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ABSTRACT OF THE THESIS

Application of Quantile Generalized Additive Model

in Differential Expressed Gene Inference

for Single-cell RNA Sequencing Data

by

Tianyang Liu

Master of Applied Statistics

University of California, Los Angeles, 2022

Professor Jingyi Li, Chair

This thesis focuses on applying the quantile generalized additive model (QGAM) to detect

differentially expressed (DE) genes in the single-cell RNA sequencing data. Most of the

existing DE gene inference methods are developed based on Generalized Additive Model

(GAM). At the same time, GAM can be sensitive to outliers during the model fitting process.

Such sensitivity impacts the accuracy of the DE gene detection for the dataset with outliers.

We want to use QGAM’s robustness to outliers to improve the DE gene detection accuracy.

We compared the performance of the QGAM-based DE gene inference method (qgamDE)

with two state-of-the-art GAM-based methods, PseudotimeDE, and tradeSeq, by applying

them to the simulated data. In conclusion, the performance of qgamDE and PseudotimeDE

is better and more stable compared to the performance of tradeSeq. As a result, we added

qgamDE to the PseudotimeDE R package as new functionality.
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CHAPTER 1

Introduction

Single-cell RNA sequencing (scRNA-seq) has recently developed rapidly, promoting research

in biologies such as transcriptomic heterogeneity dissertation and cell type or state detec-

tion [3, 6]. Since scRNA-seq records the continuous cell transition process, it facilitates the

research studies that involve cellular process exploration. However, the data analysis for

scRNA-seq data can be a challenge. Pseudotime, which was first proposed by Trapnell et

al. in 2004 [13], is a sequence of values to represent the stages associated with gene devel-

opment. Some pseudotime/trajectory inference methods have been developed; for example,

TSCAN [5], Slingshot [12], and Monocle [13]. Those methods arrange cells into lineages with

pseudotime-based order, then the pattern of a dynamic process experienced by cells can be

determined.

The DE gene identification is a downstream analysis of trajectory inference. The work-

flow of this process can be described as follows: once we have a scRNA-seq dataset, we can

infer a pseudotime vector and align the pseudotime with genes to show their development at

different stages. When we have the gene expression and its corresponding pseudotime, we

can fit a regression model by setting pseudotime as the predictor and the gene expression as

the response variable. According to the fitted model, if the gene expression is related to the

pseudotime, this gene can be regarded as a DE gene. Otherwise, the gene is a non-DE gene.

Currently, some DE gene inference methods have been developed. PseudotimeDE [11] and

tradeSeq [14] are two state-of-the-art methods. They handle the DE gene inference task
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by applying a generalized additive model (GAM) to find the relationship between the gene

expression in cells and the corresponding pseudotime. However, GAM can be sensitive to

outliers because it fits the mean of the response variable. If there are outliers in the dataset,

the GAM-based inference methods might not precisely find the relationship between the gene

expression and the corresponding pseudotime. Here we would like to introduce a technique,

quantile generalized additive model (QGAM), developed by Fasiolo et al. [1]. Since QGAM

fits the specific quantile of the response variable, the outlier does not impact the fitted result.

Based on this idea, we adopted QGAM to infer the relationship between the gene expression

and corresponding pseudotime for the scRNA-seq data.

In this thesis, we propose the QGAM-based DE gene inference method (qgamDE) to do

the DE gene inference task. To show the outlier robustness of our approach in DE gene

detection, we simulated two sets of data for the comparison experiment. One data set con-

tains more outliers, while another data set contains fewer outliers. This project focuses on

one type of outliers, doublets, which are artifactual libraries generated from two cells in

scRNA-seq experiments. A doublet is a single cell generated by mistakenly adding two cells

together. According to Zheng et al. [17], the doublets usually appears because of errors in

cell sorting or capture. In single-cell level research, doublets are undesirable. They can inter-

fere with DE gene analysis, produce spurious cell clusters, and obscure the inference of cell

developmental trajectories [8, 15]. The existing experiment result shows that qgamDE can

achieve relatively high AUC and power in DE gene detection. Furthermore, its performance

does not obviously deteriorate as the number of doublets increases.

