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ABSTRACT OF THE DISSERTATION

Endogeneity and Measurement Error in Nonparametric and
Semiparametric Models

by

Suyong Song

Doctor of Philosophy in Economics

University of California, San Diego, 2010

Professor Halbert L. White, Chair

It has long been an area of interest to consider a consistent estimation

of nonlinear models with measurement error or endogeneity in the explanatory

variables. Contrast to linear parametric models, both topics in nonlinear models

are difficult to correct for. As a result, many of studies have addressed only one of

them in nonlinear models, although controlling for only one mostly fails to identify

economically meaningful structural parameters. Thus, this dissertation presents

solutions to simultaneously control for both endogeneity and measurement error

in general nonlinear regression models.

Chapter one of this dissertation studies the identification and estimation of

covariate-conditioned average marginal effects of endogenous regressors in nonsep-

xii



arable models when the regressors are mismeasured. Endogeneity is controlled for

by making use of covariates as conditioning instruments; this ensures independence

between the endogenous causes and other unobservable drivers of the dependent

variable. Moreover, distributions of the underlying true causes from their error-

laden measurements are recovered. Specifically, it is shown that two error-laden

measurements of the unobserved true causes are sufficient to identify objects of

interest and to deliver consistent estimators.

Chapter two develops semiparametric estimation of models defined by con-

ditional moment restrictions, where the unknown functions depend on endogenous

variables which are contaminated by nonclassical measurement errors. A two-stage

estimation procedure is proposed to recover the true conditional density of endoge-

nous variables given conditioning variables masked by measurement errors, and to

rectify the difficulty associated with endogeneity of the unknown functions.

Chapter three investigates empirical importance of endogeneity and mea-

surement error in economic examples. The proposed methods in chapter one and

two are applied to topics of interest, the impact of family income on children’s

achievement and the estimation of Engel curves, respectively. The first applica-

tion finds that the effects of family income on both math and reading scores from

the proposed estimator are positive and that the magnitudes of the income effects

are substantially larger than previously recognized. From the second application,

findings indicate that correcting for both endogeneity and measurement error ob-

tains significantly different shapes of Engel curves, compared to the method which

ignores measurement error on total expenditure.
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Chapter 1

Identification and Estimation of

Nonseparable Models with

Measurement Errors

1



2

1.1 Introduction

In this paper, we examine the identification and estimation of covariate-

conditioned average marginal effects of endogenous regressors in nonseparable

structural systems when the regressors are mismeasured. We control for the en-

dogeneity by making use of covariates as conditioning instruments; this ensures

independence between the endogenous causes of interest and other unobservable

drivers of the dependent variable. Moreover, we recover distributions of the under-

lying true causes from their error-laden measurements. Our approach relies on a

useful property of the Fourier transform, namely, its ability to convert complicated

integral equations that relate unobservables to observables into simple algebraic

equations. Even though our structural relations are nonparametric and nonsepa-

rable, we show that we can identify and estimate objects of interest, specifically,

covariate-conditioned average marginal effects and weighted averages of covariate-

conditioned average marginal effects.

Researchers have previously imposed linearity or separability on systems of

structural equations because of the resulting ease of interpretation and implemen-

tation. But realistic models of economic behavior need not exhibit these convenient

features. When these simplifying assumptions fail, serious errors of inference may

result. To overcome such difficulties, researchers have devoted increasing attention

to relaxing some or all of these assumptions. For example, additively separa-

ble nonparametric models for endogenous regressors with observable instruments,

possibly with a limited or qualitative dependent variable, have been intensively

studied under various sets of assumptions. Examples are Newey, Powell and Vella

(1999), Darolles, Florens and Renault (2003), Newey and Powell (2003), Blundell

and Powell (2004), Hall and Horowitz (2005), Das (2005), Severini and Tripathi

(2005), and Blundell and Powell (2007) and the references therein.

Other recent work has studied identification and estimation of models with

nonseparable structural equations, e.g., Matzkin (2003), Chesher (2003, 2005), Al-

tonji and Matzkin (2005), Chernozhukov and Hansen (2005), Imbens and Newey

(2006), Imbens (2006), White and Chalak (2006), Chernozhukov, Imbens and
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Newey (2007), Hoderlein (2007), Hoderlein and Mammen (2007), Chalak and

White (2007a, b), Schennach, White and Chalak (2007) (SWC), and Hahn and

Ridder (2007).

Here we use a conditional independence assumption to achieve structural

identification, as considered, for example, by Altonji and Matzkin (2005), White

and Chalak (2006), Chalak and White (2007a, b), Hoderlein (2007), and Hoderlein

and Mammen (2007). Altonji and Matzkin (2005) propose methods for estimat-

ing nonseparable models with observable endogenous regressors and unobservable

errors in cross-section and panel data. One of their objects of interest is a local

average response. A similar structure is considered here for cross-section data.

Nevertheless, our framework differs from that of Altonji and Matzkin (2005) in

that in our setting, the endogenous cause of interest is unobservable. Instead, we

suppose we have available two error-laden measurements of the true underlying

variable.

SWC also study identification and estimation of average marginal effects

in nonseparable structural systems. They consider estimating causal effects from

a nonseparable data generating process using either an observed standard exoge-

nous instrument or an unobserved exogenous instrument for which two error-laden

measurements are available. We extend the approach of SWC to the case in which

the instrument is no longer exogenous, but is instead a conditioning instrument.

This ensures that the cause of interest is independent of other unobservable drivers

of the dependent variable, conditional on the instrument. Here, this instrument

is observable. Nevertheless, the endogenous cause of interest is unobservable; to

handle this, we employ nonlinear errors-in-variables methods, employing a Fourier

transform approach.

We first nonparametrically estimate quantities of a general form and con-

struct objects of interest from these. This covers such objects as the average coun-

terfactual response function, the covariate-conditioned average marginal effect, Al-

tonji and Matzkin’s (2005) “local average response”, corresponding to the effect

of treatment on the treated for continuous treatments (Florens, Heckman, Meghir,

and Vytlacil, 2008), and the average treatment effect. We establish uniform con-
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vergence rates and asymptotic normality for estimators of covariate-conditioned

average marginal effects, faster convergence rates for estimators of their weighted

averages over instruments, and
√
n consistency and asymptotic normality for esti-

mators of their weighted averages over instruments and regressors.

In Section 1.2, we describe the data generating process for the triangular

structural system studied here. We also study the identification of a specific object

of interest, the covariate-conditioned average marginal effect. A nonparametric

estimator for quantities of a general form used to construct this object is presented

in Section 1.3, and asymptotic properties of the estimator are analyzed in Section

1.4. The practical usefulness of the proposed estimator is illustrated by Monte

Carlo experiments in Section 1.5. Section 1.6 concludes. All technical proofs are

included in the Mathematical Appendix.

1.2 Data Generation and Identification

1.2.1 The Data Generating Process

We first specify the data generating process (DGP) for the recursive struc-

tural system studied here. There is an inherent ordering of the variables in such

systems: in the language of White and Chalak (2008), “predecessor” variables may

determine “successor” variables, but not vice versa. For instance, when X causes

Y , then Y cannot cause X. In such cases, we say that Y succeeds X, and we write

Y ⇐ X as a shorthand notation. (See also Chalak and White (2007a, b), and

SWC.) Throughout, random variables are defined on a complete probability space

(Ω, F , P ).

Assumption 2.1 (i) Let (U,W,X, Y ) be random variables such that

E(|Y |) < ∞; (ii) (U,W,X, Y ) is generated by a recursive structural system such

that Y ⇐ (U,X) and X ⇐ (U,W ) with Y generated by the structural equation

Y = r(X,Uy),

where r is an unknown measurable scalar-valued function and Uy ≡ υy(U) is a
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random vector of countable dimension ly, with υy a measurable function; and (iii)

the realizations of Y and W are observed, whereas those of U,X, and Uy are not.

For now, U,X, and W can be viewed as random vectors; we let Y be scalar.

Although X and W have finite dimension, the dimensions of U and Uy may be

countably infinite. The specified structural relations are directional causal links;

thus, variations inX and Uy structurally determine Y, as in Strotz and Wold (1960)

(see also White and Chalak, 2008, and Chalak and White, 2007a, b). We do not

assume that r is linear or monotone in its arguments or separable between X and

Uy.

A primary object of interest is the marginal effect of X on Y . As there

is no restriction to the contrary, X and Uy are generally correlated, so that X

is endogenous. In classical treatments, the effects of endogenous variables are

identified with the aid of instrumental variables. These are “standard” or “proper”

when they are (i) correlated with X and (ii) exogenous (i.e., uncorrelated with or

independent of unobservables, corresponding to Uy here). Nevertheless, standard

instrumental variables are absent here, as the covariates W are also generally

endogenous. However, identification of certain average marginal effects is possible

when X satisfies a particular conditional form of exogeneity. To state this, we

follow Dawid (1979), and write X ⊥ Uy | W to denote that X is independent of

Uy given W .1

Assumption 2.2 X ⊥ Uy | W .

Assumption 2.2 is analogous to structure imposed by Altonji and Matzkin

(2005), White and Chalak (2006), Chalak and White (2007a, b), Hoderlein (2007),

and Hoderlein and Mammen (2007). Given its instrumental role in ensuring condi-

tional exogeneity, we call W conditioning instruments, following White and Chalak

(2006) and Chalak and White (2007a, b).

1Conditional independence implies a similar ‘common support assumption’ in Imbens and
Newey (2006). We can see this from the following argument. supp(Uy | X = x,W = w) ≡

⋂
{S ∈

F : P [Uy ∈ S | X = x,W = w] = 1} =
⋂
{S ∈ F : P [Uy ∈ S | X = x] = 1} ≡ supp(Uy |W = w),

where the second equality follows by X ⊥ Uy |W .
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Figure 1.1 provides a convenient graphical depiction of a structure consis-

tent with Assumptions 2.1 and 2.2. Here, arrows denote direct causal relationships.

Dashed circles denote unobservables and complete circles denote observables. Here,

because of the indicated causal relations, Uw, Ux, and Uy are dependent, which gen-

erally leads to dependence between X,W, and Uy.

In contrast to Altonji and Matzkin (2005) and the other references just

given, we do not assume that X is observable. Instead, we suppose that we observe

two error-contaminated measurements of X, permitting us to employ methods of

Schennach (2004a, b). The following assumption expresses this formally.

Assumption 2.3 Observables X1 and X2 are determined by the struc-

tural equations X1 = X+U1 and X2 = X+U2, where U1 ≡ υ1(U) and U2 ≡ υ2(U)

for measurable functions υ1 and υ2.

Figure 1.2 depicts structural relations consistent with Assumptions 2.1 -

2.3. A line without an arrow denotes dependence arising from a causal relation in

either direction or the existence of an underlying common cause. Later, we will rule

out correlation (more precisely, conditional mean dependence) between U1 and U2

but permit dependence otherwise. We will also impose further restrictions on the

relations between the measurement errors and the other variables of the system.

1.2.2 Structural Identification

Before going further, it is important to understand how conditional exogene-

ity ensures the identification of effects of interest for the structures of Assumption

2.1, regardless of the observability of X. Given this, we can consider how to

proceed when X is unobservable.

To study identification of the effects of interest, we start with a representa-

tion of the conditional expectation of the response given X and W ,

µ(X,W ) ≡ E(Y | X,W ). (1.1)

The function µ exists whenever E(|Y |) < ∞, as ensured by Assumption 2.1(i),

regardless of underlying structural relations. When the structural relations of
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Assumption 2.1(ii) hold, we have the representation

µ(x,w) =

∫
r(x, uy) dF (uy | x,w),

where dF (uy | x,w) denotes the conditional density of Uy given X = x and W = w.

This represents µ(X,W ) as the average response given (X,W ) = (x,w). With no

further restrictions, this is a purely stochastic object. It provides no information

about the causal effect of X on Y .

When X ⇐ (U,W ), as assumed here, we can define a particular conditional

expectation that has a clear counterfactual meaning, supporting causal interpre-

tations. Specifically, the average counterfactual response at x given W = w is

ρ(x | w) ≡ E(r(x, Uy) | W = w) =

∫
r(x, uy) dF (uy | w),

where dF (uy | w) denotes the conditional density of Uy given W = w. The

function ρ(x | w) is a conditional analog of the average structural function of

Blundell and Powell (2004), and a stepping stone to the analysis of various causally

informative quantities of interest. Let Dx ≡ (∂/∂x). The covariate-conditioned

average marginal effect of X on Y at x given W = w is

β∗(x | w) ≡ Dxρ(x | w) = Dx

∫
r(x, uy) dF (uy | w) =

∫
Dxr(x, uy) dF (uy | w),

provided the derivative and integral can be interchanged. This function is a

weighted average of the unobservable marginal effect Dxr(x, uy) over unobserved

causes, given observed covariates. As described in the next section, it can be used

to construct various effect measures of interest; for instance, the average treatment

effect, the effect of treatment on the treated (Florens, Heckman, Meghir, and Vyt-

lacil, 2008), and the weighted average of the local average response (Altonji and

Matzkin, 2005). When Assumption 2.2 holds, we have∫
r(x, uy) dF (uy | x,w) =

∫
r(x, uy) dF (uy | w),

as X ⊥ Uy | W implies dF (uy | x,w) = dF (uy | w). That is, µ(x,w) = ρ(x | w),

so µ acquires causal meaning from ρ. We call this a “structural identification”

result because it identifies an aspect of the causal structure, ρ, with µ, a standard
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stochastic object. When µ(x,w) is differentiable, let β(x,w) ≡ Dxµ(x,w). With

µ structurally identified (µ = ρ), we also have β(x,w) = β∗(x | w), so that β(x,w)

is also structurally identified. (See White and Chalak (2008) for additional formal

conditions ensuring these identifications.)

If X were observable, we could estimate the covariate-conditioned average

marginal effect β∗(x | w) by first estimating µ(x,w) using standard techniques.

Differentiating this with respect to x then yields β(x,w) = β∗(x | w). Here, how-

ever, X is not observable, so such a direct approach is not available. Instead, we

estimate µ(x,w) and its derivatives using the Fourier transform approach exploited

in simpler settings by Schennach (2004a, b).

1.2.3 Weighted Averages of Effects

In addition to β∗(x | w), we are interested in weighted averages of β∗(x | w),

such as

β∗m(x) ≡
∫
β∗(x | w)m(w)dw, (1.2)

β∗mfW
(x) ≡

∫
β∗(x | w)m(w)fW (w)dw, (1.3)

β∗mfW |X
(x) ≡

∫
β∗(x | w)m(w)fW |X(w | x)dw, (1.4)

β∗m̃ ≡
∫ ∫

β∗(x | w)m̃(x,w)dwdx, (1.5)

β∗m̃fW |X
≡
∫ ∫

β∗(x | w)m̃(x,w)fW |X(w | x)dwdx, (1.6)

β∗m̃fW,X
≡
∫ ∫

β∗(x | w)m̃(x,w)fW,X(w, x)dwdx, (1.7)

where m(·) and m̃(·, ·) are user-supplied weight functions, and where fW , fW |X ,

and fW,X are the marginal density of W , conditional density of W given X, and

joint density of W and X, respectively. When m(w) = 1, for instance, β∗mfW
(x)

is analogous to the derivative of the average structural function of Blundell and

Powell (2004) and the average treatment effect of Florens, Heckman, Meghir, and

Vytlacil (2008). When m(w) = 1, β∗mfW |X
(x) corresponds to the local average

response of Altonji and Matzkin (2005) and the effect of treatment on the treated
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(Florens, Heckman, Meghir, and Vytlacil, 2008). When m̃(x,w) = m(w), β∗m̃fW |X

corresponds to the weighted average of the local average response (Altonji and

Matzkin, 2005).

Under structural identification, we have β∗m(x) = βm(x), β∗mfW
(x) = βmfW

(x), β∗mfW |X
(x) = βmfW |X (x), β∗m̃ = βm̃, β∗m̃fW |X

= βm̃fW |X , and β∗m̃fW,X
= βm̃fW,X

,

where all quantities on the right-hand side are analogs of those on the left, obtained

by replacing β∗ with β in the defining integrals above. We thus are interested in

estimating structurally identified β(x,w), βm(x), βmfW
(x), βmfW |X (x), βm̃, βm̃fW |X ,

and βm̃fWX
, relying only on observations of W,X1, X2, and Y.

1.2.4 Stochastic Identification

In what follows we take X and W to be scalars for simplicity. Analogous to

the approach taken in SWC, we first focus on estimating quantities of the general

form

gV,λ(x,w) ≡ Dλ
x(E[V | X = x,W = w]fX|W (x | w)),

where Dλ
x ≡ (∂λ/∂xλ) denotes the derivative operator of degree λ, V is a generic

random variable that will stand either for Y or for the constant (V ≡ 1), and fX|W

is the conditional density of X given W . For example, special cases of the general

form above are fX|W (x | w) = g1,0(x,w), E[Y | X = x,W = w]fX|W (x | w) =

gY,0(x,w), and µ(x,w) = gY,0(x,w)/g1,0(x,w). Thus, with structural identification,

the covariate-conditioned average marginal effect of X on Y at x given W = w is

β(x,w) =
gY,1(x,w)

g1,0(x,w)
− gY,0(x,w)

g1,0(x,w)

g1,1(x,w)

g1,0(x,w)
.

We first analyze the asymptotic properties of estimators of gV,λ with generic

V when we observe two error-contaminated measurements of X, as in Assumption

2.3. We can then straightforwardly obtain the asymptotic properties of estimators

of β(x,w) and weighted averages of β(x,w). We denote the support of a random

variable by supp(·). By convention, we take the value of any referenced function

to be zero except when the indicated random variable lies in supp(·). We impose

the following conditions on Y , X, W , U1, and U2.
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Assumption 3.1 E[|X|] <∞ and E[|U1|] <∞.

Assumption 3.2 (i) E[U1 | X,U2] = 0; (ii) U2 ⊥ (X,W ); (iii) E[Y |
X,U2,W ] = E[Y | X,W ].

Assumption 3.3 (i) infw∈supp(W ) fW (w) > 0; (ii) sup(x,w)∈supp(X,W ) fX|W

(x | w) <∞.

Assumption 3.4 For any finite ζ ∈ R, |E[exp(iζX2)]| > 0.

Assumption 3.1 imposes mild conditions regarding the existence of the first

moments of the cause of interest and the measurement error of the first mea-

surement error-laden observation. Assumption 3.4 is commonly imposed in the

deconvolution literature (e.g., Fan, 1991; Fan and Truong, 1993; Li and Vuong,

1998; Li, 2002;, Schennach, 2004a,b), which requires a nonvanishing characteristic

function for X2. Assumptions 3.1, 3.3, and 3.4 jointly ensure that gV,0(x,w) is well

defined.

Assumption 3.2 has been imposed in a similar fashion in the repeated

measurements literature (e.g., Hausman, Ichimura, Newey, and Powell, 1991; and

Schennach, 2004a, b); however, the presence of W is new here. Assumption 3.2(i)

imposes a mild conditional moment restriction, while Assumption 3.2(ii) is crucial

but plausible. The conditional mean restriction in Assumption 3.2(i) is imposed

instead of independence to ensure the weakest possible assumptions. The indepen-

dence in Assumption 3.2(ii) is necessary because of the nonlinearity of the model.

Note that E[U1 | U2] = E[E[U1 | X,U2] | U2] = 0, so that U1 is mean independent

of U2. On the other hand, the mean of U2 does not have to be zero. These relatively

mild requirements on the measurement errors are plausible for many practical ap-

plications, but are asymmetric between U1 and U2. If symmetry is plausible, one

can obtain analogous estimators, interchanging the roles of X1 and X2.

Let N ≡ {0, 1, ...} and N ≡ N ∪ {∞}.

Assumption 3.5 For V = 1, Y, gV,0(·, w) is continuously differentiable

of order Λ ∈ N on R for each w ∈ supp(W ).
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This assumption imposes smoothness on gV,0. If gV,λ can be defined solely

in terms of the joint distribution of observable variables V , X1, and X2, we say it

is “stochastically identified.” This is shown in the next lemma.2

Lemma 3.1 Suppose Assumptions 2.1(i), 2.3, and 3.1 - 3.5 hold. Then

for V = 1, Y and for each λ ∈ {0, ...,Λ} and (x,w) ∈ supp(X,W ),

gV,λ(x,w) =
1

2π

∫
(−iζ)λφV (ζ, w) exp(−iζx)dζ,

where for each real ζ,

φV (ζ, w) ≡ E[V eiζX | W = w] =
E[V eiζX2 | W = w]

E[eiζX2 ]
exp

(∫ ζ

0

iE[X1e
iξX2 ]

E[eiξX2 ]
dξ

)
.

Note that gV,λ is empirically accessible when it involves only observable

variables. Thus, knowledge of E[V eiζX2 | W = w], E[eiζX2 ], and E[X1e
iξX2 ] is

sufficient to obtain stochastic identification of gV,λ.

1.3 Estimation

Our nonparametric estimators of gV,λ make use of the following class of

flat-top kernels of infinite order proposed by Politis and Romano (1999).

Assumption 3.6 The real-valued kernel x → k(x) is measurable and

symmetric,
∫
k(x)dx = 1, and its Fourier transform ξ → κ(ξ) is such that : (i) κ is

compactly supported (without loss of generality, we take the support to be [-1,1]);

and (ii) there exists ξ > 0 such that κ(ξ) = 1 for |ξ| < ξ.

The above assumption is similar to that used in SWC. The fact that the

kernel is continously differentiable to any order is ensured by the requirement of

Assumption 3.6(i) that the Fourier transform of the kernel is compactly supported.

2Derivation of a part of the expression for φV is similar to that of an identity due to Kotlarski
(see Rao, 1992, p. 21), which enables one to recover the densities of X, U1, and U2 from the
joint density of X1 and X2 under the assumption that X, U1, and U2 are independent. Our
identification strategy for the density of X relies on weaker assumptions than independence. In
fact, we only require E[U1 | X,U2] = 0 and U2 ⊥ X for the result, instead of mutual independence
of X, U1, and U2. As a result, our setup allows dependence between X and U1, and between U1

and U2.
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The assumption of compact support of κ is commonly used in the kernel decon-

volution estimator (e.g., Fan and Truong, 1993; Schennach, 2004a). Because the

kernel deconvolution estimator involves a division by an asymptotically vanish-

ing characteristic function as frequency increases toward infinity, it suffers from

the well-known ill-posed inverse problem that occurs when one tries to invert a

convolution operation. This problem can be rectified by estimating an associated

numerator using a kernel whose Fourier transform is compactly supported, which

guarantees that the numerator will decay well before the denominator causes the

ratio to diverge, ensuring that the divergence is kept under control.

Compact support of the Fourier transform of the kernel is a weak require-

ment because one can transform any given kernel k̃ into a modified kernel k with

compact Fourier support, having most of the properties of the original kernel, as

mentioned in Schennach (2004a). To construct the modified Fourier transform κ

from the original Fourier transform κ̃ of k̃ put

κ(ξ) = W(ξ)κ̃(ξ),

W(ξ) =


1 if |ξ| ≤ ξ̄

(1 + exp((1− ξ̄)((1− |ξ|)−1 − (|ξ| − ξ̄)−1)))−1 if ξ̄ < |ξ| ≤ 1.

0 if 1 < |ξ|

(1.8)

Here W(·) is a window function that is constant in the neighborhood of the origin

and vanishes beyond a given frequency, determined by ξ̄ ∈ (0, 1).

Flat-top kernels of infinite order have the property that their Fourier trans-

forms are “flat” over an open neighborhood of the origin, as described in Politis and

Romano (1999). When a flat-top kernel of infinite order is used, the smoothness

of the function to be estimated is the only factor controlling the rate of decrease

of the bias, whereas when a finite-order kernel is used, both the smoothness of the

function and the order of the kernel affect the rate of decrease of the bias. When

the function to be estimated is infinitely many times differentiable, a flat-top ker-

nel of infinite order guarantees that the bias of the kernel estimator goes to zero

faster than any power of the bandwidth. For instance, the bias from a flat-top

kernel of infinite order could be an exponentially shrinking function of the inverse
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bandwidth, even though the bias from a traditional finite-order kernel is a decaying

function of the inverse bandwidth to a negative power.

The estimator for gV,λ(x,w) is motivated by a smoothed version of gV,λ(x,w).

The next lemma incorporates the kernel into the expression for gV,λ(x,w).

Lemma 3.2 Suppose Assumptions 2.1(i), 2.3, 3.1, and 3.3 - 3.5 hold,

and let k satisfy Assumption 3.6. For V = 1, Y and for each λ ∈ {0, ...,Λ},
(x,w) ∈ supp(X,W ), and h1 > 0, let

gV,λ(x,w, h1) ≡
∫

1

h
k

(
x̃− x

h1

)
gV,λ(x̃, w)dx̃.

Then

gV,λ(x,w, h1) =
1

2π

∫
(−iζ)λκ(h1ζ)φV (ζ, w) exp(−iζx)dζ.

We let h ≡ (h1, h2) denote the kernel bandwidth or smoothing parameter.

Because limh1→0 gV,λ(x,w, h1) = gV,λ(x,w) by lemma 1 of the appendix of Pagan

and Ullah (1999, p.362), we also define gV,λ(x,w, 0) ≡ gV,λ(x,w). Motivated by

Lemma 3.2, we define our estimator for gV,λ(x,w) as follows.

Definition 3.3 Let hn ≡ (h1n, h2n). The estimator for gV,λ(x,w) is

defined as

ĝV,λ(x,w, hn) ≡
1

2π

∫
(−iζ)λκ(h1nζ)φ̂V (ζ, w, h2n) exp(−iζx)dζ,

for hn → 0 as n→∞, where

φ̂V (ζ, w, h2n) ≡
Ê[V eiζX2 | W = w]

Ê[eiζX2 ]
exp

(∫ ζ

0

iÊ[X1e
iξX2 ]

Ê[eiξX2 ]
dξ

)
,

Ê[V eiζX2 | W = w] ≡
(nh2n)

−1
∑n

j=1 Vje
iζX2jk

(
Wj−w
h2n

)
(nh2n)−1

∑n
j=1 k

(
Wj−w
h2n

) =
Ê[V eiζX2kh2n(W − w)]

Ê[kh2n(W − w)]
,

and where kh2n(·) = h−1
2n k (·/h2n) and Ê[·] denotes a sample average.3

3There are two kernels in the expression of ĝV,λ(x,w, hn): one is associated with the regressor
X and the other is needed for the conditioning instrument W . Even though we do not explicitly
use different notations for the purpose of notational convenience, they could be different (note that
nevertheless, we use different bandwidths for different kernels). So κ(·) is the Fourier transform
of a flat-top kernel associated with X and k(·) is another flat-top kernel for W . Indeed, different
flat-top kernels are incorporated in the empirical parts.
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With Ê[·] denoting a sample average, for any random variable X, Ê[X] ≡
n−1

∑n
i=1Xi, where X1, ..., Xn is a sample of random variables, distributed iden-

tically as X. We replace φV (ζ, w) by its sample analog, φ̂V (ζ, w, h2n). Ê[V eiζX2 |
W = w] is a kernel estimator of E[V eiζX2 | W = w].

1.4 Asymptotics

1.4.1 Asymptotics for the General Form

SWC extensively generalize Schennach (2004a, b) to encompass (i) the

λ 6= 0 case; (ii) uniform convergence results; and (iii) general semiparametric

functionals of gV,λ. Here, we use the approach of Schennach (2004a, b) to achieve

counterparts of these three results in the context of models where endogeneity is

handled with conditional independence, as in the treatment effect literature, and

where the cause of interest is contaminated by measurement error. The analy-

sis of estimator properties is complicated by the presence of the kernel estimator

of the conditional expectation. We begin by deriving the asymptotic behavior of

the estimator for the quantities of the general form ĝV,λ(x,w, hn). The first re-

sult decomposes the estimation error into a “bias term,” a “variance term,” and a

“remainder term.”

Lemma 4.1 Suppose that {Ui,Wi, Xi, Yi} is an independent and identi-

cally distributed (IID) sequence satisfying Assumptions 2.1(i), 2.3, 3.1 - 3.5, and

that Assumption 3.6 holds. Then for V = 1, Y and for each λ ∈ {0, . . . ,Λ},
(x,w) ∈ supp(X,W ), and h ≡ (h1, h2) > 0,

ĝV,λ(x,w, h)− gV,λ(x,w) = BV,λ(x,w, h1) + LV,λ(x,w, h) +RV,λ(x,w, h),

where BV,λ(x,w, h1) is a nonrandom “bias term” defined as

BV,λ(x,w, h1) ≡ gV,λ(x,w, h1)− gV,λ(x,w);

LV,λ(x,w, h) is a “variance term” admitting the linear representation

LV,λ(x,w, h) ≡ ḡV,λ(x,w, h)− gV,λ(x,w, h1) = Ê [`V,λ(x,w, h;V,X1, X2,W )] ,
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where ḡV,λ(x,w, h) is the linearization of ĝV,λ(x,w, h) in terms of (Ê[eiζX2 ] −
E[eiζX2 ]),

(Ê[X1e
iζX2 ] − E[X1e

iζX2 ]), (Ê[V eiζX2kh2(W − w)] − E[V eiζX2kh2(W − w)]), and

(Ê[kh2(W − w)]− E[kh2(W − w)]), where

`V,λ(x,w, h; v, x1, x2, w̃)

≡
∫

ΨV,λ,1(ζ, x, w, h1)
(
eiζx2 − E

[
eiζX2

])
dζ

+

∫
ΨV,λ,X1(ζ, x, w, h1)

(
x1e

iζx2 − E
[
X1e

iζX2
])
dζ

+

∫
ΨV,λ,χV

(ζ, x, w, h1)
(
veiζx2kh2(w̃ − w)− E

[
V eiζX2kh2(W − w)

])
dζ

+

∫
ΨV,λ,fW

(ζ, x, w, h1) (kh2(w̃ − w)− E [kh2(W − w)]) dζ,

and where, letting θA(ζ) ≡ E
[
AeiζX2

]
for A = 1, X1 and χV (ζ, w) ≡

∫ ∫
veiζx2

fV,X2,W (v, x2, w)dvdx2, we define

ΨV,λ,1(ζ, x, w, h1) ≡−
1

2π

iθX1(ζ)

(θ1(ζ))2

∫ ±∞

ζ

(−iξ)λκ(h1ξ) exp(−iξx)φV (ξ, w)dξ

− 1

2π
(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)

θ1(ζ)

ΨV,λ,X1(ζ, x, w, h1) ≡
1

2π

i

θ1(ζ)

∫ ±∞

ζ

(−iξ)λκ(h1ξ) exp(−iξx)φV (ξ, w)dξ

ΨV,λ,χV
(ζ, x, w, h1) ≡

1

2π
(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)

χV (ζ, w)

ΨV,λ,fW
(ζ, x, w, h1) ≡−

1

2π
(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)

fW (w)
,

where for a given function ξ → f(ξ), we write
∫ ±∞
ζ

f(ξ)dξ ≡ limc→+∞
∫ cζ
ζ
f(ξ)dξ;

and RV,λ(x,w, h) is a “remainder term,”

RV,λ(x,w, h) ≡ ĝV,λ(x,w, h)− ḡV,λ(x,w, h).

Because ĝV,λ(x,w, h) takes the form of a nonlinear functional of the data

generating process, the above linearization facilitates the analysis of the asymp-

totic behavior of the estimator. In fact, the limiting distribution of ĝV,λ(x,w, h)−
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gV,λ(x,w) is equivalent to that of LV,λ(x,w, h), as long as BV,λ(x,w, h1) and RV,λ

(x,w, h) are asymptotically negligible. Thus we first establish bounds on the bias,

the variance, and the remainder terms; we then establish the asymptotic normality

of the variance term.

To obtain rate of convergence results for our kernel estimators, we impose

bounds on the tail behavior of the Fourier transforms. These conditions describe

the smoothness of the corresponding densities. The deconvolution literature (e.g.,

Fan, 1991; Fan and Truong, 1993; Li and Vuong, 1998; Li, 2002; Schennach, 2004a;

and Caroll, Ruppert, Stefanski, and Crainiceanu, 2006) commonly distinguishes

between “ordinarily smooth” and “supersmooth” functions. Specifically, ordinar-

ily smooth functions admit a finite number of continuous derivatives and have a

Fourier transform whose tail decays to zero at a geometric rate, |ζ|γ, γ < 0, as

the frequency, |ζ|, goes to infinite (e.g., uniform, gamma, and double exponential);

whereas supersmooth functions admit an infinite number of continuous deriva-

tives and have a Fourier transform whose tail decays to zero at an exponential

rate as exp(α|ζ|β), α < 0, β > 0 as the frequency goes to infinite (e.g., Cauchy

and normal). For conciseness, our smoothness restrictions encompass both the

ordinarily smooth and supersmooth cases; for this, our regularity conditions are

expressed in terms of (1 + |ζ|)γ exp(α|ζ|β).

Assumption 4.1 Let φ1(ζ) ≡ E[eiζX ].

(i) There exist constants C1 > 0 and γ1 ≥ 0 such that

|Dζ lnφ1(ζ)| =
∣∣∣∣Dζφ1(ζ)

φ1(ζ)

∣∣∣∣ ≤ C1(1 + |ζ|)γ1 ;

(ii) There exist constants Cφ > 0, αφ ≤ 0, βφ ≥ 0, and γφ ∈ R such that βφγφ ≥ 0

and for V = 1, Y

sup
w∈supp(W )

|φV (ζ, w)| ≤ Cφ(1 + |ζ|)γφ exp(αφ|ζ|βφ),

and if αφ = 0, then γφ < −λ− 1 for given λ ∈ {0, . . . ,Λ};
(iii) There exist constants Cθ > 0,αθ ≤ 0, βθ ≥ βφ ≥ 0, and γθ ∈ R such that

βθγθ ≥ 0 and for V = 1, Y

min{ inf
w∈supp(W )

|χV (ζ, w)|, |θ1(ζ)|} ≥ Cθ(1 + |ζ|)γθ exp(αθ|ζ|βθ).
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We omit a term exp(α1|ζ|β1) in Assumption 4.1(i) with negligible loss of

generality because lnφ1 is typically a power of ζ for large ζ, even when the density

of φ1(ζ) is supersmooth, as pointed out in Schennach (2004a) and SWC. Note that

the rate of decay of φV (ζ, w) is governed by the smoothness of gV,0(x,w) = E[V |
X = x,W = w]fX|W (x | w), as φV (ζ, w) =

∫
gV,0(x,w)eiζxdx. Note that a lower

bound, instead of an upper bound, is imposed on χV (ζ, w) and θ1(ζ), because

these appear in the denominator of the expression for ĝV,λ(x,w, h). Individual

lower bounds on the modulus of the characteristic functions of X and U2 imply

the lower bound on θ1(ζ), as θ1(ζ) = E[eiζX2 ] = E[eiζX ]E[eiζU2 ] by Assumption

3.2(ii). We group together χV (ζ, w) and θ1(ζ) (in fact, E[eiζX ] and E[eiζU2 ]) in a

single assumption for the lower bound for notational convenience. We explicitly

impose βθ ≥ βφ because

Cφ(1 + |ζ|)γφ exp(αφ|ζ|βφ) ≥ sup
w∈supp(W )

|φ1(ζ, w)| = sup
w∈supp(W )

|E[eiζX | W = w]|

≥
∣∣∣∣∫ E[eiζX | W = w]fW (w)dw

∣∣∣∣ = |E[eiζX ]| ≥ |E[eiζX ]||E[eiζU2 ]| ≥ |E[eiζX2 ]|

= |θ1(ζ)| ≥ Cθ(1 + |ζ|)γθ exp(αθ|ζ|βθ).

The next theorem describes the asymptotic properties of the bias term

defined in Lemma 4.1.

Theorem 4.2 Let the conditions of Lemma 4.1 hold, and suppose in ad-

dition that Assumption 4.1 (ii) holds. Then for V = 1, Y, and each λ ∈ {0, . . . ,Λ}
and h1 > 0,

sup
(x,w)∈supp(X,W )

|BV,λ(x,w, h1)| = O
((
h−1

1

)γλ,B exp
(
αB
(
h−1

1

)βB

))
,

where αB ≡ αφξ̄
βφ , βB ≡ βφ, and γλ,B ≡ γφ + λ+ 1.

Note that the bias term behaves identically to that of a conventional kernel

estimator employed when X is measurement error-free, because BV,λ(x,w, h1) only

involves the kernel and error-free variables.4

4When X is perfectly observed, one can propose an estimator of gV,λ using a similar Fourier
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To establish a divergence rate and asymptotic normality for the variance

term, LV,λ(x,w, h), we impose some regularity conditions. We first impose condi-

tions ensuring finite variance of LV,λ(x,w, h).

Assumption 4.2 E[|X1|2] <∞ and E[|Y |2] <∞.

We next impose bounds on some moments that are useful for establishing

asymptotic normality of LV,λ(x,w, h).

Assumption 4.3 For some δ > 0, E[|X1|2+δ] <∞, supx2∈supp(X2)

E[|X1|2+δ | X2 = x2] <∞, E[|Y |2+δ] <∞, and supw∈supp(W )E[|Y |2+δ | W = w] <

∞.

We also suitably control the bandwidth to establish asymptotic normality.

Assumption 4.4 hn → 0 as n → ∞, such that: if βθ 6= 0 in As-

sumption 4.1 (iii), then h−1
2n = O

(
exp(1

2
lnn3/2−η − 1

2
(αφ1βθ=βφ

− αθ)(lnn)1−ηβθ)
)

and h−1
1n = O

(
(lnn)1/βθ−η

)
for some η > 0; otherwise, for each λ ∈ {0, . . . ,Λ},

h−1
2n = O

(
n(3−2η)/4n3η(γφ+λ−γθ+1)/(2(γφ+λ+γ1−γθ+3))

)
and

h−1
1n = O

(
n−ηn(3/2)/(γφ+λ+γ1−γθ+3)

)
for some η > 0.

The bandwidth sequences given above can be selected by ensuring that a

regularity condition in Lemma A.2 holds (see Lemma A.2 and the proof of Theorem

4.3 in the Appendix). The bandwidth sequences imply that if densities appearing

transform as

ĝV,λ(x,w, hn) ≡ 1
2π

∫
(−iζ)λκ(h1nζ)φ̂V (ζ, w, h2n) exp(−iζx)dζ,

for hn → 0 as n→∞, where

φ̂V (ζ, w, h2n) ≡ Ê[V eiζX |W = w] =
Ê[V eiζXkh2n

(W − w)]
Ê[kh2n(W − w)]

.

Then one can easily derive the order of the bias, which is the same as that in Theorem 4.2. Note
that this estimator for gV,λ has the same asymptotic properties as a traditional kernel estimator
of gV,λ with the flat-top kernel of infinite order when X is perfectly observed; but this estimator
using the Fourier transform approach makes possible easy comparisons with our estimator in
Definition 3.3.
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in quantities in the denominator (χV (ζ, w) and θ1) are supersmooth, one must

choose a larger bandwidth than in the case of ordinary smoothness. The achievable

convergence rates will thus be slower than for ordinary smoothness. Similar but

simpler results have also been observed in the kernel deconvolution literature (see

Fan (1991), Fan and Truong (1993), Li and Vuong (1998), Li (2002), and Schennach

(2004a)).

We are ready to state a uniform rate and asymptotic normality for the

variance term.

Theorem 4.3 Let the conditions of Lemma 4.1 hold. (i) Then for V =

1, Y and for each λ ∈ {0, ...,Λ}, (x,w) ∈ supp(X,W ), and h > 0, E[LV,λ(x,w, h)]

= 0, and if Assumption 4.2 also holds, then

E
[
(LV,λ(x,w, hn))

2
]

= n−1ΩV,λ(x,w, hn),

where

ΩV,λ(x,w, hn) ≡ E
[
(`V,λ(x,w, hn;V,X1, X2,W ))2

]
is finite. Further, if Assumption 4.1 holds, then√

sup
(x,w)∈supp(X,W )

ΩV,λ(x,w, hn)

= O
(
max{

(
h−1

1n

)δL , h−1
2n }

(
h−1

1n

)γλ,L exp
(
αL
(
h−1

1n

)βL

))
,

with αL ≡ αφ1{βφ=βθ} − αθ, βL ≡ βθ, γλ,L ≡ 1 + γφ − γθ + λ, and δL ≡ 1 + γ1. We

also have

sup
(x,w)∈supp(X,W )

|LV,λ(x,w, hn)|

= Op

(
n−1/2

(
max{

(
h−1

1n

)δL , h−1
2n }
) (
h−1

1n

)γλ,L exp
(
αL
(
h−1

1n

)βL

))
;

(ii) If Assumptions 4.3 and 4.4 also hold, and if for V = 1, Y and for each

λ ∈ {0, ...,Λ}, (x,w) ∈ supp(X,W ), ΩV,λ(x,w, hn) > 0 for all n sufficiently large,

then

n1/2 (ΩV,λ(x,w, hn))
−1/2 LV,λ(x,w, hn)

d−→ N(0, 1).

A few remarks are in order. The rate of divergence of the variance term

is controlled by the smoothness of the density of the measurement error U2 and
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E[ϕ(x2, w) | X2 = x2] (through γθ, αθ, βθ) as well as by the smoothness of the

density of X and E[V | X = x,W = w] (through γφ, αφ, βφ, and γ1), where

ϕ(x2, w) =
∫
vfV,X2,W (v, x2, w)dv. As expected, the order of the variance term is

larger than that of a traditional kernel estimator with error-free variables.5 As a

result, the rate of convergence of the estimator ĝV,λ will be slower than that of a

standard kernel estimator, because the bias term is identical to that of a standard

kernel estimator with measurement error-free X.

We now establish a uniform convergence rate and asymptotic normality of

the estimator ĝV,λ(x,w, hn). We first provide bounds on the remainder term that

are used to obtain a convergence rate. The next assumption puts restrictions on

the moments of X2 that are useful for establishing a bound on the remainder term,

RV,λ(x,w, hn).

Assumption 4.5 E[|X2|] <∞, E[|X1X2|] <∞, and E[|Y X2|] <∞.

The following assumption provides a uniform convergence rate for the kernel

density estimator, f̂W (w), in the denominator of ĝV,λ(x,w, h). This assumption is

also used to get the bound on the remainder term and is satisfied by density

estimation with conventional choice of kernel. Even though flat-top kernels of

infinite order attain a faster convergence rate than that below (e.g., Politis and

Romano, 1999), the faster rate is not necessary for our result.

Assumption 4.6 supw∈supp(W ) |f̂W (w)− fW (w)| = Op

(√
lnn
nh2

+ h2
2

)
.

The following assumption gives a lower bandwidth bound that slightly dif-

fers from that of Assumption 4.4. Note that neither Assumption 4.4 nor 4.7 is

necessarily stronger than the other.

Assumption 4.7 If βθ 6= 0 in Assumption 4.1, h−1
1n = O

(
(lnn)1/βθ−η

)
and h−1

2n = O
(
exp(αθ

4
(lnn)1−ηβθ)

)
for some η > 0; otherwise

5With perfectly observed X, the order of the variance term of the estimator in footnote 2
can be derived as n−1/2h−1

2n

(
h−1

1n

)1+γφ+λ
exp

(
αφ

(
h−1

1n

)βφ
)
. Thus if βφ > 0, βL ≡ βθ ≥ βφ by

construction, and if βL ≡ βθ = βφ = 0, γλ,L ≡ 1 + γφ − γθ + λ > 1 + γφ + λ since (−γθ) > 0, and
max{

(
h−1

1n

)δL
, h−1

2n } ≥ h−1
2n . Then the order of the variance term in Theorem 4.3 is greater than

that of the kernel estimator with perfectly observed variables.
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h−1
1n = O

(
n−ηn1/(2γ1−2γθ)

)
and h−1

2n = O
(
nη(γ1−γθ−1)/4

)
for some η > 0.

The bandwidth sequences above can be selected to ensure that the nonlin-

ear remainder term, RV,λ(x,w, hn), is indeed asymptotically negligible so that the

decomposition of the estimation error into bias, variance, and remainder terms is

justified, thus implying that the linear approximation of ĝV,λ(x,w, hn)− gV,λ(x,w)

using the variance term, LV,λ(x,w, hn), is appropriate. The basic intuition behind

the selection of the bandwidth is similar to that for Assumption 4.4. We now state

uniform bounds on the nonlinear remainder.

Theorem 4.4 (i) Suppose the conditions of Theorem 4.3 hold, together

with Assumptions 4.5, 4.6. Then for V = 1, Y, each λ ∈ {0, ...,Λ}, and some

ε > 0,

sup
(x,w)∈supp(X,W )

|RV,λ(x,w, hn)|

= Op

(
n−1/2+ε(h−1

2n )3(h−1
1n )γ1−γθ exp

(
−αθ(h−1

1n )βθ
))

×Op

(
n−1/2

(
max{(h−1

1n )δL , h−1
2n }
)
(h−1

1n )γλ,L exp
(
αL(h−1

1n )βL
))

;

(ii) If Assumption 4.7 holds in place of Assumption 4.4, then for V = 1, Y and

each λ ∈ {0, ...,Λ},

sup
(x,w)∈supp(X,W )

|RV,λ(x,w, hn)|

= op
(
n−1/2

(
max{(h−1

1n )δL , h−1
2n }
)
(h−1

1n )γλ,L exp
(
αL(h−1

1n )βL
))
.

Theorem 4.4 (i) is used to establish the asymptotic normality of ĝV,λ, and

(ii) is relevant to obtaining a convergence rate. The next corollary establishes a

uniform convergence rate by combining Theorems 4.2, 4.3, and 4.4(ii).

Corollary 4.5 If the conditions of Theorem 4.4 (ii) hold, then for V =

1, Y and each λ ∈ {0, ...,Λ},

sup
(x,w)∈supp(X,W )

|ĝV,λ(x,w, hn)− gV,λ(x,w, 0)|

=O
((
h−1

1n

)γλ,B exp
(
αB
(
h−1

1n

)βB

))
+Op

(
n−1/2

(
max{(h−1

1n )δL , h−1
2n }
) (
h−1

1n

)γλ,L exp
(
αL
(
h−1

1n

)βL

))
.
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In the next assumption, we ensure that the bias term and remainder term

do not dominate the variance term admitting the linear representation.

Assumption 4.8 hn → 0 at a rate such that for V = 1, Y and for each

λ ∈ {0, ...,Λ} and (x,w) ∈ supp(X,W ) we have: (i) ΩV,λ(x,w, hn) > 0 for all

n sufficiently large; (ii) n1/2 (ΩV,λ(x,w, hn))
−1/2 |BV,λ(x,w, h1n)| → 0; and (iii)

n1/2 (ΩV,λ(x,w, hn))
−1/2 |RV,λ(x,w, hn)|

p−→ 0.

