
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Building Simple Annotation Tools

Permalink
https://escholarship.org/uc/item/06d087v9

Author
Lin, Gordon

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/06d087v9
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Building Simple Annotation Tools

A Thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Computer Science

by

Gordon Lin

Committee in charge:

Professor Chun-Nan Hsu, Chair
Professor Kamalika Chaudhuri, Co-Chair
Professor Ranjit Jhala

2016

Copyright

Gordon Lin, 2016

All rights reserved.

The Thesis of Gordon Lin is approved, and it is acceptable in

quality and form for publication on microfilm and electroni-

cally:

Co-Chair

Chair

University of California, San Diego

2016

iii

EPIGRAPH

Fools ignore complexity. Pragmatists suffer it.

Some can avoid it. Geniuses remove it.

—Alan Perlis

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

Acknowledgements . viii

Abstract of the Thesis . ix

Chapter 1 Complexity of Annotation Tools . 1
1.1 Introduction . 1
1.2 Software Complexity . 3

1.2.1 Defining Complexity 3
1.2.2 Simplicity is Key for Development 4
1.2.3 Simplicity is Hard . 5

1.3 Complexities in Annotation Tools 5
1.3.1 Documents . 6
1.3.2 Annotations . 7
1.3.3 Implementation . 8

1.4 Conclusion . 10

Chapter 2 Notate: Simple Functions for Building Annotation Tools 12
2.1 Introduction . 12
2.2 Functional Programming for Browser Applications 14

2.2.1 React . 15
2.2.2 ClojureScript . 15

2.3 Complexities when Inlining Standoff Annotations 16
2.3.1 Accidental Complexities 16
2.3.2 Essential Complexities 18

2.4 Notate’s Design . 21
2.4.1 Library of Primitive Functions 21
2.4.2 Standoff Annotations and Selection 21
2.4.3 Inlining Annotation Data into Text 22
2.4.4 Creating Intervals from User Selection 24

2.5 Protocol and Function Definitions 26
2.5.1 Protocols . 26
2.5.2 Functions . 28

2.6 Function Usage . 30
2.6.1 inline . 30

v

2.6.2 range-interval . 32
2.7 Demonstration Tools . 34

2.7.1 Basic . 34
2.7.2 Labeling . 35
2.7.3 Layering . 36
2.7.4 Scoring . 36
2.7.5 Suggesting . 37

2.8 Conclusion . 38

Appendix A Function Algorithms . 40
A.1 inline . 40

A.1.1 Algorithm . 40
A.2 range-interval . 44

A.2.1 Algorithm . 44

Bibliography . 46

vi

LIST OF FIGURES

Figure 1.1: The brat rapid annotation tool (BRAT) [SPT+12] is popular for NLP
projects and research. 2

Figure 2.1: Rendering of Listing 2.5 with CSS styling. 24

Figure 2.2: The basic annotation tool highlights annotated text. 35

Figure 2.3: The basic annotation tool can annotate formatted text as well. 35

Figure 2.4: The interactive labeling tool allows users to label text without popup
menus. 35

Figure 2.5: The layering annotation tool has three layers of annotations. The user
can change the current annotating layer, layer visibility, and layer colors
with the control menu on top. 36

Figure 2.6: The scoring annotation tool can be used to score candidates for annota-
tion projects. The candidate can retrieve a secret token if his score is
high enough. 37

Figure 2.7: The suggesting annotation tool presents suggestions to the user. The
user can click on the bordered dotted text to show the suggested labels.
The user can then click on a suggested label to annotated the dotted text. 37

vii

ACKNOWLEDGEMENTS

I would like to thank Professor Chun-Nan Hsu for his support and patience through-

out my masters and thesis work.

I would also like to thank Professor Kamalika Chaudhuri and Professor Ranjit Jhala

for taking the time to review this thesis.

viii

ABSTRACT OF THE THESIS

Building Simple Annotation Tools

by

Gordon Lin

Master of Science in Computer Science

University of California, San Diego, 2016

Professor Chun-Nan Hsu, Chair
Professor Kamalika Chaudhuri, Co-Chair

The right annotation tool does not always exist for processing a particular natural

language task. In these scenarios, researchers are required to build new annotation tools to

fit the tasks at hand. However, developing new annotation tools is difficult and inefficient.

There has not been careful consideration of software complexity in current annotation

tools. Due to the problems of complexity, new annotation tools must reimplement common

annotation features despite the availability of implementations in open sourced tools.

If new tools continue to ignore software complexity, their development will remain

difficult and inefficient. This thesis advocates minimizing complexity for annotation tools in

ix

two ways: we raise awareness of complexity in annotation tools, and we propose our solution

for assisting the development of simple annotation tools. We present our library, Notate,

which provides simple implementations for building common features with in annotation

tools.

x

Chapter 1

Complexity of Annotation Tools

1.1 Introduction

Annotation tools are important components for many natural language processing

(NLP) projects. They provide interfaces for visualizing and interacting with annotations

within text documents, relieving annotators the tedious management of the underlying data

format. There are a wide selection of tools available, each with their own strengths and

weaknesses. It important for researchers to choose tools suitable for their project’s tasks.

However, there are situations where no suitable tool exist, where all available tools

lack functionality required for the desired task. In these cases, researchers will need to either

create new tools or modify existing ones. Finlayson and Erjavec [FE16] suggest modifying

existing tools over creating new ones, due to problems from implementing new tools. The

three problems they mention are: reimplementation of behaviors in existing tools, early

design errors stopping implementation down the line, and expensive maintenance cost from

bug fixes and support requests. Finlayson and Erjavec do not address these problems and

recommend modifying existing tools instead.

1

2

Figure 1.1: The brat rapid annotation tool (BRAT) [SPT+12] is popular for NLP
projects and research.

However, modifying existing tools is not always feasible. Common problems

such as poor documentation, lack of support, and software bugs [FE16] make existing

tools expensive to change. The cost is increased if usability is a concern, as many tools

exhibit usability violations [Bur12, Bur14]. In these cases, it is cheaper and faster to

create new tools from scratch, especially if the tools only require a small set of specialized

features. We see evidence of this in crowdsourcing studies where annotation tools have

been incorporated into crowdsourced microtasks. Many crowdsourced annotation studies

[GNWS14, YYSXH10, ZLD+13] have built their own custom annotation tools from scratch.

Initially, we were interested in exploring use cases for annotation tools on crowd-

sourcing platforms. Unfortunately, the existing tools were not easily reusable for crowd-

sourcing due to their inherent problems. We needed to build new annotation tools like many

other annotation crowdsourcing studies. However, we realized that building new annotation

tools is a significant challenge, and any naive attempts at their development will lead to

3

problems alluded by Finlayson and Erjavec. Instead of building new tools, we would like to

discuss and solve the issues which arise in their development. We believe these problems are

caused by software complexity and understanding it will make developing annotation tools

easier. In this chapter, we discuss why complexity is problematic, the benefits of simplicity,

and sources of complexity in annotation tools.

1.2 Software Complexity

In this section, we argue the importance of understanding software complexity. We

define what complexity means, why it is problematic, and the difficulty in removing it. We

draw our arguments from Rich Hickey’s Simple Made Easy [Hic11], Ben Moseley and Peter

Marks’s Out of the Tarpit [MM06], and Fred Brooks’s No Silver Bullet [Bro87].

1.2.1 Defining Complexity

Terminologies describing software complexity are often used casually with vague

meaning. Here, we define a few key terms and our intended meaning when used in this thesis.