The structure of this thesis is as follows: Chapter 2 reviews the critical concepts of quan-

tile regression, GAM, QGAM, and three DE gene inference methods. Chapter 3 shows the

data simulation process and the visualization of the simulated datasets. Chapter 4 compares

the performance of tradeSeq, PseudotimeDE, and qgamDE in the DE gene inference task.
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Chapter 5 discusses an issue with qgamDE and the current state of the qgamDE application.

Chapter 6 concludes the thesis and discusses possible improvement of qgamDE.
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CHAPTER 2

Methodology

2.1 Quantile Regression

In this thesis, we only consider the scenario that there are only one covariate vector X ∈

Rn×1 and one response variable vector Y ∈ Rn×1. Before we jump into the actual quantile

generalized additive model, we start with the basic concepts of quantile regression. The main

difference between the linear regression and quantile regression is that the linear regression

model predicts the conditional mean E[Y |X]. In contrast, quantile regression predicts the

τ -th conditional quantile q(X) = inf{Y : F (Y | X) ≥ τ}, where F (Y | X) is the conditional

c.d.f. of Y [1]. The traditional quantile regression model is set as

q(Xi) = Xiβ,

where β is the quantile regression coefficient. According to Koenker et al. [7], the coefficient

estimator β̂ for the τ -th quantile can be obtained by L1 weighted loss function

β̂ = argmin
β

1

n

n∑
i=1

ρτ {Yi −Xiβ} ,

where Xi is the i-th element the vector X, Yi is the i-th element the vector Y , and ρτ is a

loss function

ρτ (e) = e(τ − I(e < 0)) =

 e(τ − 1), e < 0,

eτ, e ≥ 0.
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2.2 Generalized Additive Model

After introducing the regular quantile regression model, let us move to the generalized ad-

ditive model (GAM). GAM, a non-parametric regression model, was developed by Hastie

et al. [4]. This model is formed by summing up many functions of predictors. The model

itself tries to fit the mean of the response variable, where the response variable is from an

exponential family. The actual model structure can be described as

g (µi) = f (Xi) ,

where µi is the expectation of the response variable E(Yi), f is the smooth function of pre-

dictor, and g is the link function. GAM is classified as a non-parametric method because it

allows describing the relationship between the response variable and the predictors by the

smooth function instead of the specific parameters.

2.3 Quantile Generalized Additive Model

Now, with the concepts of quantile regression and generalized additive model, we are ready

for the quantile generalized additive model (QGAM). In QGAM, Fasiolo et al. [1] assume

that the τ -th quantile of the response variable depends on the functions of predictor

q(Xi) = f(Xi).

The marginal smooth effect additive term is

f(Xi) =
r∑

k=1

βkbk (Xi) ,
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where βk are the unknown coefficients and bk (·) are known spline basis functions [1]. To

avoid over-fitting, the complex level of QGAM needs to be controlled. Then the penalized

loss is defined as

V (β, γ, σ) =
n∑

i=1

1

σ
ρτ {Yi − f(Xi)}+

1

2
γβTSβ,

where β = [β1, · · · , βr]
T , γ is a positive smoothing parameter, 1

σ
> 0 is the learning rate

which is used to determine the relative weight of the loss and the penalty, S is a positive

semi-definite matrix and it is used to penalize the wiggliness of the corresponding effect

f , the function ρτ (e) is the same loss function which we have introduced in the quantile

regression section [1].

2.4 PseudotimeDE

PseudotimeDE is a pseudotime-based differential expression method developed by Song and

Li in 2021 [11]. It considers the random nature of inferred pseudotime by applying subsam-

pling to estimate pseudotime inference uncertainty and propagating the uncertainty to its

statistical test for DE gene identification [11].

In PseudotimeDE, the baseline model that describes the relationship between the gene

expression and the pseudotime is the negative binomial–generalized additive model (NB-

GAM). For gene j (j ∈ {1, . . . ,m}), its expression Yij in cell i and the pseudotime Ti of cell

i (i ∈ {1, . . . , n}) are assumed to follow

 Yij ∼ NB (µij, ϕj) ,

log (µij) = βj0 + fj (Ti) ,

where NB(µij, ϕj) is the negative binomial distribution with mean µij and dispersion ϕj, and

fj (Ti) =
∑r

k=1 bk (Ti) βjk is a cubic spline function [11].
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To test if gene j is differentially expressed along cell pseudotime, PseudotimeDE defines

the null and alternative hypotheses as H0 : fj(·) = 0 vs. H1 : fj(·) ̸= 0 [11]. According to

Wood [16], the test statistic is set as

Sj = f̂
T

j V̂
r−
fj
f̂ j,

where V̂r−
fj

is a rank-r pseudo-inverse of V̂fj and V̂fj is the estimated covariance matrix of

f̂ j, f̂ j is the estimates of a vector of fj(·) on each Ti, [fj(T1), . . . , fj(Tn)]
T .

