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ABSTRACT OF THE DISSERTATION

Endogeneity and Measurement Error in Nonparametric and
Semiparametric Models

by

Suyong Song

Doctor of Philosophy in Economics

University of California, San Diego, 2010

Professor Halbert L. White, Chair

It has long been an area of interest to consider a consistent estimation
of nonlinear models with measurement error or endogeneity in the explanatory
variables. Contrast to linear parametric models, both topics in nonlinear models
are difficult to correct for. As a result, many of studies have addressed only one of
them in nonlinear models, although controlling for only one mostly fails to identify
economically meaningful structural parameters. Thus, this dissertation presents
solutions to simultaneously control for both endogeneity and measurement error
in general nonlinear regression models.

Chapter one of this dissertation studies the identification and estimation of

covariate-conditioned average marginal effects of endogenous regressors in nonsep-

xii



arable models when the regressors are mismeasured. Endogeneity is controlled for
by making use of covariates as conditioning instruments; this ensures independence
between the endogenous causes and other unobservable drivers of the dependent
variable. Moreover, distributions of the underlying true causes from their error-
laden measurements are recovered. Specifically, it is shown that two error-laden
measurements of the unobserved true causes are sufficient to identify objects of
interest and to deliver consistent estimators.

Chapter two develops semiparametric estimation of models defined by con-
ditional moment restrictions, where the unknown functions depend on endogenous
variables which are contaminated by nonclassical measurement errors. A two-stage
estimation procedure is proposed to recover the true conditional density of endoge-
nous variables given conditioning variables masked by measurement errors, and to
rectify the difficulty associated with endogeneity of the unknown functions.

Chapter three investigates empirical importance of endogeneity and mea-
surement error in economic examples. The proposed methods in chapter one and
two are applied to topics of interest, the impact of family income on children’s
achievement and the estimation of Engel curves, respectively. The first applica-
tion finds that the effects of family income on both math and reading scores from
the proposed estimator are positive and that the magnitudes of the income effects
are substantially larger than previously recognized. From the second application,
findings indicate that correcting for both endogeneity and measurement error ob-
tains significantly different shapes of Engel curves, compared to the method which

ignores measurement error on total expenditure.
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Chapter 1

Identification and Estimation of
Nonseparable Models with

Measurement Errors



1.1 Introduction

In this paper, we examine the identification and estimation of covariate-
conditioned average marginal effects of endogenous regressors in nonseparable
structural systems when the regressors are mismeasured. We control for the en-
dogeneity by making use of covariates as conditioning instruments; this ensures
independence between the endogenous causes of interest and other unobservable
drivers of the dependent variable. Moreover, we recover distributions of the under-
lying true causes from their error-laden measurements. Our approach relies on a
useful property of the Fourier transform, namely, its ability to convert complicated
integral equations that relate unobservables to observables into simple algebraic
equations. Even though our structural relations are nonparametric and nonsepa-
rable, we show that we can identify and estimate objects of interest, specifically,
covariate-conditioned average marginal effects and weighted averages of covariate-
conditioned average marginal effects.

Researchers have previously imposed linearity or separability on systems of
structural equations because of the resulting ease of interpretation and implemen-
tation. But realistic models of economic behavior need not exhibit these convenient
features. When these simplifying assumptions fail, serious errors of inference may
result. To overcome such difficulties, researchers have devoted increasing attention
to relaxing some or all of these assumptions. For example, additively separa-
ble nonparametric models for endogenous regressors with observable instruments,
possibly with a limited or qualitative dependent variable, have been intensively
studied under various sets of assumptions. Examples are Newey, Powell and Vella
(1999), Darolles, Florens and Renault (2003), Newey and Powell (2003), Blundell
and Powell (2004), Hall and Horowitz (2005), Das (2005), Severini and Tripathi
(2005), and Blundell and Powell (2007) and the references therein.

Other recent work has studied identification and estimation of models with
nonseparable structural equations, e.g., Matzkin (2003), Chesher (2003, 2005), Al-
tonji and Matzkin (2005), Chernozhukov and Hansen (2005), Imbens and Newey
(2006), Imbens (2006), White and Chalak (2006), Chernozhukov, Imbens and



Newey (2007), Hoderlein (2007), Hoderlein and Mammen (2007), Chalak and
White (2007a, b), Schennach, White and Chalak (2007) (SWC), and Hahn and
Ridder (2007).

Here we use a conditional independence assumption to achieve structural
identification, as considered, for example, by Altonji and Matzkin (2005), White
and Chalak (2006), Chalak and White (2007a, b), Hoderlein (2007), and Hoderlein
and Mammen (2007). Altonji and Matzkin (2005) propose methods for estimat-
ing nonseparable models with observable endogenous regressors and unobservable
errors in cross-section and panel data. One of their objects of interest is a local
average response. A similar structure is considered here for cross-section data.
Nevertheless, our framework differs from that of Altonji and Matzkin (2005) in
that in our setting, the endogenous cause of interest is unobservable. Instead, we
suppose we have available two error-laden measurements of the true underlying
variable.

SWC also study identification and estimation of average marginal effects
in nonseparable structural systems. They consider estimating causal effects from
a nonseparable data generating process using either an observed standard exoge-
nous instrument or an unobserved exogenous instrument for which two error-laden
measurements are available. We extend the approach of SWC to the case in which
the instrument is no longer exogenous, but is instead a conditioning instrument.
This ensures that the cause of interest is independent of other unobservable drivers
of the dependent variable, conditional on the instrument. Here, this instrument
is observable. Nevertheless, the endogenous cause of interest is unobservable; to
handle this, we employ nonlinear errors-in-variables methods, employing a Fourier
transform approach.

We first nonparametrically estimate quantities of a general form and con-
struct objects of interest from these. This covers such objects as the average coun-
terfactual response function, the covariate-conditioned average marginal effect, Al-
tonji and Matzkin’s (2005) “local average response”, corresponding to the effect
of treatment on the treated for continuous treatments (Florens, Heckman, Meghir,

and Vytlacil, 2008), and the average treatment effect. We establish uniform con-



vergence rates and asymptotic normality for estimators of covariate-conditioned
average marginal effects, faster convergence rates for estimators of their weighted
averages over instruments, and /n consistency and asymptotic normality for esti-
mators of their weighted averages over instruments and regressors.

In Section 1.2, we describe the data generating process for the triangular
structural system studied here. We also study the identification of a specific object
of interest, the covariate-conditioned average marginal effect. A nonparametric
estimator for quantities of a general form used to construct this object is presented
in Section 1.3, and asymptotic properties of the estimator are analyzed in Section
1.4. The practical usefulness of the proposed estimator is illustrated by Monte
Carlo experiments in Section 1.5. Section 1.6 concludes. All technical proofs are

included in the Mathematical Appendix.

1.2 Data Generation and Identification

1.2.1 The Data Generating Process

We first specify the data generating process (DGP) for the recursive struc-
tural system studied here. There is an inherent ordering of the variables in such
systems: in the language of White and Chalak (2008), “predecessor” variables may
determine “successor” variables, but not vice versa. For instance, when X causes
Y, then Y cannot cause X. In such cases, we say that Y succeeds X, and we write
Y < X as a shorthand notation. (See also Chalak and White (2007a, b), and
SWC.) Throughout, random variables are defined on a complete probability space
(Q, F, P).

Assumption 2.1 (i) Let (U W,X,Y) be random wvariables such that
E(Y|) < oo; (i) (UW,X,Y) is generated by a recursive structural system such
that Y < (U, X) and X < (U,W) with Y generated by the structural equation

Y - T(Xv Uy)7

where 1 is an unknown measurable scalar-valued function and U, = v,(U) is a



random vector of countable dimension l,, with v, a measurable function; and (iii)

the realizations of Y and W are observed, whereas those of U, X, and U, are not.

For now, U, X, and W can be viewed as random vectors; we let Y be scalar.
Although X and W have finite dimension, the dimensions of U and U, may be
countably infinite. The specified structural relations are directional causal links;
thus, variations in X and U, structurally determine Y, as in Strotz and Wold (1960)
(see also White and Chalak, 2008, and Chalak and White, 2007a, b). We do not
assume that r is linear or monotone in its arguments or separable between X and
U,.

A primary object of interest is the marginal effect of X on Y. As there
is no restriction to the contrary, X and U, are generally correlated, so that X
is endogenous. In classical treatments, the effects of endogenous variables are
identified with the aid of instrumental variables. These are “standard” or “proper”
when they are (i) correlated with X and (ii) exogenous (i.e., uncorrelated with or
independent of unobservables, corresponding to U, here). Nevertheless, standard
instrumental variables are absent here, as the covariates W are also generally
endogenous. However, identification of certain average marginal effects is possible
when X satisfies a particular conditional form of exogeneity. To state this, we
follow Dawid (1979), and write X L U, | W to denote that X is independent of
U, given W.!

Assumption 2.2 X 1L U, | W.

Assumption 2.2 is analogous to structure imposed by Altonji and Matzkin
(2005), White and Chalak (2006), Chalak and White (2007a, b), Hoderlein (2007),
and Hoderlein and Mammen (2007). Given its instrumental role in ensuring condi-
tional exogeneity, we call W conditioning instruments, following White and Chalak

(2006) and Chalak and White (2007a, b).

!Conditional independence implies a similar ‘common support assumption’ in Imbens and
Newey (2006). We can see this from the following argument. supp(U, | X =2, W =w) ={S €
F:PUyeS|X=e,W=uw=1}=({Se€F:PlU,eS| X =z]=1} =supp(Uy | W = w),
where the second equality follows by X L U, | W.



Figure 1.1 provides a convenient graphical depiction of a structure consis-
tent with Assumptions 2.1 and 2.2. Here, arrows denote direct causal relationships.
Dashed circles denote unobservables and complete circles denote observables. Here,
because of the indicated causal relations, U,,, U,, and U, are dependent, which gen-
erally leads to dependence between X, W, and U,.

In contrast to Altonji and Matzkin (2005) and the other references just
given, we do not assume that X is observable. Instead, we suppose that we observe
two error-contaminated measurements of X, permitting us to employ methods of

Schennach (2004a, b). The following assumption expresses this formally.

Assumption 2.3  Observables X, and X5 are determined by the struc-
tural equations X1 = X + Uy and Xy = X +Us, where Uy = v1(U) and Uy = vy(U)

for measurable functions v; and v,.

Figure 1.2 depicts structural relations consistent with Assumptions 2.1 -
2.3. A line without an arrow denotes dependence arising from a causal relation in
either direction or the existence of an underlying common cause. Later, we will rule
out correlation (more precisely, conditional mean dependence) between U; and Us
but permit dependence otherwise. We will also impose further restrictions on the

relations between the measurement errors and the other variables of the system.

1.2.2 Structural Identification

Before going further, it is important to understand how conditional exogene-
ity ensures the identification of effects of interest for the structures of Assumption
2.1, regardless of the observability of X. Given this, we can consider how to
proceed when X is unobservable.

To study identification of the effects of interest, we start with a representa-

tion of the conditional expectation of the response given X and W,
w(X,W)=E(Y | X,W). (1.1)

The function p exists whenever E(|Y|) < oo, as ensured by Assumption 2.1(7),

regardless of underlying structural relations. When the structural relations of



Assumption 2.1(77) hold, we have the representation

u@m&z/ﬂ%%ﬁWWﬂ%w%

where dF(u, | z,w) denotes the conditional density of U, given X = z and W = w.
This represents (X, W) as the average response given (X, W) = (x,w). With no
further restrictions, this is a purely stochastic object. It provides no information
about the causal effect of X on Y.

When X < (U, W), as assumed here, we can define a particular conditional
expectation that has a clear counterfactual meaning, supporting causal interpre-

tations. Specifically, the average counterfactual response at x given W = w is

pla | w) = B(r(a.U) | W = w) = [ r(a,0,) dF(uy | w),

where dF(u, | w) denotes the conditional density of U, given W = w. The
function p(x | w) is a conditional analog of the average structural function of
Blundell and Powell (2004), and a stepping stone to the analysis of various causally
informative quantities of interest. Let D, = (9/0x). The covariate-conditioned

average marginal effect of X on Y at x given W = w is

B (x| w) = Dep(x | w) = Dgc/r(x,uy) dF(u, | w) = /Dgcr(x,uy) dF(u, | w),

provided the derivative and integral can be interchanged. This function is a
weighted average of the unobservable marginal effect D,r(x,u,) over unobserved
causes, given observed covariates. As described in the next section, it can be used
to construct various effect measures of interest; for instance, the average treatment
effect, the effect of treatment on the treated (Florens, Heckman, Meghir, and Vyt-
lacil, 2008), and the weighted average of the local average response (Altonji and

Matzkin, 2005). When Assumption 2.2 holds, we have

/ r(o,uy) dF(uy | 2, w) = / r(a,uy) dF(uy | w),

as X L U, | W implies dF'(u, | z,w) = dF(u, | w). That is, u(z,w) = p(z | w),
so j acquires causal meaning from p. We call this a “structural identification”

result because it identifies an aspect of the causal structure, p, with u, a standard



stochastic object. When p(z,w) is differentiable, let B(x,w) = Dyp(x,w). With
w structurally identified (u = p), we also have f(x,w) = *(z | w), so that B(z, w)
is also structurally identified. (See White and Chalak (2008) for additional formal
conditions ensuring these identifications.)

If X were observable, we could estimate the covariate-conditioned average
marginal effect §*(z | w) by first estimating p(z,w) using standard techniques.
Differentiating this with respect to z then yields f(z,w) = f*(x | w). Here, how-
ever, X is not observable, so such a direct approach is not available. Instead, we
estimate p(z, w) and its derivatives using the Fourier transform approach exploited

in simpler settings by Schennach (2004a, b).

1.2.3 Weighted Averages of Effects

In addition to §*(z | w), we are interested in weighted averages of *(x | w),

such as
gu) = [ 5 [ wm(w)du, (1.2
G ) = [ 5 [ w)m(w) fur ) (13)
Grgn@) = [ 5 [ w)m(w) fupelw | a)du, (1.4)
5= [ [ 5wt w)duds, (15)
B = | [ 5l lw)mte,w) il | 2)duds, (16)
Gt = [ [ 87 | while ) fuc . ), (L.7)

where m(-) and m(-,-) are user-supplied weight functions, and where fw, fw|x,
and fy x are the marginal density of W, conditional density of W given X, and
joint density of W and X, respectively. When m(w) = 1, for instance, 3, ()
is analogous to the derivative of the average structural function of Blundell and
Powell (2004) and the average treatment effect of Florens, Heckman, Meghir, and
Vytlacil (2008). When m(w) = 1, Bt () corresponds to the local average
response of Altonji and Matzkin (2005) and the effect of treatment on the treated



(Florens, Heckman, Meghir, and Vytlacil, 2008). When m(z,w) = m(w), 5%

mfw|x

corresponds to the weighted average of the local average response (Altonji and
Matzkin, 2005).
Under structural identification, we have 3;,(z) = B (), By, 1, (¥) = B

(@), By (&) = Brsiix (2); 85 = By Brigyc = Bt and B = Binpwx
where all quantities on the right-hand side are analogs of those on the left, obtained
by replacing #* with ( in the defining integrals above. We thus are interested in
estimating structurally identified 3(x, w), B (%), Bufw ()s Bnfu x (), Biivs Bi iy x»
and By, «, relying only on observations of W, X;, X5, and Y.

1.2.4 Stochastic Identification

In what follows we take X and W to be scalars for simplicity. Analogous to
the approach taken in SWC, we first focus on estimating quantities of the general

form

gvalz,w) = Dy(B[V | X =2, W = w]fxw(z | w)),

where D) = (0*/027) denotes the derivative operator of degree \, V is a generic
random variable that will stand either for Y or for the constant (V = 1), and fxw
is the conditional density of X given W. For example, special cases of the general
form above are fxyw(z | w) = gio(z,w), E[Y | X =2, W = w|fxw(r | w) =
gyvo(x,w), and p(x,w) = gyo(x,w)/g10(z, w). Thus, with structural identification,
the covariate-conditioned average marginal effect of X on Y at x given W = w is

_ gva(z,w) _ gvo(z,w) gi1(z, w)
gl,o(fﬁaw) Ql,o(xaw) 91,0(5’77“})

B, w)

We first analyze the asymptotic properties of estimators of gy, with generic
V' when we observe two error-contaminated measurements of X, as in Assumption
2.3. We can then straightforwardly obtain the asymptotic properties of estimators
of B(xz,w) and weighted averages of 3(x,w). We denote the support of a random
variable by supp(-). By convention, we take the value of any referenced function
to be zero except when the indicated random variable lies in supp(-). We impose

the following conditions on Y, X, W, Uy, and Us.
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Assumption 3.1 E[|X]] < oo and E[|U;]] < oc.

Assumption 3.2 (i) E[U; | X,Us] = 0; (i7) Uy L (X, W); (iii) E[Y |
X, U, W] = E[Y | X, W].

Assumption 3.3 (i) inf,cquppov) fw (w) > 0; (i) SUD (5 ) esupp(X, W) JX|W

(x| w) < 0.
Assumption 3.4  For any finite ¢ € R, |El[exp(i¢X5)]| > 0.

Assumption 3.1 imposes mild conditions regarding the existence of the first
moments of the cause of interest and the measurement error of the first mea-
surement error-laden observation. Assumption 3.4 is commonly imposed in the
deconvolution literature (e.g., Fan, 1991; Fan and Truong, 1993; Li and Vuong,
1998; Li, 2002;, Schennach, 2004a,b), which requires a nonvanishing characteristic
function for X5. Assumptions 3.1, 3.3, and 3.4 jointly ensure that gyo(x,w) is well
defined.

Assumption 3.2 has been imposed in a similar fashion in the repeated
measurements literature (e.g., Hausman, Ichimura, Newey, and Powell, 1991; and
Schennach, 2004a, b); however, the presence of W is new here. Assumption 3.2(1)
imposes a mild conditional moment restriction, while Assumption 3.2(i) is crucial
but plausible. The conditional mean restriction in Assumption 3.2(i) is imposed
instead of independence to ensure the weakest possible assumptions. The indepen-
dence in Assumption 3.2(i7) is necessary because of the nonlinearity of the model.
Note that E[U; | Us] = E[E[U; | X,Us] | Us] = 0, so that U; is mean independent
of Us. On the other hand, the mean of U; does not have to be zero. These relatively
mild requirements on the measurement errors are plausible for many practical ap-
plications, but are asymmetric between U; and Us,. If symmetry is plausible, one
can obtain analogous estimators, interchanging the roles of X; and Xs.

Let N={0,1,...} and N = NU {o0}.

Assumption 3.5 For V = 1,Y, gyo(-,w) is continuously differentiable
of order A € N on R for each w € supp(W).
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This assumption imposes smoothness on gyo. If gy, can be defined solely
in terms of the joint distribution of observable variables V', Xy, and X5, we say it

is “stochastically identified.” This is shown in the next lemma.?

Lemma 3.1  Suppose Assumptions 2.1(i), 2.3, and 3.1 - 3.5 hold. Then
for V.=1,Y and for each X € {0,...,A} and (z,w) € supp(X, W),

vaw) = o= [(10 60 (G, w) expl—ige)dc

where for each real (,

B ; E[VelsX2 | W = ] CiB[X eX2]
oy (¢, w) = E[Ve S | W =w] = B[] exp (/0 Wdf) :

Note that gy, is empirically accessible when it involves only observable
variables. Thus, knowledge of E[VelX2 | W = w], E[e®*2], and E[X;e®*?] is

sufficient to obtain stochastic identification of gy .

1.3 Estimation

Our nonparametric estimators of gy, make use of the following class of

flat-top kernels of infinite order proposed by Politis and Romano (1999).

Assumption 3.6  The real-valued kernel x — k(z) is measurable and
symmetric, [ k(x)dr =1, and its Fourier transform & — k(&) is such that: (i) K is
compactly supported (without loss of generality, we take the support to be [-1,1]);
and (ii) there exists € > 0 such that k() =1 for |¢| < €.

The above assumption is similar to that used in SWC. The fact that the
kernel is continously differentiable to any order is ensured by the requirement of

Assumption 3.6(7) that the Fourier transform of the kernel is compactly supported.

2Derivation of a part of the expression for ¢y is similar to that of an identity due to Kotlarski
(see Rao, 1992, p. 21), which enables one to recover the densities of X, Uy, and Uy from the
joint density of X; and Xo under the assumption that X, Uy, and U, are independent. Our
identification strategy for the density of X relies on weaker assumptions than independence. In
fact, we only require E[U; | X,Us] = 0 and Us L X for the result, instead of mutual independence
of X, Uy, and Us. As a result, our setup allows dependence between X and Uj, and between Uy
and Us.
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The assumption of compact support of x is commonly used in the kernel decon-
volution estimator (e.g., Fan and Truong, 1993; Schennach, 2004a). Because the
kernel deconvolution estimator involves a division by an asymptotically vanish-
ing characteristic function as frequency increases toward infinity, it suffers from
the well-known ill-posed inverse problem that occurs when one tries to invert a
convolution operation. This problem can be rectified by estimating an associated
numerator using a kernel whose Fourier transform is compactly supported, which
guarantees that the numerator will decay well before the denominator causes the
ratio to diverge, ensuring that the divergence is kept under control.

Compact support of the Fourier transform of the kernel is a weak require-
ment because one can transform any given kernel & into a modified kernel k& with
compact Fourier support, having most of the properties of the original kernel, as
mentioned in Schennach (2004a). To construct the modified Fourier transform &

from the original Fourier transform & of k put

R(€) = W(ER(S),

1 if [¢]<¢
W) =1 (+exp(1=E((1 =) =(lel= )" if E<ef<T.
0 if 1<|¢

(1.8)

Here W(-) is a window function that is constant in the neighborhood of the origin
and vanishes beyond a given frequency, determined by £ € (0,1).

Flat-top kernels of infinite order have the property that their Fourier trans-
forms are “flat” over an open neighborhood of the origin, as described in Politis and
Romano (1999). When a flat-top kernel of infinite order is used, the smoothness
of the function to be estimated is the only factor controlling the rate of decrease
of the bias, whereas when a finite-order kernel is used, both the smoothness of the
function and the order of the kernel affect the rate of decrease of the bias. When
the function to be estimated is infinitely many times differentiable, a flat-top ker-
nel of infinite order guarantees that the bias of the kernel estimator goes to zero
faster than any power of the bandwidth. For instance, the bias from a flat-top

kernel of infinite order could be an exponentially shrinking function of the inverse
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bandwidth, even though the bias from a traditional finite-order kernel is a decaying
function of the inverse bandwidth to a negative power.
The estimator for gy, (x, w) is motivated by a smoothed version of gy »(x, w).

The next lemma incorporates the kernel into the expression for gy ,(x,w).

Lemma 3.2  Suppose Assumptions 2.1(i), 2.8, 3.1, and 3.3 - 3.5 hold,
and let k satisfy Assumption 3.6. For V. = 1,Y and for each A € {0,...,A},
(x,w) € supp(X, W), and hy > 0, let

1 (z2—x . .
gva(z,w, hy) = /Ek ( 3 )gu,\(x,w)dx.
1

%/(—K)AH(MCW‘/(C,UJ) exp(—i¢x)dC.

We let h = (hq, he) denote the kernel bandwidth or smoothing parameter.

Then
gv,,\(fl% w, h1) =

Because limp, .o gya(x,w, hi) = gya(x,w) by lemma 1 of the appendix of Pagan
and Ullah (1999, p.362), we also define gy, (z,w,0) = gya(x,w). Motivated by

Lemma 3.2, we define our estimator for gy, \(x,w) as follows.

Definition 3.3  Let h, = (hin, hon). The estimator for gy(xz,w) is
defined as

gva(z,w, hy) = % /(—iC)AH(hlnC)év(Qw7h2n) exp(—i¢z)d(,

for h, — 0 as n — oo, where

N B[V eiXz W—w XeléX2
(G, hay) = LV ( / A d§>,

EleicX2] E[ei€Xe]
N (nhoy) ' 320, Vi Xk iCXo _
E[VezCX2 | W = w] = J=1 _ < ) VG k’h (W u))]7
(nhan) ' S0y ke g;) Bk, (W — w)]

and where kp, (-) = hy 'k (-/hay) and E[-] denotes a sample average.?

3There are two kernels in the expression of gy, (z,w, hy): one is associated with the regressor
X and the other is needed for the conditioning instrument W. Even though we do not explicitly
use different notations for the purpose of notational convenience, they could be different (note that
nevertheless, we use different bandwidths for different kernels). So k() is the Fourier transform
of a flat-top kernel associated with X and k(-) is another flat-top kernel for W. Indeed, different
flat-top kernels are incorporated in the empirical parts.
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With E[] denoting a sample average, for any random variable X, E[X | =
nt Z?:l X;, where X1, ..., X, is a sample of random variables, distributed iden-
tically as X. We replace ¢y (¢, w) by its sample analog, ¢y (C,w, hoy). E[VeiX2 |
W = w] is a kernel estimator of E[Ve®*2 | W = w)].

1.4 Asymptotics
1.4.1 Asymptotics for the General Form

SWC extensively generalize Schennach (2004a, b) to encompass (i) the
A # 0 case; (i) uniform convergence results; and (ii¢) general semiparametric
functionals of gy,\. Here, we use the approach of Schennach (2004a, b) to achieve
counterparts of these three results in the context of models where endogeneity is
handled with conditional independence, as in the treatment effect literature, and
where the cause of interest is contaminated by measurement error. The analy-
sis of estimator properties is complicated by the presence of the kernel estimator
of the conditional expectation. We begin by deriving the asymptotic behavior of
the estimator for the quantities of the general form gy ,(x,w,h,). The first re-
sult decomposes the estimation error into a “bias term,” a “variance term,” and a

“remainder term.”

Lemma 4.1  Suppose that {U;, W;, X;,Y:} is an independent and identi-
cally distributed (IID) sequence satisfying Assumptions 2.1(i), 2.8, 3.1 - 8.5, and
that Assumption 3.6 holds. Then for V. = 1,Y and for each X € {0,...,A},
(x,w) € supp(X, W), and h = (hy, hy) > 0,

gua(z,w, h) — gya(x,w) = By(z,w, h1) + Ly(z,w, h) + Ryx(z,w, h),
where By x(x,w, h1) is a nonrandom “bias term” defined as
Bya(z,w, hi) = gya(z,w, hy) — gva(z, w);
Ly(z,w,h) is a “variance term” admitting the linear representation

LV,/\(xywv h’) = gV,)\(ﬂf,w, h) - gV,)\(wiv hl) = E [KV,)\('Iawa hv ‘/aXlaXQa W)] )
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where Gyx(x,w,h) is the linearization of Gya(z,w,h) in terms of (E[ei¥?] —
Elet2)),

(E[X1¥2] — BIX1e1%2)), (B[VesXeky, (W — w)] — E[VeXeky, (W — w)]), and
(Elkp, (W — w)] — Elkpn, (W — w)]), where

lya(x,w, hyv, 21, 29, W)
= / Uyai(Cz,w, hy) (€47 — E [¢%2]) d¢
+ / Uy, (G r,w, hy) (2172 — B [ X1%2]) d¢
+ /\IIV)MXV (¢, x,w, hy) (veic”’?khQ(w —w)—F [VeiCXQkh,z(W — w)D d¢
+ / Uy (Cx,w, hy) (kpy (0 — w) — E [k, (W —w)]) dC,

and where, letting 04(C) = E [Ae’*2] for A=1,X; and xv(¢,w) = [ [ves®

fvxow (v, 22, w)dvdzs, we define

N i /LHXl(g)
2m (01(€))?

- L eyt xp(-igny 26 )

\I/V,A,I(Cv €, w, hl)

/C m(—ié))‘m(hlf) exp(—i&x) oy (€, w)dE

¢V(C w)
01(¢)
1 1

zgm / (—i€) k(In€) exp(—i€x)du (€, w)de

ov (¢, w)
xv (¢, w)
ov (¢, w)
fw (w)

where for a given function & — f(§), we write fcioo f(&)dE = lim. f;c f(&dg;

and Ry x(z,w,h) is a “remainder term,”

Uy x, (€ @, w, hy)
Wy XV(C z,w, hy) :—( C) k(h1C) exp(—iCx) ———=

Wi (G0, ) = = o (=i () expl—iga) P o)

Ryx(x,w,h) = gua(z,w, h) — gyva(z,w,h).

Because gya(x,w, h) takes the form of a nonlinear functional of the data
generating process, the above linearization facilitates the analysis of the asymp-

totic behavior of the estimator. In fact, the limiting distribution of gy, (z,w, h) —
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gv(z,w) is equivalent to that of Ly x(x,w, h), as long as By x(x,w, h;) and Ry,
(xz,w, h) are asymptotically negligible. Thus we first establish bounds on the bias,
the variance, and the remainder terms; we then establish the asymptotic normality
of the variance term.

To obtain rate of convergence results for our kernel estimators, we impose
bounds on the tail behavior of the Fourier transforms. These conditions describe
the smoothness of the corresponding densities. The deconvolution literature (e.g.,
Fan, 1991; Fan and Truong, 1993; Li and Vuong, 1998; Li, 2002; Schennach, 2004a;
and Caroll, Ruppert, Stefanski, and Crainiceanu, 2006) commonly distinguishes
between “ordinarily smooth” and “supersmooth” functions. Specifically, ordinar-
ily smooth functions admit a finite number of continuous derivatives and have a
Fourier transform whose tail decays to zero at a geometric rate, |(|7,y < 0, as
the frequency, |[(|, goes to infinite (e.g., uniform, gamma, and double exponential);
whereas supersmooth functions admit an infinite number of continuous deriva-
tives and have a Fourier transform whose tail decays to zero at an exponential
rate as exp(a|C]?),a < 0,3 > 0 as the frequency goes to infinite (e.g., Cauchy
and normal). For conciseness, our smoothness restrictions encompass both the
ordinarily smooth and supersmooth cases; for this, our regularity conditions are

expressed in terms of (1 + [¢])” exp(a|¢[?).

Assumption 4.1  Let ¢,(¢) = E[e"¥].
(1) There exist constants C1 > 0 and v > 0 such that

DC¢1(C)

Delny()] = ¢—<c>‘ < Cu(1+ [

(it) There exist constants Cy > 0, ap <0, B, > 0, and v4 € R such that Byys > 0
and for V=1Y

sup ov (G, w)] < Cy(1+[¢])7* explag¢]™),
wesupp(W)

and if oy =0, then v5 < =X — 1 for given X € {0,...,A};
(i13) There exist constants Cy > 0,09 < 0, By > By > 0, and v € R such that
Bove > 0 and for V=1,Y

min{_inf [ (C )l (O} = Col1+ K explanlc] )

€supp
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We omit a term exp(a;|¢|?) in Assumption 4.1(i) with negligible loss of
generality because In ¢, is typically a power of ( for large (, even when the density
of ¢1(() is supersmooth, as pointed out in Schennach (2004a) and SWC. Note that
the rate of decay of ¢y ((,w) is governed by the smoothness of gy o(z, w) = E[V |
X =z, W =uw|fxw(z | w), as ¢v(¢,w) = [ gvo(z, w)e“"dz. Note that a lower
bound, instead of an upper bound, is imposed on xy (¢, w) and 6;(¢), because
these appear in the denominator of the expression for gy(x,w,h). Individual
lower bounds on the modulus of the characteristic functions of X and U, imply
the lower bound on 6,(¢), as 0,(¢) = E[e**2] = E[e’*]E[eV2] by Assumption
3.2(i7). We group together xv (¢, w) and 6;(¢) (in fact, E[e"*] and E[e®“"2]) in a
single assumption for the lower bound for notational convenience. We explicitly
impose By > 34 because

Coll+ ¢ explagl)®) = sup  |ou(Cow)l =  sup B | W =)

wesupp(W) wesupp(W)

> ‘/E[eiCX | W = w] fiw (w)dw| = |E[eX]| > |E[SX]||E[6€V]| > |E[e“*2)|
= 161(0)] = Co(1 + [C])® exp(a|C|®).

The next theorem describes the asymptotic properties of the bias term

defined in Lemma 4.1.

Theorem 4.2  Let the conditions of Lemma 4.1 hold, and suppose in ad-
dition that Assumption 4.1 (ii) holds. Then for V.=1,Y, and each X € {0,...,A}
and hy > 0,
sup |Bya(z,w, hy)| = O <(h1_1)7*’3 exp (aB (hl_l)ﬁB)) :

(z,w)€esupp(X,W)
where ap = aycP, Bp = By, and yap =75 + A + 1.
Note that the bias term behaves identically to that of a conventional kernel

estimator employed when X is measurement error-free, because By ,(z,w, hy) only

involves the kernel and error-free variables.*

4When X is perfectly observed, one can propose an estimator of gy using a similar Fourier
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To establish a divergence rate and asymptotic normality for the variance
term, Ly (x,w, h), we impose some regularity conditions. We first impose condi-

tions ensuring finite variance of Ly, (x,w, h).
Assumption 4.2  E[|X;]*] < co and E[|Y|?] < occ.

We next impose bounds on some moments that are useful for establishing

asymptotic normality of Ly »(x,w, h).

Assumption 4.3  For some § > 0, E[|X,|**] < oo, SUDy, esupp(Xa)
E[| X" | X5 = 25] < 00, E[|Y[**°] < 00, and sup,,cqppury B[V P | W = w] <

Q.

We also suitably control the bandwidth to establish asymptotic normality.

Assumption 4.4 h, — 0 as n — oo, such that: if By # 0 in As-
sumption 4.1(iti), then hy, = O (exp(3Inn®?™" — L(ayls,_5, — ag)(Inn)'=1%))
and hy! = 0O ((lnn)l/ﬁe_") for some n > 0; otherwise, for each A € {0,..., A},

hyl =0 (n(3*277)/4n377(’7¢+)\*’79+1)/(2(%+>\+’Y1*70+3))) and

hIT} — O (n_nn(3/2)/('7¢+>\+71_76+3)) fOT some n > 0.

The bandwidth sequences given above can be selected by ensuring that a
regularity condition in Lemma A.2 holds (see Lemma A.2 and the proof of Theorem

4.3 in the Appendix). The bandwidth sequences imply that if densities appearing

transform as
. 1 O - .
vl n) = o [ (10 n(lanC)y (6w, han) expl~iGa)dl.

for h,, — 0 as n — oo, where

E‘[Vei(ka-h% (W — w)]

v (s han) = BV W =) = =

Then one can easily derive the order of the bias, which is the same as that in Theorem 4.2. Note
that this estimator for gy, » has the same asymptotic properties as a traditional kernel estimator
of gy, » with the flat-top kernel of infinite order when X is perfectly observed; but this estimator
using the Fourier transform approach makes possible easy comparisons with our estimator in
Definition 3.3.
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in quantities in the denominator (xv(¢,w) and ;) are supersmooth, one must
choose a larger bandwidth than in the case of ordinary smoothness. The achievable
convergence rates will thus be slower than for ordinary smoothness. Similar but
simpler results have also been observed in the kernel deconvolution literature (see
Fan (1991), Fan and Truong (1993), Li and Vuong (1998), Li (2002), and Schennach
(2004a)).

We are ready to state a uniform rate and asymptotic normality for the

variance term.

Theorem 4.3  Let the conditions of Lemma 4.1 hold. (i) Then for V =
1,Y and for each X € {0, ..., A}, (x,w) € supp(X, W), and h > 0, E[Ly(z, w, h)]
=0, and if Assumption 4.2 also holds, then

E [(LV,)\(xawahn))ﬂ = n_lgv,)\(x7wvhn>a

where

QV,)\('Ta w, hn) =F [(EV,)\(I" w, hna V) le X27 W))Q}

is finite. Further, if Assumption 4.1 holds, then

(z,w)€Esupp(X,W)
=0 (max{ (hfnl)éL ot (hljll)%’L exp (OéL (hfnl)BL)> )

with ar, = aglig,=g, — @o, B = Bo, mr =147 — v+ A, and o, =1+ . We

\/ sup QV,)\ (.T, w, hn)

also have

sup | Ly (2, w, hy,)|
(z,w)€supp(X,W)

= 0y (Y2 (max{ (i)™ h3}) ()™ exp (au (h5) ™))
(13) If Assumptions 4.3 and 4.4 also hold, and if for V. = 1,Y and for each
A €{0,...,A}, (x,w) € supp(X, W), Qua(z,w, h,) > 0 for all n sufficiently large,
then
n1/2 (QV,)\(xa w, hn))_1/2 LV,)\(xa w, hn) i> N(07 1)

A few remarks are in order. The rate of divergence of the variance term

is controlled by the smoothness of the density of the measurement error U, and
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Elp(xe,w) | Xo = x3] (through s, g, Bp) as well as by the smoothness of the
density of X and E[V | X = o, W = w| (through 74, ay, 84, and 1), where
(w2, w) = [vfv.x,w(v, 29, w)dv. As expected, the order of the variance term is
larger than that of a traditional kernel estimator with error-free variables.® As a
result, the rate of convergence of the estimator gy, will be slower than that of a
standard kernel estimator, because the bias term is identical to that of a standard
kernel estimator with measurement error-free X.