For simple and complex, we take their definitions from Simple Made Easy. For essential and

accidental complexity, we adapt their definitions from Out of the Tar Pit, which themselves

are adaptations of essential and accidental difficulties from No Silver Bullet.

Simple describes the lack of entanglement. A software component is said to be simple if

its behavior, role, or idea is not entangled with other components.

Complex is the opposite of simple, describing the entanglement of behaviors, roles, and

ideas between software components.

4

Essential Complexity is complexity inherent in problem to be solved. It is the essence of

the problem and cannot be removed.

Accidental Complexity is complexity unrelated to the problem. Moseley and Marks de-

scribes it as a mishap, as something non-essential which is present.

The definitions listed here are quite loose. Although there are complexity metrics

which attempt to define complexity in an objective manner, we do not find them useful.

Complexity metrics are difficult to interpret and are only loosely correlated with software

complexity [KST+86]. They are not useful for identify complexity on a daily basis. Despite

our broad definitions for complexity, they are a useful starting point for thinking and

discussing about complexity in our software.

1.2.2 Simplicity is Key for Development

Moseley, Marks, and Hickey all argue these facts: we must be able to understand our

software if we wish to make them robust and correct; our primary method for understanding

software is through informal reasoning; and complexity destroys our ability to reason

about our software. Complex software is difficult to understand because its components

are entangled; as we attempt reason about one component, our mental capacity becomes

burdened with additional components that comes entangled with it.

The most fundamental part of developing new software is conceptualizing and

understanding its design. In his essay, Brooks writes:

“I believe the hard part of building software to be the specification, design, and
testing of this conceptual construct, not the labor of representing it and testing
the fidelity of the representation.”

All other qualities in software, its ease of implementation; correctness; maintainability,

derive from the quality of its design. Judging the quality of software design is difficult if

5

we cannot understand how it behaves. If we wish to avoid problems when we develop new

software, we need to conceptualize a simple design such that we can reason about it.

1.2.3 Simplicity is Hard

Achieving simplicity requires hard work and recognition, as Moseley and Marks

states:

“significant effort can be required to achieve simplicity. . . (it) can only be
attained if it is recognised, sought and prized.”

Unfortunately, there is no technology or technique which will bring simplicity to our

software, a sentiment expressed by Brooks. The only way to obtain simplicity is to avoid

complexity, which requires an understanding of complexity in our software. As Hickey says

in his talk:

“You have to start developing sensibilities around entanglement. . . You want to
start seeing interconnections between things that could be independent.”

When we set out to build software in any particular domain, we need to evaluate each of its

complexities. For each we find, we need to judge whether such complexity are essential or

accidental. Our reasoning about our software’s complexity is vital for building it simply.

1.3 Complexities in Annotation Tools

Annotation tools bring together an interface for text documents and annotations. In

this section, we examine various aspects of annotation tools and their associated complexi-

ties.

6

1.3.1 Documents

The purpose of annotation tools is to generate annotations anchored to locations

within text documents. Annotation tools apply processes to make documents annotatable

and may introduce complexities when doing so.

Tokenization

Many annotation tools preprocess text documents by tokenizing their text content.

Complexity is introduced if other behaviors in the tool depends on the tokenization. For

instance, some tools restrict the creating annotation information to word tokens. In other

tools, documents are visualized as sentence tokens. In these kinds of tools, altering the

tokenization algorithm will result in side effects in tool’s annotation behavior or document

visualization.

Annotatable Regions

Documents may be partitioned into separate annotatable regions. For example, a

tool may choose that only paragraph elements are annotatable in HTML documents. Tools

need to consider how regions are addressed location-wise with a document, how regions

are determined to be annotatable, and how annotations behave between and within regions.

These considerations add behaviors and rules to the document, creating complexity. There

are many possibilities when dealing with annotatable regions. We can only recommend

implementing behaviors and rules which yield the least amount of complexity.

7

1.3.2 Annotations

Annotations are information attached to text within a text document. They are

often used to comment or label their targeted text. There are various choices in their

implementation, each with different complexity characteristics.

Inline vs Standoff

Annotations may be represented within the document or outside of it. If the annota-

tions are inline, they are placed within the document in the flow of text. Inlined annotations

often appear as markup in document formats such as HTML and XML. If annotations are

standoff, they are separate from the document’s flow of text. Standoff annotations are often

stored in a separate file from the document. The format used by BRAT [bra] is an example

of a standoff format.

Inlined annotations are not recommended due to complexity of placing them into

the document [PS12]. Because they are placed within the document, inlined annotations are

tied to limitations of the document format. For example, creating overlapping annotations

is difficult in a HTML document because HTML does not support partially overlapping

elements. If given the choice, favor standoff annotations over inlined annotations.

Standoff Positions

Because standoff annotations are separate from the document, they need to specify

their positions within the document. For a document with annotatable regions, standoff

annotations need to specify the region they address. Within each region, the annotations need

specify the span of text which is annotated. These specified positions may have complexity

if they rely on behaviors in other parts of the tool. For instance, standoff annotation based on

8

tokens are tied to the tokenization algorithm. They are less flexible than standoff annotations

based on character indexes [PS12]. If possible, choose position specifiers that don’t depend

on behaviors from elsewhere.

Constraints

Annotations may have constraints relative to each other. An example constraint may

be to forbid overlapping annotations. Enforcing constraints is an extra source of complexity

which ties rules to annotations.

Referential Information

Some annotation tools manage information which refer to annotations. Since they

are about annotations, they are tied to annotations they refer to. An example is relational data,

where each piece of data may describe something between a set of annotations. Changing

the relationship’s annotations may influence the relationship itself. For instance, if one of

the relationship’s annotation is deleted, the relationship may become invalid. The tool may

handle this by either deleting the invalid relationship or by not allowing annotations with

relationships to be deleted.

1.3.3 Implementation

An annotation tool’s implementation is a source of complexity. We list a few

implementation choices we have seen which make annotation tools complex.

9

Formats and Models

Documents and annotations are represented in a wide variety of formats such as plain

text, HTML, XML, or PDF. Annotation tools parsed documents and annotations encoded in

these formats and covert them into in-memory data structures representing them.

The annotation tool’s data format and model are mapped to and from each other,

forming a source of complexity. The complexity may be widespread if many formats are

supported. If the model changes, all supported formats may have to change as well.

To reduce this complexity, choose formats which require less mapping between the

format and the data model. Ideally, choose a format which is a literal syntax of the model’s

data structures. For example, if the annotation tool is written in JavaScript and its model

data structures are JavaScript objects, use JSON as the serialization format. Since JSON is a

literal syntax for JavaScript objects, complexity between the format and model is greatly

reduced because there is no special effort required for mapping one to the other.

Part of a System

Annotation tools are often pieces in a larger system, where they integrate with

databases, servers, and other tools. Common examples are web-based annotation tools,

where annotation tools are served from their servers. These integrated tools are difficult

to reuse in other systems due to their assumptions on external services. For instance, it is

difficult to take an annotation tool which assumes a client-server system and place it on a

cloud-based crowdsourcing platform where no explicit server exist.

10

Visualization Styles

All annotation tools have distinct visualization styles which influence the behaviors

of their documents and annotations. For example, some tools visualize a document as rows

of sentences. In these tools, the document is tokenized by sentences and annotations have

special behavior if they cross between them.

Layers

Annotation tools may visualize different sets of annotations using “layers” on their

documents. Layers are useful for comparing different sets of annotations. For example,

annotation tools may use layers to compare a set of fuzzy annotations to a set of gold

standard annotations.

