp lane. The target density, ρo, is a value close to the downstream

critical density, which yields flow close to capacity. In practice, a value slightly below ρcd is

picked [108]. The metering rates are updated with period Ts and time is t = iTs.
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6.2.2 The Dead-Time in the Control Loop

The formulation presented, based on cumulative curves as state variables, density is not

an explicit. The model is nonetheless consistent with the LWR model and therefore any

observed flow respects the flow-density relationship. Let’s assume the density, ρD(k) is

exactly measured at x = L where the flow g(k) given by Equation (6.7).

If the demand is lower than supply, all the demand is served and g(k) = D(k) and the traffic

is uncongested. Therefore, the density at x = L correspond to that flow on the uncongested

side of the fundamental diagram; in this case ρD(k) = g(k)/vf . If the demand is greater

than supply, g(k) = C(1−∆) and the density correspond to that flow on the congested side

of the fundamental diagram; ρD(k) = ρj − C(1−∆)
ω

.

The unserved vehicles on the link transmission model is given by Q(k) = G(k)− F (k − T1)

[63] that can be seen as a vertical queue at the link’s downstream end. With that definition,

the density can be computed as function of the queue:

ρD(k) =


g(k)/vf , Q(k) = 0

C(1−∆), Q(k) > 0.

(6.9)

The queue Q(k) can be computed recursively:

Q(k + 1) = Q(k) + fu(k − T1)− fr(k − T1)− g(k), (6.10)

and D(k) = Q(k)+fu(k−T1)−fr(k−T1) and the set-point ρo is achieved when D(k) = vfρo.

154



Assuming the on-ramp flow determined by the metering rate,i.e., fr(t) = r(t):

Q(k + 1) = Q(k) + fu(k − T1) + r(k − T1)− g(k). (6.11)

As ρD(k) is a function of Q(k), the control action, r(k), takes effect after T1 steps. Note that

if the downstream end is congested and constant at ρD = kj − C(1−∆)
ω

as long Q(k) + fu(k−

T1) + r(k − T1) > Sd. Nonetheless it is necessary Q(k) to decrease. Even though the flow is

not changed, the dead time of T1 steps is always present.

This reasoning does not limit to a point measurement at x = L. If density is measured

on a defined section with a given length, the correspondence between density would not be

exactly as (6.9) when congested. However, still Q(k) = 0 signs no congestion throughout the

section and higher values indicates the extent of a congested region (indeed an one-to-one

function as the outflow at x = L is constant when congested). In that case, the density

would be a function of Q(k) and the past upstream flows.

The dead-time computed as td = L/vf is present in any setting. However, its effect is

significant when td is significantly larger than the control time step, otherwise it is not even

observed due to the controller sample time. The control time step itself cannot be too small

due to some practical aspects. One of them is that the metering rate computed as Eq 6.8

should be discretized to number of vehicles allowed to enter the freeway per time-step.

We target the cases in which td is larger than one minute which would be cases where the

segment lengths are higher than one kilometer.
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Figure 6.3: Proposed control structure with Smith Predictor and output filter to improve
robustness as in [101]. It is assumed all blocks in discrete time or discretized.

6.2.3 The Smith Predictor

To overcome the effect of the dead time some techniques can be used such as Model Pre-

dictive Control or dead time compensators [102]. Model Predictive Control takes a model

of the system explicitly, and therefore considers the dead time, to compute the control ac-

tion. The control action is usually the result of an optimization problem [14]. Dead time

compensators also consider a model of the system, but it is integrated into a control loop

to improve the performance of, for example, a PI-Controller. Most of dead time compen-

sators usually are variations of the Smith Predictor [120]. It is simpler and inherits most of

the PI-Controller properties. When suitably designed and there are not modeling errors, it

completely diminishes the effect of the dead time.

We extend the ALINEA with a Smith Predictor based structure (SP-ALINEA) in order to

compensate the inherent dead time. The block diagram is depicted in Figure 6.3. Considering

all elements, it is the robust smith predictor as in [101], with output of the model equal to

0 and K ′p = 0 is the original PI-ALINEA, with K ′p = 0, and F (z) = 1 is the classic Smith

Predictor [120].

The assumption of the Smith Predictor is that the control action affects the system after T1
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time steps. The output, y(k), is a function of states at the same time step. If the system

model, f(x, r) and delay, T1, are known it is possible to estimate the system output after

the delay. This predicted value, ŷ(k + T1) is fed back to the controller and therefore the

controller ”sees” the effect of its past actions. Otherwise, the controller would respond to

errors that it had already provided corrective measures.

The internal model consider a system model f̃(.) while the actual model is represented by

f(.). The designer goal is to have both function as close as possible. Assuming f(.) = f̃(.),

the value of y(k) = ŷ(k) and ep(k) = 0. In that case, the internal model, which does not have

the dead time, T1, is begin controlled. In other words, the effect of the delay is diminished.

However, in reality there will be modeling errors and the internal system and model will have

different responses. In that case, terms proportional to the difference between the model and

the system appears on the closed loop response. It still presents advantage as long as the

errors are small. We do not detail it on this study, see [102] for more details.

The robust structure is considered as the capacity drop imposes a discontinuity on the

outflow, g(t), and, hence, density. It becomes important when the free flow speed, vf is

underestimated. The output of the internal model predicts a higher downstream density

before then it would actually happen in the system causing successive switchings preventing

the system to reach a steady state. The filter F (z) attenuates this oscillation and is able

to stabilize the system. Also note, as pointed out in [101], if the system and the model are

exactly equal, the filter does not change the dynamic of the system as ep = 0 in this case.

Stability Analysis

The system can be described in two distinct regimes. We can disregard the delay it is

compensated by the Smith Predictor. We model as the state variables the metering rates

and the downstream demand.
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It is assumed that (i) on-ramp flow is determined by the metering rate, r(k), and (ii) the

upstream demand is served and split in a constant and disturbance term, du(k) = do + δ(k),

and (iii) the model and control time step is the same, that is, Ts = ∆t.