This assumption provides a lower bound on ΩV,λ(x,w, hn) such that BV,λ

(x,w, h1n) and RV,λ(x,w, hn) are small relative to this lower bound. Note that the

bound on ΩV,λ(x,w, hn) given in Theorem 4.3(i) is an upper bound on the conver-

gence rate, so is not sufficient to obtain our next result, Corollary 4.6. As a result,

the bias term and nonlinear remainder term must be asymptotically negligible rel-

ative to n−1/2(ΩV,λ(x,w, hn))
1/2, the standard deviation of LV,λ(x,w, hn), in order

to ensure that they have no effect on the limiting distribution of the estimator.

The following corollary establishes asymptotic normality by collecting to-

gether Assumption 4.8, Theorem 4.3, and Theorem 4.4(i).

Corollary 4.6 If the conditions of Theorem 4.4 (i) and Assumption 4.8

hold, then for V = 1, Y and each λ ∈ {0, ...,Λ} and (x,w) ∈ supp(X,W ), we have

n1/2 (ΩV,λ(x,w, hn))
−1/2 (ĝV,λ(x,w, hn)− gV,λ(x,w, 0))

d−→ N(0, 1).

1.4.2 Asymptotics for Functionals of the General Form

We now consider functionals b of J-vectors gx ≡ (gV1,λ1(x, ·), ..., gVJ ,λJ
(x, ·))

and g ≡ (gV1,λ1 , ..., gVJ ,λJ
) with finite J, and establish the asymptotic properties of

b(ĝx(h))− b(gx) ≡ b((ĝV1,λ1(x, ·, h), ..., ĝVJ ,λJ
(x, ·, h))− b((gV1,λ1(x, ·), ..., gVJ ,λJ

(x, ·))
and b(ĝ(h))− b(g) ≡ b((ĝV1,λ1(·, h), ..., ĝVJ ,λJ

(·, h))− b((gV1,λ1 , ..., gVJ ,λJ
)). The first

of the following theorems is relevant to estimating βm(x), βmfW
(x), and βmfW |X (x).

Because the weighted average of coordinates of gx is taken only over w, functionals

of gx obtain a rate between
√
n− and that obtained in Corollary 4.5. It is not easy

to use a functional delta method to obtain asymptotic normality of the functional

because we need to show tightness of integrands by introducing trimming of the
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tails of characteristic functions in the theorem. We therefore leave formal treat-

ment of asymptotic normality results to future research. The second theorem is

useful for estimating βm̃, βm̃fW,X
, and βm̃fW |X and delivers

√
n− consistency and

asymptotic normality results for the weighted averages of interest. Because it in-

volves a weighted average over both x and w, it achieves the standard parametric

rate of convergence. Each theorem relies on the validity of an asymptotically linear

representation, useful for analyzing a scalar estimator constructed as a functional

of a vector of estimators. To obtain a faster rate for functionals of gx than that for

gV,λ(x,w), we first impose a bound on the tail behavior of the Fourier transforms

involved, as in Assumption 4.1.

Assumption 4.9 Suppose that for each x ∈ supp(X), supx∈supp(X)∫
|s(x,w)|dw < ∞. Then for V = 1, Y , there exist constants Cφs > 0, αφs ≤ 0,

βφs ≥ βφ ≥ 0, and γφs ∈ R such that βφsγφs ≥ 0 and if βφs = βφ = 0, γφ ≥ γφs,

and

sup
x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw

∣∣∣∣ ≤ Cφs(1 + |ζ|)γφs exp(αφs|ζ|βφs),

and in addition if αφs = 0, then γφs < −λ− 1 for given λ ∈ {0, . . . ,Λ}.

The assumption above relies on the intuition that averaging a quantity

generates a faster convergence rate. It is natural to assume βφs ≥ βφ and if

βφs = βφ = 0, γφ ≥ γφs, because

sup
w∈supp(W )

|φV (ζ, w)| �

(
sup

w∈supp(W )

|φV (ζ, w)|

)(
sup

x∈supp(X)

∣∣∣∣∫ s(x,w)dw

∣∣∣∣
)

≥ sup
x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw

∣∣∣∣ .
Observe, however, that the inequality above can hold even when βφs < βφ or γφ <

γφs, because both bounds on supw∈supp(W ) |φV (ζ, w)| and on supx∈supp(X) |
∫
φV (ζ, w)

s(x,w)dw | given in Assumption 4.1(ii) and 4.9, respectively, are upper bounds.

Thus, a faster convergence rate due to averaging over W is not a necessary result.

We next impose minimum convergence rates in a high-level form for con-

ciseness.
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Assumption 4.10 hn → 0 as n→∞ such that for all λ ∈ {0, ...,Λ}, we

have: (i) if βφs = βφ > 0 or γφ = γφs for βφs = βφ = 0, sup(x,w)∈supp(X,W ) |BV,λ(x,w,

h1n)| = o (α1n), sup(x,w)∈supp(X,W ) |LV,λ(x,w, hn)| = op

(
α

1/2
1n

)
, and sup(x,w)∈supp(X,W )

|RV,λ(x,w, hn)| = op (α1n) where α1n ≡
(
h−1

1n

)γλ,B exp
(
αB
(
h−1

1n

)βB

)
+ n−1/2(

max{(h−1
1n )δL , h−1

2n }
) (
h−1

1n

)γλ,L exp
(
αL
(
h−1

1n

)βL

)
and where αB, βB, γλ,B, αL, βL,

γλ,L, and δL are as defined in Theorem 4.2 and 4.3.

(ii) if βφs > βφ > 0 or γφ > γφs for βφs = βφ = 0, sup(x,w)∈supp(X,W ) |BV,λ(x,

w, h1n)| = o (α2n), sup(x,w)∈supp(X,W ) |LV,λ(x,w, hn)| = op

(
α

1/2
2n

)
,

and sup(x,w)∈supp(X,W ) |RV,λ(x,w, hn)| = op (α2n) where α2n ≡
(
h−1

1n

)γλ,B,s

exp
(
αB,s

(
h−1

1n

)βB,s

)
+ n−1/2

(
max{(h−1

1n )δL,s , h−1
2n }
) (
h−1

1n

)γλ,L,s exp
(
αL,s

(
h−1

1n

)βL,s

)
,

and where αB,s ≡ αφsξ̄
βφs , βB,s ≡ βφs, γλ,B,s ≡ γφs + λ + 1, αL,s ≡ αφs1{βφs≥βθ} −

αθ1{βφs≤βθ}, βL,s ≡ max{βθ, βφs}, γλ,L,s ≡ 1 + γφs − γθ + λ, and δL,s ≡ 1 + γ1.

We now establish a faster convergence rate for functionals of gx than that

for gV,λ(x,w), which is useful for analyzing βm(x), βmfW
(x), and βmfW |X (x).

Theorem 4.7 For given Λ, J ∈ N, let λ1, ..., λJ belong to {0, ...,Λ},
let V1, ..., VJ belong to {1, Y }, and suppose that the conditions of Corollary 4.5

and Assumption 4.9 hold. For each x ∈ supp(X), let the real-valued functional

b satisfy, for any g̃x ≡ (g̃V1,λ1(x, ·), ..., g̃VJ ,λJ
(x, ·)) in an L∞ neighborhood of the

J-vector gx ≡ (gV1,λ1(x, ·), ..., gVJ ,λJ
(x, ·)),

b(g̃x)− b(gx) =
J∑
j=1

∫ (
g̃Vj ,λj

(x,w)− gVj ,λj
(x,w)

)
sj(x,w)dw (1.9)

+
J∑
j=1

O
(
‖ g̃Vj ,λj

(x, ·)− gVj ,λj
(x, ·) ‖2

∞
)

for some real-valued functions sj, j = 1, ..., J . In addition, suppose that sj is such

that supx∈supp(X)

∫
|sj(x,w)|dw <∞, and let ĝx(hn) ≡ (ĝV1,λ1(x, ·, hn), ..., ĝVJ ,λJ

(x,

·, hn)). (i) If Assumption 4.10(i) holds, then

sup
x∈supp(X)

|b(ĝx(hn))− b(gx)|

= O
((
h−1

1n

)γλ,B exp
(
αB
(
h−1

1n

)βB

))
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+Op

(
n−1/2

(
max{(h−1

1n )δL , h−1
2n }
) (
h−1

1n

)γλ,L exp
(
αL
(
h−1

1n

)βL

))
;

(ii) If Assumption 4.10(ii) holds, then

sup
x∈supp(X)

|b(ĝx(hn))− b(gx)|

= O
((
h−1

1n

)γλ,B,s exp
(
αB,s

(
h−1

1n

)βB,s

))
+Op

(
n−1/2

(
max{(h−1

1n )δL,s , h−1
2n }
) (
h−1

1n

)γλ,L,s exp
(
αL,s

(
h−1

1n

)βL,s

))
.

Note that Eqn. (1.9) of this result is Fréchet differentiability of b(g̃x) with

respect to g̃x in the norm ‖ g̃Vj ,λj
(x, ·) ‖2

∞, where the derivative is sj(x,w).

We impose minimum convergence rates for the next theorem in a high-level

form.

Assumption 4.11 hn → 0 as n→∞ such that for all λ ∈ {0, ...,Λ}, we

have sup(x,w)∈supp(X,W ) |BV,λ(x,w, h1n)| = o
(
n−1/2

)
, sup(x,w)∈supp(X,W ) |LV,λ(x,w,

hn)| = op
(
n−1/4

)
, sup(x,w)∈supp(X,W ) |RV,λ(x,w, hn)| = op

(
n−1/2

)
, and supw∈supp(W )

|f̂W (w)− fW (w)| = op
(
n−1/4

)
.

The following theorem gives a convenient asymptotic normality and
√
n−

consistency result useful for analyzing βm̃, βm̃fW,X
, and βm̃fW |X .

Theorem 4.8 For given Λ, J ∈ N, let λ1, ..., λJ belong to {0, ...,Λ},
let V1, ..., VJ belong to {1, Y }, and suppose that the conditions of Corollary 4.6

and Assumption 4.8 hold. Let the real-valued functional b satisfy, for any g̃ ≡
(g̃V1,λ1 , ..., g̃VJ ,λJ

) in an L∞ neighborhood of the J-vector g ≡ (gV1,λ1 , ..., gVJ ,λJ
) and

for any f̃ ≡ f̃W in a neighborhood of f ≡ fW ,

b(g̃, f̃)− b(g, f) =
J∑
j=1

∫ ∫ (
g̃Vj ,λj

(x,w)− gVj ,λj
(x,w)

)
sj(x,w)dwdx

+

∫ ∫ (
f̃W (w)− fW (w)

)
sJ+1(x,w)dwdx (1.10)

+
J∑
j=1

O
(
‖ g̃Vj ,λj

− gVj ,λj
‖2
∞
)

+O
(
‖ f̃W − fW ‖2

∞

)
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for some real-valued functions sj, j = 1, ..., J+1. If sj is such that
∫ ∫

|sj(x,w)|dw
dx <∞ and Ψ̄V,λ,s ≡

∑J
j=1

∫
ΨVj ,λj ,sj

(ζ)dζ + |σfW ,s| <∞ , where

ΨV,λ,s(ζ) ≡
1

|θ1(ζ)|

(
1 +

|θX1(ζ)|
|θ1(ζ)|

)∫ ∞

|ζ|
|σV,1,s(ξ)||ξ|λdξ

+ |ζ|λ
(
|σV,1,s(ζ)|
|θ1(ζ)|

+ |σV,χV ,s(ζ)|+ |σV,fW ,s(ζ)|
)

σV,1,s(ζ) ≡
∫

exp(iζx)

∫
s(x,w)φV (ζ, w)dwdx

σV,χV ,s(ζ) ≡
∫

exp(iζx) lim
h2→0

∫
1

χV (ζ, w)
s(x,w)φV (ζ, w)veiζx2kh2(w̃ − w)dwdx

σV,fW ,s(ζ) ≡
∫

exp(iζx) lim
h2→0

∫
1

fW (w)
s(x,w)φV (ζ, w)kh2(w̃ − w)dwdx

σfW ,s ≡
∫

lim
h2→0

∫
sJ+1(x,w)kh2(w̃ − w)dwdx,

then, letting ĝ(hn) ≡ (ĝV1,λ1(·, hn), ..., ĝVJ ,λJ
(·, hn)) and f̂(h2n) ≡ Ê[kh2n(·)],

b(ĝ(hn), f̂(h2n))− b(g, f) = Ê [ψs(V,X1, X2,W )] + op
(
n−1/2

)
,

where

ψs(v, x1, x2, w̃) ≡
J∑
j=1

ψVj ,λj
(sj; vj, x1, x2, w̃) + ψf (sJ+1; w̃)

and where

ψV,λ(s; v, x1, x2, w̃) ≡
∫ {

ΨV,λ,1,s(ζ)
(
eiζx2 − E[eiζX2 ]

)
+ ΨV,λ,X1,s(ζ)

(
x1e

iζx2 − E[X1e
iζX2 ]

)
+ (ZV,λ,χV

(s, ζ; v, x2, w̃)− E[ZV,λ,χV
(s, ζ;V,X2,W )])

+ (ZV,λ,fW
(s, ζ; w̃)− E[ZV,λ,fW

(s, ζ;W )])

}
dζ

ψf (sJ+1; w̃) ≡
∫

lim
h2→0

∫
sJ+1(x,w) (kh2(w̃ − w)− E[kh2(W − w)]) dwdx,

with

ΨV,λ,1,s(ζ) ≡ −
1

2π

iθX1(ζ)

(θ1(ζ))2

∫ ±∞

ζ

(∫
exp(−iξx)

∫
s(x,w)φV (ξ, w)dwdx

)
(−iξ)λ

− 1

2π

(−iζ)λ

θ1(ζ)

(∫
exp(−iζx)

∫
s(x,w)φV (ζ, w)dwdx

)
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ΨV,λ,X1,s(ζ) ≡
1

2π

i

θ1(ζ)

∫ ±∞

ζ

(∫
exp(−iξx)

∫
s(x,w)φV (ξ, w)dwdx

)
(−iξ)λdξ

ZV,λ,χV
(s, ζ; v, x2, w̃) ≡ 1

2π
(−iζ)λ

∫
exp(−iζx) lim

h2→0

∫
1

χV (ζ, w)
s(x,w)φV (ζ, w)

× veiζx2kh2(w̃ − w)dwdx

ZV,λ,fW
(s, ζ; w̃) ≡ − 1

2π
(−iζ)λ

∫
exp(−iζx) lim

h2→0

∫
1

fW (w)
s(x,w)φV (ζ, w)

× kh2(w̃ − w)dwdx.

Moreover,

n1/2(b(ĝ(hn), f̂(h2n))− b(g, f))
d−→ N(0,Ωb),

where

Ωb ≡ E
[
(ψs(V,X1, X2,W ))2] <∞.

1.4.3 Asymptotics for Average Marginal Effects

We now apply our previous general results to obtain the asymptotic prop-

erties of estimators of the objects of interest here. First, consider the plug-in

estimator for the covariate-conditioned average marginal effect,

β̂(x,w, h) ≡ ĝY,1(x,w, h)

ĝ1,0(x,w, h)
− ĝY,0(x,w, h)

ĝ1,0(x,w, h)

ĝ1,1(x,w, h)

ĝ1,0(x,w, h)

for each (x,w) ∈ supp(X,W ), where the nonparametric estimators ĝ are as given

above.

The results above and a straightforward Taylor expansion yield the following

result.

Theorem 4.9 Suppose the conditions of Theorem 4.4 (ii) hold for Λ = 1

and that maxV=1,Y maxλ=0,1

sup(x,w)∈supp(X,W ) |gV,λ(x,w)| <∞. Further, for τ = τn > 0, define

Γτ ≡ {(x,w) ∈ R2 : fX|W (x | w) ≥ τn}.

Then we have
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sup
(x,w)∈Γτ

∣∣∣β̂(x,w, hn)− β(x,w)
∣∣∣

= O
(
τ−3

(
h−1

1n

)γ1,B exp
(
αB
(
h−1

1n

)βB

))
+Op

(
τ−3n−1/2

(
max{(h−1

1n )δL , h−1
2n }
) (
h−1

1n

)γ1,L exp
(
αL
(
h−1

1n

)βL

))
,

and there exists a sequence {τn} such that τn > 0, τn → 0 as n→∞, and

sup
(x,w)∈Γτ

∣∣∣β̂(x,w, hn)− β(x,w)
∣∣∣ = op(1).

The delta method gives us the next result.

Theorem 4.10 Suppose the conditions of Corollary 4.6 hold for Λ =

1 and that maxV=1,Y maxλ=0,1 sup(x,w)∈supp(X,W ) |gV,λ(x,w)| < ∞. Then for all

(x,w) ∈ supp(X,W ),

n1/2 (Ωβ(x,w, hn))
−1/2

(
β̂(x,w, hn)− β(x,w)

)
d−→ N(0, 1),

provided that

Ωβ(x,w, hn) ≡ E
[
(`β(x,w, hn;V,X1, X2,W ))2

]
is finite and positive for all n sufficiently large, where

`β(x,w, h; v, x1, x2, w̃)

= sY,1(x,w)`Y,1(x,w, h; y, x1, x2, w̃) + sY,0(x,w)`Y,0(x,w, h; y, x1, x2, w̃)

+ s1,1(x,w)`1,1(x,w, h; 1, x1, x2, w̃) + s1,0(x,w)`1,0(x,w, h; 1, x1, x2, w̃),

where `V,λ is as defined in Lemma 4.1,and

sY,1(x,w) =
1

g1,0(x,w)
,

sY,0(x,w) = −g1,1(x,w)

g1,0(x,w)

1

g1,0(x,w)
,

s1,1(x,w) = −gY,0(x,w)

g1,0(x,w)

1

g1,0(x,w)
,

s1,0(x,w) =

(
2
gY,0(x,w)

g1,0(x,w)

g1,1(x,w)

g1,0(x,w)
− gY,1(x,w)

g1,0(x,w)

)
1

g1,0(x,w)
.
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Because we are interested in weighted averages of β(x,w) as well as β(x,w)

itself, we now consider the asymptotic properties of the following estimators of the

weighted averages in eqns. (1.2)∼(1.7):

β̂m(x, hn) =

∫
Sw

β̂(·,hn)

β̂(x,w, hn)m(w)dw, (1.11)

β̂mfW
(x, hn) =

∫
Sw

β̂(·,hn)

β̂(x,w, hn)m(w)f̂W (w)dw, (1.12)

β̂mfW |X (x, hn) =

∫
Sw

β̂(·,hn)

β̂(x,w, hn)m(w)f̂W |X(w | x)dw (1.13)

=

∫
Sw

β̂(·,hn)

β̂(x,w, hn)m(w)
ĝ1,0(x,w, hn)f̂W (w)∫
Sw

β̂(·,hn)

ĝ1,0(x,w, hn)dw
dw,

β̂m̃(hn) =

∫
Sx,w

β̂(·,hn)

β̂(x,w, hn)m̃(x,w)dwdx, (1.14)

β̂m̃fW |X (hn) =

∫
Sx,w

β̂(·,hn)

β̂(x,w, hn)m̃(x,w)f̂W |X(w | x)dwdx (1.15)

=

∫
Sx,w

β̂(·,hn)

β̂(x,w, hn)m̃(x,w)
ĝ1,0(x,w, hn)f̂W (w)∫
Sw

β̂(·,hn)

ĝ1,0(x,w, hn)dw
dwdx,

β̂m̃fW,X
(hn) =

∫
Sx,w

β̂(·,hn)

β̂(x,w, hn)m̃(x,w)f̂W,X(w, x)dwdx (1.16)

=

∫
Sx,w

β̂(·,hn)

β̂(x,w, hn)m̃(x,w)ĝ1,0(x,w, hn)f̂W (w)dwdx,

where Sw
β̂(·,hn)

≡ {w ∈ R : ĝ1,0(x,w, hn) > 0}, Sx,w
β̂(·,hn)

≡ {(x,w) ∈ R2 : ĝ1,0(x,w, hn)

> 0}, and where f̂W (w) is a nonparametric estimator of the density of W . The

next assumption restricts the weight functions, m and m̃.

Assumption 4.12 Let M and M̃ be bounded measurable subsets of R
and R2, respectively. (i) The weight functions m : R → R and m̃ : R2 → R are

measurable and supported on M and M̃, respectively ; (ii) inf(x,w)∈M̃ fX|W (x | w) >

0; (iii) maxV=1,Y maxλ=0,1 sup(x,w)∈M̃ |gV,λ(x,w)| <∞.

The next two theorems establish asymptotic properties for these estimators

by applying Theorem 4.7 and 4.8. We first establish asymptotic results for the
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semiparametric functionals taking the forms of eqns. (1.11)∼(1.13) by applying

Theorem 4.7.

Theorem 4.11 Suppose the conditions of Theorem 4.7 hold for Λ = 1

and that Assumption 4.12 holds. Then (i)

sup
x∈M

|β̂m(x, hn)− βm(x)|

= O
(
τ−3

(
h−1

1n

)γ1,B,s exp
(
αB,s

(
h−1

1n

)βB,s

))
+Op

(
τ−3n−1/2

(
max{(h−1

1n )δL,s , h−1
2n }
) (
h−1

1n

)γ1,L,s exp
(
αL,s

(
h−1

1n

)βL,s

))
,

(ii)

sup
x∈M

|β̂mfW
(x, hn)− βmfW

(x)|

= O
(
τ−3

(
h−1

1n

)γ1,B,s exp
(
αB,s

(
h−1

1n

)βB,s

))
+Op

(
τ−3n−1/2

(
max{(h−1

1n )δL,s , h−1
2n }
) (
h−1

1n

)γ1,L,s exp
(
αL,s

(
h−1

1n

)βL,s

))
,

and (iii)

sup
x∈M

|β̂mfW |X (x, hn)− βmfW |X (x)|

= O
(
τ−3

(
h−1

1n

)γ1,B,s exp
(
αB,s

(
h−1

1n

)βB,s

))
+Op

(
τ−3n−1/2

(
max{(h−1

1n )δL,s , h−1
2n }
) (
h−1

1n

)γ1,L,s exp
(
αL,s

(
h−1

1n

)βL,s

))
,

where αB,s, βB,s, γλ,B,s, αL,s, βL,s, γλ,L,s, and δL,s are as defined in Theorem 4.7.

The following theorem establishes asymptotic results for the semiparametric

functionals taking the forms of eqns. (1.14)∼(1.16) by straightforward application

of Theorem 4.8.

Theorem 4.12 Suppose the conditions of Theorem 4.8 hold for Λ = 1

and that Assumption 4.12 holds. Then (i)

n1/2 (Ωm̃)−1/2
(
β̂m̃(hn)− βm̃

)
d−→ N(0, 1),
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provided that

Ωm̃ ≡ E
[
(ψβm̃

(V,X1, X2,W ))2
]

is finite and positive for all n sufficiently large, where

ψβm̃
(v, x1, x2, w̃) ≡

∑
V=1,Y

∑
λ=0,1

ψV,λ(m̃sV,λ; v, x1, x2, w̃),

where m̃sV,λ denotes the function mapping (x,w) to m̃(x,w)sV,λ(x,w) and where

ψV,λ is defined in Theorem 4.7 ; (ii)

n1/2
(
Ωm̃fW |X

)−1/2 (
β̂m̃fW |X (hn)− βm̃fW |X

)
d−→ N(0, 1),

provided that

Ωm̃fW |X ≡ E
[
(ψβm̃fW |X

(V,X1, X2,W ))2
]

is finite and positive for all n sufficiently large, where

ψβm̃fW |X
(v, x1, x2, w̃) ≡

∑
V=1,Y

∑
λ=0,1

ψV,λ(m̃fW |XsV,λ; v, x1, x2, w̃)

+ ψ1,0(P1; 1, x1, x2, w̃)− ψ1,0(P2; 1, x1, x2, w̃) + ψf (P3; w̃),

and where m̃fW |XsV,λ, P1, P2, and P3 denote the functions mapping (x,w) to

m̃(x,w)fW |X(w | x)sV,λ(x,w), β(x,w)m̃(x,w)fW (w)/fX(x),
∫
Sw

β̂(·,hn)

β(x,w)

m̃(x,w)fW |X(w | x)dw/fX(x), and β(x,w)m̃(x,w)fX|W (x | w)/fX(x), respec-

tively ; (iii)

n1/2
(
Ωm̃fW,X

)−1/2
(
β̂m̃fW,X

(hn)− βm̃fW,X

)
d−→ N(0, 1),

provided that

Ωm̃fW,X
≡ E

[
(ψβm̃fW,X

(V,X1, X2,W ))2
]

is finite and positive for all n sufficiently large, where

ψβm̃fW,X
(v, x1, x2, w̃) ≡

∑
V=1,Y

∑
λ=0,1

ψV,λ(m̃fW,XsV,λ; v, x1, x2, w̃)

+ ψ1,0(βm̃fW ; 1, x1, x2, w̃) + ψf (βm̃fX|W ; w̃),

where m̃fW,XsV,λ, βm̃fW , and βm̃fX|W denote the functions mapping (x,w) to

m̃(x,w)fW,X(w, x)sV,λ(x,w), β(x,w)m̃(x,w)fW (w), and β(x,w)m̃(x,w)fX|W (x |
w), respectively.
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1.5 Monte Carlo Simulations

This section investigates the finite-sample properties of the proposed es-

timator through various Monte Carlo experiments. We consider the following

nonseparable data generating process:

Y = f1(X)Uy, X = 0.5W + Ux, Uy = f2(W ) + Uu,

X1 = X + U1, X2 = X + U2,

where the distributions of each random variable and the explicit forms of f1, f2 are

specified below and where Y , W , X1, and X2 are standardized to have mean zero

and standard deviation one. We assume Ux ⊥ Uu | W which implies X ⊥ Uy | W .6

The variables (Y , X1, X2, W ) are used as an input for our estimator, and the

variables (Y , X1, W ) are used for the local linear estimator that neglects the mea-

surement error. We also use the variables (Y , X, W ) to construct an infeasible

local linear estimator, and (Y , X, X2, W ) and (Y , X1, X, W ) to construct infea-

sible versions of our estimator for purposes of comparison. For those estimators,

we consider flat-top kernels of infinite order. In our estimators7, the expression of

Fourier transform, κ(·), associated with X is given in eqn.(1.8) with ξ̄ = .5. We use

a different flat-top kernel for W , which is introduced in Politis and Romano (1999):

kh(x) ≡ h
2π

sin2(2πx/h)−sin2(πx/h)
π2x2 . All estimates are constructed at values x = 0 and

w = 1. For our estimators, we scan a set of bandwidths8 ranging from 7 to 12.5

for X and from 3.5 to 6 for W in increments of 0.05 in order to find the optimal

bandwidth minimizing the root mean square error (RMSE). For both local linear

estimators, we scan a set of bandwidths ranging from 2.5 to 6 for X and from

1.5 to 3.5 for W , with the same increments. All simulations draw 500 samples of

1, 000, 2, 000, or 8, 000 observations.

We examine a total 16 combinations of ordinary and supersmooth distri-

butions for random variables and functions f1 and f2, as given in Table 1.1. As

6In the simulations, we assume Ux ⊥ (Uu,W ) which implies Ux ⊥ Uu | W by Lemma 4.3 of
Dawid (1979). Lemma 4.1 of Dawid then ensures that Ux ⊥ Uu |W implies X ⊥ Uy |W .

7For the local linear estimator the same flat-top kernel is used for X and W since estimation
results are not sensitive to the choice of the kernel.

8Note that the flat-top kernel has a very narrow central peak, so that even moderately large
bandwidths result in highly local smoothing.
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in Schennach (2004a), we also consider the Laplace distribution as an example of

an ordinarily smooth distribution. The Laplace distribution density, denoted by

L(t;µ, σ2), is defined by
1

σ
√

2
exp

(
−σ|t− µ|

√
2
)

for any t ∈ R with mean µ and variance σ2. Its characteristic function has a tail of

the form |ζ|−2. The normal distribution with variance σ2 is used as an example of

a supersmooth distribution. The tail of the characteristic function of the normal

distribution is of the form exp(−(σ2/2)|ζ|2). Our example of an ordinarily smooth

function for f2(W ) is a piecewise linear continuous function with a discontinuous

first derivative

S(W ) ≡


−1 if W < −1

W if W ∈ [−1, 1]

1 if W > 1,

whose Fourier transform decays at the rate |ζ|−2 as |ζ| → ∞. As an example of a

supersmooth function for f1(X) or f2(W ), we consider the error function

erf(V ) ≡ 2√
π

∫ V

0

e−t
2

dt

having a Fourier transform decaying at the rate |ζ|−1 exp(−1
4
|ζ|2) as |ζ| → ∞ for

V = X or W .

Table 1.2 ∼ 1.6 reports the bias squared, variance, and RMSE of the five

estimators, which are functions of bandwidth for a sample size of 1, 000, for example

1.9 Fourier 1, 2 and 3 refer to our estimators which are based on variables (Y , X1,

X2, W ), (Y , X, X2, W ), and (Y , X1, X, W ), respectively. Local linear without

correction and local linear without errors refer to local linear estimators which use

variables (Y , X1, W ) and (Y , X, W ), respectively. We show results from only

a subset of the bandwidths for conciseness. For each choice of bandwidths, the

bias squared, variance, and RMSE are reported in the first, second, and third row,

respectively. The results from the optimal bandwidth are reported at the bottom

of each estimator.

9We only report this example due to space limitations, but results from all examples give
similar messages on the performance of the estimators.
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A few remarks are in order. It is shown that our estimator is as effective

in reducing bias as the infeasible local linear estimator using the true covariate X

is. However, the bias from the local linear estimator ignoring the measurement

error does not shrink toward zero as bandwidth decreases. Our estimator also

gives smaller variance than the local linear estimator based on error-contaminated

covariates. As a result, our estimator outperforms the local linear estimator in

terms of RMSE. All Fourier estimators perform better than the infeasible local lin-

ear estimator. So it would be interesting to investigate under what conditions and

why Fourier-based estimators outperform local linear estimators. By comparing

among Fourier estimators, we can see the role of clean data as well as the asym-

metry between two measurement errors in Assumption 3.2. Interestingly, Fourier

1 and Fourier 2 obtain quite similar estimation results, but Fourier 3 outperforms

these estimators. So one would want to use more clean one for X2 among two

error-laden observations in order to get better estimation results.

Table 1.7 reports Monte Carlo simulation results for the convergence rate

as a function of sample size for each example. RMSE’s in all examples decrease as

sample size increases, corroborating our theoretical results.

1.6 Summary and Concluding Remarks

We examine the identification and estimation of covariate-conditioned aver-

age marginal effects in a nonseparable data generating process with an endogenous

and mismeasured cause of interest. We use conditioning instruments to ensure the

conditional independence between the cause of interest and other unobservable

drivers, permitting identification of causal effects of interest. Although the endoge-

nous cause of interest is unobserved, two error-laden measurements are available.

We extend methods of the deconvolution literature for nonlinear measurement er-

rors to obtain estimates of the distribution functions of the underlying cause of

interest from its error-laden measurements and to recover parameters of inter-

est. These parameters include covariate-conditioned average marginal effects and

weighted averages of these. We obtain uniform convergence rates and asymptotic
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normality for estimators of covariate-conditioned average marginal effects, faster

convergence rates for estimators of their weighted averages over conditioning in-

struments, and
√
n consistency and asymptotic normality for estimators of their

weighted averages over conditioning instruments and causes.



36

1.7 Acknowledgements

Chapter 1 is coauthored with Susanne M. Schennach and Halbert L. White.

1.8 Mathematical Appendix

Proof of Lemma 3.1 By Assumption 3.1, all expectations below exist and

are finite. We first observe that U2 ⊥ (X,W ) implies U2 ⊥ X and U2 ⊥ W . Given

Assumptions 2.3, 3.2 and 3.4, we get

iE[X1e
iξX2 ]

E[eiξX2 ]
=
iE[Xeiξ(X+U2)] + iE[U1e

iξ(X+U2)]
E[eiξ(X+U2)]

=
iE[Xeiξ(X+U2)] + iE[E(U1e

iξ(X+U2) | X,U2)]
E[eiξ(X+U2)]

=
iE[Xeiξ(X+U2)] + iE[E(U1 | X,U2)eiξ(X+U2)]

E[eiξ(X+U2)]
(1.17)

=
iE[Xeiξ(X+U2)]
E[eiξ(X+U2)]

=
iE[XeiξX ]E[eiξU2 ]
E[eiξX ]E[eiξU2 ]

=
iE[XeiξX ]
E[eiξX ]

= Dξ ln(E[eiξX ]),

as considered by SWC. We use E[U1 | X,U2] = 0 in the step from the third to the fourth

equality and use U2 ⊥ X in the step from the fourth to the fifth equality.

We note that U2 ⊥ (X,W ) if and only if U2 ⊥ W and U2 ⊥ X | W be-

cause f(U2, X,W ) = f(U2, X | W )f(W ) = f(U2 | W )f(X | W )f(W ) = f(U2)f(X |
W )f(W ) = f(U2)f(X,W ). And we note that U2 ⊥ (X,W ) | W if and only if U2 ⊥ X |
W . The ‘only if’ part of the assertion follows immediately because U2 ⊥ (X,W ) | W
implies U2 ⊥ X | W and U2 ⊥ W | W . The ‘if’ part can be proven by the fact that

U2 ⊥ X |W if and only if (U2,W ) ⊥ (X,W ) |W from Lemma 4.1 in Dawid (1979) and

by the fact that if (U2,W ) ⊥ (X,W ) | W , then U2 ⊥ (X,W ) | W from Lemma 4.2(ii)
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in Dawid (1979). Then for each real ζ, we have

φV (ζ,W ) ≡ E[V eiζX |W ]

=
E[V eiζX |W ]E[eiζU2 ]

E[eiζX ]E[eiζU2 ]
E[eiζX ]

=
E[V eiζX |W ]E[eiζU2 |W ]

E[eiζX ]E[eiζU2 ]
E[eiζX ]

=
E[E[V eiζX | X,W ] |W ]E[eiζU2 |W ]

E[eiζX ]E[eiζU2 ]
E[eiζX ]

=
E[E[V | X,W ]eiζX |W ]E[eiζU2 |W ]

E[eiζX ]E[eiζU2 ]
E[eiζX ]

=
E[E[V | X,W ]eiζXeiζU2 |W ]

E[eiζX ]E[eiζU2 ]
E[eiζX ]

=
E[E[V | X,U2,W ]eiζXeiζU2 |W ]

E[eiζX ]E[eiζU2 ]
E[eiζX ]

=
E[E[V eiζXeiζU2 | X,U2,W ] |W ]

E[eiζX ]E[eiζU2 ]
E[eiζX ]

=
E[E[V eiζX2 | X,U2,W ] |W ]

E[eiζX ]E[eiζU2 ]
E[eiζX ]

=
E[V eiζX2 |W ]
E[eiζX ]E[eiζU2 ]

E[eiζX ]

=
E[V eiζX2 |W ]

E[eiζX2 ]
exp

(
ln(E[eiζX ])− ln 1

)
=
E[V eiζX2 |W ]

E[eiζX2 ]
exp

(∫ ζ

0
Dξ ln(E[eiζX ])dξ

)
=
E[V eiζX2 |W ]

E[eiζX2 ]
exp

(∫ ζ

0

iE[X1e
iξX2 ]

E[eiξX2 ]
dξ

)
,

where U2 ⊥ W , U2 ⊥ (X,W ) | W and E[V | X,U2,W ] = E[V | X,W ] are used in the

steps from the second to the third line, from the fifth to the sixth line, and from the

sixth to the seventh line, respectively.

Given Assumptions 3.3 - 3.5, integral by parts gives

(−iζ)λE[V eiζX |W = w] = (−iζ)λ
∫
E[V |W = w,X = x]fX|W (x | w)eiζxdx

= (−1)λ
∫
E[V |W = w,X = x]fX|W (x | w)Dλ

xe
iζxdx

=
∫
Dλ
x(E[V |W = w,X = x]fX|W (x | w))eiζxdx

=
∫
gV,λ(x,w)eiζxdx.
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The last expression is the Fourier transform of gV,λ(x,w). For each λ ∈ {0, ...,Λ} and

(x,w) ∈ supp(X,W ), we have

1
2π

∫
(−iζ)λφV (ζ, w) exp(−iζx)dζ =

1
2π

∫
(−iζ)λE[V eiζX |W = w] exp(−iζx)dζ.

Since the right hand side is the inverse Fourier transform of (−iζ)λE[V eiζX | W = w],

the result follows. �

Proof of Lemma 3.2 Assumptions 3.1, 3.3 - 3.5, and 3.6 ensure the existence

of

gV,λ(x,w, h1) ≡
∫

1
h1
k

(
x̃− x

h1

)
gV,λ(x̃, w)dx̃

=
∫

1
h1
k

(
x̃− x

h1

)
Dλ
x̃(E[V | X = x̃,W = w]fX|W (x̃ | w))dx̃.

By the convolution theorem, the inverse Fourier Transform of the product of κ(h1ζ) and

(−iζ)λ ×
E[V eiζX | W = w] is the convolution between the inverse Fourier Transform of κ(hζ)

and the inverse Fourier Transform of (−iζ)λE[V eiζX | W = w]. The inverse Fourier

Transform of κ(h1ζ) is h−1
1 k(x/h1), and the inverse Fourier Transform of (−iζ)λE[V eiζX |

W = w] is Dλ
x(E[V | X = x,W = w]fX|W (x | w)). It follows that

gV,λ(x,w, h1) =
1
2π

∫
κ(h1ζ)

(
(−iζ)λE[V eiζX |W = w]

)
exp(−iζx)dζ

=
1
2π

∫
(−iζ)λκ(h1ζ)φV (ζ, w) exp(−iζx)dζ. �

Proof of Lemma 4.1 For A = 1, X1, we let θA(ζ) ≡ E
[
AeiζX2

]
and for

V = 1, Y ,

θV (ζ, w) ≡ E
[
V eiζX2 |W = w

]
=
∫ ∫

veiζx2fV,X2|W (v, x2 | w)dvdx2

=
χV (ζ, w)
fW (w)

,

where χV (ζ, w) ≡
∫ ∫

veiζx2fV,X2,W (v, x2, w)dvdx2, fV,X2|W (v, x2 | w) is the conditional

density of (V,X2) given W = w, and fV,X2,W (v, x2, w) is the joint density of (V,X2,W ).
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Also we let θ̂A(ζ) ≡ Ê
[
AeiζX2

]
and δθ̂A(ζ) ≡ θ̂A(ζ) − θA(ζ). Similarly θ̂V (ζ, w) ≡

Ê
[
V eiζX2 |W = w

]
≡ χ̂V (ζ, w)/f̂W (w) where

χ̂V (ζ, w) =
1
n

n∑
j=1

kh2(Wj − w)VjeiζX2j = Ê
[
V eiζX2kh2(W − w)

]
f̂W (w) =

1
n

n∑
j=1

kh2(Wj − w) = Ê [kh2(W − w)]

so that δχ̂V (ζ, w) ≡ χ̂V (ζ, w) − χV (ζ, w) and δf̂W (w) ≡ f̂W (w) − fW (w). As used in

Schennach (2004a, b) and SWC, we state a useful representation for θ̂X1(ζ)/θ̂1(ζ):

θ̂X1(ζ)

θ̂1(ζ)
=
θX1(ζ) + δθ̂X1(ζ)

θ1(ζ) + δθ̂1(ζ)
= qX1(ζ) + δq̂X1(ζ) (1.18)

where qX1(ζ) = θX1(ζ)/θ1(ζ) and where δq̂X1(ζ) can be written as either

δq̂X1(ζ) =

(
δθ̂X1(ζ)
θ1(ζ)

− θX1(ζ)δθ̂1(ζ)
(θ1(ζ))2

)(
1 +

δθ̂1(ζ)
θ1(ζ)

)−1

or δq̂X1(ζ) = δ1q̂X1(ζ) + δ2q̂X1(ζ) with

δ1q̂X1(ζ) ≡
δθ̂X1(ζ)
θ1(ζ)

− θX1(ζ)δθ̂1(ζ)
(θ1(ζ))2

δ2q̂X1(ζ) ≡
θX1(ζ)
θ1(ζ)

(
δθ̂1(ζ)
θ1(ζ)

)2(
1 +

δθ̂1(ζ)
θ1(ζ)

)−1

− δθ̂X1(ζ)
θ1(ζ)

δθ̂1(ζ)
θ1(ζ)

(
1 +

δθ̂1(ζ)
θ1(ζ)

)−1

.

For χ̂V (ζ, w)/θ̂1(ζ),

χ̂V (ζ, w)

θ̂1(ζ)
=
χV (ζ, w) + δχ̂V (ζ, w)

θ1(ζ) + δθ̂1(ζ)
= qV (ζ, w) + δq̂V (ζ, w) (1.19)

where qV (ζ, w) ≡ χV (ζ, w)/θ1(ζ) and where δq̂V (ζ, w) can be written as either

δq̂V (ζ, w) =

(
δχ̂V (ζ, w)
θ1(ζ)

− χV (ζ, w)δθ̂1(ζ)
(θ1(ζ))2

)(
1 +

δθ̂1(ζ)
θ1(ζ)

)−1

or δq̂V (ζ, w) = δ1q̂V (ζ, w) + δ2q̂V (ζ, w) with

δ1q̂V (ζ, w) ≡ δχ̂V (ζ, w)
θ1(ζ)

− χV (ζ, w)δθ̂1(ζ)
(θ1(ζ))2

δ2q̂V (ζ, w) ≡ χV (ζ, w)
θ1(ζ)

(
δθ̂1(ζ)
θ1(ζ)

)2(
1 +

δθ̂1(ζ)
θ1(ζ)

)−1

− δχ̂V (ζ, w)
θ1(ζ)

δθ̂1(ζ)
θ1(ζ)

(
1 +

δθ̂1(ζ)
θ1(ζ)

)−1

.
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Similarly for 1/f̂W (w),

1

f̂W (w)
=

1

fW (w) + δf̂W (w)
= q1(w) + δq̂1(w) (1.20)

where q1(w) ≡ 1/fW (w) and where δq̂1(w) can be written as either

δq̂1(w) =

(
− δf̂W (w)

(fW (w))2

)(
1 +

δf̂W (w)
fW (w)

)−1

or δq̂1(w) = δ1q̂1(w) + δ2q̂1(w) with

δ1q̂1(w) ≡ − δf̂W (w)
(fW (w))2

δ2q̂1(w) ≡ 1
fW (w)

(
δf̂W (w)
fW (w)

)2(
1 +

δf̂W (w)
fW (w)

)−1

.

For QX1(ζ) ≡
∫ ζ
0 (iθX1(ξ)/θ1(ξ))dξ, δQ̂X1(ζ) ≡

∫ ζ
0 (iθ̂X1(ξ)/θ̂1(ξ))dξ −QX1(ζ) and some

random function δQ̄X1(ζ) such that |δQ̄X1(ζ)| ≤ |δQ̂X1(ζ)| for all ζ,

exp
(
QX1(ζ) + δQ̂X1(ζ)

)
(1.21)

= exp(QX1(ζ))
(

1 + δQ̂X1(ζ) +
1
2
[
exp(δQ̄X1(ζ))

] (
δQ̂X1(ζ)

)2
)
.

By substituting eqn.(1.18)∼(1.21) into

ĝV,λ(x,w, h)− gV,λ(x,w, h1)

=
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)

×
[
θ̂V (ζ, w)

θ̂1(ζ)
exp

(∫ ζ

0

iθ̂X1(ξ)

θ̂1(ζ)
dξ

)
− θV (ζ, w)

θ1(ζ)
exp

(∫ ζ

0

iθX1(ξ)
θ1(ζ)

dξ

)]
dζ,

we have

ĝV,λ(x,w, h)− gV,λ(x,w, h1)

=
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)

[
− θV (ζ, w)

θ1(ζ)
exp

(∫ ζ

0

iθX1(ξ)
θ1(ξ)

dξ

)
+

{
χV (ζ, w)
θ1(ζ)

+
δχ̂V (ζ, w)
θ1(ζ)

− χV (ζ, w)δθ̂1(ζ)
(θ1(ζ))2

+ δ2q̂V (ζ, w)

}

×

{
1

fW (w)
− δf̂W (w)

(fW (w))2
+ δ2q̂1(w)

}
exp(QX1(ζ))

×
{

1 +
∫ ζ

0
iδ1q̂X1(ξ)dξ +

∫ ζ

0
iδ2q̂X1(ξ)dξ +

1
2

exp(δQ̄X1(ζ))
(∫ ζ

0
iδq̂X1(ξ)dξ

)2}]
dζ.



41

Keeping the terms linear in δθ̂1(ζ), δθ̂X1(ζ), δχ̂V (ζ, w), and δf̂W (w) gives the lineariza-

tion of ĝV,λ(x,w, h), denoted ḡV,λ(x,w, h):

ḡV,λ(x,w, h)− gV,λ(x,w, h1)

=
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)

[
θV (ζ, w)
θ1(ζ)

exp(QX1)
∫ ζ

0

(
iδθ̂X1(ξ)
θ1(ξ)

− iθX1(ξ)δθ̂1(ξ)
(θ1(ξ))2

)
dξ

− exp(QX1(ζ))
χV (ζ, w)
θ1(ζ)

δf̂W (w)
(fW (w))2

+ exp(QX1(ζ))
1

fW (w)

(
δχ̂V (ζ, w)
θ1(ζ)

− χV (ζ, w)δθ̂1(ζ)
(θ1(ζ))2

)]
dζ

=
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)

∫ ζ

0

(
iδθ̂X1(ξ)
θ1(ξ)

− iθX1(ξ)δθ̂1(ξ)
(θ1(ξ))2

)
dξ

+
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)

(
−δf̂W (w)
fW (w)

+
δχ̂V (ζ, w)
χV (ζ, w)

− δθ̂1(ζ)
θ1(ζ)

)
dζ.