We now establish a uniform convergence rate and asymptotic normality of
the estimator gy, (x,w, h,). We first provide bounds on the remainder term that
are used to obtain a convergence rate. The next assumption puts restrictions on

the moments of X5 that are useful for establishing a bound on the remainder term,
RV,)\(I, w, hn)

Assumption 4.5 E[|Xs|] < oo, E[| X1 X3]] < 00, and E[]Y Xs|] < 0.

The following assumption provides a uniform convergence rate for the kernel
density estimator, fy (w), in the denominator of gva(z,w, h). This assumption is
also used to get the bound on the remainder term and is satisfied by density
estimation with conventional choice of kernel. Even though flat-top kernels of
infinite order attain a faster convergence rate than that below (e.g., Politis and

Romano, 1999), the faster rate is not necessary for our result.

Assumption 4.6 SUD,cqupp() | fw(w) — fw(w)| = O, (« / }f—£ + h%)

The following assumption gives a lower bandwidth bound that slightly dif-
fers from that of Assumption 4.4. Note that neither Assumption 4.4 nor 4.7 is

necessarily stronger than the other.

Assumption 4.7 If By # 0 in Assumption 4.1, hj, = O ((lnn)l/ﬁf’_”)
and hy, = O (exp(2(Inn)'="%)) for some n > 0; otherwise

SWith perfectly observed X, the order of the variance term of the estimator in footnote 2
can be derived as n_l/Qh;nl (hl_nl)H%H\ exp (a¢ (hfnl)ﬂqb). Thus if B4 > 0,8 = Be > B4 by
construction, and if B, = g = By = 0,72, = 14+74 — 79 + A > 1+ 74 + A since (—79) > 0, and

5
max{(h;,})"" ,ho } > hj,. Then the order of the variance term in Theorem 4.3 is greater than
that of the kernel estimator with perfectly observed variables.



21

hi, =0 (n_"nl/@"ﬂ_%e)) and hy, = O (n”(“—”@_l)ﬂl) for some n > 0.

The bandwidth sequences above can be selected to ensure that the nonlin-
ear remainder term, Ry »(x,w, h,), is indeed asymptotically negligible so that the
decomposition of the estimation error into bias, variance, and remainder terms is
justified, thus implying that the linear approximation of gy x(x,w, h,) — gv.(z, w)
using the variance term, Ly (z,w, hy,), is appropriate. The basic intuition behind
the selection of the bandwidth is similar to that for Assumption 4.4. We now state

uniform bounds on the nonlinear remainder.

Theorem 4.4 (i) Suppose the conditions of Theorem 4.3 hold, together
with Assumptions 4.5, 4.6. Then for V.= 1,Y, each A € {0,...,A}, and some
e >0,

sup |Rya(z,w, hy,)|
(z,w)€supp(X,W)

= O, (02 (hg,! )2 (hi ) 7 exp (—ag(hy,))™))

x O, (n™12 (max{(hy,))%, hy,' }) (hiw )™ exp (ar(hy,)7)) ;

(13) If Assumption 4.7 holds in place of Assumption 4.4, then for V. = 1,Y and
each A € {0,...,A},
sup |Rya(z,w, hy,)|
(z,w)€Esupp(X,W)

= 0, (07" (max{(hy,))*, ha,}) (hi)™* exp (ar(hi)™)) -

In

Theorem 4.4 (i) is used to establish the asymptotic normality of gy, and
(1) is relevant to obtaining a convergence rate. The next corollary establishes a

uniform convergence rate by combining Theorems 4.2, 4.3, and 4.4(i7).

Corollary 4.5  If the conditions of Theorem 4.4 (it) hold, then for V =
1,Y and each X € {0,...,A},

sup ’gV,A<x7w7hn) _g\/,)\(x>w70)‘
(z,w)€Esupp(X,W)

=0 (13! exp (e (12) ) )

+ 0y (07 (ma{ (i} ) ()™ exp (o ()™ ) )
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In the next assumption, we ensure that the bias term and remainder term

do not dominate the variance term admitting the linear representation.

Assumption 4.8 h, — 0 at a rate such that for V.= 1,Y and for each
A€ {0,...,A} and (z,w) € supp(X, W) we have: (i) Qv(z,w,h,) > 0 for all
n sufficiently large; (i) n'/? (QVM\(x,w,hn))*l/2 |Bya(z,w, hip)| — 0; and (i)
n2 (Qua(z, w, ha)) "% |Rya(z, w, hy)| == 0.

This assumption provides a lower bound on Qv (z, w, h,) such that By,
(x,w, hy,) and Ry (z,w, h,) are small relative to this lower bound. Note that the
bound on Qy,x(x, w, hy,) given in Theorem 4.3(7) is an upper bound on the conver-
gence rate, so is not sufficient to obtain our next result, Corollary 4.6. As a result,
the bias term and nonlinear remainder term must be asymptotically negligible rel-
ative to n=Y2(Qua(x, w, hy))Y/2, the standard deviation of Ly (z,w, h,), in order
to ensure that they have no effect on the limiting distribution of the estimator.

The following corollary establishes asymptotic normality by collecting to-

gether Assumption 4.8, Theorem 4.3, and Theorem 4.4(7).

Corollary 4.6  If the conditions of Theorem 4.4 (i) and Assumption 4.8
hold, then for V. =1,Y and each X\ € {0, ..., A} and (xz,w) € supp(X, W), we have

TLI/Q (QV’)\(.T, w, hn))_1/2 (gV,)\('ra w, hn) - gV,)\(x7 w, 0)) i> N(O) 1)

1.4.2 Asymptotics for Functionals of the General Form

We now consider functionals b of J-vectors g, = (gvy x, (T, ) .o, gy 0, (2, 4))
and g = (gvy 25 ---» 9v,.0,) With finite J, and establish the asymptotic properties of
(9 (1)) — b(92) = B((G03.00 (2, 1), e By, (1) = B( 0300 (@ )s ey Gy ()
and b(§(h)) = b(g) = b((Gus (+ )y e v, (- 1)) = B((Gings s G n,)- The first
of the following theorems is relevant to estimating B, (), By (), and Bu gy, ().
Because the weighted average of coordinates of g, is taken only over w, functionals
of g, obtain a rate between y/n— and that obtained in Corollary 4.5. It is not easy
to use a functional delta method to obtain asymptotic normality of the functional

because we need to show tightness of integrands by introducing trimming of the
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tails of characteristic functions in the theorem. We therefore leave formal treat-
ment of asymptotic normality results to future research. The second theorem is
useful for estimating G, Bampy v, and Bip,  and delivers \/n— consistency and
asymptotic normality results for the weighted averages of interest. Because it in-
volves a weighted average over both x and w, it achieves the standard parametric
rate of convergence. Each theorem relies on the validity of an asymptotically linear
representation, useful for analyzing a scalar estimator constructed as a functional
of a vector of estimators. To obtain a faster rate for functionals of g, than that for
gv(z,w), we first impose a bound on the tail behavior of the Fourier transforms

involved, as in Assumption 4.1.

Assumption 4.9  Suppose that for each x € supp(X), SUD,cqupp(x)
[ Is(z,w)|dw < co. Then for V.= 1,Y, there exist constants Cys > 0, ags < 0,
Bgs = By > 0, and 4, € R such that Bysyes = 0 and if Bgs = By = 0, Vg = Vos,
and

sup
z€supp(X)

/cbv(C,w)S(%w)dw < Cs(1+ (€))7 exp(ags[¢[*),

and in addition if ags =0, then v4s < —\ — 1 for given A € {0,...,A}.

The assumption above relies on the intuition that averaging a quantity

generates a faster convergence rate. It is natural to assume (4, > 3, and if

Beos = By =0, 74 > 745, because

sup \¢v(C,w)\t< supw)\d)v(é,w)!)( sup

/s@,w)dw\)

wesupp(W) wesupp( z€supp(X)
> sup /(ﬁV(C,w)s(:c,w)dw’ :
z€supp(X)

Observe, however, that the inequality above can hold even when B4 < B4 or 74 <
Vos, because both bounds on sup,,equppw) 19v (¢, w)| and on sup,cqupoixy | [ ¢v (¢ w)
s(x,w)dw | given in Assumption 4.1(i7) and 4.9, respectively, are upper bounds.
Thus, a faster convergence rate due to averaging over W is not a necessary result.

We next impose minimum convergence rates in a high-level form for con-

ciseness.
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Assumption 4.10 h,, — 0 as n — oo such that for all X € {0, ..., A}, we
have: (Z) Zf B¢s = ﬁ(]ﬁ > 0or Yo = Vs fO?" 6955 - ﬂ¢ =0, SUP (,w)esupp(X, W) |BV7>\("L‘7 w,

)| = 0 (@10), SUP wycsuppe ) [Lva (s 0, )| = 0, (a112). and sup(, uycuuppx vy
|Rva(z,w, hy)| = 0, (a1,) where any, = (hy,y )™ exp (aB (hl_,f‘)ﬁB) +n 12
(max{(hy, )%, hy'}) (hit) ™" exp (aL (hl_nl)ﬂL) and where ag, Bg, VB, oL, BL,
YL, and Or, are as defined in Theorem 4.2 and 4.5.

(%) tf Bgs > By > 0 01 75 > Ygs for Bes = By = 0, SUP (4w esupp(x,w) [ Bva(2,
W, )| = 0 (@20), SUPycsuppny | v (@, w0, )| = 0 (a502)),
and Sup ;. ) esupp(x,w) BV (T, 0, hy)| = 0p (a2,) where ag, = (hin
exp (aB,S (h;,%)BB’S) 02 (max{(hy, )0, hay }) (A ) ™" exp (aL,s (h;nl)m),
and where ap s = %Séﬁw, BB.s = Bpsy InBs = Vos T A+ 1, ans = agslip,,>p,) —
aol(p,,<po}> Br,s = max{ By, Bgs}, ars =1 +7s — Y0 + A, and 6ps =1+ 71

)'YA,B,S

We now establish a faster convergence rate for functionals of g, than that

for gy, (z, w), which is useful for analyzing 5,.(z), Bufy (%), and By (7).

Theorem 4.7  For given A, J € N, let \y,...,\; belong to {0,...,A},
let Vi, ...,V belong to {1,Y}, and suppose that the conditions of Corollary 4.5
and Assumption 4.9 hold. For each x € supp(X), let the real-valued functional
b satisfy, for any G = (Gvyr (2,+), s Gy, (x,7)) in an Lo neighborhood of the

J-vector 9z = (ng,)q (SL’, ')7 ey gVJy)\J(:E7 ))7
b3 = 8(0.) =3 [ (G o0) = gu, (@) sy w)dw (1)

J
+ 0 (Il gy (@) = gy (@) %)
j=1

for some real-valued functions s;, j = 1,..., J. In addition, suppose that s; is such

that SUp,egupp(x) [ 1sj(z,w)|dw < 0o, and let Gu(hn) = (Gvan (T, hn)s ooy Gy, 0, (2,
v hy)). (i) If Assumption 4.10(i) holds, then

zesupp(X)

-0 <(h1;})”’3 exp (CL’B (hizl)ﬁB))
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+ 0, (072 (max{ (i), g ) () ™ exp (au (h) ™))
(1) If Assumption 4.10(ii) holds, then

z€supp(X)

=0 ()™ exp (s (1)) )

+ 0, (0% (max{(h;})2s, byt Y) (hh) ™" exp (ap.s (b e
o ( [ b5l b) (i p (aws (b,

Note that Eqn. (1.9) of this result is Fréchet differentiability of b(g,) with
respect to g, in the norm || gy, 5, (, ) ||%, where the derivative is s;(z, w).
We impose minimum convergence rates for the next theorem in a high-level

form.

Assumption 4.11  h,, — 0 as n — oo such that for all X € {0, ..., A}, we
have SUP (2, w)esupp(X,W) |BV,)\($7 w, hln)’ =0 (n_1/2)7 SUP (z,.w)esupp(X, W) ‘LV,)\(xa w,
hn)' = 0p (n71/4)7 Sup(:c7w)Esupp(X,W) |RV7)\<J]7 w, hn)| = 0p (n71/2)’ and SupwEsupp(W)

[fw(w) = fw(w)] = 0, (n71/%).

The following theorem gives a convenient asymptotic normality and /n—

consistency result useful for analyzing B, By, and Gagy, -

Theorem 4.8  For given A, J € N, let \y,...,\; belong to {0,...,A},
let Vi, ...,V belong to {1,Y}, and suppose that the conditions of Corollary 4.6
and Assumption 4.8 hold. Let the real-valued functional b satisfy, for any g =
(Gvirgs - Gvy ) inan Lo neighborhood of the J-vector g = (gvy ays .- Gvy ) and

for any f = fw in a neighborhood of f = fw,
) J
b5.5) = 4o 1) =3 [ [ (@ o) = gy, 2,0) 850w
j=1
+// (fw(w) —fw(w)> sy41(x, w)dwdz (1.10)

J
30l ava, — v, 12) +0 (I fw = S I12.)
j=1
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for some real-valued functions sj, j =1, ..., J+1. If s; is such that [ [|s;(z,w)|dw
dx < 0o and Uy, , = Z}]:1 f\I/‘/j7,\.75j(C)dC + [0y .s| < 00, where

1 |9X1 A
Uyas(C) = |91( ( TAG ) lova,s(&)||€]7dE

16 (e o 01+ o O

n1al6) = [ explice) [ s(aw)ov(C, widuds

1
Vv ,s(C) ;/exp(ZC$) hl;?o (C )

oV, fw,s(C) = /eXp iCr) l;go I

Ofps = /}};EIO/SJ+1 x,w)kp, (W —w)dwd:r,

s(z, w)py (¢, w)ve2ky, (0 — w)dwdzr

¢V Ca )khz(w - UJ)d'LUdIL'

then, letting G(hyn) = (Gvin (-3 By ooy Gy 0, (5 Bn)) and f(hon) = Elkny, (4)],
b(g (), f(h%)) —blg, f) = E [1s(V, X1, X2, W)] + 0 (n_l/2) )

where

¢ v I’l,l'g, Z¢% S],U],ZL'l,.ZUQ, )+¢f(3J+17w)

and where

valsivanra ) = [ {0010 (@ - B

+ \I',V/\ X1 S(C) ($1ei4x2 — E[X eiCXQ])
+ (ZVAXV(S G v, To, W ) E[ZV)\XV(S G VX27W)])

(g (5 G B) — ElZyin g (5, W) }d<

Sy @ /hm /5J+1 z,w) (kp, (0 — w) — Elkp, (W — w)]) dwdz,

ho—0
with

Wiana(O) = —o <§X(<f>) [ ([ ewtica [ stawnte v (-iey
0

o (el(g) ( / exp(—i(z) / S(xaw)cbv(Caw)dwdx)
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¥ xinlQ) = 550 /C - ( [ew(-ico) [ s<x,w>¢v<s,w>dwdx) (—ie)de

1
Zvaxy (5,60, 22,8) = (=) / p(—ikn) i, | )

x ve’ "2k, (0 — w)dwdz

1
Zyfw (8,¢ W) E—%(—z{)’\/exp —iCx) lim /f s(z, w) oy (C, w)

ha—0

s(z, w)py (¢, w)

X kpy (0 — w)dwdz.

Moreover,
n2(b(§(hn), f(han)) = b(g, ) = N(0, %),

where
O = B [(¢s(V, X1, Xo, W))?] < o0.

1.4.3 Asymptotics for Average Marginal Effects

We now apply our previous general results to obtain the asymptotic prop-
erties of estimators of the objects of interest here. First, consider the plug-in
estimator for the covariate-conditioned average marginal effect,

gY1<$ w h) gY,O('rawuh) gl,l('ruwah)
91,0(33711}, h) Ql,o(fb',’w’ h) @1,0(37,10, h)

B, w,h) =

for each (x,w) € supp(X, W), where the nonparametric estimators § are as given
above.
The results above and a straightforward Taylor expansion yield the following

result.

Theorem 4.9  Suppose the conditions of Theorem 4.4 (i) hold for A =1
and that maxy—; y maxy—o

SUD () esupp(X,w) |9VA (T, w)| < 00. Further, for 7 =1, > 0, define
I, ={(z,w) e R*: Ixw (| w) > 7,}.

Then we have
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sup
(z,w)els

=0 (7'_3 (hl_nl)ﬁ’B exp (ozB (hl_nl)BB>>
+ 0y (772 (mase{ ()% by ) ()™ exp (e (k) ™) )

B(:c,w,hn) — ﬁ(m,w)‘

and there ezists a sequence {t,} such that 7, >0, 7,, — 0 as n — oo, and

sup ‘B(z,w, hyp) — ﬁ(x,w)’ = 0,(1).

(z,w)els

The delta method gives us the next result.

Theorem 4.10  Suppose the conditions of Corollary 4.6 hold for A =
1 and that maxy—;y Max=0,1 SUP( u)esupp(x, ) |9VA(T, w)| < oo. Then for all

(x,w) € supp(X, W),
n!2 (Qa(a, w, 1)) (Bl w, h) = Bla,w)) 5 N(0, 1),
provided that
Qs w, hy) = B [(Cs(z, w, hn; V, X1, X5, W))?]
1s finite and positive for all n sufficiently large, where

Co(x,w, hyv, z1, 29, 0)
= SY,1($, w)gy,l(l“,w? h;y, xq, 1’27117) + SY,O(OC, w)fxo(ﬂ% w, h;y, T, T, 117)

+ s11(z, w)l (v, w, by 1, 20, 29, W) + 510(2, W)l o(z,w, h; 1,21, 29, W),

where by is as defined in Lemma 4.1,and

(2 0) = —
syq(z,w) = ————,
1 gro(z,w)
g11(z, w) 1
Syolr,w) = — ,
YVO( ) gl,[)(l', ’l,U) 91,0($, ’U))
1
511 (s w) = —Lrol@ ) |
g10(z,w) 91,0($a w)
1
s1.0(z, w) = (ng,o(x,w) gia(r,w) 9Y,1(a:,w)> |
gro(z,w) gro(z,w)  grolz,w) ) gro(z,w)
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Because we are interested in weighted averages of 3(z,w) as well as 3(x, w)
itself, we now consider the asymptotic properties of the following estimators of the

weighted averages in eqns. (1.2)~(1.7):

~ ~

Bz, hy) = . Bz, w, hy)m(w)dw, (1.11)
B(-,hn)
B (2, h) = /5 B hm(w) fi (), (1.12)
B(-,hn)
gl = [ B b)m(w) x| 2)du (113)
B(-,hn)
_ Gro(z,w, hy) fw (w)
a /STBH(.,hn) ﬁ(x i) )fSw gljo(.’E,w, h")dwdw’
B (R :/ Bz, w, hy)m(z, w)dwdw (1.14)
S50 hn)
Bty () = /S . B, w, by ) (, w) fw x (w | z)dwdz (1.15)
B(hn)
B A dro(w,w, hy) fr (w)
= /%w Bz, w, hy,) fsw gl’o(x,w,hn)dwdwd%
B(shn)
Binux (hn) = / . Bz, w, hy)m(z, w) fWX(w z)dwdx (1.16)
B(-,hn)
= . Bz, w, hy) iz, w)g1o(z, w, h ) fw (w)dwdz,
B(shn)

where SE’(. ny = {weR: g o(x,w,h,) > 0}, S;(wh )= {(z,w) € R*: g1 o(x,w, hy,)
> 0}, and where fW(w) is a nonparametric estimator of the density of W. The

next assumption restricts the weight functions, m and m.

Assumption 4.12  Let M and M be bounded measurable subsets of R
and R?, respectively. (i) The weight functions m : R — R and m : R> — R are
measurable and supported on M and M, respectively; (i7) inf, )em Ixw(z | w) >

0; (444) maxy—1,y MaXy=,1 SUP(, )eri |9vr (T, )| < 00.

The next two theorems establish asymptotic properties for these estimators

by applying Theorem 4.7 and 4.8. We first establish asymptotic results for the
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semiparametric functionals taking the forms of eqns. (1.11)~(1.13) by applying
Theorem 4.7.

Theorem 4.11  Suppose the conditions of Theorem 4.7 hold for A =1
and that Assumption 4.12 holds. Then (7)

sup |Bm($v hn) = Bm ()|

zeM
=0 (77 ()™ exp (s () 7))
+ 0, (77 Y2 (maxc{ (b)), gt ) ()™ exp (s (b)) ).
(12)
SUD | B oy (2, Fin) = By ()]
zeM
=0 (7% ()™ exp (s (1))
+ O, (T‘3n_1/2 (max{(hy,) )%, ho }) (hy,)) ™" exp (aL,s (hfnl)ﬁL’S) ),
and (ii7)
Slell\% |Bme|X (@, hn) — ﬁmfmx (2)]
=0 (7 (h)" exp (s (b))
0y (7 Gmax{ e 1) ()™ e (e (1)) ),
where ap s, BB.sy YAB.s» OLs, BL.s, YaLs, and 0r s are as defined in Theorem 4.7.

The following theorem establishes asymptotic results for the semiparametric
functionals taking the forms of eqns. (1.14)~(1.16) by straightforward application
of Theorem 4.8.

Theorem 4.12  Suppose the conditions of Theorem 4.8 hold for A =1
and that Assumption 4.12 holds. Then (i)

V2 ()12 <Bﬁz(hn) _ ﬁm) -, N(0,1),
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provided that
Qn=F [(¢ﬁm (Vv X1, Xo, W))Q}

s finite and positive for all n sufficiently large, where

Vg (U, T1, T2, W Z Z Yya(msya; v, T1, T2, W),

V=1Y A=0,1
where msy, denotes the function mapping (x,w) to m(x,w)sy(x,w) and where

Yy is defined in Theorem 4.7; (ii)

~1/2
nl/? <mew\x> (ﬁmfvv\x< ) 6me|X> — N(() 1)
provided that
Qﬁszlx =F [(wﬂﬁlpr( (V, Xl,XQ’ W))Q]

1s finite and positive for all n sufficiently large, where

Vs (03 1, T2, 0 Z Z Yy fw|x Sva; v, T1, T2, W)

V=LY A=0,1

+ 10(Pr; 1, @1, 22, W) — ¢1,0(Po; 1, 21, T2, W) + Y (Ps; W),
and where M fwxsv, Pi, P2, and Ps denote the functions mapping (x,w) to
(e, w) fux (w | 2)svale, w), Sz, wyilz, ) fw(w)/ fx(2), [, Blzw)
m(z, w)fwix(w | z)dw/fx(x), and Bz, w)m(z,w)fxw(z | w)/fX( ), respec-
tively; (ii7)

' (Qag) (ﬁmfwx( n) — ﬁmfwx> ~5 N(0,1),
provided that
Uy = E [(zp@mfw’x (V, X1, Xa, W))2]

is finite and positive for all n sufficiently large, where

@%MWX (v, 1, 29, W) = Z Z Yy (Mfw,x sy v, 1, T2, W)
V=1,Y A=0,1
+ 1 o(Bfws 1, 21, 22, W) + Yp(Bfxpw; ),
where m fw,xsvyx, Bmfw, and Bmfxw denote the functions mapping (r,w) to

M(x,w)fwyx(w,x)sv,A(a:,w), ﬁ(m,w)ﬁ%(x,w)fw(w), and ﬁ(maw)m<x7w>fX\W(x |

w), respectively.
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1.5 Monte Carlo Simulations

This section investigates the finite-sample properties of the proposed es-
timator through various Monte Carlo experiments. We consider the following

nonseparable data generating process:

Y =(HX)U,, X=05W+U, U,=fo(W)+U,,
X1 =X+Uy, Xo =X+ Uy,

where the distributions of each random variable and the explicit forms of f;, f; are
specified below and where Y, W, X, and X, are standardized to have mean zero
and standard deviation one. We assume U, L U, | W which implies X L U, | W.
The variables (Y, X, X5, W) are used as an input for our estimator, and the
variables (Y, X7, W) are used for the local linear estimator that neglects the mea-
surement error. We also use the variables (Y, X, W) to construct an infeasible
local linear estimator, and (Y, X, X, W) and (Y, X, X, W) to construct infea-
sible versions of our estimator for purposes of comparison. For those estimators,
we consider flat-top kernels of infinite order. In our estimators’, the expression of
Fourier transform, (), associated with X is given in eqn.(1.8) with £ = .5. We use

a different flat-top kernel for W, which is introduced in Politis and Romano (1999):

_ h sin?(2wx/h)—sin?(rx/h
kh(.r) = o5 2252

). All estimates are constructed at values z = 0 and
w = 1. For our estimators, we scan a set of bandwidths® ranging from 7 to 12.5
for X and from 3.5 to 6 for W in increments of 0.05 in order to find the optimal
bandwidth minimizing the root mean square error (RMSE). For both local linear
estimators, we scan a set of bandwidths ranging from 2.5 to 6 for X and from
1.5 to 3.5 for W, with the same increments. All simulations draw 500 samples of
1,000, 2,000, or 8,000 observations.

We examine a total 16 combinations of ordinary and supersmooth distri-

butions for random variables and functions f; and f5, as given in Table 1.1. As

6In the simulations, we assume U, L (U,, W) which implies U, L U, | W by Lemma 4.3 of
Dawid (1979). Lemma 4.1 of Dawid then ensures that U, L U, | W implies X 1 U, | W.

“For the local linear estimator the same flat-top kernel is used for X and W since estimation
results are not sensitive to the choice of the kernel.

8Note that the flat-top kernel has a very narrow central peak, so that even moderately large
bandwidths result in highly local smoothing.
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in Schennach (2004a), we also consider the Laplace distribution as an example of
an ordinarily smooth distribution. The Laplace distribution density, denoted by

L(t; p, 0?), is defined by
1

oV 2

for any ¢ € R with mean p and variance o2. Its characteristic function has a tail of

exp (—cr|t - ,u|\/§)

the form |[¢|™2. The normal distribution with variance o2 is used as an example of
a supersmooth distribution. The tail of the characteristic function of the normal
distribution is of the form exp(—(c?/2)|¢|?). Our example of an ordinarily smooth
function for fo(W) is a piecewise linear continuous function with a discontinuous

first derivative

-1 if W<-1
S(W) = Wit Wel[-1,1]
1 if W>1,

whose Fourier transform decays at the rate (|72 as |[(| — oco. As an example of a
supersmooth function for fi(X) or fo(W), we consider the error function

\%4

erf(V) et

2

~ VT o
having a Fourier transform decaying at the rate |¢|~! exp(—$[¢[?) as || — oo for
V=XorW.

Table 1.2 ~ 1.6 reports the bias squared, variance, and RMSE of the five
estimators, which are functions of bandwidth for a sample size of 1, 000, for example
1.2 Fourier 1, 2 and 3 refer to our estimators which are based on variables (Y, X7,
Xo, W), (Y, X, Xo, W), and (Y, X;, X, W), respectively. Local linear without
correction and local linear without errors refer to local linear estimators which use
variables (Y, X;, W) and (Y, X, W), respectively. We show results from only
a subset of the bandwidths for conciseness. For each choice of bandwidths, the
bias squared, variance, and RMSE are reported in the first, second, and third row,
respectively. The results from the optimal bandwidth are reported at the bottom

of each estimator.

9We only report this example due to space limitations, but results from all examples give
similar messages on the performance of the estimators.
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A few remarks are in order. It is shown that our estimator is as effective
in reducing bias as the infeasible local linear estimator using the true covariate X
is. However, the bias from the local linear estimator ignoring the measurement
error does not shrink toward zero as bandwidth decreases. Our estimator also
gives smaller variance than the local linear estimator based on error-contaminated
covariates. As a result, our estimator outperforms the local linear estimator in
terms of RMSE. All Fourier estimators perform better than the infeasible local lin-
ear estimator. So it would be interesting to investigate under what conditions and
why Fourier-based estimators outperform local linear estimators. By comparing
among Fourier estimators, we can see the role of clean data as well as the asym-
metry between two measurement errors in Assumption 3.2. Interestingly, Fourier
1 and Fourier 2 obtain quite similar estimation results, but Fourier 3 outperforms
these estimators. So one would want to use more clean one for X, among two
error-laden observations in order to get better estimation results.

Table 1.7 reports Monte Carlo simulation results for the convergence rate
as a function of sample size for each example. RMSE’s in all examples decrease as

sample size increases, corroborating our theoretical results.

1.6 Summary and Concluding Remarks

We examine the identification and estimation of covariate-conditioned aver-
age marginal effects in a nonseparable data generating process with an endogenous
and mismeasured cause of interest. We use conditioning instruments to ensure the
conditional independence between the cause of interest and other unobservable
drivers, permitting identification of causal effects of interest. Although the endoge-
nous cause of interest is unobserved, two error-laden measurements are available.
We extend methods of the deconvolution literature for nonlinear measurement er-
rors to obtain estimates of the distribution functions of the underlying cause of
interest from its error-laden measurements and to recover parameters of inter-
est. These parameters include covariate-conditioned average marginal effects and

weighted averages of these. We obtain uniform convergence rates and asymptotic
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normality for estimators of covariate-conditioned average marginal effects, faster
convergence rates for estimators of their weighted averages over conditioning in-
struments, and y/n consistency and asymptotic normality for estimators of their

weighted averages over conditioning instruments and causes.
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1.8 Mathematical Appendix

Proof of Lemma 3.1 By Assumption 3.1, all expectations below exist and
are finite. We first observe that Uy L (X,W) implies Uy L X and Uy L W. Given
Assumptions 2.3, 3.2 and 3.4, we get

iB[Xe%€%2)  E[XEEHT)] 4 BT (X H02)]
EleitX2] E[e€X+0)]
iE[Xeif(X+U2)] +iE[E(U16i§(X+U2) | X, Us)]
E[ei(X+02)]
B[X X)) L BE(U; | X, Uy)e(X+02)] 1
- E[c€(X+02)] (1.17)
iB[X et (X+U2)]
iB[X X Eleitlz)
E[e®X]E[e€U2]
E[e€X]

= DeIn(B[eY)),

as considered by SWC. We use E[U; | X, Us] = 0 in the step from the third to the fourth
equality and use Uy 1 X in the step from the fourth to the fifth equality.

We note that Uy L (X, W) if and only if Uy L W and Us L X | W be-
canse f(Uz, X, W) = f(Us, X | W)F(W) = f(Us | W)F(X | W)F(W) = F(U)F(X |
W)f(W) = f(Usz) f(X,W). And we note that Uy L (X, W) | W if and only if Uy L X |
W. The ‘only if’ part of the assertion follows immediately because Uy L (X, W) | W
implies Uy L X | W and Uy L W | W. The ‘if’ part can be proven by the fact that
U L X | W if and only if (U, W) L (X, W) | W from Lemma 4.1 in Dawid (1979) and
by the fact that if (Us, W) L (X, W) | W, then Uy L (X, W) | W from Lemma 4.2(i7)



37

in Dawid (1979). Then for each real ¢, we have

ov (¢, W) = E[VeiCX | W]
_ E[VeicX | W]E[eiCUQ]E[ez‘(X]
E[ei¢X] E[ei 2]
_ E[VelX | WIE[e“V2 | W]
- E[eX]E[eiclz]
E[E[VelX | X, W] | W]E[e*Vz | W]

= E[eiCX]E[eiCUﬂ E[eiCX]

E [eiCX ]

ELEIV | X, WIS [WIEES | W] e
E[eig‘X]E[ei(Ug]
E[E[V | X, W]eiXeill2 | ]

= E[eiCX]E[eiCU2] E[eiCX}

_ E[E[V ‘ X, Us, W]eiCXei<U2 | W]E[e’LCX]
B E[e“X]E[eiclz]

E[E[VelXell2 | X Uy, W] | W]

_ . ’ E[eiCX]
E[ezCX]E[ezCUg]
_ BE[Ve Y | X, Uy, W] | W]E[eigX]
E[ei(X]E[eiCUQ]
E[VelsXe | W]
= e Bl ¢ ~
e X2 .
= W exp (ln(E[eZCX]) —1In 1)
_ BV W] [ D (e
ey e ([ Dem(e e )
VeSS W] e
T E[eitX] </ EleftX2] > ’

where Uy L W, Uy L (X, W) | W and E[V | X,Us, W] = E[V | X, W] are used in the
steps from the second to the third line, from the fifth to the sixth line, and from the
sixth to the seventh line, respectively.

Given Assumptions 3.3 - 3.5, integral by parts gives
(SO WV | W =] = (~ic)* [ BV | W =w.X =l (o] w)edo
= (—1))‘/E[V | W =w,X =2|fxw(z| w)D)e% dx
= [ DXEW W =0, X =)o | w)e s

= /gv’,\(x, w)eTdz.
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The last expression is the Fourier transform of gy (z,w). For each X € {0,...,A} and

(z,w) € supp(X, W), we have

% /(—z’())‘qﬁv(g,w) exp(—iCx)d¢ = % /(—i{)’\E[VeiCX | W = w] exp(—iCz)dC.

Since the right hand side is the inverse Fourier transform of (—i¢)*E[VelsX | W = w],

the result follows. [J

Proof of Lemma 3.2  Assumptions 3.1, 3.3 - 3.5, and 3.6 ensure the existence

of

r—Xx

1 T " N
gva(x,w, hy) E/mk< I )gm(aﬁ,w)dx

N /hllk (tf) DBV | X =& W = w|fxw(& | w))di.

By the convolution theorem, the inverse Fourier Transform of the product of x(h1() and
(=i¢)* x

E[VelX | W = w] is the convolution between the inverse Fourier Transform of #(h()
and the inverse Fourier Transform of (—i¢{)*E[Ve®X | W = w]. The inverse Fourier
Transform of x(h1¢) is hy'k(x/h1), and the inverse Fourier Transform of (—i¢)* E[VeX |

W =w]is DYE[V | X =a,W =w|fxw(z | w)). It follows that
gva(z,w,hy) = % / w(MQ) (=i EIVE ™S | W = w]) exp(~i¢a)d¢
= 5 [ FIOPR(nCIdv (¢ w) exp(-ica)de. O

Proof of Lemma 4.1 For A = 1, X, we let 04(¢) = E [Ae"CXQ} and for
V=1Y,

Oy (C,w) = E [VeiCXQ W =w

= //vei@?fwxﬂw(v,xg | w)dvdzsy
XV(C; U))

fw(w)

where xv (¢, w) = [ [ve’*2 fy x, w (v, z2, w)dvdzs, fy x,w(v,z2 | w) is the conditional
density of (V, X3) given W = w, and fy x, w (v, 22, w) is the joint density of (V, Xo, W).



Also we let G4(¢) = E [Ae*2] and 604(¢) = 04(¢) — 04(¢). Similarly Oy (¢, w) =
E [VelsX2 | W = w] = v (¢, w)/ fu (w) where

Z oy (W — w) V<2 = [VeiCXz e, (W — w)}
Z g (W —w) = E kg (W — w)]
so that 0%y (¢, w) = Xv (¢ w) — xv (¢ w) and 0 fw(w) = fiw(w) — fiw(w). As used in

Schennach (2004a, b) and SWC, we state a useful representation for O, (¢)/01(¢):

9}(1 (C) _ 9X1 (C) + 50:)(1 (C)
01(¢) 01(¢) + 061(¢)

where gx, (() = 0x,(¢)/61(¢) and where dGx, (¢) can be written as either

= le(C) +6C.?X1(C) (1'18)

~ ~ ~ —1
R _ [ 90x,(¢)  0x,(€)d61(¢) 661(¢)
Px,(6) = ( NGOG > (” 91(0)
or 64x, (¢) = 014x, (€) + d2gx, (¢) with

~ o 59X1 (C) 9X1 (C)é ( )

(51QX1(C) = 01(() 01(€ )12
2 —1 ~ ~ —1

. _ 9X1 861(C) 591 59X1(C) 501(C) 661(¢)

P20, (¢) = ( ) H ) AGIA® (1 T )

For v (¢, w)/01(),

xv(Gw) _ xv(Gw) +xv(Cw) _ s
él(() 91(()4‘(5@1(() QV(Q )+ QV(gv ) (119)

where gy ((,w) = xv (¢, w)/01(¢) and where Gy (¢, w) can be written as either

Svw) (¢ win@\ (4, 0©)
0:(0) 0:(0))? 01(0)

or (5(}{/((, w) = 51(}\/(@ w) + 52(}\/((,’[1)) with

dGv (¢, w) = (

o swGw) w(Cw)dhi()
51QV(C7U)) = 91(4) - (91 (C))Ql

~ 2 ~ -1 ~ ~ —1
o wlGw) (8 500\ S (G w) 801(Q) [, | 5i(Q)
(6wl =" (6 (euo ”61«)) EGENA <”el<o>
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Similarly for 1/ fi (w),
r 1 _
fw(w)  fw(w) +ofw(w)
where ¢;(w) = 1/ fiy(w) and where §¢;(w) can be written as either

N ~ -1
ooy dfw(w) d fw (w)
$i1(w) — ( oh (W) <1+ fw(w)>

or 641 (w) = 0141 (w) + d241(w) with

8 fw (w)
(fw (w))?