In PseudotimeDE, 80% cells (rows) are subsampled from gene expression count matrix Y

for B times to estimate the uncertainty of pseudotime. Suppose the cells in the original

data have been classified into some groups. In that case, PseudotimeDE will first subsam-

ple 80% cells from each group and then combine all the within-group subsamples into one

subsample [11]. For each subsample Yb = [Yij]
b, an n′ × m matrix where n′ = ⌊0.8n⌋,

PseudotimeDE will apply the pseudotime inference method to the subsampled data with

the same input parameters applied to the original dataset. As a result, B subsample-based

realizations of pseudotime T :
{
T 1, · · · ,T b, · · · ,TB

}
are generated [11]. One subsampled

pseudotime set can be described as T b = [T b
1 , . . . , T

b
n′ ]T . Note that the pseudotime inference

process for each subsample comes before the permutation process for each subsample. In

PseudotimeDE, the subsampled n′ pseudotime T b could be the n′ values that are not in the

original pseudotime, then the uncertainty in pseudotime inference can be reflected in T b [11].

PseudotimeDE does the permutation as follows: First, PseudotimeDE randomly permutes

each subsampled pseudotime T b = [T b
1 , . . . , T

b
n′ ]T into T ∗b = [T ∗b

1 , . . . , T ∗b
n′ ]T [11]. Sec-

ond, PseudotimeDE fits the previous model to [Y b
1j, . . . , Y

b
n′j]

T and T ∗b and calculates the

test statistic Sj’s value as sbj [11], Third, PseudotimeDE repeats previous two steps for

b ∈ {1, . . . , B} and stores
{
s1j , . . . , s

B
j

}
as the null values of the test statistic Sj.

7



PseudotimeDE estimates the null distribution of Sj in two ways: Empirical estimate and

Parametric estimate. PseudotimeDE calculates the p-value for gene j based on the esti-

mated null distribution in either way and the observed test statistic value sj [11]. Empirical

estimate: The empirical distribution of
{
s1j , . . . , s

B
j

}
is used as the estimated null distribu-

tion [11]. According to Phipson et al. [9], the p-value of gene j is calculated as

pemp
j =

∑B
b=1 I

(
sbj ≥ sj

)
+ 1

B + 1
,

where I(·) is the indicator function. Parametric estimate: PseudotimeDE fits a parametric

distribution to
{
s1j , . . . , s

B
j

}
and the fitted distribution is used as the estimated null dis-

tribution [11]. Two parametric distributions, a gamma distribution Γ(α, β) with α, β > 0

and a two-component gamma mixture model γΓ (α1, β1) + (1− γ)Γ (α2, β2) with 0 < γ < 1

and α1, β1, α2, β2 > 0, are considered by PseudotimeDE. After fitting both distributions to{
s1j , . . . , s

B
j

}
using the maximum likelihood estimation, PseudotimeDE selects one of the

fitted distributions by using the likelihood ratio test with 3 degrees of freedom [11]. If the

likelihood ratio test p-value is greater than 0.01, PseudotimeDE uses the fitted gamma dis-

tribution as the parametric estimate of the null distribution of Sj; otherwise, PseudotimeDE

uses the fitted two-component gamma mixture model. PseudotimeDE calculates the p-value

of gene j as

pparamj = 1− F̂j (sj) ,

where F̂j(·) is the cumulative distribution function of the parametrically estimated null

distribution.

2.5 tradeSeq

tradeSeq, a method for trajectory-based differential expression analysis for sequencing data,

was developed by Van den Berge et al. [14]. tradeSeq detects DE genes based on pseudotime
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inference. Moreover, tradeSeq also uses GAM to infer the relationship between gene expres-

sion and pseudotime.