Layers have complexity in their visualization. Layers in annotation tools are analo-

gous to layers in image manipulations programs. They are implemented as "stacks" of sheets

on top of documents, where each sheet contains annotation visualization elements positioned

above the annotated text. Because annotations may overlap between layers, the ordering

of layers is important. Annotations on upper layers obscure or alter the visualization of

annotations in lower layers.

1.4 Conclusion

There are situations where the right tools do not exist and building new tools becomes

necessary. Building new annotation tools is a challenge in conceptualizing their designs,

requiring an understanding of their complexity. We have outlined complexities in annotation

tools to help guide development for new annotation tools. We recommend building new

11

annotation tools with simplicity in mind and avoid unnecessary complexity.

Chapter 2

Notate: Simple Functions for Building

Annotation Tools

2.1 Introduction

The web browser is a powerful and versatile platform for implementing annota-

tion tools. Client-server based annotation tools such as BRAT [SPT+12] and WebAnno

[YGdCB13] have demonstrated the web browser as an easy to use platform for scaling anno-

tation within a small group of expert users. Crowdsourcing studies [GNWS14, YYSXH10,

ZLD+13] have demonstrated further scalability by building annotation tools into crowd-

sourced microtasks distributed through browser based crowdsourcing platforms. It is evident

to us that new annotation tools will be built for the browser and benefit from the browser’s

interface and scalability.

Most annotation tools implement the following features: they visualize annotations

by inlining them into text (often to highlight annotated text), and they create annotations from

user selected text. These features allow annotators to intuitively annotate text documents and

12

13

are found in nearly every interactive annotation tool. If we wish to develop new annotation

tools, we will need to implement these features.

Currently, developing new annotation tools is inefficient because there is no reusable

implementation for the previously mentioned features. Existing implementations in current

tools are not reusable because they are complex; they are entangled with other behaviors

in their tool that we are not interested in. Their complexity makes it difficult to isolate and

reuse in new tools.

The solution is to develop a reusable library which provides a simple implementation

for inlining annotations into text. Unfortunately, inlined annotations is a major source

of complexity which entangles the annotations with its text document. In Chapter 1,

we recommended that tools should avoid this complexity by using standoff annotations.

However, because inlined annotations is such a powerful and intuitive way to visualize

annotations, it is an essential feature (and thereby essential complexity) for annotation tools.

We still recommend storing annotations in a standoff style, but for visualizing annotations,

inlined annotations is unavoidable. If we want to develop a simple library for inlining

annotations, we need to handle this complexity in the simplest manner.

In addition, most annotation tools implement the same, uninspired inlined visu-

alization for annotations and we believe there is an opportunity for creating new tools

with richer visualizations and interfaces. Most tools highlight annotated text; some tools

support labeling annotated text; few tools implement visualizations beyond highlighting

and labeling (so far, we have only seen relationships between annotations). We believe the

complexity from inlined annotations is so great such that is has prevented tool developers

from innovating visualizations. If we can build a simple library for inlining annotations,

not only do we make development more efficient, but we also enable the development of

14

more innovative tools. Because it is unentangled with any specific behavior, a simple library

should have the power to inline arbitrary structures into text. Developers using this library

can inline what is needed to support rich inlined visualizations.

In this chapter, we present our ClojureScript library, Notate, which is our solution at

providing a simple and reusable implementation for inlining annotation data into text. We

designed our library to be simple by leveraging functional programming and abstractions

on text data types which it operates on. In the following sections, we discuss its design

principles and usage for flexibly building new annotation tools.

2.2 Functional Programming for Browser Applications

Browser based annotation tools are built as single page applications (SPA) in order

to provide fluid interfaces for their users. SPAs achieve this by managing application state

and render state on the client’s browser. Unfortunately, stateful applications are difficult to

develop because state adds complexity, making them difficult to understand [MM06]. In

order to make development simple, we need to limit state as much as possible.

For our work in this chapter, we limit state through the use of functional program-

ming. This style of programming emphasizes building applications mostly out of pure

functions, where functions which return the same value given the same input. Applications

built out of mostly pure functions have very little state, with state only existing at the fringes

(e.g. database request, rendering operations, etc...) of the applications. When the bulk

of the application is comprised of pure function, it easy to reason about and easy to test

because pure functions are easy to reason about and easy to test [MM06, Hic11]. If we

can build SPAs in a functional style, we can avoid unnecessary state and complexity in our

applications.

15

2.2.1 React

In order to build SPAs in a functional style, we have chosen to use the React

JavaScript library [rea]. React is a user interface library which allows developers to build

components of their web application in a functional style. Many developers describe React

as the View in the Model View Controller pattern. Each React component must define a

render function which receives property values as arguments and returns Virtual DOM

(VDOM) as output. The VDOM is React’s representation of the browser’s Document Object

Model (DOM); it allows React to efficiently update the webpage. When a React component

is instantiated with property values, its resulting VDOM can be mounted onto the webpage.

When a VDOM is mounted, React performs the required DOM operations to render the

component on the browser. A React component can be updated by instantiating it with

different property values, resulting in a different VDOM. When the new VDOM is mounted,

React compares the new VDOM with the previously mounted VDOM and performs the

minimal DOM changes needed to update the component. React’s diffing of VDOMs allows

SPAs to be written in a functional style while maintaining rendering efficiency. By handling

DOM updates, React relieves developers of managing state complexity in the DOM, making

SPA development simple.

2.2.2 ClojureScript

In the past, SPAs were only written in JavaScript because it was the only supported

programming language in web browsers. However, recent advancements in JavaScript

engines have made JavaScript extremely fast and have allowed JavaScript to be a compilation

target for other languages. For our work in this chapter, we have decided to use ClojureScript

[clob] as our implementation language. ClojureScript is a port of the Clojure [cloa] language

16

to the browser with JavaScript as its compilation target. ClojureScript is dialect of the

Lisp programming language with an emphasis on functional programming. It makes

functional programming idiomatic by providing a large core functional library, immutable

collections, functional polymorphism mechanisms, and many other features. In addition, the

ClojureScript community has made developing functional SPA easy by embracing React.

There are many high quality ClojureScript frameworks and libraries designed to work with

React. We have chosen to build our library using ClojureScript because of its support for

functional programming and its community libraries for writing React applications.

2.3 Complexities when Inlining Standoff Annotations

2.3.1 Accidental Complexities

Inlining annotation data into text is a complex process involving many different

behaviors. It is easy to introduce accidental complexity in its implementation. Here, we

outline accidental complexities we have seen in annotation tools. Our library is designed to

avoid these complexities completely.

What is Inlined

Most, if not all, annotation tools are built as monolithic systems. They control all

aspects of their interface and implement a specific visualization style envisioned by their

developers. Their inlining implementation is designed to support the tool’s interface and

style. Unfortunately, because the tool’s components are not designed for reuse in other tools,

the inlining implementation is often tied with the tool’s style and is difficult to alter to inline

something else.

17

Coupled and Premature Rendering

Inlining is a distinct and separate process from rendering. It is possible to inline

elements into text in memory without have it show up on the webpage. However, many

annotation tools mix these two processes and immediately render what is inlined. Premature

rendering may be unsafe because it may unknowingly trample on view states on the webpage.

This complexity is not a problem for many tools because they have complete control of

their webpage. However, they are hard to reuse in other tools due to their assumptions of

control. In addition, prematurely rendering annotations may be less efficient due to a lack of

batching. For example, if a tool creates five annotations at once, it is more efficient to render

all annotations in one update than to render five separate times in a row.

Specific to Text Type

We often see tools which are only capable of annotating plain text and offer no

support for annotating formatted text. Their inlining implementation operates on concrete

types such as strings or DOM Text nodes. They are unable to inline other types of text such

as formatted text (such as bolded or italicize text) or annotated text (from another tool or

a previous step). These tools lack abstractions for text making them difficult to change to

annotate on other types of text.