R 2 R -1
o 1 §fw (w) dfw (w)
Podi(w) = fw (w) < fw (w) > (1 " (w) ) '
For Qx,(C) = Jy (i6x,(£)/61(€))d€, 6Qx,(C) = [ (i6x,(€)/61(€))dé — Qx,(¢) and some
random function 6Qx, (¢) such that [6Qx, ()] < [6Qx, (¢)| for all ¢,

q1(w) + 61 (w) (1.20)

611 (w) = —

exp (Qxl Q) + 5QX1(C)) (1.21)
N 1 _ ~ 2
= exp(@x,(0) (14603, + § [exp(0Qx, (©)] (30,(0)) ).
By substituting eqn.(1.18)~(1.21) into

QV)\(:L‘ w, h) 7gV)\(wivh1)

— o [ (80 () exp(~ica)

e (i@ ) tvcw)( [Cifx(©)
[91@ p</0 00 df) e ([ o) |

we have

f]v)\(l' w h) —gv)\(l’ w hl)
v (¢, w) Cifx, (€)
—or [ (i) exp(- zcx){ NS exp< o d§>

+ {XV(C?U}) 5XV(<aw> ( )59 ( ) A (<7w)}

A G

1 8 fw (w) .
X {fw(w) = Uw(w)? + 52Q1(w)} exp(Qx, (¢))

2

S [Finan@ie+ [ina @+ fenax o) ([ )
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Keeping the terms linear in 661 (), 60x,(¢), dxv (¢, w), and 6 fy(w) gives the lineariza-

tion of gy x(x,w, h), denoted gy \(z, w, h):

gV,)\(xv w, h’) - gV,)\(l} w, hl)

_i —iO) 'k exp(—ilx Ov (¢, w) ex ¢ idéXl(g)_i6X1<§)5é1(€>
5 [iePeme e(-ice)| o expi,) [ ( Tl x O )df

xv (¢ w) dfw(w)
01(¢)  (fw(w))?

1 (&w(@w) ) xV<<,w>5é1<o> ] i«

— exp(@x, (¢))

91({) (91(5))2
8 fw (w) N oxv (G w) 5@1(0) dc.

¢ (ish ; A
:% /(—iC))\n(th) exp(—i(xwv(g’w)/o ( 60x,(§) 9X1(£)561(§)> g

n % /(—ZC)/\/f(h1C) eXp(—iCx)¢V(C7w) <_ fW(w) XV(va) el(C)

Using the identity

/_Z /OC f(¢,§)ded¢ = /000 /:O (¢, &)dlde + /_(; /g_oo F(¢,€)d¢de
=/ /E ™ F e
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for any absolutely integrable function f, we get

Ly (z,w,h)

=gva(z,w, h) = gva(z, w, hy)
:I:oo ; . .
// —i¢)*k(h1¢) exp(—iCx)dv (¢, )dg( 90x,(8) _ 9X1(€)591(£)>d5

01(£) (61(£))?

i exo(—ica w v (Gw)  dfww)  56:(C)
+ o [0 k() expl-iga)ov ¢ )<xv<<,w> i euo)dc

7 +oo
:/H 217?(3)((2“()?2/4 (—Zf)/\’f(hlﬁ)exp(—i&a:)gbv(g,w)dg

- g (0w exp(—ica) e Lot )

+{33 iC (16 w(11€) exp( i) 6. ) [ 3, ()

{5 h<em<mw¢§§$}wymw>

#{ = i (i) exp(-ico) % K () g
/[\pv“ Cw, ) (B[] - B[4%2))

+ Uy x, (¢ w, ha) (E [(X1e%%2] — B[X €i<X2]>

¢l
+ Wy g (G, w, hy) (E o (W
ZE[/‘I’V,,\,l(C,UC,IU,hl) <ei X2 — Ele ZCXQ]) dg¢

+/‘I’V,A,X1(C,x,w,h1) (XleiCXQ — E[Xlei4X2]) dc

Uy (G aw, hy) (E[V X2k, (W — w)] — E[Ve<X2ky, (W —w)])

i Blkn, (W = w)]) }dc

b [ Wi () (Ve (0 = w) = BV, (W — w))) de
[ Wi (€, ) (0 = 0) = Bl ~ w)) ]
=E [ty(z,w,h; V, X1, Xo, W)]

where Wy 4(C,z,w, h1) and lyx(x,w, h; V, X1, Xo, W) are defined in the statement of
the Lemma 4.1. [

We define the following convenient notation as employed in SWC.
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Definition A.1  We write f({) = g(¢) for f,g : R — R when there exists a
constant C > 0, independent of ¢, such that f(¢) < Cg(C) for all ¢ € R (and similarly
for »). Analogously, we write a, = by for two sequences ay,b, when there exists a

constant C independent of n such that a, < Cb,, for all n € N.

Proof of Theorem 4.2  Using Parseval’s identity, we have

| By (z,w, hy)|
= |gv(z,w, h1) — gv(z, w)|

= ‘gV,/\(wia hl) - gV7)\(ZL',’LU,O)’
_ ]1 [ KO ov ¢ wyespl-ice)ic - 5 [0 v (6w expl-igeic
] R(nC) — 1)(—iC) by (C, w) expl(—iCa) dc‘

<5 / (s(11Q) = DI IGI v (€ w) ¢
1 o0

_1 / (R(h1C) = DI [CP v (Cw)| de
T JE/h

< 7 1P ev(c,w) de,
/g/hlm v (¢ w)] d¢

since Assumption 3.6 ensures x(¢) = 1 for |[¢| < £ and sup, [k(h1¢)| < oo. Thus, by

Assumption 4.1(i7), we have

sup | Bya(esw, )| < / ICAC(1 + [¢])* explagl¢])dc
(z,w)€Esupp(X,W) &/h

< / ML+ 1¢1)7 exp(a|¢#)dC
13

/h1
=0 ((E/m)*™ exp (g (€/m)™))
=0 ((h )FyA Zexp (aB (hfl)ﬂB)) . g

Lemma A.1  Suppose the conditions of Lemma 4.1 hold. For each ¢ and h =

(h17 h2)7 and fOT‘ A=1,Xy, XV, fW7 let qj\t,A,A(Cu hl) = SUD(z w)esupp(X,W) ’\IJV,)\,A(C7 T, W,
hi)|, and define

o (h) Z / (G hn)dC + byt Z /VABCth

A=1,X3 B=xv,fw
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If Assumption 4.1 also holds, then for h > 0

vy, (h)
=0 (max{(l +hy Y (1+ hl_l)w’w\fVngl exp ((a¢1{59:5¢} — Oée)(hfl)ﬁe)) :

Proof = We obtain rates for each term of ¥}, (h). First,

TP (C ) = sup [Wya1(¢, 2, w, )
(z,w)€supp(X,W)
i i9X1 (C)

= (m,w)esslil[;(x,w) ' or (61(0))?
- %(_Z’C)A'f(hlé) exp(—i¢a) &) ‘

61(¢)
IOl [ v o e )
LR giop PR el (e we

1 A . |¢V(Caw)|
= h _
+(m,w)essli1;(x,W) 5 7 lr(hC)l exp(—iCz)] (0]

+oo
5||99)1<(1§|)2! /C |§\A|K<h1£>|< sup |¢V(§,w)|) ”

wéEsupp(W)

+oo
/< (—i€) w(I€) exp(—itx)p (€, w)de

< sup

+|<|A|m<h1<>|< sup |¢v<<,w>|)1

wesupp(W) |01(C)|

_ 1 |9X1(C)| +o0 A i s w
NAG] [ AG] /C €]k (h &) (wEsupE(W)¢V(£’ )I) d¢

+ ¢k (haQ)] ( sup |¢v(<,w>|>}
W)

wesupp(

+o0
! [|DCID¢1(O|/ |€|A|f<(h1§)|< sup |¢v(€,w)!>d€
¢

B |01 (C)| wesupp(W)

+ ¢k (haQ)] ( sup |¢v(<,w>|)}
W)

wesupp(

because we have 0x,(¢)/601(¢) = —iD¢ In¢1(¢) by eqn.(1.20) in the proof of Lemma, 3.1.
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Then

1 +o0
\Ij—"V_,A,l(thl) = |91( )| |:’DC1H¢1 |/ |§| 1{|§‘<§h }( sup ’¢V(£7 )|) f

wesupp(W)

+ |<’/\1{|q§§h1‘1} ( sup ‘¢V(C7w)|> ]

wesupp(W)
1 ht \
= |91(g)|1{<|9;1}[|D<1n¢1(ol/C €] sup [pv (& w)| | d€

wesupp(W)
P ( sup |¢>v<<,w>|> |
wesupp(W)

By using Assumption 4.1 and integrating \I/‘J;)\ 1(¢, hy) with respect to ¢, we obtain

/ Wi 1 (G R )dC

/|e1 TGRS }[Dclwl I/ |§!A <wesi1£ |¢v(§7w)!>d€

e ( sup \<z>v<<,w>|> ]dc

wesupp(W)
j/(1+ )77 exp (—040|C‘69) Lici<nty
Ryt
x [(1 I [ I exp (aolél ) de + C L+ 1) exp (aolcl ) ]dc
0
ht Rt
< [T i e (<ol [ 10 [T R e exp (aolel™) e

I (1) exp (aplc]?) ]dc

j(1+h1—1)1—7@ eXp —ay hl ﬁo [ 71 1+h )A+’Y¢+1 exp( ¢(h )5¢>
+ (14 Ay exp ( ’345) ]
j(1+h )1 Yo exp( ( )50) (1+ ))\+’Y¢ exp (a¢(h ) ¢) ((1+hfl)71+1+1)

<(1 4 hy tyretAtm- 7“’“eXp( ap(hy )’ )eXp( o(hr )ﬁ(b)'

Second,
VAXl(C hi) = sup [Py x, (¢ r,w, ha)l
(z,w)esupp(X,W)
. o T (i) () expl(—it) (€, w)ie
= up — —1 1) exp(—1 v(&w
(z,w)€supp(X,W) 27T(91(<) ¢
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= sup
(z,w)€supp(X,W)

+o0
(h 7 d
). ) <wesi§5(w>'¢v(f w)\) ;
1 +o0
~ 160100 |/ I35 Loje<énty (w SigE(W)WV(&,wH) d¢
1

-
A
= 161(C)] Hicin }/ €] (wesigg(w)lcbv(f,w)I) d¢

+o0
5 / € ()| exp(—i€a)] [y (€, w)|de

so that

/qj‘t’A’Xl(C’ hi)d¢ = /Ohl_l(l +|¢]) 77 exp (—ae|§|59>

Ryt
x ( /0 €1+ 1€ exp (aslél ) d&) dq

< (L+hH) P exp ( ag(hy )’69) (1+ Ayt exp (O‘¢(hf1)ﬁ¢>

=< (1 + hytyretAret 2 exp ( ag(hy )ﬁe) exp (ad)(hl_l)%) .

Third,
V/\XV(C hl) = sup |\I]V,)\,Xv(<-7$7wah1)|
(z,w)€supp(X,W)
. ¢V(C7 U)) ‘
= sup i¢ hi¢) exp(—i(x) —————=
(z,w)esupp(X,W) 2m ( ) ( ) ( ) XV(Ca ’UJ)
(Z)V(C? w) ‘
= C)‘l - sup
‘ | {Icl<hy g <w65upp(W) XV(Caw)
so that

hyt
h;l/\P;A’XV(C,hl)d( =< h;l/o G172 (1 + [¢) ™" exp (—a9|CI59) (1 + ¢
x exp (asl¢1 ) d¢
<yt (1 )T e (—ag () ) exp (ag(hy )™ )

Because inf,cqupp(w) fw(w) > 0 by Assumption 3.3 (i), finally we have

U (G = sup [Ty g, (G o, w, ha)
(z,w)€supp(X,W)
Lo L\ Pv(Cw)
= sup ——(—1()"k(h1() exp(—ilx
(w,w)GSUPp(X,W)‘ 277( Vi) ( ) fw(w)

weEsupp(W)

= |C|)\1{|C|Shfl} ( sup |¢V(Caw)|>
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so that
h—l

ht [ Rdc < hyt [ P+ ¢l 9 d
2 [ W (= hyt [ ICA A el e (aglel ) dg

< hy 'L+ Ry )M exp (%(h;ﬂw’) -
Putting together these rates for each term of \IJ‘J; ,(h) gives the desired result. [

Lemma A.2  For a finite integer J and K, let P, j(x2) define a sequence
of nonrandom real-valued continuously differentiable functions of a real variable xo,
j=1,...,J, and Qn (w) define a sequence of nonrandom real-valued continuously differ-
entiable functions of a real variable w, k =1,..., K. For some C1, Cy and § > 0, let A;
and Xs be random variables satisfying E [A?H | Xy = 1‘2:| < C for all x9 € supp(Xa),
j=1,...,J, and let By, and W be random variables satisfying E [B,3+5 | W = w} < (s
for all w € supp(W), k = 1,..., K, such that sup,>y o, < oo and inf,>n o, > 0 for
some N € NT, where

1/2

J K
on = | var Z AP, ;(X2) + Z BrQn k(W)
j=1 k=1

If there exists some n > 0 such that maX{Spr2€supp(X2) | Dy P j(22)], SUPyesupp(W)
| Do Qi (w)|} = OB~ for j=1,..0, and k=1, ..., K, then

J K
o tnt/? <E Z AP (X2) + Z BiQn k(W)
j=1 k=1

J K
d
— B Y AP (X0) + Y BiQur(W) ) 4, N (0, 1),

Jj=1 k=1
Proof Apply the argument of Lemma 9 in Schennach (2004a) and the Lindeberg-

Feller central limit theorem. O

Proof of Theorem 4.3 (i) It follows that E[Ly (z,w, k)] = 0 by the defini-
tion of Ly (x,w, h). Assumption 4.2 guarantees that Ly, x(x,w, h) has a finite variance

so that
E[(Lya(z,w,h))?] = E [(E[zw(x,w, h:V, X1, Xo, W)])Q]

- n_lE [(EV,)\(‘II% w, h’7 ‘/a X17 X27 W))2}

= nilflv;)\(a:, w, h).
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Because Ly (z,w,h) = gya(z,w,h) — gy(z,w, hi), we have by Minkowski inequality
that

Qua(z,w,h)
= nE [(gua(z,w, h) — gva(z,w, h1))?]
_E{(/\IIV’)"l(C’x’w’hl)n1/26é1<c>dC+/\IIVJ\,X1(C7$7'U),hl)nl/zééxl(odc
2
+/\IIW’XV(C"'E’w’hl)”1/25>2V(<7w)dC+/‘I’V,A,fW(C,:B,w,hl)nl/Q(SfW(w)dg> }

< E|:</\I]V)‘vl(c’x’w’hl)n1/26é1(g)dC+/\I]VJ\,Xl(C,CU,’U),hl)n1/25éX1(C)dC

+hz_l/\IJV,A,XV(C,x,w,h1)n1/2( sup hﬁf(v((@)) dg¢

wesupp(W)

2
+hy /\IJV”W ¢, @, w, hy)n'/? ( sup )hgéfw(w)> dg) ]

wesupp(W

[{EK/\IIVM ¢, w, hy) 1/25é1(C)d§>2]}1/2

) 2y 1/2
Uyax, (¢ z,w, h)n 1/259X1(C)dC> ]}

&
—

1/2
ho' | Wy (G zw, hi)n 1”( sup hzamq,w)) dq) H
W)

wesupp(

_l_
f—’Hf—’DT\/—’H

(=]
(]

A X 1/2
~[{ [ [ sty [ndt, 08, (©)] (0w, €. |

. 29y 1/272
ho' | Wy g (G2, w, h)n 1/2< sup h25fw(w)> d<> ]} ]
)

wéesupp(W

| —

{//\I’VAXI G w h)B [MGXI(()(;Q (5)} (Wv,,\,xl(f,x,w,h1))TdCd§}1/2
{ra

#{m? [ [ v G n)E [ ( sup h25>ZV(C,w)>
wesupp(W)

1/2
X < Sup h25XV(€a )) :| (\I]V/\ Xv(g,wivhl))TdCdé}
wesupp(W)

{ //‘IJVAfW ¢ x,w,hy)E [ ( sup h25fw(w)>
wesupp(W)

R 1/272
x( sup h25fW(w)>}(‘I’V,/\,fw(fa%IU,hl))TdCdﬁ} |
wesupp(W)
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Note that by Assumption 4.2

E [n61(0)56](6)] = E [n (0:(0) - 6:(Q)) (8 (&) - 61(9))]
= B[(¢% ~0,(Q)) (7 —01(0)]
= B [ XeeT | gy (B 7% — B [ 0] (0) - 6100 (©)
= B [C0%] —01(0)0](6) - 02()0] (&) + 0:(0)0] (&)

=601(¢C— &) — 6:1(Q)01(=¢)

so that
(E [msél(g)aé{ (5)} ( = 161(¢ — &) — 01(Q)01(—€))
< B [|eC0%| 4 B %] B [|eieX ]
=L

E [0, (030, (6)] = £ [n (6x,(0) - 0x,(0)) (L, () - %, ©))
= B[(X1e% — 0x,(0)) (x1e7% — 6 (©))]
=F :XleiQXQXle_’fX?] —0x,(Q)F [Xle_ig)ﬂ

- B[X16%2 ] 61, () + 0x, ()6, )

—F :Xlxlei@*f)xﬂ — 0x,(¢)0%, (£)

so that
)E [nééxl (¢)501,, (5)] ] - ’E [Xlxlei@—é)’ﬂ — 0, ()0, (5)‘
B I e
< BX: X))+ E X ) B (1]

=1

n( sup hzamc,w))( sup hzam,w))]
wesupp(W) wesupp(W)

n( sup h2<>zv<c,w>—><v<<,w>>>< sup ha(ém,w)—xuc,w»)]

wesupp(W) wesupp(W)

E

=F

—B| s (VS (07 - 0) v (Go)
w)

wesupp(

X sup  hs (Veii&XQkhQ(W —w) — XL(& w)) ]
w)

wesupp(



so that

E

n( sup hgéf(v((,w)>< sup h26>21\./(<-7w)>]‘
wesupp(W) wesupp(W)

< E[ sup Ve 2 hoky, (W — w) — haxv (¢, w)]
wesupp(W)

sup ’V67i5X2h2kh2 (W —w) — thL(f, w)]]
wesupp(W)

< E[ sup (Ve hahyy (W — w)] + By (o))
wesupp(W)

sup (Ve X hoky (W — w)] + [hox (¢, w>|]
wesupp(W)

<E |:< VeiCX2 ( sup h2kh2 (W — 'UJ)) ‘

wesupp(W)

VeltX2 ( sup  hokp,(W — w)) ] >
wesupp(W)

Ve X2 < sup  hokp, (W — w)) '

+F

dl

wesupp(W)
+ E ||VeicX2 ( sup hgkhz(W—w)) ] )]
wesupp(W)
2

= E ||V]?|elc-OXz sup  hokp,(W —w)

wesupp(W)
+ 3E ||V]|eicX2 sup  hokp,(W — w)
wesupp(W) ]
x E [|V] ‘e_’fXQ sup  hokp,(W —w) ]
wesupp(W)
<1

— )

where the last line is obtained by Assumption 4.2 and the following note:

h —iCw
sup fhak () = swp |32 [l
wesupp(W) wesupp(W) ™

<R / () e dg

T 27 wesupp(W)

h 1 N Y A
— 32 [Itua0lac = 5 [ (@1 = 5 [ w0l
<1

50



Finally,

E

n( sup h25fw(w)>< sup hzéfw(w)>]
wesupp(W) wesupp(W)

n( sup ha(fov (w) —fw(w))> ( sup ho(fiv(w) —fw(w))>]

wesupp( wesupp(W)

=F

E[ ( sup o (kp,(W —w) — Elkp,(W — w)])>

wesupp(W)

X ( sup  ho (kp,(W —w) — Elkp, (W — w)])) }

wesupp(W)

so that

E|n| sup h25fw(w)>< sup h25fw(w)>”
i weEsupp(W) wesupp(W)

2
<F sup  hokp, (W —w)
wesupp(W)
+FE sup  hokp,(W —w)|| E sup  hokp,(W —w) ]
wesupp(W) wesupp(W)
=< 1.

Thus we have

Qua(z,w, h)
1/2
= <{// ’\PV,)\,I(C7$7U);h1)’ |‘I’V,,\,1(§,x,w,h1)| dCd&}

1/2
+ {// ‘\I’V,)\7X1(C,IL‘,QU,]I1)‘ |\IJV,/\,X1(£71:awahl)|dCd£}
1/2
+ {h2_2//‘\I/V,A7XV(C7m7w7h1)"\I/V,/\,xv(&xawahl)’dgdf}

1/2
//\wvuw G, )| Wy (6210 h1>|d<de} )

2
> /l‘I’V,\AC,IwM)\dCJrhg > /\I’VABCaxU/hl)dC)

(A 1,X, B=xv,fw

2
3 / FaalGhdc+hgt Y /”Bmldc>
A=1,X, B=xv,fw
= (w0
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where for A =1, X1, xv, fw

W;’A,A(Cahl) = sup |\IJV7/\7A(<,.TL',’[U,h1)|
(z,w)€supp(X,W)

LENOEEDY / Paa(Gh)dC+hyt Y /‘I’\t,A,B(thl)dC

A=1,X, B=xv,fw

- 0<max{(1 + ) gy (1 hp) e

X exp ((a¢1{59:ﬁ¢} — ag)(hl_l)ﬁe) >

Thus it follows that

\/(I " sup Qua(z,w,h) =0 (max{( )6L hy 1 ( )%L exp (aL (hl_l)ﬁL)> ;

€supp(X,W)

with ar = aglig,—g,} — @, B =P, Mp =147 —w + A, and o =1 + 1.

To show uniform convergence,

sup |§V’,\(x,w,h) - gV,)\(‘/L‘awahlﬂ
(z,w)€Esupp(X,W)
= sup ’/ [\I’vu Gz, w hl)( 672 —E[eiCXQ])
(z,w)€supp(X,W)

+ \IIVA X1(<7x w hl) < [XleZCXQ] — E[XleiCXQD

Wy (G w, ) (BVESEhy, (W — w)] - BVeey, (W - w)])

g (G n) (Bl (OF = w)] = Bl - w)]) |

< /[ sup [Wya1(¢, @, w, hy) )
(z,w)€esupp(X,W)

+ < sup Wy x, (¢ x,w, h)|
(z,w)

esupp(X,W) >

ZCX2 _ [iCX2]

E[X1e%%?] — B[X;e'%2]

+ sup |\PV)\XV Cax w, hl |
(z,w)€supp(X,W)
X < sup ) [VelsXzky, (W —w)] — E[Ve“ 2k, (W — w)]’)
wesupp(W)

=+ < sup |\PV,)\,fw(<7$awah1)|>

(z,w)Esupp(X,W)

x < sup |l (W = w)] —E[kh2<W—w>]\> }dc

wesupp(W)
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= [ |t [ B - B 4w (o) [BLXGE) — Bl

+ h2_1\11;>\,x\/ (gv hl)

X ( sup ‘E[VeiCXQth:;w(W —w)] — E[VeX2hoky (W — w)] D
wesupp(W)

S T () ( sup (E[hgkhg(w —w)] — Elhakn, (W — w)]D }dg
wesupp(W)

where the integrals are finite since ‘E[eiCXQ] — E[efX2] =

<1, ’E[XleiCXﬂ ~ B[X; i)

1, SUDycqupp(w) ‘E’[VeiCX?thh?(W —w)] — B[V 2 hokp, (W — w)]\ <1, and
SUPyesupp(W) ’E[hgkhQ(W —w)] — Elhokn, (W — fw)]’ =1, and since Lemma A.1 implies
that Uy, (h) < co. Then we have

E

sup lgva(z,w, h) — gva(z,w, h1)\]

(z,w)€supp(X,W)
2) 1/2 }

< vt mw{(]mem _ Bl
2) 1/2}

sup (E[ve“X?thhz(W —w) — BIVe X2 hyky (W — w)]]>

wesupp(W)
o\ 1/2

E[X,e%%2 — B[X,eX2]]

+ m‘t,A7X1(<, hi)E { <

+ h;llll‘JZ roy (G h1)

+ hz_l‘I/xJ;,A,fW(Cy h1)

< [ |wtastcmn {& (|prees - pres

2) 1/2
sup (E[thh2(W —w) — Elhakp, (W — w)]])

wéesupp(W)
2) }1/2
2) }1/2

sup (E[vei<X2h2kh2(W —w) — BlVeX2hyky (W — w)]])
wesupp(W)

E[X €% — B[X,e%X2]]

LU (G {E (

+ h271\11¢,)\7x‘/ (C7 h’l)

il i
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+hy U (G h)
:/[\If&/\’l(g,hl){n_lE(

+ 07, x, (€, 1) {nlE <‘Xleicx2 — X, eXe]

)

sup (E[thhz(W — w) — Elhakp,(W — w)]])
w)

wesupp(
2> }1/2
2> }1/2

X {nlE ( sup (vei<X2h2kh2(W —w) — E[VelXehyky (W — w)])

wesupp(W)
o\ Y 1/2

eiCXQ _ E[€Z<X2]

+hy W (¢ )

)

+hy "W (G ha)

X {nlE ( sup  (hokp, (W — w) — Elhakp, (W — w)])

wesupp(W)

1/2

= n—1/2/ [‘I’;M(C, hi) {E < 2)}
)}

+ \I/J\;,A,Xl(@ hy) {E <’Xlei<X2 _ B[X,eiX2]
sup (VeiCthzkhz(W —w) — B[VelX2 ok, (W — w)])
wEsupp(W)
T hglqﬂx;,,\,fw((, hi)
2 1/2

<n1/2( > /‘I’J\;,A,A(Cahl)dC"‘hQ_l > /\I]J\;,/\,B(Cahl)dg)

A:1,X1 B:XV’fW

X2 _ E[eiCX2]

+hy W (¢ )

i i

sup  (hokp, (W —w) — Elhokp,(W —w)])
wesupp(W)

}dé

=n"120f, (h),
where

Halh) = O(“‘ax{(l S RN e N O R

X exp ((a¢1{59:5¢} - ag)(hl_l)ﬁ‘)) )
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It follows that by Markov’s inequality

sup | Ly a(z,w, h)|
(z,w)€supp(X,W)

=0, (n_1/2 (max{(l + h1_1)71+1 ,h51}>
% (1 + h1—1)7¢+>\—79+1 exp ((a¢1{ﬁ9:[3¢} _ ag)(hfl)ﬁg) >

(i) To show asymptotic normality, for fixed x and w, we apply Lemma A.2 to

2 2
> AP, (X2) + Y BeQu k(W)
k=1

=1
= /\I/V,/\,l(é.vxv w, h‘l) (eiCX2> dC + /\IJV7/\,X1 (C?xawa hl) <X1€i<X2> dC
+ / Yy (G @, w, hy) (Ve"CXQk:;Q(W - w)) ¢

b Wi ) (i (7 — ) e,

with

Pt (22) = / Wyt (G w, by )@ dC,

Pya(zs) = / Tynxs (Ces w, by )2
Qn,l(w) = /\I]V)\,XV (Ca €, w, hl)eiCX2 khz (’LZ) - w)dCa
Qua(i) = / Tyon o (€ s w0, i Vo, (10 — w)dC.

corresponding to A; = 1, Ay = Xy, By = V, and By = 1, respectively. We assume
that inf,~n Qua(z,w,h) > 0, and previous conditions ensure that for some finite NN,
sup,~n Qva(z,w,h) = sup,y varffy(z, w, hy; V, X1, X2)] < co. We need to verify
that max{Supy, cqupp(xs) [ Da Prj (%2) ], SUP g esupp(w) | DisQn, e (0) [} = O(n¥/2)77) for j =
1,2 and k = 1,2. To do this, we use Lemma A.1. For j = 1,2,

sup | Dy, Pp j(22)| = sup
x2€supp(Xa) x2€supp(Xa)

/ ¢y (€ ey w, By dC

/ iUy (¢ w, b )2 d

hin
< sup / €[ Wy (C. s w, )| dC
x,w)Jo

(z,w)€Esupp

Bl
<nd [ g
= "1n 0 VA g\>
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_ — 1\ VoA —7e+2 _
= hlnl (1 + hlnl)% e exp <(a¢1{ﬁe=ﬂ¢} - a(?)(hlnl)ﬁg>
C 1\ Vet A v —7e+3 _
= (14 b)) e (@l g,=s,) — @) ()™ )
By Assumption 4.4, if 8y # 0, we have hl_n1 =0 ((ln n)l/ﬁ‘)*n) for some 7 > 0. Thus we
have for j = 1,2

sup ‘Dwzpn,j($2)|
x2€supp(X2)

A+ —70+3
1//39—7I>% Y1—76

= (1 + (Inn) 1/ﬁe—n)50> .

exp ((a¢1{59:5¢} —ap)((Inn)

Because the right-hand side grows more slowly than any power of n, we certainly have
SUP 4, csupp(Xa) |Dyy Py j(22)| = OnB/2=n) for j = 1,2. If g = 0, we have hfnl =
O (n=Mm3/2/(etA+m=7%+3)) for some n > 0. Thus we have

Yo+A+11—70+3

Sup | Dy Prj(z2)| = (1 + n*nn(3/2)/(’7¢+)\+vl779+3))
z2Esupp(X2) ’

< (1 1 n—nn(3/2)) = O(nB/d=n),

Because the Fourier transform of D)k, (x) is (—i¢)*k(h1¢), we have

A1
hi
2

h)\—i-l
WD )] = <M [ IP el

/ (—iC) (e dc

1 - N Y o
= 5 [P = 5 [ 18P R(O1aC < oo,
Therefore we get

sup  |DgQn,1 (W)
wesupp(W)

= sup )‘DU;/\IJV,/\XV((,Lw,hl)eicmkm (w — w)df‘
w

wesupp(

= h’2_2 / |\IIV7)\7XV (Cv z,w, hl)‘ ‘eifxz‘ ( sup }h%Dﬂ)khz (’II) - w)‘) d(
wesupp(W)

< [ s (W (Gl dC
(z,w)€supp(X,W)

= hy” / T (G ha)dS
=0 ((1 + h;l)2 (1 + fol)AY"ﬂr)\fﬁmJrl exp ((a¢1{50:5¢} — ag)(hfl)ﬁ")) .

Bandwidth sequences in Assumption 4.4 guarantee that supgequppw) [Dia@n,1 ()| =

O(nB/2=). Similarly,
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sup  |DgQn2(w)| =  sup ‘Dw / Vv, fw (G @, w, ha) ko, (W0 — w)dg“
wesupp(W) wesupp(W)
:h22/|\I’V7,\7fW((,x,w,h1)] sup ’h%Dwkm(iZ)fw)} d¢
wesupp(W)
= h‘2_2/ sup ‘@V,A,fw(<7$7w>hl)|d<
(z,w)Esupp(X, W)

= h22/‘1’\t,>\7fw(47h1)d<
=0 ((1 + hz_l)2 (1+ h1_1)7¢+>\+1 exp ((a(ﬁ(h*l)ﬁ‘i’)) .
Because sup cgupp(w) [Dao@n,2(W0)| 2 supgesuppw) [Dwo@n,1(w)], the result follows. [

Lemma A.3 Let A and Xo be random variables satisfying E|[|A|?] < oo and
E[|A]|X2|] < oo, and let {Ai, X2,;}i=1,...n be a corresponding IID sample. Then for any
u, U >0, and € > 0,

sup E[Aexp(i¢X3)] — E[Aexp(i¢Xa)]| = Op(n~1/?T).
Ce[-Un»,Unv]

Proof See Lemma 6 in Schennach (2004b). O
Proof of Theorem 4.4 By substituting eqn.(1.18)~(1.21) into

QV,A(xa w, h) - gV,)\(xa w, hl)

—or [ (1Pl exp(-ica)

By (¢, w) Cix, (&) yo | Ov(Gw) ([0 i0x,(E)
. [ 01(¢) P </0 01(¢) df) 01(¢) p< o 01(¢) dé)]d{,

and removing the terms linear in 66;(¢), 66x,(¢), dxv (¢, w), and & fi (w), we obtain

the nonlinear remainder term such that Ry x(z,w,h) = gva(z,w,h) — gva(z,w,h) =
S22 R; where

Ri= -1 (—i¢) k(h1€) exp(—ilz)qv (¢, w)q1 (w) exp(Qx, (¢)) exp (6Qx, (€))

:47r

. ( / “ibax, (£>d§)2d<

Ro= 1 [ (<30 () exp(—iGa)bay (¢, w)as () exp(Qx, (€)) exp (3G, (O)

C 2
‘ ( /0 wqms)df) ac
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1

Rs = o /(—ic))‘ﬁ(hlg) exp(—iCz)qy (¢, w)dgi (w) exp(Qx, (€)) exp (5QX1(<>)

¢ 2
x ( /O idx, <£>d§) dc

Ry = i /(—iC)AK(hIC) exp(—i€x)dqy (¢, w)dq1(w) exp(Qx, (¢)) exp (5QX1(C))

x ( /0 " idx, <5>d5>2dc

¢
Rs = % / (=i)*r(h1C) exp(—iCx)qy (¢, w)qr (w) exp(Qx, () / 1024, (£)dgdC
0
¢
Rg = % (—i¢) k(M) exp(—i¢x)dgy (¢, w)qi (w) exp(Qx, (¢)) /0 1024, (§)ddC
¢
R; = ;ﬂ/(—z’())‘/{(hlg) exp(—iCz)qy (¢, w)dq (w) eXP(QX1(C))/ 1024, (§)d€dC
0
¢
R = Zi / (—i¢)*r(h1C) exp(—i¢x)ddy (¢, w)dda (w) exp(Qx, (€)) / i02Gx, (€)dedC
™ 0
¢
Ry = % (—i¢)*K(h1¢) exp(—iCz)drdy (¢, w)qr (w) exp(Qx, (C)) /0 01, (§)dgdC

Ruo = 5 [ (<10 (b exp(=iCo)bady (€. w)ar () exp(@x (€) [ " i61x, (€)ddC
Bir = e [P RO - icoay (€ i () (@, (€) [ i @t
Ria = 5 [ (<0 exp(—iGa)oudy (G w)dvin () exp(@ua (€) [ i1, (E)dedc
Rus = 5 [ (<70 (hi) exp(=iGo)bady (€. )i () exp(Q, €)) [ " i61x,(€)ddC
Rus = 5 [ (10 (b exp(=iCohm (¢, w)oais () exp(@x, (€) [ " i1, (€)dedC
Ris = ;ﬂ/(—z’g)%(m() exp(—i¢)d14v (¢, w)d2q1 (w) exp(QXl(C))/OC 1014x, (§)d€dC
Rio = e [P R expic)tay (€ )i () (@3, (€) [ i @t
Rz = 5 [ (<10 k() exp(—iC)bady (¢, w)ar () exp(Qx, ()

Ris = o / (=€) M(h1€) exp(—iCx) 81y (¢, w)o1d (w) exp(Qx, ())dC

Rio = 5 [ (10 k() exp(—iCo)bady (¢, )01 () exp(Qx, (€)) e

Rao = o [ (<50 (01€) exp(—iG)ay (€. )b () exp(Qx, (€))de

Ror = o / (—iC) w(ha) exp(—iCz)drdy (¢, w)dady (w) exp(Qx, (O))d
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Ry = % / (—i¢)*k(h1C) exp(—iCx)d2dy (¢, w)dad (w) exp(Qx; (¢))dC.

