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EPIGRAPH

... as far as the laws of mathematics refer to reality, they are not certain;

and as far as they are certain, they do not refer to reality.

—Albert Einstein
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ABSTRACT OF THE DISSERTATION

Mapping Functional Connectivity in Cellular Networks

by

Marius Buibas

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2011

Professor Gabriel Silva, Chair

My thesis is a collection of theoretical and practical techniques for mapping

functional or effective connectivity in cellular neuronal networks, at the cell scale.

This is a challenging scale to work with, primarily because of the difficulty in labeling

and measuring the activities of networks of cells. It is also important as it under-

lies behavior, function, and complex diseases. I present methods to measure and

quantify the dynamic activities of cells using the optical flow technique, which can

identify activity and directions of information processing using calcium fluorescence

measurements.

I present a unified framework for simulation and estimation of neuronal activ-

ity, tailored towards interpretation of experimental data, and implemented in a fully

parallel fashion on graphics processor unit (GPU) cards. This framework permits

xiii



experimenters to estimate hidden quantities in collected data, using any neuronal

or astrocyte model. I introduce a technique for mapping functional connectivity in

neuronal networks, using experimental data and an arbitrary state space model. The

technique makes some simplifications that reduces the dimensionality of the estima-

tion problem, and shows excellent performance for networks of up to 30 possible

independent incoming connections.

While the framework and mapping algorithms use a state space, parametric

representation of individual cell dynamics, I’ve also developed a time-embedded,

nonparametric technique for estimating input-output relationships, and applied it to

estimating current from voltage measurements and spikes from fluorescent calcium.

Without any knowledge of the underlying neuronal dynamics, this technique can

reconstruct a current signal from measured voltage in mouse pyramidal neurons

with an R-value of 0.9.

Finally, I present my findings and theoretical perspectives acquired while

developing the framework and methods. Optimization as a means of estimating

functional weights is especially challenging due to the topology of the parameter

space, with small perturbations in weights resulting in drastically different simulated

dynamics. High-dimensional spaces are prone to the curse of dimensionality, and

network states represented in such spaces are not likely to be stable or typical.

Finally, the effects of the concentration of measure, as I believe I’ve observed when

mapping large networks, makes it unlikely that real-world networks have more than

about 7 independent functional inputs at any given time.

xiv



Chapter 1

Introduction

1.0.1 Motivation

The scale of cellular networks make it particularly challenging to work with, as

a large set of properties is required just to describe this scale. Cellular networks start

at the scale of cell-cell communication, typically on the order of 0.1µm, where the

intracellular space between neurons and glia serves as the communication medium

in neuronal networks. Cells are connected through a variety of configurations, from

gap junctions between astrocytes to the classical synapses between neurons, forming

networks that receive, process, and transmit information. At the upper bound of

a few millimeters, large networks of millions of cells form distinct brain regions of

specific shapes and functions. Within this 5-order of magnitude scale range, assump-

tions of constant diffusion, perfect mixing of the molecular level are no longer valid,

as the effects of geometric shapes of the multitude of cells making up the neuropil

effectively warp the space into a very complex shape. At the other end of the scale,

the average effects of large populations of neurons, as measured through either func-

tional MRI or EEG methods, no longer have any meaning since the spatiotemporal

pattern of neuronal firing is much more important than the number of neurons firing.

A diagram of the cell network scale is shown in figure 1.1.

The cellular scale is important because all information flows through this

scale. Fine scale sensory information from individual neurons like vision or touch are

integrated to object representations, and large scale motor commands are processed

1
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Figure 1.1: Spatial scales of living things. The cellular network scale spans five
orders of magnitude, ranging from the resolution of the synapses to the regions
of the brain and entire brains. At this scale, there is no correspondence between
organisms, as individual neurons, connectivities, and functions are neither numbered
nor defined.

into a series of commands sent down to individual muscles with precise strength and

timing. In many ways, information can be thought of as flowing up and down spatial

and temporal cascades in this scale range, giving rise to the many functions per-

formed by the brain. At this scale there are numerous theoretical challenges ranging

from simple description of shape and connectivity to the definitions of function, and

characterization of disorders and disease.

To describe this scale in numerical terms poses a significant challenge in itself.

If scanned with 0.1µm voxel resolution, a brain volume of 1 liter would require 1018

voxels, which digitized with 1 byte per voxel represents 1 exabyte (1018 bytes) of

storage. Put in context, 1 exabyte, or 1 million terabytes, is the amount of data that

flows through the entire world-wide internet in one day. While other tissues in the

human body like lungs or kidneys have similar fine detail, brain tissue data is far

more complex and would not be readily compressible or interchangeable. While one

can simply move and even remove entire regions of lung or kidney tissue and still

maintain function, reshuffling of brain tissue would almost always result in significant

loss of function.

Beyond the huge challenges of simply collecting and storing shape informa-

tion, there is the fundamental problem of labeling and correspondence of individual

neurons across different regions or brains for statistical comparisons. For both the
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molecular and regional scale, individual molecules and regions are conserved across

individuals and even species. Serotonin is the same neurotransmitter across different

species and the retina is in the same relative location and performs the same function

in virtually all mammals. When something is labeled it can be compared. Labeling

individual neurons in a specific network poses some challenges. First there is the

problem of where to start numbering and in which direction to increase the count.

Second, the number of neurons in a particular region performing the same function

will vary from individual to individual, and so will the shapes and configurations of

those neurons. Comparing connectivity matrices of two regions in two different indi-

viduals is impossible unless there is a correspondence between individual neurons in

the two individuals. Even if there was a one-to-one correspondence between individ-

uals, there are likely to be many different connectivities that perform an equivalent

information processing function in both networks. This is the problem of degeneracy,

also apparent in molecular networks where it greatly complicates the drug discovery

process.

Another challenge is how to describe quantitatively the functions performed

in these cell networks. At the single cell level, there are many models that describe

the dynamics of individual cells: voltage models for neurons [Izh05] and calcium

and ATP concentration models for astrocytes [MYBS08]. These models have been

built on and validated using experimental data and, while reasonably faithful to the

recorded cell dynamics, considerable variability exists between cell types, requiring

substantial effort to parameterize new datasets into compact model form using pa-

rameter estimation methods [CJA08]. An open problem is how much parameters of

these models will vary from cell to cell and individual to individual when operating

in a network environment. Scaling up, neurons and astrocytes are connected into

network models with different functional weights describing the influences one neu-

ron has on another in the network. The functional connectivity matrix, describing

all the connections in a network is unknown for even the smallest creature with neu-

rons, the well-studied, 302-neuron C. Elegans worm. For larger brains, very little is

known beyond the scale of single neurons or small circuits consisting of a few neu-

rons. The standing assumption that the dynamical behavior of neurons in circuits is

the same as when measured individually remains difficult to prove, yet all simulation
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and estimation environments take it for granted.

A common framework and language to describe, interpret, compare, and

quantify the shape, connectivity, and dynamics of cellular networks is required for

any further progress in research at this scale. The separate disciplines that study

morphology, connectivity, and dynamics must be brought together under a common

mathematical language so that the constraints imposed by one on the others are

taken into account and can be applied to interpret experimental data and further

our understanding of network function. Connectivity constraints may be used in

establishing bounds on possible geometric arrangements of cellular networks, and

particular cell morphology may only produce networks of certain connectivity. The

largest unexplored relationship is that between structure and function in networks.

Most simulation efforts typically do not use structure information to place constraints

on transmission delays, yet we’ve seen that delays play a major part in the network

dynamics, and are present in any biological network [BS11]. While there are many

in-silico network simulation environments like NEURON and Genesis, all performing

the forward problem of simulating with known parameters, none can take network

dynamical data and structure information and estimate parameters from experimen-

tal data, given any arbitrary state-space model.

1.0.2 Thesis Summary

The thesis body proper is divided into four main chapters, all aiming at

fundamental understanding of cell-network structure and function. All work from

chapters has either been published or will soon be published. Chapter 2 presents a

novel use of the optical flow technique for measuring, tracing, and labeling calcium

activity in cultured astrocytes and hippocampal neurons. It has been published in the

Annals of Biomedical Engineering, January 2010 [BYNS10]. It builds on a previous

paper I collaborated with M. Hashemi that uses the technique of converging squares

to locate cell centers of activity [HBS08] in fluorescence movies. Along with centers,

optical flow can be used to trace the patterns of calcium activation in fluorescence

movies, providing quantitative and geometric measures of the flow of activity between

cells. While applied to cultures, the method has been used for two-photon cultures



5

and has been shared with other labs seeking similar techniques.

Chapter 3 is a reprint of a major article published in Neural Computation,

January 2011 [BS11]. It presents a unified framework for simulation, estimation,

and filtering of cellular networks. The paper brings together all neuron and astro-

cyte individual cell models under a unified mathematical definition, connects them

in a geometrically valid, time-delayed network model, and builds a fully parallel ar-

chitecture for simulation and estimation using graphics processor unit (GPU) cards,

for a fraction of the cost and power of conventional CPU clusters. This paper has

been well received, and numerous other labs have downloaded the source available on

the lab website (http://www.silva.ucsd.edu/Silva Lab/Downloads.html). Probably

the major contribution of this paper is a simplified framework and code base for

simulation, which has been well-received and is actively undergoing improvements

and enhancements.

Making use of the theoretical framework, I’m completing a short-form paper

on mapping functional or effective connectivity in networks. This paper, reprinted in

chapter 4, describes the mathematical requirements and a control systems inspired

approach to estimating functional connectivity from data using virtually any individ-

ual cell model. It highlights the theoretical performance and limitations of functional

connectivity mapping using this approach, which to date represents the most general

and experimentally relevant method for mapping network function.

Chapter 5 takes a nonparametric approach to the problem of filtering and

estimation. Using a completely non-parametric, non-model-based approach, we can

estimate applied current from voltage measurements using past combined current-

voltage measurements. Similarly, spikes can be estimated from calcium fluorescence,

again completely non-parametrically. This approach is superior to deconvolution or

particle filter approaches, as it has no dependence on prior models or assumptions.

The results, validated on both simulated and actual experimental data, are encour-

aging, and point to the possibility of estimating connectivity without the need for

parametric models of individual cells. This is very much a work in progress, as data

is being collected at the time of submission of this thesis.

Finally, chapter 6 is more of an educated speculation on my part on what the

architecture of neuronal networks might be. I first describe some of the challenges in



6

optimization for finding functional weights, which put into question the stability of

network models simply made up of individual neuronal models. Additionally, operat-

ing in high-dimensional spaces is particularly challenging both for optimization, but

for any probabilistic modeling or classification problems. Given these mathematical

difficulties, I propose the functional connectivity is relatively low-dimensional for the

network to be stable.



Chapter 2

Optical Flow

2.1 Abstract

An optical flow gradient algorithm was applied to spontaneously forming net-

works of neurons and glia in culture imaged by fluorescence optical microscopy in

order to map functional calcium signaling with single pixel resolution. Optical flow

estimates the direction and speed of motion of objects in an image between sub-

sequent frames in a recorded digital sequence of images (i.e. a movie). Computed

vector field outputs by the algorithm were able to track the spatiotemporal dynamics

of calcium signaling pat- terns. We begin by briefly reviewing the mathematics of the

optical flow algorithm, and then describe how to solve for the displacement vectors

and how to measure their reliability. We then compare computed flow vectors with

manually estimated vectors for the progression of a calcium signal recorded from

representative astrocyte cultures. Finally, we applied the algorithm to preparations

of primary astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell

line in order to illustrate the capability of the algorithm for capturing different types

of spatiotemporal calcium activity. We discuss the imaging requirements, parameter

selection and threshold selection for reliable measurements, and offer perspectives on

uses of the vector data.

7
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2.2 Introduction

Calcium signaling is an intermediate step in many of the signaling pathways

in neurons and glial cells and is informative of functional neural activity. In neurons

calcium signaling precedes sub threshold and threshold (i.e. action potential) changes

in membrane voltage, and can be used to infer electrophysiology from optical imaging

[SMY99, CDZ06, YF06, VWP+09]. In astrocyte glial cells it underlies the mecha-

nisms by which these cells communicate in astrocyte networks and in bi-directional

communication with neurons [APK+07, Ben05, SG06]. Relative changes in cytosolic

calcium concentration can be measured using different fluorescence indicator dyes

that can be imaged by optical microscopy in the visual light range, such as bulk

loaded AM esters and genetically encoded calcium indicators [PEW+08, TL08]. The

emitted fluorescence of indicator dyes change as a function of the relative amount of

free calcium ions individual indicator molecules are able to interact with. Although

the relationship between measured fluorescence signals and the calcium levels that

produce them is complex and non-linear, it is assumed that there exists a correla-

tion between measured changes in emitted fluorescence by indicator molecules and

differing cytoslic calcium concentrations. In this context, the measured fluorescence

signal provides a valuable qualitative metric of changing calcium levels that allow in-

ferences of cell signaling and function. Throughout the rest of this paper, we will use

the terms “calcium signal” or “calcium fluorescence” to mean a measured calcium in-

dicator fluorescence signal that reflects a relative cytosolic calcium concentration, as

is routinely implied in the literature, even though in practicality we never know the

real, i.e. absolute, free ion concentration that gives rise to the measured fluorescence

signal.

The data collected by a typical experiment records qualitative movies of im-

aged changes in calcium fluorescence intensity. One can visualize calcium transients

and their relative positions and durations, but there is no inherent quantitative anal-

ysis of the data by the experiment itself that allows one to derive the dynamics that

characterize such signaling events. For example, things such as propagation speeds

and directions (i.e. velocity), the kinetics of measured waveforms, or analysis that

depend on such properties, such as identifying and mapping the signaling geometry
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of intercellular calcium waves in networks of neurons or astrocytes. Measuring and

tracing calcium (or other second messenger) fluorescence signals quantitatively from

recorded movies manually is a tedious and labor intensive process for even small data

sets, and involves comparing intensities at different frames and locations in order to

calculate speeds and directions. It is generally not possible to do so for large data

sets that encompass high spatial and temporal resolution detail or large numbers of

cells interacting in a circuit or network.

This can be addressed by analyzing experimental data with a filter algo-

rithm called optical flow, which can be used to derive quantitative measurements

of observed spatiotemporal calcium signals imaged from fluorescence movies. The

resultant vector data has a variety of uses, ranging from deriving basic measurements

of signal velocity and direction, to characterizing and classifying spatiotemporal cal-

cium dynamics between different experimental conditions. Optical flow is an imaging

technique (i.e. a filter) that calculates a two-dimensional displacement field between

two subsequent frames in a movie, based on the local spatial and temporal gradi-

ents of the two images. The optical flow filter originated in the computer vision

field, where it was designed to approximate object motion in time-ordered image

sequences for applications like stereo disparity measurements, motion estimation,

movie encoding and compression, and object segmentation [HS81]. The algorithm

uses a computed local spatial and temporal gradient to approximate a displacement

or flow vector at each pixel in the image. In both neurons and glial cells cytoso-

lic calcium concentration changes manifest themselves as transient responses with a

rapid increase, i.e. rising phase, followed by a kinetically slower decaying phase. This

is because free calcium is cytotoxic and therefore kept at nanomolar concentrations

in the cytoplasm under normal conditions. It is only transiently elevated followed

quickly by its re-uptake or extrusion. Temporal changes are typically coupled to

spatial changes as a signal propagates through a cell. Measured fluorescence changes

then trace specific paths during periods of observation (c.f. Fig. 2.1). Calcium tran-

sients start at a particular location, travel in some direction at a specific speed and

terminate at a different location. The typical kinetics of calcium transients in neural

cells are particularly well suited to the computational requirements of the optical

flow algorithm.
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We have successfully applied optical flow to calcium fluorescence movies and

obtained displacement vectors that track the spatiotemporal progression of calcium

signals. The filter works for calcium fluorescence data because calcium signals exhibit

both spatial and temporal gradients. The computed vectors provide point estimates

of the speed and direction of signals. Optical flow is ultimately an imaging filter

that works on whole movies, much like edge filters and image segmentation filters

are used in static microscopy [GGL+04, MNS09, HBS08], and provides a novel and

automated way of analyzing the spatiotemporal dynamics of calcium intracellular

signaling in neurons and astrocytes.

We begin by briefly reviewing the mathematics of the optical flow algorithm,

describe how to solve for the displacement vectors, and how to measure their reli-

ability. We then compare computed flow vectors with manually estimated vectors

for the progression of a calcium signal recorded from representative astrocyte cul-

tures. Finally, we applied the algorithm to preparations of primary astrocytes and

hippocampal neurons and to the rMC-1 Muller glial cell line in order to illustrate the

capability of the algorithm for capturing different types of spatiotemporal calcium

activity. We discuss the imaging requirements, parameter selection and threshold se-

lection for reliable measurements, and offer perspectives on uses of the vector data.

2.3 Optical Flow Algorithm and Computation

In this section we briefly introduce the concepts and mathematics of optical

flow, focusing in particular on our own implementation of the algorithm to the ex-

perimental data that follows in the Results section. The theory behind the algorithm

is well established and the interested reader is referred to a number of excellent texts

on the subject (see for example [HS81, Jah03]). Optical flow is an algorithm that

operates at the pixel level and calculates local displacement or velocity between time

ordered image pairs. Optical flow (or equivalently image flow) is the perceived mo-

tion of an object in a field of view (e.g. by the human eye or a camera), defined

as the “flow” or change in space and time of gray values at the image plane. It is

an estimation of the motion field, which is the actual motion of the object in three

dimensional space projected onto the image plane (i.e. what we would like to know).



11

As long as the frequency of successive frames in an image sequence is shorter than

the motion or displacement of the object of interest (in order to avoid confound-

ing ambiguities in detecting the components of the motion caused by aperture and

correspondence problems- see [HS81, Jah03]), the optical flow algorithm is able to

track the motion of objects in the field of view as a function of changing gray scale

levels, subject to appropriate constraints and minimizations. In other words, the al-

gorithm assumes that any changes in gray values are due to the object moving, and

that the irradiance of the object is constant from frame to frame. (This is actually

a weak assumption that is difficult to satisfy since motion usually causes changes

in irradiance, which is why the algorithm is an estimation of the motion field. In

cases where irradiance does not change, the optical flow exactly equals the motion

field.) The algorithm assumes the conservation of gray levels in the field of view

and assumes that any changes in the distribution of gray levels are due to motion.

In fact, the optical flow constraint equation (introduced below) can be derived by

analogy from the continuity equation in fluid dynamics that conserves mass [BFB94].

By computing the optical flow for all pixels in a field of view, displacement vectors

can be calculated for each pixel that map where an object moved to from the pixel

in the first frame to that in the second. Intuitively, one can see why the algorithm

performs best with objects that have strong contrasts at boundaries or large signal

to background noise ratios. The kinetics of calcium transient signals display clearly

distinguishable rising and decaying phases that trace specific paths during periods

of observation in the form of intracellular calcium waves (Fig. 2.1) that are readily

detectable by the algorithm.

The underlying assumption for computation is to constrain local temporal

gradients to the product of spatial gradients and displacement vectors. The basic

principle of the algorithm takes as inputs two images and computes a vector for each

corresponding pixel in the images which approximates the displacement of a small

window surrounding that pixel between the two images (Fig. 2.2). Only intensity

values inside the window are used for computing the pixel displacement value, so the

measurement is localized. Adjacent pixels will have overlapping windows, so their

computed vectors will be similar, much like pixels in a blurred image are similar. Fol-

lowing a mathematical description of the algorithm we describe the method for its
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Figure 2.1: Selected frames from recorded movies of imaged calcium fluorescence
activity in sparse networks of primary dissociated cortical astrocytes (top) and hip-
pocampal neurons (bottom- where a single neuron at high magnification is shown).
The color coded scale bars on the right represent fluorescence intensity I in units
of ∆I/sec, as a first derivative of the calcium signal. For neurons the signaling was
spontaneous, while for the astrocytes waves were pharmacologically induced. Fluo-
rescence increases followed a relatively smooth spatial progression across the frames
at the times indicated by the time stamp in the upper left hand corner of each image.
Areas of increasing calcium concentration appear as positive ∆I/sec values, while
areas of decreasing calcium concentration appear as negative values, but at a much
smaller magnitudes.
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solution and implementation that we used to derive the optical flow for calcium sig-

nals. We also discuss parameters and constraints of relevance to calcium fluorescence

movies.

40μm

0.0s 0.5s

Figure 2.2: The optical flow algorithm. A window Ω in the same location in two
subsequent image frames is used to compute a displacement or flow vector (arrow)
for the pixel at the center of the window. Only image intensity values in Ω are used
for the calculation. Vectors are computed for each pixel in an image frame except in
border regions where Ω falls outside of the image. Given the position of the pixel as
(x, y) at t seconds, (x, y, t), the displacement vector defines the motion of the pixel
at the subsequent frame at δt seconds as (x+ δx, y + δy, t+ δt).

Consider an arbitrary pixel with gray level intensity I(x, y, t), displaced in

the xy plane by δx and δy at time δt in an n x n window Ω (Fig. 2.2b). This implies

that

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (2.1)

A first order Taylor series approximation of I(x, y, t) by expansion of the right

side of 2.1 results in

I(x+δx, y+δy, t+δt) = I(x, y, t)+
∂I

∂x
δx+

∂I

∂y
δy+

∂I

∂t
δt+higher order terms (2.2)

Ignoring higher order terms, which provide negligible contributions, and tak-

ing into consideration equation 2.1

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0 (2.3)
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Dividing by δt
∂I

∂x

δx

δt
+
∂I

∂y

δy

δt
+
∂I

∂t
= 0 (2.4a)

∂I

∂x
ux +

∂I

∂y
ux +

∂I

∂t
= 0 (2.4b)

The two spatial and one temporal gradients are defined by ∂I
∂x

, ∂I
∂y

, and ∂I
∂t

,

respectively. ux = δx
δt

and vy = δy
δt

represent the x and y spatial components of the

optical flow displacement vector u(x, y) = (ux, vy). The basic optical flow formula-

tion is to constrain temporal intensity changes (gradients) to the product of spatial

gradients and u(x, y) to give equation 2.4. In more compact notation this can be

written as

∇I(x, y, t) · u(x, y) +
∂I(x, y, t)

∂t
= 0 (2.5)

Computing optical flow means finding the values of u(x, y) at each location for every

time point that satisfy the above constraint, given the known local image intensity

spatial and temporal gradients.

Two factors establish computability of meaningful non-zero flow vector val-

ues. First, local spatial gradients must be non-zero at the point of interest (x, y, t).