Irrelevant Parent Element

Browser annotation tools contain their annotated text within a parent DOM element.

Often, the tool’s inlining implementation expects a DOM element to inline into. However, the

DOM element is irrelevent to the concept of inlining into text. The inlining implementation

often just operates on the element’s children text nodes and the DOM element just happens

18

to contain the text. Their irrelevance can be spotted by examining the tool’s standoff format.

If the format does not contain information about the element within which the annotations

are contained, then the DOM element is irrelevant to the tool’s inlining process. The process

of inlining annotation data into text can be separated from the process of placing the inlined

results into a parent element.

2.3.2 Essential Complexities

We have chosen to show inlined annotations as a feature for our browser based tool.

Its implementation creates unavoidable complexity by combining the browser, text, and

annotations. Sometimes there are choices between different implementations, each with

different complexity. In this section, we list essential complexities related to our library and

how it handles them.

Wrap with Element vs Overlay

Annotation tools can use one of two styles to show inlined annotations on the

browser: either they wrap annotated text with an inlined element, or they use absolute

positioned elements on an overlay layer above the text. Each approach differs in complexity.

In order to wrap text with an element, the tool needs to identity the annotated text,

split it from the rest of the text, and create an element to wrap the text. Wrapping text is

complex for a few reasons. First, it is limited to the hierarchical structure of HTML, which

makes it awkward to implement partially overlapping annotations. Second, it changes text

by splitting it and inserting elements into it. This mixes the original text with annotations

and creates complexity for the tool. The annotation tool now has to manage text consisting

of heterogeneous nodes; some of the nodes are the original text and some are annotation text.

19

In addition, heterogeneous text nodes cause problems for creating annotations because they

complicate standoff position calculations. The user’s selection may cross the boundaries

between text nodes and the selected nodes may be different. The tool must somehow

normalize the user’s selection to a standoff position while taking all possible selectable

states into account.

Some annotation tools implement an overlay instead of wrapping annotated text

with elements. In this style, the tool visualizes an annotated document as two layers, where

the bottom text layer contains the annotatable text and the top annotation layer contains

absolutely positioned elements for annotation visualization. The advantage of this style is

that the tool does not have to change the text in the bottom layer. However, overlays have

complexity related to positioning and rendering. Problems occur when the positions of

text changes unexpectedly and the positions of visualizations are not adjusted accordingly.

Text positions may change if CSS styling changes, user zoom level changes, or element

layout changes. Annotation tools implementing overlays often find themselves enforcing all

aspects of the webpage in an attempt to freeze text positions.

For Notate, we have chosen to support annotating text by wrapping it with elements

over overlaying it with position elements. In our experience, we have found that overlays

involve too much complexity from the rendering and positioning of text. In contrast, the

complexity of wrapped elements can be mitigated with proper abstractions for text. We

explain these abstractions in Section 2.4.

Partially Overlapping Annotations

Partially overlapping annotations are awkward to implement by wrapping text with

elements because HTML is hierarchical. The tool either needs to disallow partially overlap-

20

ping annotations or have methods for dealing with them. Tools which allow partial overlaps

often handle them by splitting the wrapping elements of overlapping annotations into pieces.

One strategy is to have annotations which are on “top” split annotations which are “below”

it and have the top piece wrap the overlapping bottom piece. Another strategy is to merge

the attributes of overlapping pieces together.

Notate allows partially overlapping annotations by using abstractions which treat

wrapped elements as ordinary, annotatable text. We illustrate these abstractions and how

they handle partial overlaps in the Section 2.4.

Visualization Doubles Annotation State

Annotation tools manage a stateful collection of standoff annotations where an-

notators can add, edit, and delete annotations from. When a tool needs to visualize its

annotations, it combines annotations with the text document and renders the result to the

webpage using the browser’s DOM API. Because the DOM is a stateful API, the rendered

result is a second source of state for annotation tools. The tool must manage two sources of

annotation state: its standoff collection and the rendered visualization; and it must keep both

states synchronized. Otherwise, the visualization may not match with the corresponding

state in the annotation collection.

Notate’s strategy for handling visualization state is to let another library manage it,

namely React. In addition, Notate provides pure functions where the process of inlining

annotations is stateless. We can avoid doubling annotation state by combining pure functions

with React. Notate’s functions are meant to be used within React components, computing the

inlined visualization as VDOM elements from the value of the standoff annotation collection.

Through this technique, our visualization state becomes derived from our standoff annotation

21

collection state and is automatically managed by React.

2.4 Notate’s Design

2.4.1 Library of Primitive Functions

Notate provides pure functions for building annotation tools with. By providing

pure functions, it avoids complexity which comes with stateful programming. In addition,

it is also designed to be as minimal as possible and so it provides only two primitive

functions for annotation tools. One function inlines annotation data into text for an individual

DOM element. Another function calculates standoff positions from the user’s selection.

Developers using Notate must combine these functions with other technologies because

these two functions do not build a complete annotation tool by themselves. For instance,

since Notate does not handle DOM rendering, we expect developers to combine Notate’s

functions with third-party rendering libraries such as React.

2.4.2 Standoff Annotations and Selection

Notate uses standoff annotations by character indexes, an annotation style common

in many annotation tools. In this style, annotated text are specified by an integer interval

containing a start and end index. Notate expects an interval to be an integer pair wrapped

in a sequence. The first integer in the sequence is the starting index, inclusive. The second

integer is the ending index, exclusive. For our examples in this chapter, we use ClojureScript

vectors literals (square brackets) wrapping two integers to represent intervals. For example,

the vector [0 4] annotates character starting from character 0 and up to, but not including,

character 4.

22

Most annotation tools specify custom formats for encoding standoff annotations.

Despite their intricacy, standoff annotation formats can be broken into two distinct parts:

character index interval and domain information. Notate does not deal with annotation

formats or domain specific information. Instead, Notate provides a function for creating

character index intervals from user selected text. It is left to the developer to use this function

to build a complete annotation with domain information.

2.4.3 Inlining Annotation Data into Text

Notate provides a function, inline, which inlines standoff annotation data into text

by splitting it. Consider the HTML element in Listing 2.1. If we wish to wrap dddd with an

element, we specify the interval [12 16] to inline. It then splits dddd from the rest and wraps

it with a <mark> element (Listing 2.2).

Listing 2.1: HTML element example

< div > a a a a b b b b c c c c d d d d e e e e < / div >

Listing 2.2: Element annotated at interval [12 16]

< div > a a a a b b b b c c c c <mark>dddd< / mark> eeee < / div >

inline works with formatted text as well. Formatting introduces a few challenges

for inlining. In Listing 2.3, bbbb is emphasized, causing the div element to contain the

following three child nodes: aaaa, bbbb, and ccccddddeeee.

Listing 2.3: HTML element with formatting

< div > aaaa bbbb< / em> c c c c d d d d e e e e < / div >

23

inline must be able to annotate a heterogeneous sequence of text-like nodes. In order to

wrap dddd at interval [12 16], it needs to determine its location in the third node. This

is accomplished by obtaining the logical character lengths of the nodes. In our example,

the aaaa node has a length of 4, the bbbb node has a length of 4, and the

ccccddddeeee node has a length of 12. inline uses the nodes’ lengths to assign cumulative

intervals. The nodes aaaa, bbbb, and ccccddddeeee are assigned the intervals

[0 4], [4 8], and [8 20] respectively. The annotation interval and the node intervals are used

to determine which nodes are splitted and wrapped.