Because E[Y?] < oo by assumption 4.2 and E[|Y X3|] < oo by assumption 4.5, Lemma
A.3 gives that for any € > 0,

sup sup  |xv(¢,w) — xv (¢ w)l
wesupp(W) ¢e[—hy,! hy )]
= swpswp BV, (W~ w) exp(iCXa)] — B[V, (W - w) exp(icXa)]|
wesupp(W) ¢ce[—hy, L h 1
= hyy  sup  |honkn,, (W —w)|  sup
wesupp(W) CE[-Un»,Un"]

= Op(h5;”_1/2+€)-

BIV exp(ic X2)] = EIV exp(ic.Xa)|

We define Y(h,,) and @, as follows:

T(hn)z(1+h2—nl)( sup ]Dglngbl(o\)

CEl=hi, h1n]

><<max{ sup sup  |xv(¢,w)|™',  sup |91(C)\‘1}>
cel—hy} gt wesupp(W) cel-nrytnh

In>

-0 ((1 +hon) (L4 k)" 7 exp (—ae (hfnl)ﬁe» )

ci»nzmax{ sup 01(¢) —61(¢)|,  sup Ox,(¢) — 0x,(¢)|,
CE[=h1,)hT] CE[=h1,) h1,]
swp s (G <@l s (vl - fivtw]| }
wesupp(W) ¢ce[—hy, L hT 1 wesupp(W)

0, 1zl 2%

for any € > 0. Note that the supremums associated with ¢ can be taken over [—hfnl, hfnl]
since k(h1,() vanishes outside the interval by Assumption 3.6 (i7). The second or-
der of magnitude follows from Lemma A.3 and Assumption 4.6 since hz_nln_l/ 2te —
h;nl/zn_l/z(neh;nlm) > h;;/2n_1/2(ln n)Y/2 + b3, for any choices of hg, from Assump-
tion 4.4 and 4.7. Then those terms in the nonlinear remainder can be bounded in terms
of \I/‘Jz)\(hn), Y(hy), and ®,,. We note that

d,, x (max{ sup sup  |xv(Cw)|™t  sup ]01(C)|_1}>
¢el- hiy]

il kit wesupp(W) cel—hyt,

< ;Y (hn)
Op (hzin ™) 0 (14 h3)) (1 + b)) exp (—ag (h5)™))

= o0p(1).
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We find upper bounds for each term, R;, i = 1, ..., 22.

sup | Ry
(x,w)€supp(X, W)

= sup /OO\CIA\H(MC)H(JV(C,w)Hm(W)!eXp(Qxl(C))eXp(\5QX1(C)D

wesupp(W) J0

¢ 2
i d d
(/0 5, (6) 5) ¢
oo ¢
<[ \cwhlcn( sup !¢V(C7w)’>exp(/ |6qxl<s>rd§)
0 wesupp(W) 0

2

x (/Océqu)mg) d
< exployD) | mrcrﬂfa(hlc)\(%igpp v (¢ w )( / i (€ de
x (/chxl(é)lclﬁ) ac

jeXp(Op(l))/OOOIC!AIH(th)I < sup |¢V(va)|>

wesupp(W)

I ((60x,(6)  0x,(€)561(8) AGAE
< (01@) 0. )(”em) “
| (80x,(6) 0, ()61 (€) AGAE
<), (01(@ 6:()7 )(”em) dede

< exp(op(1) (W B2 (1 + 0p(1)| 2 /0 P l(hi0) (we w |¢v<<,w>r>
SO om(©)
< (91@) * |91<5>|2>d5d<
= explop(1)T (M) B2[1 + 0,(1)] 2 /0 N ( /5 Pl ( sup \¢v<<,w>|> d<>

wesupp(W)
| le(g)\)d
X(w G A

= exp(0p(1)) T (h) |1 + 0p(1) / [/ [SRETS] ( sup |¢V(C7w)!> d¢

wesupp(W)

< . 03 (6)
v f \<|\<h1<>r<wesuppp(w)\¢v< >\)d<, G

— 0,()T(W)2T], (h)

< T2, (b
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When the conditions of Theorem 4.3 hold, we have

sup | R | _Op<(h2 )(hy 1) exp (—ag(hy)%) (hy ') ?n 112
(z,w)€supp(X,W)

< (max{ (A7)0, hy '} (A7) exp (o (b )P ))

which is needed for part (i). Because all other terms are also bounded by the upper
bound for Ry as shown below, we focus on the bound for R;.
In order to get the bound for Ry )(z,w,h,) when Assumption 4.7 holds in place of

Assumption 4.4 in the conditions of Theorem 4.3, we note that
T()B2T;, (h) = (T(h)cﬁinl/?) n V20 (h),
20 () = Oy (n™ 2 (max{ (h7)%, k3 D (AT exp (ar(hTh)™))

where the second equality is obtained by Lemma A.1. Now we show that T(hn)ci)inl/ 2=
0p(1). When Sy # 0, we have hy," < (Inn)'/%~=7 and hy! = O (exp(22(Inn)'="%)) by
the Assumption 4.7 so that

Y (hy)®2n!/?

= Y (hn)O,p (hy2n~172) n!/?

= 0p (1 3)" (L4 A" exp (o () ) m/2)
= 0p< (1 +exp(2 1 b (lnn)'- ”59))3 (1 + (1nn)1/ﬂ—n)’“*79

X exp (—ae(ln n)17"59> n1/2+25>
=0, (exp(34 (In n)'=7%) (In )M/ Bo=m (1= ’Ye)exp< (mn)l—nﬂe) n—1/2+2€)
p (50 | 252 m) =15 4+ (10— ) — 20t ) — ()%

+(—1/2+26)lnn]>

= op(1),
where the last equality follows by the fact that Inn dominates (Inn)'~7% and In(Inn),
and by —1/2 + 2¢ < 0. When By = 0, we have hj,} < n~n!/G1=2%+6) and hy! =
O (n”(“*'y"*l)/‘l) so that
T (hy)®2n? = T (h,)O, (hg2n112) n'/?
=0, (14 13" (14 By )
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=0, <(nn Nn—v0— 1)/4 nnl/(2v17270)>71_79 n1/2+2e>

bS]
/

n~ 1= —=3(n—v0— 1)/4)+26>

< O n 17+2e)

= op(1),

by selecting 7 > 2e. Now we get the bounds for the remaining terms. Because they all

contain the same leading term, T(h)@%\lf‘t +(h), they can be similarly bounded:

sup | Ra|
(z,w)€Esupp(X,W)

=< sup /OOICI |k (h1Q)l16qv (€, w)llqr (w)] exp(Qx, () exp (16Qx, (€)])

wesupp(W)

< ([ oate \ds)

‘XV(C7w)‘ = -1
<o [P0 (14 D) T0)1 4 0] () ex0(@5,(0)

wesupp(W) J0O

x exp < / " o, (£)d£> ( / " o, (£)|d5>2 ¢

= a1+ 0, (D)1 [ ¢ D (Gl o
_wesupg(w)'r(h)@an p(1)] /O S (h1C)|(1+ 6.0 >!q1( )| exp(Qx; (€))

X exp ( / " o, (f)df) ( / " o, (f)ld£>2 &

= sup T(h)‘f’n!1+0p(1)!1/000\C\A!H(h10!Q1(W)\6XP(QX1(C))

wesupp(W)

X exp ( / " oix, <£>d£) ( / " o, (£)Id£)2 ¢

+ Y (h)®n|1 + 0p(1)] ! /0 P )] ( sup |¢v(c,w>|>

wesupp(W)

X exp < / " s, (£)d£> ( / " s, <5>|d5>2 ¢

< T (1) @u|1 + 0p(1)] ! ( sup le\>
(X)

(x,w)esupp(X,

= o0p(1) < sup ]R1> ;
(z,w)€supp(X,W)
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sup | Rs|

(z,w)€Esupp(X,W)

= sup /OOICI |5 (hO)lav (€ )81 (w)] exp(Qx, (€)) exp (16Qx, (C)])

wesupp(W)

< ([ oaste \d§>

< sup / P lav (¢, w)|

1+ 0p (1)~ (R) Dy exp(Qx, (€))
wesupp(W) J0O |

L
| fw (w)

<o | s, olae) ([ s, (£)|d5>2 &
=X+ oV [ IePl(hc) <w€§;§<m |¢v<<,w>r) goo ([ i, )

x < / <|6qxl<£>|ds)2d<

XY (h)Pn(1+ 0y(1)) ( sup Rﬂ)
(z,w)€supp(X,W)

= op(1) < sup ]R1> ;
(z,w)€esupp(X,W)

sup | R
(z,w)€supp(X, W)

= sup /OOIC! |k (h1Q)[16qv (€, w)]18G1 (w)] exp(Qx, (€)) exp (10Qx, (€)])

wesupp(W)

([ o)

< | et <1+‘XV“’M)‘)T(h)én|1+op<1>|—1

wesupp(W) J0 ‘91 (C)’

<1+ o0 @, Oy o ([ loas@iae) ([ 1oax, <§>|ds)2 a
<o ([ oa@al) ([ 1oax, <5>|d5>2 &

_ su 2 292 o -2 > K ’XV(CJU)’
— sw T+, [ \m(hc)r(u

wesupp(W) ‘91 (C)’

) a1 (1) exp(Qixs (O))

2

xexp( / 16, (¢ d&) ( / 5, (¢ |d£) ac

< T(h)Pp|1 + 0,(1)] 7 ( sup | Ra| ) = ( sup \Rg\) ;
(z,w)€supp(X,W) (z,w)€supp(X,W)
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sup | Rs|
(z,w)esupp(X,W)

00 ¢
< s [P av (6wl ()] exp(@x, (€) / 62, (€)|dédC

wéesupp(W) JO

=/ ICIA\H(th)!< sup  |ov (¢ w )/\52qx1 §)|dgd¢
0 wesupp(W)

< /OOICIA\H(MC)!< sup r¢v<<,w>\>
0 wesupp(W)
NG - -
| <el<5> A+ ™ + il + o) )M
< /Ow|<|k|m<h1<>|< sup r¢v<c,w>|>T(h)é,%uwu)r—l

wesupp(W)
C 1 (16x,(9)]
<[ ( AG] “) dede
=T(h)<i>3|1+0p(1)|1/OOOICAIR(MC)I< sup |¢v(C7w)!>

wesupp(W)
C1 0 (10x,(9)] )
/ G <|el<a>| ) dede

|
= T(W) ST, (h)(1 + 0p(1));

sup | Rg|
(x,w)€esupp(X, W)

o0 ¢
= sup /CIAIK(MC)HM\/(C,w)\lql(w)leXp(Qxl(C))/O|5261X1(€)|d£d6

wesupp(W) JO

— su > A P 1 |XV(Caw)| 2 o 1 w
= s [0 (i + G ) Bl ol o)

wesupp(W) J0

¢
x exp(Qx, (€) /0 62, (€)|dedC

) R \wmmg
< s T o [P0l (14 D) )

¢
x exp(Qx, (O)) /0 62, (6)|dedC

—’r<h><i>nu+op<1>—1[ up [ POl ()] exp @, )

wéesupp(W) JO

¢ 0o
Y A )
X/o \ qul(f)ldﬁdﬁ/o ¢ k(P Q) <w€$§(w |ov (¢, w )/ 102G, (& !didc}



< T(R)Pn(1 + 0,(1)) (

= 0p(1) ( sup |R5|> ;
(z,w)€esupp(X,W)

sup | R7|
(z,w)Esupp(X, W)
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sup | Rs|
(z,w)€supp(X,W)

o0 ¢
= sup /|C|/\|H(h1C)||QV(Caw)|5@1(w)|eXP(QX1(C))/O’52@X1(f)|dde

wesupp(W) JO

— s / PR O)llg (¢, w)|

wesupp(W) J0O
¢
02g déd
< [ iz @l
= T(h)(i)n|1+0p(1)|_1/ [SRETS] (
0

< YT(h)®,(1+ 0,(1)) sup |Rs
(z,w)€Esupp(X,W)

= 0p(1) sup |[Rs] | ;
(z,w)€Esupp(X,W)

sup | Rs|
(x,w)€supp(X, W)

[fw (w)]

1

sup
wesupp(W)

)

T(h)a 1 + 0p(1)] " exp(Qx, (€))

6y (C,w ) / (Gadix, (6)]dedc

o0 ¢
= sup / \Clklﬁ(hlé)lwév(é,w)\l&h(w)leXP(Qxl(C))/ |02, (£)[dEdC
W 0

wesupp(W) JO

_ * A |XV(€7U})| :
. A rn<h1<>|(1+ )T(h)cbn

AG]
¢
X 1+ 0p(1)] L exp(Qx, (€)) /0 152dx, €)

wesupp(W)

|dgdc

1+ 0p(1)]7

N - 00 1
=T2<h>¢%\1+op<1>|2[ swp [T IO exp(@x, (0)

wesupp(W)

¢ 00
x / (6adi, (€)|dedC + / |<|A|m<h1<>\< sup
0 0 wéesupp(W

< Y2 ()DL + 0p(1)] < sup |R5|>
(z,w)€supp(X,W)

= op(1) ( sup |R5|) ;
(z,w)€supp(X,W)

lov(G ) / G2, (€ |d§d<}



sup | Ry

(z,w)€Esupp(X,W)

(:E7

=

=

= sup / AR ONIo1dv (¢, w) a1 (w)] exp(Qx, (¢ /Idqul )|d€d¢

wesupp(W)

- s [T mh<>|<1+’xv“’ ”)“r( o1 ()] exp(Qixs (O))

weEsupp(W) ’91(C)|

SO O] 1
/ (” G ) G

~ sp Y2 /0 1P A0 (a1 ()] exp(@x, () + v (¢ w)])

wesupp(W)

¢ 16x, (6]
/0 (” Gl ) 6 <%

- w0 [ [/ PO ()] exp(@x, () + v (€ w)]) e

wesupp(W)

63, O\ 1
. (l G > DG

< Y()2LTT, (h);

sup |R1o]
w)€Esupp(X,W)

s / P12y (€ ) |1 ()| exp(@ix, (¢ / 1610, (6)|dédC
v (G, ) 1
wesi‘éim/ [P (ha) < AT B+ a0l
IR SOl @) -
* g+ Jimtolew@, € [ (e + e ) S
[P+ oo (R 1)
O 1ox (@)
<exp(@x,() [ <1+ uis )T(h)cbndsdc
Sup T(h)(I) T(h)®2|1 4 0,(1)]
wesupp(W
<[Pl gt lovicnl [ (14 B deac

l(w e
# i mm o 8 ep@r o) [ (1+ |91<5>|>d5d4
()R B,, (1)
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| R11

(z,w)€Esupp(X,W)

= sup

o ¢
/ IC!A\H(MC)\QV(C,w)HMl(w)\eXp(Qxl(C))/0 101G, (§)|d€dC

wesupp(W) JO

= sup

/OO <M r(had)lav (¢, w)|;T(h)<f>n|1 + 0p(1)| " exp(Qx, (€))
| fw (w)]

wesupp(W) JO

10x, (§)]

¢ 1
X
/o|91

= sup
wesupp(W)

Gl (1 ") ) e
T(h)$2|1 + 0p(1)] ! / 1P (R0l lgv (¢, w)|

= Y (h)®2|1

0+ e ) e

></oC 161.(¢

0.6)]
T op(1)]! /wrcrkrfe(hlow( sup wv(c,w)r)
0

wesupp(W)

¢ 0x,(6)]
/0 G <” 6:(6)| )‘M

=T(n)%;

sup |
(z,w)€supp(X, W)

00
.
wesupp(W) JO

0o
B
wesupp(W) J0

|
Uy () (1 + 0p(1));
Rys|

¢
!CAlﬁ(th)||516iv(C7w)!lﬁél(ﬂ))leXp(Qxl(C))/0 1014x, (€)[dgdC

1 , W . 1 .
P he(mad) <101<<>| * ngl((ch)') o ) o Q0 ()

- /oc <|91t§

< sup Y?
wesupp(W)

¢ 1
/o 101(9)]

= T%(h)®}

x{ sup

wesupp(W) J0

+/OOOIC|

= 0p(1)Y (W)}

0x,(€)]
IRAGE

ory 1P )] <1+ XV“’)“[)’) s exp(Qx ()

6.0 ) 1w (w)
‘9X1(§)|
(1 BTG > dedc

> &, ded¢

* Lo C 1 () e
[ P e @ [y (1 g ) 4

e N o) [ [y e
eihnd) (w@up&m"f’v“’ )‘>/o e U+ e ) 6
Uy (h);
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sup |R13]
(z,w)€Esupp(X,W)

o0 ¢
= sup /\CIA\ﬁ(th)Wzdv(C,w)|!51611(w)\eXp(Qxl(C))/0!51QX1(§)\d€dC

wesupp(W) J0

Pl (PGl Ol 5 .
<o [P (KA 008, 1+ o0

~ w “ C
# Dy, 1+ 0,0 i () expl@, (€) [ 161 (€

XS]
_ A N v (¢ w1961 (Q)] |, 0% (¢, w)l
= s X1+ o)) [ Iy (IR el

wesupp(W)

¢
% (6141 (w)] exp(@x, () /0 81, (€)|dedc

= swp Tl + op(1) / 1P ()l Badv (€, w) 1811 () | exp (@i, (O))

wesupp(W)

¢
x /0 181, (€)|dedc

= T(h)fﬁn(l +0,(1)) < sup ]R12\>
(z,w) (xX,w)

€supp
—o) | s |Rnl:
(z,w)€Esupp(X,W)

sup |R14]
(z,w)esupp(X,W)

00 ¢
< sup / P RO gy (€. ) |21 ()| exp(@x, (€)) /0 B1dix, (6)]dedc

wéesupp(W) JO

Y(h) a1+ 0p(1)] " exp(Qx, (€))

o0 S furr (w
< | Pl Ollay (¢ w) 12 W)

wéesupp(W) JO ’fW('w)P
[ s, @nacac
X
) 14X,

= sup T(h)‘i)n|1+0p(1)!_l/ ¢ RO lav (¢ w)|81G1 (w)] exp(Qx, (€))
wesupp(W) 0

¢
.
x /0 51, (6)]dedC

(z,w)€Esupp(X,W)

= op(1) sup R | 5
(z,w)€Esupp(X,W)

< YT (h)®,(1+ 0,(1)) ( sup \R11|>



sup | R15
(z,w)€supp(X,W)

* ¢
< sup / ’C!/\|H(h1C)‘|51QV(C7w)’52@1(w)\exp(QX1(g))/0 161G, (€)|dedC

wesupp(W) J0

Y(h)&all + 0p(1)] " exp(Qx, (€))

= sup / ’C’)\‘H(hlc)ualfﬁ/(é,w)"5fW(w)’

wesupp(W) J0O ’fW (w)|2

¢
< [ 1orax, (O ldsdc

= sup T(h)(i)n|1+0p(1)’_1/ooo|c|)\H[(hIC)H(sIQV(C,w)||5lql(w)’exp(QXI(C))

wesupp(W)

¢
< /0 61, ()| dedC

€supp

= 0p(1) sup |Ri2| | ;
(z,w)€Esupp(X, W)

= T(h)(i)n(l +0,(1)) ( sup \R12|>
(z,w) (X, W)

sup | R16|
(z,w)€supp(X,W)

o0 ¢
= sup /0!C!AIR(MC)II%%(C,w)!l5zé1(w)|eXp(Qxl(C))/0\51@X1(€)|d§dé

wesupp(W)

X Pt o [ XV G001 (O] s
<o i1 (PSR b + a0
v Gl

0 ¢
00 14 0y0)| ) 6 ) (@, (€) | nd, (€

= sup T(h)(i)n‘l—l—Op(lN_l /OOO |g|>‘|/€(h1§)”51qv(c,W)|52Q1(w)|exp(QX1(C))

wesupp(W)

¢
o
« [ 1orix, (©ldsdc

< Y(h)®,(1+ 0,(1)) ( sup |R15|>
( (X,w)

Z,w)€Esupp

= op(1) ( sup |R15|> ;
(z,w)€e€supp(X,W)
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sup |R17|
(z,w)€Esupp(X,W)

< sup /°°|<|A|m<h1<>|62qv<<,w>|rq1<w>\exp(QX1<<>>dc

wesupp(W) JO

ey (W1
<o PO (B i + et

1
+E L+ oDl 1>|Q1(w)|eXP(QX1(C))dC

< sup T(h)B2[1+0y(1) /\g\ k(R C)] 1C)|<|XV(C’;T)|+1>

wesupp(W) |91 (C

X Jq1(w)] exp(Qx, (€))dC

= su ) o 1 o . 1 y
= s T oy (IO o (€
a(w)
/ I | (h1€) ||(91 ©) exp(Qx, (¢ ))dg>

= T(R) U, (h) (1 + 0p(1)):

sup |Ris|
(x,w)€supp(X, W)

< sup / (PR 1610y (¢, 0) 611 ()] exp(@x (O))dC

wesupp(W) J0

o L hwlCwly g
< s [P (G ) s TR exp(@x, (O

wesupp(W) JO

= b2 su - )\K/ ;QX
— v (s [T RO e (@ (O

wesupp(W) J0

e h b d >
<Y (h)p W (h);
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sup |Ri9]
(z,w)€Esupp(X,W)

< sup /OO|<P|n<h1<>\|a2qv<c7w>|5141<w>|exp<@xl<<>>dc

wesupp(W) JO

R 4 (S 1| LTS | PO
jwesiﬂﬁ’(m/o €17 IR ( 1C)\< TAGE (h) |1+ 0p(1)]
I (¢l

+ 0] (h)én!1+op(1)—1)yalql(w)\exp(Qxl(o)dC

= sup T(h)i’n|1+0p(1)!_1/ (¢ IR (R1 Q) [81dv (€, w)l161d1 (w)] exp(Qx, (¢))dS
wesupp(W) 0

< T(h)cﬁn(l +0,(1)) ( sup \R18|>
(z,w) (X,w)

€supp
= op(1) sup |Ris| | ;
(z,w)€supp(X,W)

sup |R20|
(z,w)€supp(X, W)

= sup /OoC\A!ﬂ(hlé)llva(Qw)!|52(11(w)|eXP(Qxl(C))dC

wesupp(W) JO

= sup /OOC\A!F&(th)qu(C’w)!1T(h)¢i|1+0p(1)!16XP(QX1(C))dC

wesupp(W) J0 |fW(w)‘2

= s Y(WE1+op(1)] ! / P rhi0)]
wesupp(W) 0

< T(h)E2W (M) (1 + 0p(1));

1
mmﬁv((, w)|d¢

sup | Rox |
(z,w)€supp(X,W)

= sup /OO\C\A!K(hlé)lwldv(éw)\|5241(’w)!eXP(QXI(C))dC

wesupp(W) J0

16 fov (w))]
| fw (w)[?

= sup Y1+ op(1) / 1P RO 181y (€. w) 151 ()] exp(@x, ()

wesupp(W)

= sup /oo\C\A!ﬂ(hlé)lwlfiv(é,w)\ Y(h)al1 + 0p(1)] " exp(Qx, (€))dC

wesupp(W) JO

€supp(X,W)

= op(1) sup |Ras| |
(z,w)€Esupp(X,W)

< Y (h) (1 + 0p(1)) (( S |318‘>
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sup | Roa|
(z,w)€supp(X,W)

< sup / (¢ 82v (¢, ) 6261 ()] exp (@, (O))dC

wesupp(W)

< s [T Pl (€ W) IV Olp 3 111 0,10 exp(@u, (€))de
wesupp(W) J0 |f ( )‘

= sup  Y(h)D,|1+o0,(1)]7" / Mk (h1Q)162Gy (¢, w)|[61G1 (w)] exp(Qx, (€))dC
wesupp(W) 0

‘< T(h) (1 + Op(l)) ( sup |R19>

(z,w)€supp(X,W)

= 0p(1) sup |Rig| | . O
(z,w)€supp(X,W)

Proof of Corollary 4.5 Combining Theorem 4.2, Theorem 4.3 and Theorem
4.4(i1) immediately yields the result. O

Proof of Corollary 4.6 Because the bias and the remainder term will
never dominate the variance term by Assumption 4.11, the result immediately fol-
lows from Theorem 4.3, Theorem 4.4(i) and the fact that gy (z,w, hn) — gy (z,w) =
Bya(z,w, hin) + Ly x(z,w, hy) + Rya(z,w, hy). O

Lemma A.4 Suppose the conditions of Lemma 4.1 hold. For each  and
h= (h17h2)’ and fOT’ A= ]-5X17XV7fW? let

\I’\J;,)\7A7s(<ahl) = sup ‘/\IIV,)\,A(Ca‘Tawahl)S(maw)dw' )
z€supp(X)

and define

V>\s Z / VAAsChl)d<+h2 Z / VABSChl dg.

A= 1X1 B= XV7fW

If Assumption 4.9 also holds, then for h >0

xoxp (@, 201 — 0L (g,,<00)) (b )"0 ) )
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Proof  We obtain rates for each term of ¥,  (h). First,

\P_‘;,A,l,s(c hl)

= Sup ’/\I/VAl ¢,x,w, hy)s(x, w)dw‘

- e T () expl—igz)ov (€, w)de
- 5 (PO exp(-ia) 2D ) (0,

ersilgg(x)‘ o~ Zgﬁg(f)l /C (i) () exp(—ica) ( / ¢v<£,w>s<x,w>dw) ¢

- %(_io)\’i(hlo exp( ZC$ (/¢v C,w)s(z,w dw)‘
10x, (O] [ ‘ ‘
SR ;e (xeiﬁiﬁ’(x J evteustomin )

1
|01(C)| <x€supp (X) /¢V C, ($ w)dw’>

DI ) / P n(mne) ( - ' / ¢v<£,w>s<x,w>dw'> e

z€supp(X)

+ 1R C)

B 1
~161(Q)]
+ [¢PMr (R Q)] ( sup ’/¢VC, xwde]
z€supp(X
1 +o0
S ATAG] [|D<1n¢1(4)|/ €™M e <eny <ze§§§(x)‘/¢v € w)s(@, w de it
I ey < s ‘/@f)v ¢ w)s(z,w dwm
1 ht
= |91(C)|1{K|§h1_1} |:|DC 1n¢1(<)|/ |£|)‘ (IEST;E(X) ‘/QbV 53 l’ w de 5

+|<|A< o ‘/gbvc, xwdw‘)]
$Esupp

By Assumption 4.1 and 4.9, we obtain

/ V)\ls((7h1) C

1 Rt
< [ et | Pl | |§yx<z€$pp [oview xwdeg
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+|<|A< o ‘/cva, xwdwmc
zEsupp

h 1
j/(l +|¢) 7 exp (—ao’(!ﬁe) Lc<hty [(1 + |q)71/0 (1 + [€])er
X exp <oz¢s|f\5¢s) de +|¢)MA + [¢)) % exp <%8|<|ﬁ¢s> }dC

Rt Ryt
—Yo _ Be 1 s ex Bes
<[ i esn (~aolet®) [ ke [ I+ e esp (asll) ae
FIC L+ [l exp (agolc] ) ]dc
<(1+h ) exp (—aa(h?)@) [<1 + R (L + Ay M exp (%(h Hye )
) e () |

S+ BT exp (=g ) (1 b0 exp () (14 ) 41)

<(1+ hy ') ee A0+ exp (—ae(hl‘l)ﬁe) exp (%(h H)Pe )
Second,

\I’\t,\ X1, s<<’h1)

= sup /\I/VM\’Xl(C,J),’LU,hl)S(QZ'ﬂ,U)dU)‘
zesupp(X)
1 Foo .
= s (G [ R0 expligron € i) s(owia
I s .
- xesi‘;&m s ) (O g esp(ica) ([ vt wpste waw) df]

| A

+o0
3 |/ [ (ha€) (mesilrl)g ’/év &, w)s(x, w)de d¢

01(
1 ioo

!91(C | / {\£|<£h 1 (mesilgg ‘/cﬁv & w)s(z, w)de d¢
1

h 1
= gy (e Hidlshi }/ € (mesigg ’/cﬁv & w)s(z, w)de dg

so that
/ U¥a 1,66 1)
hit hit
-6 _ Be A s ﬂ s
< /O (L4 16D 77 exp (—aulc| )( /0 61+ le) e exp (el )df) a
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< (1 + hl—l)lfve exp (_ab)(hl—l)ﬁe) (1 + hl—l)A+'y¢>s+1 exp (ad)s(h )ﬁ¢>s>

< (1 Ko exp (g () exp ().
Third,

\II¢7)\7XV 5(C7 h’l)

= sup ’/‘I’V/\,XV(CufU w, hy)s(z, w)dw'

z€supp(X
_ (i 26 ’
o | (s i)

PN

M B . ‘/ ov(C ) ‘
M g1<nty el W C,

1
< |¢M - sup ‘/(j) (C,w mwdw‘ < )
IS e <nrty (wesupp v ) infyesupp(w) [xv (€ w)

so that

h /\I]¢)\ XV, s(gahl)dc

hyt
<t [ 1P+ exp (~aaldl) (1-+ 67 exp (k) d

< (L e ep (a1 ) exp (e () )
Finally,

WYy (G 1) = sup ‘/\PV}\ fw (G w, ha)s(x, w)dw‘
xesupp(X)

= s | [ (g0 espl-ico) 2D s, wpaul

z€supp(X) fW (w

‘C’/\l{|4|<h11}< sup ‘/¢V(Qw)3($aw>dw‘>

z€supp(X)

PN

so that

hyt
b [ g s 25" [P+ exp (o )

< by (14 AT exp (agy(hr ).

Putting four terms together gives the desired result. [
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Proof of Theorem 4.7 (i) By the assumption 4.10(¢), we have

_max sup |gw,Aj(x7w7hn) _ng,)\j (wivhln)‘
3=y (2,w) Esupp(X, W)
= max sup | By, x, (#,w, hin) + Ly, x, (2,0, hn) + Ry, 3, (@, w, hy,)|

3=l (2,w) Esupp(X, W)

1/2
= o(auy) + op(ozl,/Z )+ op(aun)
1/2
= opa1s).

Thus the remainder term in eqn.(1.9) is o, <<a1{?) > = op(a1n) by letting gy, », (z,w) =

9v; 2, (T, w, hy ). We also have

J
Z/ (ng,A]. (x,w, hy) — 9v; (z, w)) sj(x,w)dw

< Z up gy, () = g (0] [ o) du
— (z,w)€supp(X,W)
<Y swp i@k - g (@ w)| s [ Isstavw)du
j=1 (z,w)€Esupp(X,W) xEsupp(X)
_ZHQ (z,w, hn) = gy, (2, w)|| sup /Is] z,w)| dw
ccEsupp

= Hf/vj,xj(w’wahw — gy (@0

since sup,equpp(x) J 185 (%, w)| dw < 0o. Then the result immediately follows.
(74) By the assumption 4.10(i7), we have
 max sSup |ng,)\]’ (xuwuhn) — 9V, (xawuhln)’
J=besd (@w) Esupp(X,W)

= max sup |ij,>\j (z,w, hin) + Ly, 5, (7, w, hy) + Ry, z; (7, w, hn)|
J=Lesd (2 w)esupp(X, W)

= o(azn) + op(ad)’) + op(azn)

2
= op(ad)?).

Thus the remainder term in eqn.(1.9) is o, <<a§7/12) > = op(azp) by letting gy, », (z,w) =

gv; x; (T, w, hy). We also have



J
Z/ gy (T, w, b ) — gv]-,xj(x,w)) sj(x, w)dw

1

<.

J
/BV A (5w, han)sj(z, w dw—I—Z/LV (5w, h)sj (@, w)dw

7=1

J
Z/Rv A (@ w, by ) s (2, w)dw.

For the first term,

sup
xesupp(X)

/Bv X (@5 w, han)sj(z, w)dw

xEsupp(X

< sup /BV (@ w, hin)sj(z, w)dw‘

Note that

sup ’/BVA x,w, hiy)s(z, w)dw‘

xesupp
= sup ’/ gva(z,w, h1) — gya(z,w,0))s(x, w)dw‘
xEsupp
= ‘ [ (5 [ mm0-ic)ovicwyexpl-icarac
:vEsupp
-5 [0 ¢v<c,w>exp<—z’<x>dc)s<x,w)dw]
- ] / ( (06) = (16 v(6. ) exp(iGe)dc ) (e whis
zEsupp
= ‘ s ) — 1)(—i¢) exp(—icz) </¢v ¢ w)s(e, >dw>d<‘
:vesupp

1
< ﬂ/é/hl (5 (h1¢) = D] ¢ (xesil;EX ’/qﬁv ¢ w)s(z, w)de dc

A
= /f/hl Iq (CEES?II;I;I))(X) ‘/qﬁv(C,w)s(x,w)de d¢

< [ G I explaal¢ ) g
&/h

=0 ((€/m) """ exp (a0 (€/11) ™))
-0 ((hl—l)’m,s,s exp (04373 (hl_ )ﬁB,s)) .

7
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Thus we have

J
sup Z/ij,/\j (m,w, h1)sj(:c,w)dw =0 ((hl—l)w,s,s exp (0”378 (h1—1)ﬁs,s)) .
xesupp(X) j=1

For the second term,

sup Z/LV £ (T w, hy)sj(z, w)dw

xEsupp
< sup Z /L‘/j,Aj(x,w,hn)sj(x,w)dw‘.
z€supp(X) =1

Note that

sup ‘/LVA z,w, hy)s(z, w)dw'
xesupp(X)

= sup ‘// [‘vam ¢, x,w hl)( [e72] *E[eiCXQ])

z€supp(X)

+ Wy x, (¢ z,w, h) ( [XleZCXz] _ E[Xlez'gxg])

Wy Gy, ) (BIVE 2, (W = w)] = B[V, (W - w)))

+ Wy (G @ w, hy) (E[z%(w —w)] — Elkp, (W — w)]) ]d{s(ﬂc, w)dw‘

S/|:< sup ‘/\IIV,/\,l(vaawahl)*s(wi)dw
z€supp(X)

+ ( sup ‘/WV7A7X1(C,x,w,hl)s(x,w)dw)

x€supp(X)

E ZCXQ _ [’LCXQ]

E[Xe"%2] — B[X %2

z€supp(X)

+ ( sup ‘/qu,A,Xv(C?'%'?w7h1)8(x7w>dw)

X ( sup ‘E[VeiCXQkhQ(W —w)] - E[VeSXeg, (W — w)] D
wesupp(W)

+ ( sup ‘/\IJV’)\ny(C,.%'7w,hl)S(m,UJ)d’LU‘)

z€supp(X)

x ( S ‘E[khz(W —w)] = Elkp, (W — w)]‘) ]dC

wesupp(

- / [\Ij\t7/\,1,s(C7 h1) ’E[eiCXZ] — Elei$X2]

+hy T (G )

+ lI’V)\ x,.5(C h) ‘E[Xle"@@] _ B[Xei¢Xe]
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x| sup ’E[Veifxz hokn, (W — w)] — E[VelX2hoky, (W — w)] ’)
wesupp(W)

+ hy 1‘Ifo5A s (G P) ( sup )E[h2khz(W —w)] = Blhokn, (W — w)}D }dg
wesupp(W)

Then we have

E

sup ‘/LVA 2, w, hn)s(z, w)dwu

xesupp

</ [wmchlE{ €% — Bl

)]
)]

sup (E[veiCXQ hakn, (W — w) — E[Vei$X2hoky (W — w)]])
W)

wesupp
2 1/2

+ 075 x, 5GP E E[X1X2 — B[X %]

/—’%

+ h2 1\P$)\ XV s s(C’ h‘l)

x B (
+hy Y (G )
x K (

< [wtaem {z(

LU (G {E(

+ hy 1\1@””(4,111)

i

+hy 'Y (G he)

= [ ot ot (|

2) 1/2

sup_(Elhakn, (W = w) — Elhokn, (W — w)]])
W)

weEsupp
2> }1/2
2) }1/2

sup (E[veiCXQ hakn, (W — w) — E[VeiSX2hoky (W — w)]])

wesupp(W)
o\ 1/2

Bl - B

E[X1e"%2 — B[X,e Y]

)

sup (E[hgkhz(W — w) — Elhokp, (W — w)]])

wesupp(W)
2) }1/2

i€X2 _ pleica)
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2> }1/2

sup (VeiCX2 hokp, (W — w) — E[Ve“X2hyky, (W — w)])

wéesupp(W)
o\ Y 1/2

+ \II?;A X1 s(Cv hl) {n_lE <‘X1€i<X2 — E[Xleigxz]

+ h2 1\Ij¢)\ XV S(C? hl)

+hy W (G )

X {nlE (
n1/2/ [w%vlﬁs(g,hl) {E < e

+ \III+/>\ X1 S(Cv hl) {E <‘X1€icX2 — E[XleiCXz]

)

sup  (hokp,(W —w) — Elhokp,(W —w))])

wesupp(W)
2> }1/2
2> }1/2

iCXo E[eiCXZ]

+ h‘ 1\II¢)\ XV, 5(C7 h’l)

i

sup (Vei<X2h2k:h2 (W —w) — E[Vel*2hoky,, (W — w)])
+ hy 1\II\J;)\ Jw S(Ca hl)

wesupp(W)
o\ Y 1/2

1/2( Z /\I"éAAsChl)dCWth Z / VABsChl dC)
A=1,X1

B=xv,fw

sup (hzkhQ(W - w) - E[thh2 (W - w)])
wesupp(W)

}dC

_I/Z\Ij¢)\ s(h)
where W, (h) = O(max{(1+ hy ) hy '3 (14 hy ' )es A0  exp((agsis,, >,

—aplyp,,<pp) (g Dymax{Bo.84:}1)). Tt follows by Markov’s inequality that

sup Z/LV X (T, w, hy)sj (o, w)dw

mesupp

=0, (”” 2(max{(1 4+ hy )" AT (1 4 by t)restAT0H

X exp((gs 15, 28) — 01{8,,<5,)) (A1 )ma"{ﬁf”ﬁ“})>



Finally,

J
Z/RV A (5w, hy)sj (o, w)dw

sup
zesupp(X)
J
< sup Z /RV].,AJ. (:c,w,hn)sj(x,w)dw‘
:cEsupp(X)
= sup / Rijsj(z,w)dw
xEsupp(X) Z 7
We exploit upper bounds for each term, SUDzesupp(X) U Rys(x,w) ,i=1,...,22.
sup ’/Rls x w)dw‘
:):Esupp
j/ |<| |k(hi1C) ( sup ‘/qbv ¢, w)s(z, w)dw ) exp(‘é@xl(g)‘)
0 rEsupp(X

x ( / \6q“xl<f>rd§) a¢
S/O ¢k (haQ))| <xe$§ ’/qﬁv ¢, w)s(z,w) de

X exp < /0 |6cle<s>|d5) ( /O |6qxl<s>|ds> i

= eXp(Op(l))/Ooo!CA!fi(th)\ ( sup ‘/¢v(é7w)8(%w)dw‘>

z€supp(X)

x (/0<\5éx1(§)|d€> </O<|6qxl<5>rd5> i

jexp<op<1>>/ooo|<| w(hi)) (Esup(x)‘/qbv G mwdw')
I (80x,(6) 0, (€)61(8) AGAE
< (91@) 6:() )(“el(é)) *
(|90, 0x,050:0) AGAE
/ (m(g) 61 )(”m(s)) o
< exp(op (D) IFEL +0,(1)]2 [ I sC) ( sup \ [ovicw xwde

xe€supp(X)
/o1 \9X1(£)|>
ded
/0 <|91<§>|+|el<£>|2 e
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— exp(op(U) T (MBI +0,(1)1 2 [ ( /g 1P l(hi)

<xe§$pp [ovic “’”“’D ) (i@ * oere ) %

<Y (B2, (h).

we note that

QL ATING

= (T(m)@2n2) 2 | (R)

= 0,(1)0, (™" (max{(L+ by ), by Y () exp (ara(hy ) ))
= 0 (2 (max{(L ) by ) (b exp (o () 0) ).

