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Abstract 
In this paper we propose, instead of the traditional distinction 
between prototype and exemplar models, a generic model that 
assumes a continuum between prototypes and exemplars. The 
model is based on the very successful GCM and an associated 
prototype model that both assume a representation on 
continuous dimensions. Abstractions are obtained by taking 
for each category the centroids of the clusters as produced by 
K-means clustering, effectively producing the GCM and the 
Single-Prototype Model as extreme cases. The model was fit 
on a set of unknown, to-be–classified fruits and vegetables 
(Smits et al., 2002). Better fit values were clearly obtained for 
the intermediate solutions indicating a strategy where people 
compare the test stimuli to a set of multiple prototypes rather 
than just one prototype or all stored exemplars.  

Keywords: prototype; exemplar; categorization; varying 
abstraction; clustering. 

Introduction 
Since the ground breaking work of Rosch and Mervis 
(1975) in the mid-seventies, the idea has gained ground 
among researchers that one of the most important aspects 
that define human categorization decisions is similarity. 
Contrary to what has been called the classical view, people 
do not seem to base their decisions as to which stimulus 
belongs to which category on a predetermined set of singly 
necessary and jointly sufficient characteristics (Komatsu, 
1992). In fact, for many of our everyday concepts it appears 
quite impossible to even formulate such a definition. Rosch 
showed that several measures related to categorization were 
in fact related to the similarity of a particular, to-be-
categorized, item with its own category and other related 
categories.  In this view, called the family resemblance view, 
there are two possible interpretations of this notion of 
similarity. A first way is to assume that a category is simply 
a relational structure, and that membership of an item is 
simply determined by the similarity relation towards other 
members and non-members of that particular category. But 
it is often assumed that categories in fact provide a certain 
summary or centroid that is determined by a number of 
weighted characteristics. As such, a category is not just the 

sum of its members, and membership is not just defined by 
the relation to other members and non-members. Rather, a 
new “object” that does not necessarily correspond to a 
concrete real-world-object, but is an abstraction over 
previously encountered category members, arises. 
Categorization processes are then assumed to operate on 
these centroids, rather than on all possible stored members 
of the categories in question. This second way of thinking 
about categorization has in fact been the dominant approach 
in most research dealing with natural language (e.g., 
Hampton, 1979; Storms, De Boeck, & Ruts, 2000, 2001). 
 A second line of research (Medin & Schaffer, 1978; 
Nosofsky, 1986, 1992) focused more on the formal 
definition of the categorization process. In this tradition one 
typically uses artificial stimuli that were created in the lab 
and that have the obvious advantage of being completely 
under the experimenter’s control. Typically, a limited set of 
training stimuli belonging to two competing categories is 
presented until people classify these items sufficiently 
correctly. Consequently, a set of transfer stimuli is presented 
whose items have to be classified in one of the earlier 
trained categories. Finally, rivaling formal models are fit to 
explain the categorization proportions. These competing 
models express the distinction that was mentioned earlier. 
Models that assume no abstraction at all, but see 
categorization as a process that is based on the similarity 
towards all items that were previously stored in a category, 
are contrasted with models that assume one central 
representation for each category. In this tradition the first 
kind of models are called exemplar models, the second kind 
are called prototype models. Whereas research in the 
tradition of natural language has been interested in the 
representation of concepts in general, the formal approach 
focused specifically on the distinction between the two 
notions of categorization, the exemplar and prototype view 
(Smith & Minda, 1998, 2000).  

Abstraction and Similarity 
In the distinction mentioned above between prototype and 
exemplar models, the emphasis is on the question whether 
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there is total abstraction or no abstraction at all.  Such a 
distinction may seem plausible in the case of only a limited 
set of relatively similar stimuli with relatively few 
characteristics to be recalled, as was most often the case in 
research contrasting the prototype and the exemplar 
approach. The idea of a single prototype is plausible 
because of the relative similarity of the stimuli. The idea of 
no abstraction is sufficiently plausible because of the small 
number of stimuli and their simple and obvious structure. 
This reasoning breaks down, however, when one looks at 
natural language concepts.  