Using the identity∫ ∞

−∞

∫ ζ

0
f(ζ, ξ)dξdζ =

∫ ∞

0

∫ ∞

ξ
f(ζ, ξ)dζdξ +

∫ 0

−∞

∫ −∞

ξ
f(ζ, ξ)dζdξ

≡
∫ ∫ ±∞

ξ
f(ζ, ξ)dζdξ
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for any absolutely integrable function f , we get

LV,λ(x,w, h)

≡ḡV,λ(x,w, h)− gV,λ(x,w, h1)

=
1
2π

∫ ∫ ±∞

ξ
(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)dζ

(
iδθ̂X1(ξ)
θ1(ξ)

− iθX1(ξ)δθ̂1(ξ)
(θ1(ξ))2

)
dξ

+
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)

(
δχ̂V (ζ, w)
χV (ζ, w)

− δf̂W (w)
fW (w)

− δθ̂1(ζ)
θ1(ζ)

)
dζ

=
∫ [{

− 1
2π

iθX1(ζ)
(θ1(ζ))2

∫ ±∞

ζ
(−iξ)λκ(h1ξ) exp(−iξx)φV (ξ, w)dξ

− 1
2π

(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)
θ1(ζ)

}
δθ̂1(ζ)

+
{

1
2π

i

θ1(ζ)

∫ ±∞

ζ
(−iξ)λκ(h1ξ) exp(−iξx)φV (ξ, w)dξ

}
δθ̂X1(ζ)

+
{

1
2π

(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)
χV (ζ, w)

}
δχ̂V (ζ, w)

+
{
− 1

2π
(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)

fW (w)

}
δf̂W (w)

]
dζ

=
∫ [

ΨV,λ,1(ζ, x, w, h1)
(
Ê[eiζX2 ]− E[eiζX2 ]

)
+ ΨV,λ,X1(ζ, x, w, h1)

(
Ê[X1e

iζX2 ]− E[X1e
iζX2 ]

)
+ ΨV,λ,χV

(ζ, x, w, h1)
(
Ê[V eiζX2kh2(W − w)]− E[V eiζX2kh2(W − w)]

)
+ ΨV,λ,fW

(ζ, x, w, h1)
(
Ê[kh2(W − w)]− E[kh2(W − w)]

)]
dζ

=Ê
[ ∫

ΨV,λ,1(ζ, x, w, h1)
(
eiζX2 − E[eiζX2 ]

)
dζ

+
∫

ΨV,λ,X1(ζ, x, w, h1)
(
X1e

iζX2 − E[X1e
iζX2 ]

)
dζ

+
∫

ΨV,λ,χV
(ζ, x, w, h1)

(
V eiζX2kh2(W − w)− E[V eiζX2kh2(W − w)]

)
dζ

+
∫

ΨV,λ,fW
(ζ, x, w, h1) (kh2(W − w)− E[kh2(W − w)]) dζ

]
=Ê [`V,λ(x,w, h;V,X1, X2,W )]

where ΨV,λ,A(ζ, x, w, h1) and `V,λ(x,w, h;V,X1, X2,W ) are defined in the statement of

the Lemma 4.1. �

We define the following convenient notation as employed in SWC.
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Definition A.1 We write f(ζ) � g(ζ) for f, g : R 7→ R when there exists a

constant C > 0, independent of ζ, such that f(ζ) ≤ Cg(ζ) for all ζ ∈ R (and similarly

for �). Analogously, we write an � bn for two sequences an, bn when there exists a

constant C independent of n such that an ≤ Cbn for all n ∈ N.

Proof of Theorem 4.2 Using Parseval’s identity, we have

|BV,λ(x,w, h1)|

= |gV,λ(x,w, h1)− gV,λ(x,w)|

= |gV,λ(x,w, h1)− gV,λ(x,w, 0)|

=
∣∣∣∣ 1
2π

∫
κ(h1ζ)(−iζ)λφV (ζ, w) exp(−iζx)dζ − 1

2π

∫
(−iζ)λφV (ζ, w) exp(−iζx)dζ

∣∣∣∣
=
∣∣∣∣ 1
2π

∫
(κ(h1ζ)− 1)(−iζ)λφV (ζ, w) exp(−iζx)dζ

∣∣∣∣
≤ 1

2π

∫
|(κ(h1ζ)− 1)| |ζ|λ |φV (ζ, w)| dζ

=
1
π

∫ ∞

ξ̄/h1

|(κ(h1ζ)− 1)| |ζ|λ |φV (ζ, w)| dζ

�
∫ ∞

ξ̄/h1

|ζ|λ |φV (ζ, w)| dζ,

since Assumption 3.6 ensures κ(ζ) = 1 for |ζ| ≤ ξ̄ and supζ |κ(h1ζ)| < ∞. Thus, by

Assumption 4.1(ii), we have

sup
(x,w)∈supp(X,W )

|BV,λ(x,w, h1)| �
∫ ∞

ξ̄/h1

|ζ|λCφ(1 + |ζ|)γφ exp(αφ|ζ|βφ)dζ

�
∫ ∞

ξ̄/h1

|ζ|λ(1 + |ζ|)γφ exp(αφ|ζ|βφ)dζ

= O
((
ξ̄/h1

)γφ+λ+1 exp
(
αφ
(
ξ̄/h1

)βφ
))

= O
((
h−1

1

)γλ,B exp
(
αB
(
h−1

1

)βB
))

. �

Lemma A.1 Suppose the conditions of Lemma 4.1 hold. For each ζ and h ≡
(h1, h2), and for A = 1, X1, χV , fW , let Ψ+

V,λ,A(ζ, h1) ≡ sup(x,w)∈supp(X,W ) |ΨV,λ,A(ζ, x, w,

h1)|, and define

Ψ+
V,λ(h) ≡

∑
A=1,X1

∫
Ψ+
V,λ,A(ζ, h1)dζ + h−1

2

∑
B=χV ,fW

∫
Ψ+
V,λ,B(ζ, h1)dζ.
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If Assumption 4.1 also holds, then for h > 0

Ψ+
V,λ(h)

= O
(
max{(1 + h−1

1 )γ1+1, h−1
2 }

(
1 + h−1

1

)γφ+λ−γθ+1 exp
(
(αφ1{βθ=βφ} − αθ)(h−1

1 )βθ

))
.

Proof We obtain rates for each term of Ψ+
V,λ(h). First,

Ψ+
V,λ,1(ζ, h1) ≡ sup

(x,w)∈supp(X,W )
|ΨV,λ,1(ζ, x, w, h1)|

= sup
(x,w)∈supp(X,W )

∣∣∣∣− 1
2π

iθX1(ζ)
(θ1(ζ))2

∫ ±∞

ζ
(−iξ)λκ(h1ξ) exp(−iξx)φV (ξ, w)dξ

− 1
2π

(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)
θ1(ζ)

∣∣∣∣
≤ sup

(x,w)∈supp(X,W )

1
2π
|θX1(ζ)|
|θ1(ζ)|2

∫ ±∞

ζ
|ξ|λ|κ(h1ξ)|| exp(−iξx)||φV (ξ, w)|dξ

+ sup
(x,w)∈supp(X,W )

1
2π
|ζ|λ|κ(h1ζ)|| exp(−iζx)| |φV (ζ, w)|

|θ1(ζ)|

� |θX1(ζ)|
|θ1(ζ)|2

∫ ±∞

ζ
|ξ|λ|κ(h1ξ)|

(
sup

w∈supp(W )
|φV (ξ, w)|

)
dξ

+ |ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)
1

|θ1(ζ)|

=
1

|θ1(ζ)|

[
|θX1(ζ)|
|θ1(ζ)|

∫ ±∞

ζ
|ξ|λ|κ(h1ξ)|

(
sup

w∈supp(W )
|φV (ξ, w)|

)
dξ

+ |ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)]

=
1

|θ1(ζ)|

[
|Dζ lnφ1(ζ)|

∫ ±∞

ζ
|ξ|λ|κ(h1ξ)|

(
sup

w∈supp(W )
|φV (ξ, w)|

)
dξ

+ |ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)]
because we have θX1(ζ)/θ1(ζ) = −iDζ lnφ1(ζ) by eqn.(1.20) in the proof of Lemma 3.1.
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Then

Ψ+
V,λ,1(ζ, h1) �

1
|θ1(ζ)|

[
|Dζ lnφ1(ζ)|

∫ ±∞

ζ
|ξ|λ1{|ξ|≤ξ̄h−1

1 }

(
sup

w∈supp(W )
|φV (ξ, w)|

)
dξ

+ |ζ|λ1{|ζ|≤ζ̄h−1
1 }

(
sup

w∈supp(W )
|φV (ζ, w)|

)]

� 1
|θ1(ζ)|

1{|ζ|≤h−1
1 }

[
|Dζ lnφ1(ζ)|

∫ h−1
1

ζ
|ξ|λ

(
sup

w∈supp(W )
|φV (ξ, w)|

)
dξ

+ |ζ|λ
(

sup
w∈supp(W )

|φV (ζ, w)|

)]
.

By using Assumption 4.1 and integrating Ψ+
V,λ,1(ζ, h1) with respect to ζ, we obtain∫

Ψ+
V,λ,1(ζ, h1)dζ

�
∫

1
|θ1(ζ)|

1{|ζ|≤h−1
1 }

[
|Dζ lnφ1(ζ)|

∫ h−1
1

ζ
|ξ|λ

(
sup

w∈supp(W )
|φV (ξ, w)|

)
dξ

+ |ζ|λ
(

sup
w∈supp(W )

|φV (ζ, w)|

)]
dζ

�
∫

(1 + |ζ|)−γθ exp
(
−αθ|ζ|βθ

)
1{|ζ|≤h−1

1 }

×
[
(1 + |ζ|)γ1

∫ h−1
1

0
|ξ|λ(1 + |ξ|)γφ exp

(
αφ|ξ|βφ

)
dξ + |ζ|λ(1 + |ζ|)γφ exp

(
αφ|ζ|βφ

)]
dζ

�
∫ h−1

1

0
(1 + |ζ|)−γθ exp

(
−αθ|ζ|βθ

)[
(1 + |ζ|)γ1

∫ h−1
1

0
|ξ|λ(1 + |ξ|)γφ exp

(
αφ|ξ|βφ

)
dξ

+ |ζ|λ(1 + |ζ|)γφ exp
(
αφ|ζ|βφ

)]
dζ

�(1 + h−1
1 )1−γθ exp

(
−αθ(h−1

1 )βθ

)[
(1 + h−1

1 )γ1(1 + h−1
1 )λ+γφ+1 exp

(
αφ(h−1

1 )βφ

)
+ (1 + h−1

1 )γφ+λ exp
(
αφ(h−1

1 )βφ

)]
�(1 + h−1

1 )1−γθ exp
(
−αθ(h−1

1 )βθ

)
(1 + h−1

1 )λ+γφ exp
(
αφ(h−1

1 )βφ

) (
(1 + h−1

1 )γ1+1 + 1
)

�(1 + h−1
1 )γφ+λ+γ1−γθ+2 exp

(
−αθ(h−1

1 )βθ

)
exp

(
αφ(h−1

1 )βφ

)
.

Second,

Ψ+
V,λ,X1

(ζ, h1) ≡ sup
(x,w)∈supp(X,W )

|ΨV,λ,X1(ζ, x, w, h1)|

= sup
(x,w)∈supp(X,W )

∣∣∣∣ 1
2π

i

θ1(ζ)

∫ ±∞

ζ
(−iξ)λκ(h1ξ) exp(−iξx)φV (ξ, w)dξ

∣∣∣∣
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� sup
(x,w)∈supp(X,W )

1
|θ1(ζ)|

∫ ±∞

ζ
|ξ|λ|κ(h1ξ)|| exp(−iξx)||φV (ξ, w)|dξ

=
1

|θ1(ζ)|

∫ ±∞

ζ
|ξ|λ|κ(h1ξ)|

(
sup

w∈supp(W )
|φV (ξ, w)|

)
dξ

=
1

|θ1(ζ)|

∫ ±∞

ζ
|ξ|λ1{|ξ|≤ξ̄h−1

1 }

(
sup

w∈supp(W )
|φV (ξ, w)|

)
dξ

� 1
|θ1(ζ)|

1{|ζ|≤h−1
1 }

∫ h−1
1

ζ
|ξ|λ

(
sup

w∈supp(W )
|φV (ξ, w)|

)
dξ

so that∫
Ψ+
V,λ,X1

(ζ, h1)dζ �
∫ h−1

1

0
(1 + |ζ|)−γθ exp

(
−αθ|ζ|βθ

)
×

(∫ h−1
1

0
|ξ|λ(1 + |ξ|)γφ exp

(
αφ|ξ|βφ

)
dξ

)
dζ

� (1 + h−1
1 )1−γθ exp

(
−αθ(h−1

1 )βθ

)
(1 + h−1

1 )λ+γφ+1 exp
(
αφ(h−1

1 )βφ

)
� (1 + h−1

1 )γφ+λ−γθ+2 exp
(
−αθ(h−1

1 )βθ

)
exp

(
αφ(h−1

1 )βφ

)
.

Third,

Ψ+
V,λ,χV

(ζ, h1) ≡ sup
(x,w)∈supp(X,W )

|ΨV,λ,χV
(ζ, x, w, h1)|

= sup
(x,w)∈supp(X,W )

∣∣∣∣ 1
2π

(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)
χV (ζ, w)

∣∣∣∣
� |ζ|λ1{|ζ|≤h−1

1 }

(
sup

w∈supp(W )

∣∣∣∣φV (ζ, w)
χV (ζ, w)

∣∣∣∣
)

so that

h−1
2

∫
Ψ+
V,λ,χV

(ζ, h1)dζ � h−1
2

∫ h−1
1

0
|ζ|λ(1 + |ζ|)−γθ exp

(
−αθ|ζ|βθ

)
(1 + |ζ|)γφ

× exp
(
αφ|ζ|βφ

)
dζ

� h−1
2 (1 + h−1

1 )γφ+λ−γθ+1 exp
(
−αθ(h−1

1 )βθ

)
exp

(
αφ(h−1

1 )βφ

)
.

Because infw∈supp(W ) fW (w) > 0 by Assumption 3.3 (i), finally we have

Ψ+
V,λ,fW

(ζ, h1) ≡ sup
(x,w)∈supp(X,W )

|ΨV,λ,fW
(ζ, x, w, h1)|

= sup
(x,w)∈supp(X,W )

∣∣∣∣− 1
2π

(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)
fW (w)

∣∣∣∣
� |ζ|λ1{|ζ|≤h−1

1 }

(
sup

w∈supp(W )
|φV (ζ, w)|

)
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so that

h−1
2

∫
Ψ+
V,λ,fW

(ζ, h)dζ � h−1
2

∫ h−1
1

0
|ζ|λ(1 + |ζ|)γφ exp

(
αφ|ζ|βφ

)
dζ

� h−1
2 (1 + h−1

1 )γφ+λ+1 exp
(
αφ(h−1

1 )βφ

)
.

Putting together these rates for each term of Ψ+
V,λ(h) gives the desired result. �

Lemma A.2 For a finite integer J and K, let Pn,j(x2) define a sequence

of nonrandom real-valued continuously differentiable functions of a real variable x2,

j = 1, ..., J , and Qn,k(w) define a sequence of nonrandom real-valued continuously differ-

entiable functions of a real variable w, k = 1, ...,K. For some C1, C2 and δ > 0, let Aj

and X2 be random variables satisfying E
[
A2+δ
j | X2 = x2

]
≤ C1 for all x2 ∈ supp(X2),

j = 1, ..., J , and let Bk and W be random variables satisfying E
[
B2+δ
k |W = w

]
≤ C2

for all w ∈ supp(W ), k = 1, ...,K, such that supn≥N σn < ∞ and infn≥N σn > 0 for

some N ∈ N+, where

σn ≡

var
 J∑
j=1

AjPn,j(X2) +
K∑
k=1

BkQn,k(W )

1/2

.

If there exists some η > 0 such that max{supx2∈supp(X2) |Dx2Pn,j(x2)|, supw∈supp(W )

|DwQn,k(w)|} = O(n(3/2)−η) for j = 1, ...J , and k = 1, ...,K, then

σ−1
n n1/2

(
Ê

 J∑
j=1

AjPn,j(X2) +
K∑
k=1

BkQn,k(W )


− E

 J∑
j=1

AjPn,j(X2) +
K∑
k=1

BkQn,k(W )

) d−→ N(0, 1).

Proof Apply the argument of Lemma 9 in Schennach (2004a) and the Lindeberg-

Feller central limit theorem. �

Proof of Theorem 4.3 (i) It follows that E[LV,λ(x,w, h)] = 0 by the defini-

tion of LV,λ(x,w, h). Assumption 4.2 guarantees that LV,λ(x,w, h) has a finite variance

so that

E
[
(LV,λ(x,w, h))2

]
= E

[
(Ê[`V,λ(x,w, h;V,X1, X2,W )])2

]
= n−1E

[
(`V,λ(x,w, h;V,X1, X2,W ))2

]
= n−1ΩV,λ(x,w, h).
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Because LV,λ(x,w, h) ≡ ḡV,λ(x,w, h) − gV,λ(x,w, h1), we have by Minkowski inequality

that

ΩV,λ(x,w, h)

= nE
[
(ḡV,λ(x,w, h)− gV,λ(x,w, h1))2

]
= E

[(∫
ΨV,λ,1(ζ, x, w, h1)n1/2δθ̂1(ζ)dζ +

∫
ΨV,λ,X1(ζ, x, w, h1)n1/2δθ̂X1(ζ)dζ

+
∫

ΨV,λ,χV
(ζ, x, w, h1)n1/2δχ̂V (ζ, w)dζ +

∫
ΨV,λ,fW

(ζ, x, w, h1)n1/2δf̂W (w)dζ
)2]

≤ E

[(∫
ΨV,λ,1(ζ, x, w, h1)n1/2δθ̂1(ζ)dζ +

∫
ΨV,λ,X1(ζ, x, w, h1)n1/2δθ̂X1(ζ)dζ

+ h−1
2

∫
ΨV,λ,χV

(ζ, x, w, h1)n1/2

(
sup

w∈supp(W )
h2δχ̂V (ζ, w)

)
dζ

+ h−1
2

∫
ΨV,λ,fW

(ζ, x, w, h1)n1/2

(
sup

w∈supp(W )
h2δf̂W (w)

)
dζ

)2]

≤
[{
E

[(∫
ΨV,λ,1(ζ, x, w, h1)n1/2δθ̂1(ζ)dζ

)2]}1/2

+
{
E

[(∫
ΨV,λ,X1(ζ, x, w, h1)n1/2δθ̂X1(ζ)dζ

)2]}1/2

+
{
E

[(
h−1

2

∫
ΨV,λ,χV

(ζ, x, w, h1)n1/2

(
sup

w∈supp(W )
h2δχ̂V (ζ, w)

)
dζ

)2]}1/2

+
{
E

[(
h−1

2

∫
ΨV,λ,fW

(ζ, x, w, h1)n1/2

(
sup

w∈supp(W )
h2δf̂W (w)

)
dζ

)2]}1/2]2

=
[{∫ ∫

ΨV,λ,X1(ζ, x, w, h1)E
[
nδθ̂X1(ζ)δθ̂

†
X1

(ξ)
]
(ΨV,λ,X1(ξ, x, w, h1))†dζdξ

}1/2

+
{∫ ∫

ΨV,λ,X1(ζ, x, w, h1)E
[
nδθ̂X1(ζ)δθ̂

†
X1

(ξ)
]
(ΨV,λ,X1(ξ, x, w, h1))†dζdξ

}1/2

+
{
h−2

2

∫ ∫
ΨV,λ,χV

(ζ, x, w, h1)E
[
n

(
sup

w∈supp(W )
h2δχ̂V (ζ, w)

)

×

(
sup

w∈supp(W )
h2δχ̂

†
V (ξ, w)

)]
(ΨV,λ,χV

(ξ, x, w, h1))†dζdξ
}1/2

+
{
h−2

2

∫ ∫
ΨV,λ,fW

(ζ, x, w, h1)E
[
n

(
sup

w∈supp(W )
h2δf̂W (w)

)

×

(
sup

w∈supp(W )
h2δf̂W (w)

)]
(ΨV,λ,fW

(ξ, x, w, h1))†dζdξ
}1/2]2

.
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Note that by Assumption 4.2

E
[
nδθ̂1(ζ)δθ̂

†
1(ξ)

]
= E

[
n
(
θ̂1(ζ)− θ1(ζ)

)(
θ̂†1(ξ)− θ†1(ξ)

)]
= E

[(
eiζX2 − θ1(ζ)

)(
e−iξX2 − θ†1(ζ)

)]
= E

[
eiζX2e−iξX2

]
− θ1(ζ)E

[
e−iξX2

]
− E

[
eiζX2

]
θ†1(ζ)− θ1(ζ)θ

†
1(ξ)

= E
[
ei(ζ−ξ)X2

]
− θ1(ζ)θ

†
1(ξ)− θ1(ζ)θ

†
1(ξ) + θ1(ζ)θ

†
1(ξ)

= θ1(ζ − ξ)− θ1(ζ)θ1(−ξ)

so that ∣∣∣E [nδθ̂1(ζ)δθ̂†1(ξ)]∣∣∣ = |θ1(ζ − ξ)− θ1(ζ)θ1(−ξ)|

≤ E
[
|ei(ζ−ξ)X2 |

]
+ E

[
|eiζX2 |

]
E
[
|e−iξX2 |

]
� 1;

E
[
nδθ̂X1(ζ)δθ̂

†
X1

(ξ)
]

= E
[
n
(
θ̂X1(ζ)− θX1(ζ)

)(
θ̂†X1

(ξ)− θ†X1
(ξ)
)]

= E
[(
X1e

iζX2 − θX1(ζ)
)(

X1e
−iξX2 − θ†X1

(ξ)
)]

= E
[
X1e

iζX2X1e
−iξX2

]
− θX1(ζ)E

[
X1e

−iξX2

]
− E

[
X1e

iζX2

]
θ†X1

(ξ) + θX1(ζ)θ
†
X1

(ξ)

= E
[
X1X1e

i(ζ−ξ)X2

]
− θX1(ζ)θ

†
X1

(ξ)

so that∣∣∣E [nδθ̂X1(ζ)δθ̂
†
X1

(ξ)
]∣∣∣ = ∣∣∣E [X1X1e

i(ζ−ξ)X2

]
− θX1(ζ)θ

†
X1

(ξ)
∣∣∣

≤ E
[
|X1X1|

∣∣∣ei(ζ−ξ)X2

∣∣∣]+ E
[
|X1|

∣∣∣eiζX2

∣∣∣]E [|X1|
∣∣∣e−iξX2

∣∣∣]
≤ E [|X1X1|] + E [|X1|]E [|X1|]

� 1;

E

[
n

(
sup

w∈supp(W )
h2δχ̂V (ζ, w)

)(
sup

w∈supp(W )
h2δχ̂

†
V (ζ, w)

)]

= E

[
n

(
sup

w∈supp(W )
h2(χ̂V (ζ, w)− χV (ζ, w))

)(
sup

w∈supp(W )
h2(δχ̂

†
V (ζ, w)− χ†V (ζ, w))

)]

= E

[
sup

w∈supp(W )
h2

(
V eiζX2kh2(W − w)− χV (ζ, w)

)
× sup
w∈supp(W )

h2

(
V e−iξX2kh2(W − w)− χ†V (ξ, w)

)]
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so that ∣∣∣∣∣E
[
n

(
sup

w∈supp(W )
h2δχ̂V (ζ, w)

)(
sup

w∈supp(W )
h2δχ̂

†
V (ζ, w)

)]∣∣∣∣∣
≤ E

[
sup

w∈supp(W )
|V eiζX2h2kh2(W − w)− h2χV (ζ, w)|

sup
w∈supp(W )

|V e−iξX2h2kh2(W − w)− h2χ
†
V (ξ, w)|

]
≤ E

[
sup

w∈supp(W )
(|V eiζX2h2kh2(W − w)|+ |h2χV (ζ, w)|)

sup
w∈supp(W )

(|V e−iξX2h2kh2(W − w)|+ |h2χ
†
V (ξ, w)|

]

≤ E

[( ∣∣∣∣∣V eiζX2

(
sup

w∈supp(W )
h2kh2(W − w)

)∣∣∣∣∣
+ E

[∣∣∣∣∣V eiζX2

(
sup

w∈supp(W )
h2kh2(W − w)

)∣∣∣∣∣
])

×
( ∣∣∣∣∣V e−iξX2

(
sup

w∈supp(W )
h2kh2(W − w)

)∣∣∣∣∣
+ E

[∣∣∣∣∣V e−iζX2

(
sup

w∈supp(W )
h2kh2(W − w)

)∣∣∣∣∣
])]

= E

|V |2 ∣∣∣ei(ζ−ξ)X2

∣∣∣ ∣∣∣∣∣ sup
w∈supp(W )

h2kh2(W − w)

∣∣∣∣∣
2


+ 3E

[
|V |
∣∣∣eiζX2

∣∣∣ ∣∣∣∣∣ sup
w∈supp(W )

h2kh2(W − w)

∣∣∣∣∣
]

× E

[
|V |
∣∣∣e−iξX2

∣∣∣ ∣∣∣∣∣ sup
w∈supp(W )

h2kh2(W − w)

∣∣∣∣∣
]

� 1,

where the last line is obtained by Assumption 4.2 and the following note:

sup
w∈supp(W )

|h2kh2(w)| = sup
w∈supp(W )

∣∣∣∣h2

2π

∫
κ(h2ζ)e−iζwdζ

∣∣∣∣
≤ h2

2π
sup

w∈supp(W )

∫
|κ(h2ζ)||e−iζw|dζ

=
h2

2π

∫
|κ(h2ζ)|dζ =

1
2π

∫
|κ(ζ̄)|dζ̄ =

1
2π

∫ 1

−1
|κ(ζ̄)|dζ̄

� 1;



51

Finally,

E

[
n

(
sup

w∈supp(W )
h2δf̂W (w)

)(
sup

w∈supp(W )
h2δf̂W (w)

)]

= E

[
n

(
sup

w∈supp(W )
h2(f̂W (w)− fW (w))

)(
sup

w∈supp(W )
h2(f̂W (w)− fW (w))

)]

= E

[(
sup

w∈supp(W )
h2 (kh2(W − w)− E[kh2(W − w)])

)

×

(
sup

w∈supp(W )
h2 (kh2(W − w)− E[kh2(W − w)])

)]
so that ∣∣∣∣∣E

[
n

(
sup

w∈supp(W )
h2δf̂W (w)

)(
sup

w∈supp(W )
h2δf̂W (w)

)]∣∣∣∣∣
≤ E

∣∣∣∣∣ sup
w∈supp(W )

h2kh2(W − w)

∣∣∣∣∣
2


+ E

[∣∣∣∣∣ sup
w∈supp(W )

h2kh2(W − w)

∣∣∣∣∣
]
E

[∣∣∣∣∣ sup
w∈supp(W )

h2kh2(W − w)

∣∣∣∣∣
]

� 1.

Thus we have

ΩV,λ(x,w, h)

�
({∫ ∫

|ΨV,λ,1(ζ, x, w, h1)| |ΨV,λ,1(ξ, x, w, h1)| dζdξ
}1/2

+
{∫ ∫

|ΨV,λ,X1(ζ, x, w, h1)| |ΨV,λ,X1(ξ, x, w, h1)| dζdξ
}1/2

+
{
h−2

2

∫ ∫
|ΨV,λ,χV

(ζ, x, w, h1)| |ΨV,λ,χV
(ξ, x, w, h1)| dζdξ

}1/2

+
{
h−2

2

∫ ∫
|ΨV,λ,fW

(ζ, x, w, h1)| |ΨV,λ,fW
(ξ, x, w, h1)| dζdξ

}1/2)2

=

 ∑
A=1,X1

∫
|ΨV,λ,A(ζ, x, w, h1)| dζ + h−1

2

∑
B=χV ,fW

∫
|ΨV,λ,B(ζ, x, w, h1)| dζ

2

≤

 ∑
A=1,X1

∫
Ψ+
V,λ,A(ζ, h1)dζ + h−1

2

∑
B=χV ,fW

∫
Ψ+
V,λ,B(ζ, h1)dζ

2

=
(
Ψ+
V,λ(h)

)2
,
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where for A = 1, X1, χV , fW

Ψ+
V,λ,A(ζ, h1) ≡ sup

(x,w)∈supp(X,W )
|ΨV,λ,A(ζ, x, w, h1)|

Ψ+
V,λ(h) ≡

∑
A=1,X1

∫
Ψ+
V,λ,A(ζ, h1)dζ + h−1

2

∑
B=χV ,fW

∫
Ψ+
V,λ,B(ζ, h1)dζ

= O

(
max{

(
1 + h−1

1

)γ1+1
, h−1

2 }
(
1 + h−1

1

)γφ+λ−γθ+1

× exp
(
(αφ1{βθ=βφ} − αθ)(h−1

1 )βθ

))
.

Thus it follows that√
sup

(x,w)∈supp(X,W )
ΩV,λ(x,w, h) = O

(
max{

(
h−1

1

)δL , h−1
2 }

(
h−1

1

)γλ,L exp
(
αL
(
h−1

1

)βL
))

,

with αL ≡ αφ1{βφ=βθ} − αθ, βL ≡ βθ, γλ,L ≡ 1 + γφ − γθ + λ, and δL ≡ γ1 + 1.

To show uniform convergence,

sup
(x,w)∈supp(X,W )

|ḡV,λ(x,w, h)− gV,λ(x,w, h1)|

= sup
(x,w)∈supp(X,W )

∣∣∣∣ ∫ [ΨV,λ,1(ζ, x, w, h1)
(
Ê[eiζX2 ]− E[eiζX2 ]

)
+ ΨV,λ,X1(ζ, x, w, h1)

(
Ê[X1e

iζX2 ]− E[X1e
iζX2 ]

)
+ ΨV,λ,χV

(ζ, x, w, h1)
(
Ê[V eiζX2kh2(W − w)]− E[V eiζX2kh2(W − w)]

)
+ ΨV,λ,fW

(ζ, x, w, h1)
(
Ê[kh2(W − w)]− E[kh2(W − w)]

)]
dζ

∣∣∣∣
≤
∫ [(

sup
(x,w)∈supp(X,W )

|ΨV,λ,1(ζ, x, w, h1)|

)∣∣∣Ê[eiζX2 ]− E[eiζX2 ]
∣∣∣

+

(
sup

(x,w)∈supp(X,W )
|ΨV,λ,X1(ζ, x, w, h1)|

)∣∣∣Ê[X1e
iζX2 ]− E[X1e

iζX2 ]
∣∣∣

+

(
sup

(x,w)∈supp(X,W )
|ΨV,λ,χV

(ζ, x, w, h1)|

)

×

(
sup

w∈supp(W )

∣∣∣Ê[V eiζX2kh2(W − w)]− E[V eiζX2kh2(W − w)]
∣∣∣)

+

(
sup

(x,w)∈supp(X,W )
|ΨV,λ,fW

(ζ, x, w, h1)|

)

×

(
sup

w∈supp(W )

∣∣∣Ê[kh2(W − w)]− E[kh2(W − w)]
∣∣∣) ]dζ
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=
∫ [

Ψ+
V,λ,1(ζ, h1)

∣∣∣Ê[eiζX2 ]− E[eiζX2 ]
∣∣∣+ Ψ+

V,λ,X1
(ζ, h1)

∣∣∣Ê[X1e
iζX2 ]− E[X1e

iζX2 ]
∣∣∣

+ h−1
2 Ψ+

V,λ,χV
(ζ, h1)

×

(
sup

w∈supp(W )

∣∣∣Ê[V eiζX2h2kh2(W − w)]− E[V eiζX2h2kh2(W − w)]
∣∣∣)

+ h−1
2 Ψ+

V,λ,fW
(ζ, h1)

(
sup

w∈supp(W )

∣∣∣Ê[h2kh2(W − w)]− E[h2kh2(W − w)]
∣∣∣) ]dζ

where the integrals are finite since
∣∣∣Ê[eiζX2 ]− E[eiζX2 ]

∣∣∣ � 1,
∣∣∣Ê[X1e

iζX2 ]− E[X1e
iζX2 ]

∣∣∣ �
1, supw∈supp(W )

∣∣∣Ê[V eiζX2h2kh2(W − w)]− E[V eiζX2h2kh2(W − w)]
∣∣∣ � 1, and

supw∈supp(W )

∣∣∣Ê[h2kh2(W − w)]− E[h2kh2(W − w)]
∣∣∣ � 1, and since Lemma A.1 implies

that Ψ+
V,λ(h) <∞. Then we have

E

[
sup

(x,w)∈supp(X,W )
|ḡV,λ(x,w, h)− gV,λ(x,w, h1)|

]

≤
∫ [

Ψ+
V,λ,1(ζ, h1)E

{(∣∣∣Ê[eiζX2 − E[eiζX2 ]]
∣∣∣2)1/2

}

+ Ψ+
V,λ,X1

(ζ, h1)E

{(∣∣∣Ê[X1e
iζX2 − E[X1e

iζX2 ]]
∣∣∣2)1/2

}
+ h−1

2 Ψ+
V,λ,χV

(ζ, h1)

× E


∣∣∣∣∣ sup

w∈supp(W )

(
Ê[V eiζX2h2kh2(W − w)− E[V eiζX2h2kh2(W − w)]]

)∣∣∣∣∣
2
1/2


+ h−1

2 Ψ+
V,λ,fW

(ζ, h1)

× E


∣∣∣∣∣ sup

w∈supp(W )

(
Ê[h2kh2(W − w)− E[h2kh2(W − w)]]

)∣∣∣∣∣
2
1/2


]
dζ

≤
∫ [

Ψ+
V,λ,1(ζ, h1)

{
E

(∣∣∣Ê[eiζX2 − E[eiζX2 ]]
∣∣∣2)}1/2

+ Ψ+
V,λ,X1

(ζ, h1)
{
E

(∣∣∣Ê[X1e
iζX2 − E[X1e

iζX2 ]]
∣∣∣2)}1/2

+ h−1
2 Ψ+

V,λ,χV
(ζ, h1)

×

E
∣∣∣∣∣ sup

w∈supp(W )

(
Ê[V eiζX2h2kh2(W − w)− E[V eiζX2h2kh2(W − w)]]

)∣∣∣∣∣
2


1/2
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+ h−1
2 Ψ+

V,λ,fW
(ζ, h1)

×

E
∣∣∣∣∣ sup

w∈supp(W )

(
Ê[h2kh2(W − w)− E[h2kh2(W − w)]]

)∣∣∣∣∣
2


1/2 ]
dζ

=
∫ [

Ψ+
V,λ,1(ζ, h1)

{
n−1E

(∣∣∣eiζX2 − E[eiζX2 ]
∣∣∣2)}1/2

+ Ψ+
V,λ,X1

(ζ, h1)
{
n−1E

(∣∣∣X1e
iζX2 − E[X1e

iζX2 ]
∣∣∣2)}1/2

+ h−1
2 Ψ+

V,λ,χV
(ζ, h1)

×

n−1E

∣∣∣∣∣ sup
w∈supp(W )

(
V eiζX2h2kh2(W − w)− E[V eiζX2h2kh2(W − w)]

)∣∣∣∣∣
2


1/2

+ h−1
2 Ψ+

V,λ,fW
(ζ, h1)

×

n−1E

∣∣∣∣∣ sup
w∈supp(W )

(h2kh2(W − w)− E[h2kh2(W − w)])

∣∣∣∣∣
2


1/2 ]
dζ

= n−1/2

∫ [
Ψ+
V,λ,1(ζ, h1)

{
E

(∣∣∣eiζX2 − E[eiζX2 ]
∣∣∣2)}1/2

+ Ψ+
V,λ,X1

(ζ, h1)
{
E

(∣∣∣X1e
iζX2 − E[X1e

iζX2 ]
∣∣∣2)}1/2

+ h−1
2 Ψ+

V,λ,χV
(ζ, h1)

×

E
∣∣∣∣∣ sup

w∈supp(W )

(
V eiζX2h2kh2(W − w)− E[V eiζX2h2kh2(W − w)]

)∣∣∣∣∣
2


1/2

+ h−1
2 Ψ+

V,λ,fW
(ζ, h1)

×

E
∣∣∣∣∣ sup

w∈supp(W )
(h2kh2(W − w)− E[h2kh2(W − w)])

∣∣∣∣∣
2


1/2 ]
dζ

� n−1/2

 ∑
A=1,X1

∫
Ψ+
V,λ,A(ζ, h1)dζ + h−1

2

∑
B=χV ,fW

∫
Ψ+
V,λ,B(ζ, h1)dζ


= n−1/2Ψ+

V,λ(h),

where

Ψ+
V,λ(h) = O

(
max{

(
1 + h−1

1

)γ1+1
, h−1

2 }
(
1 + h−1

1

)γφ+λ−γθ+1

× exp
(
(αφ1{βθ=βφ} − αθ)(h−1

1 )βθ

))
.
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It follows that by Markov’s inequality

sup
(x,w)∈supp(X,W )

|LV,λ(x,w, h)|

= Op

(
n−1/2

(
max{

(
1 + h−1

1

)γ1+1
, h−1

2 }
)

×
(
1 + h−1

1

)γφ+λ−γθ+1 exp
(
(αφ1{βθ=βφ} − αθ)(h−1

1 )βθ

))
.

(ii) To show asymptotic normality, for fixed x and w, we apply Lemma A.2 to

2∑
j=1

AjPn,j(X2) +
2∑

k=1

BkQn,k(W )

≡
∫

ΨV,λ,1(ζ, x, w, h1)
(
eiζX2

)
dζ +

∫
ΨV,λ,X1(ζ, x, w, h1)

(
X1e

iζX2

)
dζ

+
∫

ΨV,λ,χV
(ζ, x, w, h1)

(
V eiζX2kh2(W − w)

)
dζ

+
∫

ΨV,λ,fW
(ζ, x, w, h1) (kh2(W − w)) dζ,

with

Pn,1(x2) =
∫

ΨV,λ,1(ζ, x, w, h1)eiζx2dζ,

Pn,2(x2) =
∫

ΨV,λ,X1(ζ, x, w, h1)eiζx2dζ,

Qn,1(w̃) =
∫

ΨV,λ,χV
(ζ, x, w, h1)eiζX2kh2(w̃ − w)dζ,

Qn,2(w̃) =
∫

ΨV,λ,fW
(ζ, x, w, h1)kh2(w̃ − w)dζ,

corresponding to A1 = 1, A2 = X1, B1 = V , and B2 = 1, respectively. We assume

that infn>N ΩV,λ(x,w, h) > 0, and previous conditions ensure that for some finite N ,

supn>N ΩV,λ(x,w, h) = supn>N var[`V,λ(x,w, hn;V,X1, X2)] < ∞. We need to verify

that max{supx2∈supp(X2) |Dx2Pn,j(x2)|, supw̃∈supp(W ) |Dw̃Qn,k(w̃)|} = O(n(3/2)−η) for j =

1, 2 and k = 1, 2. To do this, we use Lemma A.1. For j = 1, 2,

sup
x2∈supp(X2)

|Dx2Pn,j(x2)| = sup
x2∈supp(X2)

∣∣∣∣∫ iζΨV,λ,j(ζ, x, w, h1)eiζx2dζ

∣∣∣∣
=
∫
|ζ||ΨV,λ,j(ζ, x, w, h1)|dζ

� sup
(x,w)∈supp(X,W )

∫ h−1
1n

0
|ζ||ΨV,λ,j(ζ, x, w, h1)|dζ

≤ h−1
1n

∫ h−1
1n

0
Ψ+
V,λ,j(ζ, h1)dζ
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� h−1
1n

(
1 + h−1

1n

)γφ+λ+γ1−γθ+2 exp
(
(αφ1{βθ=βφ} − αθ)(h−1

1n )βθ

)
=
(
1 + h−1

1n

)γφ+λ+γ1−γθ+3 exp
(
(αφ1{βθ=βφ} − αθ)(h−1

1n )βθ

)
.

By Assumption 4.4, if βθ 6= 0, we have h−1
1n = O

(
(lnn)1/βθ−η

)
for some η > 0. Thus we

have for j = 1, 2

sup
x2∈supp(X2)

|Dx2Pn,j(x2)|

�
(
1 + (lnn)1/βθ−η

)γφ+λ+γ1−γθ+3
exp

(
(αφ1{βθ=βφ} − αθ)((lnn)1/βθ−η)βθ

)
.

Because the right-hand side grows more slowly than any power of n, we certainly have

supx2∈supp(X2) |Dx2Pn,j(x2)| = O(n(3/2)−η) for j = 1, 2. If βθ = 0, we have h−1
1n =

O
(
n−ηn(3/2)/(γφ+λ+γ1−γθ+3)

)
for some η > 0. Thus we have

sup
x2∈supp(X2)

|Dx2Pn,j(x2)| �
(
1 + n−ηn(3/2)/(γφ+λ+γ1−γθ+3)

)γφ+λ+γ1−γθ+3

�
(
1 + n−ηn(3/2)

)
= O(n(3/2)−η).

Because the Fourier transform of Dλ
xkh1(x) is (−iζ)λκ(h1ζ), we have

∣∣∣hλ+1
1 Dλ

xkh1(x)
∣∣∣ = ∣∣∣∣∣hλ+1

1

2π

∫
(−iζ)λκ(h1ζ)e−iζxdζ

∣∣∣∣∣ ≤ hλ+1
1

2π

∫
|ζ|λ|κ(h1ζ)|dζ

=
1
2π

∫
|ζ̄|λ|κ(ζ̄)|dζ̄ =

1
2π

∫ 1

−1
|ζ̄|λ|κ(ζ̄)|dζ̄ <∞.

Therefore we get

sup
w̃∈supp(W )

|Dw̃Qn,1(w̃)|

= sup
w̃∈supp(W )

∣∣∣∣Dw̃

∫
ΨV,λ,χV

(ζ, x, w, h1)eiζx2kh2(w̃ − w)dζ
∣∣∣∣

= h−2
2

∫
|ΨV,λ,χV

(ζ, x, w, h1)| |eiζx2 |

(
sup

w̃∈supp(W )

∣∣h2
2Dw̃kh2(w̃ − w)

∣∣) dζ
� h−2

2

∫
sup

(x,w)∈supp(X,W )
|ΨV,λ,χV

(ζ, x, w, h1)| dζ

= h−2
2

∫
Ψ+
V,λ,χV

(ζ, h1)dζ

= O
((

1 + h−1
2

)2 (1 + h−1
1

)γφ+λ−γθ+1 exp
(
(αφ1{βθ=βφ} − αθ)(h−1

1 )βθ

))
.

Bandwidth sequences in Assumption 4.4 guarantee that supw̃∈supp(W ) |Dw̃Qn,1(w̃)| =

O(n(3/2)−η). Similarly,
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sup
w̃∈supp(W )

|Dw̃Qn,2(w̃)| = sup
w̃∈supp(W )

∣∣∣∣Dw̃

∫
ΨV,λ,fW

(ζ, x, w, h1)kh2(w̃ − w)dζ
∣∣∣∣

= h−2
2

∫
|ΨV,λ,fW

(ζ, x, w, h1)|

(
sup

w̃∈supp(W )

∣∣h2
2Dw̃kh2(w̃ − w)

∣∣) dζ
� h−2

2

∫
sup

(x,w)∈supp(X,W )
|ΨV,λ,fW

(ζ, x, w, h1)| dζ

= h−2
2

∫
Ψ+
V,λ,fW

(ζ, h1)dζ

= O
((

1 + h−1
2

)2 (1 + h−1
1

)γφ+λ+1 exp
(
(αφ(h−1)βφ

))
.

Because supw̃∈supp(W ) |Dw̃Qn,2(w̃)| � supw̃∈supp(W ) |Dw̃Qn,1(w̃)|, the result follows. �

Lemma A.3 Let A and X2 be random variables satisfying E[|A|2] < ∞ and

E[|A||X2|] < ∞, and let {Ai, X2,i}i=1,...,n be a corresponding IID sample. Then for any

u, U ≥ 0, and ε > 0,

sup
ζ∈[−Unu,Unu]

∣∣∣Ê[A exp(iζX2)]− E[A exp(iζX2)]
∣∣∣ = Op(n−1/2+ε).

Proof See Lemma 6 in Schennach (2004b). �

Proof of Theorem 4.4 By substituting eqn.(1.18)∼(1.21) into

ĝV,λ(x,w, h)− gV,λ(x,w, h1)

=
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)

×
[
θ̂V (ζ, w)

θ̂1(ζ)
exp

(∫ ζ

0

iθ̂X1(ξ)

θ̂1(ζ)
dξ

)
− θV (ζ, w)

θ1(ζ)
exp

(∫ ζ

0

iθX1(ξ)
θ1(ζ)

dξ

)]
dζ,

and removing the terms linear in δθ̂1(ζ), δθ̂X1(ζ), δχ̂V (ζ, w), and δf̂W (w), we obtain

the nonlinear remainder term such that RV,λ(x,w, h) ≡ ĝV,λ(x,w, h) − ḡV,λ(x,w, h) =∑22
i=1Ri where

R1 =
1
4π

∫
(−iζ)λκ(h1ζ) exp(−iζx)qV (ζ, w)q1(w) exp(QX1(ζ)) exp

(
δQ̄X1(ζ)

)
×
(∫ ζ

0
iδq̂X1(ξ)dξ

)2

dζ

R2 =
1
4π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δq̂V (ζ, w)q1(w) exp(QX1(ζ)) exp

(
δQ̄X1(ζ)

)
×
(∫ ζ

0
iδq̂X1(ξ)dξ

)2

dζ
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R3 =
1
4π

∫
(−iζ)λκ(h1ζ) exp(−iζx)qV (ζ, w)δq̂1(w) exp(QX1(ζ)) exp

(
δQ̄X1(ζ)

)
×
(∫ ζ

0
iδq̂X1(ξ)dξ

)2

dζ

R4 =
1
4π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δq̂V (ζ, w)δq̂1(w) exp(QX1(ζ)) exp

(
δQ̄X1(ζ)

)
×
(∫ ζ

0
iδq̂X1(ξ)dξ

)2

dζ

R5 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)qV (ζ, w)q1(w) exp(QX1(ζ))

∫ ζ

0
iδ2q̂X1(ξ)dξdζ

R6 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δq̂V (ζ, w)q1(w) exp(QX1(ζ))

∫ ζ

0
iδ2q̂X1(ξ)dξdζ

R7 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)qV (ζ, w)δq̂1(w) exp(QX1(ζ))

∫ ζ

0
iδ2q̂X1(ξ)dξdζ

R8 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δq̂V (ζ, w)δq̂1(w) exp(QX1(ζ))

∫ ζ

0
iδ2q̂X1(ξ)dξdζ

R9 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ1q̂V (ζ, w)q1(w) exp(QX1(ζ))

∫ ζ

0
iδ1q̂X1(ξ)dξdζ

R10 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ2q̂V (ζ, w)q1(w) exp(QX1(ζ))

∫ ζ

0
iδ1q̂X1(ξ)dξdζ

R11 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)qV (ζ, w)δ1q̂1(w) exp(QX1(ζ))

∫ ζ

0
iδ1q̂X1(ξ)dξdζ

R12 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ1q̂V (ζ, w)δ1q̂1(w) exp(QX1(ζ))

∫ ζ

0
iδ1q̂X1(ξ)dξdζ

R13 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ2q̂V (ζ, w)δ1q̂1(w) exp(QX1(ζ))

∫ ζ

0
iδ1q̂X1(ξ)dξdζ

R14 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)qV (ζ, w)δ2q̂1(w) exp(QX1(ζ))

∫ ζ

0
iδ1q̂X1(ξ)dξdζ

R15 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ1q̂V (ζ, w)δ2q̂1(w) exp(QX1(ζ))

∫ ζ

0
iδ1q̂X1(ξ)dξdζ

R16 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ2q̂V (ζ, w)δ2q̂1(w) exp(QX1(ζ))

∫ ζ

0
iδ1q̂X1(ξ)dξdζ

R17 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ2q̂V (ζ, w)q1(w) exp(QX1(ζ))dζ

R18 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ1q̂V (ζ, w)δ1q̂1(w) exp(QX1(ζ))dζ

R19 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ2q̂V (ζ, w)δ1q̂1(w) exp(QX1(ζ))dζ

R20 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)qV (ζ, w)δ2q̂1(w) exp(QX1(ζ))dζ

R21 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ1q̂V (ζ, w)δ2q̂1(w) exp(QX1(ζ))dζ
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R22 =
1
2π

∫
(−iζ)λκ(h1ζ) exp(−iζx)δ2q̂V (ζ, w)δ2q̂1(w) exp(QX1(ζ))dζ.