There has to be some image information around the pixel of interest, meaning that

neighboring points have to have different values so that gradients are non-zero. If all

pixels in a window around (x, y, t) have the same intensity values, then spatial gra-

dients are zero and motion is undetectable by any means. Second, for displacement

between subsequent frames to be computed, there has to be a temporal gradient at

(x, y, t), or some change in intensity between time points. If there is no temporal

change in intensity between subsequent time points, then a value of u(x, y) = 0 sat-

isfies the constraint equation in 2.5. Both of these requirements are limitations on

the original application of the optical flow when estimating displacement in natural

scenes: objects may have constant intensity in a small window and still be moving,

meaning that motion may occur and the recorded intensity spatial and temporal gra-

dients equal zero. These limitations are less important when optical flow is applied

to calcium fluorescence movies.
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There are many methods for calculating optical flow for recorded movies (see

[BFB94] for a review), and all of them work on digitized movies with discrete pixel

values of position and time, i.e. (x, y, t) ∈ (columns, rows, frames). We chose

the Lucas and Kanade method because it is conceptually simple and efficient, and

flexible in terms of the image processing steps required for computation [BM04,

BSL+96, LAG05]. First, computation of the flow vector u(x, y) is performed on a

window or spatial neighborhood Ω of arbitrary size, centered around (x, y), which

is more reliable than a single point estimate at (x, y). Second, a window function

W (x, y) is defined to favor values in the center over those near the edges. The

choice of window size will depend on a variety of factors. It must be large enough

to capture the apparent displacement across frames and small enough to resolve

features of interest. The capture frame rate must be fast enough for displacements

to be observable within the width of the spatial observation window across successive

frames. When measuring the spatiotemporal motion of calcium signals the size of

the window Ω, the frame rate, and the resolution are all deeply tied to the size

of the cells or cellular compartments in which the signal travels. Together, these

parameters must be chosen so that the signal is observable and smooth enough to

measure reliably as flow vectors across frames. For example, the choice of parameter

values used to image calcium signals in part of a dendrite or a fine astrocyte process

will necessarily be different than parameter values for broad calcium signals that fill

the soma.The constraint equation is redefined as a weighted least-squares fit of local

first-order constraints to a constant model of a local u(x, y) in each small spatial

neighborhood Ω around the pixel of interest. The goal is to find the value of u(x, y)

that minimizes

∑
(x,y)∈Ω

W 2(x, y)
(
∇I(x, y, t) · u(x, y) +

∂I(x, y, t)

∂t

)2

(2.6)

The above equation can be rewritten and solved as the linear system:

ATW 2A · u(x, y) = ATW 2b (2.7)

Where, for neighborhood Ω, consisting of n points centered around the pixel and
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time of interest (x, y, t), Ω = {(x1, y2, t), (x2, y2, t), . . . , (xn, yn, t)}:

A =


∂I
∂x

(x1, y1, t)
∂I
∂x

(x2, y2, t) . . . ∂I
∂x

(xn, yn, t)

∂I
∂y

(x1, y1, t)
∂I
∂y

(x2, y2, t) . . . ∂I
∂y

(xn, yn, t)


T

(2.8)

W = diag
[
W (x1, y1), . . . ,W (xn, yn)

]
(2.9)

b = −
[∂I
∂t

(x1, y1, t), . . . ,
∂I

∂t
(xn, yn, t)

]T
(2.10)

Ω is usually a square window with sizes typically ranging from 3 x 3 to 15 x 15 or

n = 9 to n = 225 points. We have set the weight matrix W to a two dimensional

Gaussian with σ2 equal to 1/6 of the window width. As an example, for a 5 x 5 or

n = 25 point window:

W =
1

1000



1 6 13 6 1

6 54 112 54 6

13 112 230 112 13

6 54 112 54 6

1 6 13 6 1


Here, the center values in W have a greater contribution to the calculation than the

edge values, favoring gradient values at the pixel of interest.

Solving for the flow vector u(x, y) in equation 2.7, yields:

u(x, y) =
[
ATW 2A

]−1
ATW 2b (2.11)

Equation 2.11 describes a linear system in matrix form, where the flow vector u

at spatial and time location (x, y, t) is solved from the quantities of A, W , and b,

defined from the spatial and temporal derivates of n points around (x, y, t). The

2×2 matrix
[
ATW 2A

]
matrix contains all the image spatial derivatives, and if those

values are close to zero, the matrix is poorly conditioned, and flow estimates become

unreliable. Ensuring that both eigenvalues of the
[
ATW 2A

]
matrix are sufficiently

large is a good way to ensure that the matrix is well conditioned, since a measure
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of the conditioning number is the ratio of the largest to the smallest eigenvalue

[BFB94]. While this is not the only way to compute conditioning, this is the test we

used for visualization and measurement reliability of computed vectors for calcium

fluorescence data (see Appendix 2.6.3 for more information).

Spatial and temporal derivates were computed using 2 x 2 convolution kernel

filters, where the ∗∗ operator denotes 2-dimensional discrete convolution:

∂I(x, y, t)

∂x
= I(x, y, t) ∗ ∗1

4

[
−1 1

−1 1

]
(2.12)

∂I(x, y, t)

∂y
= I(x, y, t) ∗ ∗1

4

[
−1 −1

1 1

]
(2.13)

∂I(x, y, t)

∂t
=

1

∆t

(
I(x, y, t+ ∆t)− I(x, y, t)

)
∗ ∗1

4

[
1 1

1 1

]
(2.14)

Here ∆t represents the time between frames or the frame rate 1/∆t. Since the

temporal derivative calculated in 2.14 forms the basis for the b vector in 2.11, the

frame rate has a linear effect on the magnitude of the flow vector u.

Optical flow outputs a displacement vector in units of pixels, normalized to

the time difference between the two frames used for computation. When normalized,

the vector takes on velocity units of pixels per frame (for this reason it is called

a flow vector). The conversion to physical units will depend on the spatial resolu-

tion of the camera and microscope, typically expressed in microns per pixel, and

the sampling rate for the movie capture, expressed in frames per second. Spatial

resolution is a function of the objectives used as well as the resolution of the imager

and any pixel binning used. The frame rate is limited at the high end by the camera

sampling rate, and at the low end by the minimum exposure time required to cap-

ture a detectable intensity signal. The exposure time may be reduced by increased

gain or pixel binning, but those come at a cost of reduced resolution or increased

noise. The conversion between units of pixels/frame and units of microns/second is

straightforward:
microns

second
=

pixels

frame
· frames
second

· microns
pixel

(2.15)
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While the optical flow algorithm produces vectors in units of pixels/frame, the anal-

ysis of the data in the Results section below have been converted into physical units

of microns/second, using the resolution and capture rate of the recordings given the

specifics of our imaging system.

2.4 Results

2.4.1 Comparison between computed and manually

estimated flow vectors

We manually estimated flow vectors for 12 images equivalent to 6 seconds of

calcium signaling in primary dissociated spinal cord astrocyte cultures (orange arrows

in Fig. 2.3), and qualitatively compared them to computed optical flow vectors for

the same data (green arrows in Fig. 2.3; note that only reliable vectors are shown as

determined by the eigenvalue test- c.f. equation 2.11, see above). Manual estimation

required stepping through frames and approximating roughly how a calcium signal

progressed in time, which in this experimental preparation included intercellular

calcium waves that propagated through a subset of the cell network. The manually

traced signals were not the only ones observable in the small movie sequence used,

but were chosen to illustrate four representative signaling paths. Manual estimation

was performed in two second intervals, estimating the incremental spatial progression

of a given calcium signal across four frames.

Estimation of the flow or displacement of a cell signal such as calcium between

frames manually like we did for the data in Fig. 2.3 is a very tedious and labor

intensive process, and can only realistically be done under very sparse conditions

where the observer can clearly delineate the flow of the signal visually. It is nearly

impossible to do at the pixel or small window level. In contrast, optical flow calculates

a displacement vector for every pixel in every frame, operating at a much finer scale

and capturing much more detail than is possible with manual estimates. Nonetheless,

in Fig. 2.3 for the purpose of qualitatively validating derived optical flow vectors to

manually estimated ones, in both cases there was a clear overlap in vector direction

between manual and flow vectors. By contrast, there were greater differences in
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40μm

0.0s 2.0s 4.0s 6.0s

Figure 2.3: Comparison between computed optical flow vectors (green) and man-
ually estimated flow vectors (orange). While computed vectors were calculated for
every pixel and every frame, manual vectors were estimated every four frames and
only trace a few selected signals. Only reliable optical flow vectors are shown, and
only one in four vectors in both horizontal and vertical directions are shown for clar-
ity. Unlike the manual vectors, flow vectors are only shown for the current frame.
The top sequence of panels show vectors overlaid on extracted frames from the actual
movie at the indicated times for the entire field of view. The bottom panels show
the vectors in detail for the 2, 4, and 6 second frames in order to more clearly assess
the qualitative overlap between optical flow computed and manually estimated re-
sults. For optical flow vectors (in green) only vectors that putatively correspond to
manual vectors (in orange) are shown, in contrast to the upper panels which show
all computed vectors (see text). See appendix for details regarding experimental
preparations, imaging, and parameters for calculation.
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vector magnitudes between manually and flow vectors, which is consistent with the

fact that the manual estimates spanned four frames while optical flow vectors were

calculated across adjacent frames. There is also temporal overlap between the two

cases, in the sense that similar displacements were estimated for the same frames

using both approaches. The eigenvalue threshold masked out unreliable vectors, and

this correlated well with calcium activity; only areas of spatial and temporal changes

in the movie produced reliable vectors as assessed visually, which is ultimately the

most accurate estimator of complex motions, but only if given the right conditions

(e.g. conditions that allow the human eye to separate motion). The optical flow

algorithm however, is able to provide reliable quantitative measurements of signaling

dynamics at spatial and temporal scales simply not measurable by qualitative visual

inspection or manual estimations of the data.

2.4.2 Optical flow characterization of intercellular signaling

We applied the optical flow algorithm to typical calcium fluorescence movies

of spontaneously forming sparse networks of neural glial cells and neurons in culture,

and looked at the dynamics of intercellular signaling following pharmacological or

mechanical stimulation. We purposely chose sparse networks because it facilitates the

visual interpretation of the entire resultant vector field, but the algorithm itself can

operate on any data that displays an appropriate signal. We recorded movies from

the rMC-1 Muller glial like cell line, which mechanistically displays calcium signal-

ing similar to Muller retinal glial cells in vivo [YBC+09], primary dissociated spinal

cord astrocytes, and primary dissociated hippocampal neurons. Intercellular calcium

waves in rMC-1 cells and astrocytes were mechanically induced by gently poking an

initial cell without penetrating the cell membrane, while calcium waves in neuronal

networks were induced by the localized pharmacological application of glutamate to

one or a small group of cells (see the appendix below for details about experimental

preparations and imaging parameters). In particular, intercellular calcium waves in

astrocytes and related anatomically specialized macroglial cells such as Muller cells in

the neural retina or Bergman glia in the cerebellum have been known to occur under

experimental conditions for several years now, and have recently been shown in vivo
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under both physiological and pathophysiological conditions in different parts of the

brain, mediated by intracellular calcium transients that induce paracrine signaling,

primarily through adenosine triphosphate (ATP) [KLHB09, KNMN09, HKG+09].

Astrocyte and related macroglial cells engage in bi-directional chemical signaling

with neurons and have the ability to modulate and directly participate in informa-

tion processing in the brain, which necessitates more than just interactions between

neurons and almost certainly involves astrocytes somehow. The functional roles of

glial intercellular calcium waves and their contributions to modulating neuronal in-

formation are not yet known, and in fact the dynamics of these signaling events and

the conditions under which they occur are just beginning to be explored.

The key parameter for computing optical flow using the Lucas-Kanade method

is the window size Ω, specified as a square of a given width (see above). It defines

the local neighborhood of pixels along a point of interest that is used to compute the

spatial and temporal gradients required for the calculation. Though not required for

computation, a minimum value for the eigenvalues for the matrix ATW 2A should be

specified to mask out unreliable measurements. This ensures that only reliable dis-

placement vectors are displayed and used for analysis. Since the intensity values are

a function of the experimental setup, microscope, and camera, the ATW 2A matrix

and its eigenvalues will scale accordingly. The selection of the eigenvalue threshold

is thus arbitrary, much like the selections of the camera gain, exposure time, and

other imaging parameters are made to generate easily visible intensity values (see

Appendix 2.6.3 for more information on selecting suitable eigenvalue thresholds).

Table 2.1 shows the window sizes, eigenvalue thresholds, and capture frame rates

used to calculate the vector fields shown in Fig 2.4. The displacement vectors can be

converted into velocity by equation 2.15. The original calcium fluorescence movies

and Matlab code written to implement the optical flow algorithm are available online

as supplemental materials.

Neuronal cultures displayed derived optical flow vectors along processes as the

calcium signal propagated throughout the network. As expected, computed vectors

and the resultant vector field followed the geometry of connected processes (i.e.

axons and dendrites) in the sparse network (Fig. 2.4a). The pattern of activation

in this example proceeded diagonally from the site of stimulation in the upper left
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Table 2.1: Image capture and optical flow parameters for shown figures. The values
were chosen manually through manual iteration and visual comparison.

Parameter rMC-1 Cells Astrocytes
Hippocampal

Neurons
Frame Capture Rate

(Hz)
16.4 8 4

Window Size (pixels
at 1.3µm/pixel)

11 9 11

Minimum Eigenvalue
- (λ1, λ2) greater

than
11 1.4 .3

hand corner of the field of view. Some neurons activated at considerably longer

times following the stimulus (i.e. out to 7 or 8 seconds) most likely due to recurrent

feedback signaling in the network which can last several seconds. Note how since

only reliable vectors are plotted, as determined by the eigenvalue test, there are

spatial discontinuities in the temporal progression of mapped signals, which reflect

areas where the algorithm could not compute reliable vectors given the measured

data. This may be especially true at lower magnifications as in the example shown

here for comparatively large fields of view that capture many cells. This represents

a challenging task for the algorithm. Nonetheless, both the spatial and temporal

progression of calcium signals are easily visible. The computed data, being in vector

form, can complement existing methods like cross-correlation that use only cell body

data to establish relationships between cells for example.

Signal flow patterns were also computed for astrocyte and rMC-1 glial net-

works (Fig. 2.4b and c, respectively). Astrocyte signaling showed rapid burst like

radial patterns that was mostly complete by 2 seconds, with some smaller regions of

cells activating later as far out as 6-7 seconds. This is consistent with descriptions

of intercellular calcium waves reported previously [CBFCS90, NZ97, AB05, SG06].

rMC-1 cells showed qualitatively similar radial patterns of activation, with signaling

occurring within about 3 seconds following stimulation. However, unlike the astro-

cyte response, where there was uniform signaling across the network near the site of

stimulation, rMC-1 cells showed more heterogeneity in spatial activation patterns,
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with distinct clusters of cells activating and spreading calcium waves. The distances

traveled by the waves in the rMC-1 example roughly agree with previous quantita-

tive characterizations of calcium waves in similar preparations, on average displaying

wave distances of about 60 µm over the first 2 seconds or so and distances between

50-100 µm over about 4 seconds [YBC+09]. It is interesting however that the spatial

progression of the calcium signals in this example was not linear as a function of time,

in the sense that cells roughly equidistant from the site of stimulation activated at

different times, within about 1 second for some versus about 3 seconds for others.

The relationship and dynamics between the spatial versus temporal properties of such

waves are difficult at best and usually not possible to determine by visual inspection

of recorded movies alone, and are not captured by calculations such as the one dimen-

sional signaling speed of a progressing wave front. Furthermore, speed and distance

calculations of neuronal and glial signaling across networks of cells are usually corse

approximations computed using low magnification movies that provide a sufficiently

large field of view. In contrast, optical flow provides reliable single pixel vectors

for any sized region of interest that represent very fine grain detailed descriptions

of calcium signal propagation difficult to achieve otherwise. For the astrocyte data

from Fig. 2.4b, Fig. 2.5 illustrates the distribution of signaling speeds in µm/second

for 65 optical flow vectors for a small 10 x 10 pixel region equivalent to a 13 x 13

µm region in the field of view (orange box in the figure). Any region size of interest

anywhere in the imaged field that might be of functional interest to the investigator

can be similarly characterized. By way of rough comparison, optical flow calculated

speeds for calcium signals in computed window were distributed from 1-10 µm/sec,

and are roughly similar to those reported previously using more approximate and

global methods, in the range of 5 to 10 µm/second [CBFCS90, NZ97, AB05, SG06].

The bimodal distribution in the figure reflects what is visually apparent in the source

movie: some of the areas in the orange pixel region exhibit spatiotemporal displace-

ment while others do not, indicating that calcium concentration changes propagate

in specific regions with specific patterns. Manual estimates from the literature typ-

ically look at maximum propagation speeds, as seen in the second peak at about 9

µm/second.
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Figure 2.4: Computed optical flow vectors for induced calcium signals in sponta-
neously forming in vitro networks of (a) primary hippocampal neurons, (b) primary
spinal cord astrocytes, and (c) the rMC-1 Muller glial-like cell line. Six frames from
each representative recorded movie are shown with the computed vector field super-
imposed at times indicated by the time stamps in each frame (left set of six panels).
Right panels: Composite temporal projections of the entire movies. The vector fields
show the full spatial progression for the evolving calcium signals, with time (i.e. tem-
poral progression) color coded by the color map (in seconds). Plotting the vector
fields in this way allows the full spatiotemporal propagation of derived signals from
entire movies to be summarized in a single image. This facilitates the qualitative
visualization and identification of complex dynamic signaling patterns that would
be difficult to detect otherwise, such as for example by simply ”playing back” the
movie.
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Figure 2.5: Optical flow velocity magnitude distributions for the astrocyte data
from Fig. 2.4b. The flow vector magnitudes for reliable measurements in a 10 x 10
pixels (13 x 13 µm) region (orange square) shown as histograms.
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2.5 Discussion

We describe and show the application of optical flow gradient methods for

identifying and spatiotemporally mapping functional calcium signaling in networks

of neurons and glia. Although we focused on networks of cells here, the method can

be equally applied to the analysis of spatially detailed sub-cellular compartmental-

ized regions of interest, such as dendrites or astrocyte processes. The method makes

use of the spatial first derivative of moving objects in a field of view, in this case

changes in fluorescence levels of calcium indicator dyes associated with the free con-

centration of intracellular calcium, to track their motion between subsequent frames

in an image sequence (i.e. a recorded movie). The mathematical foundations of

optical flow are well established and optical flow algorithms have been used in a

wide variety of fields including applications to cell and molecular biology to track

the movement of proteins, vesicles, and even whole cells [Miu05]. In neuroscience

and neural engineering it has been used in electromyography [KPW+02, OGK07] and

sensory perception [LA07, PB98], while clinically, it has been used to detect seizures

in neonatal infants [KTF+06], among other applications. However, the method has

not been previously applied to tracking and visualizing calcium signaling and de-

riving quantitative measurements of calcium spatiotemporal changes that underlie

intracellular and intercellular functional signaling in neural cells.

Although in this paper we applied the optical flow algorithm to two dimen-

sional fluorescence movies, the algorithm itself can be readily applied to a recorded

movie made up of three dimensional stacks acquired using two-photon microscopy.

Work by others is pushing two photon imaging towards recording real time func-

tional signaling from three dimensional volumes of active cellular neural networks

[GKH07, GH07]. If the sampling rate is sufficiently high, optical flow can be com-

puted in three dimensions using a volume instead of a square window around a pixel

to generate a three dimensional displacement vector. The same constraints on vol-

ume size, sampling, and vector reliability metrics in two dimensions apply to the

three dimensional case.

Optical flow methods produce a lot of data, generating a vector for every

pixel in every image pair computed, so further processing, rendering and visual-
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ization methods are key to making quantitative comparisons between experimental

setups. Statistical comparisons can be made from vector values by comparing differ-

ences between selected regions in different preparations; velocity averages for each

region can be compared using statistical methods such as means, standard devia-

tions, and p-values. While vector values from adjacent pixels are not statistically

independent, averaged vector values for a given region of interest may be used for

statistical comparison with another, non-overlapping region.

Another potential use of the vectors is to classify spatiotemporal patterns.

Similar to using a scalar kernel filter to match an image pattern such as an edge or

corner, vector fields themselves can be filtered with a known vector kernel to match

a pattern of interest. This method is called Clifford convolution [ES03] and has been

used to label physical flow regimes in fluid dynamics applications. By designing a

vector field filter and convolving it with computed optical flow vectors, a scalar map

identifying specific patterns of flow associated with the saptiotemporal dynamics of

the measured signal can be constructed in order to classify regions exhibiting such

patterns.

One of the most exciting potential uses of computed flow vectors is in func-

tional network reconstruction. Borrowing again from the field of fluid mechanics, a

dynamic vector field can be used to reconstruct the path of a hypothetical particle

from a given starting point, tracing out the path that a signal might take between

cells, much like a particle in a dynamic flow field [WE05, WSEE05]. Geometrically

mapped paths of measured signals that originate in an activating cell and propa-

gate through a network may be very useful for reconstructing the dynamics of the

network. This would complement existing network reconstruction algorithms which

typically rely on temporal data around fixed regions of interest.

2.6 Appendix

2.6.1 Cell Preparations

rMC-1 glial cells and primary spinal cord astrocyte cultures (the latter dis-

sected and grown similar to previously described [SFMT98, MYBS08] were grown to
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approximately 80% confluency and washed twice with Kreb-HEPES buffer (KHB)

solution (10 mM HEPES, 4.2 mM NaHCO3, 10 mM glucose, 1.18 mM MgSO4, 7H2O,

1.18 mM KH2PO4, 4.69 mM KCL, 118 mM NaCl, 1.29 mM CaCl2, pH 7.4) and in-

cubated with 5µM Fluo-4AM in KHB for 1 hr at room temperature. Excess dye

was removed by washing twice with KHB and an additional incubation of 30 min at

room temperature was done to equilibrate intracellular dye concentration and ensure

complete intracellular hydrolysis. Synchronized calcium transients were initiated by

mechanical stimulation of a single cell using a (0.5µm i.d.) micropipette tip (WPI

Inc., Sarasota FL) mounted on a M325 Micrometer Slide Micromanipulator (WPI

Inc., Sarasota FL). Comparable data were obtained using adenosine triphosphate

(ATP) pharmacological stimulation.

For hippocampal cultures, dissociated hippocampal neurons from timed preg-

nant embryonic day 18 (E18) Sprague-Dawley rats were cultured on glass bottomed

tissue culture dishes coated with poly-D-lysine and laminin (BD Biosciences, San

Jose, CA). Cultures were plated at a cell density of 106 cells/3.8cm2. Cultures were

maintained at 37C in 5% ambient CO2. Plating media was composed of basal me-

dial Eagle (Invitrogen, Carlsbad, CA) with 1X Glutamax, 1000 U/mL penicillin and

streptomycin sulfate, 5% FBS, and 1X N2 supplement. Culture media consisted of

Neurobasal (Invitrogen, Carlsbad, CA) with 1X Glutamax, 1000 U/mL penicillin

and streptomycin sulfate, 20mM glucose, and 1X B27 supplement. Culture media

was supplemented with 10uM Ara-C for 24 hrs at 1DIV to inhibit overgrowth of glia.

All imaging was performed on 3-5DIV.

Bulk loading of hippocampal cell cultures was accomplished via incubation

in the dark, at room temperature, for 30 min in 1µM of the fluorescent Calcium

indicator Fluo-4-AM in Krebs-HEPES buffer (10mM HEPES, 4.2 mM NaHCO3,

10mM glucose, 1.18mM MgSO4·7H2O, 1.18mM KH2PO4, 4.69 mM KCl, 118mM

NaCl, 1.29 mM CaCl2, pH 7.4), followed by 2x 5 min washes in Krebs-HEPES with

100µM sulfinpyrazone. Hydrolysis was allowed to proceed for an additional 30 min.

Stimulation of neurons with glucose was performed by microinjection of 100uL of

10mM glutamate in PBS from a specified-side of the culture dish, well outside of the

microscope field of view. The fluorescence signal generated across the monolayer of

cells was recorded for 10 sec prior to glutamate injection, and for 120 sec following
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injection. Cultured neurons were incubated for 30 min prior to imaging in Mg2+-free

PBS to induce the synchronization of calcium transients.

2.6.2 Imaging Setup

Visualization of calcium indicator dye fluorescence was achieved using a 488

nm (FITC) filter on an Olympus IX81 inverted fluorescence confocal microscope

(Olympus Optical, Tokyo, Japan) that included epifluoresence, confocal, phase,

brightfield, and Hoffman differential interference contrast (DIC) modalities. Real-

time movie recordings of calcium transient propagation were acquired with a Hama-

matsu ORCA-ER digital camera (Hamamatsu Photonics K.K., Hamamatsu City,

Japan) and Image-Pro Plus data acquisition and morphometric software (version

5.1.0.20, Media Cybernetics, Inc., Silver Spring, MD) or LabView custom written

data acquisition software (ScopeController). All images were captured with a 10X

objective, using a 2x2 binning on the camera, for a resolution on 1.3µm/pixel and

a total image size of 612x572 (camera’s maximum resolution is 1224x1144). Images

sampled at frequencies ranging from 2 to 16.4Hz, or 0.5sec to 0.06sec exposure time.