When uncongested, there is no unserved vehicles and the system evolve as:

D(k + 1) = do + δ(k) + r(k) (6.12a)

r(k + 1) = r(k) +Ki∆t(ρcd − ρ(k + 1)) +Kp(vfρ(k)− vfρ(k + 1) =

r(k) +
Ki∆t

vf
(Cd −D(k + 1)) +

Kp

vf
(D(k)−D(k + 1))

(6.12b)

Q(k + 1) = 0 (6.12c)

It holds as long as Q(k) = 0. When congested, the density observed is always ρ(k) = ρ1, the

outflow is always g(t) = Cd(1−∆) until the queue is cleared:

D(k + 1) = C (6.13a)

r(k + 1) = r(k) +Ki∆t(ρcd − ρ1) (6.13b)
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Q(k + 1) = Q(k)− Cd(1−∆) + do + δ(k) + r(k) (6.13c)

It holds as long as Q(k) > 0. As the density is always around ρ1 the proportional term

does not interfere as ρ(k + 1)− ρ(k) = 0. On the congested regime r(k) decreases with rate

Ki(ρ1− ρcd), the demand is always at capacity, the flow always at dropped capacity and the

queue Q(k) will decrease as long as r(k) < Cd(1−∆) + do + δ(k).

On this side there is no equilibrium state. It is necessaryKi > 0 to obtain decreasing metering

rates; to assure that Q(k) will decrease is necessary that rmin < Cd(1−∆)+do+ δ(k). If the

upstream demand is high enough, even with the minimum metering rate it is not possible

to alleviate the congestion.

On the uncongested side, however, it needs to settle at the set-point. It can be modeled as

a linear discrete system:

x(k + 1) = Ax(k) + Pδ(k) + B (6.14)

where:

A =

 0 1

Kp
vf

1− Ki
vf

∆t− Kp
vf

,

B =

 do

− do
vf

(Kp + ∆tKi) + Ki
vf

∆tCd

,

P =

 1

− 1
vf

(Kp + ∆tKi)


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and the state variables x(k) = [D(k), r(k)]T .

Disregarding disturbances, the system has an unique equilibrium at r(k) = Cd− do, D(k) =

Cd. From linear systems theory, the response depends on the eigenvalues of the matrix A:

z1 =
1

2

[
(1− Ki∆t

vf
− Kp

vf
) +

√
(1− Ki∆t

vf
− Kp

vf
)2 + 4

Kp

vf

]

z2 =
1

2

[
(1− Ki∆t

vf
− Kp

vf
)−

√
(1− Ki∆t

vf
− Kp

vf
)2 + 4

Kp

vf

] (6.15)

The response is given by:

r(k) = (C − do)− a1z
k
1 − a2z

k, (6.16)

Without loss of generality we can assume C − do = 1, the results for other values will scale

the constants a1 and a2. The constant a1 and a2 are defined by the initial condition r(0)

and r(−1). In order to be initially at the uncongested dynamics, r(0) < 1 and note that the

system needs r(0) < (C − do)(1−∆) to have switched to the uncongested state.

In order to settle r(k) = 1, the function r(k) must be monotonically increasing and have a

stable equilibrium at r = 1. A stable equilibrium is guaranteed with z1 and z2 within the

unit circle. Considering Ki, Kp > 0 both z1 and z2. As both are not complex:

(
Ki∆t

vf
+
Kp

vf
) +

√
(
Ki∆t

vf
+
Kp

vf
− 1)2 + 4

Kp

vf
≤ 3

(
Ki∆t

vf
+
Kp

vf
)−

√
(
Ki∆t

vf
+
Kp

vf
− 1)2 + 4

Kp

vf
> −1

(6.17)
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Considering the positive quadrant, Ki > 0 and Kp > 0, the eigenvalues are such: (i) z1 > 0;

(ii) z2 < 0; (iii) |z1| > |z2|. From the initial conditions, we have a1 +a2 = 1 and the condition

reduces to:

r(k) = 1− a1z
k
1 − (1− a1)zk2 > 1

a1z
k
1 − (1− a1)zk2 > 0

a1(zk1 − zk2 )− zk2 > 0

(6.18)

Note that zk1 − zk2 > 0 and decreasing and zk2 also decreasing. The second root, z2, however,

can change sign at every step. Therefore, if the inequality holds for k = −1 and k = 0

it holds for all k > 0. In this case if r(−1) ≤ 1 r(z) is monotone. From the analysis the

stability range become:

Ki, Kp > 0

Ki∆t+Kp < vf

Ki∆t+Kp < −2vf

(6.19)

The stability range cannot be derived in a similar way if the dead-time is not compensated.

In that case, r(k) changes the demand on time k + td = k + L
vf∆t

. It can be represented in

state space, by adding btd/Tsc states. There would not be a closed form for the eigenvalues

in that case.

Nevertheless, this stability range is larger than it would be without the Smith Predictor and

it does not depend on the segment length, L. We show in the next section that it is larger
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even if the internal model contains modeling error.

6.3 Simulation Experiments

Numerical experiments were conducted to evaluate the control structure and the analysis of

the system in closed loop. First stability is assessed through multiple simulations to confirm

both the stability region obtained and also for model variations. Then a particular case

where the effect F (z) is discussed and the benefits of the larger stability range are shown

when the controller responds to variation in the upstream demand.

The parameters used for the following simulations are vf = 30m/s, ω = 35/8m/s, ρj =

4
7
veh/m at x = L the freeway drops from 4 to 3 lanes, then Cd = 3

4
vfkc, ρcd = ρo = 3

4
kc,

∆ = 0.1, time-step of the controller and simulation are both 1 second.

6.3.1 Stability Region

We check the stability region in Equation (6.19) through successive simulations for different

controller parameters Ki and Kp. For each simulation, the downstream density of the last

hour is used to assess stability. It is considered stable if the system keeps with average

downstream density at x = L on the interval 0.97 ≤ k̄/kcd ≤ 1 and the standard deviation

lower than 10−3. The sum upstream and ramp demand exceeds the downstream capacity

and one disturbance (increase in the upstream demand) is applied. The total simulation

time is 5 hours. It is also assumed that the system states are directly measured.