Because E[Y 2] < ∞ by assumption 4.2 and E[|Y X2|] < ∞ by assumption 4.5, Lemma

A.3 gives that for any ε > 0,

sup
w∈supp(W )

sup
ζ∈[−h−1

1n ,h
−1
1n ]

|χ̂V (ζ, w)− χV (ζ, w)|

= sup
w∈supp(W )

sup
ζ∈[−h−1

1n ,h
−1
1n ]

∣∣∣Ê[V kh2n(W − w) exp(iζX2)]− E[V kh2n(W − w) exp(iζX2)]
∣∣∣

= h−1
2n sup

w∈supp(W )
|h2nkh2n(W − w)| sup

ζ∈[−Unu,Unu]

∣∣∣Ê[V exp(iζX2)]− E[V exp(iζX2)]
∣∣∣

= Op(h−1
2nn

−1/2+ε).

We define Υ(hn) and Φ̂n as follows:

Υ(hn) ≡
(
1 + h−1

2n

)(
sup

ζ∈[−h−1
1n ,h

−1
1n ]

|Dζ lnφ1(ζ)|
)

×

(
max

{
sup

ζ∈[−h−1
1n ,h

−1
1n ]

sup
w∈supp(W )

|χV (ζ, w)|−1, sup
ζ∈[−h−1

1n ,h
−1
1n ]

|θ1(ζ)|−1

})
= O

((
1 + h−1

2n

) (
1 + h−1

1n

)γ1−γθ exp
(
−αθ

(
h−1

1n

)βθ
))

,

Φ̂n ≡ max
{

sup
ζ∈[−h−1

1n ,h
−1
1n ]

∣∣∣θ̂1(ζ)− θ1(ζ)
∣∣∣ , sup
ζ∈[−h−1

1n ,h
−1
1n ]

∣∣∣θ̂X1(ζ)− θX1(ζ)
∣∣∣ ,

sup
w∈supp(W )

sup
ζ∈[−h−1

1n ,h
−1
1n ]

|χ̂V (ζ, w)− χV (ζ, w)| , sup
w∈supp(W )

∣∣∣f̂W (w)− fW (w)
∣∣∣ }

= Op

(
h−1

2nn
−1/2+ε

)
for any ε > 0. Note that the supremums associated with ζ can be taken over [−h−1

1n , h
−1
1n ]

since κ(h1nζ) vanishes outside the interval by Assumption 3.6 (ii). The second or-

der of magnitude follows from Lemma A.3 and Assumption 4.6 since h−1
2nn

−1/2+ε =

h
−1/2
2n n−1/2(nεh−1/2

2n ) > h
−1/2
2n n−1/2(lnn)1/2 + h2

2n for any choices of h2n from Assump-

tion 4.4 and 4.7. Then those terms in the nonlinear remainder can be bounded in terms

of Ψ+
V,λ(hn), Υ(hn), and Φ̂n. We note that

Φ̂n ×
(

max
{

sup
ζ∈[−h−1

1n ,h
−1
1n ]

sup
w∈supp(W )

|χV (ζ, w)|−1, sup
ζ∈[−h−1

1n ,h
−1
1n ]

|θ1(ζ)|−1

})
� Φ̂nΥ(hn)

= Op

(
h−1

2nn
−1/2+ε

)
O
((

1 + h−1
2n

) (
1 + h−1

1n

)γ1−γθ exp
(
−αθ

(
h−1

1n

)βθ
))

= op(1).
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We find upper bounds for each term, Ri, i = 1, ..., 22.

sup
(x,w)∈supp(X,W )

|R1|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)||q1(w)| exp (QX1(ζ)) exp

(∣∣δQ̄X1(ζ)
∣∣)

×
(∫ ζ

0
|δq̂X1(ξ)| dξ

)2

dζ

≤
∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)
exp

(∫ ζ

0
|δq̂X1(ξ)| dξ

)

×
(∫ ζ

0
|δq̂X1(ξ)| dξ

)2

dζ

� exp(op(1))
∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)(∫ ζ

0
|δq̂X1(ξ)| dξ

)
×
(∫ ζ

0
|δq̂X1(ξ)| dξ

)
dζ

� exp(op(1))
∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)

×
∫ ζ

0

∣∣∣∣∣∣
(
δθ̂X1(ξ)
θ1(ξ)

− θX1(ξ)δθ̂1(ξ)
(θ1(ξ))2

)(
1 +

δθ̂1(ξ)
θ1(ξ)

)−1
∣∣∣∣∣∣ dξ

×
∫ ζ

0

∣∣∣∣∣∣
(
δθ̂X1(ξ)
θ1(ξ)

− θX1(ξ)δθ̂1(ξ)
(θ1(ξ))2

)(
1 +

δθ̂1(ξ)
θ1(ξ)

)−1
∣∣∣∣∣∣ dξdζ

� exp(op(1))Υ(h)Φ̂2
n|1 + op(1)|−2

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)

×
∫ ζ

0

(
1

|θ1(ξ)|
+
|θX1(ξ)|
|θ1(ξ)|2

)
dξdζ

= exp(op(1))Υ(h)Φ̂2
n|1 + op(1)|−2

∫ ∞

0

(∫ ∞

ξ
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)
dζ

)

×
(

1
|θ1(ξ)|

+
|θX1(ξ)|
|θ1(ξ)|2

)
dξ

= exp(op(1))Υ(h)Φ̂2
n|1 + op(1)|−2

∫ ∞

0

[ ∫ ∞

ξ
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)
dζ

1
|θ1(ξ)|

+
∫ ∞

ξ
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)
dζ
|θX1(ξ)|
|θ1(ξ)|2

]
dξ

= Op(1)Υ(h)Φ̂2
nΨ

+
V,λ(h)

� Υ(h)Φ̂2
nΨ

+
V,λ(h).
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When the conditions of Theorem 4.3 hold, we have

sup
(x,w)∈supp(X,W )

|R1| = Op

(
(h−1

2 )(h−1
1 )γ1−γθ exp

(
−αθ(h−1

1 )βθ
)
(h−1

2 )2n−1+2ε

×(max{(h−1
1 )δL , h−1

2 })(h−1
1 )γλ,L exp

(
αL(h−1

1 )βL
))

which is needed for part (i). Because all other terms are also bounded by the upper

bound for R1 as shown below, we focus on the bound for R1.

In order to get the bound for RV,λ(x,w, hn) when Assumption 4.7 holds in place of

Assumption 4.4 in the conditions of Theorem 4.3, we note that

Υ(h)Φ̂2
nΨ

+
V,λ(h) =

(
Υ(h)Φ̂2

nn
1/2
)
n−1/2Ψ+

V,λ(h),

n−1/2Ψ+
V,λ(h) = Op

(
n−1/2(max{(h−1

1 )δL , h−1
2 })(h−1

1 )γλ,L exp
(
αL(h−1

1 )βL

))
where the second equality is obtained by Lemma A.1. Now we show that Υ(hn)Φ̂2

nn
1/2 =

op(1). When βθ 6= 0, we have h−1
1n � (lnn)1/βθ−η and h−1

2n = O
(
exp(αθ

4 (lnn)1−ηβθ)
)

by

the Assumption 4.7 so that

Υ(hn)Φ̂2
nn

1/2

= Υ(hn)Op
(
h−2

2nn
−1+2ε

)
n1/2

= Op

((
1 + h−1

2n

)3 (1 + h−1
1n

)γ1−γθ exp
(
−αθ

(
h−1

1n

)βθ
)
n−1/2+2ε

)
= Op

((
1 + exp(

αθ
4

(lnn)1−ηβθ)
)3 (

1 + (lnn)1/β−η
)γ1−γθ

× exp
(
−αθ(lnn)1−ηβθ

)
n−1/2+2ε

)
= Op

(
exp(

3αθ
4

(lnn)1−ηβθ)(lnn)(1/βθ−η)(γ1−γθ) exp
(
−αθ(lnn)1−ηβθ

)
n−1/2+2ε

)
= Op

(
exp

[
3αθ
4

(lnn)1−ηβθ + (1/βθ − η)(γ1 − γθ) ln(lnn)− αθ(lnn)1−ηβθ

+ (−1/2 + 2ε) lnn
])

= op(1),

where the last equality follows by the fact that lnn dominates (lnn)1−ηβθ and ln(lnn),

and by −1/2 + 2ε < 0. When βθ = 0, we have h−1
1n � n−ηn1/(2γ1−2γθ+6) and h−1

2n =

O
(
nη(γ1−γθ−1)/4

)
so that

Υ(hn)Φ̂2
nn

1/2 = Υ(hn)Op
(
h−2

2nn
−1+2ε

)
n1/2

= Op

((
1 + h−1

2n

)3 (1 + h−1
1n

)γ1−γθ n−1/2+2ε
)
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= Op

((
nη(γ1−γθ−1)/4

)3 (
n−ηn1/(2γ1−2γθ)

)γ1−γθ

n−1/2+2ε

)
= Op

(
n−η(γ1−γθ−3(γ1−γθ−1)/4)+2ε

)
� Op

(
n−η+2ε

)
= op(1),

by selecting η > 2ε. Now we get the bounds for the remaining terms. Because they all

contain the same leading term, Υ(h)Φ̂2
nΨ

+
V,λ(h), they can be similarly bounded:

sup
(x,w)∈supp(X,W )

|R2|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δq̂V (ζ, w)||q1(w)| exp(QX1(ζ)) exp

(
|δQ̄X1(ζ)|

)
×
(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1 +

|χV (ζ, w)|
|θ1(ζ)|

)
Υ(h)Φ̂n|1 + op(1)|−1|q1(w)| exp(QX1(ζ))

× exp
(∫ ζ

0
|δq̂X1(ξ)dξ|

)(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

= sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1 +

|χV (ζ, w)|
|θ1(ζ)|

)
|q1(w)| exp(QX1(ζ))

× exp
(∫ ζ

0
|δq̂X1(ξ)dξ|

)(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

� sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)||q1(w)| exp(QX1(ζ))

× exp
(∫ ζ

0
|δq̂X1(ξ)dξ|

)(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

+ Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)

× exp
(∫ ζ

0
|δq̂X1(ξ)dξ|

)(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

� Υ(h)Φ̂n|1 + op(1)|−1

(
sup

(x,w)∈supp(X,W )
|R1|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R1|

)
;
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sup
(x,w)∈supp(X,W )

|R3|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)||δq̂1(w)| exp(QX1(ζ)) exp

(
|δQ̄X1(ζ)|

)
×
(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)| 1

|fW (w)|
|1 + op(1)|−1Υ(h)Φ̂n exp(QX1(ζ))

× exp
(∫ ζ

0
|δq̂X1(ξ)|dξ

)(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

= Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)
1
2

exp
(∫ ζ

0
|δq̂X1(ξ)|dξ

)

×
(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R1|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R1|

)
;

sup
(x,w)∈supp(X,W )

|R4|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δq̂V (ζ, w)||δq̂1(w)| exp(QX1(ζ)) exp

(
|δQ̄X1(ζ)|

)
×
(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1 +

|χV (ζ, w)|
|θ1(ζ)|

)
Υ(h)Φ̂n|1 + op(1)|−1 1

|fW (w)|
Υ(h)Φ̂n

× |1 + op(1)|−1 exp(QX1(ζ))
1
2

exp
(∫ ζ

0
|δq̂X1(ξ)|dξ

)(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

× exp
(∫ ζ

0
|δq̂X1(ξ)dξ|

)(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

= sup
w∈supp(W )

Υ2(h)Φ̂2
n|1 + op(1)|−2

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1 +

|χV (ζ, w)|
|θ1(ζ)|

)
|q1(w)| exp(QX1(ζ))

× exp
(∫ ζ

0
|δq̂X1(ξ)dξ|

)(∫ ζ

0
|δq̂X1(ξ)|dξ

)2

dζ

� Υ(h)Φ̂n|1 + op(1)|−1

(
sup

(x,w)∈supp(X,W )
|R2|

)
= op(1)

(
sup

(x,w)∈supp(X,W )
|R2|

)
;
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sup
(x,w)∈supp(X,W )

|R5|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)||q1(w)| exp(QX1(ζ))

∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

=
∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

�
∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)

×
∫ ζ

0

(
|θX1(ξ)|
|θ1(ξ)|

1
|θ1(ξ)|2

Φ̂2
n|1 + op(1)|−1 +

1
|θ1(ξ)|2

Φ̂2
n|1 + op(1)|−1

)
dξdζ

�
∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)
Υ(h)Φ̂2

n|1 + op(1)|−1

×
∫ ζ

0

1
|θ1(ξ)|

(
|θX1(ξ)|
|θ1(ξ)|

+ 1
)
dξdζ

= Υ(h)Φ̂2
n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)

×
∫ ζ

0

1
|θ1(ξ)|

(
|θX1(ξ)|
|θ1(ξ)|

+ 1
)
dξdζ

= Υ(h)Φ̂2
nΨ

+
V,λ(h)(1 + op(1));

sup
(x,w)∈supp(X,W )

|R6|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δq̂V (ζ, w)||q1(w)| exp(QX1(ζ))

∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

= sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1

|θ1(ζ)|
+
|χV (ζ, w)|
|θ1(ζ)|2

)
Φ̂n|1 + op(1)|−1|q1(w)|

× exp(QX1(ζ))
∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

� sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1 +

|χV (ζ, w)|
|θ1(ζ)|

)
|q1(w)|

× exp(QX1(ζ))
∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

= Υ(h)Φ̂n|1 + op(1)|−1

[
sup

w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||q1(w)| exp(QX1(ζ))

×
∫ ζ

0
|δ2q̂X1(ξ)|dξdζ +

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

]
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� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R5|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R5|

)
;

sup
(x,w)∈supp(X,W )

|R7|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)||δq̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

= sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)| 1

|fW (w)|
Υ(h)Φ̂n|1 + op(1)|−1 exp(QX1(ζ))

×
∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

= Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R5|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R5|

)
;

sup
(x,w)∈supp(X,W )

|R8|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δq̂V (ζ, w)||δq̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

= sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1 +

|χV (ζ, w)|
|θ1(ζ)|

)
Υ(h)Φ̂n|1 + op(1)|−1 1

|fW (w)|
Υ(h)Φ̂n

× |1 + op(1)|−1 exp(QX1(ζ))
∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

= Υ2(h)Φ̂2
n|1 + op(1)|−2

[
sup

w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

1
|fW (w)|

exp(QX1(ζ))

×
∫ ζ

0
|δ2q̂X1(ξ)|dξdζ +

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)∫ ζ

0
|δ2q̂X1(ξ)|dξdζ

]

� Υ2(h)Φ̂2
n|1 + op(1)|−2

(
sup

(x,w)∈supp(X,W )
|R5|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R5|

)
;
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sup
(x,w)∈supp(X,W )

|R9|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)||q1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

= sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1 +

|χV (ζ, w)|
|θ1(ζ)|

)
Υ(h)Φ̂n|q1(w)| exp(QX1(ζ))

×
∫ ζ

0

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
1

|θ1(ξ)|
Φ̂ndξdζ

= sup
w∈supp(W )

Υ(h)Φ̂2
n

∫ ∞

0
|ζ|λ|κ(h1ζ)| (|q1(w)| exp(QX1(ζ)) + |φV (ζ, w)|)

×
∫ ζ

0

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
1

|θ1(ξ)|
dξdζ

= sup
w∈supp(W )

Υ(h)Φ̂2
n

∫ ∞

0

[∫ ζ

0
|ζ|λ|κ(h1ζ)| (|q1(w)| exp(QX1(ζ)) + |φV (ζ, w)|) dζ

]
×
(

1 +
|θX1(ξ)|
|θ1(ξ)|

)
1

|θ1(ξ)|
dξ

� Υ(h)Φ̂2
nΨ

+
V,λ(h);

sup
(x,w)∈supp(X,W )

|R10|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ2q̂V (ζ, w)||q1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
|χV (ζ, w)|
|θ1(ζ)|

1
|θ1(ζ)|2

Φ̂2
n|1 + op(1)|−1

+
1

|θ1(ζ)|2
Φ̂2
n|1 + op(1)|−1

)
|q1(w)| exp(QX1(ζ))

∫ ζ

0

(
1

|θ1(ξ)|
+
|θX1(ξ)|
|θ1(ξ)|2

)
Φ̂ndξdζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|Υ(h)Φ̂2

n|1 + op(1)|−1 1
|θ1(ζ)|

(
|χV (ζ, w)|
|θ1(ζ)|

+ 1
)
|q1(w)|

× exp(QX1(ζ))
∫ ζ

0

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
Υ(h)Φ̂ndξdζ

= sup
w∈supp(W )

Υ(h)Φ̂nΥ(h)Φ̂2
n|1 + op(1)|−1

×
[ ∫ ∞

0
|ζ|λ|κ(h1ζ)|

1
|θ1(ζ)|

|φV (ζ, w)|
∫ ζ

0

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
dξdζ

+
∫ ∞

0
|ζ|λ|κ(h1ζ)|

|q1(w)|
|θ1(ζ)|

exp(QX1(ζ))
∫ ζ

0

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
dξdζ

]
= op(1)Υ(h)Φ̂2

nΨ
+
V,λ(h);
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sup
(x,w)∈supp(X,W )

|R11|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)| 1

|fW (w)|
Υ(h)Φ̂n|1 + op(1)|−1 exp(QX1(ζ))

×
∫ ζ

0

1
|θ1(ξ)|

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
Φ̂ndξdζ

= sup
w∈supp(W )

Υ(h)Φ̂2
n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)| 1

|fW (w)|
exp(QX1(ζ))

×
∫ ζ

0

1
|θ1(ξ)|

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
dξdζ

= Υ(h)Φ̂2
n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)

×
∫ ζ

0

1
|θ1(ξ)|

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
dξdζ

= Υ(h)Φ̂2
nΨ

+
V,λ(h)(1 + op(1));

sup
(x,w)∈supp(X,W )

|R12|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1

|θ1(ζ)|
+
|χV (ζ, w)|
|θ1(ζ)|2

)
Φ̂n

1
|fW (w)|2

Φ̂n exp(QX1(ζ))

×
∫ ζ

0

(
1

|θ1(ξ)|
+
|θX1(ξ)|
|θ1(ξ)|2

)
Φ̂ndξdζ

� sup
w∈supp(W )

Υ2(h)Φ̂3
n

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1 +

|χV (ζ, w)|
|θ1(ζ)|

)
1

|fW (w)|
exp(QX1(ζ))

×
∫ ζ

0

1
|θ1(ξ)|

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
dξdζ

= Υ2(h)Φ̂3
n

×
[

sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

1
|fW (w)|

exp(QX1(ζ))
∫ ζ

0

1
|θ1(ξ)|

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
dξdζ

+
∫ ∞

0
|ζ|λ|κ(h1ζ)

(
sup

w∈supp(W )
|φV (ζ, w)|

)∫ ζ

0

1
|θ1(ξ)|

(
1 +

|θX1(ξ)|
|θ1(ξ)|

)
dξdζ

]
= op(1)Υ(h)Φ̂2

nΨ
+
V,λ(h);
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sup
(x,w)∈supp(X,W )

|R13|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ2q̂V (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
|χV (ζ, w)||δθ̂1(ζ)|

|θ1(ζ)|2
Υ(h)Φ̂n|1 + op(1)|−1

+
|δχ̂V (ζ, w)|
|θ1(ζ)|

Υ(h)Φ̂n|1 + op(1)|−1

)
|δ1q̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

= sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
|χV (ζ, w)||δθ̂1(ζ)|

|θ1(ζ)|2
+
|δχ̂V (ζ, w)|
|θ1(ζ)|

)
× |δ1q̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

= sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))

×
∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R12|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R12|

)
;

sup
(x,w)∈supp(X,W )

|R14|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)||δ2q̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)| |δf̂W (w)|

|fW (w)|2
Υ(h)Φ̂n|1 + op(1)|−1 exp(QX1(ζ))

×
∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

= sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))

×
∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R11|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R11|

)
;
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sup
(x,w)∈supp(X,W )

|R15|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)||δ2q̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)| |δf̂W (w)|

|fW (w)|2
Υ(h)Φ̂n|1 + op(1)|−1 exp(QX1(ζ))

×
∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

= sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))

×
∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R12|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R12|

)
;

sup
(x,w)∈supp(X,W )

|R16|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ2q̂V (ζ, w)||δ2q̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
|χV (ζ, w)||δθ̂1(ζ)|

|θ1(ζ)|2
Υ(h)Φ̂n|1 + op(1)|−1

+
|δχ̂V (ζ, w)|
|θ1(ζ)|

Υ(h)Φ̂n|1 + op(1)|−1

)
|δ2q̂1(w)| exp(QX1(ζ))

∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

= sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)|δ2q̂1(w)| exp(QX1(ζ))

×
∫ ζ

0
|δ1q̂X1(ξ)|dξdζ

� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R15|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R15|

)
;
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sup
(x,w)∈supp(X,W )

|R17|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ2q̂V (ζ, w)||q1(w)| exp(QX1(ζ))dζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
|χV (ζ, w)|
|θ1(ζ)|

1
|θ1(ζ)|2

Φ̂2
n|1 + op(1)|−1

+
1

|θ1(ζ)|2
Φ̂2
n|1 + op(1)|−1

)
|q1(w)| exp(QX1(ζ))dζ

� sup
w∈supp(W )

Υ(h)Φ̂2
n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

1
|θ1(ζ)|

(
|χV (ζ, w)|
|θ1(ζ)|

+ 1
)

× |q1(w)| exp(QX1(ζ))dζ

= sup
w∈supp(W )

Υ(h)Φ̂2
n|1 + op(1)|−1

(∫ ∞

0
|ζ|λ|κ(h1ζ)|

1
|θ1(ζ)|

|φV (ζ, w)|dζ

+
∫ ∞

0
|ζ|λ|κ(h1ζ)|

|q1(w)|
|θ1(ζ)|

exp(QX1(ζ))dζ
)

= Υ(h)Φ̂2
nΨ

+
V,λ(h)(1 + op(1));

sup
(x,w)∈supp(X,W )

|R18|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))dζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
1

|θ1(ζ)|
+
|χV (ζ, w)|
|θ1(ζ)|2

)
Φ̂n

1
|fW (w)|

Υ(h)Φ̂n exp(QX1(ζ))dζ

= Υ(h)Φ̂2
n

(
sup

w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

1
|θ1(ζ)||fW (w)|

exp(QX1(ζ))dζ

+
∫ ∞

0
|ζ|λ|κ(h1ζ)|

1
|θ1(ζ)|

(
sup

w∈supp(W )
|φV (ζ, w)|

)
dζ

)
� Υ(h)Φ̂2

nΨ
+
V,λ(h);
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sup
(x,w)∈supp(X,W )

|R19|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ2q̂V (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))dζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
|χV (ζ, w)||δθ̂1(ζ)|

|θ1(ζ)|2
Υ(h)Φ̂n|1 + op(1)|−1

+
|δχ̂V (ζ, w)|
|θ1(ζ)|

Υ(h)Φ̂n|1 + op(1)|−1

)
|δ1q̂1(w)| exp(QX1(ζ))dζ

= sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))dζ

� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R18|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R18|

)
;

sup
(x,w)∈supp(X,W )

|R20|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)||δ2q̂1(w)| exp(QX1(ζ))dζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||qV (ζ, w)| 1

|fW (w)|2
Υ(h)Φ̂2

n|1 + op(1)|−1 exp(QX1(ζ))dζ

= sup
w∈supp(W )

Υ(h)Φ̂2
n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)|

1
|fW (w)|

|φV (ζ, w)|dζ

� Υ(h)Φ̂2
nΨ

+
V,λ(h)(1 + op(1));

sup
(x,w)∈supp(X,W )

|R21|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)||δ2q̂1(w)| exp(QX1(ζ))dζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)| |δf̂W (w)|

|fW (w)|2
Υ(h)Φ̂n|1 + op(1)|−1 exp(QX1(ζ))dζ

= sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ1q̂V (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))dζ

� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R18|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R18|

)
;
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sup
(x,w)∈supp(X,W )

|R22|

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ2q̂V (ζ, w)||δ2q̂1(w)| exp(QX1(ζ))dζ

� sup
w∈supp(W )

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ2q̂V (ζ, w)| |δf̂W (w)|

|fW (w)|2
Υ(h)Φ̂n|1 + op(1)|−1 exp(QX1(ζ))dζ

= sup
w∈supp(W )

Υ(h)Φ̂n|1 + op(1)|−1

∫ ∞

0
|ζ|λ|κ(h1ζ)||δ2q̂V (ζ, w)||δ1q̂1(w)| exp(QX1(ζ))dζ

� Υ(h)Φ̂n(1 + op(1))

(
sup

(x,w)∈supp(X,W )
|R19|

)

= op(1)

(
sup

(x,w)∈supp(X,W )
|R19|

)
. �

Proof of Corollary 4.5 Combining Theorem 4.2, Theorem 4.3 and Theorem

4.4(ii) immediately yields the result. �

Proof of Corollary 4.6 Because the bias and the remainder term will

never dominate the variance term by Assumption 4.11, the result immediately fol-

lows from Theorem 4.3, Theorem 4.4(i) and the fact that ĝV,λ(x,w, hn) − gV,λ(x,w) =

BV,λ(x,w, h1n) + LV,λ(x,w, hn) +RV,λ(x,w, hn). �

Lemma A.4 Suppose the conditions of Lemma 4.1 hold. For each ζ and

h ≡ (h1, h2), and for A = 1, X1, χV , fW , let

Ψ+
V,λ,A,s(ζ, h1) ≡ sup

x∈supp(X)

∣∣∣∣∫ ΨV,λ,A(ζ, x, w, h1)s(x,w)dw
∣∣∣∣ ,

and define

Ψ+
V,λ,s(h) ≡

∑
A=1,X1

∫
Ψ+
V,λ,A,s(ζ, h1)dζ + h−1

2

∑
B=χV ,fW

∫
Ψ+
V,λ,B,s(ζ, h1)dζ.

If Assumption 4.9 also holds, then for h > 0

Ψ+
V,λ,s(h) = O

(
max{(1 + h−1

1 )γ1+1, h−1
2 }

(
1 + h−1

1

)γφs+λ−γθ+1

× exp
(
(αφs1{βφs≥βθ} − αθ1{βφs≤βθ})(h

−1
1 )max{βθ,βφs}

))
.
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Proof We obtain rates for each term of Ψ+
V,λ,s(h). First,

Ψ+
V,λ,1,s(ζ, h1)

≡ sup
x∈supp(X)

∣∣∣∣∫ ΨV,λ,1(ζ, x, w, h1)s(x,w)dw
∣∣∣∣

= sup
x∈supp(X)

∣∣∣∣ ∫ (− 1
2π

iθX1(ζ)
(θ1(ζ))2

∫ ±∞

ζ
(−iξ)λκ(h1ξ) exp(−iξx)φV (ξ, w)dξ

− 1
2π

(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)
θ1(ζ)

)
s(x,w)dw

∣∣∣∣
= sup

x∈supp(X)

∣∣∣∣− 1
2π

iθX1(ζ)
(θ1(ζ))2

∫ ±∞

ζ
(−iξ)λκ(h1ξ) exp(−iξx)

(∫
φV (ξ, w)s(x,w)dw

)
dξ

− 1
2π

(−iζ)λκ(h1ζ) exp(−iζx) 1
θ1(ζ)

(∫
φV (ζ, w)s(x,w)dw

)∣∣∣∣
� |θX1(ζ)|
|θ1(ζ)|2

∫ ±∞

ζ
|ξ|λ|κ(h1ξ)|

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ξ, w)s(x,w)dw
∣∣∣∣
)
dξ

+ |ζ|λ|κ(h1ζ)|
1

|θ1(ζ)|

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)

=
1

|θ1(ζ)|

[
|Dζ lnφ1(ζ)|

∫ ±∞

ζ
|ξ|λ|κ(h1ξ)|

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ξ, w)s(x,w)dw
∣∣∣∣
)
dξ

+ |ζ|λ|κ(h1ζ)|

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
) ]

� 1
|θ1(ζ)|

[
|Dζ lnφ1(ζ)|

∫ ±∞

ζ
|ξ|λ1{|ξ|≤ξ̄h−1

1 }

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ξ, w)s(x,w)dw
∣∣∣∣
)
dξ

+ |ζ|λ1{|ζ|≤ζ̄h−1
1 }

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
) ]

� 1
|θ1(ζ)|

1{|ζ|≤h−1
1 }

[
|Dζ lnφ1(ζ)|

∫ h−1
1

ζ
|ξ|λ

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ξ, w)s(x,w)dw
∣∣∣∣
)
dξ

+ |ζ|λ
(

sup
x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
) ]

.

By Assumption 4.1 and 4.9, we obtain∫
Ψ+
V,λ,1,s(ζ, h1)dζ

�
∫

1
|θ1(ζ)|

1{|ζ|≤h−1
1 }

[
|Dζ lnφ1(ζ)|

∫ h−1
1

ζ
|ξ|λ

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ξ, w)s(x,w)dw
∣∣∣∣
)
dξ
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+ |ζ|λ
(

sup
x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
) ]

dζ

�
∫

(1 + |ζ|)−γθ exp
(
−αθ|ζ|βθ

)
1{|ζ|≤h−1

1 }

[
(1 + |ζ|)γ1

∫ h−1
1

0
|ξ|λ(1 + |ξ|)γφs

× exp
(
αφs|ξ|βφs

)
dξ + |ζ|λ(1 + |ζ|)γφs exp

(
αφs|ζ|βφs

)]
dζ

�
∫ h−1

1

0
(1 + |ζ|)−γθ exp

(
−αθ|ζ|βθ

)[
(1 + |ζ|)γ1

∫ h−1
1

0
|ξ|λ(1 + |ξ|)γφs exp

(
αφs|ξ|βφs

)
dξ

+ |ζ|λ(1 + |ζ|)γφs exp
(
αφs|ζ|βφs

)]
dζ

�(1 + h−1
1 )1−γθ exp

(
−αθ(h−1

1 )βθ

)[
(1 + h−1

1 )γ1(1 + h−1
1 )λ+γφs+1 exp

(
αφs(h−1

1 )βφs

)
+ (1 + h−1

1 )λ+γφs exp
(
αφs(h−1

1 )βφs

)]
�(1 + h−1

1 )1−γθ exp
(
−αθ(h−1

1 )βθ

)
(1 + h−1

1 )λ+γφs exp
(
αφs(h−1

1 )βφs

) (
(1 + h−1

1 )γ1+1 + 1
)

�(1 + h−1
1 )γφs+λ+γ1−γθ+2 exp

(
−αθ(h−1

1 )βθ

)
exp

(
αφs(h−1

1 )βφs

)
.

Second,

Ψ+
V,λ,X1,s

(ζ, h1)

≡ sup
x∈supp(X)

∣∣∣∣∫ ΨV,λ,X1(ζ, x, w, h1)s(x,w)dw
∣∣∣∣

= sup
x∈supp(X)

∣∣∣∣∫ ( 1
2π

i

θ1(ζ)

∫ ±∞

ζ
(−iξ)λκ(h1ξ) exp(−iξx)φV (ξ, w)dξ

)
s(x,w)dw

∣∣∣∣
= sup

x∈supp(X)

∣∣∣∣ 1
2π

i

θ1(ζ)

∫ ±∞

ζ
(−iξ)λκ(h1ξ) exp(−iξx)

(∫
φV (ξ, w)s(x,w)dw

)
dξ

∣∣∣∣
� 1
|θ1(ζ)|

∫ ±∞

ζ
|ξ|λ|κ(h1ξ)|

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ξ, w)s(x,w)dw
∣∣∣∣
)
dξ

=
1

|θ1(ζ)|

∫ ±∞

ζ
|ξ|λ1{|ξ|≤ξ̄h−1

1 }

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ξ, w)s(x,w)dw
∣∣∣∣
)
dξ

� 1
|θ1(ζ)|

1{|ζ|≤h−1
1 }

∫ h−1
1

ζ
|ξ|λ

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ξ, w)s(x,w)dw
∣∣∣∣
)
dξ

so that∫
Ψ+
V,λ,X1,s

(ζ, h1)dζ

�
∫ h−1

1

0
(1 + |ζ|)−γθ exp

(
−αθ|ζ|βθ

)(∫ h−1
1

0
|ξ|λ(1 + |ξ|)γφs exp

(
αφs|ξ|βφs

)
dξ

)
dζ
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� (1 + h−1
1 )1−γθ exp

(
−αθ(h−1

1 )βθ

)
(1 + h−1

1 )λ+γφs+1 exp
(
αφs(h−1

1 )βφs

)
� (1 + h−1

1 )γφs+λ−γθ+2 exp
(
−αθ(h−1

1 )βθ

)
exp

(
αφs(h−1

1 )βφs

)
.

Third,

Ψ+
V,λ,χV ,s

(ζ, h1)

≡ sup
x∈supp(X)

∣∣∣∣∫ ΨV,λ,χV
(ζ, x, w, h1)s(x,w)dw

∣∣∣∣
= sup

x∈supp(X)

∣∣∣∣∫ ( 1
2π

(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)
χV (ζ, w)

)
s(x,w)dw

∣∣∣∣
� |ζ|λ1{|ζ|≤h−1

1 }

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)
χV (ζ, w)

dw

∣∣∣∣
)

≤ |ζ|λ1{|ζ|≤h−1
1 }

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)(

1
infw∈supp(W ) |χV (ζ, w)|

)
so that

h−1
2

∫
Ψ+
V,λ,χV ,s

(ζ, h1)dζ

� h−1
2

∫ h−1
1

0
|ζ|λ(1 + |ζ|)−γθ exp

(
−αθ|ζ|βθ

)
(1 + |ζ|)γφs exp

(
αφs|ζ|βφs

)
dζ

� h−1
2 (1 + h−1

1 )γφs−γθ+λ+1 exp
(
−αθ(h−1

1 )βθ

)
exp

(
αφs(h−1

1 )βφs

)
.

Finally,

Ψ+
V,λ,fW ,s(ζ, h1) ≡ sup

x∈supp(X)

∣∣∣∣∫ ΨV,λ,fW
(ζ, x, w, h1)s(x,w)dw

∣∣∣∣
= sup

x∈supp(X)

∣∣∣∣∫ (− 1
2π

(−iζ)λκ(h1ζ) exp(−iζx)φV (ζ, w)
fW (w)

)
s(x,w)dw

∣∣∣∣
� |ζ|λ1{|ζ|≤h−1

1 }

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)

so that

h−1
2

∫
Ψ+
V,λ,fW ,s(ζ, h1)dζ � h−1

2

∫ h−1
1

0
|ζ|λ(1 + |ζ|)γφs exp

(
αφs|ζ|βφs

)
dζ

� h−1
2 (1 + h−1

1 )γφs+λ+1 exp
(
αφs(h−1

1 )βφs

)
.

Putting four terms together gives the desired result. �
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Proof of Theorem 4.7 (i) By the assumption 4.10(i), we have

max
j=1,...,J

sup
(x,w)∈supp(X,W )

∣∣ĝVj ,λj
(x,w, hn)− gVj ,λj

(x,w, h1n)
∣∣

= max
j=1,...,J

sup
(x,w)∈supp(X,W )

∣∣BVj ,λj
(x,w, h1n) + LVj ,λj

(x,w, hn) +RVj ,λj
(x,w, hn)

∣∣
= o(α1n) + op(α

1/2
1n ) + op(α1n)

= op(α
1/2
1n ).

Thus the remainder term in eqn.(1.9) is op

((
α

1/2
1n

)2
)

= op(α1n) by letting g̃Vj ,λj
(x,w) =

ĝVj ,λj
(x,w, hn). We also have∣∣∣∣∣∣

J∑
j=1

∫ (
ĝVj ,λj

(x,w, hn)− gVj ,λj
(x,w)

)
sj(x,w)dw

∣∣∣∣∣∣
≤

J∑
j=1

sup
(x,w)∈supp(X,W )

∣∣ĝVj ,λj
(x,w, hn)− gVj ,λj

(x,w)
∣∣ ∫ |sj(x,w)| dw

≤
J∑
j=1

sup
(x,w)∈supp(X,W )

∣∣ĝVj ,λj
(x,w, hn)− gVj ,λj

(x,w)
∣∣ sup
x∈supp(X)

∫
|sj(x,w)| dw

=
J∑
j=1

∥∥ĝVj ,λj
(x,w, hn)− gVj ,λj

(x,w)
∥∥
∞ sup
x∈supp(X)

∫
|sj(x,w)| dw

�
∥∥ĝVj ,λj

(x,w, hn)− gVj ,λj
(x,w)

∥∥
∞ ,

since supx∈supp(X)

∫
|sj(x,w)| dw <∞. Then the result immediately follows.

(ii) By the assumption 4.10(ii), we have

max
j=1,...,J

sup
(x,w)∈supp(X,W )

∣∣ĝVj ,λj
(x,w, hn)− gVj ,λj

(x,w, h1n)
∣∣

= max
j=1,...,J

sup
(x,w)∈supp(X,W )

∣∣BVj ,λj
(x,w, h1n) + LVj ,λj

(x,w, hn) +RVj ,λj
(x,w, hn)

∣∣
= o(α2n) + op(α

1/2
2n ) + op(α2n)

= op(α
1/2
2n ).

Thus the remainder term in eqn.(1.9) is op

((
α

1/2
2n

)2
)

= op(α2n) by letting g̃Vj ,λj
(x,w) =

ĝVj ,λj
(x,w, hn). We also have
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J∑
j=1

∫ (
ĝVj ,λj

(x,w, hn)− gVj ,λj
(x,w)

)
sj(x,w)dw

=
J∑
j=1

∫
BVj ,λj

(x,w, h1n)sj(x,w)dw +
J∑
j=1

∫
LVj ,λj

(x,w, hn)sj(x,w)dw

+
J∑
j=1

∫
RVj ,λj

(x,w, hn)sj(x,w)dw.

For the first term,

sup
x∈supp(X)

∣∣∣∣∣∣
J∑
j=1

∫
BVj ,λj

(x,w, h1n)sj(x,w)dw

∣∣∣∣∣∣
≤ sup

x∈supp(X)

J∑
j=1

∣∣∣∣∫ BVj ,λj
(x,w, h1n)sj(x,w)dw

∣∣∣∣ .
Note that

sup
x∈supp(X)

∣∣∣∣∫ BV,λ(x,w, h1n)s(x,w)dw
∣∣∣∣

= sup
x∈supp(X)

∣∣∣∣∫ (gV,λ(x,w, h1)− gV,λ(x,w, 0))s(x,w)dw
∣∣∣∣

= sup
x∈supp(X)

∣∣∣∣ ∫ ( 1
2π

∫
κ(h1ζ)(−iζ)λφV (ζ, w) exp(−iζx)dζ

− 1
2π

∫
(−iζ)λφV (ζ, w) exp(−iζx)dζ

)
s(x,w)dw

∣∣∣∣
= sup

x∈supp(X)

∣∣∣∣∫ ( 1
2π

∫
(κ(h1ζ)− 1)(−iζ)λφV (ζ, w) exp(−iζx)dζ

)
s(x,w)dw

∣∣∣∣
= sup

x∈supp(X)

∣∣∣∣ 1
2π

∫
(κ(h1ζ)− 1)(−iζ)λ exp(−iζx)

(∫
φV (ζ, w)s(x,w)dw

)
dζ

∣∣∣∣
≤ 1
π

∫ ∞

ξ̄/h1

|(κ(h1ζ)− 1)| |ζ|λ
(

sup
x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)
dζ

�
∫ ∞

ξ̄/h1

|ζ|λ
(

sup
x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)
dζ

�
∫ ∞

ξ̄/h1

|ζ|λ(1 + |ζ|)γφs exp(αφs|ζ|βφs)dζ

= O
((
ξ̄/h1

)γφs+λ+1 exp
(
αφs

(
ξ̄/h1

)βφs
))

= O
((
h−1

1

)γλ,B,s exp
(
αB,s

(
h−1

1

)βB,s
))

.
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Thus we have

sup
x∈supp(X)

∣∣∣∣∣∣
J∑
j=1

∫
BVj ,λj

(x,w, h1)sj(x,w)dw

∣∣∣∣∣∣ = O
((
h−1

1

)γλ,B,s exp
(
αB,s

(
h−1

1

)βB,s
))

.

For the second term,

sup
x∈supp(X)

∣∣∣∣∣∣
J∑
j=1

∫
LVj ,λj

(x,w, hn)sj(x,w)dw

∣∣∣∣∣∣
≤ sup

x∈supp(X)

J∑
j=1

∣∣∣∣∫ LVj ,λj
(x,w, hn)sj(x,w)dw

∣∣∣∣ .
Note that

sup
x∈supp(X)

∣∣∣∣∫ LV,λ(x,w, hn)s(x,w)dw
∣∣∣∣

= sup
x∈supp(X)

∣∣∣∣ ∫ ∫ [ΨV,λ,1(ζ, x, w, h1)
(
Ê[eiζX2 ]− E[eiζX2 ]

)
+ ΨV,λ,X1(ζ, x, w, h1)

(
Ê[X1e

iζX2 ]− E[X1e
iζX2 ]

)
+ ΨV,λ,χV

(ζ, x, w, h1)
(
Ê[V eiζX2kh2(W − w)]− E[V eiζX2kh2(W − w)]

)
+ ΨV,λ,fW

(ζ, x, w, h1)
(
Ê[kh2(W − w)]− E[kh2(W − w)]

)]
dζs(x,w)dw

∣∣∣∣
≤
∫ [(

sup
x∈supp(X)

∣∣∣∣∫ ΨV,λ,1(ζ, x, w, h1)s(x,w)dw
∣∣∣∣
) ∣∣∣Ê[eiζX2 ]− E[eiζX2 ]

∣∣∣
+

(
sup

x∈supp(X)

∣∣∣∣∫ ΨV,λ,X1(ζ, x, w, h1)s(x,w)dw
∣∣∣∣
) ∣∣∣Ê[X1e

iζX2 ]− E[X1e
iζX2 ]

∣∣∣
+

(
sup

x∈supp(X)

∣∣∣∣∫ ΨV,λ,χV
(ζ, x, w, h1)s(x,w)dw

∣∣∣∣
)

×

(
sup

w∈supp(W )

∣∣∣Ê[V eiζX2kh2(W − w)]− E[V eiζX2kh2(W − w)]
∣∣∣)

+

(
sup

x∈supp(X)

∣∣∣∣∫ ΨV,λ,fW
(ζ, x, w, h1)s(x,w)dw

∣∣∣∣
)

×

(
sup

w∈supp(W )

∣∣∣Ê[kh2(W − w)]− E[kh2(W − w)]
∣∣∣) ]dζ

=
∫ [

Ψ+
V,λ,1,s(ζ, h1)

∣∣∣Ê[eiζX2 ]− E[eiζX2 ]
∣∣∣+ Ψ+

V,λ,X1,s
(ζ, h1)

∣∣∣Ê[X1e
iζX2 ]− E[X1e

iζX2 ]
∣∣∣

+ h−1
2 Ψ+

V,λ,χV ,s
(ζ, h1)
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×

(
sup

w∈supp(W )

∣∣∣Ê[V eiζX2h2kh2(W − w)]− E[V eiζX2h2kh2(W − w)]
∣∣∣)

+ h−1
2 Ψ+

V,λ,fW ,s(ζ, h1)

(
sup

w∈supp(W )

∣∣∣Ê[h2kh2(W − w)]− E[h2kh2(W − w)]
∣∣∣) ]dζ.