2.6.3 Reliable Vectors via the Eigenvalue Test

Recall that flow vectors are computed from the linear system in 2.11. This is

a typical linear system of the form:

M · u = z

where u is the unknown and z and M are known quantities. The condition number

of a matrix simply describes how a small deviation in the known z translates to an

error in u. A high condition number means the matrix is ill-conditioned, meaning

that a small deviation in z leads to a large deviation in u, making that computation

unreliable. One way to compute the condition number of a matrix is to take the

ratio of the largest to smallest eigenvalue of that matrix:

κ(M) =

∣∣∣∣λmax(M)

λmin(M)

∣∣∣∣
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Since M is a 2 × 2 matrix, it has 2 eigenvalues so ensuring that both are above a

certain value makes the condition κ value relatively low. The minimum threshold

value depends on the incoming intensity values.

Intensity readings from the CCD camera can take on any number of values,

based on the digitization (8-bit, 12-bit, 16-bit, for example), the exposure time,

gain setting on the camera, and above all the dye loading in the cell preparation.

Typically, during observation, the experimenter manually adjusts gain and exposure

time to obtain reasonable intensity values, typically in the middle of the digitization

range.

Eigenvalues for the ATWA used in flow vector calculation typically scale with

the range of recorded intensity values and are calculated for every pixel, producing an

eigenvalue image map. The values chosen in table 2.1 were manually chosen during

examination of the minimum eigenvalue image for a few representative frames, en-

suring that they fell between ares where we visually detected spatiotemporal changes

in intensity and areas were we did not detect such changes. This is the same process

one would undertake when thresholding a regular monochrome image for the count-

ing of cells: the intensity threshold is set to a value between the intensity of an area

where there is a cell and an area where there is no cell.

Chapter 2, in full, is a reprint of the material as it appears in Buibas M, Yu D,

Nizar K, and Silva GA. “Mapping the Spatiotemporal Dynamics of Calcium Signaling

in Neural Networks Using Optical Flow” Annals of Biomedical Engineering., 10.1007,

2010. The dissertation author was the primary investigator and author of this paper.

The authors retain copyright of this article, and contributing authors have granted

permission for inclusion in this thesis.



Chapter 3

Network Mapping Framework

3.1 Abstract

We present a framework for simulating signal propagation in geometric net-

works (i.e. networks that can be mapped to geometric graphs in some space) and

for developing algorithms that estimate (i.e. map) the state and functional topol-

ogy of complex dynamic geometric networks. Within the framework we define the

key features typically present in such networks and of particular relevance to bio-

logical cellular neural networks: Dynamics, signaling, observation, and control. The

framework is particularly well-suited for estimating functional connectivity in cellu-

lar neural networks from experimentally observable data, and has been implemented

using graphics processing unit (GPU) high performance computing. Computation-

ally, the framework can simulate cellular network signaling close to or faster than real

time. We further propose a standard test set of networks to measure performance

and compare different mapping algorithms.

3.2 Introduction

Complex dynamic networks permeate many real world engineering and bio-

logical applications. The development of mathematical and computational tools for

understanding and predicting network dynamics will be key to manipulating and

interacting with such real world networks. Network theory is a subset of graph the-

31
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ory where the connections between vertices have a number value describing some

attribute of that connection, such as for example bandwidth, flow rates, or a cost

function. Complex networks are defined to have a non-standard topology, i.e. the

functional links between nodes in the network, implying some structure in the con-

nectivity pattern of the network beyond a simple lattice or complete random connec-

tivity. Biological cellular neural networks are both complex and dynamic, meaning

that the connection attribute between any two vertices may change with respect

to time and, more importantly, individual vertices exhibit their own nonlinear sig-

naling dynamics. Complex functional interactions of networks made up of large

numbers of neurons and glia produce emergent systems-level phenomena such as

consciousness and self-awareness, and are responsible for how neural information

is represented and processed. Changes in the structure of such networks presum-

ably underlie the development of multidimensional central nervous system disor-

ders. For example, hypersynchronous neuronal and glial activity in networks of neu-

rons are associated with the paroxysmal depolarization shifts that underlie epilepsy

[TAT+05, SA07, WSD08, FOM+07]. Ultimately, the physiologic behavior of a neu-

ral cell network is dependent on both its functional topology and the dynamics of

individual cells.

Within a complex dynamic network there are two topologies. A static, struc-

tural topology that describes all the possible connections within the network, and a

dynamic, functional topology that establishes how a signal propagates through the

static topology. Functional topologies are subsets of the structural topology and vary

depending on the functional connectivity, internal dynamics of individual vertices,

and the specific stimulus to the network. While this is the case for biological neu-

ral networks, where cells that are physically connected need not necessarily signal

each other, in cellular neural circuits and networks structure and function influence

each other and the states of cells and the connections between them may change

with time as a function of plasticity mechanisms. However, structural changes in

the physical connectivity of a cellular neural network leading to changes in the con-

nectivity topology occur on a very different time scale then functional changes that

can be influenced relatively quickly by plasticity mechanisms that produce changes

in signaling efficacy between cells (i.e. changes in connectivity weights). While the



33

observation of the structural network topology of cellular neural networks may be ex-

perimentally very challenging (and indeed is the focus of much intense research), it is

a relatively straightforward task. The observation of functional topologies in biologi-

cal neural networks however poses additional experimental and theoretical challenges

that need to be considered. Signaling events and resultant networks may be unique

and be observable only once as a signal propagates through a network. The func-

tional topology is dynamic and may change during observation. Noise and unknown

external factors limit observability and reduce repeatability. These factors make the

estimation of functional connectivity from observed activity a difficult task, though a

critical one for systems neuroscience if we are to understand how dynamic functional

signaling in the brain at the level of networks and circuits produces responses and

behaviors in the organism.

Current approaches for studying cellular neural networks can be roughly clas-

sified into three categories. The first and most popular amongst experimentalists are

statistical methods that correlate the activities of two or more neurons in a network.

This provides purely descriptive statistics about the behavior of cells. For the most

part, statistical approaches make no underlying assumptions about the cellular and

systems dynamics that give rise to observed signals in a network of cells. Another way

to study networks is through simulation of networks with known connectivities and

dynamic parameters in order to simulate real-world observed system level phenom-

ena such as vision and audition. Using well established environments like NEURON

or Genesis, many real-world phenomena have been described through simulation.

However, dynamic parameters and functional connections are manually specified in

simulation environments such as these in order to achieve results that mimic biologi-

cal function, requiring the estimation of experimentally unobservable variables. The

third category is in some ways the reverse process to simulation, where temporal data

is used with appropriate models in order to estimate parameters. Within this third

category, we introduce a modeling framework for using real-world data to map the

functional topology of complex dynamic networks. While not a mapping algorithm

or simulation environment, the framework formally defines key features of cellular

neural network signaling and experimental constraints associated with observation

and stimulus control, and can accommodate any appropriate model of intracellular
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dynamics. Alongside the definition of the framework, a test set of synthetic networks

with known connectivities is provided to help the development of mapping algorithms

by providing a common benchmark any such algorithm should be able to map. In a

subsequent paper to this one we will introduce an approach that will estimate and

map the functional topology of complex networks with unknown connectivities given

limited and often noisy observations that takes advantage of the results introduced

here.

The proposed framework has a number of unique properties that makes it par-

ticularly applicable to the constraints and experimental limitations imposed by real

biological cellular neural networks. First, dynamic activity and signaling is modeled

at the individual node (i.e. cell) scale. The dynamics of individual cells are mod-

eled as state sets, with transition functions describing their evolution across discrete

time steps. Cellular resolution was chosen because it represents the best compro-

mise between observability, dynamics, and complexity. Large numbers of individual

cells can now be observed in parallel in functional neural networks using optical mi-

croscopy [HBJ+09, BHP08, GMG+06, NPY07]. Single cell neuronal dynamics are

well understood and many models exist (see for example [DA09, Tra10]), while simi-

lar models of single cell astrocyte dynamics are beginning to emerge [SM06, NJL08,

PVLBJ09, Ben05, LH08]. Attempting to go to a finer, sub-cellular compartmental

resolution dramatically increases the complexity of the model, computational de-

mand, and is generally not experimentally observable at a network level. Secondly,

cells are located in physical space and their positions are easily determinable during

experimental observation. When connected cellular networks form geometric net-

works. Thirdly, the effect of a signal on a target cell is defined as a state change

in the target cell in response to the influence of a source cell that connects to it.

That influence is not instantaneous, and is delayed by the physical distance between

cells and the speed of transmission. Signals are modulated in strength by func-

tional weights, which establish the magnitude of the influence. Fourthly, to more

realistically simulate experimental conditions and measurements, noise can be added

to multiple levels within the framework, from parameters to state and observation

variables. Finally, experimental user-defined controls at the individual cell level are

defined within the framework. Controls should be designed to make observations
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more informative of the network dynamics, but should not change the underlying

parameters and connectivities. The framework is described in detail in section 3.3.

The results section (section 3.4) shows how single cell dynamic models are inte-

grated within the framework (3.4.1), and how network connectivity is established

from individual cells (3.4.2). We also describe how the framework accommodates

plasticity mechanisms (3.4.2) and experimental observability associated with optical

calcium imaging (3.4.3). Section 3.4.4 discusses the practical implementation of the

framework using high performance graphical processing unit (GPU) computing.

In section 3.4.5 we use the framework to propose a standard set of bench-

mark test networks of varying sizes and topologies to evaluate and compare different

network mapping algorithms. Mapping algorithms would have access to simulated

observable data (i.e. simulated experimental data) generated by the framework as

a function of chosen test networks and be required to derive the unobservable pa-

rameters and functional network connectivity. The concept of a standardized test

to gauge the effectiveness of an algorithm is not new, especially for optimization

algorithms. For example, in the field of nonlinear programming and optimization a

standard benchmark set was established in a landmark collection of test problems

[HS80] that are used for testing any nonlinear optimization algorithm. Test collec-

tions have grown and developed into problem environments, providing the underlying

problem code to be used directly by the optimizers [BBM99, GOU95]). By provid-

ing a set of problems with known solutions, algorithm developers have a standard

by which to measure solution accuracies, convergence rates, computation times, and

suitability to different problem types. We propose that a similar test set for algo-

rithms designed to identify and map functional cellular neural networks and circuits

will be just as useful. To address this, we have developed computer code that gener-

ates observable data from a known network and connectivity. The code encompasses

all the elements of the framework, runs in real time for all the test networks, and is

designed for parallel computation, and can therefore be used as a starting point for

mapping algorithms.
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3.3 A Framework for Dynamics, Signaling, Con-

trol and Observation in Geometric Networks

We develop the proposed framework using standard graph theoretic and set

theoretic concepts and terminology. In the most general sense, a network is a type

of graph. A graph is defined as an ordered pair of finite disjoint sets (v, E) such

that v is the set of J vertices of G and E is the set of edges of G, i.e. v = v(G) is

the vertex set of G while E = E(G) is the edge set of G. An edge eij is defined if

there is a directed connection from vertex i to vertex j. Geometric graphs are graphs

where the relative positions of vertices are assigned coordinates in some geometric

space. While this is the most generic description of a graph, dynamic geometric

networks as we use the term here are more specialized cases of generalized geometric

graphs defined as follows. Vertices in a network have two attributes, a known and

static position in physical Cartesian space denoted by xj for a given vertex j and a

time-variant state set yj(t) of Kj state variables:

yj(t) = {y1,j(t), y2,j(t), . . . , yKj ,j(t)} (3.1a)

such that formally

yj(t) = {yk,j(t) : k ∈ N, k ≤ Kj} for any given vertex j (3.1b)

Next, for all vertices i other than j, let the set Yj(t) be the union of all i,

i.e. the collection of states of all vertices in the network excluding vertex j, weighted

and delayed relative to vertex j, in the sense that every vertex i has the potential

to pass information (e.g. a signal) to vertex j with varying amounts of ’influence’ as

determined by a collection of weights that modulate any directed edges from i to j.

Furthermore, such information will be delayed by some finite time as a function of

the geometric position of vertex i in the network relative to j and the finite speed of

information propagation. We define

Yj(t) = ∪i∈N;i≤J ;i 6=jΩij(t) · yi(t− τij)} (3.2)
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where with out loss of generality we define

Ωij(t) = [ω1,ij(t), ω2,ij(t), . . . , ωK,ij(t)] (3.3)

and restrict (3.1b) for vertex i with temporal delays as vector sets, i.e.

yi(t) = [yk,i(t) : k ∈ N, k ≤ Ki] for any given vertex i 6= j (3.4)

The delays τij are non-negative values representing the delay of information passing

from i to j. In all cases, here and below we adopt the convention that indexing

subscripts given by ’ij’ enumerate the variable that uses the subscript as linking

vertex pairs i and j.

We then define a transition function Hj(·) with parameter set Θj that de-

scribes the temporal progression or evolution of yj(t) in discrete time increments

∆t:

yj(t+ ∆t) = Hj

(
yj(t),Yj(t),uj(t),Θj

)
(3.5)

where Hj(·) is given by

Hj = ∪k∈N;k≤Kj
Hk,j(yj(t),Yj(t), uk,j(t),Θk,j) (3.6)

uj(t) is a user control or experimental input.

uj(t) = ∪k∈N;k≤Kj
uk,j(t) (3.7)

and Θj is parameter set

Θk,j = {θl,k : l, k ∈ N; l ≤ Lk; k ≤ Kj} (3.8a)

Θj = ∪k∈N;k≤Kj
Θk,j = ∪Kj

k=1Θk,j for any given vertex j (3.8b)

and ΘJ = ∪j∈N;j≤JΘj = ∪Jj=1Θj (3.8c)

Lk is the number of parameters for a given state variable, Kj is the number of state

variables for a given vertex j, and J represents the size of the network (i.e. the total
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number of vertices). Note that the functions comprising the set Hj(·), each advance

their respective variables in time:

y1,j(t+ ∆t) = H1,j(y1,j(t),Yj(t), u1,j,Θ1,j)

y2,j(t+ ∆t) = H2,j(y2,j(t),Yj(t), u2,j,Θ2,j)

· · ·

yK,j(t+ ∆t) = HKj ,j(yKj ,j(t),Yj(t), uKj ,j,ΘKj ,j)

Similarly, we define a function Gij(·) that describes the time course of the

weighing sets Ωij(t) with parameter sets Λij as follows:

Ωij(t+ ∆t) = Gij

(
Ωij(t),yj(t),yi(t− τij),Λij

)
(3.9)

where analogous with equation (3.6), Gij(·) is given by

Gij = ∪k∈N;k≤KGk,j(Ωij(t),yj(t),yi(t− τij),Λk,ij

)
with parameters

Λk,ij = {λl,k : l, k ∈ N; l ≤ Lk; k ≤ K} (3.10a)

Λij = ∪k∈N;k≤KΛk,ij for any given vertex pair ij (3.10b)

The delays between vertex pairs τij are defined as functions of the positions

of the two vertices:

τij = D
(
xi,xj,Γij

)
; D(·) ≥ 0 (3.11)

where the set Γij is the set of parameters of the non-negative function D, specific to

the pair ij.

Formally, the temporal evolutions of yj(t) and Ωij(t) are continuous and ex-

pressed as a discrete delay differential equations with delays τij for all vertices con-

necting to vertex j, so that the continuous forms of equations (3.5) and (3.9) are

∂yj(t)

∂t
= Hj

(
yj(t),Yj(t),uj(t),Θj

)
(3.12)
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and
∂ωij(t)

∂t
= Gij

(
Ωij(t),yj(t),yi(t− τij),Λij

)
(3.13)

In the limit as ∆t → 0, equations (3.5) and (3.9) can be written as yj(t + dt)

and Ωij(t + dt) and equations (3.12) and (3.13) apply. However, from a practical

experimental perspective time measurements will always be finite and the discrete

forms need be considered. As such, in this paper we do not pursue further the

interesting theoretical implications of the continuous forms given by equations (3.12)

and (3.13).

Finally, we define an observation set zj(t) composed of M variables, that

operates directly on the state set yj(t):

zj(t) = Fj

(
yj(t),Φj

)
(3.14)

The observation function Fj is vector valued:

Fj(t) = ∪m∈N;m≤MFm,j
(
yj(t),Φm,j

)
(3.15)

with parameter set Φj given by

Φm,j = {φl,m : l, l ∈ N; l ≤ Lm;m ≤M} (3.16a)

Φj = ∪m∈N;m≤MΦm,j for any given vertex j (3.16b)

The framework presented here is general, as it allows for communication be-

tween any two state variables between any two vertices. Transition functions and

their parameters are defined specific to vertex Hj(·) or communication between ver-

tex pairs Gij(·). This produces a large set of functions and parameters, though in

practice one or two different functions are applied to all cells or combinations. The

weighing set Ωij can operate on all state variables of the connecting vertex i into

target j, though usually one state of i is transmitted to one state in j. In the next

section, we will describe how several dynamics and communication models used in

cellular networks fit within this framework to reproduce observable quantities similar

to experimentally measured data.
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3.4 Results

The framework can accommodate essentially all models of both neuronal and

astrocytic dynamics. Independent of the specifics of any single cell model chosen, the

framework provides a compact mathematical structure that quantitatively describes

signaling and information propagation and flow in geometrically defined networks.

The geometry and physical connectivity topology of the network can be simulated

(e.g. random, scale free, or small world) or measured from experimental data such

using methods such as optical imaging. Regardless of how one choses to set up the

network, the framework provides a description of information flow through the net-

work given knowledge of temporal signaling delays and chosen single cell models, or

can be used to identify and map unknown functional connectivities and parameters

in real neural circuits and networks. In all cases, the framework is able to provide

an estimate of the complete description of the functional network and the interac-

tion between all observable and hidden state variables and parameters. Figure 3.1

illustrates a simple five vertex example that summarizes everything that is needed to

describe the functional dynamics of information flow through the network. Figure 3.2

provides a specific example of the network from figure 3.1 using a Hodgkin-Huxley

model and simulating one second worth of data. Note how the framework provides

experimentally measurable variables (calcium and membrane voltage) for every cell

in the network in the temporal sequence dictated by the geometry and connectivity

of the network.

3.4.1 Individual Cell Dynamics

In this section we discuss how neuronal models of single cell dynamics, synap-

tic connections, plasticity, and observation fit within the framework. We begin by

showing how to construct the state transition of an isolated (unconnected) vertex,

and then build the full transition function by connecting multiple vertices into a net-

work. In an isolated vertex case with no incoming connections, the state transition

reduces to

y(t+ ∆t) = H(y(t),u(t),Θ) (3.17)
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Figure 3.1: A five-vertex dynamic network. Each vertex j has a position in physical
Cartesian space denoted by vector xj, and a dynamic state set yj(t). A vertex’s dy-
namic state varies in discrete time steps, and is influenced by its own previous state
and the states of other vertices connecting into it, with a delay τ and a functional
connection weight Ω. The time delays between vertices are a function of their posi-
tions in space. The magnitude of the connection weights, Ωij, are estimated based
from vertices’ known positions and the observed dynamics.
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Figure 3.2: Signaling dynamics of the network from figure 3.1. A Hodgkin-Huxley
model is used for single-cell dynamics in a one second simulation. The delays (written
in bold blue) are in milliseconds and are based on the cartesian distances between
cells. Functional weights, shown as relative strengths in green, are chosen arbitrarily
for the purposes of this example. The right panel shows the network dynamics for
each of the five cells following a sequential pulse stimulation (red horizontal bar) at
each cell. Experimentally observable calcium traces are shown as solid black lines on
an arbitrary vertical scale. Voltage, a hidden variable, is shown as a gray line and
constitute the neurons’ action potentials.
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This generic form encompasses neuronal models described in differential equation

form, as well as those with a state reset based on some threshold value. Most

neuronal models are expressed in differential form as

dy

dt
= h(y(t),u(t),Θ) (3.18)

Converting 3.18 into the state transition form given by 3.17 is a matter of numerical

integration with an integration method of choice. Using Euler’s method, for example,

the state transition function Hj of the system in 3.18 becomes

Hj(yj(t),uj(t),Θj) = yj(Θ, t) + ∆t · h(yj(t),uj(t),Θj) (3.19)

Here we used the Euler method of integration for its simplicity and clarity, but other,

but more complex integration methods like trapezoidal or Runge-Kutta can also be

used to generate the next time step from the current step.

As an example, consider the simple Fitzhugh-Nagumo oscillator used to model

neurons. In its differential form the model is given by the pair of equations

dV (t)

dt
= aV (t)− bV (t)3 − cW (t) + S(t) + U(t) (3.20)

dW (t)

dt
= e(V (t) + f − gW (t))

The state set y(t) is comprised of two state variables yj(t) = {Vj(t),Wj(t)}. The

experimental control set is composed of only one variable, affecting the V (t) state

variable, so uj(t) = {Uj(t)}. This system can be expressed in state transition form

as Hj = {HV,j, HW,j}, with

HV,j(t) = Vj(t) + ∆t ·
(
aVj(t)− bVj(t)3 − cWj(t) + Uj(t)

)
(3.21)

HW,j(t) = Wj(t) + ∆t ·
(
e(Vj(t) + f − gWj(t))

)
Note that we index the state transition functions based on the state variables they

operate on; for example, HV (t) advances V (t). The parameter set for this system is
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composed of the parameters for each of the state transition equations in 3.21:

ΘV,j = {a, b, c}

ΘW,j = {e, f, g}

Θj = Θ1,j ∪Θ2,j (3.22)

This system has two state variables and six parameters.

Another class of neuronal models are those with a hard reset. These models

are also described in differential equation form, but contain a hard reset when a

state variable reaches a certain value. As an example, consider the Izhikevitch simple

model, written in differential form as

dV (t)

dt
=

1

C

[
k(V (t)− Vr)(V (t)− Vt)−W (t) + S(t) + U(t)

]
(3.23)

dW (t)

dt
= a
(
b(V (t)− Vr)−W (t)

)
V (t+) = c

W (t+) = W (t) + d

}
if V (t) > Vpeak (spike event)

This model consists of a voltage and amplifying currents (V (t)) and a resonant gating

variable (W (t)). The system has up to 9 parameters, and resets both state variables

when a certain voltage threshold (Vpeak parameter) is surpassed. Mapped onto our

framework, the model and its transition functions are

HV,j =

 Vj(t) + ∆t · 1
C

[
k(Vj(t)− Vr)(Vj(t)− Vt)−Wj(t) + Uj(t)

]
if Vj(t) < Vpeak

Vreset otherwise

(3.24)

HW,j =

{
Wj(t) + ∆t ·

[
r
(
b(Vj(t)− Vr)−Wj(t)

)]
if Vj < Vpeak

Wj(t) + d otherwise

Here, the parameter set is Θj = {C, k, Vr, Vt, Vreset, Vpeak} ∪ {r, b, d, Vr, Vpeak}, and

just like the Fitzhugh-Nagumo model, yj(t) = {Vj(t),Wj(t)}, uj(t) = {Uj(t)} and

Hj = {HV,j, HW,j}. By changing the parameter values of the individual models,

different classes of neurons can be simulated with the same transition function.
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Similarly, any model can be accommodated and fit into the framework, from

the simplest to the most complex. Traditionally, all neuronal models have membrane

voltage as a state variable and propagate a discrete signal in the form of an action

potential when the membrane voltage rises past some threshold value at the axon

hillock in response to depolarizing and hyperpolarizing currents in dendrites mediated

by spatial and temporal summation of presynaptic currents. The simplest neuronal

model, the leaky integrate and fire (LIF) has voltage as a single state variable that

decays to a target value and is perturbed by incoming currents. If the voltage rises

past a threshold value it is reset at the next time step to a reset value. One of the

most complex and realistic single-cell models is the Hodgkin-Huxley (HH) model

which relies on four state variables {v,m, n, h} to describe the dynamics responsible

for the generation of action potentials. The number of parameters increases with

the number of state variables, from 4 in the LIF model to 22 for the HH model.

Additionally, the required time step is shorter for HH models, being on the order

of 0.03 milliseconds compared to roughly 5 milliseconds for the LIF model. The

increased number of state variables and parameters along with shorter time steps

puts a significant computational burden on any simulation or mapping algorithm.

The question of which model and how much complexity is required to best describe

real-world data is not trivial and depends on the purpose and intent of the modeling.

Astrocyte models are expressed in differential forms similar to equation 3.18.