For this experiment, the upstream demand is du(t) = 0.8Cd until t = 1000s and increasing

to du(t) = 0.89Cd afterwards. Ramp demand is dr = 0.3Cd. With this setting there will be

unserved demand on on-ramp, in the mainline, or both. It is expected that the controller
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Figure 6.4: Comparison between the stability region of SP-ALINEA with different α and
PI-ALINEA for different segment lengths, L.

will keep the freeway uncongested.

Figure 6.4 shows the obtained results. The green line is the Equation (6.19); the dots around

the line is the stability boundary found numerically through simulations. For a given Kp, if

the Ki is above the dot, the controller is unstable; it is stable otherwise. The dashed lines at

the bottom left is the stability region when the Smith Predictor is not used (PI-ALINEA).

It is dependent on the segment length, L and values between 600m and 1500m were plotted.

The Smith Predictor substantially increases the stability range. The practical implication is

a faster dynamic response as the PI-Controller coefficients can be larger.
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6.3.2 Robustness

The Smith Predictor, in opposition to a PI-Controller, needs a model to compute future

responses. However, the performance improvement by the application of Smith Predictor

can be undermined if the model is not accurate.

The delay in this case is influenced by the free flow speed, vf . The controller also needs

ko = kc = ω
vf+ω

kj which is dependent on both vf and ω, but this one affects both the cases

with and without Smith Predictor. It also cannot be overestimated. If ko > kcd, the system

will eventually become congested yielding C(1−∆) which will lead the downstream density

to k = k2 = kj − Cd(1−∆)/ω and remains as long as the congestion is not dissipated.

Then, all the experiments are with ko = kcd. With a target density lower (underestimated)

would be easier to achieve stability as a small overshoot around this point does not entail

a switch to the congested region. The parameters change is vf and ω such as the critical

density, kc, remains unchanged.

The results are depicted on Figure 6.5. The cases labeled from 0.92 to 1.0 is the ratio of

errors on parameters, α. It is computed ṽf = αvf and ω̃ = (1/α)ω where ṽf and ω̃ are the

values considered in the internal model and vf and ω are the actual values.

The stability of PI-ALINEA is much smaller than the SP-ALINEA even with modeling errors

and the difference is higher as the section length, L, grows.

The case in which the free flow speed is underestimated (α > 1) is more challenging. The

internal model predicts that capacity will drop before the actual time leading to a sudden

drop in the metering rate. The capacity drop happens afterwards, but the anticipated actions

prevents the system to converge to the set-point. This oscillation is mitigated with the filter

F (z) and with the internal model not imposing a capacity drop ∆model = 0. In Figure 6.6

the case where α = 1.03 is tested with F (z) = 1, until t = 1000s and F (z) = 1
(0.9z+0.1)2

164



0 2 4 6 8 10 12 14 16 18
Kp

0

1

2

3

4

5

6

K
i

SP-ALINEA α=0.92
SP-ALINEA α=0.94
SP-ALINEA α=0.96
SP-ALINEA α=0.98

PI-ALINEA,L=600
PI-ALINEA,L=900
PI-ALINEA,L=1200
PI-ALINEA,L=1500

Figure 6.5: Stability of the system for different case of controller and model uncertainties.
The dashed lines is the PI-ALINEA for L ranging from 600m to 1500m. The values of α
from 0.92 to 0.98 is the SP-ALINEA with internal model with different free flow speeds.

afterwards. In this case Ki = 2.5 and Kp = 3.

Therefore the filter can indeed improve robustness, but it still presents a high-frequency os-

cillation in steady state. It is more damaging to underestimate the free-flow speed parameter

rather than the opposite. Also, it is an additional step in the controller design and adds

another dimension to deal with in terms of performance and stability. The stability region

through simulations are not shown as in the previous case as it depends on the filter F (z)

as well.

6.3.3 Performance

As the downstream density depends on the upstream demand and it is not taken into account

in the control law. Any variation on it is treated as a disturbance (δ(t) 6= 0). An increase

(decrease) in the upstream should be followed by a decrease (increase) in the metering rate.

In this experiment, a piecewise constant demands is applied, whose profile is shown in the

bottom graph of Figure 6.7. For this comparison, the gains of the PI-ALINEA are Ki = 0.4
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Figure 6.6: System response and metering rate when speed is overestimated. With F (z) = 1
for t < 1000s and a second order filter F (z) = 1

(0.9z+0.1)2
for t ≥ 1000.

and Kp = 1.5 which is close to the largest possible but still inside the stability region; while

for the SP-ALINEA, α = 0.96, i.e., with the internal model different from the actual system,

F (z) = 1, Ki = 1.5 and Kp = 3. The evolution of downstream density is in the top graph

of Figure 6.7 and the metering rate in the bottom. Both PI-ALINEA and SP-ALINEA are

able to reject the disturbances, but the Smith Predictor allows a faster response as the gains

are higher. The difference would be even higher as L increases because SP-ALINEA would

need more conservative gains.

Table 6.1 presents the time spent on the mainline freeway, on the on-ramp and the total time

spent for the PI-ALINEA, SP-ALINEA and No-Control case. As expected, both feedback

control cases, PI-ALINEA and SP-ALINEA, perform better than the no-control case by

avoiding the capacity drop phenomenon. The SP-ALINEA yields better performance than

PI-ALINEA due to a faster response.
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Figure 6.7: System response to disturbance without and with dead time compensation (α =
0.96). Even with modeling errors, the response of the SP-ALINEA is faster than PI-ALINEA.

Case Mainline (veh-s) On-Ramp (veh-s) Total (veh-s) (%)
No-Control 545.9× 103 0 545.9× 103 -
PI-ALINEA 104.7× 103 241.7× 103 346.4× 103 −36.5%
SP-ALINEA 104.2× 103 129.9× 103 234.2× 103 −57.0%

Table 6.1: Total time spent for SP-ALINEA, PI-ALINEA and No-Control.
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6.4 Conclusion

This study shows that incorporating a Smith Predictor to ALINEA strategy can improve

its performance especially when the lane-drop (point of measurement) is distant from the

on-ramp. The proposed control structure is able to stabilize in the presence of model un-

certainties, even though it was shown that an overestimated free-flow speed, vf , is harder to

deal with compared to an underestimation of that parameter.