Take for example the concept fruit. First, we can ask 
ourselves whether it is possible to have no abstraction at all. 
In a traditional laboratory experiment, only a few stimuli are 
presented, in exactly the same way. They constitute the full 
set of exemplars. In natural language, it is not so clear what 
an exemplar of fruit is. Take, for instance, an apple. If we 
assume no abstraction at all, then classifying an item as 
belonging to the concept fruit would require us to compare 
it to, among other stimuli, all real-life apples that we have 
encountered. If no abstraction occurs then one must 
compare to every specific instance that was ever 
encountered. To represent a category such as fruit, that 
would amount to an enormous amount of instances of its 
members. It appears implausible, therefore, to assume no 
abstraction at all.  
 A second question we can ask ourselves is whether it is 
possible to have a single abstraction for all category 
members. Returning to our apples, one could argue that 
abstraction does take place at a certain level. A granny smith 
could for example be an abstraction over many encountered 
instances. Or it could be that an abstraction for “apple” 
exists based on different types of apples. But when we look 
at a higher category level, this reasoning should at least feel 
uncomfortable. What would be for instance the abstract 
representation of the collection of an apple, a litchi and a 
banana? It seems hard to think of anything that is not absurd 
or comical.  
 In more complex natural categories, therefore, it seems 
that at least some abstraction would have to take place.  The 
question is how. There seems to be no clear reason why 
abstraction should only take place at the category level. This 
is all the more clear in natural language where there are 
categories at different levels. Why, then, should an abstract 
representation be based on a predetermined category level 
or an item name, when it is more plausible to say that both 
abstraction and categorization are similarity-based? When 
we assume that such abstraction is similarity based, we are 
saying at the same time that the chance of actually forming 
an abstract representation is also a function of similarity. 
One would therefore expect that the amount of abstractions 
in any group of stimuli would be determined by their 
internal similarity. In the context of natural language this 
translates to the idea of level of abstraction. Typically, 
categories such as fruit are called superordinates, categories 
such as apple are seen as basic level categories, and 
categories such as Granny Smith apples would be called 

subordinates. As the relative similarity of stimuli in a 
category decreases when one goes up a level of abstraction, 
so should the chance of having one unifying abstraction.  

A Generic Framework 
In order to formulate a model that can accommodate the 
idea of varying abstractions as discussed above, we will first 
define one of the most successful modeling frameworks that 
incorporates the exemplar/prototype distinction. 

In the generalized context model (GCM; Nosofsky, 1986, 
1992), an exemplar model, categorization is assumed to be a 
function of similarity towards all relevant stored exemplars. 
The model was formulated as a generalization of the 
Context Model proposed by Medin and Schaffer (1978) to 
incorporate stimuli that differ on continuous characteristics 
rather than binary dimensions. In case (physical) dimensions 
are unavailable, the GCM fitting procedure starts with a 
multidimensional scaling procedure (MDS; see, e.g., 
Takane, Young & De Leeuw, 1977) on proximity measures 
of all stimulus pairs involved. The coordinates of these 
stimuli are then used as input for the model. In the case of 
two categories, A and B, the probability that stimulus x is 
classified in category A is given by: 
 

P(A|X)
(1 )
A XA

A XA A XB

β η
β η β η

=
+ −

                                         (1.1)                 

 
where βΑ   lies between 0 and 1 and serves as a response 
bias parameter towards category A. The parameters ηXA and 
ηXB denote the similarity measures of stimulus x toward all 
stored exemplars of category A and B, respectively: 
 

1/

1

exp
qrD r

XA d xd jd
j A d

c w y yη
∈ =

  = − −  
   

∑ ∑           (1.2)              

 
with yxd and  yjd as the coordinates of stimulus x and the j-th 
stored exemplar of category A (or B for ηXB, respectively) 
on dimension d. The weight of the d-th dimension is 
denoted by wd, with all weights restricted to sum to 1. The 
power metric, determined by the value of r, is usually given 
a value of either 1 or 2, corresponding to city-block and 
Euclidean distance, respectively. The sensitivity parameter c 
determines the overall scaling of the distances. The 
parameter q determines the decay of similarity as a function 
of distance, where typically the values 1 or 2 are used, 
corresponding to an exponential or a Gaussian decay 
function. 