Further research into astrocytic models is important though because astrocytes have

been shown to play a direct role in the bidirectional communication between them-

selves and neurons via intracellular calcium transients and intercellular calcium

waves under controlled experimental conditions [FSG02, APM+08, Ver06, CCP+03,

MYBS08, SG06] and more recently physiologic conditions in the neural retina cere-

bellum [KNMN09, HKG+09]. Pathophysiologically intercellular calcium waves in

astrocytes independent of neuronal hyperactivity have recently been shown to oc-

cur spontaneously in vivo in the APP/PS1 transgenic mouse model of Alzheimers

disease [KLHB09]; and amyloid beta has been shown to be sufficient to trigger com-

plex temporally delayed intercellular calcium waves in isolated astrocyte networks

[CYM+09].

The state transition framework handles all single-cell dynamic models, as
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well as heterogenous systems of different cell types, either by different parameter

sets or state transition function sets or both. Whatever the dynamics of individual

neurons or astrocytes, all perform the same general task whereby processes and

inputs generate outputs to other cells in a connected network.

3.4.2 Cellular Network Signaling

There are three components to cellular signaling: how long it takes for infor-

mation from one cell to reach another, what are the effects of one cell on another and

how do those effects change through time given the relative dynamics of the two con-

nected cells. In this section we describe how signaling delays, functional connectivity

and plasticity are accomodated by the framework.

Signaling Delays

Neurons and astrocytes form signaling networks that pass and process infor-

mation between cells, and the state transition function must be extended to include

signal propagation between functionally connected cells. In biological cellular net-

works, signal propagation occurs at a finite and relatively slow speed (i.e. compared

to electronic circuit networks). Information in cell networks propagates on the order

of microns per second for astrocytes to meters per second for myelinated axons in

neurons. Thus the influence of the dynamics of one cell is felt by another cell after

some delay τij. While the general form for the delay is given by 3.11 above, the

simplest form it can take is when signaling is a geodesic between vertices (or be-

tween the centers of cell bodies or centers of other cellular compartments as needed

in morphologic models) and the transmission speed s is constant:

τij =
‖xi − xj‖

s
(3.25)

i.e.

τij = D(Γ,xi,xj), Γij = {s} (c.f.3.11 above)

Here the delay is simply the Euclidean distance between the cell centers di-
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vided by the transmission speed. For a diffusive network, as is the case with as-

trocytes, delays are proportional to the square of the distance between vertices. A

more complex delay function may take into account knowledge about the particular

physiology of the network, curved paths between cells, non-uniform speeds, etc. The

dependency of the framework on the delays is critical to its ability to describe how

and when information within the network is processed, ultimately to a significant

degree dictating the intercellular dynamics of the overall neural circuit or network.

Figure 3.3 illustrates the dependency of network dynamics on signaling speed

and delay times in a 100-vertex three dimensional network by varying the intercel-

lular signaling speed, with everything else, including its geometry (i.e. its physical

connectivity), the functional connectivity and input stimulus, remaining the same.

We stimulated all cells with 500 ms of depolarizing current. The delays are inversely

proportional to the signal propagation speed. We illustrate the effects of three sig-

naling speeds, 2, 20, and 200 pixels/ms. At the lowest signaling speed, 2 pixels/ms,

a low-frequency periodic activity was produced that qualitatively resembles a central

pattern generator. At a speed of 20 pixels/ms fewer cells exhibited low frequency

oscillations, and signaling became more sporadic. For both the 2 and 20 pixel/ms

propagation speeds however, signaling continued past the period of stimulation. At

a propagation speed of 200 pixels/ms however, there was no signaling past the stim-

ulus period. In fully recurrent networks such as the one illustrated here, delays serve

as a form of signal storage, essentially giving cells time to recover from a refractory

period between activations, which in turn maintains recurrent signaling propagation

well beyond an initial stimulus. For some appropriate range of signaling speeds, and

therefore delay times, this recurrent signaling can settle into a repeatable pattern.

If however, the signaling speeds are too fast, incoming signaling from upstream cells

never have an opportunity to activate downstream cells because they are still re-

fractory and do not respond. This leads to signaling in the network quickly dying

away and not being sustained without it being driven by an external stimulus, as

is the case with speeds of 200 pixels/ms in this example. A full discussion of the

dependency of the network dynamics on the variables that govern it is very involved

and beyond the scope of this paper. However, this example serves to illustrate that

along with a network’s connectivity topology and individual vertex dynamics, sig-
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naling delays play a crucial role in its overall response and dynamics and must be

part of any network simulation or modeling framework that attempts to capture the

inherent behaviors of neurobiological networks.
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Figure 3.3: Effects of signaling speed on network dynamics.The network with spatial
locations and physical connections shown in panel A, is assigned random weights
uniformly distributed between -1 and 1 on each physical edge, panel B. An Izhikevitch
simple model of bursting neurons was used to model the individual vertex dynamics.
C. By varying the speed of signal propagation, the delay distributions are scaled,
having a substantial impact on the spike dynamics (see text).

Functional Connectivity

The other component of signaling is the functional connectivity of the net-

work, or how the state of one vertex influences the state of another. In equation 3.2

the set Yj collects all the states of all the vertices in the network except j, delayed

by a time value relative to j. When Yj is passed into the transition function Hj, the

information contained in every state of every other vertex is made available to all
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state variables in vertex j. Within the framework, this is the broadest possible scope

of connectivity, though in practice typically information from one variable affects one

or more variables in another vertex.

As an example, consider a neuron and its pre-synaptic (chemical) inputs that

induce post-synaptic currents. The post-synaptic current (PSC) is modeled with

additional state variables in the neuron’s state vector yj(t). There are two PSC

models in wide use which we have tested within the framework, although it is in no

way limited to these two examples. In general, a pre-synaptic neuron causes a PSC

in a post-synaptic neuron that ultimately affects membrane voltage. Modeling the

effect of an incoming signal on a target cell is key to establishing connectivity based

on the observed cell dynamics. Post-synaptic current is represented as a function of

the form

s(t) = gmax · r(t) · (V (t)− Erev)

where the resultant signals sj(t) are summed and passed to the voltage state variable

in connected vertex i. gmax is the maximum conductance, and in the case of a specific

synapse, can be expressed as a product of the maximum allowable conductance and

the (instantaneous) functional connection weight ωij. r(t) describes the time course

of the current, and is generally one of two forms, depending on the neuron type and

neurotransmitter release [DMS98, DMS94]:

r(t) = e−at simple exponential

r(t) = at · e−at α-function

where a is the time decay constant. In both cases, time starts at the moment of

activation, in this case the time of the activation of the pre-synaptic cell plus the

delay to the post-synaptic cell, τij. For either case, the expressions for r(t) can be

written as linear differential systems, with the spike as the impulse. For the simple



49

exponential the differential equation is

drj(t)

dt
= −arj(t)

rj(t+) = rj(t) + ωij upon arrival of spike event from vertex i (3.26)

For the α-function, another state variable p(t) is used:

drj(t)

dt
= pj(t)

dpj(t)

dt
= −a2rj(t)− 2apj(t)

pj(t+) = pj(t) + ωij upon arrival of spike event from vertex i (3.27)

Shifting the arrival delays is simply a matter of shifting the spike detection function

of the pre-synaptic neuron, so the arrival time from vertex i to vertex j is effectively

the time shifted function of the voltage of i : Vi(t − τij). The synaptic current is a

decreasing exponential with rate a, incremented by a weight value ωij upon arrival

of a spike occuring τij time units ago at another cell i.

For example, extending the state set for the Izhikevitch model given by 3.24

for an arbitrary vertex to include an α-function PSC model of post-synaptic currents

produces yj(t) = {Vj(t),Wj(t), rj(t), pj(t)} and Hj = {HV,j, HW,j, Hr,j, Hp,j} where,

HV,j =


Vj(t)+

∆t
C

[
k(Vj(t)− Vr)(Vj(t)− Vt)−Wj(t) + r(t) + Uj(t)

]
if Vj(t) < Vpeak

Vreset otherwise

(3.28)

HW,j =

{
Wj(t) + ∆t ·

[
r
(
b(Vj(t)− Vr)−Wj(t)

)]
if Vj < Vpeak

Wj(t) + d otherwise

Hr,j = rj(t) + ∆t · pj(t) (3.29)

Hp,j = pj(t) + ∆t ·

(
−a2rj(t)− 2apj(t) +

J∑
k=1,k 6=j

ωkjspd(Vk(t− τkj))

)
(3.30)
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The spike detection function is given by

spd (V (t)) =

{
1 if V (t) ≥ Vpeak

0 otherwise
(3.31)

Here, the spike inputs from other neurons are passed into the state variable p(t)

with transition function Hp,j, integrated by variable r(t), and passed into the voltage

variable V (t). The functional weights only operate on the voltage spikes from other

neurons, so only information from the voltage state variable V (t) is passed to other

neurons. A similar set can be constructed with the PSC models in 3.26.

Plasticity

Up to this point we have described models with fixed functional connectivity

strengths. This assumption is valid for networks observed over short periods where

connection strengths can be assumed to be constant for the purposes of mapping

or simulating since the plasticity mechanisms that modulate connection strengths

operate on longer time scales. If the weights change as a function of the activities of

the cells it connects, the framework can be used to modulate connective strengths

(equations 3.9 and 3.10). Just as with single cell dynamics and network connectivity,

there are many models of plasticity and we will not attempt to list or review them

all here. Rather, we describe how a simple spike-time dependent plasticity model

reviewed by Bi and Poo in [BP01] that incorporate long-term potentiation (LTP)

and long-term depression (LTD) can be easily implemented within the proposed

framework.

In equation 3.9 we described the functional strength or weight Ωij with tran-

sition function Gij analagous to the state set for individual neurons. When the

weight is constant, the set contains only one variable so Ωij = {ωij} and there is no

temporal change in ωij and no transition function or parameters. However, if the

weight is modulated by the activitiy of cell i on j (the connection is directional, so

ωij modulates information flowing from i to j), then the states yi(t− τij) and yj(t)

affect how Ωij(t) changes in time.

The neuronal plasticity model in [BP01] describes strengthening and weaken-
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ing of synaptic conductance based on the timing of spikes in pre and post-synaptic

neuronal spiking. If a post-synaptic spike occurs immediately after a pre-synaptic

spike, the synaptic conductance is increased and the functional connection is ef-

fectively strengthened. If the post-synaptic neuron spikes before the pre-synaptic

neurons, the connection is weakened. Other conditions like spike coincidence or long

times between the spikes of pre and post-synaptic neurons have no affect on the

synaptic conductance.

To incorporate this model into our framework we first augment the set of cell

states with another state variable sj(t), that stores the time from the last spike. This

state variable has transition function Hs,j:

Hs,j = (1− spd(Vj(t)) · (sj(t) + ∆t) (3.32)

This model uses two exponential curves to describe changes in synaptic con-

ductance based on the spike times. By defining the function qij(t) as

qij(t) = (si(t− τij)− sj(t)) ·max(spd(Vi(t− τij), spd(Vj(t))

we can reconstruct the plasticity model within the framework as

dωij(t)

dt
= α · sign(qij(t)) · exp (−β|qij(t)|)

Thus, the transition function for dynamic synaptic weights is

Gij = ωij(t) + ∆t · (α · sign(qij(t)) · exp (−β|qij(t)|)) (3.33)

The parameter set for connection ij is Λij = {α, β}. This way, a static weight ωij can

be converted into a dynamical one ωij(t), with behaviors governed by any arbitrary

plasticity model and its associated parameter set Λij. It is important to note that

while here we describe only one scalar weight between two vertices, the framework

as defined can accomodate as many weights as there are state variables for a given

vertex, thereby describing different classes of intercellular signaling between vertex

pairs. For example, in networks of neurons signaling may occur via gap junctional
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mediated electrical synapses in addition to chemical synapses, while in astrocyte

networks intercellular signaling is typically mediated by diffusional processes (e.g.

vesicularly released adenosine triphosphate, ATP).

3.4.3 Experimental Observability Through Calcium Obser-

vation

Typically only one or a few of the state variables in the state vector are

available for observation (i.e. are experimentally measurable). This is certainly

the case with cellular networks, especially in neurons where voltage is measured

as an indicator of signaling activity. But simultaneous voltage measurements are

difficult for networks of many neurons where the geometry of the network may be

important to the analysis or interpretation of the data. While high density planar

multi-electrode arrays can record from a few hundred cells at once, it is typically

not possible to correlate recorded activity with the native geometry of the network.

(There is one notable exception to this that we are aware of, which is the ganglion

cell monolayer in the peripheral retina. Chichilnisky and colleagues are able to

computationally infer the geometry and functional activity of these retinal ganglion

cells due to their unique planar arrangement- see [Pil05, SRC08, CB99]. However, in

the brain and even in the retina where multilayered ganglion cells receive incoming

macular inputs it is not possible to do with electrode arrays.) Given the challenges

associated with direct electrophysiological measurements of large neuronal ensembles,

calcium fluorescence imaging has been used as an indirect measure of the dynamics

of large neuronal networks. The dynamics of calcium, often influenced by voltage

spiking, are modeled as state variables and associated transition functions added to

the state set. There are a few models describing the time course of calcium as it is

driven by changes in membrane voltage, and attempts to develop more refined and

robust calcium dynamics models specifically for the study neural microcircuits and

networks is a very active area of research. Our intent here is not to describe on-going

efforts or the state of the art but simply to illustrate the integration of one such

model within our framework.

The simplest model of calcium dynamics can be expressed as a linear system,
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with a spike input

τc
dc(t)

dt
= − 1

τc
c(t) + spd(V (t)) (3.34)

This model is integrated into the framework by the addition of another state variable

c(t) describing the cytosolic calcium concentration to the state set, with transition

function:

Hc,j = cj(t) + ∆t

(
− 1

τc
cj(t) + spd(Vj(t))

)
This model has one parameter τc which describes the removal rate of calcium, after

an input caused by a spike. This is the simplest model used for calcium dynamics

based on neuronal spiking and is often used to extract spikes from calcium [?]. More

complex and non-linear models of calcium dynamics have been developed and these

can also readily be integrated within the framework .

Finally, there is the issue of observable variables. In equation 3.14 we defined

an observable set zj(t) as some function of the current state set yj(t). When using

fluorescent calcium indicators, the sole observation variable is the recorded intensity

Ij(t) for cell j at a particular pixel reflecting some linear multiplier of the cytosolic

calcium concentration at that point in the visual field, based on the dye loading in

a cell, as well as the camera, microscope, and illumination setup. Defining zj(t) =

{Ij(t)} with observation function Fj,

Ij(t) = Fj(cj(t),Φj) = ncj(t) + b+N
(
0, γ2

)
The parameter set Φj = {n, b, γ} represents the scaling, offset, and noise standard

deviation of the observation function. The function N (0, γ2) generates a normally

distributed, random value with zero mean and γ standard deviation. The noise term

models the type of frame-to-frame variation typically seen in the amplification of the

CCD signal prior to digitization. The size of γ is proportional to the magnitude of

the noise, itself affected by camera type and gain settings.

Since the framework is defined at cellular resolution, we are making the simpli-

fying assumption that the recorded intensity represents the average intensity for the

region of interest demarcating a specific cell j within a larger field. Additionally, if the

camera records at a slower frequency than the transition dynamics fcamera > 1/∆t,
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where fcamera is the camera recording frequency and ∆t is the time incriment (c.f.

equation 3.5), one is averaging intensity values for the duration that the camera

shutter stays open. If this is the case then multiple sequential calcium concentration

values would be averaged to produce a single intensity reading.

3.4.4 GPU Implementation and Benchmarks

The practical application of the theoretical framework both for simulation

and, as will be described in a subsequent paper, for mapping the unknown func-

tional connectivity of experimentally observed cellular networks necessitates its im-

plementation in an appropriate computing environment. We have taken advantage

of emerging high performance general purpose-graphics processing unit (GPU) par-

allel computing, although it can run as serial code on a normal central processing

unit (CPU), which we have also tested. Within the GPU environment, the code

has been designed to run on nVIDIA graphics cards equipped with the CUDA in-

terface (see http://www.nvidia.com/cuda). In this way, we can parallelize vertex

dynamics, signaling dynaimcs, and observation integrations over many processor

cores, achieving significant speedup over CPU or cluster computations. The frame-

work and associated single cell dynamic and network connectivity models have been

coded as compact MATLAB-callable libraries. All graphics user interface (GUI) and

input/output (I/O) operations are handled through MATLAB and the code has been

written in both MATLAB and plain C libraries that communicate through MAT-

LAB. The libraries offer direct control over all parameters for all vertices. Using plain

C language, any model that can be analytically described within the framework can

be easily coded into a simulation library. From a practical experimental perspective

GPU computation offers unprecedented scalability to larger systems with full access

to all state variables and parameters, enabling rapid parallel simulation when the

framework is run in the forward direction, and real-time dynamic mapping when

the framework is applied to the inverse problem of mapping unknown functional

connectivities of cellular neural networks. Speed and parallelization are critical for

statistical simulation based identification methods such as particle filtering to operate

in real time or near real time.
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Benchmarks in figure 3.4 show the relative speeds of the CPU and GPU imple-

mentations of two different dynamic cell models within the framework, an Izhikevitch

model and a Hodgkin-Huxley model, simulated in 40 test networks (see section 3.4.5

below regarding the test networks). The parallel GPU implementation performed

anywhere from 8 to 200 times faster than the same code executed on a single CPU

process. Performance was measured as a slowdown or speedup factor relative to real

time. It is important to note that identical code ran on both CPU and GPU, with

the former emulating the latter. The Izhikevitch model had six state variables and

a timestep of ∆t 1 millisecond. We simulated 10 seconds worth of data equivalent

to 10,000 time steps. The more computationally intensive Hodgkin-Huxley model

had eight state variables and a time step of 0.03 milliseconds. One second worth

of data was simulated for the HH model, corresponding to about 33,333 time steps.

Benchmarks were calculated as the dimensionless ratio of the actual period of time

simulated (i.e. real time) to the amount of physical computational time it took the

GPU or CPU to carry out the simulations. Because of the parallel implementation on

the GPU, the performance falloff was much slower than on the CPU with increasing

network size. In both CPU and GPU cases, performance decreased with increasing

network density (total number of edges/vertices square), since in more dense net-

works more information is transferred between edges. This is more apparent in the

random networks that have higher density than other network classes, producing

relatively slower processing speeds.

In general, the constant time step in the framework makes parallelization

easy on GPU architectures, delivering network simulation performance near or even

faster than real-time. Because of the parallel threading on GPUs, performance is

only modestly decreased when going from a 100 to a 1000-vertex network. For the

HH model, the GPU was able to carry out the computations in essentially real time

for all of the networks tested except for the largest random networks, which were

about 10 to15 times slower then real time for random networks with over a thou-

sand vertices (upper left panel in figure 3.4). For computationally simpler models

such as the Izhikevitch model the GPU computations were actually faster then the

period being simulated (i.e. faster than real time), ranging from roughly 10 to 20

times faster for most networks and about real time for the largest random networks
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(upper right panel in figure 3.4). In contrast, CPU computations were always slower

than real time, from 15 to 800 times slower for the HH model depending on the

network class and size (lower left panel in figure 3.4) and from just under near real

time for small 10 vertex networks to about 15 times slower for the largest random

networks for the Izhikevitch model (lower right panel figure 3.4). Additional GPU

cards can further improve performance by splitting the task of advancing temporal

cell dynamics; however transfer of information between cells is still limited by mem-

ory and bus speeds, so dense networks will run slower than sparse networks. It is

important to appreciate that the ability to carry out such forward simulations or

to solve the inverse problem of mapping unknown functional connectivity topologies

of networks in near real time or faster than real time using GPU computing is due

to the mathematical construction of the framework and its efficient algorithmic im-

plementation. It is impossible to do such network simulations or mappings in real

time using biophysical compartmental simulation environments. The MATLAB and

CUDA code for the framework are available for download from the authors’ website

(http://www.silva.ucsd.edu/Silva Lab/Links.html).

3.4.5 Standardized Tests for Connectivity Estimation

Lastly, we propose a standardized basis test set to evaluate the effectiveness

of mapping algorithms. A standard test set is well accepted in the field of non-linear

optimization, providing a standard measure of different algorithms [HS80]. There are

two benefits to having a standard set of networks to use for mapping. First, multiple

algorithms can be evaluated against the same network and model, providing relative

performance benchmarks. Second, data generated for a network using one dynamic

model can be mapped using another dynamic model and comparisons can be made

between the original topology and the mapped topology. This latter approach helps

answer questions about model fitness, which are especially useful when trying to

map data with multiple models or uncertainty in models. We emphasize that the

test set we propose here should in no way be interpreted as implying that the full

complexity and variability of real neural circuits and networks is captured or even

described by the set. But we argue that any mathematical method or algorithm that
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Figure 3.4: CPU and GPU benchmark results for framework simulations using
Hodgkin-Huxley and Izhikevitch models of single cell dynamics. Two different net-
work topologies for four different classes of networks were simulated (lattice, small
world, scale free, and random), with network sizes (i.e. number of vertices) of 10, 30,
100, 300, and 1000 vertices simulated for each of the eight different networks. The
top graphs show performance on a single nVIDIA Tesla C1060 GPU, expressed rela-
tive to the real time simulation period for each single cell dynamic model (see text),
while the data for the bottom two graphs show the performance on a single core
of the an Intel Core2Duo 2.5GHz processor. Negative values represent a slowdown
relative to real time, while positive values represent a speedup. All forty networks
were tested on both. See section 3.4.5 below for details regarding the test networks
and network classes.
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claims to be able to deal with real cellular neural networks of any meaningful size

(e.g. on the order of tens to hundreds of cells or larger) must at the very least be

able to effectively and efficiently map functional networks derived by this test set,

which offers a first order approximation to the dynamics and complexity displayed

by such networks.

Here we offer the foundation for such a test set: The location of vertices in

physical space and their physical connections based on different connective classes.

The choice of dynamic model, parameters, and functional weights is left open and

up to the discretion of the individual investigator, since they are specific to the net-

work being studied and the mapping algorithms being designed, but can be directly

implemented within the framework we have developed. Test networks vary in size

from 10 to 1000 vertices, covering the range of cells that can be imaged simultane-

ously with fluorescence microscopy. At the small end of the scale, networks on the

order of 10 vertices is about the limit of existing connectivity estimation methods

[MPdF05, EZJO10]. The upper end of the scale at a 1000 vertices was chosen largely

due to limits of computational power available at present.

Each graph is composed of N interconnected vertices located in two or three

dimensional physical space, with minimum distance constraints and other dynamic

parameters as described below for each network class. The physical connectivity

between vertices follow one of four different graph theoretical classifications, since

there is no measurable and “real” network spatial geometry defined in this case;

this is also discussed below. Vertices were positioned in geometric space randomly,

but with a prescribed minimum distance between neighbors. We developed a simple

algorithm to populate a physical space with N cells or nodes:

X1 ← random position in space range

i← 2

while i ≤ N do

Xi ← random position in space range

found← 1

for j = 1 to i− 1 do

if ||Xj −Xi|| < d then
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(i.e., if cell Xi is less than d units from cell Xj)

found← 0

break for loop

end if

end for

if found = 1 then

i← i+ 1

end if

end while

In this algorithm, the space range establishes the dimensions of the space

occupied by vertices in the network. For a two dimensional network this could be

a square area of 500 × 500 distance units. Distance and position units are non-

dimensional and can be scaled as needed. The minimum distance between vertices

is a parameter, but can also be expressed as a function of the number of vertices N

and the dimension of the space the graph occupies:

dmin ∝ LN−1/D

Here the minimum distance dmin is proportional to the length of the space L times

the number of vertices N raised to the negative inverse of the dimension D. For

example, a three dimensional space of length L = 100 could fit N = 1000 vertices

with minimum distance dmin = 100× 1000−1/3. This implies a minimum distance of

10. While this is the absolute minimum distance with cubic packing, when placing

vertices at random this minimum distance is reduced to allow for some variability

in placement. Figure 3.5 shows examples of vertex placement in two and three

dimensions for three different size networks. It is important to note that with this

formula, the minimum distance can be prescribed for fractional dimensions, as may

be the case for some neural tissues where cell arrangement is neither flat nor fully

three dimensionally filling. Vertices are numbered from the center outwards, so

mapping can be performed on a subset of vertices that interact with the complete

network. This is a more difficult case but a more realistic scenario, as vertices

would be receiving inputs from unobserved vertices in real cellular networks due to
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experimentally limited windows of observability.