Because all other terms are also bounded by the upper bound for sup,cqupp(x)

U Rys(x, w)dw‘ as shown in the proof of Theorem 4.4, we have

sup Z/RVJ’)‘J‘ (x,w, hyp)sj(x,w)dw
=1

z€supp(X)

= op (0™ 2 (maxf(1+ AT By P (AT exp (aro (7)) )

Thus putting all together gives the desired result. [

Proof of Theorem 4.8 By the assumption 4.11, we have

max sup

J=Led (g, w)€Esupp(X,W)

|gVJ 'I w, h ) g\/j7>\j(m,w,h1n)|

‘max sup
3= (2 w) €supp(X,W)

= o(n™Y?) + 0,(n V) 4 0,(n"1/?)
= Op(n71/4)-

|BV]',>\]' (:c,w, hln) + ij)\j (l‘,w, hn) + RVj,Aj (x,w hn)|

Thus the remainder term in eqn.(1.10) is o, ((n_1/4)2) + o, ((n_1/4)2) = o0p(n~1/?)
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when we let gy, x; (%, w) = gv; », (7, w, hy) and fw(w) = fW(w). We also have
J
Z // (g‘/j,)\j (1,', w, hn) EAZEY (wi)) Sj([E, w)dwda:
—Z//LV £ (W, hy)sj(x, w)dwdr

+Z// By, x; (@, w, hip) + Ry, \; (@, w, h )) sj(z, w)dwdx.

Note that

Z// By, z; (7, w, han) + Ry, 5, (z,w, h )) sj(x, w)dwdx

§<max sup ‘BV)\ (z,w, h1n) + Ry, ; (2, w, hy,) )Z//\sjww]dwdx
7=1

I (zw)e(X,W)

= Op(n71/2)7

since maxj—1,.JSUP (g w)e(x,w) Max{|By, x; (z, w, h1n)|, [Rv; z; (2,0, hy) [} = op(n1/?)

and [ [ |s;j(z, w)|dwdx < oo. Therefore we have

b(g(hn)af( ) —0(g, f Z//LV by (z, w, hn)s;j(z, w)dwdz
+// fw(w) — fw(w)> sy41(z, w)dwdz + op,(n~?).

We also note that

Z//LV x (@, w, b )sj(a:,w)dwdx—i—// (fw(w) —fW(w)> sj+1(z, w)dwdz
= { hmZ//LV],A z, w, h)s;(z, w)dwdz

h—0

+ lim / / Elky, (W — w)] — Elk, (W — w)]) sy, w)dwd:c}

ho—0
+{~lim // LVj,Aj(x,w,hn)—L‘/j7,\j(:x,w,l~z)> sj(x, w)dwdx (1.22)
ho—0
wdim [ [ (B, 07 = )] = Bl (07 - w)
ho—0

_ (EU%(W —w)] - Elky, (W — w)]) }sm(x, w)dwda:}.
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We will show that the first term in the right-hand side is a standard sample average while
the second is asymptotically negligible. By the definition of Ly, y;(z,w, iL) in Lemma

4.1, we have

limZ//LV])\ z,w, h)s;j(z, w)dwdz

h—0

+ lim / / Elk, (W — w)] — Elk, (W — w)]) s 71 (2, w)dwdz

ho—0

S [ [{ [ [onatcne i (B - e

+ Py Gz w ,h1) (B[X1e %] — E[X1€KX2]>
+ Ty, (6 2w, h) W —w)| — E[VjeicX%ﬁQ(W - w)])
)

+ \I’VM]-,fW(C,x, w, Bl

(
(E[x/jei<x2 i (
(E[%(W —w)] — Elky, (W — w)]) ]d{}sj(x, w)dwdz

* EET()// h2 (W —w)] - [kﬁg(w - w)}) sj+1(z, w)dwdz.

Because the assumption that Wy, s < oo ensures the integrand is absolutely integrable

for any given sample, integrals and limits can be interchanged:

lim Z// (2, w, h)s;(x, w)dwdz

h—0
+ 121210// w)] — Elk; (W — w)]) sy+1(z, w)dwdx

+ﬁ11ifo/ / Uy, % (G w0, h)s; (, w)dwda (E[XleiCXQ]*E[XwiCX?])

+~hm//\1j\/ )\J,XV Cvxawaﬁl)sj(wi)

h—0
X (E[VeZCX?lv (W — w)] — E[V;elX2k; (W — w)]) dwdz

+lim// Vi zfw (G 2w ,hi)si(z,w)

h—0

X (E[k;lz(W —w)] — Elk;, (W — w)]) dwdx}dg“

+ / lim / (Blks, (W — w)] — Elky, (W — w)]) 5,41, w)dud.

ho—0
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For the first term in the integrand of eqn.(1.23), we have

lim //\IIV,,\J(C,x,w,El)s(:c,w)dwdw

oo
:alfTo/ / { = le c)>2 / T wn6) exp(—ita)ou (6, wide
o (i6 (in expl=ica) 2 ooy
217r (zgf(lg()g))z / - ( / exp(—i§x) / S(vaw)@bv(fvw)dwdm) (—ig)kﬁllizlon(ﬁlg)dg
Iz (91( )) < / exp(—i¢z) / S(x,w)qﬁv(c,w)dwdx) Blligon(ﬁlg)
L (s i)
L [t ot o)
= Ty514(0)

Similarly, for the second term, we have

lim //\I/V)\Xl C,x,w,ﬁl)s(x,w)dwdm

iLl —0

- ,}Lo [ Gam [ o exniicnon s wic psta,wavis

C)/ N (/eXp( Zéfc)/ (z, w)¢v(§7w)dwdx> (—i) ﬁllizloﬂ(ﬁlf)dg
1

- L / e ([ exwt-itn) [ stawpov(e.widuds ) (—ie)dg

= Uy x, .5(C).

We also note that for the third term,

}lzliﬂ] / / \IJV,)\,XV (Ca z,w, ill)S(ZE, U))
( SV ek (W — w)] — E[Ve¥ek, (W - w)]) dwdz

“ i [ [ {0 espt-icn 2 0
( [Ve“X?k;w (W —w)] — E[Ve“X2k; (W — w)}) dwdz

s(z, w)oy (¢, w)

7
27’[’ 91(
]

! —(—i¢)* /exp(—i{az) lim

27T ha—0 XV(C? U})

X (E[veicm ki, (W — w)] — B[V Xk (W - w)]) duds_lim k(h10)
1—)
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R S P
= 510" [ exp(ico) im [ sl whov (€.

X (E[VeiCXQkE2 (W —w)] - E[Ve X2k (W - w)]) dwdz
= E[ZMA,XV (37 Ca Vv X?a W)] - E[ZV,)\,XV (87 C7 V? X27 W)]v

and for the fourth term,
ilLiirB//\I/V)\ o (G, B, w) (Bl (W — w)] — Blly, (W — w)]) duwda
= lim // { 27r —i0) k(h1¢) exp(— z(:n)¢V(C’ )}s(x,w)

h—0 fw(w)
[k (W —w)] - )
-0 [ empl-ico Jﬁo/ oy "5 OV
x (Bl k:h2 ) duwda Jim 218)
)‘/ —ix) hIQITO fW V(¢ w)
X (E khz(W )]) dwdz

EE[ZV’)\,fW< C7 )] [ZV/\fw< C:W)]7

where Zy ) v, (s, V, Xo, W) and 2y 4, (s,(; W) are defined in the statement of the
theorem.

Thus it follows that

lim Z//LVJ (2, w, h)s;(z, w)dwdz

h—0

+ lim / / Bl (W —w)] — Elkg, (W —w)]) 851 (2, w)dwda

ho—0
J ~ ) .
- Z/ {\I/Vj,)\j,l,Sj (C) (E[GZCXQ] — E[BZC‘XQ]>
j=1
+ \PV'J"A]'1X1)Sj «©) (E[XleicXﬂ — E[XleiCXﬂ)
i (E[Z‘G7Aj’xvj (8, G Vi X2, W] = E[Z‘/jv\jaxw (85, ¢ Vj, Xo, Wﬂ)
* (E[Z‘Gv/\jafw (sja ¢GW) — E[ZVj«\j,fW (5].7 ¢ W)]) }dC

+ / lim / (E[k:;LQ(W —w)] — Ek; (W — w)]) sy (z, w)dwdz

ho—0
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J

E ) by, (555 Vi, X1, Xo, W) + g (57413 W)
j=1

E [QZ}S(‘/’ leXQa W)] 9

as defined in the statement of the theorem. The assumption that \ffv, A,s < OO ensures

that for some C < oo,
|s(v, 1, z9,w)| < C'max{1, |:131\}\i'v’,\75.

Since E[X{] < co by Assumption 4.2, and E [|¢(V, X1, X2, W)|?] < oo, the Lindeberg-
Levy central limit theorem gives that F [s(V, X1, Xo, W)] is \/n consistent and asymp-
totically normal.

The second term of eqn.(1.22) can be shown to be 0,(n~'/2) because it can be
written as an hy,,-dependent sample average E [&S(V, X1, X0, W, hn)] where 15(V, X1, Xo,
W, hy,) is such that limp, 0 E U’(/_Js(‘/, X, X0, W, hn)ﬂ = 0. The similar procedure to
the case of E [1)5(V, X1, X5, W)] is used just by replacing x <51§> by (H (h1n€) — K (lelf))
and kj, (-) by (k;h%(-) - k,sz(')), and taking the limit as h, = (hin,h2,) — 0 and
h=(hi,hs) —0. O

Proof of Theorem 4.9 From a first-order Taylor expansion of B(m, w, hy) —
Bz, w) in gva(z, w, hy) — gva(z, w), we get
B, w,hn) = Bla,w) = Y Y svale,w) Guale, w, hn) — gualz,w))  (1.24)
V=1,Y A=0,1

+ RV,/\ (§V,A(5U, w, hn)7 (f]v,/\(l” w, hn) - gV,/\(:Ea w))) 5

where Ry ) (gva(x,w, hy), (Gua(z, w, hy) — gya(z,w))) is a remainder term in which
gva(x,w, hy) lies between gy (z, w, hy,) and gy \(x, w) for each (z, w, hy,), and the sy z(z,
w) are given in the statement of Theorem 4.10.

We note that by Corollary 4.5,

max max sup v (@, w, hm) = gya(2,w)| = Oplen),
V=LY A=01 (3 w)e(X,W) ' o

En = (hl_nl)M’B exp <aB (h_nl)ﬂB)

0 2 max{ (A1), At} ()™ exp (ar (h71)™) = 0,

1n in

The first terms in the Taylor expansion of /3 (x,w, hy) — B(x,w) can be shown to

be Op(en/73) uniformly for (z,w) € T';. Each term of sy, (z,w) consists of products of
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functions of the form gy (z,w) divided by products of at most 3 functions of the form
g1,0(x, w). Because gy »(z,w) are uniformly bounded over R by assumption and g1 o(z, w)
are bounded below by 7, uniformly for (x,w) € T'; by construction, we have that
Pyt 15V ) (G0 (@0, ) — gy (,0)) | = O()Op(73)0p(en) = Oplen/ ).

The remainder terms in the Taylor expansion of ((x,w,hy,) — B(z,w) can be
shown to be o, (e, /72) uniformly for (z,w) € I';. These terms involve a finite sum of (i)
finite products of the functions gy x(z,w, h,) for V.=1,Y and A =0, 1; (4i) division by
a product of at most 4 functions of the form gy o(x,w, hy,); and (iii) pairwise products
of functions of the form gy »(z,w, hn) — gy (z,w) for V=1,Y and A =0, 1. First, the

contribution of (7) is bounded in probability uniformly for (z,w) € I'; because

lgva(z,w, b)) < [gva(z, w)] + |gva(z, w, hn) — gva(e, w)]
< gva(z, w)| + [gva(z, w, hy) — gy (z, w)]

< 5 By —
< |gva(z, w)] +‘/nialm>§/AHiao>§ (z,w)sél(r))(,W) lgva(z,w, hn) — gy (2, w)|

= 0,(1) + 0p(1)
= 0,(1).

Second, the contribution of (i7) is bounded as well. We note that for (z,w) € I';

g1o(z,w, hy) — g10(x, w))
g10(z, w)

_ z | w gl,o(x7w7hn> - 91,0(1’,11))
= fxw(z | w) (1 + Fem G T w) )

~ ot w) (140, ().

By selecting {7} such that 7,, > 0, 7, — 0 as n — oo, and &,/7> — 0 we also have

gro(z,w, hn) = g10(z, w) (1 +

€n/Tn — 0. Thus we get for (z,w) € I';

g10(z,w, hy) = fxyw (@ [ w) (14 0p(1)) > 7,/2

with probability approaching one since fxw (z | w) > 7, for (z,w) € I'; by construction.
Therefore we have that the contribution of (i) is g;g(:c, w, hy) = Op(7,;%). Finally, the

contribution of (7i4) is Op(e2). Putting all together, we have

RV,)\ (gv,/\(xa w, hn)7 (QV,)\ (l’, w, hn) - gV,)\('Ia U})))

= 0p(1)0p(7;, ) Ople7) = Oy <> Or (> - <>

n Tn
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so that

Proof of Theorem 4.10 We have established the asymptotic normality of
gva(x,w, hp)—gya(z,w) in Corollary 4.6 and we have the Taylor expansion in eqn.(1.24).
Thus the result is immediate from the delta method. [J

Proof of Theorem 4.11  We prove the theorem by applying Theorem 4.7

and straightforward Talyor expansions. (i) From the definitions of f,,(z) and Gy, (z), we

have

sup Bm(‘r) - ﬁm(x)‘

reM

—sup ([ (Bawiha) ~ 8o w) m(w)d
zeM |J Sv

B(hn)

= sup / m(w)sy(z,w) (gya(z, w, hy) — gya(z, w)) dw| + op(1)
eeM S SE V=LY A=0,1

= sup Z Z / m(w)sya(z,w) (Ggva(z, w, hy) — gva(z, w)) dw| + op(1)
€My 1y A=0,17 550 hy

=0 (73 ()™ exp (0 () 7))
+ 0, <7'_3n_1/2 (max{(hfnl)éLvS, hgnl ) (hfnl)%’L’S exp (aLs (hi})ﬂL’S) ),

where the last equality is attained by Theorem 4.7.
(i4) From the definitions of G, () and By, (), we have

sup
reM

By () = Bongoe )]

—sup | [ (B m(w) ) = B wyme) ) )

eM
v B(shn)

—sup| [ (i) (3w, ha) ~ 5a0)) do

eM Y
v B(shn)

+ /szv Bz, w)m(w) (fw(w) - fW(w)) dw' + op(1)

B(shn)



/w Z Z m(w) fwv (w)sy(z, w) (Gva(x,w, hy) — gva(z, w)) dw

B hm) V=1,Y A=0,1

w [ B im) (i) — fiw) du| +,0

B(-shn)

= sup
zeM

> Z/ m(w) fw (w)sva(z, w) (Gua(z, w, hy) = gya(z, w)) dw
V=LY 3=0,1"55 1.

+ [ B aim) (fiw) — i) du| +0,0

B(-shn)
=0 (7 ()" exp (e (1))

+ 0, (7'_3n_1/2 <max{(hfn1)6L’5, hgnl ) (hfnl)vl’L’s exp (aL,s (hfnl)ﬁL’S) )

= sup
zeM

(7i7) From the definitions of Bmfw\x(x) and B,  (z), we have

SUD (B (2) = B (2)

reM
2 1.0, w, b)) f (w
:sup/ <ﬂ(x,w,hn)m(w) gl’o(wa n) fw (w)
zeM | Jgv Jow  Gro(z,w, hy)dw
B(-,hn) B(-,hn)

—ﬁ(m,w)m(w)fgl’O(x’w)fW(w) >dw’

gw g1,0(x,w)dw
B(-,hn)

gi:ozx?w)fW(w) 3z, w — B(z,w
Lg(<,hn) [m(w)fsgth )91,0($,w) (ﬁ( s w, hy) — Bz, ))

n

Jw(w)

) g1,0(z, w)dw

= sup
zeM

+6(Q77w)m(w) (gl,o(x,w,hn) _QI,O(wi))
g

g1,0(7, w) F () — foo (w
Bt o (Fwlw) = fir(w))

g1.0(z, w) f (w)

90

— B(z, w)m(w) 3
(fsev g10(z, w)dw)
B(shn)
X (/Sw g1,0(x, w, hy)dw — /Sw gl,o(mw)dw) ]dw‘ +0p(1)
B(-,hn) B(,hn)
=sup| Y > / m(w) fwx (w | 2)sva(z, w) (Gva(z, w, hn) — gva(z, w)) dw
€My 1y x=0,1 755 hn)

N ﬁ(x’w)m(w)fw(w) (G1.0(z,w, hn) — g1.0(z,w)) dw

sw fx(x)

B(shn)
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fow(elw) oo
Jwix(w | z)
- Bla, wym(w) =
S hn) fx(x)

X / g1,0(z, w, hy)dw —/ g1,0(z, w)dw dw‘ + 0,(1)
S§<~,hn> Sé(»,hm

=0 (7 ()" exp (s (1))

+ 0, <7'3n1/2 (max{(hl_nl)‘SLvs, hQ_ﬂ} ) (hl_nl)%’L’s exp (ost (hl_nl)’gL‘s> ) O

Proof of Theorem 4.12  Similarly, Theorem 4.8 and Talyor expansions are

used for the proof. (i) From the definition of B and By, we have

-

<B(x,w, hn) — 6(3:,11))) m(x, w)dwdz
B ) P8 )

P

m(x,w)sya(x,w) (gv(z, w,h,) — gva(z, w)) dwdz

Il
0
o

g(.,hn> Sg(.,hn) V=1,Y A=0,1
+ Op(n_l/Q)
- Z Z / m(z, w)sva(@, w) (Gua(@, w, hn) — gy (z, w)) dwdz
e R R N
+ Op(n_l/Q)
B Z Z E [va(msya; V, X1, X, W)] + Op(n_1/2)
V=1,Y \=0,1

=k Z Z Yy a(msyr; V, X1, Xo, W) | + op(n~Y?).
V=1,Y A=0,1
Let ¢ﬁ'rﬁ ('U, xla o, ’LZ)) = ZV:I Y Z)\:O 1 w\ﬂ)\(mSVJ\, 7), Q,’l, 1’27 QI]) The reSult iS immediate
from the application of Theorem 4.8.

(i) From the definitions of B fwx and OB fwix» We have

ﬂmpr( - /Bmfvv\x
g1.0(z,w, ha) fov (w)

N /SI /SE” [ﬂ(m,w, hn)m(x’w)fs - G1,0(x, w, hy)dw

B(-shn) B(-hn)

B,
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gro(z, w) fw (w) }dwdm
: g1,0(z, w)dw

— ﬁ(m,w)rﬁ(x,w)f

S5k

[ e (5 — o)

u ) g1,0(z, w)dw
By 7 B ) S8 hn) (2, w)

fw (w)

: g1,0(z, w)dw

+,8(a:,w)ﬁl(:n,w)f (gLO(fE,UJ,hn) _gl,O(Z'aw))
Sw

(-shn
~ gl,O(x’w) £ _ w
+5(m,w)m(x,w)f5§}(‘h )gLo(x,w)dw (fw(w) fw ( ))
gl,O(%“’)fW(w)

(Jss gl,o<x,w>dw)2

B(shn)

— Bz, w)m(z,w)

x(/s

— /s / m(z, w) fwx (w | z)sy(z,w)

V=1,Y A=0,1 E(',hn) Sg(.,hn)

g1,0(x, w, hy)dw — /
Sw

g1,0(z, w)dw) ]dwdm + op(n_1/2)
B.hm) B hn)

X (Gval(z, w, hn) — gy(z, w)) dwdzx

~ fw(w)
+ Bz, w)m(z, w) (G1.0(z,w, hn) — g1.0(z, w)) dwdz
/Sg(whn) /SEJ(»,}LTL) fX($)
xz,w)m(z,w M f o (w) — o) dwda
+/S§(,,hn) /‘S‘g("hn) ﬁ( ) ) ( ’ ) fX(fE) (fW( ) fw( ))d d
N :cwmxwfw\x(w‘x)
/Sm /Sw Bz, w)ym(z, w) e

X / g1.0(z,w, hy)dw — / g10(z,w)dw | dwdz + op(n_l/Q)
S8 hm) B(-hn)
= E [vatimfwixsva V. X1, Xo, W)| + B [10(Pr; 1, X1, X2, W)
LY A=0,1

— E[h10(Pa; 1, X1, Xo, W) + E [1h4(Ps; W)] + 0p(n/?)

—E[ S vvalmfwixsva Vo X1, Xo, W) + ¢h1o(Pr; 1, X1, Xo, W)
V=1,Y A=0,1

<
Il

— b1 0(Pa; 1, X1, Xo, W) +hp(Pa; W) | + 0p(n1/2).

Let Yg,up,,, (0321, 22,0) = 30y 21y 2oam0,1 VYA (IS wix sV v, 01, @2, W) 10 (Prs 1 2,
X2, W) —11,0(Po; 1, 21, 22, W)+ ¢(P3; w) where Pp, P, and P; are defined in the statement

of the theorem. The result is immediate from the application of Theorem 4.8.
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(i4) From the definitions of (3 fwx and Ba gy, we have

B fw.x — Brifw.x
— /I /S [ﬁ(w w, b )iz, w) g0 (, w, hy) fiv (w)

B(.hn) "B hn)

- 5(%w)m(l’,w)gl,o(x,w)fw(w)} dwde

- /Sz » m(x, w)gro(z, w) fiy (w) (B(x,w,hn) _ 5(x7w)> dwdx
B(.hn) ~ "B hn)
+ /x ﬂ(l’, "LU)’)”?L((L’7 U))fW(’U}) (QLO((Ba w, hn) - gl,()(x, w)) dwdzx

w
B(->hn) SB(~,hn>

+ /z - Bz, w)m(z, w)gro(z, w) (fW(w) — fW(w)) dwdz + op(n_1/2)

B(shn) B (hn)

= > Z / m(z, w) fw.x (w, z)sy(z, w)

V=LY A=0,1" 53¢ ) 7 o)

QVA(»T w, hy) — gva(z,w)) dwdz
/ / m(x,w) fw(w) (G1,0(x, w, hn) — g1,0(z, w)) dwdz

ﬂ( shn) 5( vhn)
+/ /w Bz, w)ym(z, w) fxw(z | w) (fw(w) - fW(w)> dwdz + o,(n~1/?)
B(hn) ~ TB( k)
= E [va(ifw,xsva; V, X1, Xo, W)] + E [ih1,0(Bmfus 1, X1, Xo, W)
V=LY A=0.1
+ B [y (Binfxw; W)] + op(n~4?)

= E[ S" dvalmfwxsva; V. X1, Xo, W) + 0B fws 1, X1, Xo, W)
V=1,Y A=0,1

tl)

+ (B fxws W)] +op(n~1/2).

Let Vg p, o (v, 21,22, 0) = D 1y Doro.1 YvA(RSW xSV ¥, T1, T, W) +1,0(Bmfws 1,
x1, T2, W) + Yp(Bmfxjw;w). The result is immediate from the application of Theorem
4.8. O
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1.9 Tables and Figures

Table 1.1: Monte Carlo simulation designs

—~

Coun R T Lt o 1 1 e s e uh T T T uh R uh s

N N N N N e e e e N N N e e S S
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Table 1.2: Simulation results from Fourier 1

95

hi X he

9.5

9.75

10

10.25

10.5

10.75

11

optimal

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance

RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

4
0.018
0.481
0.706

0.007
0.462
0.684

0.003
0.425
0.655

0.001
0.404
0.636

0.000
0.392
0.626

0.001
0.368
0.608

0.007
0.354
0.600

ha
9.75

4.25
0.004
0.496
0.708

0.002
0.406
0.639

0.000
0.384
0.620

0.000
0.374
0.612

0.003
0.386
0.624

0.008
0.363
0.608

0.016
0.338
0.596

ho
4.9

4.5
0.000
0.423
0.650

0.000
0.372
0.610

0.002
0.362
0.604

0.005
0.354
0.599

0.011
0.344
0.596

0.021
0.332
0.594

0.035
0.320
0.596

Bias?
0.020

4.75
0.003
0.384
0.622

0.008
0.348
0.597

0.016
0.349
0.604

0.024
0.340
0.603

0.033
0.321
0.595

0.048
0.310
0.598

0.068
0.299
0.605

Variance
0.332

5
0.025
0.385
0.640

0.032
0.322
0.595

0.043
0.313
0.597

0.057
0.315
0.610

0.070
0.297
0.606

0.090
0.288
0.614

0.119
0.285
0.635

RMSE
0.594

5.25
0.051
0.308
0.600

0.075
0.305
0.617

0.089
0.288
0.614

0.108
0.290
0.630

0.124
0.273
0.631

0.150
0.264
0.643

0.181
0.254
0.660

5.5
0.116
0.316
0.657

0.136
0.279
0.644

0.154
0.263
0.646

0.173
0.257
0.656

0.201
0.258
0.677

0.231
0.249
0.693

0.264
0.233
0.704




Table 1.3: Simulation results from local linear without correction

hi X he

3

3.25

3.5

3.75

4.25

4.5

optimal

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance

RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

2
0.329
18.22
4.307

0.178
13.90
3.752

0.601
5.349
2.439

1.037
2.284
1.822

1.041
0.623
1.290

1.167
0.291
1.207

1.334
0.258
1.262

ha
3.5

2.25
0.468
23.44
4.890

0.131
8.145
2.877

0.763
0.654
1.190

0.824
2.117
1.715

1.065
1.208
1.508

1.273
0.166
1.200

1.352
0.263
1.271

ho
2.55

2.5
0.478
12.41
3.589

0.386
2.364
1.658

0.895
1.839
1.653

1.016
0.434
1.204

1.204
0.225
1.196

1.142
2.474
1.902

1.393
0.165
1.249

Bias?

0.787

2.75
0.559
12.52
3.617

0.599
2.238
1.684

0.878
0.661
1.240

0.994
0.563
1.248

1.189
0.485
1.294

1.467
1.109
1.605

1.389
0.851
1.496

Variance
0.450

3
0.577
6.340
2.630

0.881
4.678
2.358

0.997
1.132
1.459

1.223
0.280
1.226

1.256
1.371
1.621

1.415
0.638
1.433

1.601
0.213
1.347

RMSE
1.112

3.25
0.800
9.208
3.164

0.879
0.960
1.356

0.992
3.892
2.210

1.414
0.566
1.407

1.564
0.603
1.472

1.393
2.815
2.051

1.743
0.648
1.546

3.5
1.302
8.231
3.088

1.145
1.132
1.509

1.559
2.753
2.077

1.552
1.049
1.613

1.715
0.365
1.442

1.871
1.672
1.882

1.941
0.972
1.706




Table 1.4: Simulation results from local linear without errors

hy "\ h2
Bias?
3 Variance
RMSE

Bias?
3.25 Variance
RMSE

Bias?
3.5 Variance
RMSE

Bias?
3.75 Variance
RMSE

Bias?
4 Variance
RMSE

Bias?
4.25 Variance
RMSE

Bias?
4.5 Variance

RMSE

optimal

2
0.865
10.74
3.406

0.039
5.378
2.327

0.004
4.982
2.233

0.036
0.549
0.765

0.087
1.403
1.221

0.190
0.467
0.810

0.173
4.722
2.212

ha
3.7

2.25
0.538
4.365
2.214

0.083
1.135
1.103

0.000
0.571
0.756

0.044
0.418
0.680

0.130
0.364
0.703

0.201
0.429
0.793

0.312
3.717
2.007

ho
2.55

2.5
0.422
3.039
1.861

0.045
0.710
0.869

0.004
0.420
0.651

0.071
0.683
0.869

0.130
0.298
0.655

0.231
0.341
0.756

0.296
0.228
0.724

Bias?
0.046

2.75
0.229
4.041
2.066

0.015
0.586
0.775

0.016
0.415
0.657

0.087
0.362
0.670

0.147
0.444
0.769

0.243
0.251
0.703

0.324
0.225
0.741

Variance
0.336

3
0.126
3.187
1.820

0.001
1.618
1.273

0.037
0.688
0.851

0.134
0.310
0.666

0.192
0.846
1.019

0.243
2.378
1.619

0.399
0.218
0.785

RMSE
0.618

3.25
0.021
1.007
1.014

0.026
0.436
0.680

0.109
0.325
0.659

0.213
0.279
0.701

0.309
0.238
0.739

0.401
0.214
0.785

0.488
0.201
0.830

3.5
0.009
0.901
0.954

0.127
0.860
0.994

0.203
0.792
0.997

0.324
0.454
0.883

0.445
0.549
0.997

0.427
1.719
1.465

0.715
3.082
1.948




Table 1.5: Simulation results from Fourier 2
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hi X he

9.5

9.75

10

10.25

10.5

10.75

11

optimal

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance

RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

4
0.018
0.481
0.706

0.007
0.462
0.684

0.003
0.425
0.655

0.001
0.404
0.636

0.000
0.392
0.626

0.001
0.368
0.608

0.007
0.354
0.600

ha
9.7

4.25
0.004
0.496
0.708

0.002
0.406
0.639

0.000
0.384
0.620

0.000
0.374
0.612

0.003
0.386
0.624

0.008
0.363
0.608

0.016
0.338
0.596

ho
4.95

4.5
0.000
0.423
0.650

0.000
0.372
0.610

0.002
0.362
0.604

0.005
0.354
0.599

0.011
0.344
0.596

0.021
0.332
0.594

0.035
0.320
0.596

Bias?
0.023

4.75
0.003
0.384
0.622

0.008
0.348
0.597

0.016
0.349
0.604

0.024
0.340
0.603

0.033
0.321
0.595

0.048
0.310
0.598

0.068
0.299
0.605

Variance
0.329

5
0.025
0.385
0.640

0.032
0.322
0.595

0.043
0.313
0.597

0.057
0.315
0.610

0.070
0.297
0.606

0.090
0.288
0.614

0.119
0.285
0.635

RMSE
0.594

5.25
0.051
0.308
0.600

0.075
0.305
0.617

0.089
0.288
0.614

0.108
0.290
0.630

0.124
0.273
0.631

0.150
0.264
0.643

0.181
0.254
0.660

5.5
0.116
0.316
0.657

0.136
0.279
0.644

0.154
0.263
0.646

0.173
0.257
0.656

0.201
0.258
0.677

0.231
0.249
0.693

0.264
0.233
0.704




Table 1.6: Simulation results from Fourier 3
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hi X he

9.5

9.75

10

10.25

10.5

10.75

11

optimal

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance

RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

Bias?
Variance
RMSE

4
0.017
0.472
0.699

0.006
0.453
0.677

0.003
0.417
0.648

0.001
0.395
0.630

0.000
0.384
0.620

0.001
0.360
0.601

0.007
0.347
0.594

ha
9.75

4.25
0.004
0.487
0.701

0.002
0.398
0.633

0.000
0.376
0.613

0.000
0.367
0.606

0.003
0.378
0.618

0.008
0.355
0.603

0.017
0.331
0.590

ho
4.9

4.5
0.000
0.415
0.644

0.000
0.365
0.604

0.002
0.355
0.598

0.006
0.346
0.593

0.012
0.337
0.590

0.021
0.326
0.589

0.036
0.313
0.591

Bias?
0.021

4.75
0.003
0.377
0.616

0.009
0.341
0.591

0.017
0.342
0.599

0.024
0.334
0.598

0.034
0.315
0.590

0.048
0.304
0.594

0.069
0.292
0.601

Variance
0.325

5
0.025
0.378
0.635

0.032
0.315
0.590

0.044
0.307
0.592

0.058
0.309
0.605

0.071
0.291
0.602

0.091
0.282
0.610

0.120
0.279
0.632

RMSE
0.589

5.25
0.052
0.302
0.595

0.077
0.299
0.613

0.091
0.282
0.610

0.109
0.284
0.627

0.126
0.268
0.627

0.151
0.259
0.640

0.183
0.249
0.657

5.5
0.117
0.309
0.653

0.138
0.273
0.641

0.156
0.258
0.643

0.175
0.252
0.653

0.203
0.252
0.674

0.233
0.244
0.690

0.266
0.227
0.702
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Table 1.7: Monte Carlo simulation results as a function of sample size

Ex \_Size 1,000 2,000 8,000 | Ex \ Size 1,000 2,000 8,000
hy 9.75 9.55 9.85 hy 9.4 9.65 9.9
Do 4.9 4.9 4.85 Do 5.05 4.95 5

1 B? 0.020 0.001 0.000 | 9 B2 0.009 0.003 0.000
\% 0.332 0.090 0.014 \Y 0.222 0.121 0.012
R 0.594 0.303 0.120 R 0.481 0.352 0.112
hy 11.7 11.35 11.05 hy 8.8 8.65 8.85
Do 4.75 4.85 3 Do 2.05 5.05 5

2 B2 0.010 0.001 0.000 | 10  B* 0.015 0.003 0.001
\Y4 0.205 0.053 0.047 \Y 0.278 0.155 0.065
R 0.464 0.232 0.219 R 0.541 0.398 0.257
ha 11.2 11.55 11.25 hy 9.55 9.55 9.8
ho 2.05 4.9 4.9 ho 5.1 5.05 5

3 B? 0.010 0.000 0.000 | 11 B*  0.006 0.001 0.000
\Y4 0.197 0.042 0.029 \Y4 0.176 0.072 0.013
R 0.455 0.207 0.172 R 0.427 0.271 0.114
hy 9.5 9.55 9.7 hy 8.85 8.75 8.59
Do ) ) 4.4 Do 4.95 5.2 5.15

4 B? 0.012 0.002 0.000 | 12 B*  0.020 0.002 0.001
\% 0.251 0.100 0.014 \% 0.328 0.122 0.093
R 0.513 0.318 0.119 R 0.590 0.353 0.307
hy 9.75 9.45 9.3 hy 8.45 8.45 8.3
ho 4.35 4.4 4.4 ho 4.7 4.75 4.8

> B? 0.018 0.001 0.001 [ 13 B*  0.017 0.003 0.000
\Y 0.283 0.091 0.055 \Y 0.284 0.117 0.025
R 0.548 0.303 0.236 R 0.549 0.346 0.158
hy 8.4 8.6 8.75 hy 7.25 7.65 7.2
ho 4.6 4.4 4.35 ho 4.7 4.6 4.8

6 B? 0.023 0.005 0.000 | 14 B*  0.028 0.001 0.001
\Y 0.344 0.182 0.042 \Y4 0.407 0.092 0.075
R 0.606 0.432 0.207 R 0.660 0.305 0.276
hy 9.1 9.25 9.4 hy 8.4 8.6 8.3
ha 4.6 4.5 4.45 ha 4.7 4.6 4.7

7 B? 0.017 0.001 0.000 | 15  B*  0.020 0.001 0.000
\% 0.281 0.062 0.023 \% 0.306 0.078 0.048
R 0.546 0.251 0.152 R 0.571 0.282 0.221
ha 8.25 8.25 8.25 hy 7.4 7.65 7.65
ho 4.75 4.5 4.7 ho 4.8 4.65 4.6

8 B? 0.015 0.001 0.000 | 16  B*  0.017 0.002 0.001
\Y 0.297 0.099 0.017 \Y 0.322 0.101 0.074
R 0.558 0.316 0.130 R 0.582 0.321 0.274
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w

Notes: Arrows denote direct causal relationships. Dashed circles denote unobservables and com-
plete circles denote observables. W, a proxy for common cause U,, could be used conditioning

instrument ensuring conditional independence between X and U,,.

Figure 1.1: Causal effects - conditioning instrument

Notes: A line without an arrow denotes dependence arising from a causal relation in either
direction or the existence of an underlying common cause. Because true X is unobservable, it
becomes a dashed circle. However, error-laden measurements of X help recovering identification

of causal relationship.