Both controllers, PI-ALINEA and SP-ALINEA, are able to reject disturbances and lead the

system to the desired equilibrium state, which is no congestion on the merging area and

discharging at capacity. However, the Smith Predictor diminishes the dead time effect and

allows a faster response. The behavior of the response change in uncongested regime. When

congested, both quickly decreases the metering rate, the difference is that the Smith Predictor

detects and respond to the transition in advance. On the other hand, when uncongested and

able to discharge at capacity, the response of PI-ALINEA should be slower in order to avoid

oscillations and therefore a transition to the congested state. With the Smith Predictor, the

response in free flow speed can be faster and still not oscillatory.

This work also shows the possible benefits of having additional detectors or other sources of

data (e.g. on-line vehicle trajectories from GPS sent by cell-phones). The Smith Predictor

is, probably, the simplest way to use this information: as all states and the model are known,

it is an easy task to compute future outputs. Another predictive structure using a single

point of measurement could effectively deal with the inherent dead time, but any variation

on the upstream demand, treated as disturbance in the ALINEA scheme, would only be

sensed when it reaches the lane drop. The proposed structure naturally takes advantage of

that information and still keeps the essential features of the controller.

Two aspects were not investigated in this study and are objects of future research. First, it

needs measurements of all states of the system or, at least, a well designed state estimator.
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It was shown in [40] that the system is observable when uncongested with a detector on the

downstream end; and with a detector on the upstream end when congested. Therefore, it

will be generally observable with one detector in each end of the merging segment. However,

due to the two distinct dynamics (one for congested and another for uncongested) it is not

trivial task to design a state estimator. However, some work had already been proposed

as [125, 131] even though aiming the coordinate (several on- and off-ramps) case. Second,

the control sample time was one second, but in practice it is usually around the dead time,

L/vf , mainly because the metering rate is actually discrete, as the output of the controller

is converted into number of vehicles allowed during the following time step.
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Chapter 7

Practical Aspects and Validation of

Results in Microsimulation Models

Is that the real life?

Is this just fantasy?

Caught in a landslide

No escape from reality

Queen (Bohemian Rhapsody)

Microsimulation has been widely used for transportation analysis with applications ranging

from transportation planning, traffic management, dynamic routing and driver-infrastructure

collaboration [21]. Such models require calibration to ensure that the model portrays as

accurately and consistently as possible critical features of traffic [23, 33].

Travel times and delays on freeways are strongly dependent on the capacity of their bot-

tlenecks [33], hence, an accurate representation of the capacity is often the first step in

calibration procedures. Capacity is defined as the flow observed in a facility in prevailing

conditions, according to the Highway Capacity Manual [94]. A common assumption is that
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this flow is observed whenever the car arrival rate is higher than the capacity or there are

queued vehicles. However, it has been empirically observed that the discharge rate of a

freeway bottleneck drops when queues are formed upstream of the bottleneck (e.g., when

”prevailing” condition is achieved) [17]. This is the so-called capacity drop phenomenon.

A typical value of the drop in the flow rate is around 10%. There is still much debate

in the traffic flow theory literature on the exact mechanisms behind the capacity drop, in-

cluding differences in behaviors or characteristics such as bounded acceleration [71], drivers

heterogeneity [22], or lane-changing maneuvers [76].

Several authors have used macroscopic models to understand and replicate the capacity drop

(e.g., see [64, 128]), yet few studies have investigated this phenomenon from a microscopic

perspective. This includes the work of [72] who analyzed the effect of drivers’ relaxation on

bottleneck capacity, and [20] who replicated successfully the capacity drop with the INTE-

GRATION software as a result of acceleration, lane-changing behavior, and fleet composition

[20]. Microscopic simulation models have important advantages over macroscopic models in

that they may provide detailed insights into the mechanisms that explain the capacity drop.

This is of utmost importance to evaluate traffic management strategies since the capacity

drop is one of the main causes of delay on freeways [109].

Despite this progress made, no published studies exist in the literature that have used real

traffic data to understand and analyze the capacity drop with microscopic simulation models.

Here, we use a combined car-following and a lane-changing model to simulate traffic flow

in a merge bottleneck in the I-405 near Irvine, CA, where the capacity drop is consistently

observed. The parameters of this model are calibrated against the observed data, and used

to study the capacity drop.

The paper is organized as follows. In Section 7.1, we describe the simulation model and

calibration procedure. Then, in Section 7.2, we present the calibration results, followed in

Section 7.3 with a discussion of our main findings.
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Figure 7.1: Notation of a subject vehicle driving in vicinity of its neighbor vehicles.

7.1 Simulation Model

The simulation model combines a car-following model with a lane-changing model. Route

choice is not necessary in our application. A schematic notation is shown in Figure 7.1.

State variables of the subject vehicle (S), are speed vS(t) and position xS(t). The car im-

mediately in front of the subject vehicle in the same lane is referred to as leader with state

variables (xL(t), vL(t)). A given vehicle aiming to perform a lane-changing defines the poten-

tial leader and follower in the target lane with state variables (x?L(t), v?L(t)) and (x?F(t), v?F(t)),

respectively.

We use the Gipps framework [37, 38] for our car-following and lane-changing model with

obligatory lane-changing rules based on [53]. For car-following, the subject vehicle updates

its speed as:

vS(t) = min{vu
S(t), vc

S(t)} (7.1a)

vu
S(t) = vS(t− τ) + 2.5Aτ

(
1− vS(t− τ)

V

)√
0.025 +

vS(t− τ)

V
, (7.1b)
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vc
S(t) = max{va, vb}

va = −B(
τ

2
+ θ)+√

B2(
τ

2
+ θ)2 +B{2(xL(t− τ)− xS(t− τ)− SL)− τvS(t− τ) +

vL(t− τ)2

B̂L

},

vb = vS(t−∆t)−B∆t

(7.1c)

where, vc
S (t) signifies the speed constrained by the leader vehicle, vu

S (t) denotes the speed

when movement is not constrained by the leader car, A (m/s2) and B (m/s2) are the maxi-

mum acceleration and deceleration rates which the subject wishes to undertake, respectively,

B̂ (m/s2) is the maximum deceleration rate of the leader as estimated by vehicle S, V (m/s)

is the free-flow speed; SL (m) characterizes the effective length of the leader, τ (s) is the

reaction time, θ (s) signifies the safety margin, and ∆t (s) is the integration time step. All

drivers are assumed to have the same parameters.