In the process of DE gene detection, the read counts Yij, for a given gene j ∈ {1, . . . ,m}

across cells i ∈ {1, . . . , n} are modeled using a NB-GAM with cell and gene-specific means

µij and gene-specific dispersion parameters ϕj [14]
Yij ∼ NB (µij, ϕj) ,

log (µij) = ηij,

ηij =
∑L

l=1 slj (Tli)Zli +Uiαj + log (Ni) .

The gene-wise additive predictor ηij is composed of lineage-specific smoothing splines slj,

and slj are functions of pseudotime Tli, for lineages l ∈ {1, . . . , L} [14]. The binary matrix

Z = (Zli ∈ {0, 1} : l ∈ {1, . . . , L}, i ∈ {1, . . . , n}) assigns every cell to a specific lineage based

on some weights [14]. U is an n × p matrix, where Ui represents the i-th cell. αj is the

regression parameter with dimension of p×1. In general, the matrix U contains the effects of

p known cell-level covariates(e.g., batch, age, or gender). Ni are the cell-specific offsets which

account for the differences in sequencing depth or the capture efficiency between cells [14].

slj is the smoothing spline for a given gene j and lineage l. It can be represented as a

linear combination of r cubic basis functions

slj(t) =
r∑

k=1

bk(t)βljk,

where the cubic basis functions bk(t) are the same for all genes and lineages [14].

The null hypothesis for DE gene testing is set as H0: CTβj = 0 (βj is the concatena-
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tion of the Lr-dimensional column vectors βlj of lineage-specific smoother coefficients). The

test statistics is

Sj = β̂
T

j C
(
CT Σ̂β̂j

C
)−1

CT β̂j,

where β̂j is an estimator of βj, Σ̂β̂j
is an estimator of the covariance matrix Σβ̂j

, and C is

an (Lr)× C matrix representing the C contrasts of interest for the DE test [14].

2.6 qgamDE

We applied two techniques, QGAM and the pseudotime inference method, to make the DE

gene inference. The main difference between our DE gene detection method and the previous

two methods is that instead of using GAM to find the relationship between gene expression

and pseudotime, we use QGAM to determine the relationship.

For a n × m gene expression count matrix Y with rows as cells and columns as genes, we

use trajectory inference method to obtain the corresponding pseudotime T = [T1, . . . , Tn]
T .

Once we have the count matrix and the pseudotime, we can use QGAM as the baseline

model to find the relationship. For an expression Yij in τ -th quantile of gene j

log(qj(Ti)) = βj0 + fj(Ti),

where fj(Ti) =
∑r

k=1 βjkbjk(Ti).

For the DE gene testing, the null and alternative hypotheses are set as H0 : fj(·) = 0 v.s H0 :

fj(·) ̸= 0. The test statistics is set as

Sj = f̂
T

j V̂
r−
fj
f̂ j,

where V̂r−
fj

and f̂ j have been described in PseudotimeDE section [11].
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CHAPTER 3

Experiment

3.1 Data Simulation

To evaluate the performance of qgamDE in DE gene detection, we simulated the scRNA-seq

data with two cell trajectories: single-lineage and bifurcation.

3.1.1 Single-lineage Dataset

We simulated 500 cells and 1000 genes for the single-lineage data. We generated 500 values

from a uniform distribution with a range of [0, 1] as the default time values t for the cells.

Then we created a function to simulate the relationship between the time values and the log

mean of the gene expression. The function we used is

log(µ) = a+ b · cos(t) + c · t2 + d · sin(t3) + 1,

where a, b, c, d are random variables with a ∼ Uniform(0, 1), b ∼ Uniform(2, 3),

c ∼ Uniform(−2, 2), d ∼ Uniform(−4, 4). The ultimate goal of setting the relation function

like this is that we do not want all the genes to have the same cell trajectory.

We generated 1000 genes with different trajectories from the negative binomial distribu-

tion with the simulated mean of the gene expression. Then we generated another 500 genes

11



with the constant gene expression mean value as the non-DE genes. After that, we randomly

selected half of the previous 1000 genes and replaced them with the prepared non-DE genes.