Figure 1.2: Causal effects - conditioning instrument and measurement error
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2.1 Introduction

We consider the following models defined by conditional moment restric-

tions,
E[p(Z, 8y, ho(-)) | X] =0, (2.1)

where Z = (Y, X,), Y = (Y1,Y,) is a vector of endogenous (or dependent)
variables, X, is a subset of conditioning variables X = (X}, X,)’, p() is a vec-
tor of generalized residual functions whose functional forms are known up to
the unknown vector of finite dimensional parameters 6, and the unknown func-
tions (ho = (ho1(+), ..., hog(+))), where the arguments of each function hg(-), ¢ =
1,...,q, may depend on different arguments, and, in particular, may depend on Y.
El[p(Z, 00, ho) | X] is the conditional expectation of p(Z, 0, ho) given X. Classical
model of conditional moment restrictions without the unknown functions hg has
been exploited considerably in the literature on nonlinear parametric models (see,
for instance, Hansen (1982), Chamberlain (1987), Newey (1990, 1993)). There
has also been a lot of work on more general frameworks including the unknown
function hg in the literature on nonparametric and semiparametric models (see, for
instance, Robinson (1988), Powell, Stock, and Stoker (1989), Chamberlain (1992),
Ichimura (1993)). In their seminal papers, Newey and Powell (2003), and Ai and
Chen (2003) study method of sieves when the unknown functions hy depend on
the endogenous variables. To be specific, they approximate the unkown fuctions
hg by sieves, and apply the method of minimum distance to estimate parameters of
interest. Ai and Chen find that an estimator of hq is consistent with a rate faster
than n~'/4, and that an estimator of the parametric components 6 is v/ consis-
tent, asymptotically normally distributed, and efficient, while Newey and Powell
characterize sufficient identification conditions and propose a consistent estimator
for the parameters of interest.

The main contribution of our setup to the literature is that the model (2.1)
encompasses the case where the true Y5, causes of interest, are unobserved due
to nonclassical measurement errors on the true Y,. There have been few works

which simultaneously resolve both endogeneity and measurement errors imposed
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on the same variable of interest in nonparametric and semiparametric models, de-
spite there being a number of empirical observations where endogenous variables
are also measurement error-laden. In the returns-to-education literature, for in-
stance, education, the cause of interest, is endogenous in that it is correlated with
unobserved ability which is an unobservable driver of income, dependent variable.
Moreover, there is often erreneous reporting due to the nature of survey data. In
the linear parametric models, the use of valid instruments could resolve issues of
identificaiton and estimation associated with measurement errors. However, the
existence of valid instruments is not sufficient for the identification and estimation
of parameters in nonlinear models, as demonstrated by Amemiya (1985) and Hsiao
(1989). As a result, accounting for both endogeneity and measurement errors in
nonparametric and semiparametric models is not straightforward.

In this paper, we propose a two-step estimation addressing the aforemen-
tioned issues. In the first step, a consistent estimate of the true conditional density
of endogenous variables given conditioning variables, which are masked by the non-
classical measurement errors, is obtained. In the second step, a consistent estimate
of parameters of interest, ag = (g, ho), is obtained. For the first-step estimation,
we make use of a method proposed by Hu and Schennach (2008), which relies on
the eigenvalue-eigenfunction decomposition of an integral operator associated with
joint densities of observables, and extend their method to allow for the presence
of a vector of additional observable regressors. We also propose a sieve maxi-
mum likelihood estimator of conditional densities associated with the unobserved
regressors of interest. We then propose a sieve minimum distance estimator of
parameters, ag. Interestingly, we find that one instrument is sufficient to identify
and estimate parameters of interest, even when one regressor of interest is endoge-
nous and measurement error-laden. We also show that the sieve estimator of the
infinite dimensional unknown functions is consistent with a rate faster than n=1/*
under certain metrics, and the sieve estimator of the finite dimensional unknown
parameters is /n consistent and asymptotically normally distributed.

The rest of the paper is organized as follows. We describe the proposed

two-step estimation in section 2.2. Issues of identification and estimation of distri-
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butions in presence of nonclassical measurement errors are discussed in section 2.3.
In section 2.4, we prove consistency and n~ /4 convergence rates of the parameters
from both steps. Asymptotic normality of finite-dimentional parameters of both
steps is analyzed in section 2.5. In section 2.6, the finite-sample properties of the
estimator are investigated via Monte Carlo studies. Section 2.7 briefly concludes.

All technical proofs are included in the Mathematical Appendix.

2.2 Two-Stage Estimation

Let V1,)s, V5, X1, and &, denote the support of the distribution of the
random variables Y7, Ys, Y5, X;, and Xo, respectively. Let YV = (Yl,YQI)/ ey =
VixV, Y =V, Y eV = <V, X =(X,X,) € X =X, x Xy. Suppose
that the true observations {(Y;, X;) : i = 1,2, ...,n} are drawn independently from
the distribution of (Y, X) with support ) x X', where ) is a subset of R% and X is
a compact subset of R%. Suppose that the unknown distribution of (Y, X) satisfies
the conditional moment restriction given by eqn. 2.1, where p : Z x A — R% is
a known mapping, up to an unknown vector of parameters, ag = (0, ho) € A =
© x H. We assume that © C R% is compact with a nonempty interior, and
that H = H! x --- x H? is a space of continuous functions. We further assume
that Z = (Y, X)) € Z =) x &, and &; C X. We use the notation fg, (1),
fri R, (1 | 72), and Fg,|r,(r1 | 72) to denote the marginal density of variable R,
the conditional density of R; conditional on R,, and the cumulative density of R;
conditional on Rs, respectively.

Let m(z,a) = [ p(y, 21,0, h(-))dFy|x(y | =) denote the conditional mean
function of the residuals, p(Y, X1,0,h(:)), given X. Under the assumption that
model (1) identifies v, one can solve for o as follows:

_ : / -1
ap = arga:(e’lhr)lg@XHE [m(X7 a) [B(X)]"'m(X, «a) (2.2)

where (X)) is a positive-definite matrix for any given X. Because the condi-
tional distribution Fy|x(y | #) and conditional mean function m(z,«) are not

specified, Newey and Powell (2003) and Ai and Chen (2003) propose a sieve mini-
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mum distance (hereafter SMD) estimator that replaces m(X, o) with a consistent
nonparametric estimator m(X,a) and the function space H with a sieve space
H, = H}: x -+ x H? (Grenander, 1981). However, the method is infeasible in our
setup because elements of the true Y (i.e., Y3) are unobserved so that the empirical
distribution of (Y;, X;) cannot be used to estimate m(X, «). Instead, we base an
estimate of m(X, a) on a sieve maximum likelihood (hereafter SML) estimator of
Fy|x(y | «). For this, we adapt a method proposed by Hu and Schennach (2008).
Let Fy|x(y | ) be absolutely continuous with respect to Lebesque measure. To be

specific, the conditional mean function can be rewritten as follows: for true values

(¢0,m0) € & x M
m(r,a) = / p<yax1767h('))dFY|X(y | @5 ¢o, o)
y

:/)]2'

/y p(Y, 21,0, h(-))dFy; v, x (1 | y27$;¢o,770)} dFy, x(y2 | ) (2.3)
-,

/ P(y,xbe?h('))fylmx(yl ’ 3/2733;%7770)(191] fY2|X(?J2 | x)dy2
LS V1
=/ / p(y; 1,0, h(-)) fripyex, (01 | y2a$1§¢0;n0)dyl}
Y2 L1
where the last equality holds by the exclusion restriction specified in assumption
3.2 in the next section. Note that oy = (6p, hy) € A = © x H are the second
stage parameters, and [y = (o, f1, f2) € B = ¥ x F; X F, are the first stage

X fyoixox, (Y2 | T2, 1)dys2,

parameters where 1y = (¢o,1m0) € ¥V = & x M is a vector of parameters of
rivax: (1 | v2, 215 00, mM0), f1 = frgivax: (U5 | v, 1), and fo = fryixox, (2 | 22, 71).
In the first step, we use a SML estimation to estimate fy,|v,x, (¥1 | ¥2, 215 do,M0)
and fy,x,x, (Y2 | 22, 21) needed for eqn. 2.3. Then in the second step, the SMD
estimator of ag = (0, ho) minimizes the sample analog of a nonparametric version
of (2) with a sieve space H,, = H! x --- x H? in place of H:

1 < -
An - 1 - 7 Xi7 E Xz 1y Xia 5 24
Gn=arg _ min - ;m( a) [B(X)]" (X, a) (24)

where H,, is some finite-dimensional approximation space that becomes dense in

H as sample size n — oo (e.g., Fourier series, power series, splines, wavelets, etc.),
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~

Y (X) is a consistent estimator of £(X), and m(X, «) is the plug-in SML estimator
of m(X, «) for any fixed oo = (0, hy,):

m(X, a) (2.5)

= / |:/ p(y7x1707 hn('))fylleXl (yl | Y2, X1, ngﬁn)dyl sz\XzXl (yQ | 1172,1}1>dy2.
Y2 Nzl

We now introduce useful spaces of smooth functions to analyze how well

a sieve can approximate either H or M. Let £ € V C R%, || - ||z denote the

Euclidean norm, and

6611-‘raz-i-m-i-ad5 g(é»)

oE - 0,

Vag(§) =

denote the Z?il a;-th derivative where a = (ay,as, ... ,adé)/ is a vector of non-
negative integers. Let v denote the largest integer satisfying 7 < . The Holder
space A7(V) of order v > 0 is a space of functions g : V — R such that the first
7 derivative is bounded and the -th derivatives are Holder continuous with the

exponent v — v € (0,1], i.e., for all ¢,¢ €V and some constant ¢
max |V2g(€) = V()] < e(lle = € llp)
Do Gi=Y

The space A7(V) becomes a Banach space under the Holder norm:

lgla = suplg(©)] + max sup [ BE - VEEON _
¢ S yere N —ENB) 2

A Holder ball (of radius c) is defined as AY(V) = {g € A7(V) : ||g|lav < ¢ < 00}. Let
w(+) be a positive continuous weight function on V where w(¢) = (1+|€[|2) /2, ¢ >
v > 0. Denote AJ¥(V) as the weighted Holder space with a weighted Holder
norm ||gl|ave = ||g|lav for (&) = g(§)w(€). Also define a weighted Holder ball
A(V) ={g e A*(V) : |Igllare < ¢ < oo}
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2.3 Identification and Estimation of Distribution

2.3.1 Identification of Distributions

In this section, we consider the identification of two densities, fy,v,x, (¥1 |
Yo, 21;%) and fy,x,x, (42 | 2,21). Hu and Schennach (2008) show that the joint
distribution of y; and ¥y, is identified from knowledge of the distribution of all ob-
served variables. For our case, we straightforwardly extend the treatment in Hu
and Schennach (2008) to allow for the presence of a vector X of additional observ-
able regressors. We consider Ys, Y5*, and X5 to be jointly continuously distributed,
while Y7 and X can be either continuous or discrete. We first state a useful note

that a function of three variables can be associated with an integral operator.

Definition 3.1 Let Ry, Ry, R3 and Ry denote four random variables with
respective supports Ri, Ra, R3, and Ry, distributed according to the joint density
JRiRyRsR, (71, 72,73, 74). Given four corresponding spaces G(R1),G(R2),G(R3), and
G(Ra) of functions with domains R, Ra, Rs, and Ra, respectively, let (i) Lp,|ryr,
denote an integral operator mapping g € G(R2) to Lg,|ryr,9 € G(R1) for a given
r3 defined by

(LR, Rors 9)(11) = JRi|RoRs (71 | 72,73)g(r2)dra; (2.6)
R2

(i) Ly, py|rsry denote an integral operator mapping g € G(R3) to Ly, py|rere 9
€ G(Ry) for a given (ry,r4) defined by
[LT1R2|R3T4g] (7”2) = leRle3R4 (T17T2 | T3,7’4)g(7”3)d7”3; (27)
Rs

(i11) Ay, |Rory denote a diagonal operator mapping g € G(Rz) to Ay|roryg €
G(R2) for a given (ry,r3) defined by

A Rors9 = fRi|RoRs (11| T2,73)9(12). (2.8)

For the identification of distributions, we assume following hypotheses.
Note that the absence of correctly measured regressors, Xi, draws on simliar as-

sumptions to those in Hu and Schennach (2008).
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Assumption 3.1 (i) The joint density of Yy and Y3, Y5, X1, Xo admits
a bounded density with respect to the product measure of some dominating measure
w (defined on Y1) and the Lebesque measure on Yo X Vi x X1 X Xy. (ii) All marginal

and conditional densities are also bounded.

Assumption 3.2 (Z) fY1|Y2Y2*X1X2(y1 | ?/2,95,931,152) = fY1|Y2X1X2<yl |
y2,$1,$2) = fY1|Y2X1(y1 ’ yz,l‘l) for all (Yl,Yz,Yz*,XlaXQ) E VXV X V5 x Xy x Xy
and (i7) fY;\YQXlXQ(y; | Y2, 1, 22) = fYQ*\Ygxl(CU; | yo, 1) for all (Y2, Y5, X1,X,) €
Vo x Vi x X x X

Assumption 3.3 The operators Lyy|y,e, and Lyy|x,., are one-to-one
(for either G = L' or G = L}, where L*(A) is the set of all absolutely integrable
functions with domain A endowed with the norm ||g|[y = [, |9(a)|da and where G =
L3, is the set of functions in L*(A) that are also bounded such that sup,¢ 4 |g(a)| <

Assumption 3.4  For any x; € Xy and any Uz, Yo € Vs, the set {y; :
ivexi (i | J2,21) # fopvaxs (1 | G2, 1)} has positive probability (under the

marginal of Y1) whenever g # s.

Assumption 3.5 For any given x1 € X, there exists a known functional

M such that M[fy2*|y2X1(' | yg,l’l)] = Y2 fOT all Y2 € yg.

A few remarks are in order. Assumption 3.1 restricts all densities to reg-
ular bounded densities. Assumption 3.2 states conditional independence restric-
tions which have been imposed by Altonji and Matzkin (2005), White and Chalak
(2006), Chalak and White (2007), and Hoderlein and Mammen (2007), among
others. To be specific, Assumption 3.2(7) states that Y5, X5 do not provide further
information on Y7, given Y3, X;. Similarly, Assumption 3.2(77) indicates that X5
does not provide further information on Y,", given Y5, X;. Assumption 3.3 is as-
sociated with restrictions on the relationships between Ys, Y5, X5, and X;, which
have been phrased as singular value decompositions with nonzero singular values

(Darolles, Florens, and Renault (2002)), nonsingularity (Hall and Horowitz (2005),
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Horowitz (2006)), and completeness (or bounded completeness) (Newey and Pow-
ell (2003), Blundell, Chen, and Kristensen (2007)). Assumption 3.4 states a fairly
weak condition which is only violated if the distribution of Y; conditional on Y5, X;
is identical at different values of Y5. Assumption 3.5 places restrictions on some
measure of the location of a density, denoted by M. The assumption is essential
in that it enables the model to include nonclassical measurement errors as well as
classical measurement errors.! It is invoked by the observation that, even though
the measurement error may have a nonzero mean conditional on the true value
of the variable, other measures of location, such as the median, mode, or quan-
tile, could be zero. The next theorem provides identificaiton results of unknown

distributions.

Theorem 3.1 Under Assumptions 3.1 — 3.5, given the true observed
density fy«x(y" | ) = frivyixix, (Y1, 45 | 21, 22), the equation

fY*|X(y* | 95) = fY1|Y2X1 (yl | y2,901)fY2*|Y2X1 (ZU; | 927$1)fY2|X2X1 (yz | $2,$1)dy2
Vo

(2.9)

admits a UTL’L(]'U,G solution (fY1|Y2X17 fYQ*\YzXN fY2|X2X1) fOT all U1 S yb y>2k € yékv Ty €

X1, 19 € Xs.

The result is parallel to eqn. 5 in Theorem 1 of Hu and Schennach (2008).
The integral equation relates the joint densities of the observables to the product of
the joint densities of the unobservables. The identification of unobserved densities
enables us to propose the first-stage estimation procedure, and, in turn, to estimate

the prameters of interest in the second-stage via estimates of fy,|v,x, and fy;x,x; -

2.3.2 Estimation Using Sieve Maximum Likelihood

Theorem 3.1 implies that [, is obtained by the maximization problem:

IFor instance, M could be the mean, 7 quantile, and mode: M|f] = fy; Y5 fyy (ys)dys, M[f] =
inf {y2 eV [H{y; < Yo} fyvy (y3)dys > T}, and M[f] = argmaxy;cy; fy; (y3) respectively.
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!

Bo = (Yo, frypvaxys fralxax:) (2.10)

— g max E(ln oo, (1 | o 205 6) Fo0 | s )
ﬂ:(d)?fl?fé) €B Va2

X f2(y2 | 172,1‘1)dy2>7

where B = U x F; x Fy with ¥ = & x M. We impose some restrictions on the sets
M, Fy, and F; to which the functions 7, fy;|v,x,, and fy,|x,x, belong, respectively,

in the following assumptions.
Assumption 3.6 7 € A1“(U) where v > 1.

Assumption 3.7 fi € A*¥(V5 x Vo x A1) where v1 > 1 and [y, f1(y5 |
Y2, T1)dys =1 for all yo € Vo, 21 € &Y).

Assumption 3.8  f, € AY(Ys x Xy x X)) where v > 1 and fyg fo(yo |
xo, x1)dys = 1 for all x5 € Xy, 21 € A)}).

Then we define three sets as follows:

M ={n(--,-) : Assumption 3.6 holds},
Fi={fi(-] -, -) : Assumption 3.3, 3.5, and 3.7 hold},
Fo={fa(-|+-) : Assumption 3.3 and 3.8 hold}.

As in eqn. 2.2, the optimization method provides an inconsistent estimator
for By or a consisent estimator which converges slowly when the function spaces
M, Fi, and F; are large. Thus, we replace M, F;, and F, with finite-dimentional

compact parameter spaces M,,, Fi,, and F,, respectively, where

My, = {n(&y, &5, &) = pr (€1, €5, €3) 0 for all § s.t. Assumption 3.6 holds},
Fin = {5 | y2,21) = p" (3, 92, 21) p for all p s.t. Assumption 3.3, 3.5,
and 3.7 hold},
For ={f(y2 | x2,21) = pkn(y2,332,1’1),7T for all 7 s.t. Assumption 3.3
and 3.8 hold}.
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Let the projection of the true parameter 3, onto the space B,, where B, = V¥,, x
fln X fgn with \I/n = x Mn:

IL,6 = (3,

= arg max E(ln Fvivaxy (W1 | v2, x150) fL(ys | y2, 1)
Bn:(wzflvf2) eBn y2

X f2(y2 \ $2,$1)dy2)-

Then a corresponding measurement-error robust sieve maximum likelihood esti-
mator of Jy maximizes the sample analog of eqn. 2.10 with W x F; x F; restricted

to the sieve space ¥,, X Fi, X Fop:
Bn = (@&n;flnnyn), (211)
=arg ma —Zlﬂ/ rivaxa (i | Yo, 2103 0) fi (s | Y2, 210)
2

(¥,f1,f2) EB n

X fo(ya | s, T11)dya.

2.4 Consistency and Convergence Rates
2.4.1 Consistency

In this section, we first obtain consistency of the SML estimator B for
Bo = (Yo, fryvaxi (U5 | Y2, 71), frajxox, (Y2 | @2,21)) under a strong metric || - [|s 5
and the SMD estimator & for ay = (g, ho) under a strong metric || - ||so by
applying the results in Newey and Powell (2003). Following Ai and Chen (2003),
we then establish that B and & converge to 3, and aq at a rate faster than n=1/*

under suitably constructed weaker metrics || - ||g and || - ||o, respectively. Let
(Y*,X") be a vector of observed variables for Y* € Y*, X € X. Define ||§|/s5 =
16115 + Wlloows + 1 filces + [ follcis where lglles = supg lg(€)eo(€)] with weight
function w(€) = (1+|€)|%)~/%,s > v > 0. Note that the meaning of ¢ depend on
the domain of g (e.g., when g = fo, £ = (y2, 22, x1)).

Assumption 4.1 (i) The data {(Y;*, X;),} are i.i.d. (i) The density

()

Of (Y*/aX,)lv fY*X7 satisﬁes fw(Y*,X)*2fy*X(y*,x)d(y*,x) < 0.
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Assumption 4.2 oy € A is the only « € A satisfying m(X, a) = 0.

Assumption 4.3 (i) 3(X) = X(X) + 0,(1) uniformly over X € X. (ii)
Y(X) is finite positive-definite uniformly over X € X.

Assumption 4.4 (i) There is a metric || - ||so such that A =0 x H is
compact under || - ||so. (i2) For any a € A, there exists l,a € A, = O x 'H,, such
that |[Il,a — a||so = o(1).

Assumption 4.5 (i) There is a metric ||-||s g such that B = ¥ x Fy x Fy is
compact under ||-||s,. (i7) For any 8 € B, there ezists 11,0 € B, = U,, X Fi,, X Fap
with V,, = & x M,, such that 11,08 — 5||s 3 = o(1).

Assumption 4.6 (i) E[|p(Z, ap)|* | X] is bounded. (1) p(Z,«) is Holder

continuous in o € A.

Assumption 4.7 (i) E[|In fy«x(y* | z)|*] is bounded. (ii) There exists
a measurable function hi(y*,x) with E[|hi(y*,x)|?] < oo such that for any [ =
(1/_}7.]?17.]6_2)/ S 87
}I/llp((y* | 2; B, @)
frx(y* | @5 8)

S hl(y*7 ZL'),

where f“l‘x(y* | z;3,) is defined as (&fyx(y* | ;8 + t@)|—o with each
linear term, that is, ﬁle\Yqu fi, and fo, replaced by its absolute value, and

@<57y§>y2,$2-$1) = [Lw_l(f):w_l((y;,92,$1)/)>W_1(<y27$2>$1)1)]/ with 5 cU.
Assumption 4.8 (i) ki, — +o0.
Assumption 4.9 (i) k,/n — 0.

Theorem 4.1 (i) Under Assumptions 3.1-3.8, 4.5 (i) and (ii), 4.7 (i)
and (i), and 4.9, we have |3, — Bolls.s = 0,(1).

(17) Under Assumptions 3.1-3.8, 4.1 (i), 4.2, 4.3 (i) and (i), 4.4 (i) and
(ii), 4.5 (i) and (ii), 4.6 (i) and (ii), 4.7 (i) and (ii), 4.8 (i), and 4.9 (i), we have

|G — O‘OH&a = Op(l)-



114

Theorem 4.1 provides consistency results under the metrics || - ||s,5 and
| - |ls,a, which are stepping stones to establishing the asymptotic normality of b

and é, respectively.

2.4.2 Convergence Rates

As in Ai and Chen (2003) and Hu and Schennach (2008), we now consider

1/4 convergence rates of /3, and &, under weaker metrics, which are sufficient

n
to establish the asymptotic normality and /n-consistency results. First, we recall
the weaker metric introduced by Ai and Chen (2003).

Suppose that the parameter space B is connected in the sense that for any
two points (1,3, € B, there exists a continuous path {£(¢t) : t € [0,1]} in B
such that 3(0) = (8, and (1) = (2. And suppose that B is convex at the true
value [y in the sense that, for any 8 € B, (1 — t)8y + tf € B for small ¢t > 0.
Furthermore, suppose that for almost all D and any 8 € B, In fy«x(D, (1 —1t)5, +
tf3) is continuously differentiable at ¢ = 0. Similarly, suppose that for any two
points aq, ay € A, there exists a continuous path {a(7) : 7 € [0,1]} in A such that
a(0) = oy and (1) = ay. Also, suppose that A is convex at the true value ag, and
suppose that for almost all X, m(X, (1 — 7)agp + 7«) is continuously differentiable
at 7 = 0.

Denote the first pathwise derivative of In fy«x(y* | #; 8p) at the direction
[ — Bo] evaluated at [y by:

dIn fY*|X(y* | 23 Bo)
ds

almost everywhere (under the probability measure of (Y*, X)) and for 1, 5, € B

dlnfy*|X(y* ’ x; (1 — t)ﬁo + tﬁ)
dt

13— Bo] =

t=0

denote

dlﬂfY*le(g* | @; Bo) 18 — Bo]

_ dlan*\X(y* | ; Bo)
= a3

_ dhlfy*\x(?/* | z; o)
dp

[ﬁl - ﬁO]

{ﬁZ - ﬁO]
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Specifically, the pathwise derivative is denoted by:

dIn fY*|X(y* | 2; Bo)
dp
1

N Sy-ix(y* | 73 Bo)

16 — fo]

{ /)72 %fYﬂYle (yl | Y2, 215 1/}0)[1/} N ¢0]

X fY2*|Y2X1 (yik ’ y2>331)fY2|X2X1 (yz ’ 9327371)(13/2

+ fY1|Y2X1 (3/1 | ?/anth)[fl(y; ‘ y2,1'1) - fY2*|Y2X1 (3/5 ’ y27$1)]
V2

X fY2|X2X1 (yz ’ 3527331)613/2

+ fY1|Y2X1 (?/1 | y27x1;w0>fyg*|Y2X1 (y; | y27x1)
Vo

X [fa(y2 | 22, 21) — fY2|X2X1(y2 | $2,$1)]dy2}-

For any 31, 3, € B, the metric is defined as

18, — Balls = \IE{(dlan*Xd(g* | $;50)w1 —52]) }

Similarly, denote the first pathwise derivative of p(Z, ) at the direction

[ — ag] evaluated at ag by:

dIO(Za Oé())
dov

dp(Z, (1 — 7T)ag + Ta)
dr

[ — ag] =

=0

almost everywhere (under the probability measure of Z) and for any ay,as € A

denote
dp(Z,a dp(Z,a dp(Z,a
o = oy — ) = P )
dm(X, a dp(Z,a
%[al —a = F {%[al — ] X} .
Also, for any ay, as € A, the metric || - ||, is defined as
lon — azlla

B dm(X, ap) / _,dm(X, o)
=.|F { (T[Ozl — a2]) Y(X) T[al - ag]}.
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Assumption 4.3 (iii) 2(X) = X(X) +0,(n /) uniformly over X € X.

Assumption 4.4  (iii) There is a constant py > 0 such that for any o €
A, there ezists I, a € A, satisfying |Il,a — allo = O(kM"), and k' = o(n=1/4).

Assumption 4.5  (iii) There is a constant 7, > 1 as in Assumptions 6-8
such that for any B € B, there exists 11,5 € B, satisfying ||I1,5—0|s = O(kf’l/dl),

and k™ = o(n1/Y).

Assumption 4.6  (iii) Fach element of p(Z,«) satisfies an envelope
condition in o € Ay; (iv) each element of m(-,a) € AY(X) with v > d, /2, for all
a€A,.

Assumption 4.7 (i7i) In fy«x (y* | x; 8) satisfies an envelope condition
in B € By; (iv) In fy«x(y* | x;08) € AJ“(V* x X) for some constant ¢ > 0 with
v > diy=x)/2, for all B € B, where dy+ x) is the dimension of (Y*, X).

Denote &on = SUD(g, ¢, 6)e s xVoxd)uaxtaxan) 1P (€15 &2, &) | F, which
is nondecresasing in k,. Let N(g,B,, [ - |s,5) and N(6, Ay, || - [[s,0) denote the

minimal number of radius ¢ covering balls of B, under the || - ||;,3 metric, and
the minimal number of radius J covering balls of A,, under the || - |5, metric,
respectively.

Assumption 4.8 (i) ki, xInnx &2 xn~? = o(1); (iii) In[N ("%, A, ||
|s.0)] < const. X Ky, X In(kq,,/0).

Assumption 4.9 (i) k, x Inn x &2, x n=Y2 = o(1); (iii) In[N (e, By, || -
|s.5)] < const. x k,, x In(k,/¢c).

Assumption 4.10 (i) A is convex in ap, and p(Z,«) is pathwise differ-

entiable at o; (i) for some c1,cy > 0,

aE{m(X, o) 2(X)'m(X, )} < [la —agl? < e:E{m(X,a)S(X) 'm(X, o)}
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holds for all o € A, with |jo — ap|s = o(1).

Assumption 4.11 (i) B is convex in By and fy,v,x, (1 | y2, x15%) is

pathwise differentiable at o; (ii) for some ¢y, ¢y > 0,

fr-x (W | x; Bo)
Ell
“ { ! Jrex(* | 2; 6)

holds for all 5 € B, with || — Bolls,s = o(1).

} <18 = 6olls < 2E {ln x| x§50)}

fyex(y* | @; 5)

Theorem 4.2 (i) Under Assumptions 3.1-3.8, 4.1, 4.5, 4.7, 4.9 and 4.11,
we have HBH — Bollg = 0p(n=1/%).
(17) Under Assumptions 3.1-3.8 and 4.1-4.11,

we have ||&y, — aglla = 0,(n"1%).

2.5 Asymptotic Normality and Efficiency
2.5.1 Asymptotic Normality and Efficiency

We consider the asymptotic normality of ¢n and 6,, and efficiency of a
three-step estimation of f,. We first introduce important notation aligning with
that of Ai and Chen (2003) and Hu and Schennach (2008). Let V; denote the
closure of the linear span of B — {3} under the metric | - || (i.e., Vi = R% x W,
with Wi = M x Fi X Fo — {(n0, [y vaxss fralxax,) }) and (V1. || - ||) is a Hilbert
space with the inner product:

(ous, rads = E { (dln fY*X;ﬁy* | 22 Bo) [v11]> (dln fy*|X;g* | 23 5o) [m]) } '

Similarly, let V5 denote the closure of the linear span of A — {ay} under
the metric || - ||o (i.e., Vo = R% x W, with Wy = H — {ho}). Then (Vy, | - ||la) is

a Hilbert space with the inner product:

(va1,v22)0 = E { (W[Uzﬂ), B(X)™ (W[Wz]) } -
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The pathwise derivative at [y is defined as
dlan*\X(y* | ; Bo)

e R
dln fy«x(y* | z; dIn fy«x(y* | z;
_ ny |);(¢yl ’x50)<¢_¢0)+ an |Xd(f; |xﬁ0)[n_n0]
+ dIn fy*)i;le/ | x760> [fl - fY2*|Y2X1] + dIn fy*)i;fi/ | xjﬁ(]) [f? - fYQ\X2X1]‘

For each component ¢; of ¢, j =1,2,...,dy, we define wj; € W as

/
wij = (77;7 fikja f2*])

=arg min
(m.f1.f2)" €M1

E{ (dlnfy*|x(y* | z; Go) B dln fy«x(y* | $;ﬁo)[ ]
d6; dn 1j

dIn fy«x(y* | 25 5) dln fy-x(y* | 2; Bo) 2
- SRRy, - SR )
Define
’lUT = (wilawr% s awTd(ﬁ)?
dlan*|X(y* | 25 B0) *
df [wu]
Cdlnfyax(@ 2 8), L dInfyax (W2 80), ,  dInfyx (2 50)
= dn [773] + dfl [flj] + dfg [f23]
dln fy«x(y* | z; 5o) [w?]
df !

_ dn fy«x(y* | x;ﬁo>[w* ] dln fy-x(y* | @; fo) s, |
df 11fs =+ > df 1d¢> )
and the row vector
dlnfy*\x(y* | 33;50) _ dlan*|X(?/* ’ 95;50) [w*]
d¢’ df L

We also introduce some notation for the second stage parameters, 6. As

Gwi‘ (Y*a X7 50) =

shown before, the pathwise derivative at oy is

dm(X, ap) dm(X, ap) dm(X, ap)

T [ — ag] = i (0 —6) + 7 [h — ho).
For each component §; of 6, j =1,2,...,dp, we define w3; € W, as
) dm(X,ap) dm(X, ap) , 1
b= E — 1) 2(X
uyy = arg min. £{ (T 200 ) 20x)

() - ) 1

J
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Define
w; = (wzlu w;% S >w;d9)>
dm(X,ap), dm(X, ap) . , dm(X,ap),
TO[wQ] = <To[w21]»-~7To[wzd9] )

and the row vector

dm(X, a dm(X, a .
Gz (X, ) = <d€’ o) _ dm - DI
2

Define s1(3) = A\j¢ for \; € R% and \; # 0, and define sy(a) = \,0 for
Ay € R% and \; # 0. As mentioned in Ai and Chen (2003), s,(8) = ¢ is
bounded if and only if F[G,: (Y™, X, 60)le; (Y*, X, Bo)] is finite positive-definite.
The Riesz representation theorem then implies that there exists a representor v

such that

51(8) = 51() = X(6 — o) = (vi, B — fo)s
for all B € B where vj = (vj,v}) € Vi, vy = J, vy = —wj X v with
J1 = E[Gu: (Y*, X, ) Gur (Y™, X, Bo)]. Similarly, because of the fact that sy(cr) =
X300 is bounded if and only if E[Gs (X, ap) S(X) Gz (X, ag)] is finite positive-

definite, we have
so(a) — sa(a) = )\/2(0 —b6) = (v3,a — ap)a

for all @ € A where v = (vj,v}) € Va, v = Jy'\a, vf = —wj x v} with
Jy = E[ng (X, &0>/E(X)_1Gw§ (X, Oéo)].
We now state the sufficient conditions for the \/n-normality of qZ;n and 0,,.

Assumption 5.1 (i) E[G; (X, ag) S(X) " Gy (X, )] exists, is bound-

ed, and is positive-definite; (ii) 6y € int(O); (iii) Xo(X) = var[p(Z, ) | X] is
positive-definite for all X € X.

Assumption 5.2 (i) E[Gyu: (Y™, X, Bg)leT(Y*,X, Bo)] ezists, is bound-
ed, and is positive-definite; (it) ¢o € int(P).

Assumption 5.3  There is a v3, = (vp, —IL,w} x vy) € A, — {Il a0}

such that ||v3, — vi|la = O(n=Y4).
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Assumption 5.4  There is a v}, = (vg, —IL,wi X vy) € B,, — {11,050} such
that ||v}, —vills = O(n="/*%).

Define Noi, = {8 € Bo 2 18 = Bollss < vims 18 — Bollg < vi,n~ 4} with
v1, = o(1) and define Npy; the same way with B, replaced by B. Define Npya, =
{a€ A, |la—aollsa < von, | —aglla < v2un~ 4} with vy, = o(1) and define N,
the same way with A,, replaced by A. For 3 € Ny, we denote a local alternative
B*(B,e,) = (1 — £,)B + en(vF + By) with e, = o(n~?). Let I,5*(3,¢,) be the
projection of 5*(f3,¢,) onto B,. We denote

Z Z
dp( ,Oé) [UZ] = dp( 706+TU2) a.8. Z,
do dr =0
and
dm(X,a), ,  dm(X,a+ Tvy)
T[vz] = o [va] a.s. X,

for any v, € V. Also for any v; € Vi, we denote

dlﬂfY*\X(Q* | x?ﬁ)
dp

Assumption 5.5  For all o € Nyo, the pathwise first derivative
(dp(Z,a(T))/da)|ve] exists a.s. Z € Z. Moreover, (i) each element of the pathwise

dln fy-x(y* | z; 6+ tvr)
dt

[v1] =

a.s. (Y™, X).
t=0

first derivative evaluated at vi,, (dp(Z,«)/da)[vs,], satisfies an envelope condition
and is Holder continuous in « € Noay; (#0) each element of (dm(X,«)/da)[vs,] is

in AJ(X),y > d,/2 for all a € Npa.

Assumption 5.6  Uniformly over o € Ny, we have
dm(X,a), , dm(X, o), . |7 _
E(H—(d ) — L0 ) >=o<n )
@ E

2n da 2n
Assumption 5.7  Uniformly over a € Ny, & € Ny, we have
dm(X, ap) o [dm(X,a) dm(X,ap) . _
E(————vs] ¢ B(X ——la—oqy - —————|a—
({ e mony {2 o) - ) g

= o(n_l/Q).
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Assumption 5.8 For all o € Ny, the pathwise second derivative
&’p(Z, a+1v5,) /dT?| =0 emists a.s. Z € Z, and is bounded by a measurable function

cs(Z) with Elcs(Z)?] < oo.

Assumption 5.9  There exists a measurable function ho(Y*, X) with

E[hZ(Y*7X)2] < 00 such that fOT any B = (1;7.]1717‘]?2)' S -/\/617

1 N > |2
x| 2 B.0)

Tyr=ix (y* | ; B3)

1|/21|X(3/* | 2 B,w)
Syex(y* | z; 3)

< h2<Y*7X)7

where f‘Ql‘X(y* | z; 8,w) is defined as ;—;fy*|X(y* | z; B + tw)|—o with each linear
term, that 1s, ﬁfyﬂyQXl, %leleXn f1, and fo, replaced by its absolute value.