Annotations may partially overlap with formatting. In this scenario, formatted text

must be splittable, like all other text nodes. In Listing 2.4, an annotation of interval [6 16]

overlaps with an emphasis node, which has an interval [4 8]. The result is that the emphasis

node is split in half, with the second half enclosed by the annotation’s wrapping element.

Listing 2.4: HTML element with formatting

< div > aaaa bb< / em><mark>bb< / em> ccccdddd < / mark> eeee < / div >

Our formatting examples are actually a specific scenario of a more generic scenario.

As long as all nodes have character lengths and are splittable, they can be inlined into. In

addition, the parent node (the div element in our examples) is irrelevant to annotation, only

its children nodes matter. Therefore, inline uses this abstraction: any sequence of lengthed

and splittable nodes can be inlined into.

inline’s abstraction allows it to easily implement a difficult feature in annotation

tools: layering. As long as the inlined result is a sequence of lengthed and splittable nodes, it

can be inlined into again. By using this technique, an annotation tool can logically organize

different groups of annotations together and inline them in stages by chaining inline calls

one after another.

24

So far in our examples, we have annotated by enclosing nodes within a <mark>

element. However, annotation tools may need to inline arbitrary data into text in order

to support more advanced features. For example, a tool may wish to have annotated text

adorned with labels. In Listing 2.5, the label text “foobar” is inlined to the left of the

annotated text. Using CSS, the label text can be styled on top, as shown in Figure 2.1.

Notate allows arbitrary inlining by making inline a higher-order function, where one of its

argument is a function which determines what is inlined. Developers can control the return

value of this function and inline what is needed for their annotation tool.

Listing 2.5: Annotated text with label text to its left.

< div > a a a a b b b b c c c c <span c l a s s = ‘ ‘ l a b e l ’ ’

> f o o b a r < / span><mark>dddd< / mark>< / span> eeee < / div >

Figure 2.1: Rendering of Listing 2.5 with CSS styling.

2.4.4 Creating Intervals from User Selection

Notate provides a function, range-interval, for creating character intervals from

user selected text. This function uses the browser’s Range object interface to determine

what DOM elements are selected. The Range object has two properties, startContainer

and endContainer, which specifies which DOM nodes start and end the user’s selection.

The Range object also contains two additional properties, startOffset and endOffset, which

specifies the offset of startContainer and endContainer respectively. range-interval uses

these four properties to calculate the equivalent selected interval. The indexes for the interval

25

are calculated by adding the offset to the sum of character lengths for each of the container’s

previous sibling nodes to parent node.

Consider the example in Listing 2.6 where the user has selected dddd. In this

example, both of the Range’s startContainer and endContainer are the node ccccddddeeee,

and both startOffset and endOffset are 4 and 8 respectively. To calculate the start index, the

range-interval function sums the length of the startContainer’s previous siblings with the

startOffset. The startContainer’s previous siblings are aaaa and bbbb, each

with a length of 4. The resulting start index is 12. The same process is repeated for the end

index, resulting in an end index of 16. The interval for this example selection is [12 16].

Listing 2.6: The bar character, |, shows where the user has selected and is not part
of the text. In this example, dddd is selected.

< div > aaaa bbbb< / em> cccc | dddd | eeee < / div >

Sometimes, there are insertions of extra “meta” text that are not logically part of

the original, annotated text. These meta text throws off interval calculations by adding

extra lengths to the sum. For example, developers may choose to insert extra label text as

explained previously (Listing 2.5). Invisible nodes with character text, such as comment

nodes, also throw off interval calculations. In order to correct interval calculations, Notate

provides a mechanism for controlling a node’s length. Developers can use this mechanism

and set meta nodes to have a length of zero. By using this technique, range-interval is able

to calculate the correct interval even in the presence of extra meta nodes.

26

2.5 Protocol and Function Definitions

2.5.1 Protocols

In ClojureScript, a protocol [proa] is a set of extensible functions used for polymor-

phism, similar to interfaces in other languages. Protocol functions are dispatched based on

the type of their first argument. A type may extend to a protocol by providing implementa-

tions for the protocol’s functions. Other functions may use protocols as an abstraction by

calling the protocol’s functions with an extending type, without knowledge of function’s

implementation or type.

Notate defines two protocols, Lengthed and Splittable, which are used as abstractions

for lengthed and splittable nodes mentioned in Section 2.4. These two protocols are used by

inline and range-interval. Notate provides default implementations for a few common types.

Lengthed

The protocol Lengthed (Lisiting 2.7) defines one protocol function, length, which is

used to obtain the character length of a text-like node.

Listing 2.7: Lengthed protocol

(d e f p r o t o c o l Lengthed

(l e n g t h [t h i s] ‘ ‘ C h a r a c t e r l e n g t h o f t h i s . ’ ’))

Types extending length are expected to return their character length as an integer. Lengthed

is used by inline and range-interval functions. For inline, Notate provides default imple-

mentation of length for strings and vectors, which are used to represent React’s VDOM

Text and VDOM Element nodes respectively. For range-interval, Notate provides default

implementations of length for DOM Text, DOM Elements, and DOM Comments. Listing

27

2.8 shows examples of length dispatched to Notate’s default implementation for strings and

vectors.

Listing 2.8: Example results of length for strings and vectors.

=> (l e n g t h ‘ ‘ fooba r ’ ’)

; ; r e t u r n s 6

=> (l e n g t h ‘ ‘ f o o b a r b a z ’ ’)

; ; r e t u r n s 9

=> (l e n g t h [: span ‘ ‘ foo ’ ’])

; ; r e t u r n s 3

=> (l e n g t h [: span ‘ ‘ foo ’ ’ [: mark ‘ ‘ bar ’ ’]])

; ; r e t u r n s 6

Splittable

The protocol Splittable (Lisiting 2.9) defines one protocol function, split, which is

used to split text-like nodes at the given indexes.

Listing 2.9: Splittable protocol

(d e f p r o t o c o l S p l i t t a b l e

(s p l i t [t h i s i n d e x e s] ‘ ‘ S p l i t t h i s a t i n d e x e s . ’ ’))

Types extending split are expected to split themselves into a sequence at the given indexes

argument. Splittable is only used by inline. Default implementations for split are provided

28

for strings and vectors. Listing 2.10 shows examples of split dispatched to Notate’s default

implementation for strings and vectors.

Listing 2.10: Example results of split for strings and vectors.

=> (s p l i t ‘ ‘ fooba r ’ ’ [3])

; ; r e t u r n s (‘ ‘ foo ’ ’ ‘ ‘ bar ’ ’)

=> (s p l i t ‘ ‘ f o o b a r b a z ’ ’ [3 6])

; ; r e t u r n s (‘ ‘ foo ’ ’ ‘ ‘ bar ’ ’ ‘ ‘ baz ’ ’)

=> (s p l i t [: span ‘ ‘ fooba r ’ ’] [3])

; ; r e t u r n s ([: span ‘ ‘ foo ’ ’] [: span ‘ ‘ bar ’ ’])

=> (s p l i t [: span ‘ ‘ foo ’ ’ [: mark ‘ ‘ ba rbaz ’ ’]] [3 6])

; ; r e t u r n s ([: span ‘ ‘ foo ’ ’] [: span [: mark ‘ ‘ bar ’ ’]]

[: span [: mark ‘ ‘ baz ’ ’]])

2.5.2 Functions

inline

Notate provides the function inline for inlining standoff annotation data into sequence

of text-like nodes (called content). inline accepts four arguments shown in its definition in

Listing 2.11. The first argument, f, is a function which defines what is inlined into content.

f is a function of two arguments, where the first is the annotation data and the second is

the enclosing, splitted content. The return value of f should be a sequence which is inlined

29

into the text content. The second argument, offset, is an integer offset for content. The

third argument, ianns, is a sequence of interval-annotation data pairs representing standoff

annotations. For each pair in ianns, function f is called with the annotation data and the

enclosing text content specified by the interval. The last argument, content, is a sequence of

Lengthed and Splittable nodes being annotated.