To discourage deceleration rates higher than Bs, the second term on the max operator of

Eq. (1c) is added to the Gipps car-following model, assuming simulation time steps to be

smaller than τ . Gipps’ updates the state variables via a so-called iterated coupled map [70]

using ∆t = τ . For smaller time steps, this term was added to maintain the same behavioral

principle which is a maximum deceleration rate of B. To compute the vehicles’ speed at

t− τ when τ is not a multiple of the time step, ∆t, we use an interpolation method [70] with

variable z at time t− τ computed using:

z(t− τ) = βz(t− (n+ 1)∆t) + (1− β)z(t− n∆t) (7.2)
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where n constitutes the integer part of τ/∆t and β = τ/∆t− n.

To simulate lane-changing, we use a gap acceptance rule with speed and position of the

follower (x1, v1) and leader (x2, v2) that must respect:

BL =
(v2 − v1)2

x1 − x2 + τ(v2 − v1)− S1

< Bmax,

X1 −X2 > g,

(7.3)

where g (m) signifies the minimum gap. The first equation is based on the assumption that

the leading vehicle travels at a constant speed, v2, and the following vehicle travels at speed

v1 after τ seconds and decelerates right after. For a lane-changing maneuver, the subject

vehicle acts as follower with respect to its potential leader and v1 = vS (t), x1 = xS (t),

v2 = v?L (t) and x2 = x?L (t), and as leader with respect to its potential follower in the target

lane using v1 = v?F (t), x1 = x?F (t), v2 = vS (t) and x2 = xS (t).

For discretionary lane-changing, the subject vehicle considers a lane change desirable either

for speed advantage or an anticipated mandatory lane change when its distance (based on the

current speed) from the mandatory lane-changing location is between 8 and 50 seconds. Once

lane-changing is deemed desirable, the driver selects the target lane. In the case of speed

advantage, both adjacent lanes, if existent, are considered. If the vehicle needs to undertake a

mandatory lane-changing maneuver in less than 50 seconds, the selected lane will be the one

which would ensure that the driver can follow the planned route. Regardless of which lane is

chosen, the lane-changing maneuver can be performed if the required deceleration rate, from

Eq. (7.3), is lower than or equal to the maximum deceleration rate for discretionary lane

changes, denoted as BD (i.e., Bmax = BD). The required maximum deceleration rate and

minimum gap are the only conditions to execute the maneuver in the case of an anticipated

mandatory lane-changing. In the case of speed advantage, the leader in the target lane
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should have a speed that sufficiently larger than that of the current leader:

v?L(t)

vL(t)
> α

x?L(t)− x?S(t)

x?L(t)− xS(t)
, (7.4)

where α > 1 (dimensionless) denotes a threshold that weights speed advantage and available

spacing in the target lane.

Mandatory lane-changing is performed when the vehicle is within 8 seconds from the point

where a lane change is required. Lane-changing is considered required when the vehicle

cannot continue its preferred route. In the single merge bottleneck of this study, the end of

the acceleration lane of the on-ramp is where a lane change is mandatory.

We implement the lane-changing model in [53] which was especially designed for merging

sections based on recorded lane-changing maneuvers. The lane-changing on the merge is

especially challenging because in congested periods an acceptable gap in the target lane

appears rarely according to discretionary rules. In this case, according to [53], the merging

vehicle performs a forced lane-change or the follower in the target lane allows the vehicle to

enter, which is called cooperative lane-changing, or both. There are some implementation

changes in this study compared to [53] as we consider another car-following model and

consider different set for parameters, as for example ”driver aggressiveness” does not exist

in our implementation.

If a lane-changing maneuver is deemed necessary by a driver, then at every time step,

the subject vehicle scans the gaps on the intended lane up to the visible distance. To

check whether there is enough gap to fit, we used a distance of 60 meters backward and 30

meters ahead with deceleration of BL < Bf, and minimum gap (7.3), where Bf signifies the

maximum deceleration to a forced lane changing maneuver. It is assumed that the driver

is more aggressive for this kind of lane change and therefore Bf > Bd. Still, during periods

of congestion it is often not possible to find such a gap. In this case, when the vehicle is
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at distance L from the end of the acceleration lane, the subject vehicle sets the current

follower and leader in the target lane as the intended gap, regardless of the size of the gap

between them. This distance L was found to be critical in other studies (see [64]) and here

we consider this to be a calibration parameter.

When assessing a given gap, the driver also checks if it is possible to reach the gap before

the end of the acceleration lane, based on the actual speeds and positions of the subject,

potential leader and follower, either by accelerating if the potential follower is ahead or

braking if the potential follower is behind. During this maneuver, the lane-changing model

overrides the car-following model and the vehicle adjusts its speed to reach the gap. We do

not explain the details here.

Similarly to the original model [53], once the gap is defined both the new follower and the

merging vehicle undertake actions to perform the lane-changing. Both vehicles cannot exceed

the constrained speed of Gipps’ model, vc, but both vehicles sets acceleration rates in order

to the follower vehicle to allow necessary gap to the maneuver and the merging vehicle to

be exactly on the proper position as the gap is enough:

dvF(t)

dt
= K1(xref

F (t)− x?F(t)) + (v?S(t)− v?F(t)),

dvS(t)

dt
= K2(xref

S (t)− xS(t)) + (v?L(t)− vS(t)),

(7.5)

where xref
F (t) = min{x?L(t)−2g, xS(t)−g} and xref

S (t) = (xF?(t)+xL?(t))/2 whereK1 (1/s2) and

K2 (1/s2) are driving parameters weighting how fast drivers wish to perform the maneuver.

Thus, both vehicles follow a reference position in which eventually leads to a successful

maneuver where the follower stays at least two minimum gaps from the leader and one

gap to the merging vehicle and the merging vehicle stays in the middle of the gap. If the

acceleration from Eq. (7.5) is higher than the maximum acceleration (deceleration), the
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Figure 7.2: Study site with position of the loop detectors

maximum acceleration (deceleration) is taken instead.