Following Hu and Schennach (2008), we write the following notations for

the next assumption:

dIn fY*|X(y* | ; Bo)

T "]
) ((dlnfy*|x(y* | x;ﬂo)), (dlnfmx(y* | x;ﬂo)[ kn]),
= o , dn p )
(dlnfy*|x(y* | I;ﬁo)[ kn]), (dlan*|X(y* | I;ﬁ())[ kn]),)/
dfl i ’ df2 P ’
where for f =, f1, or fa,
dIn fy«x(y* | 2;50) 4,
a7 [p"™"]
_ (dlnfy*x(y* \ a:;ﬁo)[ b dln fy«x(y* | iﬂ;ﬁo)[ b
df AR d_]; /25N PR
dln fy«x(y" | x;ﬁo)[ kn]>l
df )
dlan*|X(y* | 73 o)
do
_ (dlnfy*x<y* | 23 80) dln fy«x(y* | x; 5o) d1n fy«x(y" | 37;50)>/
d¢1 , d¢2 yee ey d¢d¢ )

and

O = B { <lefY*|Xd(g* | 25 5) [pkn]> <d1n fy*|Xd(g* 21 o) [pkn]),} |
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Assumption 5.10  The smallest eigenvalue of the matrix € is bounded

away from zero, and ||p§"||007w < oo for j=1,2,..., k, uniformly in k,.

Assumption 5.11  For all 3 € Noip, there exists a measurable function
hy(Y*, X)) with Elhy(Y™*, X)| < oo such that
d4

@hl fY*\X(y* | $;B + t(ﬁ - ﬁo)) < h4(Y*,X)||ﬁ - ﬁOHi,ﬁ'
=0

Theorem 5.1 (i) Under Assumptions 3.1-3.8, 4.1, 4.5, 4.7, 4.11, 5.2,
5.4, 5.9-5.11, /nldn — ¢o) —— N(0, J7Y),
where Ji; = E[Gy: (Y*, X, o) Gu: (Y, X, Bo)].

(17) Under Assumptions 3.1-3.8, 4.1-4.11, 5.1-5.11,
V(B — 60) 5 N(0, J5 ), where

Jy = E[Gu: (X, 00) (X)) G (X, )]

X (E[Gus (X, ) (X)) 80 (X)) 2 (X)) LG (X, p)]) 7!

* *
2 2

X E[Glz (X, ap) B(X) ' Gug (X, ap))].

2.5.2 Consistent Covariance Estimator

We now establish a consistent estimator j()g of the covariance matrix Jys,
which is needed to perform any statistical inference using the semiparametrically
efficient estimator én

Let éij (X, @) be a consistent estimator of G, (X, ag) as follows:

A . dm(X, a dm (X, a
Gw2j(X7 a) = C(l@ ) - (dh )[ng].
J

We estimate wge; by ws;, which is the solution to the minimization problem:

. 1 - 2 & _ N -
m?é%an E Zl Gw2j (Xi’ Oz) EO(Xi) 1Gw2j (Xi> a)'
If we let woa = (woai, ..., Weaq,) and Wy = (Way,...,Wq,), then G, (X, @) is

a consistent estimator of G, (X, ap). Therefore, the estimator of Joy is Joo =

% Z:'Lzl Gﬁ& (Xia d)/io (Xi)_léwQ (Xi, O~é)



123

Theorem 5.2  Under the conditions of Theorem 5.1 (ii), Joy = Joa+0,(1).

Theorem 5.2 states that the estimator j()g of the covariance matrix Jyo is

consistent.

2.6 Simulation

We assess the finite sample performance of the proposed estimator in this

section. The simulation is based on a nonparametric regression
Yi == ho (YQ) + U

where ho(Ys) = exp(Y2)/(1 + exp(Y2)). We assume that Y5 is generated as Y, =
aXo+ R(U +¢) +be. Xy, €, and U are independent and distributions of those are
Xy ~ N(1,0%),e ~ N(1,0%),and U ~ N(0,0?%) with (a,b,c, R,o) = (0.6,0.2,1,0.2,
0.7). The distributions of X, and ¢ are truncated on [0,2] and the distribution
of U is truncated on [—1,1]. Thus the support of Y is [0,2]. As in Ai and Chen
(2003), we approximate the unknown hg(Y3) by a power series of fourth order mul-
tiplied by the cumulative distribution function of a standard normal since ho(Y2)

is bounded between zero and one. So the approximate regression model is
Vi & mo@(Ys) + m®(Ya)Ya + m®(Ya)Yy + m3®@(Y2)Ys + U

where ®(Y3) denotes the standard normal cumulative distribution function.
We also use the general form of generating processes for the measurement
error which is similar to those in Hu and Schennach (2008)

1 .
Syvema(ys | 42) = U(yz)fu (y;(y;f) :

where o(y,) = 1.5exp(—yz) and f, is a density function to be specified below
for three models: heteroskedastic measurement error with zero mean, nonadditive
measurement error with zero mode, and nonadditive measurement error with zero

median.
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(1) Heteroskedastic Measurement Error with Zero Mean: a measurement

error is
Yy =Y, +o(y)v

with Y5 L v. The error structure in the simulation is F,(v) = ®(v).

(2) Nonadditive Measurement Error with Zero Mode: let

* 9(?5792)
frpve (s | v2) = " )
RS ffooo 9(y3, y2)dy;

ot = oo 0| (S57) - (557

with A(y2) = exp(—0.1y2). Then fys v, (y5 | y2) has the unique mode at y, for any

(3) Nonadditive Measurement Error with Zero Median: let the correspond-

ing cumulative distribution function be

Fyzpy, (Y3 | 42)

= gocan i 3+ 5o (555) - (55 )]} 2

with A(y,) = exp(—0.1ys). Then FYQ*‘Y2<y2 | y2) = % for any h(y2) > 0.

We consider three estimators: (i) the (inconsistent) SMD estimator from Ai
and Chen (2003) which is obtained using error-laden data, (ii) the (infeasible) SMD
estimator from Ai and Chen (2003) which is obtained using error-free data, and (iii)
the proposed two-stage SML-SMD estimator. We construct sieves for functions of
two variables using tensor product bases of univariate trigonometric series in our
estimator. In both SMD estimators, we use a tensor product polynomial sieve
to approximate the conditional mean function which is the set of instruments:
{1, X5, X3,..., X5} for k, > 3. The sample size is 1,000 and the procedures
are repeated 100 times to obtain the root integrated mean squared error (RIMSE)
according to the following discrete expression: ((200)~* 231.290 mean{[ho(0+0.015)—
h(0 + 0.015)]2})"/2, where mean{-} denotes the average over all 100 estimators h

for each procedure.
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Table 2.1 reports estimation results. RIMSE from our proposed estimator
is smaller than that from the SMD estimator obtained using error-laden data for

all cases of identification conditions for measurement error.

2.7 Summary and Concluding Remarks

We consider semiparametric estimation of models defined by conditional
moment restrictions, which contain finite dimensional unknown parameters and
infinite dimensional unknown functions. We extend these models to include the
case where the unknown functions depend on endogenous variables which are con-
taminated by nonclassical measurement errors. A two-stage estimation procedure
is proposed to recover the true conditional density of endogenous variables given
conditioning variables masked by the nonclassical measurement errors, and to rec-
tify the difficulty associated with endogeneity of the unknown functions. Specifi-
cally, we estimate conditional density of endogenous variables given conditioning
variables in the first stage using sieve maximum likelihood estimation, and then
estimate parameters of interest in the second stage using sieve minimum distance
estimation. We show that the proposed estimator of the infinite dimensional un-
known functions is consistent with a rate faster than n~/* under a certain metric,
and the proposed estimator of the finite dimensional unknown parameters obtains
root-n asymptotic normality. Monte Carlo evidence illustrates the usefulness of

our method.
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2.8 Mathematical Appendix

Proof of Theorem 3.1 Since Y* = (V1,Y;") and X = (X}, X,), eqn. 2.9
follows by the fact that

fy«x(y | x)

= fyvivyixax (Y1, Y5 | 22,21)

= /y2 fY1Y2Y2*|X2X1(y1,y2,y§ | 22, 21)dy2

= /3;2 Fvipayvy xox, (W [ Y2, 92, 22, 21) fFravy 1 xox, (Y2, 45 | @2, 21)dy2

= /3}2 Mrivaxa (W1 | 2, 21) Fravy | xax, (Y2, 95 | 22, 21)dy2

= /3}2 fY1|Y2X1(y1 | y2ax1)fY2*|Y2X2X1 (y3 | 3/271‘27901)fy2|x2xl(y2 | ©2,71)dy2
= /yz Mravax, (v | yz,x1)fy;|yle(y§ | Y2, 21) fya xox, (Y2 | T2, 1) dy2,

where the fourth equality and the sixth equality are obtained by Assumption 3.2 (i)
and (ii), respectively. The equation above relates the joint densities of the observable
variables to those of unobservable variables. We need to show the solution to the equation
is unique. By the definition 3.1 and the eqn. 2.9, we get an operator equivalence

relationship: for an arbitrary g € G(X»)
|:Ly1Y2*|nglgj| (y3)
= /X2 vy ixox, (1, v5 | w2, 21)g9(x2)das
= /X2 /y2 fyyvaxa (U3 [ y2, 21) Fvapvaxs (| 92, 21) fra xox, (2 | 22, 21)dy2g(22)das
= /)}2 fYZ*\YQXl (¥5 | y2v$1)fY1|Y2X1 (1 | y2,21) /X2 Tvaix2 3, (Y2 | 22, 21)g(w2)dw2dys
= /3;2 Fygvaxy (W5 | y2, 1) fyapvax, (1 | w2, 21) [Lyy|xa:9] (Y2)dy2
= /3;2 Fyzvaxa W | y2,21) [Dy 1vawr Ly Xow, 9] (42)dye

= {LY2*|Y2331Ay1|Y2x1LY2\X2xlg} (¥3),
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where the third equality is obtained by an interchange of the order of integration. Thus

eqn. 2.9 defines the operator equivalence over the domain g € G(A%):

Ly1Y2* |Xoxy = LYQ* [Yoxy Ayl [Yaxy LY2|X2:E1 : (2.12)

Next, we note that integration of eqn. 2.13 over all y; € Y, yields

Ly \xy2y = Lyyvae Ly | Xozy »

since integration of A

y1|Yaz, Decomes the identity operator. Since Lyy|y,,, is one-to-one

from Assumption 3.3, isolating Ly;|x,, yields

_ 71
LYQ‘XQIl - LY2*|Y2:E1LY2*|X2I1'

Substitution of the expression into eqn. 2.13 yields

_ —1
Lylyz*lXﬂl - LYQ* [Y2z1 Ayl Y221 LY; |Yaz1 LYQ* | X2z

Since Ly2*| X,z 15 one-to-one from Assumption 3.3, by rearranging, we get the operator

equivalence defined over a dense subset of G()5)

-1 . -1
Ly1Y2*|X2$1 LY; |Xoz1 — LY2* [Yaz1 Ayl [Yaz1 LYQ* [Yaz:®

Thus the known operator Ly vy X2$1L;,21| Xoay defined in terms of densties of the ob-
servable variables (Y*, X)) admits a spectral decomposition (an eigenvalue-eigenfunction
decomposition). The eigenvalues of the known operator (the diagonal elements of the
Ay, [Yow, ODerator, ie., {fyi|vax,

(y1 | y2, 1)} for a given (y;,x1) and for all Y3) and the eigenfunctions of the known op-
erator (the kernel of the integral operator Ly;\vyay» L€, {fy2*|Y2X1 (- | y2, 1)} for a given
x1 and for all Y3) provide the unobserved densities of interest. For the uniqueness of the

spectral decomposition, we use similar arguments in Theorem 1 of Hu and Schennach

(2008) 2. O

2To ensure uniqueness of the spectral decomposition, they show four techniques: First, The-
orem XV.4.5 in Dunford and Schwartz (1971) guarantees uniqueness up to some normalizations.
Second, the a priory arbitrary scale of the eigenfunctions is fixed by the requirement that den-
sities must integrate to 1. Third, Assumption 3.4 and the fact that the eigenfunctions (which
do not depend on Yi, unlike the eigenvalues) must be consistent across different values of the
dependent variable Y7 are employed to avoid any ambiquity in the definition of the eigenfunctions
when there is an eigenvalue degeneracy that involves two eigenfunctions fy; |y, x, (-] y$,21) and
Iyvyva x, (] y5, 1) for some value of Y;. Fourth, Assumption 3.5 is used to uniquely determine
the ordering and indexing of the eigenvalues and eigenfunctions.
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Let

ZmXZ,a ) [E(X)] (X, ),

== Z m(X;, ) [2(X)] " m(Xi, ),
n
i=1
Qa) = E [m(X, ) [S(X)]'m(X, a)| .
We use the following result to prove Theorem 4.1.

Lemma A.1  Suppose that A and B are compact subsets of a space with norm
llalls,a and a space with norm ||B||s g, respectively, and Z; (t =1,2,---) are i.i.d. Also
suppose that (i) Var[p(Z,«) | X] is bounded for each o € A; (ii) 8 = o(1);
(iii) there is b(Z) and v > 0 with |p(Z, &) —p(Z, a)| < b(Z)||a—all%,, and E[§(z1)?] < oo

where § = (q(w1), -+ ,d(wn) = ([0 fyixly | o D)y, -, [5(Z)frix(y | 2aid)dy) -
Then sup,c .4 ]Qn(a) — Q(a)| = 0p(1) and Q(«) is continuous.

Proof of Lemma A.1 The proof will proceed by verifying the hypotheses of
Lemma A.2 of Newey and Powell (2003). Their compactness of a parameter space is as-
sumed directly in our hypothesis (7). To show that hypothesis (iz) holds (pointwise con-
vergence in a), let §(a) = (m(Xy, ), - ,m(Xn, ), and g(a) = (m(X1, ), m(Xn,
oz))l. We use the notation < for “ smaller than up to a generic constant.” Note that for

some subsequence {n;} a.s.,

Qnl@) = Qule)| S [13() 1% ~ llg(a)IE] /n
< (19(0) = (@)l + 2g(@lle - 13(2) = g()l) /.

Strictly speaking, the first inequality above holds almost surely for some subsequence
{n;, } of an arbitrary subsequence {n;} of {n} as a consequence of Assumption 4.3,
ensuring that 3(X) = O,(1) uniformly over X € X. For clarity and convenience, we
will continue to use the notation above without explicit reference to sub-subsequences
or probability zero concepts.

Also note that [|g(a)|%/n = O,(1) by the Markov inequality from Var(p(Z,a) |
X) < oo. Thus, it suffices to show [|§(a) — g(a)||%/n = 0,(1) to show |Qn (@) — Qn(a)| =
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/

< ([ ozt s iy~ [ o(Z,) ity s ooy
_F } : dg ([ izt asinan =~ [ ps(z.) ity zsvoday 2]
L 711 gi ([ (2.) (it 550) = ity o)) d) ]
_ i;i’f ([ 3(2.0) (it i) = Fyixly | ssn) dy)]
_ iééE[(//Pg(Z,a)

X {fY1Y2X1 (v1 | y2, 21459) (fY2|X2X1(y2 | ®2i, 211) — fyaxox, (Y2 | xzi,wu))
+ frva|xox, (Y2 | T2i5 714)

2
X (fY1|Y2X1 (1 | y2,71359) — fripvax, (91 | 3/279611';1/10)) }dyldy2> ]

n dp

<2238 |( [ [zl

i=1 j=1

x {|fY1|Y2X1 (1 | y2, 2135 0)w ™ (Y2, 225, 213) ||| f2 — folloow

d 9 27 _ n 2
i fY2|X2X1(y2 | «T2i7$1i) fY1|Y2X1<y;JZ}y2 ] w0>w 1(5)’ ||7/1_¢0”oo,w}dy1dy2> :|
n dp
1 " N
< nZZEK//\Pj(Z, Oé)\{|fY1|Y2X1(y1 | y2, 2155 9)w ™ (Y2, w21, 214) |
=1 j=1
d ) i A 2
+ | fyalxox: (V2 | 2i5 714) fripax, (yihLyQ a %)w_l(f)’ }dy1dy2||ﬁ—ﬁo||s,ﬁ> }
n  dp
1 o R
= HZZEK//\P]‘(Z a)\{\f}/ﬂyle(yl | Y2, 105 9w (ya, w2i, 21) |
i—1 j=1
d ) i _ 2 ~
+ | fra|xox: (Y2 | T2, 714) fvipax, <yihljy2 = %)w 1(5)’ }dyldy2> }\ﬁ-ﬁo”g,ﬁ

= o(1),
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since ||3 — Bolls.3 = 0p(1). Therefore, we get [|g(e) — g(a)||%/n = 0,(1) by the Markov
inequality. Since Qn (o) = Q(a) + 0p(1) by the weak law of large numbers, the triangle
inequality gives hypothesis (i7) of Newey and Powell (2003). To show hypothesis (7ii), let
Q= (@), q(@n))s and By = [l +2lldlle - [3(a0)lls] /n. Note that |ql3/n =
0,(1) and [|p(Z, ag)||%/n = Op(1) so that B,, = O,(1). Since ||- |% o is bounded on A x A

by the compactness of the parameter space, there is a constant C' such that

Qu(@) = Qu(@)
< lla@lE - g /n
< (19(a) = 3@l + 219(e) 1 - 13(8) = (@) £) /n

< <||§(5<) = (@)% + 219l - 113(&) - 3(@)le
+2[|g(ao)lle - 9(a) = g(@)] & = 2[|g(a0)ll& - () - Q(a)IIE> /n
< (Hé(@) — §(a)E + 2ll3() = glao)l& - 19(a) — §(a)lle
+2[19(a0)ll - l9(a) — ﬁ(a)HE> /n

{ZZ </ pi(Z,6) = pj(Z,0)) fyix(y | xi;fﬁ)dyf

i=1 j=1

v2 (Zij (@20~ sz, canfvixty | 2 >dy)2)
« (zdz (@28~ pzanfxis] xi;¢>dy)2) |
[(Zle(/p Z,00)fyixly | s 0)d ))
. (zdz ([ @20~ pizanfurxts] xi;zL)dy)Q) %
{Zi(/b Dfvinty )iy 6ol
+2[(Zd2(/b Vit 00l ol )
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n d, A X 2 1/2
<22 (/bj(Z)fyx(y!xi;wdy) IId—aHi”a}

=1 j=1
+2[ ; ]d; </pj(Zﬁao)>2
>< ( Z ([r@ xz-;@dy)Q I — a2, }1/2}/71
_ {Zdz(/u 2)Frixly | 2 >dy>2ua—a\
+z§§l(/bj< )i x |xuw>dy)2ua—aorsa
+2{ gé(/p](z ao)fﬂx(y\xu ) y>2
ZZ(/ 2) iy rxm/?)dy)Q }l/z}na—auz,a/n
< Bulld - a2,

where B,, = C’B~ for some constant C' and

n—{zz</ fY|X(y|$n )dy>2

+ 2[(Zd2 ([osz.anbxts | zsirw) )
x (gdg ([r@ it zsim) )| In

Then hypothesis (iii) follows by B, = C' - Op(1). O

Proof of Theorem 4.1 (i) See Lemma 2 in Hu and Schennach (2008).

(ii) We prove the results by verifying the hypotheses of Lemma A.1 of Newey
and Powell (2003). Hypothesis (i) follows by Theorem 4.1 of Newey and Powell (2003).
Hypothesis (ii) follows by Lemma A.1. Note that hypotheses (i) and (éi7) of Lemma
A.1 are satisfied by Assumption 4.6 and hypothesis (i7) of Lemma A.1 is satisfied by the
result in Theorem 4.1 (7). Finally, we verify hypothesis (ii7) by choosing II,,a € A,, such
that [[II,a — s, = 0o(1). O
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Lemma A.2  Suppose that ||} — Bollg = op(n='/*). Then we have (i) under
Assumptions 4.1, 4.6, 4.8 and 4.9, ||§(c) — g(@)||%/n = 0,(n"'/?) uniformly over a € A;
(i1) under Assumptions 4.1-4.2 and 5.1, ||G(co)||%/n = Op(61n) such that 81, = o(1).

Proof of Lemma A.2 (i) From the proof of Lemma A.1, we have

E[||g(er) = g(e) | %/n]

n dp

2
- %ZZE (/Pj(Za @) (fwx(y | @i59p) — frix( | xi;w0)> dy) ]
i=1 j=1
n dp
= ;ZZEK//F’J(Z, a) <fY1|Y2X1(?Jl | y27$1i;121)fY2‘X2X1 (yz | 1’21',1’1@')
i=1 j=1

2
— frivex, (W1 | y2, 2165 %0) fra xax, (V2 | $2i,$1¢))dy1dy2> }

n

dp
= iZZEK//Pj(Z a) (fmyle(yl ’y273«“1¢;@fyg\x2x1 (y2 | @25, 1)

i=1 j=1
— Fravaxs W1 | 92, 215 0) fy xo x, (Y2 | @20, 217)

+ fyivexs W1 | y2, 2165 9) fyo xo x, (2 | 224, 714)

2
— fripvex, (W1 | v, 2165 %0) fra xax, (V2 | x2i,$1i)>dy1dy2> }

1 ga &
2y >8|( [ [z
=1 j=1
X {fY2|X2X1 (y2 | 221, 714) (fy1|Y2X1 (1 |y, 213%) — fyyvax, (U1 | y27$1¢;1/10))
+ Fripvaxa 1 | y2, 21339))

2
X (fY2|X2X1(y2 | ©2i, 211) — fyaxox, (Y2 | 3321'7361@')) }dyldyz> }

n  dp

(] foces

i=1 j=1

1 d A
. { <fY2*|Y2X1(y>2kZ' ’ y2,£171i)> @fYI‘YQ)ﬁ (yl | y2,$1i7’(/}0)[1p _ ¢0]

X fy2*\Y2X1 (y2; | y2al‘1i)fY2\X2X1 (y2 | w2;, 717)
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N Pravaxa 1 | y2, w15 9)
yavax: (W1 | Y2, 2153 %0) fyyvax, (U3

\ Y2 xl-))> fY1|Y2X1 (y1 | y2, 2143 %0)
) 1

X fyzvax, (W2i | Y2, 210)

2
X [fya1xox: (W2 | 720, 710) — Fra|xox, (92 | xzi,fEli)]}dyldyz) ]

n dp

<2y [([mza

i=1 j=1

1 d A
- { <fY2*|Y2X1(y;Z‘ ’ yQ,Ili)> @fYI‘YZ)ﬁ (yl | y2,x1i7¢0)[¢ _ ¢O]

X fY;\)@Xl (y2i | y27x1i)fY2\X2X1 (2 | 2;, 717)

Miyax, (U1 | y2, 2155 9)
—"_ *
Mvivaxy (1 [ Y2, 2153 %0) fyyvax, (U5; | Y2, 214

))> Fyivex: (W | y2, w1i5¢0)

X fypvaxy (Y2 | Y2, 213)

2
x [fYQ\XQXI (y2 | w2, 14) — sz\ngl (y2 | 3321',1‘1@')]}@2) dyl]

n dp
1 o 1 |

i=1 j=1

1 d A
- { (fY2*|Y2X1 (y3; | yQ,xu)> @fYﬂYzXl (y1 | Y2, T1i5%0) [¥ — o]

X fY;\YQXl(y;i | y27$1i)fY2\X2X1 (y2 | 2;, 717)

vax, (1 | Y2, 2153 9)
+ *
Fvavaxy (W | Y2, 2153 %0) fyyvax, (U3

v xl-))> Frivax, (1 | 2, 2155 ¢0)
9 ¥
X fYQ*\Yz.Xl (y2i | Y2, 714)

2
X [fyalxax: (W2 | 7215 210) — fra|xax, (V2 | 902i,961z')]}dy2> ]dw

n dp

1 N A 1
= nZZ/ <Slipr*|X(yi ’371760)) (sgps;ppg(l a)) E{(fmx(y;‘ o o)

i=1 j=1

1 d )
" /{ <fY2*|Y2X1 (y;z ’ 92,.7}11-)) @fyl‘yle (yl | y2,xu7¢0)[¢ - Qb(]]

X fyyvax, (Wai | Y2, 210) fra xax, (2 | 20, 210)
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fY1|Y2X1 (v1 | ?/2796‘11;1/3)
+ *
rvaxa (U1 [ Y2 2133 %0) frypvax, (U3 | Y2, 216

))) le‘YQXl (yl | yanll’;wO)

X fyyvax, (W2i | 2, 210)

2
X [fyaxax: (2 | 2215 710) — froxax, (v2 | $2i,$1i)]}dy2> }dyl

n dp

< %ZZ <Sl;pr*X(y;< | $i;ﬁo)) <Supsuppj(Z7a)>

i=1 j=1 T Y2

1
X | max q supsup ?
< { T Y2 <fY2*Y2X1 (y;z | y27l‘li)>
sup sup fY1|Y2X1 (yl ’ yz@u;?ﬁ) })
ey \ ravaxy (U1 [ Y2, 215 %0) vy vax, (U3 | Y2, 214)

1 d )
X E[<fy*|x(y;‘ | i3 Bo) {/dwalleXl(?/l | y2, €145 %0)[Y — o]

X fY2*|Y2X1 (Y2 | y27x1i)fY2|X2X1(y2 | 224, 217)dyo

+/fY1|Y2X1 (Y1 | Y2, 2155 %0) fyy vax, (Y2i | Y2, 210)

2
X [fyaxax: (U2 | T2 T18) — fya|xax, (U2 | $2iv$1i)]dy2}) }dyl

n dp

1 *
<=3 ) <sup fyx(y; | :Eﬁﬁo)) <supsuppj(Z, a))
nia j=1 z T Y2
X | max < supsup - ,
ey \Syyyax, (U3 | Y2, 215)

sup sup fY1|Y2X1 (Z/l ’ 3/2,3?1i;”¢) })
e \vexa (U1 |y 216 %0) frg v x (U3 | 2, 210)

* . 2
E{<dlnfy*|x(yi | 245 Bo) [B—ﬂo]) }dy1

dp
n dp

< ;ZZ/ (sgpfy*x(yf | fL’ﬁﬁo)) (Supsuppj(Zﬂ))

i=1 j=1 T2

1
X (max { sup sup " ,
T Y2 fYQ*\YQXl(y% | Y2, 215)

fY1|Y2X1 (1 | y27$1i§1/;) }) A 2
sup sup " dy1||ﬁ - 50“
Ty (fY1|Y2X1 (y1 | y2,$1i;¢o)fy2*\y2xl(y2i | Y2, 714) A

= o012,
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since ||3 — follg = 0,(n~'/4). Thus the result follows by the Markov inequality.
(7i) See Corollary A.1 (i7) in Ai and Chen (2003). O

Lemma A.3 (1) Under Assumptions 4.1-4.2, 4.3(ii), 4.6(iii), and 4.10,
we obtain uniformly over o € {Ay : |l — aplla = o(1)}: (1/n) >0 Im(Xi, a)||% —
Ellm(X, ) 3] = op(n~12).

(i) Suppose that ||B — bBollg = Op(n_1/4). Under Assumptions 4.1-4.3, 4.6, 4.8,
4.10, we obtain uniformly over o € A, |l — aplla = o(nn): (1/n) >0, I(Xi, a)||% =
op(n2) and (1/n) S, (X, ) |3 = op(r2), where m, = 0™ with 7 < 1/4.

Proof of Lemma A.3 (i) See Corollary A.2(i) of Ai and Chen (2003).
(74) The result follows from applying Lemma A.2(i) and A.3(4), and
E[|lm(X, a)||%4] = o(n2) by Assumptions 4.3(ii) and 4.9. O

Lemma A.4  Suppose that HB - Bollg = op(n*1/4). Assumptions 4.1-4.3,
4.6, and 4.8-4.9 imply: (i) Qn(a) — Qu(a) = op(n="%) uniformly over a € Ay; and
(#1) Qn(a) — Qn() — {Qn(a) — Qulaw)} = 0p(nan=*) uniformly over o € A, with
llow — aplla < o(nn), where n, =n~7 with T < 1/4.

Proof of Lemma A .4 (i) The result follows from Lemma A.2(i) and Assumption

4.3.
(74) The result follows from Lemma A.3 and Lemma A.4(ii). O
Proof of Theorem 4.2 (i) See Theorem 2 in Hu and Schennach (2008).
(73) It follows from a similar argument of Theorem 3.1 in Ai and Chen (2003).
O
Let
B0 gy = (g ) )
() ) = (A0 ) By
where
P sl = [ PED s vty |3 D,
D g = [ sy (o | i
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by the interchangability of integral and derivative. Recall the definition of neighborhoods
No2,, and Nyo introduced in Section 5.

Lemma A.5 (i) Assumptions 4.1, 4.8 and 5.1, 5.3, 5.5-5.6 imply:

dg(d) * dg(O[()) * 2 _ -1/2
iy el o U D il G2 Lol )-
(i) In addition, if ||3 — Bollg = op(n=Y/*) holds, then
1 dg(d) * dg(d) * _ -1/2
o | B - )| oy

Proof of Lemma A.5 (i) The result can be proved by the same argument of
Corollary C.1 (iz) of Ai and Chen (2003).
(77) We have

i) o)
E [TL dav [Qn] do [Qn] E]
n_ . & . R 2
= %ZZE </dp]6(ii7)[1’§n] (fY\X(y | zis¥) — fyix(y | ﬂfi;%))) ]
i=1 j=1

uniformly over & € Na, since || — Bol| 5 = op(n~1/*). Thus the result follows by the

Markov inequality. [

Let
el = > { s | oo { G
nle) g, = ;Z { el }} o { s )
and
) g = (oD g ) ) 5
where
%[vén,vgn] = / %[v;nﬂvgn]fYX(y | ;) dy,
%[”Snwin] = / %[vsmvznvm(y | &3 %0)dy.
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by the interchangability of integral and derivative.

Lemma A.6  Suppose that || — Bolls = op(n=*). (i) Under Assumptions
4.1, 4.3-4.4 4.6, 4.8, 4.10, and 5.8, we have

/

= 2m i)d * * - —1 ~ ~ —
! {d(X)[]} S (X a) = op(n~ 1.
1

sup —
&ENo2n M 42 dada

(ii) Under Assumptions 4.1, 4.3, 4.8, 5.1(ii), 5.8, 5.5-5.6, we have

3] = 2900 s 1o, (1),

dQn(a)

Proof of Lemma A.6 Proof is similar to Ai and Chen (2003). (i) For some

constant C, Assumption 4.3 implies

- 27’;7, 7;7& * * , o —1 A -
lz {CZ(AX)[UZmU%J} [E(Xz)] lm(Xi,Oz)

n = dadao

o

Then the result follows from Lemma A.3(ii) because we have that uniformly over & €

N02n7

(#1) Uniformly over & € Nyap,

do [UZn]
LG [di(Xna), o, dm(Xia0), 1) et [ dR(XL Q)
I e R A )

D e e B I i s
i=1

?g(a) .,
dada [U2n7 UQn]

2
/ny/ gl /n.
E

2
/n < ei(Z2)? = 0,(1)
E

d*j(a)
dado

(030, V2]

by Assumption 5.8.

do
Lo [dm(Xi,a0) o\ iy L [ dm(Xi o),
+n;{dao[v2n1} (00— x) { e |
+ nlon)yg )

The result follows from Assumption 4.3 and Lemma A.5. [
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Lemma A.7 (i) Under Assumptions 4.1 4.3-4.4, 4.6, 4.8, 4.10, 5.1(ii), 5.3,

5.5-5.6, we have uniformly over & € Nyan:

’

o { e sl | oo
Z{ Xz,OéO *]} [E(XZ)]flm(X“d) _’_Op(n71/2).

(i) Under Assumptions 4.1, 5.1(ii), 5.3, 5.5-5.7, we have uniformly over & €
Nozn:

i

%Z {W[U§]} [2(X0)] (X, &) — m(Xi, a0)} = (V5,6 — ag)a + 0p(n~/?).
i=1

(#i7) Under Assumptions 4.1, 4.3(ii), 4.8, 5.1(iii), 5.8, we have

’

) {WH} S(X0)] (s, a0)

Z{ X“ao *]} [S(X3)] ™" p(Xi, a0) + 0p(n17?).

Proof of Lemma A.7 (i) Uniformly over & € Ny,

1 m(Xi, o), 1. B}
- w3} (X d)
prt { da 2 }
-1y { Dy Il b oo .
=1
23 {0 b g - e e,
=1
1 - m(Xl7a0) * * / —1 4 ~
nE 3, — 3] b (2O (X, d)
n ; { do 2 2 }
= A+ Ay + A3

Then the result follows from the fact that A; = o0,(n"'/2) by Lemma A.3(ii), A.5(ii),
and Assumption 4.3(ii); Az = o0,(n~'/?) by Assumption 4.3(iii) and Lemma A.3(ii);
Az = 0p(n~'/?) by Assumption 5.3 and Lemma A.3(ii).
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(i7) Let (X, v}) = (%[vg]) $(X)~" and let

F= {@(X,v*)ﬁm(X, a) : a € Nogn,m € AJ(X) s.t.

sup  |m(z,a) —m(z,a)| = 0(1)},
zeX,a€Noz2n

By a similar argument to Corollary C.3(ii) of Ai and Chen (2003), F and F are Donsker

classes, and we have uniformly over o € Nyap,,

S e ) O Ks ) — m(Xss0)) — B [, 08) (X1, 0) — (X))
:l:pl(n—w), (2.13)
S e ) 0K )~ m(Xi00)) — B (X, 03 (X ) — (s
I~ (214)
> (i) (X ) (X300} — B [(Xe, ) (X )~ m(Xss00)

i=1
n=1/?). (2.15)

1
n
= op(

From eqns. 2.14 and 2.15,
3 (X ) (X, ) — (X, 0)) (216)
i=1
= % Z (p(Xi7 U;){m<X“ d) - m<Xi7 Ozo)} +E [‘*P(Xia U;){m(Xu CA“) - m(Xi7 040)}]

i=1

— Elp(Xi, 03){m(Xi, &) —m(Xy, a0)}] + op(n~7?).

Let (X, v3) = [ @fvipvaxs W1 | %2, 2156, 0)dy1] fry xax: (2 | 22, 1)dy2. Then we have

Ep(Xi, va){m(Xy, &) —m(Xy, ao)}] = E[@(Xi, vp){m(Xi, &) —m(Xi,a0)}],  (2.17)
E[p(Xi, va){m(Xy, &) — m(Xy, ao)}] — E [o(Xi, va){m(Xi, &) — m(Xi, ao)}]
E[{p(Xi, v3) — o(Xi, v2) H{m(Xi, &) — m(Xi, ao)}] (2.18)

= Op(nfl/Q).
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Plugging eqns. 2.16, 2.18 and 2.19 into 2.17 gives for some & € Np2, a convex combination
of & and o that
1
- > (X, v {m( Xy, &) — m(Xi, 00)}
i=1

- %Z(P(Xi,?);){m<Xi7 d) - WL(X'Z-7 ao)} + Op(n_1/2)
=1

= B [p(X;, v3){m(X;, &) — m(X;, ag) }] + op(n~/?)

- [ o) 5D ]| + B [o060.05) T2 -
- 8ol T 4 |+ oyl

— (03,6 — ag)a + E [gp(xi,v;) (W[d — o] — ‘W[& — ao])}

+ 0y(n71/?)

= <U;a a— Oé()>a + Op(n_1/2)7

where the third, fourth and fifth equalities follow from the mean value theorem, the
definition of (v}, & — o), and Assumption 5.1(i¢) and 5.7, respectively.

(7i7) From the definition of ¢(X;, v3), we have

1 ¢  fos 1 ¢ .
- > (X, v3){m(Xi, a0) — - > o(Xi,v3)p(Zi, a0)}
=1 =1
n

= 5 (B 0) — @l(Xe,0)) plZs,0).
=1

Then the result follows from the same argument of Corollary C.3(é¢) in Ai and Chen

(2003). O

Proof of Theorem 5.1 (i) See Theorem 3 in Hu and Schennach (2008).

(79) It follows from a similar argument of Theorem 4.1 in Ai and Chen (2003).

Proof of Theorem 5.2
See Theorem 5.1 in Ai and Chen (2003). O



2.9 Tables

Table 2.1: Monte Carlo simulation results

Estimator Zero Mode Zero Mean Zero Median
Infeasible SMD 0.14334 0.15796 0.14059
SML-SMD 0.14683 0.17255 0.14683

Inconsistent SMD 0.23990 0.18691 0.15668
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3.1 Introduction

In 1970’s, many of studies show the importance of controlling for both
measurement error and endogeneity due to simultaneous equation models. Most
of the studies consider the case that exogenous variables are mismeasured. It is
because of the property of linear models. As pointed out by Geraci (1997) and
Hausman (1997) among others, consideration of additional measurement error in
endogenous variables is not interesting since it is observationally equivalent to
measurement error in exogenous variables as long as both measurement errors
are uncorrelated. Indeed, if only an endogenous variable is mismeasured in the
linear parametric model, one instrumental variable is sufficient to control for both
endogeneity and measurement error unless the instrumental variable is correlated
with measurement error and unobserved drivers of dependent variable.