 Much of the traditional research that was based on 
artificial stimuli used a very limited set of training stimuli 
that varied on a set of binary dimensions (or features). It 
would of course be impossible to average over discrete 
features, so the prototype was conceived as an ideal 
example of a category and was granted modal values for 
that category. One of the advantages of the GCM is exactly 
that it allows one to derive a similarity structure from 
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similarities between stimuli as obtained from actual human 
judgments. The subsequent representation in terms of a 
multidimensional space makes it very easy to translate the 
idea of a prototype as the central tendency  of a category 
(Rosch & Mervis, 1975) into a formal model. The object 
created by taking, on each dimension, the average 
coordinate over all members of the category, is a 
straightforward definition of the prototype. The similarity 
function changes to:  

                             
1/

.
1

exp
qrD r

XA d xd d
d

c w y yη
=

  = − −  
   
∑               (1.3) 

 

where .dy  denotes the mean value of all stored members of  
category A on dimension k. We will refer to (1.3) in 
combination with (1.1) as the Single-Prototype Model. 
 A number of studies have already been conducted that 
compared prototype and exemplar models (e.g., Nosofsky, 
1992; Nosofsky & Zaki, 2002). In many, the GCM 
performed better than prototype models (but see also e.g., 
Smith & Minda, 1998, 2000). Recently, we have also 
applied formal models to the categorization of natural 
language stimuli (Smits et al., 2002; Storms et al., 2000, 
2001; Verbeemen, Storms, & Verguts, 2003, 2004; 
Verbeemen, Vanoverberghe, Storms, & Ruts, 2001). In 
these studies too, we found an overall advantage of 
exemplar models. 

Varying Abstraction 
In the above presented models, two extremes can be found. 
First there is the prototype that is seen as the one unifying 
centroid for the whole category.  The other extreme, the 
exemplar model, corresponds not necessarily to the idea of 
no abstraction at all, but rather to the lowest level of 
abstraction under investigation. In laboratory experiments, 
the exemplars would of course refer to the presented stimuli, 
and would be truly the lowest level. In natural language 
research it would be impossible to actually trace all stimuli 
at the lowest level, i.e. the actual real-life stimuli that were 
encountered by people. One will therefore have to establish 
a lower level of interest that is still feasible to obtain. For 
obvious practical reasons, the approach that is most often 
used is to define the exemplar level as being one level lower 
than the category level.  
 However, in a category with N stimuli, there is a whole 
spectrum of intermediate abstractions varying from exactly 
one abstraction, corresponding to the Single-Prototype 
Model presented earlier, to N ‘abstractions’ corresponding 
to the exemplar model (where there is in fact no abstraction 
at all save perhaps at the exemplar level). Given the fact, 
then, that there appears to be no reason why the exemplar 
model should be contrasted only with a model that assumes 
abstraction over the set of stored category members, what 
should be the right approach? Abstraction, as defined in 
formula (1.3), could in fact also be based on any other 

partition of the stimulus set. With a partition defined as an 
exhaustive set of nonoverlapping subsets, where category J 
is partitioned in K different sets Sk one obtains, using the 
same reasoning we used in the case of the prototype model, 
K different centroids for each dimension d of a particular 
category: 
 

.
1

k

kd jkd
j Sk

y y
N ∈

= ∑                                                    (1.4) 

 
Using the above formula, we can formulate a generic model 
for (1.2) and (1.3): 
 