Once the vertices are placed in physical space, connections are made using

established graph theoretic classes. We included lattice, small world, scale free, and

random classes in the test set. For each connectivity class, we generated two net-

works of different edge densities, one with fewer and one with more edges. We chose

these four classes because they represent the major graph theoretic topologies, but

of course any other algorithmically defined class can be used. The physical connec-

tivity of a graph intuitively represents a constrained phase space on which dynamic

signals propagate in both space and time (i.e. the functional connectivity topology)

as determined by the network signaling framework and chosen model of single cell

dynamics. Specifically, we considered the following classes and specific parameters

for each:

Lattice networks. This class of networks has only nearest neighbor connections with

no long distance connections. The number of nearest local connections or total num-

ber of edges can be specified before construction. In our case we limited connections

for each vertex to its closest 3 and 8 neighbors.

Small world networks. This is a modification of a lattice network which includes a

specified probability of long-range connections [BA99]. The probability of long range

connections ranges between 0 (lattice network) and 1 (random network), but typical

values are around 10 percent, meaning that 10 percent of all edges are randomly

chosen. In our case we built networks of 5 and 15 percent probability of random

re-wiring.

Scale free networks. These networks follow a power law connection (edge) degree

distribution, with many cells having few connections and few cells having many con-

nections. When positional aspects are taken into account, scale free networks take

on some small world properties and are essentially scale free geometric graphs called

apollonian networks [AHAS05].

Random networks. The study of random graphs extends all the way back to the
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N=10

N=100

N=1000

Figure 3.5: Random placement of vertices with a minimum distance constraint.
Examples of groups of 10, 100, and 1000 vertices placed in two (left column) and
three (right column) dimensions are shown here. Vertices were colored randomly for
clarity. The minimum distance is a function of both the number of vertices and the
spatial dimension. For the same number of vertices, a two-dimensional network will
have a smaller minimum distance and thus be packed tighter than a three-dimensional
network. See text for details.
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original work of Erdös and Rényi. In a random graph, a specified number of edges

are placed between randomly chosen vertices, without regards for vertex position,

which has no meaning. We built random networks of 10 and 20 percent densities,

meaning about (N2 ∗ 10%) or (N2 ∗ 20%) number of edges where N is the number of

vertices in the network. A 100% dense network connects every vertex to every other

vertex.

The different classes and densities are shown in figure 3.6, along with graph-

theoretic statistics on connectivity and wiring lengths. The connections establish the

physical connection between vertices or the edges along which functional connections

are possible. The magnitude of the functional weights should be chosen based on the

dynamic model and the specifics of the system studied. A mapping algorithm must

identify the functional connections without knowledge of the physical connectivity

class. Delays are defined according to the cartesian distances between connected

vertices. Three-dimensional spaces generally have narrower and smaller distance dis-

tributions than two-dimensional packings. The formula presented in equation 3.25

is used to establish delays, with the speed parameter chosen arbitrarily based on the

system being studied. The complete test set is 80 networks, combinations of two di-

mensions, five sizes, and four connectivity classes, as outlined in table 3.1. Figure 3.7

shows an example of simulated calcium response raster plots for the networks shown

in figure 3.6. A mapping algorithm should be able to identify the dynamics param-

eters and the functional connectivity of each test network, given a chosen single cell

dynamic model. Ultimately, the only kind of measured experimental data available

to any such algorithm would be imaged calcium responses such as those simulated in

figure 3.7 or some equivalent data for another marker of functional cellular activity.

These are the practical experimental constrains that any theoretical methods aimed

at mapping functional activity in cellular neural circuits and networks with single

cell resolution must face. The test networks are also available for download from the

authors’ website (http://www.silva.ucsd.edu/Silva Lab/Links.html).
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Figure 3.6: Test network topologies for a 100-vertex two dimensional network. For
each of the four topologies included in the test set, two edge densities were considered,
one with fewer edges or randomness (green), and a more complex one with more
edges or randomness (blue; left two columns). The third column and fourth columns
from the left show the degree and geometric length distributions of each network,
respectively. For each network, the total number of edges and total wiring lengths can
be computed from the areas under the degree and geometric length distribution plots.
The higher edge density networks (colored in blue) have both higher total number
of edges and total wiring length than the lower edge density networks (colored in
green). For a constant signal propagation delays are proportional to wiring lengths
in a network.
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Figure 3.7: Computed (i.e. simulated) dynamics of experimentally observable cal-
cium signaling for each of the eight networks shown in figure 3.6, arranged in the
same order. Each network was simulated for four seconds using the Izhikevitch sim-
ple model, with a constant current input to generate activity. The colors of the maps
encode calcium concentration, representing the approximate instantaneous spike rate
of individual neurons in the network.
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Table 3.1: Range of parameters specified by the test set. The current set is com-
posed of eighty test networks spanning ranges in network size, geometric dimension,
connectivity type and edge density. The choice of dynamical cell model, parameters,
functional weights, observation variable, user inputs and noise levels are left to the
individual user.

Parameter Range

Network Size N 10, 30, 100, 300, 1000
Geometric Dimension 2D, 3D (may even be fractal, i.e. 2.5D)

Connectivity Type lattice, small world, scale-free, random
Edge Density low, high

3.5 Discussion

Within the study of networks, there are two opposing yet deeply interrelated

processes: Simulation and estimation. Simulation of networks deals with the forward

problem of making predictions using an established model and measured parameters

and connectivities. The reverse problem, estimation or mapping, uses the result of

actual collected data to infer, estimate, or map the parameters of a model or, for

networks, functional connectivity. The framework we introduce here can be used both

for simulating signal propagation in physically realistic networks, and for the reverse

process of estimating or mapping unknown functional connectivities of networks. The

framework is bounded by a set of rules and constraints imposed by the experimental

reality of cellular neurobiological methods: Complex non-linear dynamics, limited

observability, noise and uncertainty, and experimental control. It is designed around

current observation and experimental capabilities, which are shifting from single

neuron multiple trials, to multiple neuron single trial experiments [QP09].

Within the framework, the mathematical construction for the dynamic model

describes the time course of each vertex. A general state transition representation

encompasses different model types, from ordinary differential equations to state ma-

chines and Markov models, to simplified neuronal models like LIF and Izhikevitch.

The choice of model will certainly affect the estimation of the dynamic parameters

from the collected data; how much the single-cell dynamic model affects the estima-

tion of functional weights is is still an open question. The proposed test set should
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help address this by simulating artificial data with one model and estimating with

another.

Mapping a complete functional topology is ultimately a reverse process, and

will involve some combination of estimation, filtering, and optimization. While some

approaches exist for estimating parameters and dynamics of single neurons [ACFK09]

or small groups of neurons [MPdF05, EDS03, EZJO10], mapping large networks

within biologically realistic constraints remains a challenge, and we are still a long

way from establishing a complete functional connectivity map of even simple pro-

cesses and tasks. Indeed, from a neurophysiological perspective, it is not even entirely

clear ’what’ we should be mapping or how to properly interpret such data from the

perspective of deciphering the neural code. The proposed framework attempts to

unify both theoretical and practical considerations as an “open standard” for the

development of large scale functional topology reconstruction algorithms.

Since the goal of mapping is to identify both the dynamic parameters of in-

dividual vertices as well as the connectivity between vertices, a well-designed input

control should be used to make the observation as informative as possible, provided

it does not alter the parameters and connectivities of interest. Experimentally, input

control can take on many forms. The dynamics of individual cells can be perturbed

using methods such as optogenetics, pharmacologically using appropriate agonists

and antagonists, and electrophysiology. For single cells there are different input

functions that can be used and there are a few approaches describing input func-

tion design to extract the most amount of information [LBP09, BGMH07]. At the

network level, the set of input functions for each cell must be designed in paral-

lel and coordinated with observed activity in order to provide the most amount of

information to the mapping algorithm.

3.6 Appendix: Test Network Generation

In the appendix we describe several neuronal and astrocytic models that we

have implemented within the proposed framework. For both cases, the state dy-

namics (both the signaling and observation models) are described, along with the

parameter sets and typical value ranges. The last section of the appendix describes
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in more detail the construction of the test networks.

3.6.1 Neuronal Models

Voltage Dynamics

Linear Leaky Integrate and Fire. The simplest model that captures most (but

not all) of the membrane dynamics of an idealized neuron is a linear leaky integrate

and fire model (for a review see [Bur06]). For each neuron, it has one state variable

V (t) and four parameters modeled as

C
dV (t)

dt
= V0 − V (t) + S(t) + U(t) +N (0, σ)

V (t+) = Vreset if V (t) > Vth (spike event)

With parameters and typical values outlined in table 3.2. Note that in the above

equations we have dropped the i notation for clarity, but each neuron has it’s own

state Vi(t).

Table 3.2: Typical linear leaky integrate and fire model parameters. These are
found in the standard literature.

Parameter Value Description
C 100 membrane capacitance
V0 0 resting potential, reference

Vreset 10 reset potential
Vth 20 spike threshold voltage (Vth > Vreset)

S(t) is the synaptic inputs into the network. This model is typical of most

neuronal simulation environments and represents the simplest model of membrane

voltage. It is a hybrid system in that it contains both the internal dyanmics of the

cell and external input, determined from both interacting synapses S(t) and user

control U(t). Since the voltage recovery is a linear system, the resting voltage V0 is

set to 0 and reset and threshold voltages are set relative to V0. This model therefore

has only 4 parameters: Vth, Vreset, τ , and noise σ. The time step can be very high,

up to 1 millisecond per integration step, as the non-threshold dynamics are generally
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linear and stable.

Fitzhugh-Nagumo Oscillator. The Fitzhugh-Nagumo oscillator is the simplest

non-linear oscillator that mimics neuronal dynamics without a thresholding and re-

setting step. It has two state variables, voltage and recovery, and six parameters

(c.f. [Izh05])

dV (t)

dt
= aV (t)− bV (t)3 − cW (t) + S(t) + U(t)

dW (t)

dt
= e(V (t) + f − gW (t))

Typical parameter values are a = 1, b = 0.333, c = 1, e = 0.08, f = 0.7, and g = 0.8.

A signaling event (i.e. spike) occurs when V (t) becomes greater than 1.

Hodgkin-Huxley. The original Hodgkin-Huxley model is a membrane conductance

model with four state variables and up to 22 parameters. It is the most complex

and computationally intensive of the four models we explored, but widely recognized

as the most realistic neuronal model (c.f. [Izh05]). The state variables are given by

V (t), n(t), m(t), and h(t), representing membrane voltage and three gating variables,

respectively. The equations are as follows and for clarity we omit the (t) notation

i.e. V = V (t) and denote dV (t)/dt as V̇ .

CV̇ = −gKn4(V − EK)− gNam3h(V − ENa)− gL(V − EL) + S(t) + U(t)

ṅ = αn(V )(1− n)− βn(V )n

ṁ = αm(V )(1−m)− βm(V )n

ḣ = αh(V )(1− h)− βh(V )h ,
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where

αn(V ) = αn1
αn2 − V

exp(αn2−V
αn3

)− 1
βn(V ) = βn1 exp

(
−V
βn2

)

αm(V ) = αm1
αm2 − V

exp(αm2−V
αm3

)− 1
βm(V ) = βm1 exp

(
−V
βm2

)

αh(V ) = αh1 exp

(
−V
αh2

)
βh(V ) =

βh1

exp(βh2−V
βh3

) + 1
.

The Hodgkin-Huxley model models the kinetics of the individual currents

that affect membrane voltage. It can have as many as 22 parameters, depending

on how many are defined, and the list includes the Nernst potentials (EK , ENa,

EL) and maximal conductances (gK , gNa, gL) for the potassium (K), sodium (Na),

and leakage (L) currents respectively. The other parameters are found in the ac-

tivation variables n, m, and h and their expressions for transition rates α(V ) and

β(V ). The input current S(t) represents synaptic input current as a results of a

spike in a presynaptic neuron, modulated by the strength of the synapse. This is the

most complex model, and the most computationally intensive. A summary of the

definitions and values of the parameters we used in modeling it are given in table 3.3.

Models of experimentally observable calcium in neurons

A more complex, non-linear model of calcium adds two additional state vari-

ables mCa and hCa and, unlike the linear model which uses spikes as inputs, this

operated directly on the voltage variable [FM91]:

dc(t)

dt
= α

[
gCamCa(t)

2hCa(t)(V (t)− ECa(c))
]
− β

(
c(t)− [Ca2+]min

)
dmCa(t)

dt
=
m∞(V (t))−mCa(t)

τm(V (t))

dhCa(t)

dt
=
h∞(V (t))− hCa(t)

τh(V (t))
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Table 3.3: Hodkin-Huxley model parameters. From [Izh05]. These are the standard
parameters for a cortical pyramidal neuron.

Parameter Value Description
C 1 capacitance
gK 36 potassium conductance
EK -12 potassium reversal potential
gNa 120 sodium conductance
ENa 120 sodium reversal potential
gL 0.3 leak conductance
EL 10.6 leakage potential
αn1 0.01 n-gate alpha parameter 1
αn2 10 n-gate alpha parameter 2
αn3 10 n-gate alpha parameter 3
βn1 0.125 n-gate beta parameter 1
βn2 80 n-gate beta parameter 2
αm1 0.1 m-gate alpha parameter 1
αm2 25 m-gate alpha parameter 2
αm3 10 m-gate alpha parameter 3
βm1 4 m-gate beta parameter 1
βm2 18 m-gate beta parameter 2
αh1 0.07 h-gate alpha parameter 1
αh2 20 h-gate alpha parameter 2
βh1 1 h-gate beta parameter 1
βh2 30 h-gate beta parameter 2
βh3 10 h-gate beta parameter 3
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where:

ECa(c) = 12.5 ln
[Ca]ext
c

m∞(V (t)) =
1

1 + exp−V (t)+56
6.2

τm(V (t)) = .204

(
1 +

1.64

exp(−.06V (t)− 7.8) + exp(.055V (t)− .86)

)
h∞(v) = 1− 1

1 + exp(−V (t)+80
5

)

τh(V (t)) = .5(1− tanh(V (t) + 81))(.333 exp(0.15V (t)) + 7)

+ .5(1 + tanh(V (t) + 81))(.333 exp(−.95V (t)− .2) + 9.32)

This model is continuously differentiable, and should be paired with a non-linear

neuronal dynamic model, like a Hodgkin-Huxley.

3.6.2 Astrocyte models

Simplified model of astrocytic dynamics. In the context of the current paper

and in testing the framework, we introduce the simplest astrocyte intracellular sig-

naling model that we were able to construct that still captures the salient features of

intercellular astrocyte network signaling measured experimentally. We leave the use

of the much more detailed model we are developing to future work. This dynamic

intracellular model follows a similar framework described for neurons, consisting of

internal dynamics, signaling, delays, noise, and calcium observation. We began by

constructing a model of internal dynamics with only two state variables, C and D.

C is the observed state variable and describes the time course of the calcium signal,

acting as an integrator of the principal (and unobserved) dynamical variable D. The
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system is described by

dCi(t)

dt
= Di(t)− bCi(t) +N (0, σ2)

dDi(t)

dt
= −a2Ci(t)− 2aDi(t) +

N∑
j=1

ωji ·max(Dj(t− τji), 0) + Ui(t) +N (0, σ2)

ωij = k1 exp(−k2‖xi − xj‖)

τij = k3‖xi − xj‖2

The dynamical parameters a, b > 0 are positive, non-zero values, and the signaling

global parameters k1, k2, k3 > 0 are also positive, non-zero values. The delays τij are

a function of the square of the geometric distance ‖xi − xj‖, as would be the case

for a diffusion-based signal. The weights ωij are modeled as negative exponentials,

also a function of the distance between cells, with cells farther apart having a weaker

influence on neighboring cells than cells closer together. In this example, both the

weights and delays are symmetric, so ωij = ωji and τij = τji. The signaling function

passes only positive values of the state of the D(t) variable from one cell to a con-

nected one, with the appropriate delay and weight scale. The noise term N (0, σ2)

is added to both state variables. While this simplified model fits the same general

framework of equation (3.17), astrocyte signaling models are different from neuronal

models in two key respects: There is a graded rather than thresholded response,

and calcium is not only an observation variable, but rather directly mediates the

adenosine triphosphate (ATP) and inositial triphosphate (IP3 signaling mechanisms

that represent the actual intercellular astrocyte signal. In some respects, this makes

astrocyte networks easier to map, as knowledge of the calcium state is directly linked

to predicting the state of the hidden variable at the next time step.

We illustrate this with a specific example (Fig. 3.8). We simulated a lattice

network of 100 astrocytes, placed on a 500 x 500 arbitrary unit two dimensional

grid with a minimum distance of 40 units. We stimulated a single cell for a brief

time period, simulating a transient mechanical or pharmacological perturbation of

the cell typical of controlled experiments [YBC+09, MYBS08], and tracked the signal

propagation through the network, using the above intracellular model, and compared
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Figure 3.8: Astrocyte network model simulation and in-vitro data. A. A two di-
mensional, 100 vertex lattice network was modeled using a simple model of astrocyte
dynamics (see text above), to produce the simulated calcium intensity traces in B. C.
Following the spatiotemporal evolution of the signal through the network simulated
calcium concentrations from selected frames are shown. D. Selected frames from
a recorded movie of experimental fluorescence data collected from a spontaneously
forming dissociated network of rMC-1 glial cells in-vitro loaded with a calcium indi-
cator dye following selective stimulation of an arbitrarily chosen cell in the network
(indicated by the orange cell in panel E). E. Composite average of 100 frames with
manually selected cell regions of interest (ROIs) representing the physical locations
of individual cells in the real cell network, shown as yellow circles. The site of initial
stimulation is circled orange. F. Intensity profile calcium responses from selected
ROIs for the experimental data. Compare to the simulated data produced by the
model in panel A. The scale bar in D and E is 40µm. The vertical scale bar in F.
labeled as iv refers raw camera intensity values.
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successive frames of the simulation with an experimental data we measured in-vitro

using the r-MC1 glial cell line (Fig. 3.8). The simulation showed similar behaviors

and activation patterns to the experimental data. The units are non-dimensional,

and for simplicity the parameters were tuned manually to mimic some of the observed

behavior. For example, both the simple intracellular dynamic model and the real

data have rapid increases and slow decreases in calcium following activations. In

both cases, early activations had rise times than later activations, which is typical

of diffusive networks. Despite differences between the model and the real data in

particular in the shape of the decrease of the calcium responses and less noise then

the experimental data, this simple model was able to reproduce the key intercellular

dynamics just by considering a finite signaling speed, temporal delays, and state

noise.

3.6.3 Network size, geometry, dimension, and connectivity

Each graph is composed of N interconnected vertices located in two or three

dimensional physical space, with minimum distance constraints and other dynamic

parameters as described below. The physical connectivity between vertices follow

one of four different graph theoretical classifications, since there is no measurable

and ”real” network spatial geometry defined in this case; this is also discussed below.

Vertices were positioned in geometric space randomly, but with a prescribed

minimum distance between neighbors. We developed a simple algorithm to populate

a physical space with N cells or nodes:

pick a random position for first cell X1

set i=2

while i<=N

pick a random position Xi in space range

if Xi is at least d units from cells X1 to Xi-1 then

accept Xi as next cell

increment i

end if
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end while

The space range describes the dimensions of the space occupied by vertices in

the network. For a two dimensional network this could be a square area of 500 x 500

distance units. Distance and position units are non-dimensional and can be scaled

as needed. The minimum distance between vertices is a parameter, but can also be

expressed as a function of the number of vertices N and the dimension of the space

the graph occupies:

dmin ∝ LN−1/D

Here the minimum distance dmin is proportional to the length of the space L times

the number of vertices N raised to the negative inverse of the dimension D. For

example, a three dimensional space of length L = 100 could fit N = 1000 vertices

with minimum distance dmin = 100× 1000−1/3. This implies a minimum distance of

10. While this is the absolute minimum distance with cubic packing, when placing

vertices at random this minimum distance is reduced to allow for some variability

in placement. Figure 3.5 shows examples of vertex placement in two and three

dimensions. It is important to note that with this formula, the minimum distance

can be prescribed for fractional dimensions, as may be the case for some neural

tissues where cell arrangement is neither flat nor fully 3D filling.

3.6.4 Network Connectivity Classes

The connectivity of a derived network takes into account both graph theo-

retical concepts, which are being increasingly used in systems neuroscience (see for

example [Spo02, BS09]), and the spatial positions of the individual cells. As such,

we considered a continuum of connectivity topologies that connect vertices with a

specified direction (→). Since this represents functional connectivity, along each

edge we encoded a relative connection strength that describes how much of one ver-

tex’s signal is propagated to another through a connected edge. We follow the usual

convention that excitatory connections are positive and inhibitory connections are

negative. Resultant networks will have different distributions of connectivity, and

each connected edge will be a non-zero value describing the strength and polarity of



76

that connection.

In this paper we considered four different physical connectivity topologies,

representing the major graph theoretic topologies, but of course any other algorith-

mically defined topology can be used. It is on these physical connectivity topologies

that multiple functional connectivity topologies exist, determined by network con-

nectivity model and the chosen single node dynamic models. In other words, the

physical connectivity of a graph intuitively represents a constrained phase space on

which dynamic signals propagate in both space and time (i.e. the functional connec-

tivity topology). Specifically, the four classes of physical graphs we considered were

lattice networks, small world networks, scale free networks, and random networks

(Fig. 3.6).

Lattice networks. This class of networks has only nearest neighbor connections

with no long distance connections. The number of nearest local connections or total

number of edges can be specified before construction. In our case we limited connec-

tions for each vertex to its closest 3 and 8 neighbors.

Small world networks. This is a modification of a lattice network which includes a

specified probability of long-range connections [BA99]. The probability of long range

connections ranges between 0 (lattice network) and 1 (random network), but typical

values are around 10 percent, meaning that 10 percent of all edges are randomly

chosen. In our case we built networks of 5 and 15 percent probability of random

re-wiring.

Scale free networks. These networks follow a power law connection (edge) degree

distribution, with many cells having few connections and few cells having many con-

nections. When positional aspects are taken into account, scale free networks take

on some small world properties and are essentially scale free geometric graphs called

apollonian networks [AHAS05].

Random networks. The study of random graphs extends all the way back to the

original work of Erdös and Rényi. In a random graph, a specified number of edges
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are placed between randomly chosen vertices, without regards for vertex position

which has no meaning. We built random networks of 10 and 20 percent densities,

meaning about (N2 ∗ 10%) or (N2 ∗ 20%) number of edges where N is the number of

vertices in the network. A 100% dense network connects every vertex to every other

vertex.

Chapter 3, in full, is a reprint of the material as it appears in Buibas M, and

Silva GA. “A Framework for Simulating and Estimating the State and Functional

Topology of Complex Dynamic Geometric Networks” Neural Computation., pp. 183-

214 vol. 23 (1), 2011. The dissertation author was the primary investigator and

author on this paper. The authors retain copyright of this article.



Chapter 4

Parametric Functional

Connectivity Mapping

4.1 Abstract

Although there are currently significant efforts to map the physical connec-

tivity of the brain, it is less obvious how to identify and map dynamic functional

networks mediated by cellular signaling, which transiently recruit only a fraction of

the cells that make up the physical network. There is as yet no method that can

estimate and map the functional connectivity of geometrically defined biological neu-

ral networks given the experimental limitations of current methods for interrogating

such networks. Previous theoretical attempts have required access to experimentally

unobservable variables, rendering them impractical as experimental tools, or have

been limited to the identification of very small numbers of connected cells, typically

no more than five, providing limited physiological relevance. Here, we introduce and

validate a theoretical method that can accurately map functional biological neural

circuits and networks with single-cell resolution in either two or three dimensions, i.e.

in a plane or volume, for networks in the tens of cells by using only experimentally

imaged calcium implemented using graphics processing unit (GPU) computing. The

method is simple, works with virtually any cell model, and performs computations

at a fraction of the cost and energy usage of traditional clusters, making mapping

possible within the laboratory. The ability to map functional cellular neural net-

78
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works provides completely new ways to think about how the brain functions under

normal conditions and how it breaks down in disease.