Listing 2.11: inline’s function signature. See Appendix A for implemented algo-
rithm.

(defn i n l i n e

‘ ‘ I n l i n e s d a t a i n t o c o n t e n t g i v e n i n t e r v a l e d d a t a . ’ ’

[f o f f s e t i a n n s c o n t e n t]

. . .)

range-interval

Notate provides the function range-interval for calculating a character interval from

the user’s selection. range-interval accepts two arguments, node and range-obj. node is the

DOM node which the interval is calculated relative to. range-obj is the browser’s Range

object which represents the user’s selection. range-obj must be contained within node.

Listing 2.12: range-interval’s function signature. See Appendix A for implemented
algorithm.

(defn r a n g e− i n t e r v a l

‘ ‘ Normal i ze r a n g e i n t o an i n t e r v a l r e l a t i v e t o node . ’ ’

[node range−obj]

. . .)

30

2.6 Function Usage

2.6.1 inline

We expect developers to embed inline calls within their web application component

framework/library, be it React or anything else. Although inline is flexible enough to work

with any component system, Notate provides convenient defaults for working with React.

Notate represents markup by using vectors with Hiccup syntax [Ree]. In Hiccup syntax,

the first item in the vector is a keyword which designates the element’s name. The second

item may be an optional map representing the element’s attributes. The remaining items

are the element’s children. Hiccup syntax is convenient for building React applications in

ClojureScript because it can be compiled into React VDOM nodes through the Sablono

library [r0m]. Here, we show how to use inline to implement the results similar to the ones

shown in Section 2.4.3. However, instead of wrapping text with markup, we wrap them

using Hiccup vectors.

In Listing 2.13, we enclose the content at interval [12 16] with a vector representing

the <mark> element, analogous to the example from Listing 2.2.

Listing 2.13: Annotating with Hiccup vector syntax.

=> (i n l i n e (fn [ann c n t]

[(i n t o [: mark] c n t)])

0

[[[1 2 16] n i l]]

[‘ ‘ aaaabbbbccccddddeeee ’ ’])

; ; r e t u r n s (‘ ‘ aaaabbbbcccc ’ ’ [: mark ‘ ‘ dddd ’ ’] ‘ ‘ eeee ’ ’)

31

Notate implements Lengthed and Splittable for vectors with Hiccup semantics. This

allows inline to annotated formatted text as shown in Listing 2.14.

Listing 2.14: Annotating formatted text with partial overlap.

=> (i n l i n e (fn [ann c n t]

[(i n t o [: mark] c n t)])

0

[[[6 16] n i l]]

[‘ ‘ aaaa ’ ’ [: em ‘ ‘ bbbb ’ ’] ‘ ‘ ccccddddeeee ’ ’])

; ; r e t u r n s (‘ ‘ aaaa ’ ’

[: em ‘ ‘ bb ’ ’]

[: mark [: em ‘ ‘ bb ’ ’] ‘ ‘ ccccdddd ’ ’]

‘ ‘ eeee ’ ’)

Developers can inline arbitrary structure into content by supplying the appropriate

function f. Listing 2.15 shows how to inline a label structure into the text content.

Listing 2.15: Annotating a label structure into content.

=> (i n l i n e (fn [ann c n t]

[[: span { : c l a s s ‘ ‘ a n n o t a t i o n ’ ’ }

[: span { : c l a s s ‘ ‘ l a b e l ’ ’ } ann]

(i n t o [: mark] c n t)]])

0

[[[1 2 16] ‘ ‘ fooba r ’ ’]]

[‘ ‘ aaaabbbbccccddddeeee ’ ’])

; ; r e t u r n s (‘ ‘ aaaabbbbcccc ’ ’

[: span { : c l a s s ‘ ‘ a n n o t a t i o n ’ ’ }

[: span { : c l a s s ‘ ‘ l a b e l ’ ’ } ‘ ‘ fooba r ’ ’]

[: mark ‘ ‘ dddd ’ ’]]

‘ ‘ eeee ’ ’)

32

inline function calls can be chained together as long as the annotated result after each

step is a sequence of Lengthed and Splittable. In Listing 2.16, two inline calls are chained

together using ClojureScript’s thread-last macro (->>), where the result of each function

call is fed as the last argument into the next expression. Because the example inlines using

vectors, each inlined result is a sequence of Lengthed and Splittable, allowing it to be inlined

again.

Listing 2.16: Chaining two inlines together using thread-last macro.

=> (−>> [‘ ‘ aaaabbbbccccddddeeee ’ ’]

(i n l i n e (fn [ann c n t] [(i n t o [: em] c n t)]) 0 [[[4 8] n i l]]) ; #1

(i n l i n e (fn [ann c n t] [(i n t o [: mark] c n t)]) 0 [[[6 16] n i l]])) ; #2

; ; A f t e r #1 , i n l i n e r e t u r n s (‘ ‘ aaaa ’ ’

[: em ‘ ‘ bbbb ’ ’]

‘ ‘ ccccddddeeee ’ ’)

; ; A f t e r #2 , i n l i n e r e t u r n s (‘ ‘ aaaa ’ ’

[: em ‘ ‘ bb ’ ’]

[: mark [: em ‘ ‘ bb ’ ’] ‘ ‘ ccccdddd ’ ’]

‘ ‘ eeee ’ ’)

2.6.2 range-interval

range-interval should be used when the annotation tool needs to create annotations

from the user’s selection. From our experience, we have used range-interval within callback

functions attached to event listeners. The callback calls range-interval to compute the user’s

selected interval and adds it to a data structure required for representing an annotation

(specific to the tool, but often a map), along with any relevant domain or event specific

33

information.

Notate provides default length implementations for DOM Text, DOM Elements,

and DOM Comments, shown in Listing 2.17. A DOM Text’s length is the character length

of themselves. A DOM Element’s length is the total length of their child nodes. A DOM

Comments have a length of zero. These implementions work well if the text does not contain

“meta” text nodes as mentioned in Section 2.4.4.

Listing 2.17: Default implementation of length for DOM nodes.

(extend−protoco l Lengthed

j s / Text

(l e n g t h [t h i s] (count (.− wholeText t h i s)))

j s / Element

(l e n g t h [t h i s] (t o t a l− l e n g t h (a r r ay− seq (.− c h i l d N o d e s t h i s))))

j s / Comment

(l e n g t h [t h i s] 0))

If there is meta text, the implementations under Lengthed needs to be adjusted

in order for range-interval to correctly compute intervals. Developers can adjust this by

re-extending the protocol again. In our experience, we have found that we only need to

adjust the implementation for DOM Text because the default length of DOM Element is

derived from the sum of its children elements. When DOM Text is adjusted, DOM Element

is automatically adjusted as well. In Listing 2.18, we re-extend length for DOM Text such

that if its parent element contains the class “label”, it has a length of zero. In this example,

if the user selects text under label elements, elements containing label elements, or text

preceded by label elements, the length of the label elements will not count towards the

interval calculation.

34

Listing 2.18: Ignore DOM text nodes whose parent element is a label.