7.2 Calibration Procedure and Results

A schematic of the study site is depicted in Figure 7.2, the stretch of I-405N merging with Jef-

frey Road in Irvine-CA, United States. Loop detector data are obtained from the California

Department of Transportation Performance Measurement System (PeMS). The detectors’

positions are as shown in Figure 7.2. The occupancy and vehicle counts at each detector are

recorded every 30 seconds. On the PeMS system, the upstream station is labeled as 1201211,

the downstream station as 1201222 and the ramp detector as 1201203. Data from the High

Occupancy Vehicles (HOV) lane are disregarded as its access is closed for most part of the

study site including the most critical section, the area between the on-ramp and the lane

drop.

Capacity drop happened most of the morning peaks throughout the first semester of 2012. We

chose a day which was representative and the total counts at the upstream and downstream

stations were consistent (April-19-2012) 1. The observed data is depicted in Figure 7.3.

The left graphs (a-b) show the occupancies upstream (top) and downstream (bottom). The

observed counts are on the middle graphs. The upstream counts (c) include mainline and

1In a scenario like the study site, the total upstream and downstream count should be very similar. Due
to miscounts, it is common to have a difference between both as reported in [105] when they studied various
bottlenecks also using PeMS data
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on-ramp. The downstream counts are according to the middle bottom graph (d). Note that

the downstream is always uncongested as the downstream occupancy is almost constant

throughout the period; however, high occupancies were observed at the upstream detector

between 8:00 - 9:00 AM and decreased around 9:00 AM. It means congestion started at the

bottleneck, reached the upstream detector, and dissipated when the upstream demand ceased

with the congestion at the upstream detector being eliminated just after. The dashed line

on the upstream and downstream flows (c-d) refers to the average flow at the downstream

between 8:03 - 9:08 AM (q0).

It is not very clear, though possible, to identify the decrease in the outflow on the downstream

flow graph (d) when the section is congested. However, it becomes clear on the top right

graph (e) in which the T-curve is plotted. The T-curve is the area between the outflow

and a baseline outflow, q0. Note that q0 = 0 is the cumulative flow. The baseline outflow

is arbitrary and we chose it as the average flow during the congested period. This curve

has positive slope whenever the flow is greater than q0 and negative otherwise. Clearly, the

outflow was smaller during the congested period compared to the 20 minutes before the drop

in the downstream flow, a decrease from 2350 vphpl to 2130 vphpl (9.5%), as annotated on

the graph. The vertical difference between the blue and red curves is approximately the

number of vehicles between the two stations (apart from initial conditions). The distance

between the two curves increases between 7AM and 8AM on the congestion build up and

decreases around 9AM when the congestion dissipates.

For the input demands, we considered the demands varying in steps of 10 minutes. For the

on-ramp, the arrival rate is the average flow reported by the detector in the 10 minute periods.

For the upstream demand the counts were also considered, but with a slight modification.

Between 8:00 -9:00 AM, the occupancy reached the upstream detector, so queues were formed

before the upstream detector. It means that the flow would have been higher if the bottleneck

discharge flow was higher. To address this, we considered a higher arrival pattern during
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Figure 7.3: Observed data at location. Graphs (a) and (b) depict upstream and downstream
occupancies, respectively. Graphs (c) and (d) depict upstream and downstream flow in
vehicles per hour per lane. Graph (e) depicts the T curve for q0 = 2130K vphpl and graph
(f) depicts the upstream demand used in the simulation.

this period, but keeping the same total flow over the simulation period. The input demand

can be seen in Figure 7.3 (f). Uniform arrivals were considered for both cases.

The parameters part of the calibration with their respective bounds and units are: V [28-36]

(m/s), A [0.8-1.5] (m/s2), B = B̂ [3-5] (m/s2), τ [0.5-0.9] (s), S [6-9] (m), L [50-150] (m) and

α [0.2-1.1] (-). All the lane-changing parameters except α are fixed. The fixed parameters

are: BD = BF = B (m/s2),K1 = K2 = 0.5 (1/s2) and g = 2S. The time step is set to

∆t = 0.4 (s). We consider three residuals:

QE2 =
1

T

T∑
i=0

(
q̂(i)− q(i)

)2

OE2 =
1

T

T∑
i=0

(
Ô(i)−O(i)

)2

TE2 =
1

T

T∑
i=0

(
T̂ (i)− T (i)

)2

(7.6)

where q̂ and q signify the observed and simulated downstream flow, respectively. Similarly,

O refers to the upstream occupancy and T (i) =
∑i

j=0 q(j) denotes the cumulative flow, QE

stands for downstream flow error, OE occupancy error and TE is the cumulative (T-curve)

error. Two minutes moving average is considered for flow and occupancy.
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Figure 7.4: Trade-off curve (Pareto Frontier) between occupancy (OE) and cumulative flow
error

Most of the calibration procedures consider occupancy and downstream flow error but not

cumulative error. As it is easier to observe the capacity drop on T-curve, we consider the

cumulative curve a reasonable objective function as well.

The calibration procedure is to minimize the three residuals by adjusting the parameters

within their respective bounds. As we consider three residuals, the multi-objective differen-

tial evolution algorithm is used based on [114], with population size of 50 and ”rand1bin”

selection rule. The multi-objective procedure is suitable when the objectives are conflicting,

that is, a change in some parameters may decrease one objective to detriment of the others.

This conflict happened between the occupancy and cumulative flow error as depicted in

Figure 7.4. Each dot represents one candidate solution with its position with respect to

the x-axis representing the occupancy error (OE) and the distance with respect to y-axis

representing the cumulative flow error (TE).

Figure 7.5 shows the calibration result of the capacity drop if one considers separately each

of the objectives. The left graph shows the upstream occupancy, the middle graph the

downstream flow and the right graph the T-Curve for q0 = 2130 vphpl. The yellow, orange,

and blue are the results when upstream occupancy, downstream flow and cumulative outflow

error are minimized, respectively. Observe that the results are similar for downstream and

cumulative flow error, but not exactly the same. Therefore, it is important to consider the

cumulative flow as an objective.