4.2 Background and Motivation

Several newly developed methods are attempting to tackle the problem of

functional connectivity connectivity parameters using multiunit cellular recordings.

As is the case with most system identification or inverse problems, these new meth-

ods perform optimization of a biophysical model’s parameters so that differences

between simulated and observed data are minimized. One such method, partial cor-

relation analysis [EDS03], is more statistically oriented and can provide, for acyclic

or non-recurrent networks, information on direction and polarity (inhibitory or ex-

citatory) of functional connections from spike trains. Another method [MPdF05]

optimizes both neuronal and connectivity parameters of a simple linear integrate

and fire deterministic model by comparing simulated output to experimental data,

in this case being artificially generated spike trains. The method was validated for

small networks of five neurons or less, and can handle feedback connections, though

the estimated connection strengths are only reliable for indicating polarity and not

relative synaptic strength. A different approach involves designing a network by

modifying structural features to fit a periodic pattern of spikes [MT06]. They illus-

trate their design approach by optimizing a network of linear oscillators to a given

signal with additional constraints for wiring length. A more recently published paper

[Feo08] uses three successive optimization steps to estimate a full state-space recon-

struction of a measured signal, fitting of a local nonlinear dynamical model to the

reconstructed signal, and then estimating a linear model to the interactions of the

individual local models. Recent work from Mishchenko, Vogelstein, and Paninski [ref

not yet admitted] uses a Bayesian approach for connectivity estimation using only

calcium fluorescence and a generalized linear model of spike rates. Finally, work by

Eldawlatly, Zhou, Jin and Oweiss [EZJO10], employs dynamic Bayesian networks

for identification of connections of small (N=10) networks using a Poisson spiking

model. While identification algorithms such as these perform reasonably well on the

specific test networks presented in the individual publications, the broad applicabil-
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ity and usability of these methods is unproven, to a significant degree because no

standardized test networks exist that are biologically realistic and incorporate all the

constraints and controls in a laboratory setting. Another important aspect of a uni-

fied mapping framework and test set is model selection validation, namely how well

neuronal models interpret real-world data and provide estimates of functional con-

nectivity. The approach we present is more general because it works with a variety of

single cell signaling and dynamic models not limited to spiking neurons, is portable

to the laboratory that makes provisions for real-world considerations like limited

observability annoys, works on a sufficiently small timescale so that affects like plas-

ticity that modulate functional weights are not apparent during mapping, and are

modular enough to make use of different mathematical optimization algorithms that

are used for the weight estimation part of the mapping. Alongside the previously

presented framework we hope to add structure to the field of functional network

mapping by providing a unified approach and standardized test that to compare the

efficiencies of different algorithms and approaches across a common standard.

4.3 Mapping Functional Connectivity

There is an important distinction between a physical network and a functional

network that is analogous to the differences between a road map and a traffic map.

The former presents a relatively static picture of all possible connections, while the

latter is dynamic and reflects the specific flow patterns at a given instance in time.

Just like cars on roads, information flows dynamically in a cellular neural network,

forming functional connections that are spatially and temporally transient subsets of

the set of possible functional connections dictated by the physical connectivity of the

network. Since many patterns of network function can occur within the same physical

network, experimental observation and quantitative mapping is inherently difficult,

both from the point of producing and observing transient patterns of activity. For

example, the only brain to date physically mapped in its entirety with cellular reso-

lution is 302-neuron C. Elegans brain [WSTB86]. Despite having accomplished this

in the mid 1980’s, there is almost no understanding, quantitative analysis, or theory

of how the underlying physical connectivity mediates functional networks that are
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ultimately responsible for the behaviors in the organism. Recent progress on both ob-

servation methods like two-photon microscopy [NPY07] and network-scale perturba-

tion techniques like optogenetics [GYB+10] and glutamate uncaging [BCH10] provide

important cornerstones for functional network reconstruction. However, while these

methods have been used in largely qualitative investigations, no unified framework

has existed to integrate both the capabilities of network observation and perturbation

with existing dynamical models of neurons and glia for the purposes of functional

network reconstruction. If we are to develop an insightful understanding of brain

function with any predictive power, such a framework is critical to analysis and in-

terpretation of network-scale activity data, in terms of already established individual

cell-scale models and knowledge.

Building on the theoretical framework for simulating geometric dynamical

networks [BS11], we present a novel technique to map the functional connectivity of

cellular neural networks using only experimentally measurable data. This method

works with virtually any dynamic cell model, and can make use of any type of data

that is informative of cell dynamics, like calcium concentration or membrane voltage.

We outline assumptions, data collection requirements, describe how to map using

any model, estimate its performance, and briefly highlight some of the numerical

and mathematical limitations of the method. Unlike some previous efforts [EZJO10,

MPdF05, Feo08], this approach encompasses a broader set of models, and should

have broad applicability to the many experimental efforts towards understanding

network function across different organisms.

We define a dynamic network to be a collection of connected vertices whose

individual state vectors evolve temporally based on their current state yj(t), external

inputs sj(t), and experimental controls uj(t), according to the transition rule Hj(·):

yj(t+ ∆t) = Hj(yj(t), sj(t),uj(t)) (4.1)

External inputs represent the sum of the weighted (ωij) and delayed (τij) states from
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all other vertices connecting into j:

sj(t) =
N∑

i=1,i 6=j

ωijyi(t− τij) (4.2)

From some limited observation of at least one of the components of the state vectors

yj the goal is to estimate the function-transmitting weight set ωij and possibly the

delays τij for all i, j combinations in a network of N vertices. All neuronal models

published to date can be expressed in the above framework, with the rule Hj(·) either

being a state transition map or a differential equation flow (framework REF). Because

the full state vector yj(t) is not completely observable, the transition rule Hj(·) is

required to make any estimates of the hidden variables, including the functional

weights. As such, the rule Hj(·) must be informative of the entire state vector yj.

Otherwise state, given enough measurements of a part of yj, the entire complete

vector yj(t) can be estimated within some certainty for a finite observation period

t ∈ {0 . . . T}. We refer the reader to [BS11] for full mathematical details on the

mathematical framework.

Given this state based framework, in order to map the unknown functional

connectivity of a network, a minimum observation period of at least N time steps

for each cell in a network of N cells is required. This is a minimum requirement

and not a guarantee for successful estimation, but it does mandate that the total

number of measurements scales with the square of the number of cells in the network.

The frequency of measurement is governed by sampling rules from control theory and

depends on the choice of model, with more complex models generally requiring faster

sampling. Another requirement is that the signals are well mixed, meaning that

recordings from any two vertices do not resemble each other. The condition number

of the observation matrix that has as rows the observation vectors for each vertex in

the network is a simple test determining the suitability of the data. If this condition

number is high, then the observations are likely to be very similar and making it

difficult or impossible to discern between contributions of individual vertices to the

dynamics of a target vertex. Experimental control uj(t) may be used to add variety

to the observation signals and lower the condition number of the observations. With
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the use of optogenetics or uncaging, this level of individual cell control is now possible

for small cell networks, and use of these techniques will serve to make the observed

activity more informative, ensuring that not all cells in the network have the same

temporal activity patterns. In summary, these requirements simply state that the

observed activity of cells has to be informative for any sort of estimation or mapping

to be meaningful. While not guaranteeing success, these are necessary conditions for

mapping of virtually any neuronal, astrocytic, or mixed network, using virtually any

model of cell dynamics from non-invasive observations of many cells’ activities.

If the states of each cell can be independently observed, the network can

be simplified from a multiple-input multiple-output (MIMO) system to a series of

multiple-input, single-output systems (MISO). This decomposition, made possible

by the observability of the dynamics of many cells using fluorescence microscopy,

greatly simplifies the estimation task reducing the dimensionality of the problem

from O(N2) to a O(N) parameters. More importantly, it splits the mapping process

into N separate and independent estimation steps that can be executed in parallel,

speeding up computation. To achieve this simplification, we need to estimate the

output of each cell from its observed activity. In the case of neurons, this involves es-

timating spikes from calcium; for astrocytes, released ATP from observable calcium.

Relatively independent of the cell’s dynamic model, Monte Carlo-based techniques

like particle filtering or path integrals compute a probabilistic estimate of a hidden

quantity from an observable quantity using the transition rule Hj(·) and calcium

observations[VWP+09, CIY05]. While other techniques like deconvolution [YF06]

may be less computationally intensive, the particle filtering method is generic enough

to work with virtually any transition rules of Hj(·) including non-linear models, and

thus any cell model, including heterogenous networks made of differently modeled

cell types. Figure 4.1AB outlines the output estimation and decomposition steps,

the first in the mapping process.

Once the outputs of all observed cells are estimated, we consider each cell in

the network individually, seeking the weights that modulated the outputs of the other

cells in such a way that, when summed as in equation 4.2, and simulated through the

transition rule in equation 4.1, most closely reproduce the observed dynamics of the

individual cell. Alternatively stated, for each cell in the network and each time point
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of observation, we seek to minimize the differences between the actual observed dy-

namics, and the expected observed dynamics for set of weights modulating incoming

signals to a given cell. As illustrated in Figure 4.1B, the problem becomes a data

fitting exercise, where the parameters are the weight set for a given cell, the model

is the transition rule and the data are the observations for that cell and outputs of

all other cells.

Because the data and the models are both nonlinear and non-Gaussian, some

form of numerical optimization is required to ’fit the curve’ or find the weight set that,

when simulated, can best reproduce the observations. The no-free-lunch theorem

[WM97] states that there is no optimal optimizer for all problem classes, so some

optimizers will work better with some models than others. From a practical and

computability standpoint, we have developed a modified parallel stochastic search

algorithm and found it to be the easiest to program and most reliable across different

cell models and network sizes. This data-fitting approach does not exclude other

optimizers: since the problem is framed in terms of similarity to observation, the

problem can be tackled by multiple optimizers in parallel with the best solution

being the closest to the observed data. This is shown in figure 4.3FG, where two

optimization algorithms map a 30-neuron network. The combined performance graph

in 4.3H selects the best fitness scores for each vertex incoming weight estimates,

resulting in an improved match with actual connection weights.

To evaluate this mapping approach, we consider the twin problem of map-

ping simulated networks of known connectivity using only observed calcium dynamics

and comparing functional weight estimates with actual weights. Since most somatic

neuronal calcium dynamics are only indicative of spike events, with subthreshold

potential changes typically not manifested as calcium concentration changes, infor-

mation available to the mapping algorithm is significantly truncated, so functional

weights can only be estimated within a certain tolerance. Here we test several cases

to evaluate some of the factors affecting mapping performance: network connectivity

class, network size, choice of dynamic model and optimizer, and prior knowledge of

physical connectivity.

We first start with a network of 100 cells of a known physical connectivity,

and modulate the connective weights to produce 3 functional networks of random,
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Figure 4.1: Functional Connectivity Mapping. A. The observable dynamics (black
lines) of a group of cell is used to estimate the possible output of each cells (red lines),
using the dynamical model Hj(·). In the case of neurons, we estimate spike outputs
from calcium. B. For a given cell in the network, we search for the combination of
incoming weights (blue lines) that, when modulating the outputs of the other cells,
simulate an output that is closest to the actual observed dynamics of the target
cell. This is typically achieved through some optimization process, which seeks to
minimize the differences between data and simulation through a series of successive
steps. C. This process is repeated for every cell in the network, producing the full,
bi-directional connectivity matrix for the entire observable network.
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scale-free/small world, and random connectivity patterns, shown in Figure 4.2ABC.

The physical network is shown in gray, with the functional connections shown in red

and randomly selected in both amplitude and polarity (inhibitory and excitatory).

We model vertices as Fitzhugh-Nagumo neurons with observed calcium, and for each

network, we provide a random stimulus to generate activity and produce a calcium

signal. Given only the observed calcium signals in shown 4.2DEF and knowledge

of the physical network (gray map in 4.2ABC), we estimate the complete functional

connectivity map of each network, estimating the functional weights and polarities

of each possible connection in the physical network. We compare the estimated 1280

weights with the actual values and use the correlation coefficient R-value as a measure

of mapping accuracy. As shown in figure 2GHI, we see that R-values greater than

0.72 indicate a reasonable reconstruction of the original functional weights. Stated

otherwise, an R-value of 0.7 can reconcile 50% of the variance of actual values. Since

weights range from -1 to 1, an R-value of 0.7 means that the vast majority (99%

in the Gaussian distribution case) of weights can be estimated with correct polarity,

since 50% of the variance is effectively half the weight range. Therefore, a R-value

of 0.7 can be established as a minimum threshold for any sort of weight mapping,

meaning that at least the polarity of the connection (inhibitory or excitatory) can

be reliably established for most weights.

The mapping algorithm can reasonably reconstruct all three functional net-

work architectures in figure 4.2. The lattice network of figure 4.2A, the least dense

(fewest total functional edges) of all three, was the easiest to map with the highest

R-value. The random network (4.2C), was the densest, but not as difficult to map

as the small-world/scale-free [AHAS05] in figure 4.2B, which had the lowest R-value.

The network in 4.2B had the widest degree distribution of the three networks, mean-

ing that there was a wide range of number of connections into a given cell. Overall,

the mapping performance is similar across the three architectures and, as expected,

the inhibitory portion (left part) of the performance graphs is the least accurate as

most calcium models do not reflect hyper-polarization of neuronal membranes as a

result of inhibitory post-synaptic currents.

In addition to reconstructing functional network architecture, the mapping

algorithm performs evenly across different dynamic models. In figure 4.3AB, we
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Figure 4.2: Mapping of different functional networks within the same phys-
ical network. Three functional networks of different topologies (A-lattice, B-
smallworld/scalefree (Apollonian), C-Random) are shown in red embedded within
the same physical network (gray lines). Functional weights of known values were
used to generate the observable calcium dynamics shown in D, E, F, for each network
above. Using knowledge of the physical connectivity (gray network), we mapped the
functional connectivity from the computed calcium signal, and compared it with the
known values that were used to generate the calcium signal. Plots of the compar-
isons are shown in G, H, I, with the correlation coefficients measuring the accuracy
of the mapping. A maximum possible R value of 1 means that the estimate equals
the actual weight value.
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mapped the network of figure 4.2B using a linear integrate and fire (LIF) and

Hodgkin-Huxley (HH) dynamical model. Interestingly mapping using the simplest

neuronal dynamical model, LIF, was marginally worse than mapping with the most

complex neuronal dynamical model, HH. We suspect the thresholds and resets in the

LIF model add difficult hard boundaries in the cost function or similarity to observed

data, where small changes in weights have no effect on observed dynamics. While the

HH model is considered a stiff system of differential equations, the firing threshold is

a softer boundary and the optimization path is somewhat smoother, leading to better

overall weight estimates. Being able to work with a variety of models, this approach

can be used with virtually any cell type, as well as networks of mixed cell types and

dynamic models, provided the observations are informative as defined above.

The biggest factor affecting model performance is the size of the observed

network. The more connections into a cell, the more combinations of weights can

produce the same observed dynamics. The same relationship holds for any nonlinear

parameter or state estimation algorithm, where larger systems become more difficult

to estimate as multiple combinations of parameters or states can explain observed

data. This is illustrated in figure 4.3CDE, where mapping performance of test net-

works with completely unknown physical connectivity is shown for networks of 10,

30, and 100 vertices. As expected, mapping performance drops off with increasing

network size, and as with the networks of figure 4.2, the inhibitory connections are

more difficult to estimate (lower left corner of the correlation charts). Additionally,

with increasing network size, the slope of the correlation graph is reduced as opti-

mization seems to favor many weaker connections over fewer stronger connections

to explain the observed data. This effect may be interpreted as the effect of the

concentration of measure theorem [vitaly milman, gromov, talagrand], the dual of

the curse of dimensionality. In the context of dynamic networks, an interpretation

of this theorem is that as the number of functioning inputs to a given cell increases,

the cell’s dynamic behavior ceases to be dynamic and tends to remain static. With a

large set of inputs of possible inputs, it not only becomes more difficult to search the

solution space, but the likelihood of a unique solution for a input weight set is also

reduced, and the estimate will likely converge to zero as the network size increases.

It is not mathematically feasible for a cell to receive meaningful functional input
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from large numbers of cells, and it is likely that functional input patterns to any

given cells are low-dimensional. This result suggests that functionally, a cell cannot

make sense of too many inputs; its outputs won’t change if it receives inputs from

too many cells at a time.

When knowledge of the physical connectivity is available, the mapping can be

dramatically improved, as shown in figures 4.3IJ. Here we provide the algorithm with

the physical connectivity of the 100 and 300 vertex networks and the performance

is dramatically improved as a result of the decreased dimensionality of the weight

search space. In an experimental setting, the physical connectivity can be established

after the dynamical data is recorded, and that information can be used in estimating

functional connectivity.

The mapping algorithm uses and builds on existing knowledge to estimate the

higher-order network-level causal connective parameters that are key to understand-

ing brain function and disease, and, if successful, should validate not only the many

hypotheses of network architectures but also the dynamical models of individual neu-

rons and glia. This approach incorporates a broad swath of current knowledge and

techniques in neuroscience. Being simulation-based, the mapping algorithm can ac-

commodate any type of recorded data and model and estimate the hidden quantities

of interest, much like fitting a line or distribution through a set of points to obtain a

slope or average and standard deviations. We’ve designed the mapping and simula-

tion algorithms to work with any neuronal or glial dynamical model. The mapping

algorithm can incorporate useful knowledge like physical connectivity and experimen-

tal control and work with virtually any optimization algorithm to provide estimates

of functional weights. Our approach has proven superior to past network estimation

algorithms, being able to handle multiple dynamical models and larger networks with

improved accuracy [OWB05, Ioa07, EZJO10, EDS03, MPdF05]. Looking forward,

we plan on probing real neural networks and validating functional estimates from

this method with voltage measurements from a few neuron pairs [Cal04, SGL+05].

From a theoretical standpoint, improved optimization algorithms for larger

dimensional problems of more than 30 parameters, and the design of optimal inputs

to maximize information in observed calcium will be key areas of research. Search

in non-linear high-dimensional spaces is a difficult enterprise and there is no one
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Figure 4.3: Factors affecting mapping accuracy. Two models spanning the com-
plexity range of neuronal models were used to simulate and map: A-linear integrate
and fire, B-Hodgkin-Huxley. Little substantive difference is observed between the
two, indicating that mapping is relatively model agnostic. Network size or dimension-
ality of the estimation problem is the largest factor affecting mapping performance,
as networks greater than 30 neurons with unknown physical connectivity become in-
creasingly difficult to estimate (C, D, E). However, multiple optimizers can be used
in parallel to improve estimates (F, G, H). Knowledge of the physical connectivity
in a network can dramatically improve mapping accuracy, as the dimensionality of
the optimization problem significantly reduced (I, J). Networks larger than 100 can
be mapped with good accuracy, given knowledge of the physical connectivity.



91

optimizer that will handle all mapping tasks. More importantly, the flattening of

the weight estimates in larger networks suggest that mathematical considerations

like concentration of measure are affecting not only estimates, but may also provide

insight into functional connectivity patterns themselves. It may be that cells in a

dynamic network may only exhibit patterns of relatively few functional connections

at any given time, so as not to overwhelm and make the cell static. These simulation

results, coupled with the mathematics of high-dimensional spaces and functions,

may form the basis for principle of stable functional networks, with a constraint of

relatively few active functional inputs into a cell at any given time.

More formal proofs of the requirements and mapping algorithm are available

as supplemental material. All computations were performed using a combination

of MATLAB and nVIDIA Tesla C1060 computing processors. All code and fig-

ure examples are available upon request from the corresponding author’s website at

silva.ucsd.edu.

Chapter 4, in part is currently being prepared for submission for publication

of the material. Buibas M and Silva GA. The dissertation author was the primary

investigator and author of this paper.



Chapter 5

Non-parametric Mapping

Approaches

The parametric modeling framework and mapping approaches of chapters 3

and 4 work if there exist state-space models of the cells that form the networks.

However, this is not always feasible, as parameter estimation techniques are often

difficult to implement and pose challenging optimization problems. Additionally, a

full state-space model is not always required to reproduce the observed dynamics of

and infer the functional can causal connectivity between cells. In this chapter, I am

reproducing an early version of a paper that demonstrates a nonlinear, autoregressive

modeling approach for estimating input-output relationships for systems with exoge-

nous outputs (NARX). Here, I present an enhanced version of a technique often use in

black-box systems to estimate applied current from neuronal voltage measurements,

as well as estimating spikes or spike rates from fluorescent calcium measurements.

Using experimental data from mouse cortex pyramidal neurons, we can estimate with

about 90% accuracy the applied current using only voltage measurements, effectively

providing the equivalent of a current measurement from a voltage clamp, without

silencing the cell, as is the case with a voltage clamp. Calcium data is currently

being collected and, based on simulated studies, I expect that we will be able to

estimate with high (> 95%) accuracy, spike rates from somatic calcium, with same

or higher accuracy than existing methods like particle filters or deconvolution, both

of which require some form of dynamic model. As the data is still being collected,

92
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this chapter is very much a work in progress.

5.1 Abstract

We develop techniques for estimating hidden or difficult to measure time-series

quantities from observable and easier to measure ones using non-parametric and non-

model based methodologies. We estimate input current from observed membrane

voltage and spikes from calcium in both simulated and actual neurons. We base our

estimation entirely on previously collected data of current/voltage and spike/calcium

pairs, which we use as the basis for estimating current and spikes from voltage and

calcium, respectively. We can achieve accuracies in excess of 90% in most cases,

making this technique useful for functional connectivity estimation in larger cell

networks, especially when dynamical models are not available or standard parame-

ter estimation techniques are not feasible. We show performance of the technique

and the requirements for data collection for these typical neuroscience experimental

measurements.

5.2 Introduction

Functional or effective connectivity between cells in neuronal networks is fun-

damental to understanding how information is processed and propagated in neuronal

networks, and how behaviors emerge from external stimuli and cell-cell interactions.

Not directly observable, functional connectivity describes the effect of one cell’s func-

tion onto another; its estimation requires observation of the two cells’ activities over

some period of time. Time-series quantities that describing the inputs to and outputs

of a cell within a network are fundamental to the estimation of functional or effective

connectivity between the cells in that network.

For the case of neuronal networks, inputs are typically post-synaptic applied

currents that drive the membrane dynamics and can result in the generation of action

potentials or spikes that are the outputs of a cell, propagated to other connected

cells. Direct measurements of applied currents and spikes at the cell and network
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level respectively pose significant experimental challenges that ultimately undermine

the ability to estimate functional connectivity.

The membrane dynamics of a neuron are driven by the sum of post synap-

tic currents reaching the soma and leading to the generation of action potentials.

Current measurements of neurons in networks are disruptive, since voltage clamps

would effectively silence the neuron by holding it at a specific sub-threshold volt-

age, and prevent it from generating action potentials. Without propagating action

potentials, the observed neuron does not propagate any signals into the network,

affecting connectivity estimates. Thus, a method of estimating current from voltage,

without silencing the observed neuron, is needed for unperturbed network activity

observation.

Fluorescent calcium indicators allow relatively non-invasive network-level ob-

servation of spikes in neuronal circuits with cellular resolution, something that is

not possible with electrodes that measure membrane voltages. In two-photon mi-

croscopy, the calcium activity of awake and aware mice is observable as the animal

performs a given task [SGHK03, GH07]. While current measurements of individual

neurons measure inputs to that neuron, calcium is a good indicator of spikes, the

outputs of many individual neurons. Cytosolic calcium increases rapidly as voltage-

gated Ca2+ channels are opened during action potentials, and decreases slowly as it

is pumped out into stores or outside of the cell [HIS96]. The time course of calcium,

typically described by an exponential decay, is not always the same for all neuronal

types, and not always linear in nature. There are many models of calcium, with

different parameters for different cell types. For connectivity estimates, the focus is

not the specific calcium dynamics, but more on the recovery of the individual spikes

or output signals from a particular neuron.