(extend−protoco l Lengthed

j s / Text

(l e n g t h [t h i s]

(i f (. . t h i s −pa ren tNode −c l a s s L i s t (c o n t a i n s ‘ ‘ l a b e l ’ ’))

0

(count (.− wholeText t h i s)))))

2.7 Demonstration Tools

In this section, we demonstrate a variety of annotation tools built with Notate.

We start with basic highlighting tools, followed by tools with advancing capability. All

demonstration tools are built using Rum [Prob], a ClojureScript React library for quickly

building SPA applications.

2.7.1 Basic

In this tool, we show Notate’s most basic use case: creating and highlighting

annotated text from the user’s selection. Annotated text are wrapped in a HTML mark

element giving it a yellow background color (Figure 2.2). The user creates annotations by

selecting text with his mouse. Annotations are deleted by clicking on the highlights. The

basic tool can also highlight across formatted text (Figure 2.3).

35

Figure 2.2: The basic annotation tool highlights annotated text.

Figure 2.3: The basic annotation tool can annotate formatted text as well.

2.7.2 Labeling

Here, we demonstrate Notate’s ability to implement an interactive labeling tool. In

this tool, annotated text are inlined with multiple interactive labels and buttons. The user

annotates like in the basic demo and can add labels to the annotations. Labels are added by

clicking on the “plus” button above the annotated text. When a label is added, the user’s

input is focused onto an input box which appears above the annotated text. Label text can

be typed into the box and confirmed with the “check” button. The user can delete the label

with “cross” button.

Figure 2.4: The interactive labeling tool allows users to label text without popup
menus.

36

2.7.3 Layering

This tool demonstrates Notate’s ability to build annotation tools with layers. The

tool contains three layers, distinguished by their colors. Each subsequent layer is “on top” of

the previous layer, hiding the color of the layer beneath it. In the example shown in Figure

2.5, Layer A sits on the bottom, Layer B is on top of A, and Layer C is on top of B. We

attached a control menu on top of the annotatable text. The user can use this menu to change

the color and visibility of each layer.

Figure 2.5: The layering annotation tool has three layers of annotations. The user
can change the current annotating layer, layer visibility, and layer colors with the
control menu on top.

2.7.4 Scoring

We can imagine annotation tools being used to train or filter candidate annotators for

annotation projects. The scoring demonstration tool (Figure 2.6) hides a secret token from

the candidate annotator. The candidate is scored on his performance relative to a known

gold standard. If the candidate’s score is high enough, he can retrieve the token by clicking

the “Get Token” button. In this example, the tool calculates the candidate’s F1score relative

to annotations matching the bolded words.

37

Figure 2.6: The scoring annotation tool can be used to score candidates for an-
notation projects. The candidate can retrieve a secret token if his score is high
enough.

2.7.5 Suggesting

Manual annotation tools can work in combination with machine learning annotation

algorithms. These algorithms often compute the confidence of their annotations ranging

from weak to strong. If the algorithm annotates unreliably, its results need to be validated by

human annotators. A manual annotation tool can be used to present automatic annotations

as suggestions for human annotators to validate.

Figure 2.7: The suggesting annotation tool presents suggestions to the user. The
user can click on the bordered dotted text to show the suggested labels. The user
can then click on a suggested label to annotated the dotted text.

In our suggestion example (Figure 2.7), we imagine an annotation tool which presents

documents that have been pre-annotated with suggestions from an automatic algorithm.

These suggestions are rated by their confidence scores, shown by the colored circles. The

suggestions are displayed on their own layer and are indicated by their orange dotted borders.

Annotators can open the suggestion menu by clicking on the dotted bordered text. Clicking

38

on items in the suggestion menu will annotate the text with the suggested label. A separate

layer is used to show annotated text with yellow highlights and labels.

Our suggestion example demonstrates Notate’s flexibility and simplicity by com-

bining arbitrary inlining, chained inlined calls for layering, and meta-text ignoring. In the

suggestion layer, text is inlined with a hidden, interactive suggestion menu. In the annotated

layer, text is inlined with labels. Despite the intricacies of this demo, we have found that it

easy to develop due to Notate’s simplicity.

2.8 Conclusion

It is likely that new annotation tools will be built on the browser. In addition,

new tools will most likely feature inlined annotations as it is an intuitive way to visualize

annotations. However, developing new browser annotation tools is inefficient because

there are no reusable implementations for inlining annotation data into text. Existing

implementations are complex and hard to reuse.

We overviewed sources of complexity when inlining annotations on browser based

annotation tools. We have use this to guide our development of our library, Notate, whose

goal is to make the development of annotation tools as easy as possible by providing a

reusable implementation for inlining. Notate is designed to be simple and its simplicity

gives it great flexibility. We shown how to use Notate and built demonstration tools proving

its flexibility.

Notate will inspire developers to create new and innovative annotation tools. Further,

Notate is our evidence that complexity management and abstractions is important for

building new annotation tools. We encourage annotation tool developers to be mindful of

complexity in their tools and we hope Notate’s design serves as an inspiration on how to

39

handle complexity for future tools.

Appendix A

Function Algorithms

A.1 inline

A.1.1 Algorithm

Inputs

• f : Function of two arguments: ann and cnt. Must return a sequence of Lengthed

nodes.

• offset: An integer offset of content.

• ianns: A sequence of interval-annotation pairs.

• content: A sequence of Lengthed and Splittable nodes.

Output

• A sequence of nodes.

40

41

Protocols

• Lengthed

– length: A function of one argument: this. Returns an integer.

• Splittable

– split: A function of two arguments: this and indexes. Returns a sequence of

nodes.

Steps

1. Let contentsmap be a sorted map. For each node ni in content, insert a key-value pair

into contentsmap where the key is the interval [starti endi] and the value is ni. If i = 0,

then starti = offset, otherwise starti = endi−1. endi = starti +(length ni).

2. Reduce over the sequential values in ianns with reduction function rf and an initial

value of contentsmap. Let [itvlann ann] be the interval-annotation pair in ianns and

contentsmap_r f be the reduction value rf is currently reducing over. Reduction function

rf has the steps in the following subsection:

(a) Query contentsmap_r f to find key-value entries entriesoverlaps which have over-

lapping keys with itvlann.

(b) Dissociate keys in contentsmap_r f with the keys in entriesoverlaps.

(c) Let [startann endann] be the indexes in itvlann. Map over the key-value entries in

entriesoverlaps. Let ent be the current key-value entry being mapped over, with

ent’s key as [startn endn] and value as n. Let indexes be a sequence containing

the integers startann and/or endann if they are exclusively between startn and

42

endn. If the size indexes is zero, return ent wrapped in a sequence. Otherwise,

return the result from the steps in the following subsection:

i. Map over indexes, subtracting startn from each index.

ii. Let indexesnorm be the result from step 2(c)i. Call the function split as

shown with the arguments: (split n indexesnorm).

iii. Map the splitted nodes from step 2(c)ii. Let mi be the current node being

mapped over. For each node, return a key-value entry with a key of [starti

endi] and value of mi. If i = 0, the starti = startn, otherwise starti = endi−1.

endi = starti +(length mi).

(d) Concatenate the sequence of sequences of entries from step 2c into a sequence

of entries.

(e) Map over the entries from step 2d, assigning each entry with an identifier called

group. Let [start end] be the interval key of the current entry being mapped

over. If startann ≤ start ≤ end ≤ endann, the group has the value of [startann

endann]. Otherwise, group as the value of nil.

(f) Partition the entries from step 2e by their group identifier.

(g) Map over the sequence of sequences of entries from step 2f, removing the group

identifier.