Then we have

E

[
sup

x∈supp(X)

∣∣∣∣∫ LV,λ(x,w, hn)s(x,w)dw
∣∣∣∣
]

≤
∫ [

Ψ+
V,λ,1,s(ζ, h1)E

{(∣∣∣Ê[eiζX2 − E[eiζX2 ]]
∣∣∣2)1/2

}

+ Ψ+
V,λ,X1,s

(ζ, h1)E

{(∣∣∣Ê[X1e
iζX2 − E[X1e

iζX2 ]]
∣∣∣2)1/2

}
+ h−1

2 Ψ+
V,λ,χV ,s

(ζ, h1)

× E


∣∣∣∣∣ sup

w∈supp(W )

(
Ê[V eiζX2h2kh2(W − w)− E[V eiζX2h2kh2(W − w)]]

)∣∣∣∣∣
2
1/2


+ h−1

2 Ψ+
V,λ,fW ,s(ζ, h1)

× E


∣∣∣∣∣ sup

w∈supp(W )

(
Ê[h2kh2(W − w)− E[h2kh2(W − w)]]

)∣∣∣∣∣
2
1/2


]
dζ

≤
∫ [

Ψ+
V,λ,1,s(ζ, h1)

{
E

(∣∣∣Ê[eiζX2 − E[eiζX2 ]]
∣∣∣2)}1/2

+ Ψ+
V,λ,X1,s

(ζ, h1)
{
E

(∣∣∣Ê[X1e
iζX2 − E[X1e

iζX2 ]]
∣∣∣2)}1/2

+ h−1
2 Ψ+

V,λ,χV ,s
(ζ, h1)

×

E
∣∣∣∣∣ sup

w∈supp(W )

(
Ê[V eiζX2h2kh2(W − w)− E[V eiζX2h2kh2(W − w)]]

)∣∣∣∣∣
2


1/2

+ h−1
2 Ψ+

V,λ,fW ,s(ζ, h2)

×

E
∣∣∣∣∣ sup

w∈supp(W )

(
Ê[h2kh2(W − w)− E[h2kh2(W − w)]]

)∣∣∣∣∣
2


1/2 ]
dζ

=
∫ [

Ψ+
V,λ,1,s(ζ, h1)

{
n−1E

(∣∣∣eiζX2 − E[eiζX2 ]
∣∣∣2)}1/2
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+ Ψ+
V,λ,X1,s

(ζ, h1)
{
n−1E

(∣∣∣X1e
iζX2 − E[X1e

iζX2 ]
∣∣∣2)}1/2

+ h−1
2 Ψ+

V,λ,χV ,s
(ζ, h1)

×

n−1E

∣∣∣∣∣ sup
w∈supp(W )

(
V eiζX2h2kh2(W − w)− E[V eiζX2h2kh2(W − w)]

)∣∣∣∣∣
2


1/2

+ h−1
2 Ψ+

V,λ,fW ,s(ζ, h1)

×

n−1E

∣∣∣∣∣ sup
w∈supp(W )

(h2kh2(W − w)− E[h2kh2(W − w)])

∣∣∣∣∣
2


1/2 ]
dζ

= n−1/2

∫ [
Ψ+
V,λ,1,s(ζ, h1)

{
E

(∣∣∣eiζX2 − E[eiζX2 ]
∣∣∣2)}1/2

+ Ψ+
V,λ,X1,s

(ζ, h1)
{
E

(∣∣∣X1e
iζX2 − E[X1e

iζX2 ]
∣∣∣2)}1/2

+ h−1
2 Ψ+

V,λ,χV ,s
(ζ, h1)

×

E
∣∣∣∣∣ sup

w∈supp(W )

(
V eiζX2h2kh2(W − w)− E[V eiζX2h2kh2(W − w)]

)∣∣∣∣∣
2


1/2

+ h−1
2 Ψ+

V,λ,fW ,s(ζ, h1)

×

E
∣∣∣∣∣ sup

w∈supp(W )
(h2kh2(W − w)− E[h2kh2(W − w)])

∣∣∣∣∣
2


1/2 ]
dζ

� n−1/2

 ∑
A=1,X1

∫
Ψ+
V,λ,A,s(ζ, h1)dζ + h−1

2

∑
B=χV ,fW

∫
Ψ+
V,λ,B,s(ζ, h1)dζ


= n−1/2Ψ+

V,λ,s(h),

where Ψ+
V,λ,s(h) = O(max{(1 + h−1

1 )γ1+1, h−1
2 }(1 + h−1

1 )γφs+λ−γθ+1 exp((αφs1{βφs≥βθ}

− αθ1{βφs≤βθ})(h
−1
1 )max{βθ,βφs})). It follows by Markov’s inequality that

sup
x∈supp(X)

∣∣∣∣∣∣
J∑
j=1

∫
LVj ,λj

(x,w, hn)sj(x,w)dw

∣∣∣∣∣∣
=Op

(
n−1/2(max{(1 + h−1

1 )γ1+1, h−1
2 })(1 + h−1

1 )γφs+λ−γθ+1

× exp((αφs1{βφs≥βθ} − αθ1{βφs≤βθ})(h
−1
1 )max{βθ,βφs})

)
.
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Finally,

sup
x∈supp(X)

∣∣∣∣∣∣
J∑
j=1

∫
RVj ,λj

(x,w, hn)sj(x,w)dw

∣∣∣∣∣∣
≤ sup

x∈supp(X)

J∑
j=1

∣∣∣∣∫ RVj ,λj
(x,w, hn)sj(x,w)dw

∣∣∣∣
= sup

x∈supp(X)

J∑
j=1

∣∣∣∣∣
∫ 22∑

i=1

Rijsj(x,w)dw

∣∣∣∣∣
We exploit upper bounds for each term, supx∈supp(X)

∣∣∫ R1s(x,w)dw
∣∣ , i = 1, ..., 22.

sup
x∈supp(X)

∣∣∣∣∫ R1s(x,w)dw
∣∣∣∣

�
∫ ∞

0
|ζ|λ|κ(h1ζ)

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)

exp
(∣∣δQ̄X1(ζ)

∣∣)
×
(∫ ζ

0
|δq̂X1(ξ)| dξ

)2

dζ

≤
∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)

× exp
(∫ ζ

0
|δq̂X1(ξ)| dξ

)(∫ ζ

0
|δq̂X1(ξ)| dξ

)2

dζ

� exp(op(1))
∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)

×
(∫ ζ

0
|δq̂X1(ξ)| dξ

)(∫ ζ

0
|δq̂X1(ξ)| dξ

)
dζ

� exp(op(1))
∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)

×
∫ ζ

0

∣∣∣∣∣∣
(
δθ̂X1(ξ)
θ1(ξ)

− θX1(ξ)δθ̂1(ξ)
(θ1(ξ))2

)(
1 +

δθ̂1(ξ)
θ1(ξ)

)−1
∣∣∣∣∣∣ dξ

×
∫ ζ

0

∣∣∣∣∣∣
(
δθ̂X1(ξ)
θ1(ξ)

− θX1(ξ)δθ̂1(ξ)
(θ1(ξ))2

)(
1 +

δθ̂1(ξ)
θ1(ξ)

)−1
∣∣∣∣∣∣ dξζ

� exp(op(1))Υ(h)Φ̂2
n|1 + op(1)|−2

∫ ∞

0
|ζ|λ|κ(h1ζ)|

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)

×
∫ ζ

0

(
1

|θ1(ξ)|
+
|θX1(ξ)|
|θ1(ξ)|2

)
dξdζ
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= exp(op(1))Υ(h)Φ̂2
n|1 + op(1)|−2

∫ ∞

0

(∫ ∞

ξ
|ζ|λ|κ(h1ζ)|

×

(
sup

x∈supp(X)

∣∣∣∣∫ φV (ζ, w)s(x,w)dw
∣∣∣∣
)
dζ

)(
1

|θ1(ξ)|
+
|θX1(ξ)|
|θ1(ξ)|2

)
dξ

� Υ(h)Φ̂2
nΨ

+
V,λ,s(h).

we note that

Υ(h)Φ̂2
nΨ

+
V,λ,s(h)

=
(
Υ(h)Φ̂2

nn
1/2
)
n−1/2Ψ+

V,λ,s(h)

= op(1)Op
(
n−1/2(max{(1 + h−1

1 )δL,s , h−1
2 })(h−1

1 )γλ,L,s exp
(
αL,s(h−1

1 )βL,s

))
= op

(
n−1/2(max{(1 + h−1

1 )δL,s , h−1
2 })(h−1

1 )γλ,L,s exp
(
αL,s(h−1

1 )βL,s

))
.

Because all other terms are also bounded by the upper bound for supx∈supp(X)∣∣∫ R1s(x,w)dw
∣∣ as shown in the proof of Theorem 4.4, we have

sup
x∈supp(X)

∣∣∣∣∣∣
J∑
j=1

∫
RVj ,λj

(x,w, hn)sj(x,w)dw

∣∣∣∣∣∣
= op

(
n−1/2(max{(1 + h−1

1 )δL,s , h−1
2 })(h−1

1 )γλ,L,s exp
(
αL,s(h−1

1 )βL,s

))
.

Thus putting all together gives the desired result. �

Proof of Theorem 4.8 By the assumption 4.11, we have

max
j=1,...,J

sup
(x,w)∈supp(X,W )

∣∣ĝVj ,λj
(x,w, hn)− gVj ,λj

(x,w, h1n)
∣∣

= max
j=1,...,J

sup
(x,w)∈supp(X,W )

∣∣BVj ,λj
(x,w, h1n) + LVj ,λj

(x,w, hn) +RVj ,λj
(x,w, hn)

∣∣
= o(n−1/2) + op(n−1/4) + op(n−1/2)

= op(n−1/4).

Thus the remainder term in eqn.(1.10) is op
((
n−1/4

)2)
+ op

((
n−1/4

)2)
= op(n−1/2)
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when we let g̃Vj ,λj
(x,w) = ĝVj ,λj

(x,w, hn) and f̃W (w) = f̂W (w). We also have

J∑
j=1

∫ ∫ (
ĝVj ,λj

(x,w, hn)− gVj ,λj
(x,w)

)
sj(x,w)dwdx

=
J∑
j=1

∫ ∫
LVj ,λj

(x,w, hn)sj(x,w)dwdx

+
J∑
j=1

∫ ∫ (
BVj ,λj

(x,w, h1n) +RVj ,λj
(x,w, hn)

)
sj(x,w)dwdx.

Note that∣∣∣∣∣∣
J∑
j=1

∫ ∫ (
BVj ,λj

(x,w, h1n) +RVj ,λj
(x,w, hn)

)
sj(x,w)dwdx

∣∣∣∣∣∣
≤

(
max

j=1,...,J
sup

(x,w)∈(X,W )

∣∣BVj ,λj
(x,w, h1n) +RVj ,λj

(x,w, hn)
∣∣) J∑

j=1

∫ ∫
|sj(x,w)|dwdx

= op(n−1/2),

since maxj=1,...,J sup(x,w)∈(X,W ) max{|BVj ,λj
(x,w, h1n)|, |RVj ,λj

(x,w, hn)|} = op(n−1/2)

and
∫ ∫

|sj(x,w)|dwdx <∞. Therefore we have

b(ĝ(hn), f̂(hn))− b(g, f) =
J∑
j=1

∫ ∫
LVj ,λj

(x,w, hn)sj(x,w)dwdx

+
∫ ∫ (

f̂W (w)− fW (w)
)
sJ+1(x,w)dwdx+ op(n−1/2).

We also note that

J∑
j=1

∫ ∫
LVj ,λj

(x,w, hn)sj(x,w)dwdx+
∫ ∫ (

f̂W (w)− fW (w)
)
sJ+1(x,w)dwdx

=
{

lim
h̃→0

J∑
j=1

∫ ∫
LVj ,λj

(x,w, h̃)sj(x,w)dwdx

+ lim
h̃2→0

∫ ∫ (
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
sJ+1(x,w)dwdx

}
+
{

lim
h̃2→0

∫ ∫ (
LVj ,λj

(x,w, hn)− LVj ,λj
(x,w, h̃)

)
sj(x,w)dwdx (1.22)

+ lim
h̃2→0

∫ ∫ {(
Ê[kh2n(W − w)]− E[kh2n(W − w)]

)
−
(
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)}
sJ+1(x,w)dwdx

}
.
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We will show that the first term in the right-hand side is a standard sample average while

the second is asymptotically negligible. By the definition of LVj ,λj
(x,w, h̃) in Lemma

4.1, we have

lim
h̃→0

J∑
j=1

∫ ∫
LVj ,λj

(x,w, h̃)sj(x,w)dwdx

+ lim
h̃2→0

∫ ∫ (
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
sJ+1(x,w)dwdx

= lim
h̃→0

J∑
j=1

∫ ∫ {∫ [
ΨVj ,λj ,1(ζ, x, w, h̃1)

(
Ê[eiζX2 ]− E[eiζX2 ]

)
+ ΨVj ,λj ,X1(ζ, x, w, h̃1)

(
Ê[X1e

iζX2 ]− E[X1e
iζX2 ]

)
+ ΨVj ,λj ,χVj

(ζ, x, w, h̃1)
(
Ê[VjeiζX2kh̃2

(W − w)]− E[VjeiζX2kh̃2
(W − w)]

)
+ ΨVj ,λj ,fW

(ζ, x, w, h̃1)
(
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)]
dζ

}
sj(x,w)dwdx

+ lim
h̃2→0

∫ ∫ (
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
sJ+1(x,w)dwdx.

Because the assumption that Ψ̄V,λ,s < ∞ ensures the integrand is absolutely integrable

for any given sample, integrals and limits can be interchanged:

lim
h̃→0

J∑
j=1

∫ ∫
LVj ,λj

(x,w, h̃)sj(x,w)dwdx

+ lim
h̃2→0

∫ ∫ (
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
sJ+1(x,w)dwdx

=
J∑
j=1

∫ {
lim
h̃1→0

∫ ∫
ΨVj ,λj ,1(ζ, x, w, h̃1)sj(x,w)dwdx

(
Ê[eiζX2 ]− E[eiζX2 ]

)
(1.23)

+ lim
h̃1→0

∫ ∫
ΨVj ,λj ,X1(ζ, x, w, h̃1)sj(x,w)dwdx

(
Ê[X1e

iζX2 ]− E[X1e
iζX2 ]

)
+ lim
h̃→0

∫ ∫
ΨVj ,λj ,χVj

(ζ, x, w, h̃1)sj(x,w)

×
(
Ê[VjeiζX2kh̃2

(W − w)]− E[VjeiζX2kh̃2
(W − w)]

)
dwdx

+ lim
h̃→0

∫ ∫
ΨVj ,λj ,fW

(ζ, x, w, h̃1)sj(x,w)

×
(
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
dwdx

}
dζ

+
∫

lim
h̃2→0

∫ (
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
sJ+1(x,w)dwdx.
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For the first term in the integrand of eqn.(1.23), we have

lim
h̃1→0

∫ ∫
ΨV,λ,1(ζ, x, w, h̃1)s(x,w)dwdx

= lim
h̃1→0

∫ ∫ {
− 1

2π
iθX1(ζ)
(θ1(ζ))2

∫ ±∞

ζ
(−iξ)λκ(h̃1ξ) exp(−iξx)φV (ξ, w)dξ

− 1
2π

(−iζ)λκ(h̃1ζ) exp(−iζx)φV (ζ, w)
θ1(ζ)

}
s(x,w)dwdx

= − 1
2π

iθX1(ζ)
(θ1(ζ))2

∫ ±∞

ζ

(∫
exp(−iξx)

∫
s(x,w)φV (ξ, w)dwdx

)
(−iξ)λ lim

h̃1→0
κ(h̃1ξ)dξ

− 1
2π

(−iζ)λ

θ1(ζ)

(∫
exp(−iζx)

∫
s(x,w)φV (ζ, w)dwdx

)
lim
h̃1→0

κ(h̃1ζ)

= − 1
2π

iθX1(ζ)
(θ1(ζ))2

∫ ±∞

ζ

(∫
exp(−iξx)

∫
s(x,w)φV (ξ, w)dwdx

)
(−iξ)λdξ

− 1
2π

(−iζ)λ

θ1(ζ)

(∫
exp(−iζx)

∫
s(x,w)φV (ζ, w)dwdx

)
≡ ΨV,λ,1,s(ζ).

Similarly, for the second term, we have

lim
h̃1→0

∫ ∫
ΨV,λ,X1(ζ, x, w, h̃1)s(x,w)dwdx

= lim
h̃1→0

∫ ∫ {
1
2π

i

θ1(ζ)

∫ ±∞

ζ
(−iξ)λκ(h̃1ξ) exp(−iξx)φV (ξ, w)dξ

}
s(x,w)dwdx

=
1
2π

i

θ1(ζ)

∫ ±∞

ζ

(∫
exp(−iξx)

∫
s(x,w)φV (ξ, w)dwdx

)
(−iξ)λ lim

h̃1→0
κ(h̃1ξ)dξ

=
1
2π

i

θ1(ζ)

∫ ±∞

ζ

(∫
exp(−iξx)

∫
s(x,w)φV (ξ, w)dwdx

)
(−iξ)λdξ

≡ ΨV,λ,X1,s(ζ).

We also note that for the third term,

lim
h̃→0

∫ ∫
ΨV,λ,χV

(ζ, x, w, h̃1)s(x,w)

×
(
Ê[V eiζX2kh̃2

(W − w)]− E[V eiζX2kh̃2
(W − w)]

)
dwdx

= lim
h̃→0

∫ ∫ {
1
2π

(−iζ)λκ(h̃1ζ) exp(−iζx)φV (ζ, w)
χV (ζ, w)

}
s(x,w)

×
(
Ê[V eiζX2kh̃2

(W − w)]− E[V eiζX2kh̃2
(W − w)]

)
dwdx

=
1
2π

(−iζ)λ
∫

exp(−iζx) lim
h̃2→0

∫
1

χV (ζ, w)
s(x,w)φV (ζ, w)

×
(
Ê[V eiζX2kh̃2

(W − w)]− E[V eiζX2kh̃2
(W − w)]

)
dwdx lim

h̃1→0
κ(h̃1ζ)
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=
1
2π

(−iζ)λ
∫

exp(−iζx) lim
h̃2→0

∫
1

χV (ζ, w)
s(x,w)φV (ζ, w)

×
(
Ê[V eiζX2kh̃2

(W − w)]− E[V eiζX2kh̃2
(W − w)]

)
dwdx

≡ Ê[ZV,λ,χV
(s, ζ;V,X2,W )]− E[ZV,λ,χV

(s, ζ;V,X2,W )],

and for the fourth term,

lim
h̃→0

∫ ∫
ΨV,λ,fW

(ζ, x, w, h̃1)s(x,w)
(
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
dwdx

= lim
h̃→0

∫ ∫ {
−1
2π

(−iζ)λκ(h̃1ζ) exp(−iζx)φV (ζ, w)
fW (w)

}
s(x,w)

×
(
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
dwdx

= − 1
2π

(−iζ)λ
∫

exp(−iζx) lim
h̃2→0

∫
1

fW (w)
s(x,w)φV (ζ, w)

×
(
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
dwdx lim

h̃1→0
κ(h̃1ζ)

= − 1
2π

(−iζ)λ
∫

exp(−iζx) lim
h̃2→0

∫
1

fW (w)
s(x,w)φV (ζ, w)

×
(
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
dwdx

≡ Ê[ZV,λ,fW
(s, ζ;W )]− E[ZV,λ,fW

(s, ζ;W )],

where ZV,λ,χV
(s, ζ;V,X2,W ) and ZV,λ,fW

(s, ζ;W ) are defined in the statement of the

theorem.

Thus it follows that

lim
h̃→0

J∑
j=1

∫ ∫
LVj ,λj

(x,w, h̃)sj(x,w)dwdx

+ lim
h̃2→0

∫ ∫ (
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
sJ+1(x,w)dwdx

=
J∑
j=1

∫ {
ΨVj ,λj ,1,sj

(ζ)
(
Ê[eiζX2 ]− E[eiζX2 ]

)
+ ΨVj ,λj ,X1,sj

(ζ)
(
Ê[X1e

iζX2 ]− E[X1e
iζX2 ]

)
+
(
Ê[ZVj ,λj ,χVj

(sj , ζ;Vj , X2,W )]− E[ZVj ,λj ,χVj
(sj , ζ;Vj , X2,W )]

)
+
(
Ê[ZVj ,λj ,fW

(sj , ζ;W )]− E[ZVj ,λj ,fW
(sj , ζ;W )]

)}
dζ

+
∫

lim
h̃2→0

∫ (
Ê[kh̃2

(W − w)]− E[kh̃2
(W − w)]

)
sJ+1(x,w)dwdx
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= Ê

 J∑
j=1

ψVj ,λj
(sj ;Vj , X1, X2,W ) + ψf (sJ+1;W )


= Ê [ψs(V,X1, X2,W )] ,

as defined in the statement of the theorem. The assumption that Ψ̄V,λ,s < ∞ ensures

that for some C <∞,

|ψs(v, x1, x2, w̃)| ≤ Cmax{1, |x1|}Ψ̄V,λ,s.

Since E[X2
1 ] <∞ by Assumption 4.2, and E

[
|ψs(V,X1, X2,W )|2

]
<∞, the Lindeberg-

Levy central limit theorem gives that Ê [ψs(V,X1, X2,W )] is
√
n consistent and asymp-

totically normal.

The second term of eqn.(1.22) can be shown to be op(n−1/2) because it can be

written as an hn-dependent sample average Ê
[
ψ̄s(V,X1, X2,W, hn)

]
where ψ̄s(V,X1, X2,

W, hn) is such that limhn→0E
[∣∣ψ̄s(V,X1, X2,W, hn)

∣∣2] = 0. The similar procedure to

the case of Ê [ψs(V,X1, X2,W )] is used just by replacing κ
(
h̃1ξ
)

by
(
κ (h1nξ)− κ

(
h̃1ξ
))

and kh̃2
(·) by

(
kh2n(·)− kh̃2

(·)
)
, and taking the limit as hn ≡ (h1n, h2n) → 0 and

h̃ ≡ (h̃1, h̃2) → 0. �

Proof of Theorem 4.9 From a first-order Taylor expansion of β̂(x,w, hn)−
β(x,w) in ĝV,λ(x,w, hn)− gV,λ(x,w), we get

β̂(x,w, hn)− β(x,w) =
∑
V=1,Y

∑
λ=0,1

sV,λ(x,w) (ĝV,λ(x,w, hn)− gV,λ(x,w)) (1.24)

+RV,λ (ḡV,λ(x,w, hn), (ĝV,λ(x,w, hn)− gV,λ(x,w))) ,

where RV,λ (ḡV,λ(x,w, hn), (ĝV,λ(x,w, hn)− gV,λ(x,w))) is a remainder term in which

ḡV,λ(x,w, hn) lies between ĝV,λ(x,w, hn) and gV,λ(x,w) for each (x,w, hn), and the sV,λ(x,

w) are given in the statement of Theorem 4.10.

We note that by Corollary 4.5,

max
V=1,Y

max
λ=0,1

sup
(x,w)∈(X,W )

|ĝV,λ(x,w, hn)− gV,λ(x,w)| = Op(εn),

εn ≡
(
h−1

1n

)γ1,B exp
(
αB
(
h−1

1n

)βB
)

+ n−1/2(max{(h−1
1n )δL , h−1

2n })
(
h−1

1n

)γ1,L exp
(
αL
(
h−1

1n

)βL
)
→ 0.

The first terms in the Taylor expansion of β̂(x,w, hn)− β(x,w) can be shown to

be Op(εn/τ3
n) uniformly for (x,w) ∈ Γτ . Each term of sV,λ(x,w) consists of products of
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functions of the form gV,λ(x,w) divided by products of at most 3 functions of the form

g1,0(x,w). Because gV,λ(x,w) are uniformly bounded over R by assumption and g1,0(x,w)

are bounded below by τn uniformly for (x,w) ∈ Γτ by construction, we have that

sup(x,w)∈Γτ
|sV,λ(x,w) (ĝV,λ(x,w, hn)− gV,λ(x,w)) | = O(1)Op(τ−3

n )Op(εn) = Op(εn/τ3
n).

The remainder terms in the Taylor expansion of β̂(x,w, hn) − β(x,w) can be

shown to be op(εn/τ3
n) uniformly for (x,w) ∈ Γτ . These terms involve a finite sum of (i)

finite products of the functions ḡV,λ(x,w, hn) for V = 1, Y and λ = 0, 1; (ii) division by

a product of at most 4 functions of the form ḡ1,0(x,w, hn); and (iii) pairwise products

of functions of the form ĝV,λ(x,w, hn)− gV,λ(x,w) for V = 1, Y and λ = 0, 1. First, the

contribution of (i) is bounded in probability uniformly for (x,w) ∈ Γτ because

|ḡV,λ(x,w, hn)| ≤ |gV,λ(x,w)|+ |ḡV,λ(x,w, hn)− gV,λ(x,w)|

≤ |gV,λ(x,w)|+ |ĝV,λ(x,w, hn)− gV,λ(x,w)|

≤ |gV,λ(x,w)|+ max
V=1,Y

max
λ=0,1

sup
(x,w)∈(X,W )

|ĝV,λ(x,w, hn)− gV,λ(x,w)|

= Op(1) + op(1)

= Op(1).

Second, the contribution of (ii) is bounded as well. We note that for (x,w) ∈ Γτ

ḡ1,0(x,w, hn) = g1,0(x,w)
(

1 +
ḡ1,0(x,w, hn)− g1,0(x,w)

g1,0(x,w)

)
= fX|W (x | w)

(
1 +

ḡ1,0(x,w, hn)− g1,0(x,w)
fX|W (x | w)

)
= fX|W (x | w)

(
1 +Op

(
εn
τn

))
.

By selecting {τn} such that τn > 0, τn → 0 as n → ∞, and εn/τ
3
n → 0 we also have

εn/τn → 0. Thus we get for (x,w) ∈ Γτ

ḡ1,0(x,w, hn) = fX|W (x | w) (1 + op(1)) ≥ τn/2

with probability approaching one since fX|W (x | w) ≥ τn for (x,w) ∈ Γτ by construction.

Therefore we have that the contribution of (ii) is ḡ−4
1,0(x,w, hn) = Op(τ−4

n ). Finally, the

contribution of (iii) is Op(ε2n). Putting all together, we have

RV,λ (ḡV,λ(x,w, hn), (ĝV,λ(x,w, hn)− gV,λ(x,w)))

= Op(1)Op(τ−4
n )Op(ε2n) = Op

(
εn
τ3
n

)
Op

(
εn
τn

)
= op

(
εn
τ3
n

)
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so that

sup
(x,w)∈Γτ

∣∣∣β̂(x,w, hn)− β(x,w)
∣∣∣ = Op

(
εn
τ3
n

)
+ op

(
εn
τ3
n

)
= op(1). �

Proof of Theorem 4.10 We have established the asymptotic normality of

ĝV,λ(x,w, hn)−gV,λ(x,w) in Corollary 4.6 and we have the Taylor expansion in eqn.(1.24).

Thus the result is immediate from the delta method. �

Proof of Theorem 4.11 We prove the theorem by applying Theorem 4.7

and straightforward Talyor expansions. (i) From the definitions of β̂m(x) and βm(x), we

have

sup
x∈M

∣∣∣β̂m(x)− βm(x)
∣∣∣

= sup
x∈M

∣∣∣∣∣∣
∫
Sw

β̂(·,hn)

(
β̂(x,w, hn)− β(x,w)

)
m(w)dw

∣∣∣∣∣∣
= sup

x∈M

∣∣∣∣∣∣
∫
Sw

β̂(·,hn)

∑
V=1,Y

∑
λ=0,1

m(w)sV,λ(x,w) (ĝV,λ(x,w, hn)− gV,λ(x,w)) dw

∣∣∣∣∣∣+ op(1)

= sup
x∈M

∣∣∣∣∣∣
∑
V=1,Y

∑
λ=0,1

∫
Sw

β̂(·,hn)

m(w)sV,λ(x,w) (ĝV,λ(x,w, hn)− gV,λ(x,w)) dw

∣∣∣∣∣∣+ op(1)

= O
(
τ−3

(
h−1

1n

)γ1,B,s exp
(
αB,s

(
h−1

1n

)βB,s
))

+Op

(
τ−3n−1/2

(
max{(h−1

1n )δL,s , h−1
2n }
) (
h−1

1n

)γ1,L,s exp
(
αL,s

(
h−1

1n

)βL,s
))

,

where the last equality is attained by Theorem 4.7.

(ii) From the definitions of β̂m(x) and βm(x), we have

sup
x∈M

∣∣∣β̂mfW
(x)− βmfW

(x)
∣∣∣

= sup
x∈M

∣∣∣∣∣∣
∫
Sw

β̂(·,hn)

(
β̂(x,w, hn)m(w)f̂W (w)− β(x,w)m(w)fW (w)

)
dw

∣∣∣∣∣∣
= sup

x∈M

∣∣∣∣ ∫
Sw

β̂(·,hn)

m(w)fW (w)
(
β̂(x,w, hn)− β(x,w)

)
dw

+
∫
Sw

β̂(·,hn)

β(x,w)m(w)
(
f̂W (w)− fW (w)

)
dw

∣∣∣∣+ op(1)
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= sup
x∈M

∣∣∣∣ ∫
Sw

β̂(·,hn)

∑
V=1,Y

∑
λ=0,1

m(w)fW (w)sV,λ(x,w) (ĝV,λ(x,w, hn)− gV,λ(x,w)) dw

+
∫
Sw

β̂(·,hn)

β(x,w)m(w)
(
f̂W (w)− fW (w)

)
dw

∣∣∣∣+ op(1)

= sup
x∈M

∣∣∣∣ ∑
V=1,Y

∑
λ=0,1

∫
Sw

β̂(·,hn)

m(w)fW (w)sV,λ(x,w) (ĝV,λ(x,w, hn)− gV,λ(x,w)) dw

+
∫
Sw

β̂(·,hn)

β(x,w)m(w)
(
f̂W (w)− fW (w)

)
dw

∣∣∣∣+ op(1)

= O
(
τ−3

(
h−1

1n

)γ1,B,s exp
(
αB,s

(
h−1

1n

)βB,s
))

+Op

(
τ−3n−1/2

(
max{(h−1

1n )δL,s , h−1
2n }
) (
h−1

1n

)γ1,L,s exp
(
αL,s

(
h−1

1n

)βL,s
))

.

(iii) From the definitions of β̂mfW |X (x) and βmfW |X (x), we have

sup
x∈M

∣∣∣β̂mfW |X (x)− βmfW |X (x)
∣∣∣

= sup
x∈M

∣∣∣∣ ∫
Sw

β̂(·,hn)

(
β̂(x,w, hn)m(w)

ĝ1,0(x,w, hn)f̂W (w)∫
Sw

β̂(·,hn)

ĝ1,0(x,w, hn)dw

− β(x,w)m(w)
g1,0(x,w)fW (w)∫
Sw

β̂(·,hn)

g1,0(x,w)dw

)
dw

∣∣∣∣
= sup

x∈M

∣∣∣∣ ∫
Sw

β̂(·,hn)

[
m(w)

g1,0(x,w)fW (w)∫
Sw

β̂(·,hn)

g1,0(x,w)

(
β̂(x,w, hn)− β(x,w)

)
+ β(x,w)m(w)

fW (w)∫
Sw

β̂(·,hn)

g1,0(x,w)dw
(ĝ1,0(x,w, hn)− g1,0(x,w))

+ β(x,w)m(w)
g1,0(x,w)∫

Sw
β̂(·,hn)

g1,0(x,w)dw

(
f̂W (w)− fW (w)

)
− β(x,w)m(w)

g1,0(x,w)fW (w)(∫
Sw

β̂(·,hn)

g1,0(x,w)dw
)2

×

∫
Sw

β̂(·,hn)

ĝ1,0(x,w, hn)dw −
∫
Sw

β̂(·,hn)

g1,0(x,w)dw

]dw∣∣∣∣+ op(1)

= sup
x∈M

∣∣∣∣ ∑
V=1,Y

∑
λ=0,1

∫
Sw

β̂(·,hn)

m(w)fW |X(w | x)sV,λ(x,w) (ĝV,λ(x,w, hn)− gV,λ(x,w)) dw

+
∫
Sw

β̂(·,hn)

β(x,w)m(w)
fW (w)
fX(x)

(ĝ1,0(x,w, hn)− g1,0(x,w)) dw
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+
∫
Sw

β̂(·,hn)

β(x,w)m(w)
fX|W (x | w)

fX(x)

(
f̂W (w)− fW (w)

)
dw

−
∫
Sw

β̂(·,hn)

β(x,w)m(w)
fW |X(w | x)

fX(x)

×

∫
Sw

β̂(·,hn)

ĝ1,0(x,w, hn)dw −
∫
Sw

β̂(·,hn)

g1,0(x,w)dw

 dw

∣∣∣∣+ op(1)

= O
(
τ−3

(
h−1

1n

)γ1,B,s exp
(
αB,s

(
h−1

1n

)βB,s
))

+Op

(
τ−3n−1/2

(
max{(h−1

1n )δL,s , h−1
2n }
) (
h−1

1n

)γ1,L,s exp
(
αL,s

(
h−1

1n

)βL,s
))

. �

Proof of Theorem 4.12 Similarly, Theorem 4.8 and Talyor expansions are

used for the proof. (i) From the definition of β̂m̃ and βm̃, we have

β̂m̃ − βm̃

=
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

(
β̂(x,w, hn)− β(x,w)

)
m̃(x,w)dwdx

=
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

∑
V=1,Y

∑
λ=0,1

m̃(x,w)sV,λ(x,w) (ĝV,λ(x,w, hn)− gV,λ(x,w)) dwdx

+ op(n−1/2)

=
∑
V=1,Y

∑
λ=0,1

∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

m̃(x,w)sV,λ(x,w) (ĝV,λ(x,w, hn)− gV,λ(x,w)) dwdx

+ op(n−1/2)

=
∑
V=1,Y

∑
λ=0,1

Ê [ψV,λ(m̃sV,λ;V,X1, X2,W )] + op(n−1/2)

= Ê

 ∑
V=1,Y

∑
λ=0,1

ψV,λ(m̃sV,λ;V,X1, X2,W )

+ op(n−1/2).

Let ψβm̃
(v, x1, x2, w̃) ≡

∑
V=1,Y

∑
λ=0,1 ψV,λ(m̃sV,λ; v, x1, x2, w̃). The result is immediate

from the application of Theorem 4.8.

(ii) From the definitions of β̂m̃fW |X and βm̃fW |X , we have

β̂m̃fW |X − βm̃fW |X

=
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

[
β̂(x,w, hn)m̃(x,w)

ĝ1,0(x,w, hn)f̂W (w)∫
Sβ̂(·,hn)

ĝ1,0(x,w, hn)dw
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− β(x,w)m̃(x,w)
g1,0(x,w)fW (w)∫
Sβ̂(·,hn)

g1,0(x,w)dw

]
dwdx

=
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

[
m̃(x,w)

g1,0(x,w)fW (w)∫
Sβ̂(·,hn)

g1,0(x,w)dw

(
β̂(x,w, hn)− β(x,w)

)
+ β(x,w)m̃(x,w)

fW (w)∫
Sw

β̂(·,hn)

g1,0(x,w)dw
(ĝ1,0(x,w, hn)− g1,0(x,w))

+ β(x,w)m̃(x,w)
g1,0(x,w)∫

Sw
β̂(·,hn)

g1,0(x,w)dw

(
f̂W (w)− fW (w)

)
− β(x,w)m̃(x,w)

g1,0(x,w)fW (w)(∫
Sw

β̂(·,hn)

g1,0(x,w)dw
)2

×

∫
Sw

β̂(·,hn)

ĝ1,0(x,w, hn)dw −
∫
Sw

β̂(·,hn)

g1,0(x,w)dw

]dwdx+ op(n−1/2)

=
∑
V=1,Y

∑
λ=0,1

∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

m̃(x,w)fW |X(w | x)sV,λ(x,w)

× (ĝV,λ(x,w, hn)− gV,λ(x,w)) dwdx

+
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

β(x,w)m̃(x,w)
fW (w)
fX(x)

(ĝ1,0(x,w, hn)− g1,0(x,w)) dwdx

+
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

β(x,w)m̃(x,w)
fX|W (x | w)

fX(x)

(
f̂W (w)− fW (w)

)
dwdx

−
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

β(x,w)m̃(x,w)
fW |X(w | x)

fX(x)

×

∫
Sw

β̂(·,hn)

ĝ1,0(x,w, hn)dw −
∫
Sw

β̂(·,hn)

g1,0(x,w)dw

 dwdx+ op(n−1/2)

=
∑
V=1,Y

∑
λ=0,1

Ê
[
ψV,λ(m̃fW |XsV,λ;V,X1, X2,W )

]
+ Ê [ψ1,0(P1; 1, X1, X2,W )]

− Ê [ψ1,0(P2; 1, X1, X2,W )] + Ê [ψf (P3;W )] + op(n−1/2)

= Ê

[ ∑
V=1,Y

∑
λ=0,1

ψV,λ(m̃fW |XsV,λ;V,X1, X2,W ) + ψ1,0(P1; 1, X1, X2,W )

− ψ1,0(P2; 1, X1, X2,W ) + ψf (P3;W )
]

+ op(n−1/2).

Let ψβm̃fW |X
(v, x1, x2, w̃) ≡

∑
V=1,Y

∑
λ=0,1 ψV,λ(m̃fW |XsV,λ; v, x1, x2, w̃)+ψ1,0(P1; 1, x1,

x2, w̃)−ψ1,0(P2; 1, x1, x2, w̃)+ψf (P3; w̃) where P1, P2, and P3 are defined in the statement

of the theorem. The result is immediate from the application of Theorem 4.8.
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(iii) From the definitions of β̂m̃fW,X
and βm̃fW,X

, we have

β̂m̃fW,X
− βm̃fW,X

=
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

[
β̂(x,w, hn)m̃(x,w)ĝ1,0(x,w, hn)f̂W (w)

− β(x,w)m̃(x,w)g1,0(x,w)fW (w)
]
dwdx

=
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

m̃(x,w)g1,0(x,w)fW (w)
(
β̂(x,w, hn)− β(x,w)

)
dwdx

+
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

β(x,w)m̃(x,w)fW (w) (ĝ1,0(x,w, hn)− g1,0(x,w)) dwdx

+
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

β(x,w)m̃(x,w)g1,0(x,w)
(
f̂W (w)− fW (w)

)
dwdx+ op(n−1/2)

=
∑
V=1,Y

∑
λ=0,1

∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

m̃(x,w)fW,X(w, x)sV,λ(x,w)

× (ĝV,λ(x,w, hn)− gV,λ(x,w)) dwdx

+
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

β(x,w)m̃(x,w)fW (w) (ĝ1,0(x,w, hn)− g1,0(x,w)) dwdx

+
∫
Sx

β̂(·,hn)

∫
Sw

β̂(·,hn)

β(x,w)m̃(x,w)fX|W (x | w)
(
f̂W (w)− fW (w)

)
dwdx+ op(n−1/2)

=
∑
V=1,Y

∑
λ=0,1

Ê [ψV,λ(m̃fW,XsV,λ;V,X1, X2,W )] + Ê [ψ1,0(βm̃fW ; 1, X1, X2,W )]

+ Ê
[
ψf (βm̃fX|W ;W )

]
+ op(n−1/2)

= Ê

[ ∑
V=1,Y

∑
λ=0,1

ψV,λ(m̃fW,XsV,λ;V,X1, X2,W ) + ψ1,0(βm̃fW ; 1, X1, X2,W )

+ ψf (βm̃fX|W ;W )
]

+ op(n−1/2).

Let ψβm̃fW,X
(v, x1, x2, w̃) ≡

∑
V=1,Y

∑
λ=0,1 ψV,λ(m̃fW,XsV,λ; v, x1, x2, w̃)+ψ1,0(βm̃fW ; 1,

x1, x2, w̃) + ψf (βm̃fX|W ; w̃). The result is immediate from the application of Theorem

4.8. �
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1.9 Tables and Figures

Table 1.1: Monte Carlo simulation designs

Ex Ux W U1, U2 Uu f1(X) f2(W )
1 N(0, 0.5) N(0, 1) N(0, 0.25) N(0, 0.09) erf(x) S(w)
2 N(0, 0.5) N(0, 1) N(0, 0.25) N(0, 0.09) erf(x) erf(w)
3 N(0, 0.5) N(0, 1) L(0, 0.25) N(0, 0.09) erf(x) erf(w)
4 N(0, 0.5) N(0, 1) L(0, 0.25) N(0, 0.09) erf(x) S(w)
5 N(0, 0.5) L(0, 1) N(0, 0.25) N(0, 0.09) erf(x) erf(w)
6 N(0, 0.5) L(0, 1) N(0, 0.25) N(0, 0.09) erf(x) S(w)
7 N(0, 0.5) L(0, 1) L(0, 0.25) N(0, 0.09) erf(x) erf(w)
8 N(0, 0.5) L(0, 1) L(0, 0.25) N(0, 0.09) erf(x) S(w)
9 L(0, 0.5) N(0, 1) N(0, 0.25) N(0, 0.09) erf(x) erf(w)
10 L(0, 0.5) N(0, 1) N(0, 0.25) N(0, 0.09) erf(x) S(w)
11 L(0, 0.5) N(0, 1) L(0, 0.25) N(0, 0.09) erf(x) erf(w)
12 L(0, 0.5) N(0, 1) L(0, 0.25) N(0, 0.09) erf(x) S(w)
13 L(0, 0.5) L(0, 1) N(0, 0.25) N(0, 0.09) erf(x) erf(w)
14 L(0, 0.5) L(0, 1) N(0, 0.25) N(0, 0.09) erf(x) S(w)
15 L(0, 0.5) L(0, 1) L(0, 0.25) N(0, 0.09) erf(x) erf(w)
16 L(0, 0.5) L(0, 1) L(0, 0.25) N(0, 0.09) erf(x) S(w)
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Table 1.2: Simulation results from Fourier 1

h1 � h2 4 4.25 4.5 4.75 5 5.25 5.5
Bias2 0.018 0.004 0.000 0.003 0.025 0.051 0.116

9.5 Variance 0.481 0.496 0.423 0.384 0.385 0.308 0.316
RMSE 0.706 0.708 0.650 0.622 0.640 0.600 0.657

Bias2 0.007 0.002 0.000 0.008 0.032 0.075 0.136
9.75 Variance 0.462 0.406 0.372 0.348 0.322 0.305 0.279

RMSE 0.684 0.639 0.610 0.597 0.595 0.617 0.644

Bias2 0.003 0.000 0.002 0.016 0.043 0.089 0.154
10 Variance 0.425 0.384 0.362 0.349 0.313 0.288 0.263

RMSE 0.655 0.620 0.604 0.604 0.597 0.614 0.646

Bias2 0.001 0.000 0.005 0.024 0.057 0.108 0.173
10.25 Variance 0.404 0.374 0.354 0.340 0.315 0.290 0.257

RMSE 0.636 0.612 0.599 0.603 0.610 0.630 0.656

Bias2 0.000 0.003 0.011 0.033 0.070 0.124 0.201
10.5 Variance 0.392 0.386 0.344 0.321 0.297 0.273 0.258

RMSE 0.626 0.624 0.596 0.595 0.606 0.631 0.677

Bias2 0.001 0.008 0.021 0.048 0.090 0.150 0.231
10.75 Variance 0.368 0.363 0.332 0.310 0.288 0.264 0.249

RMSE 0.608 0.608 0.594 0.598 0.614 0.643 0.693

Bias2 0.007 0.016 0.035 0.068 0.119 0.181 0.264
11 Variance 0.354 0.338 0.320 0.299 0.285 0.254 0.233

RMSE 0.600 0.596 0.596 0.605 0.635 0.660 0.704

optimal h1 h2 Bias2 Variance RMSE
9.75 4.9 0.020 0.332 0.594
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Table 1.3: Simulation results from local linear without correction

h1 � h2 2 2.25 2.5 2.75 3 3.25 3.5
Bias2 0.329 0.468 0.478 0.559 0.577 0.800 1.302

3 Variance 18.22 23.44 12.41 12.52 6.340 9.208 8.231
RMSE 4.307 4.890 3.589 3.617 2.630 3.164 3.088

Bias2 0.178 0.131 0.386 0.599 0.881 0.879 1.145
3.25 Variance 13.90 8.145 2.364 2.238 4.678 0.960 1.132

RMSE 3.752 2.877 1.658 1.684 2.358 1.356 1.509

Bias2 0.601 0.763 0.895 0.878 0.997 0.992 1.559
3.5 Variance 5.349 0.654 1.839 0.661 1.132 3.892 2.753

RMSE 2.439 1.190 1.653 1.240 1.459 2.210 2.077

Bias2 1.037 0.824 1.016 0.994 1.223 1.414 1.552
3.75 Variance 2.284 2.117 0.434 0.563 0.280 0.566 1.049

RMSE 1.822 1.715 1.204 1.248 1.226 1.407 1.613

Bias2 1.041 1.065 1.204 1.189 1.256 1.564 1.715
4 Variance 0.623 1.208 0.225 0.485 1.371 0.603 0.365

RMSE 1.290 1.508 1.196 1.294 1.621 1.472 1.442

Bias2 1.167 1.273 1.142 1.467 1.415 1.393 1.871
4.25 Variance 0.291 0.166 2.474 1.109 0.638 2.815 1.672

RMSE 1.207 1.200 1.902 1.605 1.433 2.051 1.882

Bias2 1.334 1.352 1.393 1.389 1.601 1.743 1.941
4.5 Variance 0.258 0.263 0.165 0.851 0.213 0.648 0.972

RMSE 1.262 1.271 1.249 1.496 1.347 1.546 1.706

optimal h1 h2 Bias2 Variance RMSE
3.5 2.55 0.787 0.450 1.112
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Table 1.4: Simulation results from local linear without errors

h1 � h2 2 2.25 2.5 2.75 3 3.25 3.5
Bias2 0.865 0.538 0.422 0.229 0.126 0.021 0.009

3 Variance 10.74 4.365 3.039 4.041 3.187 1.007 0.901
RMSE 3.406 2.214 1.861 2.066 1.820 1.014 0.954

Bias2 0.039 0.083 0.045 0.015 0.001 0.026 0.127
3.25 Variance 5.378 1.135 0.710 0.586 1.618 0.436 0.860

RMSE 2.327 1.103 0.869 0.775 1.273 0.680 0.994

Bias2 0.004 0.000 0.004 0.016 0.037 0.109 0.203
3.5 Variance 4.982 0.571 0.420 0.415 0.688 0.325 0.792

RMSE 2.233 0.756 0.651 0.657 0.851 0.659 0.997

Bias2 0.036 0.044 0.071 0.087 0.134 0.213 0.324
3.75 Variance 0.549 0.418 0.683 0.362 0.310 0.279 0.454

RMSE 0.765 0.680 0.869 0.670 0.666 0.701 0.883

Bias2 0.087 0.130 0.130 0.147 0.192 0.309 0.445
4 Variance 1.403 0.364 0.298 0.444 0.846 0.238 0.549

RMSE 1.221 0.703 0.655 0.769 1.019 0.739 0.997

Bias2 0.190 0.201 0.231 0.243 0.243 0.401 0.427
4.25 Variance 0.467 0.429 0.341 0.251 2.378 0.214 1.719

RMSE 0.810 0.793 0.756 0.703 1.619 0.785 1.465

Bias2 0.173 0.312 0.296 0.324 0.399 0.488 0.715
4.5 Variance 4.722 3.717 0.228 0.225 0.218 0.201 3.082

RMSE 2.212 2.007 0.724 0.741 0.785 0.830 1.948

optimal h1 h2 Bias2 Variance RMSE
3.7 2.55 0.046 0.336 0.618
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Table 1.5: Simulation results from Fourier 2

h1 � h2 4 4.25 4.5 4.75 5 5.25 5.5
Bias2 0.018 0.004 0.000 0.003 0.025 0.051 0.116

9.5 Variance 0.481 0.496 0.423 0.384 0.385 0.308 0.316
RMSE 0.706 0.708 0.650 0.622 0.640 0.600 0.657

Bias2 0.007 0.002 0.000 0.008 0.032 0.075 0.136
9.75 Variance 0.462 0.406 0.372 0.348 0.322 0.305 0.279

RMSE 0.684 0.639 0.610 0.597 0.595 0.617 0.644

Bias2 0.003 0.000 0.002 0.016 0.043 0.089 0.154
10 Variance 0.425 0.384 0.362 0.349 0.313 0.288 0.263

RMSE 0.655 0.620 0.604 0.604 0.597 0.614 0.646

Bias2 0.001 0.000 0.005 0.024 0.057 0.108 0.173
10.25 Variance 0.404 0.374 0.354 0.340 0.315 0.290 0.257

RMSE 0.636 0.612 0.599 0.603 0.610 0.630 0.656

Bias2 0.000 0.003 0.011 0.033 0.070 0.124 0.201
10.5 Variance 0.392 0.386 0.344 0.321 0.297 0.273 0.258

RMSE 0.626 0.624 0.596 0.595 0.606 0.631 0.677

Bias2 0.001 0.008 0.021 0.048 0.090 0.150 0.231
10.75 Variance 0.368 0.363 0.332 0.310 0.288 0.264 0.249

RMSE 0.608 0.608 0.594 0.598 0.614 0.643 0.693

Bias2 0.007 0.016 0.035 0.068 0.119 0.181 0.264
11 Variance 0.354 0.338 0.320 0.299 0.285 0.254 0.233

RMSE 0.600 0.596 0.596 0.605 0.635 0.660 0.704

optimal h1 h2 Bias2 Variance RMSE
9.7 4.95 0.023 0.329 0.594



99

Table 1.6: Simulation results from Fourier 3

h1 � h2 4 4.25 4.5 4.75 5 5.25 5.5
Bias2 0.017 0.004 0.000 0.003 0.025 0.052 0.117

9.5 Variance 0.472 0.487 0.415 0.377 0.378 0.302 0.309
RMSE 0.699 0.701 0.644 0.616 0.635 0.595 0.653

Bias2 0.006 0.002 0.000 0.009 0.032 0.077 0.138
9.75 Variance 0.453 0.398 0.365 0.341 0.315 0.299 0.273

RMSE 0.677 0.633 0.604 0.591 0.590 0.613 0.641

Bias2 0.003 0.000 0.002 0.017 0.044 0.091 0.156
10 Variance 0.417 0.376 0.355 0.342 0.307 0.282 0.258

RMSE 0.648 0.613 0.598 0.599 0.592 0.610 0.643

Bias2 0.001 0.000 0.006 0.024 0.058 0.109 0.175
10.25 Variance 0.395 0.367 0.346 0.334 0.309 0.284 0.252

RMSE 0.630 0.606 0.593 0.598 0.605 0.627 0.653

Bias2 0.000 0.003 0.012 0.034 0.071 0.126 0.203
10.5 Variance 0.384 0.378 0.337 0.315 0.291 0.268 0.252

RMSE 0.620 0.618 0.590 0.590 0.602 0.627 0.674

Bias2 0.001 0.008 0.021 0.048 0.091 0.151 0.233
10.75 Variance 0.360 0.355 0.326 0.304 0.282 0.259 0.244

RMSE 0.601 0.603 0.589 0.594 0.610 0.640 0.690

Bias2 0.007 0.017 0.036 0.069 0.120 0.183 0.266
11 Variance 0.347 0.331 0.313 0.292 0.279 0.249 0.227

RMSE 0.594 0.590 0.591 0.601 0.632 0.657 0.702

optimal h1 h2 Bias2 Variance RMSE
9.75 4.9 0.021 0.325 0.589
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Table 1.7: Monte Carlo simulation results as a function of sample size

Ex � Size 1,000 2,000 8,000 Ex � Size 1,000 2,000 8,000
h1 9.75 9.55 9.85 h1 9.4 9.65 9.9
h2 4.9 4.9 4.85 h2 5.05 4.95 5

1 B2 0.020 0.001 0.000 9 B2 0.009 0.003 0.000
V 0.332 0.090 0.014 V 0.222 0.121 0.012
R 0.594 0.303 0.120 R 0.481 0.352 0.112
h1 11.7 11.35 11.05 h1 8.8 8.65 8.85
h2 4.75 4.85 5 h2 5.05 5.05 5

2 B2 0.010 0.001 0.000 10 B2 0.015 0.003 0.001
V 0.205 0.053 0.047 V 0.278 0.155 0.065
R 0.464 0.232 0.219 R 0.541 0.398 0.257
h1 11.2 11.55 11.25 h1 9.55 9.55 9.8
h2 5.05 4.9 4.9 h2 5.1 5.05 5

3 B2 0.010 0.000 0.000 11 B2 0.006 0.001 0.000
V 0.197 0.042 0.029 V 0.176 0.072 0.013
R 0.455 0.207 0.172 R 0.427 0.271 0.114
h1 9.5 9.55 9.7 h1 8.85 8.75 8.55
h2 5 5 4.4 h2 4.95 5.2 5.15

4 B2 0.012 0.002 0.000 12 B2 0.020 0.002 0.001
V 0.251 0.100 0.014 V 0.328 0.122 0.093
R 0.513 0.318 0.119 R 0.590 0.353 0.307
h1 9.75 9.45 9.3 h1 8.45 8.45 8.35
h2 4.35 4.4 4.4 h2 4.7 4.75 4.8

5 B2 0.018 0.001 0.001 13 B2 0.017 0.003 0.000
V 0.283 0.091 0.055 V 0.284 0.117 0.025
R 0.548 0.303 0.236 R 0.549 0.346 0.158
h1 8.4 8.6 8.75 h1 7.25 7.65 7.2
h2 4.6 4.4 4.35 h2 4.7 4.6 4.8

6 B2 0.023 0.005 0.000 14 B2 0.028 0.001 0.001
V 0.344 0.182 0.042 V 0.407 0.092 0.075
R 0.606 0.432 0.207 R 0.660 0.305 0.276
h1 9.1 9.25 9.4 h1 8.4 8.6 8.3
h2 4.6 4.5 4.45 h2 4.7 4.6 4.7

7 B2 0.017 0.001 0.000 15 B2 0.020 0.001 0.000
V 0.281 0.062 0.023 V 0.306 0.078 0.048
R 0.546 0.251 0.152 R 0.571 0.282 0.221
h1 8.25 8.25 8.25 h1 7.4 7.65 7.65
h2 4.75 4.5 4.7 h2 4.8 4.65 4.6

8 B2 0.015 0.001 0.000 16 B2 0.017 0.002 0.001
V 0.297 0.099 0.017 V 0.322 0.101 0.074
R 0.558 0.316 0.130 R 0.582 0.321 0.274
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Notes: Arrows denote direct causal relationships. Dashed circles denote unobservables and com-

plete circles denote observables. W , a proxy for common cause Uw could be used conditioning

instrument ensuring conditional independence between X and Uy.