180



7.0 7.5 8.0 8.5 9.0 9.5
time of day

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

oc
cu

pa
nc

y

upstream occupancy

7.0 7.5 8.0 8.5 9.0 9.5
time of day

0.0

0.5

1.0

1.5

2.0

2.5

3.0

flo
w 

(K
vp

hl
)

downstream flow

7.0 7.5 8.0 8.5 9.0 9.5
time of day

0.3

0.2

0.1

0.0

0.1

0.2

t 1 t 0
(q

(t)
q 0

)d
t (

K 
vp

l);
q 0

=
2.

13
 K

vh
pl

oblique curve

OE
TE
QE
obs

Figure 7.5: Results for calibration minimizing only one of the three objectives considered.

As we are focusing on the capacity drop, we pick the solution with minimum value of cumu-

lative error. The values for which we show the results refer to the orange dot in Figure 7.4.

The correspondent parameter values for that case are V = 33.46 (m/s), A = 1.27 (m/s)2,

B = B̂ = 3.06 (m/s2), S = 6.33 (m), τ = 0.82 (s), α = 0.87, and L = 81 (m).

The comparison between the simulation and actual data is depicted in Figure 7.6. The up-

stream occupancy and flow are depicted on the top graphs. The downstream occupancy and

flow are the middle graphs. The T-curve for q0 = 2130 vphpl is depicted at the bottom left.

In all graphs the red dots are the data observed and continuous blue line is the simulated

data. Notice that the simulated T-curve almost overlaps with the observed data. It means

that the model captures both the capacity (uncongested capacity) and capacity drop (con-

gested capacity) with high accuracy. The shape of the upstream occupancy is similar and

the congestion reaches the upstream detector slightly earlier than its observed time. The

bottom right graph depicts the scatter plot of flow and density for both upstream and down-

stream location. The continuous line is the corresponding fundamental diagram based on

Gipps’ car-following parameters assuming stationary traffic. The downstream area is always

uncongested while at the upstream there are transitions to and from the congestion side of

the fundamental diagram.

We validate our results by applying the calibrated model in a different period. In Feb-1-2012

the capacity drop also happened during the morning peak and we compared the simulation

outcomes with the observed data of data period. The results is depicted in Figure 7.7.

Though the duration of congestion was smaller in the simulation, the results are in general
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Figure 7.6: Calibration results vs. actual data. Graphs (a) and (b) depict upstream and
downstream occupancies, respectively. Graphs (c) and (d) depicts upstream and downstream
flow in vehicles per hour per lane. Graph (e) depicts the T curve for q0 = 2130K vphpl and
graph (f) depicts the density flow relationship with orange and blue denoting the upstream
and downstream location respectively.
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Figure 7.7: Simulation results vs. actual data for validation (Feb-1-2012). Graphs (a) and
(b) depict upstream and downstream occupancies, respectively. Graphs (c) and (d) depicts
upstream and downstream flow in vehicles per hour per lane. Graph (e) depicts the T curve
for q0 = 2130K vphpl and graph (f) depicts the density flow relationship with orange and
blue denoting the upstream and downstream location respectively.

consistent. The capacity drop is triggered around the same time and the outflow during the

congested period was similar.
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7.3 Conclusion

A microscopic simulation model for a merge bottleneck was calibrated using loop detector

data with an observed capacity drop. The model was able to reproduce the capacity drop

phenomenon yielding an accurate estimate of the uncongested and congested capacities as

well as their trigger time. These preliminary results are encouraging, nevertheless, much

further analysis is required to draw conclusions. Nevertheless, we demonstrate evidence that

microscopic models can reproduce the capacity drop through a proper calibration procedure.

We applied the model in a different day and the results were consistent showing the method

is consistent.

The calibrated model can be used to evaluate traffic management strategies such as ramp

metering, variable speed limits and cooperative merging at specific locations. In particu-

lar, local ramp metering control (i.e., single bottleneck) has received little attention with

microscopic traffic flow models. We will report the findings of our studies in due course.

183



Chapter 8

Concluding Remarks

The closer you get to the meaning

The sooner you’ll know that you’re

dreaming

So it’s on and on and on, oh it’s on

and on and on

It goes on and on and on, Heaven and

Hell

Black Sabath (Heaven and Hell)

In this research we could highlight various aspects relevant to freeway control that the

capacity drop phenomenon imposes using different methodologies. In the following section

this research is briefly summarized. It is followed by the conclusions achieved. Finally,

further questions for future research are discussed
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8.1 Summary

In Chapter 4 the coordinated ramp metering problem was analyzed from its equilibrium

states assuming the continuous link transmission model dynamics combined with a capacity

drop model. Several key aspects were derived: (i) the system performance may depend on

the initial state; (ii) an optimal outflow may not be achievable due to operational constraints

such as minimum metering rates; and (iii) the system has unstable equilibrium points with

capacity drop which is not the case when the capacity drop is inexistent. It has practical

implications especially when evaluating the performance of controllers in scenario in which

the controller is not capable to effectively interfere in the system.

We also showed that an uncongested equilibrium point always leads to the maximum outflow.

This is not the case for congested equilibrium points. This conclusion corroborates with

the intuition that it is desirable to keep the freeway uncongested. It was formulated the

optimization problem to find the optimal reachable equilibrium state for the cases in which

it is not possible to reach an uncongested equilibrium state.

In Chapter 5 we analyzed further the local ramp metering problem considering an ordinary

differential equation approximation of the LWR model. We could show the hysteresis cycle

that occurs in local ramp metering and derived direct relationship for reachability. The closed

loop stability was derived assuming the system is controlled by PI-ALINEA controller for

the cases with and without capacity drop. The stability range is shorter when the capacity

drop is considered. The results were confirmed with numerical experiments.

In Chapter 6 the local ramp metering control was studied for the particular situation in which

the distance between the on-ramp and the lane drop is significantly large. This distance

leads to a dead time in the control system which can undermine the system performance.

We showed that by incorporating a Smith Predictor in the loop the effect of the dead-time is

mitigated and the system responds as if there was no dead-time. In addition, it was possible
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to derive the stability range considering LWR model dynamics. The results were confirmed

with numerical experiments.