(h) Map over the sequence of sequences of entries from step 2g. For each sequences

of entries soe being mapped over, assign the sequences of entries its spanning-

interval [start end]. The spanning-interval’s start index is the start index of the

first entry’s interval in soe. The spanning-interval’s end index is the end index

of the last entry’s interval in soe.

43

(i) Map over the sequence of sequences of entries from step 2h. For each sequences

of entries soe currently being mapped over, if soe’s spanning-interval is equal

to itvlann, return the result from steps in the following subsection. Otherwise,

return soe unchanged.

i. Map over the entries in soe. For the entry being mapped over, obtain the

entry’s value.

ii. Let cnt be the sequence of content nodes from step 2(i)i. With the ann from

step 2, call the function f as shown with the arguments: (f ann cnt).

iii. Let startsoe be the start index of soe’s spanning-interval. Map over the result

from step 2(i)ii. For each node ni currently being mapped over, return a

key-value entry with an key of [starti endi] and value of ni. If i = 0, then

starti = startsoe, otherwise starti = endi−1. endi = starti +(length ni).

(j) Concatenate the sequence of sequences of entries from step 2i into a sequence

of entries.

(k) Associate each entry from step 2j into contentsmap_r f .

3. Let contentsmap_reduced be the sorted map returned by the reduce in step 2. Return

the sequence of values in contentsmap_reduced by mapping each key-value entry for its

value.

44

A.2 range-interval

A.2.1 Algorithm

Inputs

• node: A DOM node.

• range-obj: A Range object contained within node.

Output

• A vector with two integers representing an interval.

Protocols

• Lengthed

– length: A function of one argument: this. Returns an integer.

Steps

1. To compute the interval’s start index, perform the steps in the following subsection

with range-obj’s startContainer and startOffset:

(a) Let A be a sequence of ancestor nodes from startContainer to node, inclusive

and exclusive respectively. Mapcat over nodes in A. For each node a in A being

mapped over, return a’s previous siblings as a sequence of nodes.

(b) Normalize startOffset by performing the following. If startContainer is a Text or

Comment node, then the normalized value is startOffset itself, unchanged. Else,

45

let children be the first startOffset number of child nodes in startContainer; let

c be a child node in children; the normalized value for startOffset is:

startOffset

∑
i=0

(length ci)

(c) Let P be the sequence of previous siblings from step 1a, offset be the normalized

offset from step 1b, n be the size of P, and p be a node in P. The start index is

the following:

min((length startContainer), offset)+
n

∑
i=0

(length pi)

2. Repeat step 1 to compute the end index, using endContainer and endOffset instead.

3. Return [start end] as the interval.

Bibliography

[bra] Standoff format - brat rapid annotation tool. http://brat.nlplab.org/standoff.
html. Accessed: 2016-11-9.

[Bro87] F Brooks. No silver bullet. April, 1987.

[Bur12] Manuel Burghardt. Usability recommendations for annotation tools. In
Proceedings of the Sixth Linguistic Annotation Workshop, pages 104–112.
Association for Computational Linguistics, 2012.

[Bur14] Manuel Burghardt. Engineering annotation usability-Toward usability pat-
terns for linguistic annotation tools. PhD thesis, 2014.

[cloa] Clojure. https://clojure.org/. Accessed: 2016-10-17.

[clob] Clojurescript. http://clojurescript.org/. Accessed: 2016-10-17.

[FE16] Mark A Finlayson and Tomaž Erjavec. Overview of annotation creation:
Processes & tools. arXiv preprint arXiv:1602.05753, 2016.

[GNWS14] Benjamin M Good, Max Nanis, CHUNLEI Wu, and ANDREW I Su. Micro-
task crowdsourcing for disease mention annotation in pubmed abstracts. In
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
pages 282–293. NIH Public Access, 2014.

[Hic11] Rich Hickey. Simple made easy. Strange Loop 2011, 2011.

[KST+86] Joseph P Kearney, Robert L Sedlmeyer, William B Thompson, Michael A
Gray, and Michael A Adler. Software complexity measurement. Communica-
tions of the ACM, 29(11):1044–1050, 1986.

[MM06] Ben Moseley and Peter Marks. Out of the tar pit. Software Practice Advance-
ment (SPA), 2006.

[proa] Clojure - protocols. http://clojure.org/reference/protocols. Accessed: 2016-
10-17.

46

http://brat.nlplab.org/standoff.html
http://brat.nlplab.org/standoff.html
https://clojure.org/
http://clojurescript.org/
http://clojure.org/reference/protocols

47

[Prob] Nikita Prokopov. tonsky/rum: Simple, decomplected, isomorphic html ui
library for clojure and clojurescript. https://github.com/tonsky/rum. Accessed:
2016-10-17.

[PS12] James Pustejovsky and Amber Stubbs. Natural language annotation for
machine learning. " O’Reilly Media, Inc.", 2012.

[r0m] r0man. r0man/sablono: Lisp/hiccup style templating for facebook’s react in
clojurescript. https://github.com/r0man/sablono. Accessed: 2016-10-17.

[rea] A javascript library for building user interfaces | react. https://facebook.github.
io/react/. Accessed: 2016-10-17.

[Ree] James Reeves. weavejester/hiccup: Fast library for rendering html in clojure.
https://github.com/weavejester/hiccup. Accessed: 2016-10-17.

[SPT+12] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ana-
niadou, and Jun’ichi Tsujii. Brat: a web-based tool for nlp-assisted text
annotation. In Proceedings of the Demonstrations at the 13th Conference
of the European Chapter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Linguistics, 2012.

[YGdCB13] Seid Muhie Yimam, Iryna Gurevych, Richard Eckart de Castilho, and Chris
Biemann. Webanno: A flexible, web-based and visually supported system for
distributed annotations. In ACL (Conference System Demonstrations), pages
1–6, 2013.

[YYSXH10] Meliha Yetisgen-Yildiz, Imre Solti, Fei Xia, and Scott Russell Halgrim. Pre-
liminary experience with amazon’s mechanical turk for annotating medical
named entities. In Proceedings of the NAACL HLT 2010 Workshop on Cre-
ating Speech and Language Data with Amazon’s Mechanical Turk, pages
180–183. Association for Computational Linguistics, 2010.

[ZLD+13] Haijun Zhai, Todd Lingren, Louise Deleger, Qi Li, Megan Kaiser, Laura
Stoutenborough, and Imre Solti. Web 2.0-based crowdsourcing for high-
quality gold standard development in clinical natural language processing.
Journal of medical Internet research, 15(4):e73, 2013.

https://github.com/tonsky/rum
https://github.com/r0man/sablono
https://facebook.github.io/react/
https://facebook.github.io/react/
https://github.com/weavejester/hiccup

	Signature Page
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Abstract of the Thesis
	Complexity of Annotation Tools
	Introduction
	Software Complexity
	Defining Complexity
	Simplicity is Key for Development
	Simplicity is Hard

	Complexities in Annotation Tools
	Documents
	Annotations
	Implementation

	Conclusion

	Notate: Simple Functions for Building Annotation Tools
	Introduction
	Functional Programming for Browser Applications
	React
	ClojureScript

	Complexities when Inlining Standoff Annotations
	Accidental Complexities
	Essential Complexities

	Notate's Design
	Library of Primitive Functions
	Standoff Annotations and Selection
	Inlining Annotation Data into Text
	Creating Intervals from User Selection

	Protocol and Function Definitions
	Protocols
	Functions

	Function Usage
	inline
	range-interval

	Demonstration Tools
	Basic
	Labeling
	Layering
	Scoring
	Suggesting

	Conclusion

	Function Algorithms
	inline
	Algorithm

	range-interval
	Algorithm

	Bibliography