1/

.
1

exp
qrD r

XA d xd kd
k A d

c w y yη
∈ =

  = − −  
   

∑ ∑           (1.5) 

 
It is easy to see that this model incorporates the special 
cases where K=1 and K=N. In the first case, the partition is 
made up of all stored category members and hence the mean 
weights correspond to the Single-Prototype Model as 
described earlier. In the second case, each partition contains 
exactly one exemplar, and hence the mean weights on each 
dimension are the original exemplar weights. We will refer 
to this model as the Varying Abstraction Model. (See also 
Vanpaemel, Storms, & Ons, submitted). 

Defining the Partitions using K-means Clustering 
The Varying Abstraction Model seeks to determine which 
partition gives the best fit to the data, instead of merely 
comparing the two most extreme cases. The obvious way to 
do this is to fit the model to the data, with all possible 
partitions, and to pick out that model which uses the optimal 
partition with regards to the categorization data. This would 
be feasible for datasets with only a limited number of 
training stimuli or supposed stored members, but for large 
datasets this would become unpractical or even impossible 
as the number of possible partitions of a set increases 
drastically with the set size. To give only a small example, 
the number of partitions for a set of 5 stimuli equals 52. 
With two categories with five stored members each this 
would amount to 52x52=2704 models to be fitted, a large 
but still computationally feasible number.  The number of 
partitions for a set of 10 stimuli already equals 115975 and 
would amount, in the case of two categories with 10 stored 
members, to 13450200625 models to be compared. For 
categories with a large number of stored members, such as 
natural language categories, a different approach will 
therefore be required.  
 We mentioned already that abstraction, if it takes place at 
all, should be based on the same principles as 
categorization: similarity. Partitions of a category, and the 
associated centroids, should therefore be based on the 
internal similarity of that category. Not only should very 
similar stimuli be allowed to merge into a single prototype, 
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but very dissimilar stimuli should be allowed to remain 
separate as a reference object for the to-be-classified items. 
Such an approach naturally leads us to consider clustering 
techniques of some sort. Given the fact that cluster centers 
for each partition in the varying abstraction model are based 
on the mean values of the stimuli belonging to that partition, 
an immediate choice would be K-means clustering (see, 
e.g., Hastie, Tibshirani and Friedman, 2001).  
 In K-means clustering, one seeks to optimally partition a 
set of N items in a predefined number of Sk subsets so as to 
minimize the criterion 
 

2

.
1 1

k

k

NK D

jd d
k j S d

y y
= ∈ =

−∑ ∑ ∑                                                   (1.6) 

 
This minimum is reached by first assigning the stimuli 
randomly to the K clusters, and then computing the cluster 
centers. Consequently, the items are reassigned to the 
closest cluster center and the cluster means are computed 
again anymore. This process continues until the assignments 
do not change. Because K-means clustering is based on the 
Euclidean distance between items on a number of predictor 
dimensions, it can simply operate on dimensions that are 
prespecified or obtained through multidimensional scaling 
techniques. It can be seen from (1.4) and (1.6) that the 
cluster centers obtained by K-means clustering follow the 
previously mentioned definitions of the (multiple) 
prototypes. The most straightforward way, then, to 
incorporate the K-means approach into the Varying 
Abstraction Model is to simply use the coordinates of the 
cluster centers as returned by K-means clustering into the 
model.  

This effectively leaves us with a total number of N 
partitions per category, where N is the number of stored 
category members. In the case of two rivaling categories A 
and B this leaves us with a maximum of NA x NB models to 
be evaluated.  

An Illustration of the Model 
In this section, we will present an application of the K-
means Varying Abstraction Model to a natural language 
dataset consisting of the two superordinate categories fruit 
and vegetables taken from Smits et al. (2002). The choice of 
a natural language set of the superordinate level allows us to 
optimally test the model as it seems most relevant for 
categories that posses, intuitively, different subsets of items 
that are relatively similar within the subsets but rather 
different between subsets.   