Both of the tasks present the experimenter with a filtering problem: extracting

a quantity of interest from a more easily observable quantity. In many cases, filtering

achieved through the use of model-based techniques, like Kalman, Wiener filters in

the case of linear systems with Gaussian noise, and sequential Monte-Carlo methods

like particle filters, for non-linear, possibly non-Gaussian cases [VWP+09, YF06].

These have been used previously on both voltage-to-current and calcium-to-spikes

filtering problem and, like any other model-based technique, require a description of
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the transition rules that take the system from one time point to the next. Model-

based techniques pose several challenges when applied to filtering problems. First,

there choice of which model to use is not a trivial one, and there are no obvious

algorithms for choosing a model over another for a given cell. There are dozens of

neuronal models, each with many functional forms and parameters, and each devel-

oped for a specific cell and experimental protocol. Second, there is the problem of

estimating model parameters, which inevitably involves some form of optimization

that chooses the parameter set that best matches the observed data. Optimizer

choice is not a trivial problem, especially for an experimentalist, requiring expertise

in the field (there are over 200 optimization algorithms posted at optimization.org).

Additionally, for complex models requiring many parameters, the curse of dimension-

ality plagues (See bellman ref) both the optimization algorithm and the quality of

the solution: it takes a long time to converge to an acceptable parameter region and

there is no guarantee that the optimized parameter set will yield a model that will

accurately filter new data, or be robust enough to handle data from many different

cells. When applied to biological data, model-based methods may not be the ideal

approach to filtering the complex non-linear systems that are living cells.

Given these challenges, a non-model, non-parametric approach may be better

suited for the filtering problem of estimating an input from an observable output. For

the task of estimating connectivity, we are less interested in the internal dynamics

of a cell that a full model-based estimation would provide, than in the input output

relationship of signals into and out of a cell. Non-parametric approaches have been

used in the past in systems that were not modeled, but whose input-output behavior

is repeatable and relatively stable. Borrowing from control systems, we will use non-

linear autoregressive models with exogenous inputs (NARX). These models achieve

the same filtering goals as model based approaches, while being completely indepen-

dent of choice of model, optimizer, or needing much expert adjustment. Sometimes

referred to as a black-box model, NARX models have been successfully in many ap-

plications where state-space modeling is difficult or cannot be realized concisely in

equation form, like chemical plant dynamics, nonlinear control systems, for example

[SH03, BS98] NARX models have the advantage of being entirely and uniquely data

dependent, without the need for any other external assumptions or expertise. They
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completely avoid the problem of optimization, or tuning a model to fit the data,

requiring only three parameters that set up the estimation algorithm. In the context

of biological and neuronal data, the NARX approach can achieve similar or better

performance than current approaches, specifically for problems related to network

activity and connectivity.

To use a NARX approach for estimating current from voltage and spikes from

calcium, a calibration period is needed, when both inputs and outputs are measured

for the cell of interest. During this calibration period, a known injected current

is added to drive the membrane voltage of a neuron and both current and voltage

are measured, typically with a current clamp electrophysiology setup. After the

calibration period, the data is used to build a table of input-output pairs. Then,

while measuring only the output variable, newly acquired data is compared to table

values to estimate input, the quantity of interest. For calcium recordings, calibra-

tion is achieved by measuring both voltage or spikes and calcium concentration or

fluorescence. After calibration, only fluorescence is required to estimate spikes or

spike rates. We illustrate this in figure 5.1. This method works remarkably well

for these two problems, requiring relatively little calibration data and setup of the

input-output table. Using both experimental and simulated data, we show that we

can recover at least 90% of the original input signal for both voltage-to-current and

calcium-to-spikes filtering problems. We believe that this method has broad applica-

bility to many time-series data analysis applications in neuroscience, and is especially

well suited for functional connectivity estimation.

5.3 Results

The nonparametric approach is applied to two common types of estimation in

neuroscience, specific to modern imaging and network reconstruction applications:

applied current from observed voltage and spikes from cytosolic calcium. For both

problems, we illustrate the method on both simulated and experimental data, with

similar results.
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applied current
observed voltage

 

 
Estimate applied current
New observed voltage

 

 
New applied current
Estimate observed voltage

Figure 5.1: Nonparametric general problem statement. Top) Given two measure-
ments of a known and chosen control current and observed voltage, we want to build
a model that Middle) can estimate the unknown control from voltage measurements
and Bottom) estimate voltage from a known control current.
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5.3.1 Applied current from recorded voltage

This is a common task for electrophysiology recordings, as applied current

is the sum of all post synaptic currents reaching the cell body. By observing spike

activity in the entire network and the voltage of one cell in the network, functional

connectivity can be inferred. Results are encouraging, and a brief discussion is offered

in the figure captions.

Choice of stimulus current can affect performance, and should be selected

based on expected stimulus of that neuron within the circuit containing it. Step

functions are typically not informative, though noise is probably worst case. The

stimulus must exercise the neuron, covering the entire range of possible stimuli the

neuron would be subjected to in normal operation. Here we use a noisy stimulus and

a chaotic current.

Figure 5.2 shows the performance for a simulated HH neuron driven by a

noisy input stimulus. This input contains the most varied possible signal (highest

entropy) received by a neuron and represents the lower bound of performance using

this method. Figure 5.3 shows a chaotic but of lower entropy signal driving the same

neuron, with much higher performance. The more ordered the driving current the

better the prediction.

Figure 5.4 shows the effect of embedding dimension (how many past values

to look when making a prediction), and the delay between past values when making

the prediction. The choice of embedding dimension and delay is made to maximize

R-values, a measure of estimation accuracy. Figure 5.5 shows the effect of collected

data on measurement accuracy. As expected, the more data we use, the better our

estimates. In this case, roughly 30,000 data points were used to build the lookup

table and obtain accuracies of 90% or higher in the noisy current case. For voltage

measurements this represents a few seconds of data.

Data for a real neuron, shown in figure 5.6, shows similar predictive perfor-

mance as in the simulated neuron of figure 5.4, with only a slight degradation in the

R-value, likely due to the actual experimental noise measurements.
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Figure 5.2: The noisy stimulus current is estimated from the voltage. The data was
simulated with the Hodgkin-Huxley model with a noisy stimulus current. Then the
first 3 seconds (75,000 time steps) of current and voltage data was used as history
to build the input-output table (top left). Then an estimation of the current from
voltage was done over 1.2 seconds (30,000 time steps) (bottom) and compared to
the actual current by calculating the correlation coefficient R (top right). In this
example the time delay was τ = 1.2 ms, and the embedding dimension was 10.
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Figure 5.3: The Lorenz stimulus current is estimated from the voltage. The data
was simulated with the Hodgkin-Huxley model with a Lorenz stimulus current. Then
the first 3 seconds (75,000 time steps) of current and voltage data was used as
history to build the input-output table (top left). Then an estimation of the current
from voltage was done over 1.2 seconds (30,000 time steps) (bottom) and compared
to the actual current by calculating the correlation coefficient R (top right). In
this example the time delay was τ = 2.4 ms, and the embedding dimension was 6.
{−3τ,−2τ,−τ, 0, τ, 2τ}
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Figure 5.4: The correlation coefficient R comparing the estimated and actual cur-
rent for a variety of choices of time delay τ and embedding dimension. The history
was 3 seconds, and the estimation period was 1.2 seconds for both the noisy current
(left) and the Lorenz current (right).
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Figure 5.5: The correlation coefficient R which compares the estimated and actual
currents as a function of the amount of history. For the noisy current τ = 1.2 ms and
embedding dimension was 10. For the Lorenz current τ = 2.4 ms and the embedding
dimension was 6.



102

0 0.5 1 1.5 2 2.5 3
Time [s]

V
(t

)
S

ti
m

u
lu

s
 C

u
rr

e
n
t

History

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

S
ti
m

u
lu

s
 C

u
rr

e
n
t

Time [s]

 

 

Actual

Estimated

V
(t

)

Estimation

Actual Current

E
s
ti
m

a
te

d
 C

u
rr

e
n
t

R = 0.88435

Correlation

Figure 5.6: Mouse pyramidal neuron current from voltage estimation. A noisy
current input was used to drive the dynamics of a mouse pyramidal neuron in slice.
A calibration period of 70,000 points was used for current prediction of a new voltage
sequence. A delay embedding of τ = 1ms and embedding dimension of 5 historical
voltage values (−3τ,−2τ,−τ, 0, τ) were used to reconstruct current. Every 10th
value was plotted for ease of display.



103

5.3.2 Spikes from calcium fluorescence

As with current from voltage, a common task in today’s neuroscience labora-

tory is to reconstruct the spike train or spike rate from a calcium fluorescence signal.

The same method as for voltage-to-current applies here, and we obtain similarly good

results for this task, in both experimental and simulated conditions.

We estimate both spikes and average spike rates, depending on the frequency

of calcium fluorescence capture. The only difference between the two is the convolved

gaussian that is used to smooth the spikes and improve performance.

As actual data is acquired, this section will be updated. I expect to have sim-

ilar performance between simulated and actual data, with only a slight degradation

of performance when using experimental data.

5.4 Discussion

Our results demonstrate that a single non-parametric approach is sufficient

for most time-series estimations of neuron biophysical data. No parameter estimation

is required, no optimization, and no model estimation is required.

When compared to particle filter, path integral, or deconvolution methods,

this approach is superior in that no additional assumptions or tests beyond the

recorded data are necessary. Additionally, the method is self evaluating, in that we

can estimate only using data, how well a novel output may be mapped to an input

estimate.

This approach is best suited for connectivity estimation in neuronal networks,

using calcium to estimate spiking activity, and voltage to estimate current. One

approach is to make the assumption that the applied current is the sum of all post

synaptic currents, which themselves are the results of weighted spike responses into

the target neuron.
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Figure 5.7: The spike times are estimated from simulated calcium florescence imag-
ing data. The V (t) output of the model was then turned into wide Gaussian peaks
centered at the time of each spike. A calibration period of two seconds (50,000 time
steps) of the calcium data and the spike data was used to build the tables (top left).
Then an estimation of the spikes from the calcium signal was done over 0.8 seconds
(20,000 time steps) and compared to the actual spikes (bottom). The correlation
coefficient comparing the actual and estimated spikes was R = 0.98 (top right). In
this example the time delay was τ = 4 ms and the embedding dimension was 5.
{−τ, 0, τ, 2τ 3τ}
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Figure 5.8: The correlation coefficient R comparing the estimated and actual spikes
for a variety of choices of time delay τ and embedding dimension. A calibration period
of 2 seconds and an estimation period of 0.8 seconds was used in all cases.
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Figure 5.9: The correlation coefficient R which compares the estimated and actual
spikes as a function of the amount of history. The embedding dimension was 4 and
the time delay was τ = 4 ms. {−τ, 0, τ, 2τ}
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5.5 Methods

5.5.1 Experimental Data Collection

Preparation

All experimental procedures were approved by the University of California

at San Diego Institutional Animal Care and Use Committee. Sprague Dawley rats

(9-23 d old) were anesthetized intraperitoneally with 0.1ml pentobartital sodium and

perfused with 100 ml of cold (0-1◦C) physiological solution containing the following

(in mM): 125 NaCl, 2.5 KCl, 25 glucose, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, and

1 MgCl2 (bubbled with 95% O2 and 5% CO2), after absence of eye blink reflex and

the withdraw reflex in response to paw/tail pinch, the animal was decapitated and

brain was taken out.

Cortical area containing the somatosensory cortex will be isolated and sliced

cut in cold physiological solution using a vibratome (DTK-1000; Dosaka, Kyoto,

Japan). Slices were cut at 300 µm thickness and incubated for about an hour in the

physiology solution aerated with 95% O2 and 5% CO2 till the temperature of the

solution reached room temperature (22-24◦C).

Electrophysiological Recordings

The recording chamber was mounted on an upright microscope stage (Zeiss

Axioskop 2 FS plus), maintained a constant temperature of 35C using a temperature

control unit and continuously perfused with physiological solution. Whole cell patch

recordings were performed under visual control using infrared differential interference

contrast (IR-DIC)optics. Whole-cell voltage recordings from neurons were made us-

ing patch pipettes of 5-10 MOmega resistance pulled of thick borosilicate glass

capillaries with filament (Hilgenberg GmbH, outer diameter, 1.5 mm; inner diame-

ter, 1.0 mm, filament ). The pipettes were filled with intracellular solution containing

the following (in mM): 135 K-methylsulfonate, 10 HEPES, 10 Na-phosphocreatine,

4 MgCl2, 4 Na-ATP, and 0.4 Na-GTP (adjusted to pH 7.25 with KOH). Neurobi-

otin (Sigma) was often added to the intracellular solution in a concentration of 1%

for intracellular staining. The patch pipettes were pulled on a Narishige PP-830
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puller and had a DC resistance of 1015 MΩ. The composition of the pipette (in-

tracellular) solution was as follows (in mM): 135 K-methylsulfonate, 10 HEPES, 10

Na-phosphocreatine, 4 MgCl2, 4 Na-ATP, and 0.4 Na-GTP (adjusted to pH 7.25

with KOH). The seal between the electrode tip and the cell membrane was higher

than 1 GΩ. Recordings were made by Axoclamp 2B amplifiers (Axon Instruments)

in current clamp mode. Electrical signals were recorded (Neurocorder DR- using the

LabVIEW data acquisition and programming system (National Instruments).

Slices were placed in the recording chamber under an upright microscope (fit-

ted with 2.5x, 0.075 numerical aperture and 40x, water immersion, 0.8 numerical

aperture and a 3.3 mm working distance, Zeiss, Germany). The barrel field was vi-

sualized at low magnification under bright-field illumination and can be identified in

layer 4 as narrow dark stripes with evenly spaced, light ”hollows.” Individual L4 and

L5A neurons were identified at 40x magnification using infrared differential interfer-

ence contrast (IR-DIC) microscopy. Somatic whole-cell recordings were performed

at 34-36C. Signals were amplified using an Axoclamp amplifier (Axon Instruments,

Union City, CA), filtered at 3 kHz, and sampled at 2-10 kHz using a program written

in LABVIEW.

5.5.2 Simulated Data from Neuronal Dynamical Models

The standard HH model was used for to generate simulated data.

A non-linear calcium neuronal model, similar to the one presented in [FM91]

is used to generate test values.

5.5.3 Nonparametric Estimation Algorithm

Given a series of measurements of a dynamical system like a neuron, consisting

at least one observation variable y(t), and one perturbing or control variable u(t),

recorded at many time points, the goal is to build a black box model that will be

able to answer the following questions:

1. From new recordings of the observation variable y(t), can we estimate the

driving variable u(t) responsible for the series of observations. This is the



108

filtering problem.

2. Given a new sequence of controls u(t), along with a starting observation state

y(t0), can we estimate the resultant observations.

3. From a series of novel observation from two or more entities y1(t), y2(t), . . . , ym(t)

of unknown inputs but of possibly trained black box models, can we estimate

the similarity between each? In other words, do two measurements belong to

the same model, even if driven by different inputs?

4. What kind of input function u(t) is best suited to identify or classify members

of a family, when performing coupled measurements of u(t) and y(t)?

Problems 1 and 2 are shown in figure 5.1.

From a controls perspective, a system of the type as presented in the frame-

work, where the forms of H() and its parameters are unknown, may be modeled

using a nonlinear autoregressive model with an exogenous variable (NARX). That

system can be approximated with the following relationship:

Since sampling is performed at constant and sufficiently small values of ∆t,

we can assume the regression function f to be reasonably smooth and continuous.

The goal is to build a function f that uses some combination of l past values of y and

m past values of u to predict the next value of y. That prediction, y(t+ ∆t), is then

placed as an argument in f,to predict the next point, y(t + 2∆t), and so on. The

value of l+m is called the model order, and it’s choice is critical in the construction

of f . This is the prediction problem (#1 in the problem statement).

A nonlinear autoregressive model with exogenous input (NARX) is first and

foremost a discrete time system, meaning that prediction and estimation take place

in fixed time steps, mirroring most data collection situations. Depending on the

configuration, a NARX model uses prior combined measurements of the observable

state and the exogenous variable to estimate either the observable or the state vari-

able from a set of past time observations. Denoting the state variable as y(t) and

the exogenous variable as u(t), a NARX model can be used to predict a future state
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from past l + 1 states and m+ 1 inputs:

y(t+ ∆t) = f(y(t), y(t−∆t), . . . , y(t− l∆t), u(t), u(t−∆t), . . . , u(t−m∆t) (5.1)

or can be used to estimate the exogenous variable u(t) from a series of observable

measurements around the time point of interest:

u(t) = g(y(t− k∆t), . . . , y(t), . . . , y(t+ j∆t), u(t−∆t), . . . , u(t− n∆t)) (5.2)

In the above, we use k past values of the state y(t), and j + 1 values of the future

state y(t) and n + 1 past values of the exogenous variable u() for the estimation of

the subsequent u(t).

For both cases, we denote the vector X(t) as the entire operand of the func-

tions f and g. For the function g in equation 5.2,

X(t) = [y(t−k∆t) . . . y(t) . . . y(t+j∆t) u(t−∆t) . . . u(t−n∆t)] (5.3)

and thus

u(t) = g(X(t))

Nearest Neighbor Interpolation

We may put these in the supplemental material.

Some prelimiaries on interpolation, linear or otherwise. The goal is to estimate

a function mapping: f : X → Y , using past measurement of X and Y . The simplest

method is the nearest neighbor estimate

f̂(X) = Yj, j = arg min
i∈{1,...,N}

d(X,Xi)

where 〈Xi, Yi〉 ∈ {〈X1, Y1〉, 〈X2, Y2〉, . . . , 〈XN , YN〉} are the series of N mea-

surements made previously. The choice of distance metric d(a, b) may depend on the

shape of X, with a Euclidean distance norm probably being sufficient in most cases.
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nD nearest neighbor linear interpolation

A line equation can be written as ax+ b = y. From known values of x and y,

we want to estimate the coefficients a and b. In matrix form this becomes:
x1 1

x2 1
... 1

xn+1 1


[
a

b

]
=


y1

y2

...

yn+1

 or Xa = y

Where n, at a minimum, is the number of dimensions. For a 1D line, we need

at least two points, so n ≥ 2. Solving for the coefficients a and b, we simply invert

the augmented X matrix using the pseudo inverse:

a = pinv(X)y (5.4)

. Within this linear space, any value of x can be interpolated/extrapolated linearly

using the coefficients in a. Generalizing to larger dimensions and multi-dimensional

mappings of the type: y = f(x) : Rn → Rm, with known x and f(x) values, we seek

to find the coefficients matrix of that linear space:


x1

1 x2
1 · · · xn1 1

x1
2 x2

2 · · · xn2 1
...

...
. . .

... 1

x1
n+1 x2

n+1 · · · xnn+1 1





a1
1 a1

2 · · · a1
m

a2
1 a2

2 · · · a2
m

a3
1

. . .
...

...
...

an+1
1 an+1

2 · · · an+1
m


=


y1

1 y2
1 · · · ym1

y1
2 y2

2 ym2
...

. . .
...

y1
n+1 y2

n+1 · · · ymn+1

 (5.5)

Again, we invert X to solve for the coefficient matrix a, as in equation 5.4.

As long as we have n+ 1 points for n dimensions, we have a neccessary condition for

invertibility. The rest is up to the condition number of X.



111

nD polynomial interpolation

This is a linear interpolation, pretty standard. Polynomial interpolation

can also be obtained, thougth the number of coefficients in a increased with the

square(??) of the number of dimensions. Let’s consider the 2D case f(x, y):


x1 (x1)2 y1 (y1)2 x1y1 1
...

...
...

...
...

...

xn(n+1) (xn(n+1))
2 yn(n+1) (yn(n+1))

2 xn(n+1)yn(n+1) 1





a1

a2

a3

a4

...

an(n+1)+1


=



y1

y2

y3

y4

...

yn(n+1)+1


(5.6)

Now, the coefficients in a interpolate using the 2nd order polynomial:

f̂(x, y) = a1x+ a2x
2 + a3y + a4y

2 + a5xy + a6

Thus for 2D function, we need 6 coefficients. Let’s verify for 3D:

f̂(x, y, z) = a1x+ a2x
2 + a3y + a4y

2 + a5z + a6z
2 + a7xy + a8xz + a9yz + a10

So it is possible (need to check), in general that the formula for the number

of coefficients Cn,k in a for n dimensions of polynomial of order k goes like:

Cn,k =
1

k!

K∏
k=1

(n+ k)

It is obvious that the larger dimensions n or polynomial order k, the larger the
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number of coefficients required, so the larger the number of points required to esti-

mate parameters. For now, I think a 2nd order polynomial suffices. Either way, once

the a vector/matrix is found, then interpolating f̂(x) is relatively straightforward:

f̂(x∗) = x∗ · a or whatever basis of x

Parallel Implementation

Along with Jack Quinn, we’ve implemented the lookup and interpolation in

a fully parallel fashion to run on GPU cards. In this way, nearest-neighbor lookups

are performed in parallel, so the full estimation of an unknown signal runs in near

real time. This technique is ideal for GPUs, as it can be parallelized quite easily. It

is thus superior to other methods like deconvolution or particle filtering since it does

not require any prior assumptions of the state-space model of the system.

Chapter 5, in part is currently being prepared for submission for publication

of the material. Buibas M*, Cui J*, Quinn J*, Abarbanel H, Devor A, and Silva,

GA. Buibas, Cui, and Quinn contributed equally to this paper, though the original

idea is the thesis author’s.



Chapter 6

Math and Consequences

6.1 Parameter Space Shape

This is a parameter space sweep of the cost function of the weight space of

two neurons coupled into a third. There is extreme dependence on connectivity

parameters in a coupled network of HH neurons. In figure 6.1, we plot the log of

cost function (sum error integrals over the data range) as a function of the two

functional non-zero weights into neuron one of a 30-neuron network. We see a very

narrow, steep, and somewhat jagged valley, where the known global minimum lies

at (0.2907,0.3908). The global minimum represents the known parameters, and a

cost of 0. As the parameters get close and closer to 0, the slope of the valley walls

increases, so small changes in parameter guesses have larger impacts on the cost

function. A step towards a lower cost value that is based on the derivative would

have to be very small so as not to result in an increase in the cost function, or a

climb up the wall.

This shape of the parameter space makes it very difficult for any optimizer

to find the global minimum, especially in higher dimensions. It is reminiscent of the

Rosenbrock banana function, but with additional jaggedness. The jaggedness of the

parameter space is likely caused by the rounding errors of the float variables used

to represent states of neurons. I would expect that with higher precision arithmetic,

the jaggedness goes away.

In higher dimensions, the problem is further compounded. Vast swaths of

113
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Figure 6.1: Parameter space of input weights around one HH neuron. The known
functional weight set is circled black, and the log10 of the cost function is color coded
as the Z-axis.

the parameter space is uninformative, meaning that there is no direction to take

that lowers the cost function. This makes this space harder to search. Once a lower

cost function is reached, the space is likely valley-shaped, and possibly curved, likely

growing steeper and steeper as we get closer to the global minimum. Steep and

curved spaces are difficult to traverse, since the scale of the step has to be very

small so as not to climb out of the valley. I’ve illustrated this with the 2-D banana

function. As is shown in figure 6.2, a parabolic-shaped valley is where the global

minimum resides. While finding the valley might be relatively easy, traversing it is

difficult as most straight directions within the valley will yield a higher cost function.

For cases like these, what is ideally needed is a generalized description of the shape

of the space at a macro (non-local, non-Euclidean) scale, so the next step taken in

the optimization problem is both meaningful (not infinitesimally small), and results

in finding a lower cost point.