In Chapter 7 the capacity drop phenomenon was studied based on microscopic models as

oppose to the previous studies that were based on macroscopic models. We showed that

microscopic models can replicate the capacity drop phenomenon with a proper calibration

procedure. A multi-objective approach is proposed in order to obtain the car-following and

lane-changing parameters. The calibrated model was validated and the results results were

satisfactory.

8.2 Conclusions

All results using different methodologies points to the direction that the existence of capac-

ity drop phenomenon imposes additional challenges in the system control. Two important

properties of the system was analytically derived from equilibrium state analysis.

First, an uncongested and optimal equilibrium state may not be reachable depending on

the arrival demand, minimum metering rates on the on-ramps and initial conditions. This

property has practical implications as in specific conditions the controller cannot effectively

interfere in the system. Especially for local control, there are some combinations of initial

conditions and demand pattern that no ramp metering strategy can be effective. Though

that is an intuitive statement, in this research we analytical derived this conclusion from

meaningful models and it was provided the theoretical foundation for that intuition.

Second, the capacity drop phenomenon leads to instability of the equilibrium states in a

freeway corridor. One of the practical implication of it is that the system becomes more

unpredictable as small disturbances or incidents can lead to large variations in the traffic

state which turns more difficult the control design. A previous study had investigated the
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stability of the freeway equilibrium states without the presence of the capacity drop and

had reached opposite conclusion - that the equilibrium states are stable. Therefore, this is a

contribution of this work.

A further study into local ramp metering control was performed in which the conclusions are

in line with the previous study. In that particular study, it was also investigated the closed

loop stability when controlled with the ALINEA algorithm. Following previous conclusions,

the stability range is smaller when the capacity drop phenomenon is considered. It was

also highlighted the importance of the reachability concept. With numerical experiments

we showed that the same control strategy - ALINEA - can lead to a completely different

outcomes with a small disturbance in the arrival demand. It imposes further challenges

when evaluating control strategies as the very same strategy may distinct outcomes for

similar demand patterns.

Nonetheless, it was shown that ALINEA strategy is able to control a single merge bottleneck

effectively as long as the input parameters are chosen within the stability range. This can

be effective in most cases; however, the stability range becomes smaller when the distance

between the on-ramp and the lane drop is large. We showed that by incorporating a Smith

Predictor into ALINEA control this effect can be significantly mitigated. The main limitation

of the study was the assumption that all traffic state between the on-ramp and the lane drop

is known which may not be straightforward to obtain in practice.

This work also touch upon the issue of ramp metering effectiveness. Though a large body of

research had confirmed that statement, in recent years it was put in doubt with the shutdown

Minnesota shutdown experiment [84]. We could show that ramp metering is in fact effective

with few nuances that follows from the reachability property. In general ramp metering can

provide overall benefits, but there are cases in which it is not achievable regardless of the

control strategy.
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From a different perspective, another contribution of this research was the analysis of local

ramp metering through microsimulation models. For local ramp metering control it is crucial

that the microsimulation model replicates the capacity drop phenomenon accurately and this

is one achievement of the dissertation. The ramp metering control analysis conducted based

on the microsimulation model corroborated the previous conclusions. Several further aspects

can be studied with microscopic models such as taking the input data from loop detectors

and the conversion of the metering rate into a discrete number of vehicles per sample time.

8.3 Open Questions for Future Research

Throughout this research some of the impacts of capacity drop phenomenon were described

and some strategies to improve freeway control were proposed. Nonetheless, this research

also shed some light into new questions that adds to several unanswered question in freeway

control.

Most of the analysis and simulation experiments conducted in this research was focused

in ramp metering control. There are further ways to perform freeway control that may

lead to similar effects such as variable speed limit and congestion pricing. Similar to ramp

metering, these strategies may limit the flow in specific locations in order to increase the

overall performance. The question for that applications is whether all the conclusions that

hold for ramp metering also do in different applications. The reachability results show that

ramp metering may not be effective mainly because it cannot control the upstream demand;

those applications may be able to control the upstream traffic and therefore not being subject

of this drawback. Preliminary analysis as well as recent research points in the direction that

ramp metering and variable speed limit has complementary features.

An aspect of utmost importance in traffic flow was not studied into details in this research
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is the inherent stochasticity present in traffic flow. Arrival demand is a factor on that,

but its relationship with the capacity drop phenomenon was not further investigated in this

research. Also, the traffic dynamics is stochastic in nature due to drivers heterogeneity. A

possible approach is to use the similar setting of the microsimulation study in Chapter 7

into a Bayesian framework in order to quantify uncertainties. These type of analysis can be

a basis for more robust control strategies.

Though the results with ALINEA were encouraging there is still room for improvements. In

this research it was kept the approach to feedback density for local ramp metering control,

but it may be possible to feedback different variables. Back in 1960s it was reported a

successful control strategy by measuring speed at a critical location instead of occupancy.

Also, assuming models derived from Newells formulation of the LWR model it may be possible

to feedback other variables such as the link queue of the link transmission model.

The methodology and approach used in this research can also be extended to assess potential

impacts of automated and connected vehicles. Most of this research it was assumed point

measurements; however, recently there has been availability of real time information with

moving observers such as vehicle trajectory information. More detailed information can make

strategies more robust as the measurements are more accurate and also open opportunities for

other strategies that takes as input more detailed data. Regarding automated vehicle, ramp

metering strategy can be further improved by smoother merging process. This application

is referred to as longitudinal control. The traffic at merge bottleneck may be improved if

automated vehicles perform lane changes so as to improve overall performance.

A aspect not explored in this research was the capacity reduction due to higher on-ramp flows.

As the flow through the on-ramp is linked with more lane-changing, additional lane-changes

may reduce the total outflow. Previous research have consistently reached this conclusion and

the microsimulation study also pointed in that direction. This fact is especially important in

model-based (rolling horizon) strategies as most of the model does not consider this effect.
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Potentially, integrating that aspect into the model may improve performance.

The microsimulation setting that was proposed in this research can be further extended. The

calibration procedure can be further refined and tested in different models and locations as

well. A specific question that arises is whether it is possible to obtain a set of unique

model parameters that reproduce the capacity drop accurately in different cases, namely for

different number of freeway lanes. Adding stochasticity to the model, the same setting also

can be used to study travel time reliability of a bottleneck.
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