Figure 1.1: Causal effects - conditioning instrument

Notes: A line without an arrow denotes dependence arising from a causal relation in either

direction or the existence of an underlying common cause. Because true X is unobservable, it

becomes a dashed circle. However, error-laden measurements of X help recovering identification

of causal relationship.

Figure 1.2: Causal effects - conditioning instrument and measurement error
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2.1 Introduction

We consider the following models defined by conditional moment restric-

tions,

E[ρ(Z, θ0, h0(·)) | X] = 0, (2.1)

where Z ≡ (Y
′
, X

′
1)

′
, Y ≡ (Y1, Y

′
2 )

′
is a vector of endogenous (or dependent)

variables, X1 is a subset of conditioning variables X ≡ (X
′
1, X

′
2)

′
, ρ() is a vec-

tor of generalized residual functions whose functional forms are known up to

the unknown vector of finite dimensional parameters θ0 and the unknown func-

tions (h0 ≡ (h01(·), ..., h0q(·))), where the arguments of each function h0`(·), ` =

1, ..., q, may depend on different arguments, and, in particular, may depend on Y .

E[ρ(Z, θ0, h0) | X] is the conditional expectation of ρ(Z, θ0, h0) given X. Classical

model of conditional moment restrictions without the unknown functions h0 has

been exploited considerably in the literature on nonlinear parametric models (see,

for instance, Hansen (1982), Chamberlain (1987), Newey (1990, 1993)). There

has also been a lot of work on more general frameworks including the unknown

function h0 in the literature on nonparametric and semiparametric models (see, for

instance, Robinson (1988), Powell, Stock, and Stoker (1989), Chamberlain (1992),

Ichimura (1993)). In their seminal papers, Newey and Powell (2003), and Ai and

Chen (2003) study method of sieves when the unknown functions h0 depend on

the endogenous variables. To be specific, they approximate the unkown fuctions

h0 by sieves, and apply the method of minimum distance to estimate parameters of

interest. Ai and Chen find that an estimator of h0 is consistent with a rate faster

than n−1/4, and that an estimator of the parametric components θ0 is
√
n consis-

tent, asymptotically normally distributed, and efficient, while Newey and Powell

characterize sufficient identification conditions and propose a consistent estimator

for the parameters of interest.

The main contribution of our setup to the literature is that the model (2.1)

encompasses the case where the true Y2, causes of interest, are unobserved due

to nonclassical measurement errors on the true Y2. There have been few works

which simultaneously resolve both endogeneity and measurement errors imposed
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on the same variable of interest in nonparametric and semiparametric models, de-

spite there being a number of empirical observations where endogenous variables

are also measurement error-laden. In the returns-to-education literature, for in-

stance, education, the cause of interest, is endogenous in that it is correlated with

unobserved ability which is an unobservable driver of income, dependent variable.

Moreover, there is often erreneous reporting due to the nature of survey data. In

the linear parametric models, the use of valid instruments could resolve issues of

identificaiton and estimation associated with measurement errors. However, the

existence of valid instruments is not sufficient for the identification and estimation

of parameters in nonlinear models, as demonstrated by Amemiya (1985) and Hsiao

(1989). As a result, accounting for both endogeneity and measurement errors in

nonparametric and semiparametric models is not straightforward.

In this paper, we propose a two-step estimation addressing the aforemen-

tioned issues. In the first step, a consistent estimate of the true conditional density

of endogenous variables given conditioning variables, which are masked by the non-

classical measurement errors, is obtained. In the second step, a consistent estimate

of parameters of interest, α0 ≡ (θ0, h0), is obtained. For the first-step estimation,

we make use of a method proposed by Hu and Schennach (2008), which relies on

the eigenvalue-eigenfunction decomposition of an integral operator associated with

joint densities of observables, and extend their method to allow for the presence

of a vector of additional observable regressors. We also propose a sieve maxi-

mum likelihood estimator of conditional densities associated with the unobserved

regressors of interest. We then propose a sieve minimum distance estimator of

parameters, α0. Interestingly, we find that one instrument is sufficient to identify

and estimate parameters of interest, even when one regressor of interest is endoge-

nous and measurement error-laden. We also show that the sieve estimator of the

infinite dimensional unknown functions is consistent with a rate faster than n−1/4

under certain metrics, and the sieve estimator of the finite dimensional unknown

parameters is
√
n consistent and asymptotically normally distributed.

The rest of the paper is organized as follows. We describe the proposed

two-step estimation in section 2.2. Issues of identification and estimation of distri-
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butions in presence of nonclassical measurement errors are discussed in section 2.3.

In section 2.4, we prove consistency and n−1/4 convergence rates of the parameters

from both steps. Asymptotic normality of finite-dimentional parameters of both

steps is analyzed in section 2.5. In section 2.6, the finite-sample properties of the

estimator are investigated via Monte Carlo studies. Section 2.7 briefly concludes.

All technical proofs are included in the Mathematical Appendix.

2.2 Two-Stage Estimation

Let Y1,Y2,Y∗2 ,X1, and X2 denote the support of the distribution of the

random variables Y1, Y2, Y
∗
2 , X1, and X2, respectively. Let Y ≡ (Y1, Y

′
2 )

′ ∈ Y ≡
Y1×Y2, Y

∗ ≡ (Y1, Y
∗′
2 )

′ ∈ Y∗ ≡ Y1×Y∗2 , X ≡ (X
′
1, X

′
2)

′ ∈ X ≡ X1×X2. Suppose

that the true observations {(Yi, Xi) : i = 1, 2, ..., n} are drawn independently from

the distribution of (Y,X) with support Y×X , where Y is a subset of Rdy and X is

a compact subset ofRdx . Suppose that the unknown distribution of (Y,X) satisfies

the conditional moment restriction given by eqn. 2.1, where ρ : Z × A → Rdρ is

a known mapping, up to an unknown vector of parameters, α0 ≡ (θ0, h0) ∈ A ≡
Θ × H. We assume that Θ ⊆ Rdθ is compact with a nonempty interior, and

that H ≡ H1 × · · · × Hq is a space of continuous functions. We further assume

that Z ≡ (Y
′
, X

′
1)

′ ∈ Z ≡ Y × X1 and X1 ⊆ X . We use the notation fR1(r1),

fR1|R2(r1 | r2), and FR1|R2(r1 | r2) to denote the marginal density of variable R1,

the conditional density of R1 conditional on R2, and the cumulative density of R1

conditional on R2, respectively.

Let m(x, α) ≡
∫
ρ(y, x1, θ, h(·))dFY |X(y | x) denote the conditional mean

function of the residuals, ρ(Y,X1, θ, h(·)), given X. Under the assumption that

model (1) identifies α0, one can solve for α0 as follows:

α0 = arg inf
α=(θ,h)∈Θ×H

E
[
m(X,α)

′
[Σ(X)]−1m(X,α)

]
(2.2)

where Σ(X) is a positive-definite matrix for any given X. Because the condi-

tional distribution FY |X(y | x) and conditional mean function m(x, α) are not

specified, Newey and Powell (2003) and Ai and Chen (2003) propose a sieve mini-
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mum distance (hereafter SMD) estimator that replaces m(X,α) with a consistent

nonparametric estimator m̂(X,α) and the function space H with a sieve space

Hn ≡ H1
n × · · · ×Hq

n (Grenander, 1981). However, the method is infeasible in our

setup because elements of the true Y (i.e., Y2) are unobserved so that the empirical

distribution of (Yi, Xi) cannot be used to estimate m(X,α). Instead, we base an

estimate of m(X,α) on a sieve maximum likelihood (hereafter SML) estimator of

FY |X(y | x). For this, we adapt a method proposed by Hu and Schennach (2008).

Let FY |X(y | x) be absolutely continuous with respect to Lebesque measure. To be

specific, the conditional mean function can be rewritten as follows: for true values

(φ0, η0) ∈ Φ×M

m(x, α) ≡
∫
Y
ρ(y, x1, θ, h(·))dFY |X(y | x;φ0, η0)

=

∫
Y2

[∫
Y1

ρ(y, x1, θ, h(·))dFY1|Y2X(y1 | y2, x;φ0, η0)

]
dFY2|X(y2 | x) (2.3)

=

∫
Y2

[∫
Y1

ρ(y, x1, θ, h(·))fY1|Y2X(y1 | y2, x;φ0, η0)dy1

]
fY2|X(y2 | x)dy2

=

∫
Y2

[∫
Y1

ρ(y, x1, θ, h(·))fY1|Y2X1(y1 | y2, x1;φ0, η0)dy1

]
× fY2|X2X1(y2 | x2, x1)dy2,

where the last equality holds by the exclusion restriction specified in assumption

3.2 in the next section. Note that α0 ≡ (θ0, h0) ∈ A ≡ Θ × H are the second

stage parameters, and β0 ≡ (ψ0, f1, f2) ∈ B ≡ Ψ × F1 × F2 are the first stage

parameters where ψ0 ≡ (φ0, η0) ∈ Ψ ≡ Φ × M is a vector of parameters of

fY1|Y2X1(y1 | y2, x1;φ0, η0), f1 ≡ fY ∗
2 |Y2X1(y

∗
2 | y2, x1), and f2 ≡ fY2|X2X1(y2 | x2, x1).

In the first step, we use a SML estimation to estimate fY1|Y2X1(y1 | y2, x1;φ0, η0)

and fY2|X2X1(y2 | x2, x1) needed for eqn. 2.3. Then in the second step, the SMD

estimator of α0 ≡ (θ0, h0) minimizes the sample analog of a nonparametric version

of (2) with a sieve space Hn ≡ H1
n × · · · × Hq

n in place of H:

α̂n = arg min
α=(θ,h)∈Θ×Hn

1

n

n∑
i=1

m̂(Xi, α)
′
[Σ̂(Xi)]

−1m̂(Xi, α), (2.4)

where Hn is some finite-dimensional approximation space that becomes dense in

H as sample size n→∞ (e.g., Fourier series, power series, splines, wavelets, etc.),
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Σ̂(X) is a consistent estimator of Σ(X), and m̂(X,α) is the plug-in SML estimator

of m(X,α) for any fixed α = (θ, hn):

m̂(X,α) (2.5)

≡
∫
Y2

[∫
Y1

ρ(y, x1, θ, hn(·))f̂Y1|Y2X1(y1 | y2, x1; φ̂n, η̂n)dy1

]
f̂Y2|X2X1(y2 | x2, x1)dy2.

We now introduce useful spaces of smooth functions to analyze how well

a sieve can approximate either H or M. Let ξ ∈ V ⊂ Rdξ , ‖ · ‖E denote the

Euclidean norm, and

∇ag(ξ) ≡ ∂a1+a2+···+adξg(ξ)

∂ξa1
1 · · · ∂ξ

adξ

dξ

denote the
∑dξ

i=1 ai-th derivative where a = (a1, a2, . . . , adξ
)
′

is a vector of non-

negative integers. Let γ denote the largest integer satisfying γ < γ. The Hölder

space Λγ(V) of order γ > 0 is a space of functions g : V 7→ R such that the first

γ derivative is bounded and the γ-th derivatives are Hölder continuous with the

exponent γ − γ ∈ (0, 1], i.e., for all ξ, ξ
′ ∈ V and some constant c

max∑dξ
i=1 ai=γ

|∇ag(ξ)−∇ag(ξ
′
)| ≤ c(‖ξ − ξ

′‖E)γ−γ .

The space Λγ(V) becomes a Banach space under the Hölder norm:

‖g‖Λγ = sup
ξ
|g(ξ)|+ max∑dξ

i=1 ai=γ

sup
ξ 6=ξ′

|∇ag(ξ)−∇ag(ξ
′
)|

‖ξ − ξ′‖E)γ−γ
<∞.

A Hölder ball (of radius c) is defined as Λγ
c (V) ≡ {g ∈ Λγ(V) : ‖g‖Λγ ≤ c <∞}. Let

ω(·) be a positive continuous weight function on V where ω(ξ) = (1+‖ξ‖2
E)−ς/2, ς >

γ > 0. Denote Λγ,ω
c (V) as the weighted Hölder space with a weighted Hölder

norm ‖g‖Λγ,ω ≡ ‖g̃‖Λγ for g̃(ξ) ≡ g(ξ)ω(ξ). Also define a weighted Hölder ball

Λγ,ω
c (V) ≡ {g ∈ Λγ,ω(V) : ‖g‖Λγ,ω ≤ c <∞}.
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2.3 Identification and Estimation of Distribution

2.3.1 Identification of Distributions

In this section, we consider the identification of two densities, fY1|Y2X1(y1 |
y2, x1;ψ) and fY2|X2X1(y2 | x2, x1). Hu and Schennach (2008) show that the joint

distribution of y1 and y2 is identified from knowledge of the distribution of all ob-

served variables. For our case, we straightforwardly extend the treatment in Hu

and Schennach (2008) to allow for the presence of a vector X1 of additional observ-

able regressors. We consider Y2, Y
∗
2 , and X2 to be jointly continuously distributed,

while Y1 and X1 can be either continuous or discrete. We first state a useful note

that a function of three variables can be associated with an integral operator.

Definition 3.1 Let R1, R2, R3 and R4 denote four random variables with

respective supports R1,R2,R3, and R4, distributed according to the joint density

fR1R2R3R4(r1, r2, r3, r4). Given four corresponding spaces G(R1),G(R2),G(R3), and

G(R4) of functions with domains R1,R2,R3, and R4, respectively, let (i) LR1|R2r3

denote an integral operator mapping g ∈ G(R2) to LR1|R2r3g ∈ G(R1) for a given

r3 defined by

[LR1|R2r3g](r1) ≡
∫
R2

fR1|R2R3(r1 | r2, r3)g(r2)dr2; (2.6)

(ii) Lr1R2|R3r4 denote an integral operator mapping g ∈ G(R3) to Lr1R2|R3r4g

∈ G(R2) for a given (r1, r4) defined by

[Lr1R2|R3r4g](r2) ≡
∫
R3

fR1R2|R3R4(r1, r2 | r3, r4)g(r3)dr3; (2.7)

(iii) 4r1|R2r3 denote a diagonal operator mapping g ∈ G(R2) to 4r1|R2r3g ∈
G(R2) for a given (r1, r3) defined by

4r1|R2r3g ≡ fR1|R2R3(r1 | r2, r3)g(r2). (2.8)

For the identification of distributions, we assume following hypotheses.

Note that the absence of correctly measured regressors, X1, draws on simliar as-

sumptions to those in Hu and Schennach (2008).
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Assumption 3.1 (i) The joint density of Y1 and Y2, Y
∗
2 , X1, X2 admits

a bounded density with respect to the product measure of some dominating measure

µ (defined on Y1) and the Lebesque measure on Y2×Y∗2×X1×X2. (ii) All marginal

and conditional densities are also bounded.

Assumption 3.2 (i) fY1|Y2Y ∗
2 X1X2(y1 | y2, y

∗
2, x1, x2) = fY1|Y2X1X2(y1 |

y2, x1, x2) = fY1|Y2X1(y1 | y2, x1) for all (Y1, Y2, Y
∗
2 , X1, X2) ∈ Y1×Y2×Y∗2×X1×X2

and (ii) fY ∗
2 |Y2X1X2(y

∗
2 | y2, x1, x2) = fY ∗

2 |Y2X1(y
∗
2 | y2, x1) for all (Y2, Y

∗
2 , X1, X2) ∈

Y2 × Y∗2 ×X1 ×X2.

Assumption 3.3 The operators LY ∗
2 |Y2x1 and LY ∗

2 |X2x1 are one-to-one

(for either G = L1 or G = L1
bnd where L1(A) is the set of all absolutely integrable

functions with domain A endowed with the norm ||g||1 =
∫
A |g(a)|da and where G =

L1
bnd is the set of functions in L1(A) that are also bounded such that supa∈A |g(a)| <
∞ ).

Assumption 3.4 For any x1 ∈ X1 and any ỹ2, ȳ2 ∈ Y2, the set {y1 :

fY1|Y2X1(y1 | ỹ2, x1) 6= fY1|Y2X1(y1 | ȳ2, x1)} has positive probability (under the

marginal of Y1) whenever ỹ2 6= ȳ2.

Assumption 3.5 For any given x1 ∈ X1, there exists a known functional

M such that M [fY ∗
2 |Y2X1(· | y2, x1)] = y2 for all y2 ∈ Y2.

A few remarks are in order. Assumption 3.1 restricts all densities to reg-

ular bounded densities. Assumption 3.2 states conditional independence restric-

tions which have been imposed by Altonji and Matzkin (2005), White and Chalak

(2006), Chalak and White (2007), and Hoderlein and Mammen (2007), among

others. To be specific, Assumption 3.2(i) states that Y ∗
2 , X2 do not provide further

information on Y1, given Y2, X1. Similarly, Assumption 3.2(ii) indicates that X2

does not provide further information on Y ∗
2 , given Y2, X1. Assumption 3.3 is as-

sociated with restrictions on the relationships between Y2, Y
∗
2 , X2, and X1, which

have been phrased as singular value decompositions with nonzero singular values

(Darolles, Florens, and Renault (2002)), nonsingularity (Hall and Horowitz (2005),
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Horowitz (2006)), and completeness (or bounded completeness) (Newey and Pow-

ell (2003), Blundell, Chen, and Kristensen (2007)). Assumption 3.4 states a fairly

weak condition which is only violated if the distribution of Y1 conditional on Y2, X1

is identical at different values of Y2. Assumption 3.5 places restrictions on some

measure of the location of a density, denoted by M . The assumption is essential

in that it enables the model to include nonclassical measurement errors as well as

classical measurement errors.1 It is invoked by the observation that, even though

the measurement error may have a nonzero mean conditional on the true value

of the variable, other measures of location, such as the median, mode, or quan-

tile, could be zero. The next theorem provides identificaiton results of unknown

distributions.

Theorem 3.1 Under Assumptions 3.1 – 3.5, given the true observed

density fY ∗|X(y∗ | x) ≡ fY1Y ∗
2 |X1X2(y1, y

∗
2 | x1, x2), the equation

fY ∗|X(y∗ | x) =

∫
Y2

fY1|Y2X1(y1 | y2, x1)fY ∗
2 |Y2X1(y

∗
2 | y2, x1)fY2|X2X1(y2 | x2, x1)dy2

(2.9)

admits a unique solution (fY1|Y2X1 , fY ∗
2 |Y2X1 , fY2|X2X1) for all y1 ∈ Y1, y

∗
2 ∈ Y∗2 , x1 ∈

X1, x2 ∈ X2.

The result is parallel to eqn. 5 in Theorem 1 of Hu and Schennach (2008).

The integral equation relates the joint densities of the observables to the product of

the joint densities of the unobservables. The identification of unobserved densities

enables us to propose the first-stage estimation procedure, and, in turn, to estimate

the prameters of interest in the second-stage via estimates of fY1|Y2X1 and fY2|X2X1 .

2.3.2 Estimation Using Sieve Maximum Likelihood

Theorem 3.1 implies that β0 is obtained by the maximization problem:

1For instance, M could be the mean, τ quantile, and mode: M [f ] =
∫
Y∗

2
y∗2fY ∗

2
(y∗2)dy∗2 , M [f ] =

inf
{
y2 ∈ Y2 :

∫
1{y∗2 ≤ y2}fY ∗

2
(y∗2)dy∗2 ≥ τ

}
, and M [f ] = arg maxy∗2∈Y∗

2
fY ∗

2
(y∗2) respectively.
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β0 = (ψ0, fY ∗
2 |Y2X1 , fY2|X2X1)

′
(2.10)

= arg max
β=(ψ,f1,f2)′∈B

E

(
ln

∫
Y2

fY1|Y2X1(y1 | y2, x1;ψ)f1(y
∗
2 | y2, x1)

× f2(y2 | x2, x1)dy2

)
,

where B ≡ Ψ×F1×F2 with Ψ ≡ Φ×M. We impose some restrictions on the sets

M,F1, and F2 to which the functions η, fY ∗
2 |Y2X1 , and fY2|X2X1 belong, respectively,

in the following assumptions.

Assumption 3.6 η ∈ Λγ1,ω
c (U) where γ1 > 1.

Assumption 3.7 f1 ∈ Λγ1,ω
c (Y∗2 ×Y2×X1) where γ1 > 1 and

∫
Y∗

2
f1(y

∗
2 |

y2, x1)dy
∗
2 = 1 for all y2 ∈ Y2, x1 ∈ X1).

Assumption 3.8 f2 ∈ Λγ1,ω
c (Y2 ×X2 ×X1) where γ1 > 1 and

∫
Y2
f2(y2 |

x2, x1)dy2 = 1 for all x2 ∈ X2, x1 ∈ X1).

Then we define three sets as follows:

M = {η(·, ·, ·) : Assumption 3.6 holds},

F1 = {f1(· | ·, ·) : Assumption 3.3, 3.5, and 3.7 hold},

F2 = {f2(· | ·, ·) : Assumption 3.3 and 3.8 hold}.

As in eqn. 2.2, the optimization method provides an inconsistent estimator

for β0 or a consisent estimator which converges slowly when the function spaces

M,F1, and F2 are large. Thus, we replace M,F1, and F2 with finite-dimentional

compact parameter spaces Mn,F1n, and F2n, respectively, where

Mn = {η(ξ1, ξ2, ξ3) = pkn(ξ1, ξ2, ξ3)
′
δ for all δ s.t. Assumption 3.6 holds},

F1n = {f(y∗2 | y2, x1) = pkn(y∗2, y2, x1)
′
ρ for all ρ s.t. Assumption 3.3, 3.5,

and 3.7 hold},

F2n = {f(y2 | x2, x1) = pkn(y2, x2, x1)
′
π for all π s.t. Assumption 3.3

and 3.8 hold}.
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Let the projection of the true parameter β0 onto the space Bn where Bn = Ψn ×
F1n ×F2n with Ψn = Φ×Mn:

Πnβ ≡ βn

= arg max
βn=(ψ,f1,f2)′∈Bn

E

(
ln

∫
Y2

fY1|Y2X1(y1 | y2, x1;ψ)f1(y
∗
2 | y2, x1)

× f2(y2 | x2, x1)dy2

)
.

Then a corresponding measurement-error robust sieve maximum likelihood esti-

mator of β0 maximizes the sample analog of eqn. 2.10 with Ψ×F1×F2 restricted

to the sieve space Ψn ×F1n ×F2n:

β̂n = (ψ̂n, f̂1n, f̂2n)
′

(2.11)

= arg max
(ψ,f1,f2)′∈Bn

1

n

n∑
i=1

ln

∫
Y2

fY1|Y2X1(y1i | y2, x1i;ψ)f1(y
∗
2i | y2, x1i)

× f2(y2 | x2i, x1i)dy2.

2.4 Consistency and Convergence Rates

2.4.1 Consistency

In this section, we first obtain consistency of the SML estimator β̂ for

β0 ≡ (ψ0, fY ∗
2 |Y2X1(y

∗
2 | y2, x1), fY2|X2X1(y2 | x2, x1)) under a strong metric ‖ · ‖s,β

and the SMD estimator α̂ for α0 ≡ (θ0, h0) under a strong metric ‖ · ‖s,α by

applying the results in Newey and Powell (2003). Following Ai and Chen (2003),

we then establish that β̂ and α̂ converge to β0 and α0 at a rate faster than n−1/4

under suitably constructed weaker metrics ‖ · ‖β and ‖ · ‖α, respectively. Let

(Y ∗′ , X
′
)
′
be a vector of observed variables for Y ∗ ∈ Y∗, X ∈ X . Define ‖β‖s,β ≡

‖φ‖E + ‖η‖∞,ω + ‖f1‖∞,ω + ‖f2‖∞,ω where ‖g‖∞,ω ≡ supξ |g(ξ)ω(ξ)| with weight

function ω(ξ) = (1 + ‖ξ‖2
E)−ς/2, ς > γ1 > 0. Note that the meaning of ξ depend on

the domain of g (e.g., when g = f2, ξ = (y2, x2, x1)).

Assumption 4.1 (i) The data {(Y ∗
i , Xi)

n
i=1} are i.i.d. (ii) The density

of (Y ∗′ , X
′
)
′
, fY ∗X , satisfies

∫
ω(Y ∗, X)−2fY ∗X(y∗, x)d(y∗, x) <∞.
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Assumption 4.2 α0 ∈ A is the only α ∈ A satisfying m(X,α) = 0.

Assumption 4.3 (i) Σ̂(X) = Σ(X) + op(1) uniformly over X ∈ X . (ii)

Σ(X) is finite positive-definite uniformly over X ∈ X .

Assumption 4.4 (i) There is a metric ‖ · ‖s,α such that A ≡ Θ×H is

compact under ‖ · ‖s,α. (ii) For any α ∈ A, there exists Πnα ∈ An ≡ Θ×Hn such

that ‖Πnα− α‖s,α = o(1).

Assumption 4.5 (i) There is a metric ‖·‖s,β such that B ≡ Ψ×F1×F2 is

compact under ‖·‖s,β. (ii) For any β ∈ B, there exists Πnβ ∈ Bn ≡ Ψn×F1n×F2n

with Ψn ≡ Φ×Mn such that ‖Πnβ − β‖s,β = o(1).

Assumption 4.6 (i) E[|ρ(Z, α0)|2 | X] is bounded. (ii) ρ(Z, α) is Hölder

continuous in α ∈ A.

Assumption 4.7 (i) E[| ln fY ∗|X(y∗ | x)|2] is bounded. (ii) There exists

a measurable function h1(y
∗, x) with E[|h1(y

∗, x)|2] < ∞ such that for any β̄ =

(ψ̄, f̄1, f̄2)
′ ∈ B, ∣∣∣∣∣f

|1|
Y ∗|X(y∗ | x; β̄, ω̄)

fY ∗|X(y∗ | x; β̄)

∣∣∣∣∣ ≤ h1(y
∗, x),

where f
|1|
Y ∗|X(y∗ | x; β̄, ω̄) is defined as ( d

dt
fY ∗|X(y∗ | x; β̄ + tω̄)|t=0 with each

linear term, that is, d
dψ
fY1|Y2X1 , f̄1, and f̄2, replaced by its absolute value, and

ω̄(ξ, y∗2, y2, x2.x1) = [1, ω−1(ξ), ω−1((y∗2, y2, x1)
′
), ω−1((y2, x2, x1)

′
)]

′
with ξ ∈ U .

Assumption 4.8 (i) k1n → +∞.

Assumption 4.9 (i) kn/n→ 0.

Theorem 4.1 (i) Under Assumptions 3.1-3.8, 4.5 (i) and (ii), 4.7 (i)

and (ii), and 4.9, we have ‖β̂n − β0‖s,β = op(1).

(ii) Under Assumptions 3.1-3.8, 4.1 (i), 4.2, 4.3 (i) and (ii), 4.4 (i) and

(ii), 4.5 (i) and (ii), 4.6 (i) and (ii), 4.7 (i) and (ii), 4.8 (i), and 4.9 (i), we have

‖α̂n − α0‖s,α = op(1).
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Theorem 4.1 provides consistency results under the metrics ‖ · ‖s,β and

‖ · ‖s,α, which are stepping stones to establishing the asymptotic normality of φ̂

and θ̂, respectively.

2.4.2 Convergence Rates

As in Ai and Chen (2003) and Hu and Schennach (2008), we now consider

n−1/4 convergence rates of β̂n and α̂n under weaker metrics, which are sufficient

to establish the asymptotic normality and
√
n-consistency results. First, we recall

the weaker metric introduced by Ai and Chen (2003).

Suppose that the parameter space B is connected in the sense that for any

two points β1, β2 ∈ B, there exists a continuous path {β(t) : t ∈ [0, 1]} in B
such that β(0) = β1 and β(1) = β2. And suppose that B is convex at the true

value β0 in the sense that, for any β ∈ B, (1 − t)β0 + tβ ∈ B for small t > 0.

Furthermore, suppose that for almost all D and any β ∈ B, ln fY ∗|X(D, (1− t)β0 +

tβ) is continuously differentiable at t = 0. Similarly, suppose that for any two

points α1, α2 ∈ A, there exists a continuous path {α(τ) : τ ∈ [0, 1]} in A such that

α(0) = α1 and α(1) = α2. Also, suppose that A is convex at the true value α0, and

suppose that for almost all X, m(X, (1− τ)α0 + τα) is continuously differentiable

at τ = 0.

Denote the first pathwise derivative of ln fY ∗|X(y∗ | x; β0) at the direction

[β − β0] evaluated at β0 by:

d ln fY ∗|X(y∗ | x; β0)

dβ
[β − β0] ≡

d ln fY ∗|X(y∗ | x; (1− t)β0 + tβ)

dt

∣∣∣∣
t=0

almost everywhere (under the probability measure of (Y ∗, X)) and for β1, β2 ∈ B
denote

d ln fY ∗|X(y∗ | x; β0)

dβ
[β1 − β2]

≡
d ln fY ∗|X(y∗ | x; β0)

dβ
[β1 − β0]−

d ln fY ∗|X(y∗ | x; β0)

dβ
[β2 − β0].
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Specifically, the pathwise derivative is denoted by:

d ln fY ∗|X(y∗ | x; β0)

dβ
[β − β0]

=
1

fY ∗|X(y∗ | x; β0)

{∫
Y2

d

dψ
fY1|Y2X1(y1 | y2, x1;ψ0)[ψ − ψ0]

× fY ∗
2 |Y2X1(y

∗
2 | y2, x1)fY2|X2X1(y2 | x2, x1)dy2

+

∫
Y2

fY1|Y2X1(y1 | y2, x1;ψ0)[f1(y
∗
2 | y2, x1)− fY ∗

2 |Y2X1(y
∗
2 | y2, x1)]

× fY2|X2X1(y2 | x2, x1)dy2

+

∫
Y2

fY1|Y2X1(y1 | y2, x1;ψ0)fY ∗
2 |Y2X1(y

∗
2 | y2, x1)

× [f2(y2 | x2, x1)− fY2|X2X1(y2 | x2, x1)]dy2

}
.

For any β1, β2 ∈ B, the metric is defined as

‖β1 − β2‖β ≡

√√√√E

{(
d ln fY ∗|X(y∗ | x; β0)

dβ
[β1 − β2]

)2
}
.

Similarly, denote the first pathwise derivative of ρ(Z, α0) at the direction

[α− α0] evaluated at α0 by:

dρ(Z, α0)

dα
[α− α0] ≡

dρ(Z, (1− τ)α0 + τα)

dτ

∣∣∣∣
τ=0

almost everywhere (under the probability measure of Z) and for any α1, α2 ∈ A
denote

dρ(Z, α0)

dα
[α1 − α2] ≡

dρ(Z, α0)

dα
[α1 − α0]−

dρ(Z, α0)

dα
[α2 − α0],

dm(X,α0)

dα
[α1 − α2] ≡ E

{
dρ(Z, α0)

dα
[α1 − α2]

∣∣∣∣X} .
Also, for any α1, α2 ∈ A, the metric ‖ · ‖α is defined as

‖α1 − α2‖α

≡

√√√√E

{(
dm(X,α0)

dα
[α1 − α2]

)′

Σ(X)−1
dm(X,α0)

dα
[α1 − α2]

}
.
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Assumption 4.3 (iii) Σ̂(X) = Σ(X)+op(n
−1/4) uniformly over X ∈ X .

Assumption 4.4 (iii) There is a constant µ1 > 0 such that for any α ∈
A, there exists Πnα ∈ An satisfying ‖Πnα−α‖α = O(k−µ1

1n ), and k−µ1

1n = o(n−1/4).

Assumption 4.5 (iii) There is a constant γ1 > 1 as in Assumptions 6-8

such that for any β ∈ B, there exists Πnβ ∈ Bn satisfying ‖Πnβ−β‖β = O(k
−γ1/d1
n ),

and k
−γ1/d1
n = o(n−1/4).

Assumption 4.6 (iii) Each element of ρ(Z, α) satisfies an envelope

condition in α ∈ An; (iv) each element of m(·, α) ∈ Λγ
c (X ) with γ > dx/2, for all

α ∈ An.

Assumption 4.7 (iii) ln fY ∗|X(y∗ | x; β) satisfies an envelope condition

in β ∈ Bn; (iv) ln fY ∗|X(y∗ | x; β) ∈ Λγ,ω
c (Y∗ × X ) for some constant c > 0 with

γ > d(Y ∗,X)/2, for all β ∈ Bn, where d(Y ∗,X) is the dimension of (Y ∗, X).

Denote ξ0n ≡ sup(ξ1,ξ2,ξ3)∈(U∪(Y∗
2×Y2×X1)∪(Y2×X2×X1)) ‖pkn(ξ1, ξ2, ξ3)‖2

E, which

is nondecresasing in kn. Let N(ε,Bn, ‖ · ‖s,β) and N(δ,An, ‖ · ‖s,α) denote the

minimal number of radius ε covering balls of Bn under the ‖ · ‖s,β metric, and

the minimal number of radius δ covering balls of An under the ‖ · ‖s,α metric,

respectively.

Assumption 4.8 (ii) k1n×lnn×ξ2
0n×n−1/2 = o(1); (iii) ln[N(δ1/κ,An, ‖·

‖s,α)] ≤ const.× k1n × ln(k1n/δ).

Assumption 4.9 (ii) kn × lnn× ξ2
0n × n−1/2 = o(1); (iii) ln[N(ε,Bn, ‖ ·

‖s,β)] ≤ const.× kn × ln(kn/ε).

Assumption 4.10 (i) A is convex in α0, and ρ(Z, α) is pathwise differ-

entiable at α0; (ii) for some c1, c2 > 0,

c1E{m(X,α)
′
Σ(X)−1m(X,α)} ≤ ‖α− α0‖2

α ≤ c2E{m(X,α)
′
Σ(X)−1m(X,α)}
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holds for all α ∈ An with ‖α− α0‖s,α = o(1).

Assumption 4.11 (i) B is convex in β0 and fY1|Y2X1(y1 | y2, x1;ψ) is

pathwise differentiable at ψ0; (ii) for some c1, c2 > 0,

c1E

{
ln
fY ∗|X(y∗ | x; β0)

fY ∗|X(y∗ | x; β)

}
≤ ‖β − β0‖2

β ≤ c2E

{
ln
fY ∗|X(y∗ | x; β0)

fY ∗|X(y∗ | x; β)

}
holds for all β ∈ Bn with ‖β − β0‖s,β = o(1).

Theorem 4.2 (i) Under Assumptions 3.1-3.8, 4.1, 4.5, 4.7, 4.9 and 4.11,

we have ‖β̂n − β0‖β = op(n
−1/4).

(ii) Under Assumptions 3.1-3.8 and 4.1-4.11,

we have ‖α̂n − α0‖α = op(n
−1/4).

2.5 Asymptotic Normality and Efficiency

2.5.1 Asymptotic Normality and Efficiency

We consider the asymptotic normality of φ̂n and θ̂n, and efficiency of a

three-step estimation of θ̂n. We first introduce important notation aligning with

that of Ai and Chen (2003) and Hu and Schennach (2008). Let V1 denote the

closure of the linear span of B−{β0} under the metric ‖ · ‖β (i.e., V1 = Rdφ ×W1

with W1 ≡M×F1 ×F2 − {(η0, fY ∗
2 |Y2X1 , fY2|X2X1)

′}) and (V1, ‖ · ‖β) is a Hilbert

space with the inner product:

〈v11, v12〉β = E

{(
d ln fY ∗|X(y∗ | x; β0)

dβ
[v11]

)(
d ln fY ∗|X(y∗ | x; β0)

dβ
[v12]

)}
.

Similarly, let V2 denote the closure of the linear span of A − {α0} under

the metric ‖ · ‖α (i.e., V2 = Rdθ ×W2 with W2 ≡ H− {h0}). Then (V2, ‖ · ‖α) is

a Hilbert space with the inner product:

〈v21, v22〉α = E

{(
dm(X,α0)

dα
[v21]

)′

Σ(X)−1

(
dm(X,α0)

dα
[v22]

)}
.
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The pathwise derivative at β0 is defined as

d ln fY ∗|X(y∗ | x; β0)

dβ
[β − β0]

=
d ln fY ∗|X(y∗ | x; β0)

dφ′ (φ− φ0) +
d ln fY ∗|X(y∗ | x; β0)

dη
[η − η0]

+
d ln fY ∗|X(y∗ | x; β0)

df1

[f1 − fY ∗
2 |Y2X1 ] +

d ln fY ∗|X(y∗ | x; β0)

df2

[f2 − fY2|X2X1 ].

For each component φj of φ, j = 1, 2, . . . , dφ, we define w∗1j ∈ W1 as

w∗1j ≡ (η∗j , f
∗
1j, f

∗
2j)

′

= arg min
(η,f1,f2)′∈W1

E

{(
d ln fY ∗|X(y∗ | x; β0)

dφj
−
d ln fY ∗|X(y∗ | x; β0)

dη
[ηj]

−
d ln fY ∗|X(y∗ | x; β0)

df1

[f1j]−
d ln fY ∗|X(y∗ | x; β0)

df2

[f2j]

)2}
.

Define

w∗1 = (w∗11, w
∗
12, . . . , w

∗
1dφ

),

d ln fY ∗|X(y∗ | x; β0)

df
[w∗1j]

=
d ln fY ∗|X(y∗ | x; β0)

dη
[ηj] +

d ln fY ∗|X(y∗ | x; β0)

df1

[f1j] +
d ln fY ∗|X(y∗ | x; β0)

df2

[f2j]

d ln fY ∗|X(y∗ | x; β0)

df
[w∗1]

=

(
d ln fY ∗|X(y∗ | x; β0)

df
[w∗11], . . . ,

d ln fY ∗|X(y∗ | x; β0)

df
[w∗1dφ

]

)
,

and the row vector

Gw∗
1
(Y ∗, X, β0) ≡

d ln fY ∗|X(y∗ | x; β0)

dφ′ −
d ln fY ∗|X(y∗ | x; β0)

df
[w∗1].

We also introduce some notation for the second stage parameters, θ0. As

shown before, the pathwise derivative at α0 is

dm(X,α0)

dα
[α− α0] ≡

dm(X,α0)

dθ′
(θ − θ0) +

dm(X,α0)

dh
[h− h0].

For each component θj of θ, j = 1, 2, . . . , dθ, we define w∗2j ∈ W2 as

w∗2j ≡ arg min
w2j∈W2

E

{(
dm(X,α0)

dθj
− dm(X,α0)

dh
[w2j]

)′

Σ(X)−1

×
(
dm(X,α0)

dθj
− dm(X,α0)

dh
[w2j]

)}
.
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Define

w∗2 = (w∗21, w
∗
22, . . . , w

∗
2dθ

),

dm(X,α0)

dh
[w∗2] =

(
dm(X,α0)

dh
[w∗21], . . . ,

dm(X,α0)

dh
[w∗2dθ

]

)
,

and the row vector

Gw∗
2
(X,α0) ≡

dm(X,α0)

dθ
′
2

− dm(X,α0)

dh
[w∗2].

Define s1(β) ≡ λ
′
1φ for λ1 ∈ Rdφ and λ1 6= 0, and define s2(α) ≡ λ

′
2θ for

λ2 ∈ Rdθ and λ2 6= 0. As mentioned in Ai and Chen (2003), s1(β) ≡ λ
′
1φ is

bounded if and only if E[Gw∗
1
(Y ∗, X, β0)

′
Gw∗

1
(Y ∗, X, β0)] is finite positive-definite.

The Riesz representation theorem then implies that there exists a representor v∗1

such that

s1(β)− s1(β0) ≡ λ
′

1(φ− φ0) = 〈v∗1, β − β0〉β

for all β ∈ B where v∗1 ≡ (v∗φ, v
∗
f ) ∈ V1, v

∗
φ = J−1

1 λ1, v
∗
f = −w∗1 × v∗φ with

J1 = E[Gw∗
1
(Y ∗, X, β0)

′
Gw∗

1
(Y ∗, X, β0)]. Similarly, because of the fact that s2(α) ≡

λ
′
2θ is bounded if and only if E[Gw∗

2
(X,α0)

′
Σ(X)−1Gw∗

2
(X,α0)] is finite positive-

definite, we have

s2(α)− s2(α0) ≡ λ
′

2(θ − θ0) = 〈v∗2, α− α0〉α

for all α ∈ A where v∗2 ≡ (v∗θ , v
∗
h) ∈ V2, v

∗
θ = J−1

2 λ2, v
∗
h = −w∗2 × v∗θ with

J2 = E[Gw∗
2
(X,α0)

′
Σ(X)−1Gw∗

2
(X,α0)].

We now state the sufficient conditions for the
√
n-normality of φ̂n and θ̂n.

Assumption 5.1 (i) E[Gw∗
2
(X,α0)

′
Σ(X)−1Gw∗

2
(X,α0)] exists, is bound-

ed, and is positive-definite; (ii) θ0 ∈ int(Θ); (iii) Σ0(X) ≡ var[ρ(Z, α0) | X] is

positive-definite for all X ∈ X .

Assumption 5.2 (i) E[Gw∗
1
(Y ∗, X, β0)

′
Gw∗

1
(Y ∗, X, β0)] exists, is bound-

ed, and is positive-definite; (ii) φ0 ∈ int(Φ).

Assumption 5.3 There is a v∗2n = (vθ,−Πnw
∗
2 × vθ) ∈ An − {Πnα0}

such that ‖v∗2n − v∗2‖α = O(n−1/4).
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Assumption 5.4 There is a v∗1n = (vφ,−Πnw
∗
1×vφ) ∈ Bn−{Πnβ0} such

that ‖v∗1n − v∗1‖β = O(n−1/4).