Smits et al. (2002) analyzed a stimulus set consisting of 
pictures of 79 well-known items, retained after an exemplar 
generation task for the categories fruit and vegetables, and 
30 fruits or vegetables, mostly exotic, that were completely 
unknown to participants. Ten participants completed a 
feature applicability task for all stimuli, for the 17 most 
frequently generated features for fruit and vegetables, 
generated by a different group of thirty participants. (Taking 

the most frequently generated features ensures that the 
analysis is not clouded by potentially unreliable features that 
are important to only a few subjects.) A similarity matrix 
was then obtained by correlating the feature applicability 
vectors for all 109 stimuli, after summing over participants. 
A different group of thirty participants classified the well-
known stimuli as belonging to either fruit or vegetables. A 
group of twenty different participants did the same for the 
novel stimuli.  

In order to obtain dimensions, the derived similarities 
between the 109 old and novel fruits and vegetables were 
analyzed with ALSCAL (Takane et al., 1977). A three-
dimensional ordinal solution was chosen that explained 
approximately 96 percent of the variance. 

Smits et al. then predicted category decisions based on the 
geometric versions of the GCM and the Single-Prototype 
Model and found a clear advantage of the GCM over the 
prototype model.  

Fitting the K-means Varying Abstraction Model 
In the illustration presented here we fitted the different 
models of the generic family to the classification data of the 
30 novel stimuli. The first step is to apply K-means 
clustering to each category separately in order to find the 
cluster centers, and hence the prototype coordinates. The 
well-known items are seen as the stored items, as they were 
generated from memory by actual subjects. This means that 
there are 35 stored exemplars in the category fruit and 44 
stored exemplars in the category vegetables. To make the 
comparison even more feasible, we chose not to examine 
every possible clustering ranging from 1 cluster to N 
clusters, but to work in steps of 4. Hence, for each of the 
two categories, clustering was applied to the well-known 
stimuli based on the three dimensions as produced by 
ALSCAL  resulting in 1, 5, 9, 13,....,N clusters for each 
version of the model. Thus we have a total of 10 successive 
steps for fruit and 12 for vegetables, including the extreme 
cases where K=1 and K=N. This leaves us with an effective 
number of 10 x 12 models to be fitted corresponding to the 
different combinations of the cluster levels.  
 In the next step, we simply used the coordinates as 
produced by K-means clustering as model input to define 
the coordinates of the K reference objects for each separate 
model.  
 Consequently, the models were fitted to the categorization 
data. As we are dealing with the scaling of response 
probabilities in two categories, the obvious way is to 
maximize the Likelihood assuming the binomial 
distribution1. In order to compare the models, we use the  

                                                           
1 This amounts to maximizing the binomial probability of the data 
arising under a specific parametrization of the model, 

( ) ( ) (1 )
r n rn j j j j

rj
p D M p pj jj

−
∏= − ,  

where the index j refers to the j-th to-be-classified exemplar. The 
number of trials for each stimulus corresponds to nj. Here, we use 
the proportion of classifications in the category fruit as a dependent 
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Figure 1a: BIC values for all models. The number of 
clusters for vegetables is indicated on the X-axis while the 

different curves represent the cluster levels for fruit. 
 
Bayesian Information Criterion (BIC) that is most suitable 
for nonnested models as is the case here2. 

Results and Discussion We will only discuss models fitted 
with an exponential decay function (q=1) and Euclidean 
distances (r=2) as this resulted in clearly better fit values. 
The results are summarized in Figures 1a and 1b. It is clear 

                                                                                                  
variable, so rj corresponds to the number of trials that the j-th item 
was classified as belonging to fruit. pj corresponds to the predicted 
proportion of classification of the j-th item in the category fruit. 
Practically, the natural logarithm of the Likelihood function is used 
as this produces identical parameter estimates. 
2 BIC = -2 ln(L) + k ln(n), where L is the likelihood value, k is the 
number of free parameters, and n is the number of data points. As 
such, the measure is a trade-off between model fit and model 
complexity Lower means better, and only the difference in free 
parameters needs to be taken into account, hence the models 
presented here are evaluated using only -2 ln(L). The 
absolute difference |∆| between two models can be roughly 
interpreted on a scale of e|∆|/2 where this approximates the 
probability ratio of the best fitting model over the worst fitting 
model (For an extensive discussion, see Kass & Raftery, 1995.)  
 