6.2 Curse of Dimensionality

I’ve shown within the mapping paper that high-dimensional weight or pa-

rameter spaces are difficult, if not impossible to work with. Not only is the solution

difficult to search for and find, but the space or set of possible solutions is increased,

as more combinations of parameters may yield an equivalent cost function or re-
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Figure 6.2: The Rosenbrock banana function is likely similar to the parameter space
of functional connections into a neuron. For most of the space, the derivative is zero,
meaning it is uninformative. Lower costs are likely to be found in valleys which are
very difficult to traverse, using standard derivative methods. The global minimum
is at (1, 1), indicated by the partially obstructed black circle.

sult. This effect is seen in normal probability spaces, where it is often said that

any hypothesis is valid with enough parameters. Intuitively this is valid, but more

importantly two factors come into play in high-dimensional spaces, as in functional

weight estimation, that make the problem not only intractable but make the answer

relatively meaningless. Together they’ve been coined as the curse of dimensionality

REF.

The first effect of high dimensional spaces is that everything is almost equally

far away. In two dimensions we may consider two points close or far based on

some distance metric like the Euclidean distance. Some points are close and can

be considered similar, while others that are far are dissimilar. In high dimensional

spaces, however, almost all points are equally far apart, so the notion of similarity

based on geometric closeness is no longer valid. High dimensional space is mostly

empty and everything is almost equally far apart.

The second effect is on probability distribution functions. In one dimension a

Gaussian distribution is 99.7% contained within 3 standard deviations of its mean.

However, as the number of independent dimensions is increased, the portion of the
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distribution contained within a distance of 3 standard deviations from the mean

tends to zero. As shown in figure 6.3, with more than about 20 dimensions, almost

none of the distribution is within 3 standard deviations of the mean. This means that

the concept of locality, or saying that the mean is representative of the population

has no meaning when the mean describes many independent dimensions.
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Figure 6.3: The effect of increasing dimensionality on the proportion of the distri-
bution within a given distance from the mean. With increasing dimensionality less of
the distribution lies close to the mean. Even with a distance of 7 standard deviations
from the mean, with enough dimensions all data is far away from the mean.

6.3 Concentration of Measure

Another, perhaps more important consequence of mathematics in high di-

mensional spaces is the concentration of measure. Stated informally: continuous

functions that depend on too many parameters tend to be constant. In a formal

definition, we let (Xn, d, µ) denote a metric space of n dimensions, distance function

d(·, ·), and probability measure µ. Letting κ > 0 be a small threshold measure,

the observable diameter D is the smallest real number with the property that two

elements x, y ∈ Xn, drawn with respect to probability measure µ, and for any given

continuous function f : Xn → R to denote some feature of members Xn, the proba-
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bility that the values of f at x and y differ by D is below threshold κ:

P
(
|f(x)− f(y)| ≤ D

)
< κ

Denoting C as characteristic size or the median value of distances between two el-

ements in Xn, the concentration of measure phenomenon is the effect that as the

dimensionality n is increased, the observable diameter D decreases dramatically with

respect to C:

D � C as n→∞.

This definition, as presented by Pestov in [Pes08], is relatively broad and is a pro-

found effect of high dimensional spaces on functions. Functions are simply rules that

transform one thing into another. Concentration of measure means that functions

that depend on too many independent things tend to be constant, and have little

resolving power, meaning that they cannot distinguish meaningfully between inputs,

and all tend to average out to a constant value.

6.4 Consequences

6.4.1 Stable Network Models

Given the highly nonlinear shape of the parameter space and the extreme

sensitivity of data similarity relative to functional connective weights, I have to raise

questions on the validity of the models and approaches to network modeling. It is

likely that networks of neurons with transmission delays exhibit chaotic behavior

under many circumstances. If this is the case then the principle of extreme depen-

dence on initial conditions holds, so any input-output mapping of the network are

not likely to be repeatable or stable. I have reservations that simply connecting

multiple neuronal models in a network is all that is required to simulate a network

of neurons. There are likely other emergent phenomena that have to be modeled

to stabilize the network so that they have repeatable input-output patterns and can

accommodate significant variance in input patterns. As I’ve seen with the networks

of the test suite, small perturbations in the delay or weight parameters can have
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significant effects on the resultant dynamics, given our models. This is highly un-

likely in a real-world neuronal network that can function reasonably well even when

perturbed, so it is very likely that modeling a network will not be just modeling a

collection of collected neurons.

6.4.2 Low Dimensional Representations

A statistician once mentioned that in high dimensional spaces any hypothesis

is valid, and virtually any conclusion can be drawn. Because there is no concept of

near or far in high dimensions, the idea of partitioning a high-dimensional space into

clusters of related points, as is required for classification, does not work: everything

is equally far apart from everything else. More importantly for a class of objects, if

represented with many independent attributes, the average has no relation to and is

not representative of the class. Given this, I suspect that our internal representation

of objects, at a network level has to be low-dimensional. We have no problems

recognizing items, words, and other people, and we can describe with relative ease,

and with few words, typical objects of a given class. While everyone’s description of

a particular object may be different, internally we rely on a few features to classify

and recognize stimuli, filtering out all other superfluous inputs. Using few features

in classification and recognition ensures stability and robustness to variability, and

allows us to have a relevant mean or typical member of a class. I would venture to

guess that the embedding dimension is somewhere around 7, though the shape of the

feature space is likely to be far from linear, complicating our analysis of it, which is

typically based on Euclidean and orthogonal spaces.

6.4.3 Few Incoming Functional Connections

From the phenomenon of concentration of measure, I propose that cells in

a network receive relatively few functional inputs at any given time, for any given

task. While physically cells may be connected to tens of thousands of other cells, and

even if 1% of synapses were potentiated, one hundred active inputs to any given cell

would not likely present the soma with any distinguishable signal. Thus, I propose

that at any given time, a cell must receive relatively few independent inputs for
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any meaningful information processing to occur in the cell body. Receiving inputs

from many independent cells at the time would effectively eliminate the information

content departing the target cell body. This principle, grounded in the mathematics

of large dimensional measure spaces, if true, would have a profound effect in the

many theoretical and practical strategies aimed establishing functional connectivity.

As a consequence, it would also be consistent with the optimal utilization of neural

tissue, where multiple behaviors can be executed in the same tissue, with different

information flow and thus functional connective patterns. Again, I speculate that any

activity will likely recruit no more than about 7 active incoming connections to any

given neuron. This constraint, if true, would greatly help improve the algorithmic

efficiency of any mapping algorithm, but also provide novel directions and strategies

for observation and experimentation. Knowing that only 7 or so independent inputs

can be active at any given time, can significantly reduce the search space for the

mapping algorithm. From an experimental standpoint, more effective observation

strategies can be devised to maximize information content when whole networks are

observed.

These hypotheses, resulting from the fundamental mathematics of high di-

mensional spaces, can form the basis for novel research ideas, spanning neuronal

simulation, machine learning, optimization and representation, and biological net-

works. Within my research I’ve treated these disciplines in a connected manner, and

I believe that combined use within these mathematical constraints will yield fruitful

results and advance our understandings of biological neuronal systems.



Appendix A

Weaver Suite for Simulation and

Mapping

The complete suite of simulation and estimation, both parametric and non-

parametric has been implemented on Graphics Processor Unit cards. GPUs are

becoming extremely powerful and affordable

( $1/GFLOP GPU vs $7/GFLOP CPU). Designed for simulation and parallel pro-

cessing. Second generation of software tools just available (OpenCL), though low-

level programming of individual architecture is needed to achieve optimal perfor-

mance.

I’ve attached the documentation for the first version of the weaver software

suite, which is a collection of source code files used in the framework and mapping

papers. The code is actively undergoing improvements, and is used by several labs

doing simulation and functional connectivity estimation. The code is available at

www.silva.ucsd.edu.

A.1 Requirements

The following requirements represent what was tested and found to work in

the lab. Since this software is very much alpha-phase, little testing has been done

outside our Mac laptops and Linux workstation.

Computer Hardware: An intel Core2Duo or Xeon 55xx multi-core processor is

120
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highly recommended. At least 4GB of ram are needed to store the larger

networks or longer simulation times.

Operating System: Mac OS X 10.5 or higher, Linux - Tested on Ubuntu 9.0 and

Higher.

GPU Hardware Any nVIDIA video card with compute capability 1.1 or higher.

(GeForce 8600M and Tesla C1060 have been tested).

CUDA Software/Compilers: CUDA drivers 3.0 and higher. The nvidia and gcc

compilers are needed to make the executable that is called from MATLAB. See

www.nvidia.com for the drivers and development kit.

MATLAB: Version 2008b. MATLAB has changed the compile flags and extensions

of compiled mex files for 2009 and later versions. The current Makefile only

seems to work for 2008b, but can be changed to accommodate newer version

of MATLAB.

A.2 Installation

Upon unpacking the distribution, a single directory will be created, con-

taining all required files. The fastest way to start is by opening and running the

benchmarks.m script from MATLAB, from that directory. This will run the bench-

marks on the local GPU, using both IZ and HH neuronal models.

To generate geometric networks, run the built-test-nets.m script from the

same directory. It will place vertices and generate 80 networks of different connec-

tivity classes.

The next sections complement the NECO article, describing the generation

and simulation programs. The mapping program will be added upon publication of

that manuscript.
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A.3 Network Generation

The first step in generating a network is the placement of the vertices. The

positiongraph.m function accomplishes this for two or three dimensions, and any

number of vertices. Note that large, dense networks may be challenging to this

algorithm, taking a long time to complete.

Of the four types of networks described in the NECO article, 3 can be gener-

ated with the biosmallworldnet.m function, just by varying the randomness param-

eter. A randomness parameter of 0 will generate a lattice network, values around

0.10 produce small-world networks with 10% random connections, and a random

network is generated by setting the randomness to 1.

The scale-free network class is generated using the biosf.m function, gener-

ates a geometric scale-free network, also called an Apollonian network, which has

both scale-free and small-world properties.

Both network generation scripts require pre-positioned vertices as input. From

MATLAB, typing >>help biosf will show the help for that function.

A.4 Network Simulation

Entry to the network simulation routines is through a MATLAB shared library

cunetsim, that is compiled from source using the provided Makefile. Parameters,

initial conditions, network connectivity, delays, and external controls are all initial-

ized in MATLAB and are passed to cunetsim as pointers to mex arrays, where they

are copied to the GPU, and the individual vertex threads are started to perform the

simulation. Upon completion of the simulation, the observable results are copied

back to the CPU memory as a pointer that the MATLAB environment can access,

plot and save as needed. We will briefly highlight some relevant functions, files, and

features of the network simulation

A.4.1 cunetsim

Called from within MATLAB, with the following matlab arrays as inputs:
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psE partial sparse connectivity matrix, specifies the incoming connections to every

vertex, stored as uint32, generated from nettosparse.m MATLAB file.

psD partial sparse delay matrix, stored as uint32, generated from nettosparse.m

psW partial sparse weight matrix, stored as VARTYPE, generated from

nettosparse.m. psE, psD, psW all specify incoming connections, delays, and

weights to every vertex in the network. They are generated within MATLAB

from the physical, delay, and functional connectivity matrices.

U external input control, a N × T matrix for a network of N vertices and T time

points. Specifies injected current at each time point for each cell.

ptrans transition parameters. They are the parameters for the dynamic model,

with the first parameter in the array being the time step used for integration.

pobs observation parameters, organized as follows for a linear model with noise:

state which state variable to observed

scale how much to scale

offset how much to offset

noise sigma how much noise (z = y · scale+ offset+N (0, σ2))

y0 initial conditions, same for each vertex

cunetsim returns the following arrays to MATLAB:

Z the observable variable for each vertex at each time point (N × T matrix)

X output raster (spike raster for neurons) the output of each cell (used for trans-

mission)

See comments in benchmarks.m and cunetsim.cu for further details.

A.4.2 izcamodel.cuh hhcamodel.cuh

The Izhikevitch and Hodgkin-Huxley models. These files contain the thread

kernel functions, transitions, and transmitters for the network simulation. The model

is selected at compile time, with the appropriate compile flag (see Makefile).
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A.4.3 integrators.cuh

Header file with all integrator functions. We currently support one-step Euler,

Runge-Kutta 2nd and Runge-Kutta 4th order methods. The integrator functions are

designed to operate on a model, chosen at compile time. Multi-step methods will be

added later.

A.4.4 observers.cuh

Observer functions that provide observation functions of state variables. Cur-

rently only linear observation models have been coded.
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crimination of temporal input sequences in cortical neurons. Science,
Aug 2010.

[Ben05] M Bennett. A quantitative model of purinergic junctional transmission
of calcium waves in astrocyte networks. Biophysical Journal, 89(4):2235–
2250, Oct 2005.

125



126

[BFB94] JL BARRON, DJ FLEET, and S Beauchemin. Performance of optical
flow techniques. International Journal of Computer Vision, 12(1):43–77,
Jan 1994.

[BGMH07] J Benda, T Gollisch, C Machens, and A Herz. From response to stimulus:
adaptive sampling in sensory physiology. Current Opinion in Neurobi-
ology, Jan 2007.

[BHP08] R K P Benninger, M Hao, and D W Piston. Multi-photon excitation
imaging of dynamic processes in living cells and tissues. Rev Physiol
Biochem Pharmacol, 160:71–92, Jan 2008.

[BM04] S Baker and I Matthews. Lucas-kanade 20 years on: A unifying frame-
work. International Journal of Computer Vision, 56(3):221–255, Jan
2004.

[BP01] GQ Bi and MM Poo. Synaptic modification by correlated activity:
Hebb’s postulate revisited, Jan 2001.

[BS98] JD Bomberger and DE Seborg. Determination of model order for narx
models directly from input-output data. Journal of Process Control,
8(5-6):459–468, Jan 1998.

[BS09] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theo-
retical analysis of structural and functional systems. Nature Reviews
Neuroscience, 10(3):186–198, Mar 2009.

[BS11] Marius Buibas and Gabriel A Silva. A framework for simulating and esti-
mating the state and functional topology of complex dynamic geometric
networks. Neural Computation, 23(1):183–214, Jan 2011.

[BSL+96] P Baraldi, A Sarti, C Lamberti, A Prandini, and F Sgallari. Evaluation
of differential optical flow techniques on synthesized echo images. Ieee
T Bio-Med Eng, 43(3):259–272, Jan 1996.

[Bur06] A Burkitt. A review of the integrate-and-fire neuron model: I. homoge-
neous synaptic input. Biological Cybernetics, Jan 2006.

[BYNS10] Marius Buibas, Diana Yu, Krystal Nizar, and Gabriel A Silva. Map-
ping the spatiotemporal dynamics of calcium signaling in cellular neural
networks using optical flow. Annals of biomedical engineering, Mar 2010.

[Cal04] E Callaway. Feedforward, feedback and inhibitory connections in pri-
mate visual cortex. Neural Networks, Jan 2004.

[CB99] E J Chichilnisky and D A Baylor. Receptive-field microstructure of blue-
yellow ganglion cells in primate retina. Nature Neuroscience, 2(10):889–
93, Oct 1999.



127

[CBFCS90] A H Cornell-Bell, S M Finkbeiner, M S Cooper, and S J Smith. Glu-
tamate induces calcium waves in cultured astrocytes: long-range glial
signaling. Science, 247(4941):470–3, Jan 1990.

[CCP+03] Silvia Coco, Federico Calegari, Elena Pravettoni, Davide Pozzi, Elena
Taverna, Patrizia Rosa, Michela Matteoli, and Claudia Verderio. Storage
and release of atp from astrocytes in culture. J Biol Chem, 278(2):1354–
62, Jan 2003.

[CDZ06] M Canepari, M Djurisic, and D Zecevic. Dendritic signals from rat
hippocampal ca1 pyramidal neurons during coincident pre- and post-
synaptic activity: a combined voltage- and calcium-imaging study. The
Journal Of Physiology, 580(2):463–484, Dec 2006.

[CIY05] R Cossart, Y Ikegaya, and R Yuste. Calcium imaging of cortical networks
dynamics. Cell Calcium, 37(5):451–457, May 2005.

[CJA08] Daniel R Creveling, James M Jeanne, and Henry D. I Abarbane. Pa-
rameter estimation using balanced synchronization. Physics Letters A,
372(12):2043–2047, Jan 2008.

[CYM+09] Siu-Kei Chow, Diana Yu, Christopher L Macdonald, Marius Buibas, and
Gabriel A Silva. Amyloid-beta directly induces spontaneous calcium
transients, delayed intercellular calcium waves, and gliosis in rat cortical
astrocytes. ASN neuro, Dec 2009.

[DA09] Peter Dayan and L F. Abbott. Theoretical neuroscience: computational
and mathematical modeling of neural .... page 460, Jan 2009.

[DMS94] A DESTEXHE, Z F Mainen, and Terry Sejnowski. An efficient
method for computing synaptic conductances based on a kinetic-model
of receptor-binding, Jan 1994.

[DMS98] A DESTEXHE, Z Mainen, and T Sejnowski. Kinetic models of synaptic
transmission. Methods in neuronal modeling, Jan 1998.

[EDS03] M Eichler, R Dahlhaus, and J Sandkuhler. Partial correlation analysis
for the identification of synaptic connections. Biological Cybernetics,
89(4):289–302, Jan 2003.

[ES03] J Ebling and G Scheuermann. Clifford convolution and pattern matching
on vector fields. Visualization, 2003. VIS 2003. IEEE, pages 193 – 200,
Oct 2003.

[EZJO10] Seif Eldawlatly, Yang Zhou, Rong Jin, and Karim G Oweiss. On the
use of dynamic bayesian networks in reconstructing functional neuronal
networks from spike train ensembles. Neural Computation, 22(1):158–89,
Jan 2010.



128

[Feo08] Oscar De Feo. Estimating interdependences in networks of weakly cou-
pled deterministic systems. Phys. Rev. E, 77(2):15, Feb 2008.

[FM91] Douglas D Fraser and Brian A MacVicar. Low-threshold transient cal-
cium current in rat hippocampal lacunosum-moleculare interneurons:
Kinetics and modulation by neurotransmitters. Journal of Neuroscience,
11(9):2812–2820, Jan 1991.

[FOM+07] S Feldt, H Osterhage, F Mormann, K Lehnertz, and M Zochowski. In-
ternetwork and intranetwork communications during bursting dynamics:
applications to seizure prediction. Phys Rev E Stat Nonlin Soft Matter
Phys, 76(2 Pt 1):021920, Aug 2007.

[FSG02] R Douglas Fields and Beth Stevens-Graham. New insights into neuron-
glia communication. Science, 298(5593):556–62, Oct 2002.

[GGL+04] Yu Guo, Biao Gong, Sebrina Levesque, Thomas Manfredi, and Ying
Sun. Automated detection and delineation of mitochondria in electron
micrographs of human skeletal muscles. Microsc Res Tech, 63(3):133–9,
Feb 2004.

[GH07] W Gobel and F Helmchen. In vivo calcium imaging of neural network
function. Physiology, 22(6):358–365, Dec 2007.
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[SH03] L Sragner and G Horváth. Improved model order estimation for nonlin-
ear dynamic systems. . . . of the Second IEEE International Workshop
. . . , Jan 2003.

[SM06] Michail Stamatakis and Nikos V Mantzaris. Modeling of atp-mediated
signal transduction and wave propagation in astrocytic cellular networks.
J Theor Biol, 241(3):649–68, Aug 2006.

[SMY99] D Smetters, A Majewska, and R Yuste. Detecting action potentials in
neuronal populations with calcium imaging. Methods, Jan 1999.

[Spo02] O Sporns. Graph theory methods for the analysis of neural connectivity
patterns. Neuroscience Databases. A Practical Guide, Jan 2002.

[SRC08] Jonathon Shlens, Fred Rieke, and Ej Chichilnisky. Synchronized firing in
the retina. Current Opinion in Neurobiology, 18(4):396–402, Aug 2008.

[TAT+05] Guo-Feng Tian, Hooman Azmi, Takahiro Takano, Qiwu Xu, Weiguo
Peng, Jane Lin, NancyAnn Oberheim, Nanhong Lou, Xiaohai Wang,
H Ronald Zielke, Jian Kang, and Maiken Nedergaard. An astrocytic
basis of epilepsy. Nat Med, 11(9):973–81, Sep 2005.

[TL08] L Tian and L Looger. Genetically encoded fluorescent sensors for study-
ing healthy and diseased nervous systems. Drug discovery today Disease
models, 5(1):27–35, Jan 2008.

[Tra10] Thomas P. Trappenberg. Fundamentals of computational neuroscience.
page 390, Jan 2010.

[Ver06] Alexei Verkhratsky. Glial calcium signaling in physiology and patho-
physiology. Acta Pharmacol Sin, 27(7):773–80, Jul 2006.

[VWP+09] Joshua T Vogelstein, Brendon O Watson, Adam M Packer, Rafael
Yuste, Bruno Jedynak, and Liam Paninski. Spike inference from cal-
cium imaging using sequential monte carlo methods. Biophysical Jour-
nal, 97(2):636–655, Jan 2009.

[WE05] D Weiskopf and G Erlebacher. 12 overview of flow visualization. The
visualization handbook, Jan 2005.

[WM97] David H Wolpert and William G Macready. No free lunch theorems
for optimization. Evolutionary Computation, IEEE Transactions on,
1(1):67 – 82, 1997.



133

[WSD08] Jonathon Wetherington, Geidy Serrano, and Ray Dingledine. Astrocytes
in the epileptic brain. Neuron, 58(2):168–78, Apr 2008.

[WSEE05] D Weiskopf, F Schramm, G Erlebacher, and T Ertl. Particle and tex-
ture based spatiotemporal visualization of time-dependent vector fields.
Visualization, 2005. VIS 05. IEEE, pages 639 – 646, Oct 2005.

[WSTB86] JG WHITE, E SOUTHGATE, JN THOMSON, and S BRENNER. The
structure of the nervous-system of the nematode caenorhabditis-elegans,
Jan 1986.

[YBC+09] Diana Yu, Marius Buibas, Siu-Kei Chow, Ian Y Lee, Zakary Singer, and
Gabriel A Silva. Characterization of calcium-mediated intracellular and
intercellular signaling in the rmc-1 glial cell line. Cellular and Molecular
Bioengineering, 2(1):144–155, Mar 2009.

[YF06] E Yaksi and RW Friedrich. Reconstruction of firing rate changes across
neuronal populations by temporally deconvolved ca2+ imaging. Nat
Meth, 3(5):377–383, Jan 2006.


	Signature Page
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	Motivation
	Thesis Summary


	Optical Flow
	Abstract
	Introduction
	Optical Flow Algorithm and Computation
	Results
	Comparison between computed and manuallyestimated flow vectors
	Optical flow characterization of intercellular signaling 

	Discussion
	Appendix
	Cell Preparations
	Imaging Setup
	Reliable Vectors via the Eigenvalue Test


	Network Mapping Framework
	Abstract
	Introduction
	A Framework for Dynamics, Signaling, Control and Observation in Geometric Networks
	Results
	Individual Cell Dynamics
	Cellular Network Signaling
	Experimental Observability Through Calcium Observation
	GPU Implementation and Benchmarks
	Standardized Tests for Connectivity Estimation

	Discussion
	Appendix: Test Network Generation
	Neuronal Models
	Astrocyte models
	Network size, geometry, dimension, and connectivity
	Network Connectivity Classes


	Parametric Functional Connectivity Mapping
	Abstract
	Background and Motivation
	Mapping Functional Connectivity

	Non-parametric Mapping Approaches
	Abstract
	Introduction
	Results
	Applied current from recorded voltage
	Spikes from calcium fluorescence

	Discussion
	Methods
	Experimental Data Collection
	Simulated Data from Neuronal Dynamical Models
	Nonparametric Estimation Algorithm


	Math and Consequences
	Parameter Space Shape
	Curse of Dimensionality
	Concentration of Measure
	Consequences
	Stable Network Models
	Low Dimensional Representations
	Few Incoming Functional Connections


	Weaver Suite for Simulation and Mapping
	Requirements
	Installation
	Network Generation
	Network Simulation
	cunetsim
	izcamodel.cuh hhcamodel.cuh
	integrators.cuh
	observers.cuh


	Bibliography