Define N01n ≡ {β ∈ Bn : ‖β − β0‖s,β ≤ v1n, ‖β − β0‖β ≤ v1nn
−1/4} with

v1n = o(1) and define N01 the same way with Bn replaced by B. Define N02n ≡
{α ∈ An : ‖α−α0‖s,α ≤ v2n, ‖α−α0‖α ≤ v2nn

−1/4} with v2n = o(1) and define N02

the same way with An replaced by A. For β ∈ N01n, we denote a local alternative

β∗(β, εn) = (1 − εn)β + εn(v
∗
1 + β0) with εn = o(n−1/2). Let Πnβ

∗(β, εn) be the

projection of β∗(β, εn) onto Bn. We denote

dρ(Z, α)

dα
[v2] ≡

dρ(Z, α + τv2)

dτ

∣∣∣∣
τ=0

a.s. Z,

and

dm(X,α)

dα
[v2] ≡

dm(X,α+ τv2)

dα
[v2] a.s.X,

for any v2 ∈ V2. Also for any v1 ∈ V1, we denote

d ln fY ∗|X(y∗ | x; β)

dβ
[v1] ≡

d ln fY ∗|X(y∗ | x; β + tv1)

dt

∣∣∣∣
t=0

a.s. (Y ∗, X).

Assumption 5.5 For all α ∈ N02, the pathwise first derivative

(dρ(Z, α(τ))/dα)[v2] exists a.s. Z ∈ Z. Moreover, (i) each element of the pathwise

first derivative evaluated at v∗2n, (dρ(Z, α)/dα)[v∗2n], satisfies an envelope condition

and is Hölder continuous in α ∈ N02n; (ii) each element of (dm(X,α)/dα)[v∗2n] is

in Λγ
c (X ), γ > dx/2 for all α ∈ N02.

Assumption 5.6 Uniformly over α ∈ N02n, we have

E

(∥∥∥∥dm(X,α)

dα
[v∗2n]−

dm(X,α0)

dα
[v∗2n]

∥∥∥∥2

E

)
= o(n−1/2).

Assumption 5.7 Uniformly over α ∈ N02, ᾱ ∈ N02n, we have

E

({
dm(X,α0)

dα
[v∗2]

}
Σ(X)−1

{
dm(X,α)

dα
[ᾱ− α0]−

dm(X,α0)

dα
[ᾱ− α0]

})
= o(n−1/2).
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Assumption 5.8 For all α ∈ N02n, the pathwise second derivative

d2ρ(Z, α+τv∗2n)/dτ
2|τ=0 exists a.s. Z ∈ Z, and is bounded by a measurable function

c5(Z) with E[c5(Z)2] <∞.

Assumption 5.9 There exists a measurable function h2(Y
∗, X) with

E[h2(Y
∗, X)2] <∞ such that for any β̄ = (ψ̄, f̄1, f̄2)

′ ∈ N01,∣∣∣∣∣f
|1|
Y ∗|X(y∗ | x; β̄, ω̄)

fY ∗|X(y∗ | x; β̄)

∣∣∣∣∣
2

+

∣∣∣∣∣f
|2|
Y ∗|X(y∗ | x; β̄, ω̄)

fY ∗|X(y∗ | x; β̄)

∣∣∣∣∣ ≤ h2(Y
∗, X),

where f
|2|
Y ∗|X(y∗ | x; β̄, ω̄) is defined as d2

dt2
fY ∗|X(y∗ | x; β̄ + tω̄)|t=0 with each linear

term, that is, d
dψ
fY1|Y2X1 ,

d2

dψ2fY1|Y2X1 , f̄1, and f̄2, replaced by its absolute value.

Following Hu and Schennach (2008), we write the following notations for

the next assumption:

d ln fY ∗|X(y∗ | x; β0)

dβ
[pkn ]

=

((
d ln fY ∗|X(y∗ | x; β0)

dφ

)′

,

(
d ln fY ∗|X(y∗ | x; β0)

dη
[pkn ]

)′

,(
d ln fY ∗|X(y∗ | x; β0)

df1

[pkn ]

)′

,

(
d ln fY ∗|X(y∗ | x; β0)

df2

[pkn ]

)′ )′

,

where for f̃ = η, f1, or f2,

d ln fY ∗|X(y∗ | x; β0)

df̃
[pkn ]

=

(
d ln fY ∗|X(y∗ | x; β0)

df̃
[pkn

1 ],
d ln fY ∗|X(y∗ | x; β0)

df̃
[pkn

2 ], . . . ,

d ln fY ∗|X(y∗ | x; β0)

df̃
[pkn
kn

]

)′

,

d ln fY ∗|X(y∗ | x; β0)

dφ

=

(
d ln fY ∗|X(y∗ | x; β0)

dφ1

,
d ln fY ∗|X(y∗ | x; β0)

dφ2

, . . . ,
d ln fY ∗|X(y∗ | x; β0)

dφdφ

)′

,

and

Ωkn = E

{(
d ln fY ∗|X(y∗ | x; β0)

dβ
[pkn ]

)(
d ln fY ∗|X(y∗ | x; β0)

dβ
[pkn ]

)′}
.
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Assumption 5.10 The smallest eigenvalue of the matrix Ωkn is bounded

away from zero, and ‖pkn
j ‖∞,ω <∞ for j = 1, 2, . . . , kn uniformly in kn.

Assumption 5.11 For all β ∈ N01n, there exists a measurable function

h4(Y
∗, X) with E|h4(Y

∗, X)| <∞ such that∣∣∣∣ d4

dt4
ln fY ∗|X(y∗ | x; β̄ + t(β − β0))

∣∣∣∣
t=0

≤ h4(Y
∗, X)‖β − β0‖4

s,β.

Theorem 5.1 (i) Under Assumptions 3.1-3.8, 4.1, 4.5, 4.7, 4.11, 5.2,

5.4, 5.9-5.11,
√
n(φ̂n − φ0)

d−→ N(0, J−1
1 ),

where J1 = E[Gw∗
1
(Y ∗, X, β0)

′
Gw∗

1
(Y ∗, X, β0)].

(ii) Under Assumptions 3.1-3.8, 4.1-4.11, 5.1-5.11,
√
n(θ̂n − θ0)

d−→ N(0, J−1
2 ), where

J2 = E[Gw∗
2
(X,α0)

′
Σ(X)−1Gw∗

2
(X,α0)]

× (E[Gw∗
2
(X,α0)

′
Σ(X)−1Σ0(X)Σ(X)−1Gw∗

2
(X,α0)])

−1

× E[Gw∗
2
(X,α0)

′
Σ(X)−1Gw∗

2
(X,α0)].

2.5.2 Consistent Covariance Estimator

We now establish a consistent estimator J̃02 of the covariance matrix J02,

which is needed to perform any statistical inference using the semiparametrically

efficient estimator θ̃n.

Let Ĝw2j
(X, α̃) be a consistent estimator of Gw2j

(X,α0) as follows:

Ĝw2j
(X, α̃) =

dm̂(X, α̃)

dθj
− dm̂(X, α̃)

dh
[w2j].

We estimate w02j by w̃2j, which is the solution to the minimization problem:

min
w2j∈W2n

1

n

n∑
i=1

Ĝw2j
(Xi, α̃)

′
Σ̂0(Xi)

−1Ĝw2j
(Xi, α̃).

If we let w02 = (w021, . . . , w02dθ
) and w̃2 = (w̃21, . . . , w̃2dθ

), then Ĝw̃2(X, α̃) is

a consistent estimator of Gw02(X,α0). Therefore, the estimator of J02 is J̃02 =

1
n

∑n
i=1 Ĝw̃2(Xi, α̃)

′
Σ̂0(Xi)

−1Ĝw̃2(Xi, α̃).
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Theorem 5.2 Under the conditions of Theorem 5.1 (ii), J̃02 = J02+op(1).

Theorem 5.2 states that the estimator J̃02 of the covariance matrix J02 is

consistent.

2.6 Simulation

We assess the finite sample performance of the proposed estimator in this

section. The simulation is based on a nonparametric regression

Y1 = h0(Y2) + U

where h0(Y2) = exp(Y2)/(1 + exp(Y2)). We assume that Y2 is generated as Y2 =

aX2 +R(U + c) + bε. X2, ε, and U are independent and distributions of those are

X2 ∼ N(1, σ2), ε ∼ N(1, σ2), and U ∼ N(0, σ2) with (a, b, c, R, σ) = (0.6, 0.2, 1, 0.2,

0.7). The distributions of X2 and ε are truncated on [0, 2] and the distribution

of U is truncated on [−1, 1]. Thus the support of Y2 is [0, 2]. As in Ai and Chen

(2003), we approximate the unknown h0(Y2) by a power series of fourth order mul-

tiplied by the cumulative distribution function of a standard normal since h0(Y2)

is bounded between zero and one. So the approximate regression model is

Y1 ≈ π0Φ(Y2) + π1Φ(Y2)Y2 + π2Φ(Y2)Y
2
2 + π3Φ(Y2)Y

3
2 + U

where Φ(Y2) denotes the standard normal cumulative distribution function.

We also use the general form of generating processes for the measurement

error which is similar to those in Hu and Schennach (2008)

fY ∗
2 |Y2(y

∗
2 | y2) =

1

σ(y2)
fν

(
y∗2 − y2

σ(y2)

)
,

where σ(y2) = 1.5 exp(−y2) and fν is a density function to be specified below

for three models: heteroskedastic measurement error with zero mean, nonadditive

measurement error with zero mode, and nonadditive measurement error with zero

median.
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(1) Heteroskedastic Measurement Error with Zero Mean: a measurement

error is

Y ∗
2 = Y2 + σ(y2)ν

with Y2 ⊥ ν. The error structure in the simulation is Fν(ν) = Φ(ν).

(2) Nonadditive Measurement Error with Zero Mode: let

fY ∗
2 |Y2(y

∗
2 | y2) =

g(y∗2, y2)∫∞
−∞ g(y

∗
2, y2)dy∗2

,

g(y∗2, y2) = exp

{
h(y2)

[(
y∗2 − y2

σ(y2)

)
− exp

(
y∗2 − y2

σ(y2)

)]}
with h(y2) = exp(−0.1y2). Then fY ∗

2 |Y2(y
∗
2 | y2) has the unique mode at y2 for any

h(y2) > 0.

(3) Nonadditive Measurement Error with Zero Median: let the correspond-

ing cumulative distribution function be

FY ∗
2 |Y2(y

∗
2 | y2)

=
1

π
arctan

{
h(y2)

[
1

2
+

1

2
exp

(
y∗2 − y2

σ(y2)

)
−
(
−y

∗
2 − y2

σ(y2)

)]}
+

1

2

with h(y2) = exp(−0.1y2). Then FY ∗
2 |Y2(y2 | y2) = 1

2
for any h(y2) > 0.

We consider three estimators: (i) the (inconsistent) SMD estimator from Ai

and Chen (2003) which is obtained using error-laden data, (ii) the (infeasible) SMD

estimator from Ai and Chen (2003) which is obtained using error-free data, and (iii)

the proposed two-stage SML-SMD estimator. We construct sieves for functions of

two variables using tensor product bases of univariate trigonometric series in our

estimator. In both SMD estimators, we use a tensor product polynomial sieve

to approximate the conditional mean function which is the set of instruments:

{1, X2, X
2
2 , . . . , X

kn
2 } for kn ≥ 3. The sample size is 1, 000 and the procedures

are repeated 100 times to obtain the root integrated mean squared error (RIMSE)

according to the following discrete expression: ((200)−1
∑199

j=0 mean{[h0(0+0.01j)−
ĥ(0 + 0.01j)]2})1/2, where mean{·} denotes the average over all 100 estimators ĥ

for each procedure.
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Table 2.1 reports estimation results. RIMSE from our proposed estimator

is smaller than that from the SMD estimator obtained using error-laden data for

all cases of identification conditions for measurement error.

2.7 Summary and Concluding Remarks

We consider semiparametric estimation of models defined by conditional

moment restrictions, which contain finite dimensional unknown parameters and

infinite dimensional unknown functions. We extend these models to include the

case where the unknown functions depend on endogenous variables which are con-

taminated by nonclassical measurement errors. A two-stage estimation procedure

is proposed to recover the true conditional density of endogenous variables given

conditioning variables masked by the nonclassical measurement errors, and to rec-

tify the difficulty associated with endogeneity of the unknown functions. Specifi-

cally, we estimate conditional density of endogenous variables given conditioning

variables in the first stage using sieve maximum likelihood estimation, and then

estimate parameters of interest in the second stage using sieve minimum distance

estimation. We show that the proposed estimator of the infinite dimensional un-

known functions is consistent with a rate faster than n−1/4 under a certain metric,

and the proposed estimator of the finite dimensional unknown parameters obtains

root-n asymptotic normality. Monte Carlo evidence illustrates the usefulness of

our method.
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2.8 Mathematical Appendix

Proof of Theorem 3.1 Since Y ∗ ≡ (Y1, Y
∗′
2 )

′
and X ≡ (X

′
1, X

′
2)

′
, eqn. 2.9

follows by the fact that

fY ∗|X(y | x)

≡ fY1Y ∗
2 |X2X1

(y1, y
∗
2 | x2, x1)

=
∫
Y2

fY1Y2Y ∗
2 |X2X1

(y1, y2, y
∗
2 | x2, x1)dy2

=
∫
Y2

fY1|Y2Y ∗
2 X2X1

(y1 | y2, y
∗
2, x2, x1)fY2Y ∗

2 |X2X1
(y2, y

∗
2 | x2, x1)dy2

=
∫
Y2

fY1|Y2X1
(y1 | y2, x1)fY2Y ∗

2 |X2X1
(y2, y

∗
2 | x2, x1)dy2

=
∫
Y2

fY1|Y2X1
(y1 | y2, x1)fY ∗

2 |Y2X2X1
(y∗2 | y2, x2, x1)fY2|X2X1

(y2 | x2, x1)dy2

=
∫
Y2

fY1|Y2X1
(y1 | y2, x1)fY ∗

2 |Y2X1
(y∗2 | y2, x1)fY2|X2X1

(y2 | x2, x1)dy2,

where the fourth equality and the sixth equality are obtained by Assumption 3.2 (i)

and (ii), respectively. The equation above relates the joint densities of the observable

variables to those of unobservable variables. We need to show the solution to the equation

is unique. By the definition 3.1 and the eqn. 2.9, we get an operator equivalence

relationship: for an arbitrary g ∈ G(X2)[
Ly1Y ∗

2 |X2x1
g
]
(y∗2)

=
∫
X2

fY1Y ∗
2 |X2X1

(y1, y
∗
2 | x2, x1)g(x2)dx2

=
∫
X2

∫
Y2

fY ∗
2 |Y2X1

(y∗2 | y2, x1)fY1|Y2X1
(y1 | y2, x1)fY2|X2X1

(y2 | x2, x1)dy2g(x2)dx2

=
∫
Y2

fY ∗
2 |Y2X1

(y∗2 | y2, x1)fY1|Y2X1
(y1 | y2, x1)

∫
X2

fY2|X2X1
(y2 | x2, x1)g(x2)dx2dy2

=
∫
Y2

fY ∗
2 |Y2X1

(y∗2 | y2, x1)fY1|Y2X1
(y1 | y2, x1)

[
LY2|X2x1

g
]
(y2)dy2

=
∫
Y2

fY ∗
2 |Y2X1

(y∗2 | y2, x1)
[
4y1|Y2x1

LY2|X2x1
g
]
(y2)dy2

=
[
LY ∗

2 |Y2x1
4y1|Y2x1

LY2|X2x1
g
]
(y∗2),
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where the third equality is obtained by an interchange of the order of integration. Thus

eqn. 2.9 defines the operator equivalence over the domain g ∈ G(X2):

Ly1Y ∗
2 |X2x1

= LY ∗
2 |Y2x1

4y1|Y2x1
LY2|X2x1

. (2.12)

Next, we note that integration of eqn. 2.13 over all y1 ∈ Y1 yields

LY ∗
2 |X2x1

= LY ∗
2 |Y2x1

LY2|X2x1
,

since integration of 4y1|Y2x1
becomes the identity operator. Since LY ∗

2 |Y2x1
is one-to-one

from Assumption 3.3, isolating LY2|X2x1
yields

LY2|X2x1
= L−1

Y ∗
2 |Y2x1

LY ∗
2 |X2x1

.

Substitution of the expression into eqn. 2.13 yields

Ly1Y ∗
2 |X2x1

= LY ∗
2 |Y2x1

4y1|Y2x1
L−1
Y ∗
2 |Y2x1

LY ∗
2 |X2x1

.

Since LY ∗
2 |X2x1

is one-to-one from Assumption 3.3, by rearranging, we get the operator

equivalence defined over a dense subset of G(Y∗2 )

Ly1Y ∗
2 |X2x1

L−1
Y ∗
2 |X2x1

= LY ∗
2 |Y2x1

4y1|Y2x1
L−1
Y ∗
2 |Y2x1

.

Thus the known operator Ly1Y ∗
2 |X2x1

L−1
Y ∗
2 |X2x1

defined in terms of densties of the ob-

servable variables (Y ∗, X) admits a spectral decomposition (an eigenvalue-eigenfunction

decomposition). The eigenvalues of the known operator (the diagonal elements of the

4y1|Y2x1
operator, i.e., {fY1|Y2X1

(y1 | y2, x1)} for a given (y1, x1) and for all Y2) and the eigenfunctions of the known op-

erator (the kernel of the integral operator LY ∗
2 |Y2x1

, i.e., {fY ∗
2 |Y2X1

(· | y2, x1)} for a given

x1 and for all Y2) provide the unobserved densities of interest. For the uniqueness of the

spectral decomposition, we use similar arguments in Theorem 1 of Hu and Schennach

(2008) 2. �

2To ensure uniqueness of the spectral decomposition, they show four techniques: First, The-
orem XV.4.5 in Dunford and Schwartz (1971) guarantees uniqueness up to some normalizations.
Second, the a priory arbitrary scale of the eigenfunctions is fixed by the requirement that den-
sities must integrate to 1. Third, Assumption 3.4 and the fact that the eigenfunctions (which
do not depend on Y1, unlike the eigenvalues) must be consistent across different values of the
dependent variable Y1 are employed to avoid any ambiquity in the definition of the eigenfunctions
when there is an eigenvalue degeneracy that involves two eigenfunctions fY ∗

2 |Y2X1(· | ya
2 , x1) and

fY ∗
2 |Y2X1(· | yb

2, x1) for some value of Y1. Fourth, Assumption 3.5 is used to uniquely determine
the ordering and indexing of the eigenvalues and eigenfunctions.
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Let

Q̂n(α) =
1
n

n∑
i=1

m̂(Xi, α)
′
[Σ̂(Xi)]−1m̂(Xi, α),

Qn(α) =
1
n

n∑
i=1

m(Xi, α)
′
[Σ(Xi)]−1m(Xi, α),

Q(α) = E
[
m(X,α)

′
[Σ(X)]−1m(X,α)

]
.

We use the following result to prove Theorem 4.1.

Lemma A.1 Suppose that A and B are compact subsets of a space with norm

‖α‖s,α and a space with norm ‖β‖s,β , respectively, and Zt (t = 1, 2, · · · ) are i.i.d. Also

suppose that (i) V ar[ρ(Z,α) | X] is bounded for each α ∈ A; (ii) ‖β̂ − β0‖s,β = o(1);

(iii) there is b(Z) and ν > 0 with |ρ(Z, α̃)−ρ(Z,α)| ≤ b(Z)‖α̃−α‖νs,α and E[q̂(x1)2] <∞

where q̂ = (q̂(x1), · · · , q̂(xn))
′
=
(∫

b(Z)f̂Y |X(y | x1; ψ̂)dy, · · · ,
∫
b(Z)f̂Y |X(y | xn; ψ̂)dy

)′

.

Then supα∈A |Q̂n(α)−Q(α)| = op(1) and Q(α) is continuous.

Proof of Lemma A.1 The proof will proceed by verifying the hypotheses of

Lemma A.2 of Newey and Powell (2003). Their compactness of a parameter space is as-

sumed directly in our hypothesis (i). To show that hypothesis (ii) holds (pointwise con-

vergence in α), let ĝ(α) = (m̂(X1, α), · · · , m̂(Xn, α))
′
, and g(α) = (m(X1, α), · · · ,m(Xn,

α))
′
. We use the notation . for “ smaller than up to a generic constant.” Note that for

some subsequence {nj} a.s.,∣∣∣Q̂n(α)−Qn(α)
∣∣∣ . ∣∣‖ĝ(α)‖2E − ‖g(α)‖2E

∣∣ /n
≤
(
‖ĝ(α)− g(α)‖2E + 2‖g(α)‖E · ‖ĝ(α)− g(α)‖E

)
/n.

Strictly speaking, the first inequality above holds almost surely for some subsequence

{njk} of an arbitrary subsequence {nj} of {n} as a consequence of Assumption 4.3,

ensuring that Σ̂(X) = Op(1) uniformly over X ∈ X . For clarity and convenience, we

will continue to use the notation above without explicit reference to sub-subsequences

or probability zero concepts.

Also note that ‖g(α)‖2E/n = Op(1) by the Markov inequality from V ar(ρ(Z,α) |
X) <∞. Thus, it suffices to show ‖ĝ(α)−g(α)‖2E/n = op(1) to show

∣∣∣Q̂n(α)−Qn(α)
∣∣∣ =
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op(1).

E
[
‖ĝ(α)− g(α)‖2E/n

]
= E

[
(ĝ(α)− g(α))

′
(ĝ(α)− g(α)) /n

]
= E

[
1
n

n∑
i=1

(∫
ρ(Z,α)f̂Y |X(y | xi; ψ̂)dy −

∫
ρ(Z,α)fY |X(y | xi;ψ0)dy

)′

×
(∫

ρ(Z,α)f̂Y |X(y | xi; ψ̂)dy −
∫
ρ(Z,α)fY |X(y | xi;ψ0)dy

)]

= E

 1
n

n∑
i=1

dρ∑
j=1

(∫
ρj(Z,α)f̂Y |X(y | xi; ψ̂)dy −

∫
ρj(Z,α)fY |X(y | xi;ψ0)dy

)2


= E

 1
n

n∑
i=1

dρ∑
j=1

(∫
ρj(Z,α)

(
f̂Y |X(y | xi; ψ̂)− fY |X(y | xi;ψ0)

)
dy

)2


=
1
n

n∑
i=1

dρ∑
j=1

E

[(∫
ρj(Z,α)

(
f̂Y |X(y | xi; ψ̂)− fY |X(y | xi;ψ0)

)
dy

)2
]

=
1
n

n∑
i=1

dρ∑
j=1

E

[(∫ ∫
ρj(Z,α)

×
{
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)
(
f̂Y2|X2X1

(y2 | x2i, x1i)− fY2|X2X1
(y2 | x2i, x1i)

)
+ fY2|X2X1

(y2 | x2i, x1i)

×
(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)− fY1|Y2X1
(y1 | y2, x1i;ψ0)

)}
dy1dy2

)2]

≤ 1
n

n∑
i=1

dρ∑
j=1

E

[(∫ ∫
|ρj(Z,α)|

×
{
|f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)ω−1(y2, x2i, x1i)|‖f̂2 − f2‖∞,ω

+
∣∣∣∣fY2|X2X1

(y2 | x2i, x1i)
dfY1|Y2X1

(y1 | y2, x1i;ψ0)
dψ

ω−1(ξ)
∣∣∣∣ ‖ψ̂ − ψ0‖∞,ω

}
dy1dy2

)2]

≤ 1
n

n∑
i=1

dρ∑
j=1

E

[(∫ ∫
|ρj(Z,α)|

{
|f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)ω−1(y2, x2i, x1i)|

+
∣∣∣∣fY2|X2X1

(y2 | x2i, x1i)
dfY1|Y2X1

(y1 | y2, x1i;ψ0)
dψ

ω−1(ξ)
∣∣∣∣ }dy1dy2‖β̂ − β0‖s,β

)2]

=
1
n

n∑
i=1

dρ∑
j=1

E

[(∫ ∫
|ρj(Z,α)|

{
|f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)ω−1(y2, x2i, x1i)|

+
∣∣∣∣fY2|X2X1

(y2 | x2i, x1i)
dfY1|Y2X1

(y1 | y2, x1i;ψ0)
dψ

ω−1(ξ)
∣∣∣∣ }dy1dy2

)2]
‖β̂ − β0‖2s,β

= o(1),
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since ‖β̂ − β0‖s,β = op(1). Therefore, we get ‖ĝ(α) − g(α)‖2E/n = op(1) by the Markov

inequality. Since Qn(α) = Q(α) + op(1) by the weak law of large numbers, the triangle

inequality gives hypothesis (ii) of Newey and Powell (2003). To show hypothesis (iii), let

q̂ = (q̂(x1), · · · , q̂(xn))
′
, and B̃n =

[
‖q̂‖2E + 2‖q̂‖E · ‖ĝ(α0)‖E

]
/n. Note that ‖q̂‖2E/n =

Op(1) and ‖ρ(Z,α0)‖2E/n = Op(1) so that B̃n = Op(1). Since ‖·‖νs,α is bounded on A×A
by the compactness of the parameter space, there is a constant C such that∣∣∣Q̂n(α̃)− Q̂n(α)

∣∣∣
.
∣∣‖ĝ(α̃)‖2E − ‖ĝ(α)‖2E

∣∣ /n
≤
(
‖ĝ(α̃)− ĝ(α)‖2E + 2‖ĝ(α)‖E · ‖ĝ(α̃)− ĝ(α)‖E

)
/n

≤
(
‖ĝ(α̃)− ĝ(α)‖2E + 2‖ĝ(α)‖E · ‖ĝ(α̃)− ĝ(α)‖E

+ 2‖ĝ(α0)‖E · ‖ĝ(α̃)− ĝ(α)‖E − 2‖ĝ(α0)‖E · ‖ĝ(α̃)− ĝ(α)‖E
)
/n

≤
(
‖ĝ(α̃)− ĝ(α)‖2E + 2‖ĝ(α)− ĝ(α0)‖E · ‖ĝ(α̃)− ĝ(α)‖E

+ 2‖ĝ(α0)‖E · ‖ĝ(α̃)− ĝ(α)‖E
)
/n

=
{ n∑
i=1

dρ∑
j=1

(∫
(ρj(Z, α̃)− ρj(Z,α))f̂Y |X(y | xi; ψ̂)dy

)2

+ 2
[ n∑

i=1

dρ∑
j=1

(∫
(ρj(Z,α)− ρj(Z,α0))f̂Y |X(y | xi; ψ̂)dy

)2


×

 n∑
i=1

dρ∑
j=1

(∫
(ρj(Z, α̃)− ρj(Z,α))f̂Y |X(y | xi; ψ̂)dy

)2
]1/2

+ 2
[ n∑

i=1

dρ∑
j=1

(∫
ρj(Z,α0)f̂Y |X(y | xi; ψ̂)dy

)2


×

 n∑
i=1

dρ∑
j=1

(∫
(ρj(Z, α̃)− ρj(Z,α))f̂Y |X(y | xi; ψ̂)dy

)2
]1/2}

/n

≤
{ n∑
i=1

dρ∑
j=1

(∫
bj(Z)f̂Y |X(y | xi; ψ̂)dy

)2

‖α̃− α‖2νs,α

+ 2
[ n∑

i=1

dρ∑
j=1

(∫
bj(Z)f̂Y |X(y | xi; ψ̂)dy

)2

‖α− α0‖2νs,α
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×

 n∑
i=1

dρ∑
j=1

(∫
bj(Z)f̂Y |X(y | xi; ψ̂)dy

)2

‖α̃− α‖2νs,α

]1/2

+ 2
[ n∑

i=1

dρ∑
j=1

(∫
ρj(Z,α0)

)2


×

 n∑
i=1

dρ∑
j=1

(∫
bj(Z)f̂Y |X(y | xi; ψ̂)dy

)2

‖α̃− α‖2νs,α

]1/2}
/n

=
{ n∑
i=1

dρ∑
j=1

(∫
bj(Z)f̂Y |X(y | xi; ψ̂)dy

)2

‖α̃− α‖νs,α

+ 2
n∑
i=1

dρ∑
j=1

(∫
bj(Z)f̂Y |X(y | xi; ψ̂)dy

)2

‖α− α0‖νs,α

+ 2
[ n∑

i=1

dρ∑
j=1

(∫
ρj(Z,α0)f̂Y |X(y | xi; ψ̂)dy

)2


×

 n∑
i=1

dρ∑
j=1

(∫
bj(Z)f̂Y |X(y | xi; ψ̂)dy

)2
]1/2}

‖α̃− α‖νs,α/n

≤ Bn‖α̃− α‖νs,α,

where Bn = CB̃n for some constant C and

B̃n =
{ n∑
i=1

dρ∑
j=1

(∫
bj(Z)f̂Y |X(y | xi; ψ̂)dy

)2

+ 2
[( n∑

i=1

dρ∑
j=1

(∫
(ρj(Z,α0))f̂Y |X(y | xi; ψ̂)dy

)2)

×
( n∑
i=1

dρ∑
j=1

(∫
bj(Z)f̂Y |X(y | xi; ψ̂)dy

)2)]1/2}
/n.

Then hypothesis (iii) follows by Bn = C ·Op(1). �

Proof of Theorem 4.1 (i) See Lemma 2 in Hu and Schennach (2008).

(ii) We prove the results by verifying the hypotheses of Lemma A.1 of Newey

and Powell (2003). Hypothesis (i) follows by Theorem 4.1 of Newey and Powell (2003).

Hypothesis (ii) follows by Lemma A.1. Note that hypotheses (i) and (iii) of Lemma

A.1 are satisfied by Assumption 4.6 and hypothesis (ii) of Lemma A.1 is satisfied by the

result in Theorem 4.1 (i). Finally, we verify hypothesis (iii) by choosing Πnα ∈ An such

that ‖Πnα− α‖s,α = o(1). �
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Lemma A.2 Suppose that ‖β̂ − β0‖β = op(n−1/4). Then we have (i) under

Assumptions 4.1, 4.6, 4.8 and 4.9, ‖ĝ(α)−g(α)‖2E/n = op(n−1/2) uniformly over α ∈ A;

(ii) under Assumptions 4.1-4.2 and 5.1, ‖ĝ(α0)‖2E/n = Op(δ1n) such that δ1n = o(1).

Proof of Lemma A.2 (i) From the proof of Lemma A.1, we have

E
[
‖ĝ(α)− g(α)‖2E/n

]
=

1
n

n∑
i=1

dρ∑
j=1

E

[(∫
ρj(Z,α)

(
f̂Y |X(y | xi; ψ̂)− fY |X(y | xi;ψ0)

)
dy

)2
]

=
1
n

n∑
i=1

dρ∑
j=1

E

[(∫ ∫
ρj(Z,α)

(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)f̂Y2|X2X1
(y2 | x2i, x1i)

− fY1|Y2X1
(y1 | y2, x1i;ψ0)fY2|X2X1

(y2 | x2i, x1i)
)
dy1dy2

)2]

=
1
n

n∑
i=1

dρ∑
j=1

E

[(∫ ∫
ρj(Z,α)

(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)f̂Y2|X2X1
(y2 | x2i, x1i)

− f̂Y1|Y2X1
(y1 | y2, x1i; ψ̂)fY2|X2X1

(y2 | x2i, x1i)

+ f̂Y1|Y2X1
(y1 | y2, x1i; ψ̂)fY2|X2X1

(y2 | x2i, x1i)

− fY1|Y2X1
(y1 | y2, x1i;ψ0)fY2|X2X1

(y2 | x2i, x1i)
)
dy1dy2

)2]

=
1
n

n∑
i=1

dρ∑
j=1

E

[(∫ ∫
ρj(Z,α)

×
{
fY2|X2X1

(y2 | x2i, x1i)
(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)− fY1|Y2X1
(y1 | y2, x1i;ψ0)

)
+ f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)

×
(
f̂Y2|X2X1

(y2 | x2i, x1i)− fY2|X2X1
(y2 | x2i, x1i)

)}
dy1dy2

)2]

=
1
n

n∑
i=1

dρ∑
j=1

E

[(∫ ∫
ρj(Z,α)

×
{(

1
fY ∗

2 |Y2X1
(y∗2i | y2, x1i)

)
d

dψ
fY1|Y2X1

(y1 | y2, x1i;ψ0)[ψ̂ − ψ0]

× fY ∗
2 |Y2X1

(y∗2i | y2, x1i)fY2|X2X1
(y2 | x2i, x1i)
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+

(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)
fY1|Y2X1

(y1 | y2, x1i;ψ0)fY ∗
2 |Y2X1

(y∗2i | y2, x1i)
)

)
fY1|Y2X1

(y1 | y2, x1i;ψ0)

× fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

× [f̂Y2|X2X1
(y2 | x2i, x1i)− fY2|X2X1

(y2 | x2i, x1i)]
}
dy1dy2

)2]

≤ 1
n

n∑
i=1

dρ∑
j=1

E

[ ∫ (∫
ρj(Z,α)

×
{(

1
fY ∗

2 |Y2X1
(y∗2i | y2, x1i)

)
d

dψ
fY1|Y2X1

(y1 | y2, x1i;ψ0)[ψ̂ − ψ0]

× fY ∗
2 |Y2X1

(y∗2i | y2, x1i)fY2|X2X1
(y2 | x2i, x1i)

+

(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)
fY1|Y2X1

(y1 | y2, x1i;ψ0)fY ∗
2 |Y2X1

(y∗2i | y2, x1i)
)

)
fY1|Y2X1

(y1 | y2, x1i;ψ0)

× fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

× [f̂Y2|X2X1
(y2 | x2i, x1i)− fY2|X2X1

(y2 | x2i, x1i)]
}
dy2

)2

dy1

]

=
1
n

n∑
i=1

dρ∑
j=1

∫
E

[(
fY ∗|X(y∗i | xi;β0)

1
fY ∗|X(y∗i | xi;β0)

∫
ρj(Z,α)

×
{(

1
fY ∗

2 |Y2X1
(y∗2i | y2, x1i)

)
d

dψ
fY1|Y2X1

(y1 | y2, x1i;ψ0)[ψ̂ − ψ0]

× fY ∗
2 |Y2X1

(y∗2i | y2, x1i)fY2|X2X1
(y2 | x2i, x1i)

+

(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)
fY1|Y2X1

(y1 | y2, x1i;ψ0)fY ∗
2 |Y2X1

(y∗2i | y2, x1i)
)

)
fY1|Y2X1

(y1 | y2, x1i;ψ0)

× fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

× [f̂Y2|X2X1
(y2 | x2i, x1i)− fY2|X2X1

(y2 | x2i, x1i)]
}
dy2

)2]
dy1

=
1
n

n∑
i=1

dρ∑
j=1

∫ (
sup
x
fY ∗|X(y∗i | xi;β0)

)(
sup
x

sup
y2
ρj(Z,α)

)
E

[(
1

fY ∗|X(y∗i | xi;β0)

×
∫ {(

1
fY ∗

2 |Y2X1
(y∗2i | y2, x1i)

)
d

dψ
fY1|Y2X1

(y1 | y2, x1i;ψ0)[ψ̂ − ψ0]

× fY ∗
2 |Y2X1

(y∗2i | y2, x1i)fY2|X2X1
(y2 | x2i, x1i)
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+

(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)
fY1|Y2X1

(y1 | y2, x1i;ψ0)fY ∗
2 |Y2X1

(y∗2i | y2, x1i)
)

)
fY1|Y2X1

(y1 | y2, x1i;ψ0)

× fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

× [f̂Y2|X2X1
(y2 | x2i, x1i)− fY2|X2X1

(y2 | x2i, x1i)]
}
dy2

)2]
dy1

≤ 1
n

n∑
i=1

dρ∑
j=1

∫ (
sup
x
fY ∗|X(y∗i | xi;β0)

)(
sup
x

sup
y2
ρj(Z,α)

)

×
(

max
{

sup
x

sup
y2

(
1

fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

)
,

sup
x

sup
y2

(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)
fY1|Y2X1

(y1 | y2, x1i;ψ0)fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

)})
× E

[(
1

fY ∗|X(y∗i | xi;β0)

{∫
d

dψ
fY1|Y2X1

(y1 | y2, x1i;ψ0)[ψ̂ − ψ0]

× fY ∗
2 |Y2X1

(y∗2i | y2, x1i)fY2|X2X1
(y2 | x2i, x1i)dy2

+
∫
fY1|Y2X1

(y1 | y2, x1i;ψ0)fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

× [f̂Y2|X2X1
(y2 | x2i, x1i)− fY2|X2X1

(y2 | x2i, x1i)]dy2

})2]
dy1

≤ 1
n

n∑
i=1

dρ∑
j=1

∫ (
sup
x
fY ∗|X(y∗i | xi;β0)

)(
sup
x

sup
y2
ρj(Z,α)

)

×
(

max
{

sup
x

sup
y2

(
1

fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

)
,

sup
x

sup
y2

(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)
fY1|Y2X1

(y1 | y2, x1i;ψ0)fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

)})

× E

{(
d ln fY ∗|X(y∗i | xi;β0)

dβ
[β̂ − β0]

)2
}
dy1

≤ 1
n

n∑
i=1

dρ∑
j=1

∫ (
sup
x
fY ∗|X(y∗i | xi;β0)

)(
sup
x

sup
y2
ρj(Z,α)

)

×
(

max
{

sup
x

sup
y2

(
1

fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

)
,

sup
x

sup
y2

(
f̂Y1|Y2X1

(y1 | y2, x1i; ψ̂)
fY1|Y2X1

(y1 | y2, x1i;ψ0)fY ∗
2 |Y2X1

(y∗2i | y2, x1i)

)})
dy1‖β̂ − β0‖2β

= o(n−1/2),
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since ‖β̂ − β0‖β = op(n−1/4). Thus the result follows by the Markov inequality.

(ii) See Corollary A.1 (ii) in Ai and Chen (2003). �

Lemma A.3 (i) Under Assumptions 4.1-4.2, 4.3(ii), 4.6(iii), and 4.10,

we obtain uniformly over α ∈ {An : ‖α − α0‖α = o(1)}: (1/n)
∑n

i=1 ‖m(Xi, α)‖2E −
E[‖m(X,α)‖2E ] = op(n−1/2).

(ii) Suppose that ‖β̂ − β0‖β = op(n−1/4). Under Assumptions 4.1-4.3, 4.6, 4.8,

4.10, we obtain uniformly over α ∈ A, ‖α − α0‖α = o(ηn): (1/n)
∑n

i=1 ‖m̂(Xi, α)‖2E =

op(η2
n) and (1/n)

∑n
i=1 ‖m(Xi, α)‖2E = op(η2

n), where ηn = n−τ with τ ≤ 1/4.

Proof of Lemma A.3 (i) See Corollary A.2(i) of Ai and Chen (2003).

(ii) The result follows from applying Lemma A.2(i) and A.3(i), and

E[‖m(X,α)‖2E ] = o(η2
n) by Assumptions 4.3(ii) and 4.9. �

Lemma A.4 Suppose that ‖β̂ − β0‖β = op(n−1/4). Assumptions 4.1-4.3,

4.6, and 4.8-4.9 imply : (i) Q̂n(α) − Qn(α) = op(n−1/4) uniformly over α ∈ An; and

(ii) Q̂n(α) − Q̂n(α0) − {Qn(α) − Qn(α0)} = op(ηnn−1/4) uniformly over α ∈ An with

‖α− α0‖α ≤ o(ηn), where ηn = n−τ with τ ≤ 1/4.

Proof of Lemma A.4 (i) The result follows from Lemma A.2(i) and Assumption

4.3.

(ii) The result follows from Lemma A.3 and Lemma A.4(ii). �

Proof of Theorem 4.2 (i) See Theorem 2 in Hu and Schennach (2008).

(ii) It follows from a similar argument of Theorem 3.1 in Ai and Chen (2003).

�

Let

dĝ(α)
dα

[v∗2n] =
(
dm̂(X1, α)

dα
[v∗2n], · · · ,

dm̂(Xn, α)
dα

[v∗2n]
)′

,

dg(α)
dα

[v∗2n] =
(
dm(X1, α)

dα
[v∗2n], · · · ,

dm̃(Xn, α)
dα

[v∗2n]
)′

,

where

dm̂(X,α)
dα

[v∗2n] =
∫
dρ(Z,α)
dα

[v∗2n]f̂Y |X(y | x; ψ̂)dy,

dm(X,α)
dα

[v∗2n] =
∫
dρ(Z,α)
dα

[v∗2n]fY |X(y | x;ψ0)dy,
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by the interchangability of integral and derivative. Recall the definition of neighborhoods

N02n and N02 introduced in Section 5.

Lemma A.5 (i) Assumptions 4.1, 4.8 and 5.1, 5.3, 5.5-5.6 imply :

sup
α̃∈N02n

1
n

∥∥∥∥dg(α̃)
dα

[v∗2n]−
dg(α0)
dα

[v∗2n]
∥∥∥∥2

E

= op(n−1/2).

(ii) In addition, if ‖β̂ − β0‖β = op(n−1/4) holds, then

sup
α̃∈N02n

1
n

∥∥∥∥dĝ(α̃)
dα

[v∗2n]−
dg(α̃)
dα

[v∗2n]
∥∥∥∥2

E

= op(n−1/2).

Proof of Lemma A.5 (i) The result can be proved by the same argument of

Corollary C.1 (ii) of Ai and Chen (2003).

(ii) We have

E

[
1
n

∥∥∥∥dĝ(α̃)
dα

[v∗2n]−
dg(α̃)
dα

[v∗2n]
∥∥∥∥2

E

]

=
1
n

n∑
i=1

dρ∑
j=1

E

[(∫
dρj(Z, α̃)

dα
[v∗2n]

(
f̂Y |X(y | xi; ψ̂)− fY |X(y | xi;ψ0)

))2
]

= o(n−1/2),

uniformly over α̃ ∈ N02n since ‖β̂ − β0‖β = op(n−1/4). Thus the result follows by the

Markov inequality. �

Let

dQ̂n(α)
dα

[v∗2n] =
1
n

n∑
i=1

{
dm̂(Xi, α)

dα
[v∗2n]

}′

[Σ̂(Xi)]−1

{
dm̂(Xi, α)

dα
[v∗2n]

}
,

dQn(α)
dα

[v∗2n] =
1
n

n∑
i=1

{
dm(Xi, α)

dα
[v∗2n]

}′

[Σ(Xi)]−1

{
dm(Xi, α)

dα
[v∗2n]

}
and

d2ĝ(α)
dαdα

[v∗2n, v
∗
2n] =

(
d2m̂(X1, α)

dαdα
[v∗2n, v

∗
2n], · · · ,

d2m̂(Xn, α)
dαdα

[v∗2n, v
∗
2n]
)′

,

d2g(α)
dαdα

[v∗2n, v
∗
2n] =

(
d2m(X1, α)

dαdα
[v∗2n, v

∗
2n], · · · ,

d2m(Xn, α)
dαdα

[v∗2n, v
∗
2n]
)′

,

where

d2m̂(X,α)
dαdα

[v∗2n, v
∗
2n] =

∫
d2ρ(Z,α)
dαdα

[v∗2n, v
∗
2n]f̂Y |X(y | x; ψ̂)dy,

d2m(X,α)
dαdα

[v∗2n, v
∗
2n] =

∫
d2ρ(Z,α)
dαdα

[v∗2n, v
∗
2n]fY |X(y | x;ψ0)dy.
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by the interchangability of integral and derivative.

Lemma A.6 Suppose that ‖β̂ − β0‖β = op(n−1/4). (i) Under Assumptions

4.1, 4.3-4.4 4.6, 4.8, 4.10, and 5.8, we have

sup
α̃∈N02n

1
n

n∑
i=1

{
d2m̂(Xi, α̃)
dαdα

[v∗2n, v
∗
2n]
}′

[Σ̂(Xi)]−1m̂(Xi, α̃) = op(n−1/4).

(ii) Under Assumptions 4.1, 4.3, 4.8, 5.1(ii), 5.3, 5.5-5.6, we have

sup
α̃∈N02n

dQ̂n(α̃)
dα

[v∗2n] =
dQn(α0)
dα

[v∗2n] + op(n−1/4).

Proof of Lemma A.6 Proof is similar to Ai and Chen (2003). (i) For some

constant C, Assumption 4.3 implies

∣∣∣∣∣ 1n
n∑
i=1

{
d2m̂(Xi, α̃)
dαdα

[v∗2n, v
∗
2n]
}′

[Σ̂(Xi)]−1m̂(Xi, α̃)

∣∣∣∣∣
≤ C

√∥∥∥∥d2ĝ(α)
dαdα

[v∗2n, v
∗
2n]
∥∥∥∥2

E

/n

√
‖ĝ(α)‖2E /n.

Then the result follows from Lemma A.3(ii) because we have that uniformly over α̃ ∈
N02n, ∥∥∥∥d2ĝ(α)

dαdα
[v∗2n, v

∗
2n]
∥∥∥∥2

E

/n ≤ c1(Z)2 = Op(1)

by Assumption 5.8.

(ii) Uniformly over α̃ ∈ N02n,

dQ̂n(α̃)
dα

[v∗2n]

=
1
n

n∑
i=1

{
dm̂(Xi, α)

dα
[v∗2n]−

dm(Xi, α0)
dα

[v∗2n]
}′

[Σ̂(Xi)]−1

{
dm̂(Xi, α)

dα
[v∗2n]

}

+
1
n

n∑
i=1

{
dm(Xi, α0)

dα
[v∗2n]

}′

[Σ̂(Xi)]−1

{
dm̂(Xi, α)

dα
[v∗2n]−

dm(Xi, α0)
dα

[v∗2n]
}

+
1
n

n∑
i=1

{
dm(Xi, α0)

dα
[v∗2n]

}′

{[Σ̂(Xi)]−1 − [Σ(Xi)]−1}
{
dm(Xi, α0)

dα
[v∗2n]

}
+
dQn(α0)
dα

[v∗2n].

The result follows from Assumption 4.3 and Lemma A.5. �
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Lemma A.7 (i) Under Assumptions 4.1 4.3-4.4, 4.6, 4.8, 4.10, 5.1(ii), 5.3,

5.5-5.6, we have uniformly over α̃ ∈ N02n:

1
n

n∑
i=1

{
dm̂(Xi, α̃)

dα
[v∗2n]

}′

[Σ̂(Xi)]−1m̂(Xi, α̃)

=
1
n

n∑
i=1

{
m(Xi, α0)

dα
[v∗2]
}′

[Σ(Xi)]−1m̂(Xi, α̃) + op(n−1/2).

(ii) Under Assumptions 4.1, 5.1(ii), 5.3, 5.5-5.7, we have uniformly over α̃ ∈
N02n:

1
n

n∑
i=1

{
dm(Xi, α0)

dα
[v∗2]
}′

[Σ(Xi)]−1{m̂(Xi, α̃)− m̂(Xi, α0)} = 〈v∗2, α̃− α0〉α + op(n−1/2).

(iii) Under Assumptions 4.1, 4.3(ii), 4.8, 5.1(iii), 5.3, we have

1
n

n∑
i=1

{
dm(Xi, α0)

dα
[v∗2]
}′

[Σ(Xi)]−1m̂(Xi, α0)

=
1
n

n∑
i=1

{
m(Xi, α0)

dα
[v∗2]
}′

[Σ(Xi)]−1ρ(Xi, α0) + op(n−1/2).