 
 

Figure 1b: BIC values for all models as seen on a surface 
plot. The number of clusters for each category is indicated 

on the axis. 
 
from these results that the actual optimum is not situated at 
the full exemplar model. The BIC value of the exemplar 
model, which corresponds to the classical GCM, is 149.22. 
For the Single-Prototype Model, the fit value was 167.97. 
The model that fits best in our analyses is the model with 21 
clusters for fruit and 17 clusters for vegetables. It has a BIC 
value of 138.71. This difference is large enough to 
decidedly reject the full exemplar model as the best-fitting 
model. Furthermore, as can be seen from figure 1a and 1b, 
there is a relatively smooth decrease towards this minimum, 
indicating that the optimum is not just due to spurious 
factors. We can therefore safely assume that the true optimal 
value is situated at least somewhere around this minimum. 
Thus, the categorization performance of people seems more 
likely to be explained by a strategy where people in fact use 
intermediate abstraction. It does seem to be the case, 
however, that the models that are relatively more close to 
the full exemplar model perform better than the models that 
are relatively close to the Single-Prototype Model.  

There seems also to be a certain asymmetry concerning 
the amount of clusters that are required for the category fruit 
and the category vegetables. To reach the optimal value, 
fruit requires more clusters than vegetables even though it 
has less stored exemplars to be compared with. 
Furthermore, the fit values as a function of the amount of 
clusters decrease faster as a function of the number of 
clusters in fruit than in vegetables. An explanation may by 
suggested by looking at the actual cluster assignments as 
produced by K-means clustering. In the case of vegetables, 
there are always less singular exemplars that make up a 
cluster in any of the cluster levels, except of course for the 
case where K=N. In the case of fruit, a large portion of the 
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clusters are singular exemplars, with for instance rhubarb as 
a single cluster from the start on. In the actual optimum, 14 
of the 21 clusters for fruit consist of exactly one exemplar. 
For vegetables, only 5 of the 17 clusters consist of a singular 
exemplar. Furthermore, most of the instances of fruit that 
were kept as singular clusters were highly atypical such as 
meddler or pomegranate whereas this was much less the 
case for vegetables. It appears that especially in the case of 
fruit, the capacity of the model to both keep similar items in 
one cluster and on the other hand keep outliers separate as a 
reference object is a crucial feature to explain the 
categorization data.  

Conclusion 
In the present paper, we present a generic model with 
varying levels of abstraction that incorporates the 
Generalized Context Model on the lowest level of 
abstraction, and the Single-Prototype Model on the highest 
level of abstraction, as special cases. Abstraction is based on 
similarity and is formally implemented by using K-means 
clustering to find the appropriate partitions within each 
category. The model therefore allows one to analyze large 
datasets as it does not require all partitions to be examined. 
 In an application on a set of unknown to-be-classified 
fruits and vegetables, the model clearly favors the 
intermediate levels of abstraction rather than one of the two 
extremes proposed by the classical models. It seems that 
especially in the case of larger categories with sufficiently 
different stimuli, such as natural language categories, this 
model provides a promising approach to modeling people’s 
categorization decisions. 
 Finally, the general framework of the model can easily be 
expanded to other models that use a multidimensional 
representation. In general, the framework of basing 
partitions on a similarity-based heuristic could also be 
expanded to models that use other representational 
assumptions than the multidimensional models (e.g., 
Verbeemen et al., 2004).  