However, it is not easy to identify parameters in nonlinear models in the
presence of both endogeneity and measurement error because measurement er-
ror problem becomes a problem associated with the knowledge on distributions
of measurement errors. To illustrate this point, consider the following nonlinear

parametric model:

yi = f(zi;6p) + u;

*
T, = T; + e,

where f is a known real-valued function and 6, is a vector of unknown parameters,
and where z} is a mismeasured version of true z; and e; is measurement error.
So there is no endogeneity issue by construction. By plugging in z;, the first
equation becomes y; = f(xf + €;;0) + u;. If the function f is linear, it is simply
yi = bz} + €;, where €; = u; + Ope;, so that one instrumental variable which is
uncorrelated with ¢; could control for the measurement error. Adding endogeneity
to the equation causes no extra cost on the problem. However, if the function
f is nonlinear, the problem deviates from the method of standard instrumental
variables because z} is not additively separable with the measurement error e;

anymore. This is one of the reasons why measurement error is differentiated from
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endogeneity issue in nonlinear models and only single issue among them has been
considered in nonlinear models.

Since economic theory provides no general guideline in model specification
and distribution of economic variables for econometricians, general nonparametric
or semiparametric models become more popular. Chapter 1 and 2 consider both
endogeneity and measurement error in nonparametric or semiparametric regression
models. They contribute to the literature since there is no published work prior
to them on the identification and estimation of nonparametric or semiparametric
models in the presence of endogenous and mismeasured variables. Nevertheless,
each chapter has its own distinct properties. Chapter 1 considers very general ad-
ditively nonseparable models between regressors and unobserved drivers of depen-
dent variable and shows the identification and estimation of covariate-conditioned
average marginal effects. Chapter 2 restricts the model on additively separable one
but allows nonclassical measurement error. It develops semiparametric estimation
of models with conditional moment restricts, and shows that one instrumental
variable is sufficient to identify and estimate parameters of interest, even when
one regressor of interest is endogenous and mismeasured.

The purpose of the present chapter is to support the effectiveness of both
methods in the previous chapters for empirical analysis. The structure of the
paper is as follows. Section 1 uses the proposed method in chapter 1 to estimate
the impact of family income on children’s achievement. In section 2, we apply
the proposed method in chapter 2 to the estimation of Engel curves. Section 3

concludes.

3.2 The Impact of Family Income on Children’s
Achievement
This section applies the proposed estimator in chapter 1 to study the causal

effect of family income on child achievement. We also discuss how to choose optimal

bandwiths since estimation results highly depend on the choice of the smoothing
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parameters.

3.2.1 Overview

The association between family income and child development is a con-
tentious issue in economics, sociology, and developmental psychology. Even though
it has been examined in a number of studies, there is no consensus on the relative
effectiveness of income transfers and direct intervention in augmenting the human
capital of children. Income transfers could have a significant impact on the eco-
nomic well-being of children growing up in poor families if family income plays a
substantial role in child development. If not, then direct interventions, such as the
Head Start program, to improve child health, education, and parenting may be
more effective.

Using data from the Panel Study of Income Dynamics (PSID), Duncan, Ye-
ung, Brooks-Gunn, and Smith (1998) find that family income in early childhood
has the greatest impact on completed schooling, especially among children in fam-
ilies with low incomes, regardless of whether they control for fixed family effects
or not. Blau (1999) uses the matched mother-child subsample of the National
Longitudinal Survey of Youth (NLSY) to estimate the impact of parental income
on children’s cognitive, social, and emotional development. He finds that OLS
estimates of income effects are generally statistically significant and positive, but
that they are smaller and insignificant when he uses either random- or fixed-effect
strategies. In addition, his findings indicate that the effect of permanent income
is much larger, but not large enough to make income transfer a feasible approach
to achieving substantial improvements in child outcomes. He also find that there
is no evidence for any systematic indication of diminishing returns to income, i.e.,
income effects that are larger at lower levels of income.

Aughinbaugh and Gittleman (2003) examine the relationship between child
development and income in Great Britain and compare it with that in the United
States. Using the NLSY and Great Britain’s National Child Development Study,
they find that the relationship between income and child development is quite sim-

ilar in the two countries. Income tends to improve cognitive test scores, but the
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magnitude of the impact is small. Using participants from the National Institute
of Child Health and Human Development (NICHD) study of Early Child Care,
Taylor, Dearing, and McCartney (2004) estimate the impact of family economic
resources on developmental outcomes in early childhood. They find that economic
resources are important when properly compared with other important variables,
such as maternal verbal intelligence, and when compared with established inter-
ventions, such as Early Head Start. Their findings also indicate that there are
significant nonlinear effects of permanent (but not current) income, implying that
income effects are larger for children living in poor families.

Dahl and Lochner (2005) address both omitted variables bias and attenua-
tion bias due to measurement error on family income using fixed-effect (paramet-
ric) instrumental variables estimation. They use panel data on over 6,000 children
matched to their mothers in the NLSY data. They find that estimates from the
fixed-effect instrumental variables approach are larger than cross-section OLS or
standard fixed-effects estimates, so that current income has a significant effect on
a child’s math and reading test scores.

Here we examine the effect of family income on child achievement, as mea-
sured by scores on math and reading assessments. We address measurement errors,
endogeneity of family income, and nonlinearity of income effects, by considering a

data generating process of the form
Y =r(X,U,),

where Y is child scholastic achievement, X is family income, and U, represents
other unobserved drivers of child achievement; r is an unknown measurable scalar-
valued function. Because unobserved parents’ ability could be a common cause of
both family incomes and child achievement, the explanatory variable X is generally
correlated with the error term U,. Moreover, income is noisily measured in most
surveys, and the data used here are no exception.

Figure 3.1 depicts the causal relation postulated to operate here. Mother’s
cognitive ability is a common cause for family earning potential and child ability.
The fact that earning potential and child ability share a common cause induces

a correlation between family income and child ability. Nevertheless, the condi-
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tional independence assumption makes it possible to recover features of the causal
relationship. Because AFQT scores, a proxy for mother’s cognitive ability, are
observable, they serve as conditioning instruments to ensure the conditional in-
dependence between family income and unobserved child ability. Moreover, true
family income is unobservable because income is noisily measured in survey data.
Without correcting for the measurement error, estimates would be biased towards
zero. Fortunately, we observe two error-laden measurements of true family income.
This permits us to recover the desired effect measures using our estimator.

We also use the matched mother-child subsample of the NLSY from Dahl
and Lochner (2005) in the cross-sectional nonparametric model.! The dependent
variables, i.e., child scholastic achievement (Y') are measures of achievement in
math and reading based on standardized scores of the Peabody Individual Achieve-
ment Tests (PIAT). Math achievement is measured by mathemathics scores, and
reading achievement is measured by a simple average of the reading recognition
and reading comprehension scores. We use measures of both current income and
permanent income in different estimation equations. Our error-laden measurement
of current family income (X;) is the natural logarithm (log) of family income in
1998. The error-laden measurement of permanent family income (X) is the log of
the average of family incomes in 1994, 1996, and 1998. The log of family income
in year 2000 is commonly used as additional error-laden measurement of family
income (X3) for both current and permanent family income. Income in each year
is after-tax and after-transfer. The conditioning instrument (W) is the mother’s
Armed Forces Qualifying Test (AFQT) score; see Dahl and Lochner (2005) for
further details. We assume true family incomes and unobserved drivers of child
achievement are independent, conditional on AFQT scores (i.e., X L U, | W). We
create standardized test scores, AFQT scores, and family incomes having mean

zero and standard deviation one.

'We thank Gordon Dahl for providing the NLSY data.
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3.2.2 Bandwidth Selection

We consider leaving-one-out cross-validation to estimate the optimal band-

widths. Let h®A be the minimizer of

n n

S Fur))? + A S (D))

i=1,i#k i=1,itk

1
Q5 (h) = -

where D2 fy,(u;) is the second derivative of f,(z) with respect to z which is evaluated
at u;. Let fywx be a value of f; evaluated at hlBA Then the cross-validation
function V4(\) is
Vo) = £ 3~ )
=

We obtain the cross-validation estimate of the smoothing parameter A by minimiz-
ing the cross-validation function V(). From the optimal A, we also obtain the
cross-validation estimate of the bandwidths h = (hy, hy). This procedure is similar
to the ordinary cross validation in Wahba (1990) except that here h are additional
smoothing parameters to be estimated and instead of the integral, a sample average
is used in the second term of Q% (h). In the language of her book, Q% (h) represents
a tradeoff between fidelity to the data and smoothness of the solution. The first
is represented by the mean square of residuals and the second is represented by
the mean square of the second derivative. Thanks to the smoothing parameter A
controlling the tradeoff between fidelity and smoothness, one can choose optimal
bandwidths even with noisy data.

Table 3.1 reports optimal choices of the smoothing parameters, A\ and h.
For the local linear estimator, we use the 2nd-order local polynomial estimator to
obtain the smoothing parameters because it automatically estimates the second
derivatives of f,(z) and both local linear and local polynomial estimators are
first-order identical. Since Fourier estimator has more roughness in the estimated
function, it obtains smaller A, which means that more penalties are given to the

term for smoothness.
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3.2.3 Estimation Results

Tables 3.2 and 3.3 show estimation results obtained by our new estima-
tor and a local linear estimator ignoring the family income measurement error.
Each estimate is evaluated at given values of standardized family income (X) and
mother’s AFQT score (W) ranging from —0.8 to 0.8 in increments of 0.1. Esti-
mates from only a subset of the covariates are reported for conciseness. Estimated
smoothing parameters in Table 3.1 are used for each estimator. All standard er-
rors of the estimates are obtained by bootstrap methods. As Gongalves and White
(2005) remarked, one must formally justify using the bootstrap to compute stan-
dard errors because the consistency of the bootstrap distribution does not guar-
antee the consistency of the variance of the bootstrap distribution as an estimator
of the asymptotic variance. Nevertheless, the bootstrap gives us standard errors
with first-order accuracy, which should be sufficient for our purposes.

Table 3.2 reports the estimated impact of family income on children’s math
achievement. The covariate-conditioned average marginal effects of family income
on children’s math achievement from our estimator are positive and significantly
large over all ranges of x and w. The average marginal effect is about 8.764 at
r = —0.8 and w = 0.4, which means that the effect of a one standard deviation
increase in log of family income is to increase a child’s math score by about 8.764
of a standard deviation. For given mother’s AFQT scores, w, effects decrease as
family income, x, increases toward about 0.2 but increase again when family income
is above 0.2. Interestingly, the covariate-conditioned average marginal effects from
the local linear estimator are much smaller than those from our estimator for
all (z,w) values. Notice that the average marginal effect from the local linear
estimator is about 0.079 at x = —0.8 and w = 0.4, whereas that from our estimator
is 8.764, a difference of about 8.6. It follows measurement errors in family income
have an important impact on estimated effects, and that use of our new estimator
is critical to obtain accurate estimates here. Note that due to high standard errors,
parts of effects from Fourier estimator are not statistically significant. Nevertheless,
for the family in which mother’s AFQT scores is positive, effects of family income

on children’s math scores, who are in poor families (range of family income is from
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—0.8 to —0.6), are statistically significant and large.

Table 3.3 shows the impact of family income on children’s reading achieve-
ment. The covariate-conditioned average marginal effects of family income on chil-
dren’s reading achievement from our estimator are also positive and much larger
than those from the local linear estimator in all ranges of (x,w). The average
marginal effect from our estimator, for instance, is about 4.718 at x = —0.8 and
w = 0.8, which means that the effect of a one standard deviation increase in log
of family income is to increase a child’s reading score by about 4.718 of a stan-
dard deviation, while that from the local linear estimator is 0.055. As observed
in math achievement, even though part of effects from Fourier estimator are not
statistically significant, children in low family incomes have large and statistically
significant effects of family income on their reading scores.

Figure 3.2 shows a graph of the covariate-conditioned average marginal
effect (top) and average counterfactual response (bottom) of family income on
children’s math scores at various values of family income and mother’s AFQT,
ranging from —0.8 to 0.8, obtained using our estimator with bandwidths in Table
3.1. All estimates of the average marginal effect are positive over the ranges of both
family income and AFQT score. In general, the impact of family income at a given
AFQT increases as family income moves from 0.2 to —0.8 or 0.8, making a broad
U-shape. It attains a minimum of 0.5823 at x = 0.2 and w = —0.4. As a result,
one can find slightly increasing returns to family income for children in high family
incomes. However, diminishing returns to family income are apparently observed
at income levels below x = 0.2. We note that the shape of income effect is varying
over different levels of mother’s AFQT. For instance, at 0.4 of mother’s AFQT,
the average marginal effect is very dynamic, while that at —0.6 of mother’s AFQT
is flat. Thus, the average marginal effect depends on the level of mother’'s AFQT,
which means the nonseparable model is appropriate for this example.

Figure 3.3 shows a graph of the apparent causal effect (top) and average
counterfactual response (bottom) of family income on children’s math scores ob-
tained using the local linear estimator. It shows much smaller marginal effects than

those from our estimator. And the average counterfactual response is more flat
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than that from our estimator. Moreover, it is interesting to note that the results
from the local linear estimator indicate increasing returns to income, i.e., income
effects that are larger at higher levels of family income, which is unexpected by
the economic theory.

Figure 3.4 shows the covariate-conditioned average marginal effect (top) and
average counterfactual response (bottom) of family income on children’s reading
scores at various points of family income and AFQT ranging from —0.8 to 0.8,
obtained by our estimator. The same bandwidths are used as in Table 3.1 . The
effects are always positive over the ranges of both family income and AFQT score
as well. Children in poor families are likely to have higher effect of family income
at a given value of AFQT. However, for children in families with income above 0
and whose mothers have low AFQT scores, the effect of family income on reading
scores increases with family income. The effect attains a minimum value of 0.5057
at © = 0 and w = 0.2. We also observe the dependence of the average marginal
effect on mother’s AFQT.

Figure 3.5 depicts the apparent causal effect (top) and average counter-
factual response (bottom) of family income on children’s reading scores obtained
using the local linear estimator. The results indicate much smaller income effects
than those from our estimator. Family income shows increasing returns to income.

Taken as a whole, these results suggest that our estimator effectively ac-
counts for the measurement errors of family income, compared to the local linear
estimator, which ignores measurement errors. We find that the effects of family
income on both math and reading scores from our estimator are positive and that
the magnitudes of the income effects are substantially larger, whereas those appar-
ent from the local linear estimator are statistically significant, but rather modest,
as seen in previous studies. Because these results hold for family income, it fol-
lows that income transfers could have a significant impact on the development of
children growing up in poor families. Our findings indicate nonlinearity in income
effects over ranges of family income, specifically diminishing returns to income for
families with income levels below x = 0.2 but a wide U-shape overall. Moreover,

we observe that the income effect depends on the level of mother’s AFQT scores,
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which supports the use of the nonseparable model for this application.

3.3 Instrumental Variables Estimation of Engel

Curves

We apply the proposed estimator in chapter 2 to the estimation of Engel
curves (or consumer demand models) using the British Family Expenditure Survey
(FES) data. Findings confirm that correcting for both endogeneity and measure-
ment error is necessary to identify the economically meaningful structural Engel

curves.

3.3.1 Overview

Demand models play an important role in the welfare analysis. One of
the reason is that the evaluation of indirect tax policy reform needs the accurate
specification of demand models which is consistent with consumer theory. Because
of that, the study of the Engel curves, the relationship between expenditure (or
income) and budget shares, has been an area of interest among econometricans
since the early studies of Engel (1895), Working (1943), Leser (1963). Many of
previous studies exploits the best model specification for the Engel curves and
‘Leser-Working’ specification of Engel curve in which budget shares are a linear
function of the log of income or expenditure, has been the most popular one.
However, economic theory provides almost no general guidance in specification
of Engel curves and recent empirical studies show that linear specification of the
Engel curves is far from an accurate feature of consumer behavior. Some empirical
analysis of consumer behavior suggest that nonlinear parametric or semiparametric
and nonparametric models are more favorable in the specification of the Engel
curves. Along with the model specification, there have been two directions in the
analysis of Engel curves: endogeneity and measurement errors.

A group of studies estimate Engel curves based on that budget shares and

expenditure are endogenous to the consumer and are determined simultaneously,
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as pointed out by Summers (1959). Using a nonparametric method and correct-
ing for the endogeneity of the log-total expenditure, Banks, Blundell, and Lewbel
(1997) suggest that Engel curves require quadratic terms in the log-total expendi-
ture. They also find that models failing to account for nonlinearity of the Engel
curves could distort the patterns of welfare losses associated with a tax increase.
Blundell, Duncan, and Pendakur (1998) allow for endogeneity of the log-total
expenditure by adopting a parametric additive control function approach to the
partially linear regression context and find that taking accound of endogeneity has
an important impact on the shape of the Engel curve relationship, while Blundell,
Browning, and Crawford (2003) use a nonparametric control function technique
to adjust for endogeneity. Base on a nonparametric method, Lyssiotou, Pashardes
and Stengos (1999) find that controlling for endogeneity tends to be more support-
ive of the rank 3 hypothesis. Blundell, Chen, and Kristensen (2007) (BCK) studies
a shape-invariant Engel curve with endogenous log-total expenditure by applying
the sieve minimum distance estimation of conditional moment restrictions and find
the importance of correcting for endogeneity. Chen and Pouzo (2008a, b) studies
nonparametric or semiparametric estimation of conditional moment models with
possibly nonsmooth residuals, respectively and applied their methods to estimate
quantile Engel curves with endogenous log-total expenditure.

Another issue on the estimation of the Engel curves is measurement error in
total expenditure. Measurement error would be because of survey errors or a form
of errors which come from the discrepancy between purchases and consumption due
to storage or waste. In a linear parametric model, Liviatan (1961) applies the the
method of instrumental variables to the Engel curves, with income serving as the
instrumental variable. Aasness, Biorn, and Skjerpen (1993) model measurement
error in total expenditure to estimate Engel curves with panel data. Hausman,
Newey, and Powell (1995) propose consistent estimators for nonlinear regression
framework in the presence of measurement error. In their application to the Engel
curves, they find that measurement error in income should be accounted for and
‘Lesser-Working’ specification should be generalized to higher-order terms in log

income. Lewbel (1996) develops a consistent estimator of nonlinear Engel curves
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to correct for measurement errors in total expenditures on the left and right hand
side since an observed budget share has expenditure in its denominator. Newey
(2001) studies the estimation of nonlinear errors-in-variables models using simu-
lated moments and a flexible disturbance distribution, and applies the models to
Engel curves with expenditures measurement errors on the left and right hand
side. Hasegawa and Kozumi (2001) correct for expenditure measurement errors on
both the left and right sides in the ‘Lesser-Working’ specification. They propose
the Bayesian estimation procedure in both models without an instrument variable
and with an instrument variable. Schennach (2004b) proposes a general solution
to measurement error in general nonlinear models when one repeated observation
is available for each mismeasured variable and applies it to the estimation of Engel
curves. She finds that the impact of measurement error in total expenditure can
not be neglected.

Even though there are plenty of evidences that total expenditure is endoge-
nous as well as mismeasured, there has been no study which corrects for both
endogeneity and measurement error in nonlinear parametric, nonparametric, or
semiparametric models. As discussed by Amemiya (1985) and Hsiao (1989), it is
because nonlinear regression models with measurement error are difficult to es-
timate with standard linear instrumental variables approach, due to the lack of
additive separability between true regressor and measurement error. The present
study employs the method which is proposed in chapter 2, in order to fill this
gap. So our target is to control for both endogeneity and measurement error in
the nonparametric shapes of the Engel curves.

The nonparametric specification of Engel curves we consider is
E[Yvh"l — hl(Yle) ‘ Xl] = 0, l - 1, e ,7, (31)

where Yy, is the budget share of household i on good [ (e.g., 1: food-out, 2:
food-in, 3: alcohol, 4: fares, 5: fuel, 6: leisure goods, and 7: travel). Y3; is the
log-total expenditure of household 7 that is endogenous and unobservable, and X
is gross earnings of the head of household, which is the instrumental variable. We
consider the no kids sample that consists of 628 observations. BCK have used the

same data set as well as a subset of married couples with one or two children in
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their study of a shape-invariant system of IV Engel curves.? Table 3.4 summarizes
descriptive statistics for the main variables in the data set. We see that budget
shares on food-in, leisure, and travel are large, while food-out, alcohol, fares, and
fuel are relatively small. Leisure goods have a large standard deviation. The mean
and standard deviation for log nondurable expenditure are similar to those for log
gross earnings. As shown in BCK, log-total expenditure and log earnings have a
strong positive correlation, which is 0.5111. We also assume that log earnings are
independent of the residual, (Yi; — h(Y2;)). So the log gross earnings would be a
proper instrumental variable to analyze the conditional moment restriction model.

BCK assume that the log of total expenditure on nondurables and services
is endogenous but measurement error-free. However, their approach is infeasible if
the true log-total expenditure suffers from measurement errors so that only a mis-
measured version is observed.? As reviewed above, indeed, many empirical papers
on the estimation of Engel curves show that measurement errors on the log-total
expenditure is considerable. As a result, failure of controlling for measurement

errors makes it difficult to estimate the economically meaningful Engel curves.

3.3.2 Two-step SML-SMD Procedure

In order to use the two-step sieve maximum likelihood and sieve minimum

distance (SML-SMD) estimator, we specify the conditional mean function as fol-

2We thank Richard Blundell for providing the UK Family Expenditure Survey data.

3We assume that there is no measurement error on the left-hand variable in Eqn. (12) to ease
the argument. It could be possible because both expenditure on good [ and total expenditure
might have measurement errors but the budget share could be correctly reported one if proportion
of error-laden expenditure on good [ to error-laden total expenditure is the same as true budget
share. For instance, assume there are multiplicative measurement errors on expenditure on good
I and total expenditure such that YOZ 1 = Yoi1€0s,; and Y5 = Yo;e9; where YOz 1» Yoi,1, and eq;; are
measurement error-laden expendlture of household i on good [, true expendlture of household 7 on
good [, and its mesurement error, respectively, and where Y55, Y5;, and ez; are measurement error-
laden total expenditure of household i, true total expenditure of household 4, and its mesurement

oL ! Yoi,1€0i,1 Yoi,1

error, respectively. If eg;; = es;, we can get = = Yo = v
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where ) and ), are the support of the distribution of ¥; and Y5, respectively. In
the empirical application, ) = [0,0.350] and Y, = [3.609,6.947]. Since partially
parameterizing distributions eases nonparametric estimation of densities, we allow
Jyaix(y2 | x) to be parameterized. In fact, the conditional distribution of log-
total expenditure given log gross earnings is close to normal (see BCK), we specify
Jyaix (Y2 | @5 ¢o,m0) as normal distribution. This is one of useful properties of the
two-step SML-SMD estimator, which the sieve minimum distance procedure can
not utilize because of its nature of the estimation.

In the first step, we estimate the population conditional mean function

m(z, h) semiparametrically by m(z,h). To do this, we use a SML estimation to

estimate fy, v, (v1 | ¥2) and fyyx(y2 | 25 ¢o,10)-

Bo = (Yo, frilva, fy2*|y2)/ (3.3)

=arg max F (ln Jolyr [ y2) f1(w2 | y2) Fraix (v2 | w;w)dyz) :
ﬂ:(w’fo’fl) eB y?

where B =WV x Fy x F; with U = & x M and ¢y = (¢o,m0).
We also approximate the unknown function h € H by h, € H, = H]. x
- X H% where H,, is some finite-dimensional approximation space that becomes
dense in ‘H as sample size n — oo. In the second step, the SMD estimator of
unknown sieve coefficients of hq is obtained by applying the SMD procedure

. 1 & )
h, = arg min Ez (X, hn) (X5, ), (3.4)

where (X, h) is the plug-in SML estimator of m(X, &) for any fixed h,, = (hy 4, -

.y
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hyn):
m(z, hy,) (3.5)
- /y {/y = hn(y2))fylly2(y1 | y2)dy szIX(y2 | fL’Wgn,ﬁn)d%-

For the purpose of comparison, we also estimate the Engel curves using
SMD estimator from BCK, which does not control for measurement errors of log-
total expenditure. Both SMD and SML-SMD estimators are constructed without
smoothness constraints for simplicity. We use a power series of fourth order mul-
tiplied by the cumulative distribution function of a standard normal to approx-
imate ho(Y2) for both estimators. In the SMD estimator, a set of instruments,
{1, X5, X3,..., X2} for k, > 3 is used to approximate the conditional mean func-

tion.

3.3.3 Estimation Results

Figures 3.6 ~ 3.7 show estimated Engel curves for four of the goods in the
system. We plot curves over a set of log-total expenditures ranging from 4.5 to 6.5.
Engel curves from our SML-SMD estimator which controls for both endogeneity
and measurement errors in the log-total expenditure are plotted by real curves,
while those from SMD estimator which only control for endogeneity in the log-
total expenditure are plotted by dashed curves.

We note several interesting features. For households with low log-total
expenditure, shares of food-in from our SML-SMD estimator are bigger than those
from SMD estimator. Food-out from SMD estimator is a reverse U-shape and
values are similar over different level of log-total expenditure. But Food-out from
SML-SMD estimator dramatically decreases as log-total expenditure increases. As
a result, for households with low log-total expenditure, the estimated shares of
food from our estimator, which is sum of food-in and food-out, are much bigger
than those from SMD estimator, even though food shares of households with high
log-total expenditure from both estimators look similar. The Engel curve for fuel
from SMD estimator shows a reverse S-shape and is close to that from SML-SMD

estimator. However, the estimated Engel curves for leisure from both estimator
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show huge gaps. For example, the estimated shares of leisure for households with
high log-total from SML-SMD estimator are around 0.7 bigger than those from
SMD estimator. Thus measurement errors in log-total expenditure can make it
difficult to estimate the Engel curves and controlling for the measurement errors
are necessary to get correct estimates of the Engel curves.

Our empirical results can be extended in several directions. First, as in
BCK, we could consider shape invariant Engel curves and compare the shapes of
the estimated Engel curves to theirs. Then corresponding semiparametric model

is
EYiis = hi(Yai = ¢(Xyi01)) = Xpi0o0 | Xi] =0, 1=1,---,7,  (3.6)

where ¢(X,0;) is a known function up to a finite set of unknown parameters 6,
and can be interpreted as the log of a general equivalence scale for household 7. X7;
is a vector of demographic variables that represent different household types and
05 is the vector of corresponding equivalence scales (see, e.g., Pendakur (1998) and
Blundell, Browning, and Crawford (2003) ) and X; = (X;, X2;). Second, we could
consider smoothness constraints in the second-step of our estimation procedure
and compare the shapes of the estimated Engel curves to theirs. The penalized

SMD estimation is

n

h, = arg min % ; (X, B) 170X, h) 4 A P (i), (3.7)
where Pn(hn) is the penalization function on the smoothness and A, is the smooth-
ing parameter. Third, our empirical analysis needs to carry out the robustness
check of the estimated Engel curves with respect to the selection of sieve ba-
sis functions and the smoothing parameters in the smoothness constraints. Two
approximations are required to proceed our SML-SMD estimation: one to approx-
imate h and the other to approximate unknown densities. So it would be useful
to examine how the choice of sieve basis and the smoothing parameter affect the
shapes of the estimated Engel curves. Fourth, a semiparametric Hausman-test
on measurement errors could be developed. Let éSML_SMD and éSMD denote

the semiparametric esimate of 6 under Hy : Y5 measurement error-free and H :
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Y, measurement error-laden, respectively and let VSML,SMD and VSMD denote
the estimates of their respective variances. It then follows that n(é:.;ML_SMD -
asy.

Osarp)V " (Osnrr—sap — Osap) = x2,; under the null, where V' - V with V' the

asymptotic covariance matrix of n(0syr—smp — Osmp)-

3.4 Summary and Concluding Remarks

In the article, we study empirical importance of endogeneity and measure-
ment error in economic examples. To do this, we apply the proposed methods in
chapter 1 and 2 to topics of interest among (applied) econometricians, the impact
of family income on children’s achievement and the estimation of Engel curves,
respectively. The application to the impact of family income on children’s achieve-
ment finds that the effects of family income on both math and reading scores from
the proposed estimator are positive and that the magnitudes of the income effects
are substantially larger. We also observe that the income effect depends on the
level of mother’s AFQT scores, which supports the use of the nonseparable model
for this application. From the application to the estimation of Engel curves, our
findings indicate that correcting for both endogeneity and measurement error ob-
tains significantly different shapes of Engel curves, compared to the method which

ignores measurement error on total expenditure.
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3.6 Tables and Figures

Table 3.1: Optimal choice of smoothing parameters

A hy ha

Math Fourier 10715 195 1.2
Local linear 1072 6 6.7

Reading Fourier 10722 215 1.9
Local linear 107* 6.3 5.35
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measurements of family income are used to get rid of attenuation bias due to measurement errors

of family income.

Figure 3.1: Causal effects - impact of family income on child achievement
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Table 3.2: Impact of family income on children’s math achievement

w/x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

2.386
1.267
0.140
0.048

1.845
1.123
0.159
0.052

1.570
1.033
0.178
0.051

1.456
0.977
0.199
0.054

1.465
0.935
0.222
0.056

1.603
0.910
0.248
0.063

1.927
0.902
0.279
0.072

2.599
0.937
0.319
0.086

4.103
1.084
0.379
0.108

-0.6

1.226
1.117
0.131
0.050

0.888
1.128
0.154
0.047

0.717
1.127
0.176
0.053

0.635
1.123
0.199
0.051

0.612
1.117
0.224
0.055

0.641
1.111
0.252
0.062

0.735
1.109
0.285
0.066

0.936
1.109
0.325
0.075

1.361
1.124
0.380
0.098

-0.4

1.477
1.148
0.123
0.049

0.999
1.153
0.148
0.050

0.759
1.150
0.173
0.050

0.636
1.145
0.200
0.052

0.583
1.138
0.227
0.055

0.582
1.132
0.257
0.057

0.637
1.128
0.291
0.066

0.771
1.126
0.331
0.078

1.059
1.132
0.381
0.087

-0.2

1.510
1.133
0.113
0.048

1.117
1.141
0.142
0.049

0.902
1.140
0.171
0.050

0.789
1.135
0.200
0.050

0.745
1.130
0.230
0.051

0.757
1.123
0.262
0.056

0.835
1.118
0.297
0.063

1.008
1.114
0.336
0.072

1.360
1.114
0.382
0.078

2.133
1.166
0.103
0.049

1.650
1.191
0.136
0.048

1.363
1.197
0.169
0.049

1.207
1.195
0.201
0.050

1.146
1.191
0.234
0.051

1.169
1.187
0.268
0.056

1.287
1.182
0.303
0.063

1.543
1.179
0.341
0.070

2.047
1.179
0.382
0.082

0.2

6.672
1.296
0.091
0.051

3.958
1.323
0.130
0.049

2.798
1.326
0.167
0.053

2.242
1.324
0.203
0.050

1.990
1.319
0.239
0.053

1.934
1.314
0.274
0.055

2.052
1.309
0.310
0.059

2.383
1.305
0.345
0.065

3.063
1.302
0.383
0.072

0.4

8.764
1.366
0.079
0.055

4.769
1.382
0.124
0.050

3.218
1.385
0.166
0.053

2511
1.383
0.206
0.052

2.196
1.380
0.244
0.053

2.117
1.377
0.281
0.056

2.239
1.373
0.316
0.063

2.603
1.369
0.350
0.062

3.356
1.367
0.383
0.074

0.6

2.332
1.444
0.065
0.058

3.069
1.465
0.118
0.052

2.149
1.468
0.165
0.054

1.718
1.467
0.210
0.055

1.524
1.464
0.251
0.058

1.480
1.461
0.289
0.057

1.568
1.457
0.323
0.064

1.818
1.454
0.355
0.067

2.328
1.451
0.383
0.069

0.8

L

2.998
1.589
0.048
0.067

1.955
1.628
0.111
0.057

1.433
1.633
0.166
0.059

1.160
1.631
0.215
0.056

1.025
1.627
0.258
0.059

0.980
1.623
0.297
0.061

1.013
1.618
0.331
0.062

1.136
1.614
0.359
0.069

1.391
1.610
0.383
0.070

N

1544

Notes: F and L refer to our Fourier estimator and local linear estimator, respectively. Standard

errors obtained by bootstrap methods are in the second row of each results.
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Table 3.3: Impact of family income on children’s reading achievement

w/x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

3.196
0.767
0.217
0.063

2.570
0.721
0.228
0.063

2.243
0.688
0.237
0.061

2.108
0.657
0.243
0.067

2.128
0.633
0.247
0.074

2.313
0.618
0.250
0.085

2.727
0.619
0.249
0.097

3.543
0.648
0.241
0.123

5.228
0.774
0.209
0.159

-0.6

2.874
0.762
0.214
0.057

2.258
0.762
0.229
0.039

1.936
0.757
0.242
0.062

1.792
0.753
0.253
0.064

1.783
0.750
0.264
0.069

1.907
0.746
0.275
0.075

2.206
0.741
0.287
0.087

2.792
0.739
0.301
0.100

3.959
0.752
0.320
0.124

-0.4

2.188
0.765
0.206
0.059

1.728
0.771
0.223
0.055

1.483
0.771
0.237
0.061

1.369
0.770
0.251
0.063

1.353
0.770
0.263
0.064

1.431
0.769
0.275
0.066

1.629
0.768
0.287
0.080

2.014
0.766
0.300
0.091

2.753
0.769
0.316
0.098

-0.2

1.400
0.797
0.195
0.057

1.132
0.803
0.213
0.056

0.984
0.805
0.229
0.058

0.913
0.805
0.243
0.061

0.903
0.805
0.256
0.066

0.952
0.804
0.269
0.069

1.074
0.803
0.281
0.074

1.308
0.803
0.292
0.083

1.745
0.803
0.305
0.103

0.881
0.834
0.181
0.058

0.711
0.843
0.201
0.059

0.620
0.844
0.218
0.060

0.579
0.843
0.233
0.056

0.576
0.842
0.247
0.063

0.612
0.841
0.259
0.072

0.695
0.841
0.271
0.072

0.849
0.840
0.282
0.078

1.131
0.840
0.292
0.093

0.2

0.907
0.872
0.163
0.059

0.675
0.882
0.185
0.054

0.563
0.884
0.204
0.058

0.514
0.884
0.220
0.063

0.506
0.833
0.235
0.066

0.535
0.832
0.248
0.066

0.606
0.830
0.259
0.075

0.740
0.879
0.270
0.075

0.981
0.879
0.279
0.088

0.4

1.675
0.917
0.141
0.070

1.108
0.929
0.165
0.062

0.848
0.931
0.186
0.062

0.723
0.930
0.204
0.065

0.673
0.929
0.220
0.070

0.679
0.927
0.234
0.069

0.737
0.926
0.246
0.079

0.865
0.924
0.256
0.079

1.101
0.923
0.264
0.088

0.6

3.143
0.973
0.110
0.074

1.830
0.987
0.139
0.072

1.273
0.989
0.163
0.066

1.004
0.988
0.184
0.067

0.876
0.986
0.202
0.069

0.833
0.985
0.217
0.070

0.858
0.983
0.230
0.079

0.957
0.981
0.241
0.079

1.160
0.979
0.249
0.084

0.8

L

4.718
1.046
0.055
0.086

2.378
1.063
0.096
0.083

1.499
1.065
0.129
0.075

1.098
1.064
0.156
0.079

0.901
1.063
0.178
0.080

0.812
1.061
0.197
0.078

0.798
1.059
0.212
0.082

0.853
1.057
0.223
0.088

0.994
1.055
0.232
0.090

N

1274

Notes: F and L refer to our Fourier estimator and local linear estimator, respectively. Standard

errors obtained by bootstrap methods are in the second row of each results.



Table 3.4: Data descriptives

Mean Std.

Budget shares:

Food-in 0.1776 0.0950

Food-out 0.0829 0.0591

Alcohol 0.0712 0.0791

Fuel 0.0612 0.0385

Travel 0.1488 0.0985

Fares 0.0216 0.0499

Leisure goods 0.1357 0.1456
Expenditure and income:

log nondurable expenditure 5.3744 0.4864

log gross earnings 5.7712 0.5389
Sample size 628
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AFQT

Notes: Our estimator is used for covariate-conditioned average marginal effect (top) and average
counterfactual response (bottom). Error-laden measurement of family income is family income

in 1998. Family income in 2000 is used as additional error-laden measurement of family income.

Figure 3.2: Impact of family income on children’s math scores (Fourier)
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Figure 3.3: Impact of family income on children’s math scores (Local linear)
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Notes: Our estimator is used for covariate-conditioned average marginal effect (top) and average
counterfactual response (bottom). Error-laden measurement of current family income is family
income in 1998. Family income in 2000 is used as additional error-laden measurement of family

income.

Figure 3.4: Impact of family income on children’s reading scores (Fourier)
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AFQT

Notes: Local linear estimator is used for covariate-conditioned average marginal effect (top) and
average counterfactual response (bottom). Error-laden measurement of current family income is
family income in 1998. Family income in 2000 is used as additional error-laden measurement of

family income.

Figure 3.5: Impact of family income on children’s reading scores (Local linear)
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Notes: Top figure is food-in and bottom figure is food-out. Our SML-SMD is the solid curve and
SMD is dashed curve.

Figure 3.6: Engel curves for food-in and food-out
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Notes: Top figure is fuel and bottom figure is leisure. Our SML-SMD is the solid curve and SMD

is dashed curve.

Figure 3.7: Engel curves for fuel and leisure
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