Proof of Lemma A.7 (i) Uniformly over α̃ ∈ N02n,

1
n

n∑
i=1

{
dm̂(Xi, α̃)

dα
[v∗2n]

}′

[Σ̂(Xi)]−1m̂(Xi, α̃)

− 1
n

n∑
i=1

{
m(Xi, α0)

dα
[v∗2]
}′

[Σ(Xi)]−1m̂(Xi, α̃)

=
1
n

n∑
i=1

{
dm̂(Xi, α̃)

dα
[v∗2n]−

dm(Xi, α0)
dα

[v∗2n]
}′

[Σ̂(Xi)]−1m̂(Xi, α̃)

+
1
n

n∑
i=1

{
m(Xi, α0)

dα
[v∗2n]

}′ {
[Σ̂(Xi)]−1 − [Σ(Xi)]−1

}
m̂(Xi, α̃)

+
1
n

n∑
i=1

{
m(Xi, α0)

dα
[v∗2n − v∗2]

}′

[Σ(Xi)]−1m̂(Xi, α̃)

≡ A1 +A2 +A3.

Then the result follows from the fact that A1 = op(n−1/2) by Lemma A.3(ii), A.5(ii),

and Assumption 4.3(ii); A2 = op(n−1/2) by Assumption 4.3(iii) and Lemma A.3(ii);

A3 = op(n−1/2) by Assumption 5.3 and Lemma A.3(ii).
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(ii) Let ϕ(X, v∗2) =
(
dm(X,α0)

dα [v∗2]
)′

Σ(X)−1 and let

F̃ =
{
ϕ(X, v∗)m̃(X,α) : α ∈ N02n, m̃ ∈ Λγc (X ) s.t.

sup
x∈X ,α∈N02n

|m̃(x, α)−m(x, α)| = o(1)
}
,

F =
{
ϕ(X, v∗)m(X,α) : α ∈ N02n

}
.

By a similar argument to Corollary C.3(ii) of Ai and Chen (2003), F̃ and F are Donsker

classes, and we have uniformly over α ∈ N02n,

1
n

n∑
i=1

ϕ(Xi, v
∗
2){m̂(Xi, α)−m(Xi, α)} − E [ϕ(Xi, v

∗
2){m̂(Xi, α)−m(Xi, α)}]

= op(n−1/2), (2.13)

1
n

n∑
i=1

ϕ(Xi, v
∗
2){m̂(Xi, α0)−m(Xi, α0)} − E [ϕ(Xi, v

∗
2){m̂(Xi, α0)−m(Xi, α0)}]

= op(n−1/2), (2.14)

1
n

n∑
i=1

ϕ(Xi, v
∗
2){m̃(Xi, α)−m(Xi, α0)} − E [ϕ(Xi, v

∗){m(Xi, α)−m(Xi, α0)}]

= op(n−1/2). (2.15)

From eqns. 2.14 and 2.15,

1
n

n∑
i=1

ϕ(Xi, v
∗
2){m̂(Xi, α̂)− m̂(Xi, α0)} (2.16)

=
1
n

n∑
i=1

ϕ(Xi, v
∗
2){m(Xi, α̂)−m(Xi, α0)}+ E [ϕ(Xi, v

∗
2){m̂(Xi, α̂)− m̂(Xi, α0)}]

− E [ϕ(Xi, v
∗
2){m(Xi, α̂)−m(Xi, α0)}] + op(n−1/2).

Let ϕ̃(Xi, v
∗
2) =

∫
[
∫
ϕf̂Y1|Y2X1

(y1 | y2, x1; φ̂, η̂)dy1]f̂Y2|X2X1
(y2 | x2, x1)dy2. Then we have

E [ϕ(Xi, v
∗
2){m̂(Xi, α̂)− m̂(Xi, α0)}] = E [ϕ̃(Xi, v

∗
2){m(Xi, α̂)−m(Xi, α0)}] , (2.17)

E [ϕ̃(Xi, v
∗
2){m(Xi, α̂)−m(Xi, α0)}]− E [ϕ(Xi, v

∗
2){m(Xi, α̂)−m(Xi, α0)}]

= E [{ϕ̃(Xi, v
∗
2)− ϕ(Xi, v

∗
2)}{m(Xi, α̂)−m(Xi, α0)}] (2.18)

= op(n−1/2).
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Plugging eqns. 2.16, 2.18 and 2.19 into 2.17 gives for some ᾱ ∈ N02, a convex combination

of α̂ and α0 that

1
n

n∑
i=1

ϕ(Xi, v
∗
2){m̂(Xi, α̂)− m̂(Xi, α0)}

=
1
n

n∑
i=1

ϕ(Xi, v
∗
2){m(Xi, α̂)−m(Xi, α0)}+ op(n−1/2)

= E [ϕ(Xi, v
∗
2){m(Xi, α̂)−m(Xi, α0)}] + op(n−1/2)

= E

[
ϕ(Xi, v

∗
2)
dm(Xi, ᾱ)

dα
[α̂− α0]

]
+ E

[
ϕ(Xi, v

∗
2)
dm(Xi, α0)

dα
[α̂− α0]

]
− E

[
ϕ(Xi, v

∗
2)
dm(Xi, α0)

dα
[α̂− α0]

]
+ op(n−1/2)

= 〈v∗2, α̂− α0〉α + E

[
ϕ(Xi, v

∗
2)
(
dm(Xi, ᾱ)

dα
[α̂− α0]−

dm(Xi, α0)
dα

[α̂− α0]
)]

+ op(n−1/2)

= 〈v∗2, α̂− α0〉α + op(n−1/2),

where the third, fourth and fifth equalities follow from the mean value theorem, the

definition of 〈v∗2, α̂− α0〉, and Assumption 5.1(ii) and 5.7, respectively.

(iii) From the definition of ϕ̃(Xi, v
∗
2), we have

1
n

n∑
i=1

ϕ(Xi, v
∗
2){m̂(Xi, α0)−

1
n

n∑
i=1

ϕ(Xi, v
∗
2)ρ(Zi, α0)}

=
1
n

n∑
i=1

(ϕ̂(Xi, v
∗
2)− ϕ(Xi, v

∗
2)) ρ(Zi, α0).

Then the result follows from the same argument of Corollary C.3(iii) in Ai and Chen

(2003). �

Proof of Theorem 5.1 (i) See Theorem 3 in Hu and Schennach (2008).

(ii) It follows from a similar argument of Theorem 4.1 in Ai and Chen (2003).

�

Proof of Theorem 5.2

See Theorem 5.1 in Ai and Chen (2003). �
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2.9 Tables

Table 2.1: Monte Carlo simulation results

Estimator Zero Mode Zero Mean Zero Median

Infeasible SMD 0.14334 0.15796 0.14059
SML-SMD 0.14683 0.17255 0.14683

Inconsistent SMD 0.23990 0.18691 0.15668
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3.1 Introduction

In 1970’s, many of studies show the importance of controlling for both

measurement error and endogeneity due to simultaneous equation models. Most

of the studies consider the case that exogenous variables are mismeasured. It is

because of the property of linear models. As pointed out by Geraci (1997) and

Hausman (1997) among others, consideration of additional measurement error in

endogenous variables is not interesting since it is observationally equivalent to

measurement error in exogenous variables as long as both measurement errors

are uncorrelated. Indeed, if only an endogenous variable is mismeasured in the

linear parametric model, one instrumental variable is sufficient to control for both

endogeneity and measurement error unless the instrumental variable is correlated

with measurement error and unobserved drivers of dependent variable.

However, it is not easy to identify parameters in nonlinear models in the

presence of both endogeneity and measurement error because measurement er-

ror problem becomes a problem associated with the knowledge on distributions

of measurement errors. To illustrate this point, consider the following nonlinear

parametric model:

yi = f(xi; θ0) + ui

x∗i = xi + ei,

where f is a known real-valued function and θ0 is a vector of unknown parameters,

and where x∗i is a mismeasured version of true xi and ei is measurement error.

So there is no endogeneity issue by construction. By plugging in xi, the first

equation becomes yi = f(x∗i + ei; θ0) + ui. If the function f is linear, it is simply

yi = θ0x
∗
i + εi, where εi = ui + θ0ei, so that one instrumental variable which is

uncorrelated with εi could control for the measurement error. Adding endogeneity

to the equation causes no extra cost on the problem. However, if the function

f is nonlinear, the problem deviates from the method of standard instrumental

variables because x∗i is not additively separable with the measurement error ei

anymore. This is one of the reasons why measurement error is differentiated from
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endogeneity issue in nonlinear models and only single issue among them has been

considered in nonlinear models.

Since economic theory provides no general guideline in model specification

and distribution of economic variables for econometricians, general nonparametric

or semiparametric models become more popular. Chapter 1 and 2 consider both

endogeneity and measurement error in nonparametric or semiparametric regression

models. They contribute to the literature since there is no published work prior

to them on the identification and estimation of nonparametric or semiparametric

models in the presence of endogenous and mismeasured variables. Nevertheless,

each chapter has its own distinct properties. Chapter 1 considers very general ad-

ditively nonseparable models between regressors and unobserved drivers of depen-

dent variable and shows the identification and estimation of covariate-conditioned

average marginal effects. Chapter 2 restricts the model on additively separable one

but allows nonclassical measurement error. It develops semiparametric estimation

of models with conditional moment restricts, and shows that one instrumental

variable is sufficient to identify and estimate parameters of interest, even when

one regressor of interest is endogenous and mismeasured.

The purpose of the present chapter is to support the effectiveness of both

methods in the previous chapters for empirical analysis. The structure of the

paper is as follows. Section 1 uses the proposed method in chapter 1 to estimate

the impact of family income on children’s achievement. In section 2, we apply

the proposed method in chapter 2 to the estimation of Engel curves. Section 3

concludes.

3.2 The Impact of Family Income on Children’s

Achievement

This section applies the proposed estimator in chapter 1 to study the causal

effect of family income on child achievement. We also discuss how to choose optimal

bandwiths since estimation results highly depend on the choice of the smoothing
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parameters.

3.2.1 Overview

The association between family income and child development is a con-

tentious issue in economics, sociology, and developmental psychology. Even though

it has been examined in a number of studies, there is no consensus on the relative

effectiveness of income transfers and direct intervention in augmenting the human

capital of children. Income transfers could have a significant impact on the eco-

nomic well-being of children growing up in poor families if family income plays a

substantial role in child development. If not, then direct interventions, such as the

Head Start program, to improve child health, education, and parenting may be

more effective.

Using data from the Panel Study of Income Dynamics (PSID), Duncan, Ye-

ung, Brooks-Gunn, and Smith (1998) find that family income in early childhood

has the greatest impact on completed schooling, especially among children in fam-

ilies with low incomes, regardless of whether they control for fixed family effects

or not. Blau (1999) uses the matched mother-child subsample of the National

Longitudinal Survey of Youth (NLSY) to estimate the impact of parental income

on children’s cognitive, social, and emotional development. He finds that OLS

estimates of income effects are generally statistically significant and positive, but

that they are smaller and insignificant when he uses either random- or fixed-effect

strategies. In addition, his findings indicate that the effect of permanent income

is much larger, but not large enough to make income transfer a feasible approach

to achieving substantial improvements in child outcomes. He also find that there

is no evidence for any systematic indication of diminishing returns to income, i.e.,

income effects that are larger at lower levels of income.

Aughinbaugh and Gittleman (2003) examine the relationship between child

development and income in Great Britain and compare it with that in the United

States. Using the NLSY and Great Britain’s National Child Development Study,

they find that the relationship between income and child development is quite sim-

ilar in the two countries. Income tends to improve cognitive test scores, but the
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magnitude of the impact is small. Using participants from the National Institute

of Child Health and Human Development (NICHD) study of Early Child Care,

Taylor, Dearing, and McCartney (2004) estimate the impact of family economic

resources on developmental outcomes in early childhood. They find that economic

resources are important when properly compared with other important variables,

such as maternal verbal intelligence, and when compared with established inter-

ventions, such as Early Head Start. Their findings also indicate that there are

significant nonlinear effects of permanent (but not current) income, implying that

income effects are larger for children living in poor families.

Dahl and Lochner (2005) address both omitted variables bias and attenua-

tion bias due to measurement error on family income using fixed-effect (paramet-

ric) instrumental variables estimation. They use panel data on over 6, 000 children

matched to their mothers in the NLSY data. They find that estimates from the

fixed-effect instrumental variables approach are larger than cross-section OLS or

standard fixed-effects estimates, so that current income has a significant effect on

a child’s math and reading test scores.

Here we examine the effect of family income on child achievement, as mea-

sured by scores on math and reading assessments. We address measurement errors,

endogeneity of family income, and nonlinearity of income effects, by considering a

data generating process of the form

Y = r(X,Uy),

where Y is child scholastic achievement, X is family income, and Uy represents

other unobserved drivers of child achievement; r is an unknown measurable scalar-

valued function. Because unobserved parents’ ability could be a common cause of

both family incomes and child achievement, the explanatory variableX is generally

correlated with the error term Uy. Moreover, income is noisily measured in most

surveys, and the data used here are no exception.

Figure 3.1 depicts the causal relation postulated to operate here. Mother’s

cognitive ability is a common cause for family earning potential and child ability.

The fact that earning potential and child ability share a common cause induces

a correlation between family income and child ability. Nevertheless, the condi-
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tional independence assumption makes it possible to recover features of the causal

relationship. Because AFQT scores, a proxy for mother’s cognitive ability, are

observable, they serve as conditioning instruments to ensure the conditional in-

dependence between family income and unobserved child ability. Moreover, true

family income is unobservable because income is noisily measured in survey data.

Without correcting for the measurement error, estimates would be biased towards

zero. Fortunately, we observe two error-laden measurements of true family income.

This permits us to recover the desired effect measures using our estimator.

We also use the matched mother-child subsample of the NLSY from Dahl

and Lochner (2005) in the cross-sectional nonparametric model.1 The dependent

variables, i.e., child scholastic achievement (Y ) are measures of achievement in

math and reading based on standardized scores of the Peabody Individual Achieve-

ment Tests (PIAT). Math achievement is measured by mathemathics scores, and

reading achievement is measured by a simple average of the reading recognition

and reading comprehension scores. We use measures of both current income and

permanent income in different estimation equations. Our error-laden measurement

of current family income (X1) is the natural logarithm (log) of family income in

1998. The error-laden measurement of permanent family income (X1) is the log of

the average of family incomes in 1994, 1996, and 1998. The log of family income

in year 2000 is commonly used as additional error-laden measurement of family

income (X2) for both current and permanent family income. Income in each year

is after-tax and after-transfer. The conditioning instrument (W ) is the mother’s

Armed Forces Qualifying Test (AFQT) score; see Dahl and Lochner (2005) for

further details. We assume true family incomes and unobserved drivers of child

achievement are independent, conditional on AFQT scores (i.e., X ⊥ Uy | W ). We

create standardized test scores, AFQT scores, and family incomes having mean

zero and standard deviation one.

1We thank Gordon Dahl for providing the NLSY data.
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3.2.2 Bandwidth Selection

We consider leaving-one-out cross-validation to estimate the optimal band-

widths. Let h[k,λ] be the minimizer of

Qk
λ(h) =

1

n

n∑
i=1,i6=k

(yi − fh(xi))
2 + λ

1

n

n∑
i=1,i6=k

(D2
xfh(ui))

2,

whereD2
xfh(ui) is the second derivative of fh(x) with respect to x which is evaluated

at ui. Let fh[k,λ] be a value of fh evaluated at h[k,λ]. Then the cross-validation

function V0(λ) is

V0(λ) =
1

n

n∑
k=1

(yk − fh[k,λ](xk))
2.

We obtain the cross-validation estimate of the smoothing parameter λ by minimiz-

ing the cross-validation function V0(λ). From the optimal λ, we also obtain the

cross-validation estimate of the bandwidths h ≡ (h1, h2). This procedure is similar

to the ordinary cross validation in Wahba (1990) except that here h are additional

smoothing parameters to be estimated and instead of the integral, a sample average

is used in the second term of Qk
λ(h). In the language of her book, Qk

λ(h) represents

a tradeoff between fidelity to the data and smoothness of the solution. The first

is represented by the mean square of residuals and the second is represented by

the mean square of the second derivative. Thanks to the smoothing parameter λ

controlling the tradeoff between fidelity and smoothness, one can choose optimal

bandwidths even with noisy data.

Table 3.1 reports optimal choices of the smoothing parameters, λ and h.

For the local linear estimator, we use the 2nd-order local polynomial estimator to

obtain the smoothing parameters because it automatically estimates the second

derivatives of fh(x) and both local linear and local polynomial estimators are

first-order identical. Since Fourier estimator has more roughness in the estimated

function, it obtains smaller λ, which means that more penalties are given to the

term for smoothness.
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3.2.3 Estimation Results

Tables 3.2 and 3.3 show estimation results obtained by our new estima-

tor and a local linear estimator ignoring the family income measurement error.

Each estimate is evaluated at given values of standardized family income (X) and

mother’s AFQT score (W ) ranging from −0.8 to 0.8 in increments of 0.1. Esti-

mates from only a subset of the covariates are reported for conciseness. Estimated

smoothing parameters in Table 3.1 are used for each estimator. All standard er-

rors of the estimates are obtained by bootstrap methods. As Gonçalves and White

(2005) remarked, one must formally justify using the bootstrap to compute stan-

dard errors because the consistency of the bootstrap distribution does not guar-

antee the consistency of the variance of the bootstrap distribution as an estimator

of the asymptotic variance. Nevertheless, the bootstrap gives us standard errors

with first-order accuracy, which should be sufficient for our purposes.

Table 3.2 reports the estimated impact of family income on children’s math

achievement. The covariate-conditioned average marginal effects of family income

on children’s math achievement from our estimator are positive and significantly

large over all ranges of x and w. The average marginal effect is about 8.764 at

x = −0.8 and w = 0.4, which means that the effect of a one standard deviation

increase in log of family income is to increase a child’s math score by about 8.764

of a standard deviation. For given mother’s AFQT scores, w, effects decrease as

family income, x, increases toward about 0.2 but increase again when family income

is above 0.2. Interestingly, the covariate-conditioned average marginal effects from

the local linear estimator are much smaller than those from our estimator for

all (x,w) values. Notice that the average marginal effect from the local linear

estimator is about 0.079 at x = −0.8 and w = 0.4, whereas that from our estimator

is 8.764, a difference of about 8.6. It follows measurement errors in family income

have an important impact on estimated effects, and that use of our new estimator

is critical to obtain accurate estimates here. Note that due to high standard errors,

parts of effects from Fourier estimator are not statistically significant. Nevertheless,

for the family in which mother’s AFQT scores is positive, effects of family income

on children’s math scores, who are in poor families (range of family income is from
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−0.8 to −0.6), are statistically significant and large.

Table 3.3 shows the impact of family income on children’s reading achieve-

ment. The covariate-conditioned average marginal effects of family income on chil-

dren’s reading achievement from our estimator are also positive and much larger

than those from the local linear estimator in all ranges of (x,w). The average

marginal effect from our estimator, for instance, is about 4.718 at x = −0.8 and

w = 0.8, which means that the effect of a one standard deviation increase in log

of family income is to increase a child’s reading score by about 4.718 of a stan-

dard deviation, while that from the local linear estimator is 0.055. As observed

in math achievement, even though part of effects from Fourier estimator are not

statistically significant, children in low family incomes have large and statistically

significant effects of family income on their reading scores.

Figure 3.2 shows a graph of the covariate-conditioned average marginal

effect (top) and average counterfactual response (bottom) of family income on

children’s math scores at various values of family income and mother’s AFQT,

ranging from −0.8 to 0.8, obtained using our estimator with bandwidths in Table

3.1. All estimates of the average marginal effect are positive over the ranges of both

family income and AFQT score. In general, the impact of family income at a given

AFQT increases as family income moves from 0.2 to −0.8 or 0.8, making a broad

U -shape. It attains a minimum of 0.5823 at x = 0.2 and w = −0.4. As a result,

one can find slightly increasing returns to family income for children in high family

incomes. However, diminishing returns to family income are apparently observed

at income levels below x = 0.2. We note that the shape of income effect is varying

over different levels of mother’s AFQT. For instance, at 0.4 of mother’s AFQT,

the average marginal effect is very dynamic, while that at −0.6 of mother’s AFQT

is flat. Thus, the average marginal effect depends on the level of mother’s AFQT,

which means the nonseparable model is appropriate for this example.

Figure 3.3 shows a graph of the apparent causal effect (top) and average

counterfactual response (bottom) of family income on children’s math scores ob-

tained using the local linear estimator. It shows much smaller marginal effects than

those from our estimator. And the average counterfactual response is more flat
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than that from our estimator. Moreover, it is interesting to note that the results

from the local linear estimator indicate increasing returns to income, i.e., income

effects that are larger at higher levels of family income, which is unexpected by

the economic theory.

Figure 3.4 shows the covariate-conditioned average marginal effect (top) and

average counterfactual response (bottom) of family income on children’s reading

scores at various points of family income and AFQT ranging from −0.8 to 0.8,

obtained by our estimator. The same bandwidths are used as in Table 3.1 . The

effects are always positive over the ranges of both family income and AFQT score

as well. Children in poor families are likely to have higher effect of family income

at a given value of AFQT. However, for children in families with income above 0

and whose mothers have low AFQT scores, the effect of family income on reading

scores increases with family income. The effect attains a minimum value of 0.5057

at x = 0 and w = 0.2. We also observe the dependence of the average marginal

effect on mother’s AFQT.

Figure 3.5 depicts the apparent causal effect (top) and average counter-

factual response (bottom) of family income on children’s reading scores obtained

using the local linear estimator. The results indicate much smaller income effects

than those from our estimator. Family income shows increasing returns to income.

Taken as a whole, these results suggest that our estimator effectively ac-

counts for the measurement errors of family income, compared to the local linear

estimator, which ignores measurement errors. We find that the effects of family

income on both math and reading scores from our estimator are positive and that

the magnitudes of the income effects are substantially larger, whereas those appar-

ent from the local linear estimator are statistically significant, but rather modest,

as seen in previous studies. Because these results hold for family income, it fol-

lows that income transfers could have a significant impact on the development of

children growing up in poor families. Our findings indicate nonlinearity in income

effects over ranges of family income, specifically diminishing returns to income for

families with income levels below x = 0.2 but a wide U -shape overall. Moreover,

we observe that the income effect depends on the level of mother’s AFQT scores,
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which supports the use of the nonseparable model for this application.

3.3 Instrumental Variables Estimation of Engel

Curves

We apply the proposed estimator in chapter 2 to the estimation of Engel

curves (or consumer demand models) using the British Family Expenditure Survey

(FES) data. Findings confirm that correcting for both endogeneity and measure-

ment error is necessary to identify the economically meaningful structural Engel

curves.

3.3.1 Overview

Demand models play an important role in the welfare analysis. One of

the reason is that the evaluation of indirect tax policy reform needs the accurate

specification of demand models which is consistent with consumer theory. Because

of that, the study of the Engel curves, the relationship between expenditure (or

income) and budget shares, has been an area of interest among econometricans

since the early studies of Engel (1895), Working (1943), Leser (1963). Many of

previous studies exploits the best model specification for the Engel curves and

‘Leser-Working’ specification of Engel curve in which budget shares are a linear

function of the log of income or expenditure, has been the most popular one.

However, economic theory provides almost no general guidance in specification

of Engel curves and recent empirical studies show that linear specification of the

Engel curves is far from an accurate feature of consumer behavior. Some empirical

analysis of consumer behavior suggest that nonlinear parametric or semiparametric

and nonparametric models are more favorable in the specification of the Engel

curves. Along with the model specification, there have been two directions in the

analysis of Engel curves: endogeneity and measurement errors.

A group of studies estimate Engel curves based on that budget shares and

expenditure are endogenous to the consumer and are determined simultaneously,
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as pointed out by Summers (1959). Using a nonparametric method and correct-

ing for the endogeneity of the log-total expenditure, Banks, Blundell, and Lewbel

(1997) suggest that Engel curves require quadratic terms in the log-total expendi-

ture. They also find that models failing to account for nonlinearity of the Engel

curves could distort the patterns of welfare losses associated with a tax increase.

Blundell, Duncan, and Pendakur (1998) allow for endogeneity of the log-total

expenditure by adopting a parametric additive control function approach to the

partially linear regression context and find that taking accound of endogeneity has

an important impact on the shape of the Engel curve relationship, while Blundell,

Browning, and Crawford (2003) use a nonparametric control function technique

to adjust for endogeneity. Base on a nonparametric method, Lyssiotou, Pashardes

and Stengos (1999) find that controlling for endogeneity tends to be more support-

ive of the rank 3 hypothesis. Blundell, Chen, and Kristensen (2007) (BCK) studies

a shape-invariant Engel curve with endogenous log-total expenditure by applying

the sieve minimum distance estimation of conditional moment restrictions and find

the importance of correcting for endogeneity. Chen and Pouzo (2008a, b) studies

nonparametric or semiparametric estimation of conditional moment models with

possibly nonsmooth residuals, respectively and applied their methods to estimate

quantile Engel curves with endogenous log-total expenditure.

Another issue on the estimation of the Engel curves is measurement error in

total expenditure. Measurement error would be because of survey errors or a form

of errors which come from the discrepancy between purchases and consumption due

to storage or waste. In a linear parametric model, Liviatan (1961) applies the the

method of instrumental variables to the Engel curves, with income serving as the

instrumental variable. Aasness, Biorn, and Skjerpen (1993) model measurement

error in total expenditure to estimate Engel curves with panel data. Hausman,

Newey, and Powell (1995) propose consistent estimators for nonlinear regression

framework in the presence of measurement error. In their application to the Engel

curves, they find that measurement error in income should be accounted for and

‘Lesser-Working’ specification should be generalized to higher-order terms in log

income. Lewbel (1996) develops a consistent estimator of nonlinear Engel curves
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to correct for measurement errors in total expenditures on the left and right hand

side since an observed budget share has expenditure in its denominator. Newey

(2001) studies the estimation of nonlinear errors-in-variables models using simu-

lated moments and a flexible disturbance distribution, and applies the models to

Engel curves with expenditures measurement errors on the left and right hand

side. Hasegawa and Kozumi (2001) correct for expenditure measurement errors on

both the left and right sides in the ‘Lesser-Working’ specification. They propose

the Bayesian estimation procedure in both models without an instrument variable

and with an instrument variable. Schennach (2004b) proposes a general solution

to measurement error in general nonlinear models when one repeated observation

is available for each mismeasured variable and applies it to the estimation of Engel

curves. She finds that the impact of measurement error in total expenditure can

not be neglected.

Even though there are plenty of evidences that total expenditure is endoge-

nous as well as mismeasured, there has been no study which corrects for both

endogeneity and measurement error in nonlinear parametric, nonparametric, or

semiparametric models. As discussed by Amemiya (1985) and Hsiao (1989), it is

because nonlinear regression models with measurement error are difficult to es-

timate with standard linear instrumental variables approach, due to the lack of

additive separability between true regressor and measurement error. The present

study employs the method which is proposed in chapter 2, in order to fill this

gap. So our target is to control for both endogeneity and measurement error in

the nonparametric shapes of the Engel curves.

The nonparametric specification of Engel curves we consider is

E[Y1i,l − hl(Y2i) | Xi] = 0, l = 1, · · · , 7, (3.1)

where Y1il is the budget share of household i on good l (e.g., 1: food-out, 2:

food-in, 3: alcohol, 4: fares, 5: fuel, 6: leisure goods, and 7: travel). Y2i is the

log-total expenditure of household i that is endogenous and unobservable, and Xi

is gross earnings of the head of household, which is the instrumental variable. We

consider the no kids sample that consists of 628 observations. BCK have used the

same data set as well as a subset of married couples with one or two children in
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their study of a shape-invariant system of IV Engel curves.2 Table 3.4 summarizes

descriptive statistics for the main variables in the data set. We see that budget

shares on food-in, leisure, and travel are large, while food-out, alcohol, fares, and

fuel are relatively small. Leisure goods have a large standard deviation. The mean

and standard deviation for log nondurable expenditure are similar to those for log

gross earnings. As shown in BCK, log-total expenditure and log earnings have a

strong positive correlation, which is 0.5111. We also assume that log earnings are

independent of the residual, (Y1i − h(Y2i)). So the log gross earnings would be a

proper instrumental variable to analyze the conditional moment restriction model.

BCK assume that the log of total expenditure on nondurables and services

is endogenous but measurement error-free. However, their approach is infeasible if

the true log-total expenditure suffers from measurement errors so that only a mis-

measured version is observed.3 As reviewed above, indeed, many empirical papers

on the estimation of Engel curves show that measurement errors on the log-total

expenditure is considerable. As a result, failure of controlling for measurement

errors makes it difficult to estimate the economically meaningful Engel curves.

3.3.2 Two-step SML-SMD Procedure

In order to use the two-step sieve maximum likelihood and sieve minimum

distance (SML-SMD) estimator, we specify the conditional mean function as fol-

2We thank Richard Blundell for providing the UK Family Expenditure Survey data.
3We assume that there is no measurement error on the left-hand variable in Eqn. (12) to ease

the argument. It could be possible because both expenditure on good l and total expenditure
might have measurement errors but the budget share could be correctly reported one if proportion
of error-laden expenditure on good l to error-laden total expenditure is the same as true budget
share. For instance, assume there are multiplicative measurement errors on expenditure on good
l and total expenditure such that Y ∗

0i,l = Y0i,le0i,l and Y ∗
2i = Y2ie2i where Y ∗

0i,l, Y0i,l, and e0i,l are
measurement error-laden expenditure of household i on good l, true expenditure of household i on
good l, and its mesurement error, respectively, and where Y ∗

2i, Y2i, and e2i are measurement error-
laden total expenditure of household i, true total expenditure of household i, and its mesurement
error, respectively. If e0i,l = e2i, we can get Y ∗

0i,l

Y ∗
2i

= Y0i,le0i,l

Y2ie2i
= Y0i,l

Y2i
.
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lows

m(x, h) ≡
∫
Y
(y1 − h(y2))dFY |X(y | x;φ0, η0)

=

∫
Y2

[∫
Y1

(y1 − h(y2))dFY1|Y2X(y1 | y2, x)

]
dFY2|X(y2 | x;φ0, η0) (3.2)

=

∫
Y2

[∫
Y1

(y1 − h(y2))fY1|Y2X(y1 | y2, x)dy1

]
fY2|X(y2 | x;φ0, η0)dy2

=

∫
Y2

[∫
Y1

(y1 − h(y2))fY1|Y2(y1 | y2)dy1

]
fY2|X(y2 | x;φ0, η0)dy2,

where Y1 and Y2 are the support of the distribution of Y1 and Y2, respectively. In

the empirical application, Y1 = [0, 0.350] and Y2 = [3.609, 6.947]. Since partially

parameterizing distributions eases nonparametric estimation of densities, we allow

fY2|X(y2 | x) to be parameterized. In fact, the conditional distribution of log-

total expenditure given log gross earnings is close to normal (see BCK), we specify

fY2|X(y2 | x;φ0, η0) as normal distribution. This is one of useful properties of the

two-step SML-SMD estimator, which the sieve minimum distance procedure can

not utilize because of its nature of the estimation.

In the first step, we estimate the population conditional mean function

m(x, h) semiparametrically by m̂(x, h). To do this, we use a SML estimation to

estimate fY1|Y2(y1 | y2) and fY2|X(y2 | x;φ0, η0).

β0 = (ψ0, fY1|Y2 , fY ∗
2 |Y2)

′
(3.3)

= arg max
β=(ψ,f0,f1)′∈B

E

(
ln

∫
Y2

f0(y1 | y2)f1(y
∗
2 | y2)fY2|X(y2 | x;ψ)dy2

)
,

where B ≡ Ψ×F0 ×F1 with Ψ ≡ Φ×M and ψ0 = (φ0, η0).

We also approximate the unknown function h ∈ H by hn ∈ Hn ≡ H1
n ×

· · · × Hq
n where Hn is some finite-dimensional approximation space that becomes

dense in H as sample size n → ∞. In the second step, the SMD estimator of

unknown sieve coefficients of h0 is obtained by applying the SMD procedure

ĥn = arg min
hn∈Hn

1

n

n∑
i=1

m̂(Xi, hn)
′
m̂(Xi, hn), (3.4)

where m̂(X, h) is the plug-in SML estimator ofm(X,α) for any fixed hn = (h1,n, . . . ,
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hq,n):

m̂(x, hn) (3.5)

≡
∫
Y2

[∫
Y1

(y1 − hn(y2))f̂Y1|Y2(y1 | y2)dy1

]
f̂Y2|X(y2 | x; φ̂n, η̂n)dy2.

For the purpose of comparison, we also estimate the Engel curves using

SMD estimator from BCK, which does not control for measurement errors of log-

total expenditure. Both SMD and SML-SMD estimators are constructed without

smoothness constraints for simplicity. We use a power series of fourth order mul-

tiplied by the cumulative distribution function of a standard normal to approx-

imate h0(Y2) for both estimators. In the SMD estimator, a set of instruments,

{1, X2, X
2
2 , . . . , X

kn
2 } for kn ≥ 3 is used to approximate the conditional mean func-

tion.

3.3.3 Estimation Results

Figures 3.6 ∼ 3.7 show estimated Engel curves for four of the goods in the

system. We plot curves over a set of log-total expenditures ranging from 4.5 to 6.5.

Engel curves from our SML-SMD estimator which controls for both endogeneity

and measurement errors in the log-total expenditure are plotted by real curves,

while those from SMD estimator which only control for endogeneity in the log-

total expenditure are plotted by dashed curves.

We note several interesting features. For households with low log-total

expenditure, shares of food-in from our SML-SMD estimator are bigger than those

from SMD estimator. Food-out from SMD estimator is a reverse U-shape and

values are similar over different level of log-total expenditure. But Food-out from

SML-SMD estimator dramatically decreases as log-total expenditure increases. As

a result, for households with low log-total expenditure, the estimated shares of

food from our estimator, which is sum of food-in and food-out, are much bigger

than those from SMD estimator, even though food shares of households with high

log-total expenditure from both estimators look similar. The Engel curve for fuel

from SMD estimator shows a reverse S-shape and is close to that from SML-SMD

estimator. However, the estimated Engel curves for leisure from both estimator
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show huge gaps. For example, the estimated shares of leisure for households with

high log-total from SML-SMD estimator are around 0.7 bigger than those from

SMD estimator. Thus measurement errors in log-total expenditure can make it

difficult to estimate the Engel curves and controlling for the measurement errors

are necessary to get correct estimates of the Engel curves.

Our empirical results can be extended in several directions. First, as in

BCK, we could consider shape invariant Engel curves and compare the shapes of

the estimated Engel curves to theirs. Then corresponding semiparametric model

is

E[Y1i,l − hl(Y2i − φ(X
′

1iθ1))−X
′

1iθ2,l | Xi] = 0, l = 1, · · · , 7, (3.6)

where φ(X
′
1iθ1) is a known function up to a finite set of unknown parameters θ1

and can be interpreted as the log of a general equivalence scale for household i. X1i

is a vector of demographic variables that represent different household types and

θ2 is the vector of corresponding equivalence scales (see, e.g., Pendakur (1998) and

Blundell, Browning, and Crawford (2003) ) and Xi = (X1i, X2i). Second, we could

consider smoothness constraints in the second-step of our estimation procedure

and compare the shapes of the estimated Engel curves to theirs. The penalized

SMD estimation is

ĥn = arg min
hn∈Hn

1

n

n∑
i=1

m̂(Xi, hn)
′
m̂(Xi, hn) + λnP̂n(hn), (3.7)

where P̂n(hn) is the penalization function on the smoothness and λn is the smooth-

ing parameter. Third, our empirical analysis needs to carry out the robustness

check of the estimated Engel curves with respect to the selection of sieve ba-

sis functions and the smoothing parameters in the smoothness constraints. Two

approximations are required to proceed our SML-SMD estimation: one to approx-

imate h and the other to approximate unknown densities. So it would be useful

to examine how the choice of sieve basis and the smoothing parameter affect the

shapes of the estimated Engel curves. Fourth, a semiparametric Hausman-test

on measurement errors could be developed. Let θ̂SML−SMD and θ̂SMD denote

the semiparametric esimate of θ under H0 : Y2 measurement error-free and H1 :
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Y2 measurement error-laden, respectively and let V̂SML−SMD and V̂SMD denote

the estimates of their respective variances. It then follows that n(θ̂
′
SML−SMD −

θ̂
′
SMD)V̂ −1(θ̂SML−SMD − θ̂SMD)

asy.∼ χ2
q+1 under the null, where V̂

p→ V with V the

asymptotic covariance matrix of n(θ̂SML−SMD − θ̂SMD).

3.4 Summary and Concluding Remarks

In the article, we study empirical importance of endogeneity and measure-

ment error in economic examples. To do this, we apply the proposed methods in

chapter 1 and 2 to topics of interest among (applied) econometricians, the impact

of family income on children’s achievement and the estimation of Engel curves,

respectively. The application to the impact of family income on children’s achieve-

ment finds that the effects of family income on both math and reading scores from

the proposed estimator are positive and that the magnitudes of the income effects

are substantially larger. We also observe that the income effect depends on the

level of mother’s AFQT scores, which supports the use of the nonseparable model

for this application. From the application to the estimation of Engel curves, our

findings indicate that correcting for both endogeneity and measurement error ob-

tains significantly different shapes of Engel curves, compared to the method which

ignores measurement error on total expenditure.
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3.6 Tables and Figures

Table 3.1: Optimal choice of smoothing parameters

λ h1 h2

Math Fourier 10−15 1.95 1.2
Local linear 10−2 6 6.7

Reading Fourier 10−22 2.15 1.9
Local linear 10−4 6.3 5.35
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Notes: Due to common cause mother’s cognitive ability, family income and child ability are

correlated. AFQT score, a proxy for the common cause plays a key role as conditioning instrument

ensuring conditional independence between family income and child ability. Two error-laden

measurements of family income are used to get rid of attenuation bias due to measurement errors

of family income.

Figure 3.1: Causal effects - impact of family income on child achievement
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Table 3.2: Impact of family income on children’s math achievement

w/x -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
F 2.386 1.845 1.570 1.456 1.465 1.603 1.927 2.599 4.103

-0.8 1.267 1.123 1.033 0.977 0.935 0.910 0.902 0.937 1.084
L 0.140 0.159 0.178 0.199 0.222 0.248 0.279 0.319 0.379

0.048 0.052 0.051 0.054 0.056 0.063 0.072 0.086 0.108
F 1.226 0.888 0.717 0.635 0.612 0.641 0.735 0.936 1.361

-0.6 1.117 1.128 1.127 1.123 1.117 1.111 1.109 1.109 1.124
L 0.131 0.154 0.176 0.199 0.224 0.252 0.285 0.325 0.380

0.050 0.047 0.053 0.051 0.055 0.062 0.066 0.075 0.098
F 1.477 0.999 0.759 0.636 0.583 0.582 0.637 0.771 1.059

-0.4 1.148 1.153 1.150 1.145 1.138 1.132 1.128 1.126 1.132
L 0.123 0.148 0.173 0.200 0.227 0.257 0.291 0.331 0.381

0.049 0.050 0.050 0.052 0.055 0.057 0.066 0.078 0.087
F 1.510 1.117 0.902 0.789 0.745 0.757 0.835 1.008 1.360

-0.2 1.133 1.141 1.140 1.135 1.130 1.123 1.118 1.114 1.114
L 0.113 0.142 0.171 0.200 0.230 0.262 0.297 0.336 0.382

0.048 0.049 0.050 0.050 0.051 0.056 0.063 0.072 0.078
F 2.133 1.650 1.363 1.207 1.146 1.169 1.287 1.543 2.047

0 1.166 1.191 1.197 1.195 1.191 1.187 1.182 1.179 1.179
L 0.103 0.136 0.169 0.201 0.234 0.268 0.303 0.341 0.382

0.049 0.048 0.049 0.050 0.051 0.056 0.063 0.070 0.082
F 6.672 3.958 2.798 2.242 1.990 1.934 2.052 2.383 3.063

0.2 1.296 1.323 1.326 1.324 1.319 1.314 1.309 1.305 1.302
L 0.091 0.130 0.167 0.203 0.239 0.274 0.310 0.345 0.383

0.051 0.049 0.053 0.050 0.053 0.055 0.059 0.065 0.072
F 8.764 4.769 3.218 2.511 2.196 2.117 2.239 2.603 3.356

0.4 1.366 1.382 1.385 1.383 1.380 1.377 1.373 1.369 1.367
L 0.079 0.124 0.166 0.206 0.244 0.281 0.316 0.350 0.383

0.055 0.050 0.053 0.052 0.053 0.056 0.063 0.062 0.074
F 5.332 3.069 2.149 1.718 1.524 1.480 1.568 1.818 2.328

0.6 1.444 1.465 1.468 1.467 1.464 1.461 1.457 1.454 1.451
L 0.065 0.118 0.165 0.210 0.251 0.289 0.323 0.355 0.383

0.058 0.052 0.054 0.055 0.058 0.057 0.064 0.067 0.069
F 2.998 1.955 1.433 1.160 1.025 0.980 1.013 1.136 1.391

0.8 1.589 1.628 1.633 1.631 1.627 1.623 1.618 1.614 1.610
L 0.048 0.111 0.166 0.215 0.258 0.297 0.331 0.359 0.383

0.067 0.057 0.059 0.056 0.059 0.061 0.062 0.069 0.070
N 1544

Notes: F and L refer to our Fourier estimator and local linear estimator, respectively. Standard

errors obtained by bootstrap methods are in the second row of each results.
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Table 3.3: Impact of family income on children’s reading achievement

w/x -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
F 3.196 2.570 2.243 2.108 2.128 2.313 2.727 3.543 5.228

-0.8 0.767 0.721 0.688 0.657 0.633 0.618 0.619 0.648 0.774
L 0.217 0.228 0.237 0.243 0.247 0.250 0.249 0.241 0.209

0.063 0.063 0.061 0.067 0.074 0.085 0.097 0.123 0.159
F 2.874 2.258 1.936 1.792 1.783 1.907 2.206 2.792 3.959

-0.6 0.762 0.762 0.757 0.753 0.750 0.746 0.741 0.739 0.752
L 0.214 0.229 0.242 0.253 0.264 0.275 0.287 0.301 0.320

0.057 0.059 0.062 0.064 0.069 0.075 0.087 0.100 0.124
F 2.188 1.728 1.483 1.369 1.353 1.431 1.629 2.014 2.753

-0.4 0.765 0.771 0.771 0.770 0.770 0.769 0.768 0.766 0.769
L 0.206 0.223 0.237 0.251 0.263 0.275 0.287 0.300 0.316

0.059 0.055 0.061 0.063 0.064 0.066 0.080 0.091 0.098
F 1.400 1.132 0.984 0.913 0.903 0.952 1.074 1.308 1.745

-0.2 0.797 0.803 0.805 0.805 0.805 0.804 0.803 0.803 0.803
L 0.195 0.213 0.229 0.243 0.256 0.269 0.281 0.292 0.305

0.057 0.056 0.058 0.061 0.066 0.069 0.074 0.083 0.103
F 0.881 0.711 0.620 0.579 0.576 0.612 0.695 0.849 1.131

0 0.834 0.843 0.844 0.843 0.842 0.841 0.841 0.840 0.840
L 0.181 0.201 0.218 0.233 0.247 0.259 0.271 0.282 0.292

0.058 0.059 0.060 0.056 0.063 0.072 0.072 0.078 0.093
F 0.907 0.675 0.563 0.514 0.506 0.535 0.606 0.740 0.981

0.2 0.872 0.882 0.884 0.884 0.883 0.882 0.880 0.879 0.879
L 0.163 0.185 0.204 0.220 0.235 0.248 0.259 0.270 0.279

0.059 0.054 0.058 0.063 0.066 0.066 0.075 0.075 0.088
F 1.675 1.108 0.848 0.723 0.673 0.679 0.737 0.865 1.101

0.4 0.917 0.929 0.931 0.930 0.929 0.927 0.926 0.924 0.923
L 0.141 0.165 0.186 0.204 0.220 0.234 0.246 0.256 0.264

0.070 0.062 0.062 0.065 0.070 0.069 0.079 0.079 0.088
F 3.143 1.830 1.273 1.004 0.876 0.833 0.858 0.957 1.160

0.6 0.973 0.987 0.989 0.988 0.986 0.985 0.983 0.981 0.979
L 0.110 0.139 0.163 0.184 0.202 0.217 0.230 0.241 0.249

0.074 0.072 0.066 0.067 0.069 0.070 0.079 0.079 0.084
F 4.718 2.378 1.499 1.098 0.901 0.812 0.798 0.853 0.994

0.8 1.046 1.063 1.065 1.064 1.063 1.061 1.059 1.057 1.055
L 0.055 0.096 0.129 0.156 0.178 0.197 0.212 0.223 0.232

0.086 0.083 0.075 0.079 0.080 0.078 0.082 0.088 0.090
N 1274

Notes: F and L refer to our Fourier estimator and local linear estimator, respectively. Standard

errors obtained by bootstrap methods are in the second row of each results.
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Table 3.4: Data descriptives

Mean Std.

Budget shares:
Food-in 0.1776 0.0950
Food-out 0.0829 0.0591
Alcohol 0.0712 0.0791
Fuel 0.0612 0.0385
Travel 0.1488 0.0985
Fares 0.0216 0.0499
Leisure goods 0.1357 0.1456

Expenditure and income:
log nondurable expenditure 5.3744 0.4864
log gross earnings 5.7712 0.5389

Sample size 628



166

Notes: Our estimator is used for covariate-conditioned average marginal effect (top) and average

counterfactual response (bottom). Error-laden measurement of family income is family income

in 1998. Family income in 2000 is used as additional error-laden measurement of family income.

Figure 3.2: Impact of family income on children’s math scores (Fourier)
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Notes: Local linear estimator is used for covariate-conditioned average marginal effect (top) and

average counterfactual response (bottom). Error-laden measurement of family income is family

income in 1998. Family income in 2000 is used as additional error-laden measurement of family

income.

Figure 3.3: Impact of family income on children’s math scores (Local linear)
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Notes: Our estimator is used for covariate-conditioned average marginal effect (top) and average

counterfactual response (bottom). Error-laden measurement of current family income is family

income in 1998. Family income in 2000 is used as additional error-laden measurement of family

income.

Figure 3.4: Impact of family income on children’s reading scores (Fourier)
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Notes: Local linear estimator is used for covariate-conditioned average marginal effect (top) and

average counterfactual response (bottom). Error-laden measurement of current family income is

family income in 1998. Family income in 2000 is used as additional error-laden measurement of

family income.

Figure 3.5: Impact of family income on children’s reading scores (Local linear)
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Notes: Top figure is food-in and bottom figure is food-out. Our SML-SMD is the solid curve and

SMD is dashed curve.

Figure 3.6: Engel curves for food-in and food-out
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Notes: Top figure is fuel and bottom figure is leisure. Our SML-SMD is the solid curve and SMD

is dashed curve.

Figure 3.7: Engel curves for fuel and leisure
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