Acknowledgments 
The first author is a research assistant of the Fund for 
Scientific Research – Flanders. This project was in part 
sponsored by grant OT/01/15 of the University of Leuven 
research council to Gert Storms. 

References 
Hampton, J. A. (1979). Polymorphous concepts in semantic 
 memory. Journal of Verbal Learning and Verbal 
 Behavior, 18, 441-461. 
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The  
 elements of statistical learning: Data mining, inference 
 and prediction. New York: Springer-Verlag. 
Kass, R. E. , & Raftery, A. E. (1995). Bayes factors. Journal 
 of the American Statistical Association, 90, 773-795. 
Komatsu, L. K. (1992). Recent views of conceptual  

Structure. Psychological Bulletin, 3, 500-526. 

Medin, D. L., & Schaffer, M. M. (1978). Context theory of 
 classification learning. Psychological Review, 85, 207-
 238. 
Nosofsky, R. M. (1986). Attention, similarity, and the 
 identification-categorization relationship. Journal of 
 Experimental Psychology: General, 115, 39-57. 
Nosofsky, R. M. (1992). Exemplars, prototypes and 
 similarity rules. In A F. Healy, S. M. Kosslyn, & R. M. 
 Shiffrin (Eds.), From learning theory to connectionist 
 theory: Essays in honour of William K. Estes, Vol. 1. 
 Lawrence Erlbaum, Hillsdale, NJ.  
Nosofsky, R. M., & Zaki, S. R. (2002). Exemplar and 
 prototype models revisited: Response  strategies, selective 
 attention, and stimulus generalization. Journal of 
 Experimental  Psychology: Learning, Memory and 
 Cognition, 28, 924-940. 
 Rosch, E., & Mervis, C. B. (1975). Family resemblances: 
 Studies in the internal structure of categories. Cognitive 
 Psychology, 7, 573-605. 
Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: 
 The early epochs of category learning. Journal of 
 Experimental Psychology: Learning, Memory and 
 Cognition, 24, 1411-1436. 
Smith, J. D., & Minda, J. P. (2000). Thirty categorization 
 results in search of a model. Journal of Experimental 
 Psychology: Learning, Memory and Cognition, 26, 3-27. 
Smits, T., Storms, G., Rosseel, Y., & De Boeck, P. (2002). 
 Fruits and vegetables categorized: An application of the 
 generalized context model. Psychonomic Bulletin and 
 Review, 9, 836-844. 
Storms, G., De Boeck, P., & Ruts, W. (2000). Prototype and 
 exemplar-based information in natural language 
 categories. Journal of Memory and Language, 42, 51-73.  
Storms, G., De Boeck, P., & Ruts, W. (2001). 
 Categorization of unknown stimuli in well-known natural 
 language concepts: a case study. Psychonomic Bulletin 
 and Review, 8, 377-384. 
Takane, Y., Young, F. W., & De Leeuw, J. (1977). 
 Nonmetric individual differences multidimensional 
 scaling: An alternating least squares method with optimal 
 scaling features. Psychometrika, 42, 7-67. 
Vanpaemel, W., Storms, G. , & Ons, B. (2005). A varying 
 abstraction model for categorization. Manuscript 
 submitted for publication. 
Verbeemen, T., Storms, G., & Verguts, T. (2003). 
 Determinants of Speeded Categorization in Natural 
 Concepts. Psychologica Belgica, 43, 139-151. 
Verbeemen, T., Storms, G., & Verguts, T. (2004). Similarity 
 and taxonomy in categorization. In K. Forbus, D. Gentner 
 & T. Regier, (Eds.), Proceedings of the 26th Annual 
 Conference of the Cognitive Science Society, pp. 1393-
 1398. Mahwah, NJ: Erlbaum.  
Verbeemen, T., Vanoverberghe, V., Storms, G., & Ruts, W. 
 (2001). The role of contrast categories in natural language 
 concepts. Journal of Memory and Language, 44, 618-643. 
 
 

2306