In the end, we obtained a dataset with half of the genes being DE genes (with trajectory)

and half of the genes being non-DE genes (with no trajectory)

Once we obtaind the simulated single-lineage dataset, we used the trajectory inference

method, Slingshot, to obtain the pseudotime for the genes. During the pseudotime inference

process, since the cell cluster input is required for Slingshot(), we have to assign cell clusters

prior to the pseudotime inference. The cell clusters will not bother the inference result for

the single-lineage data. We assigned the first half of the cells to cluster 1 and the remain-

ing half to cluster 2. Here are the PCA and UMAP plots of the simulated single-lineage data:

Figure 3.1: PCA and UMAP visualization on original single-lineage data

In our experiment, we found several doublets in the simulated single-lineage data. We

detected those doublets by function doubletThresholding() from scDblFinder, which was

developed by Germain et al. [2]. About 89 out of 500 cells are recognized as doublets from

the function result. Here are the PCA and UMAP plots of the original simulated data with

doublet scores being highlighted:

12



Figure 3.2: Doublet detection on original single-lineage data

where the doublet score for each cell is a measure of the doublet density near that cell.

Then we eliminated about 57% of the detected doublets and produced the doublet reduced

dataset for the experiment. Only 38 out of 432 cells are recognized as doublets in the reduced

dataset. Here are the PCA and UMAP plots of the doublet reduced dataset with doublet

scores being highlighted:

Figure 3.3: Doublet detection on doublet reduced single-lineage data

We also obtaind the PCA and UMAP plots of the doublet reduced dataset with two cell

clusters:

13



Figure 3.4: PCA and UMAP visualization on doublet reduced single-lineage data

3.1.2 Bifurcation Dataset

For the bifurcation data, we borrowed an existing single-cell data simulator named dyn-

toy [10, 14] to generate the datasets. After the simulation, we obtained 1000 genes and 1000

cells; half of the genes are DE genes. The cells in the simulated dataset are separated into

four clusters: M1, M2, M3, and M4. We also used the slingshot to make the trajectory

inference on the bifurcation data. Since it is a bifurcation dataset, two lineages have been

inferred from slingshot: M1 → M3 → M2 and M1 → M3 → M4. Here are the PCA and

UMAP plots of the original bifurcation data:

Figure 3.5: PCA and UMAP visualization on original bifurcation data

In the simulated bifurcation data, we also detected doublets by scDblFinder. According

14



to the result, about 196 out of 1000 cells are doublets. Here are the PCA and UMAP plots

of original bifurcation data with doublet scores being highlighted:

Figure 3.6: Doublet detection on original bifurcation data

Similar to what we did to the single-lineage data, we eliminated about 41% of the dou-

blets in the original bifurcation data. After the reduction, there are about 115 out of 851

cells are doublets in the dataset. Here are the PCA and UMAP plots of the doublet reduced

bifurcation data with doublet scores being highlighted:

Figure 3.7: Doublet detection on doublet reduced bifurcation data

And we also obtaind the PCA and UMAP plots for doublet reduced bifurcation data with

cell clusters:
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Figure 3.8: PCA and UMAP visualization on doublet reduced bifurcation data
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CHAPTER 4

Results

Once we obtaind the simulated datasets, we applied three DE gene inference methods, trade-

Seq, PseudotimeDE, and qgamDE, to these datasets. We compared the DE gene detection

result among those methods. For both tradeSeq and qgamDE, there is only one set of DE

gene detection outputs. For PseudotimeDE, there are two sets of DE gene detection outputs,

‘fix’ and ‘para’; the ‘fix’ output ignores the uncertainty of inferred pseudotime in the detec-

tion process, while the ‘para’ output considers the uncertainty. The comparative metrics

that we included in this thesis are area under the ROC curve (AUC), false discovery rate

(FDR), power, and uniformity of the distribution of p-values for non-DE genes.

4.1 Simulated Single-lineage Data

For single-lineage datasets, we obtaind the ROC Curve for DE gene detection from each

method (see Fig. 4.1 and Fig. 4.2).

17



Figure 4.1: ROC of DE gene identification on original single-lineage data

Figure 4.2: ROC of DE gene identification on doublet reduced single-lineage data

From the ROC plot, we can observe that the AUC of tradeSeq increases with doublet

reduction. For PseudotimeDE and qgamDE, the AUC does not change by reducing the

doublets.

We also compared the FDR and power among the methods (see Fig. 4.3 and Fig. 4.4).
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Figure 4.3: FDR and power of DE gene identification on original single-lineage data

Figure 4.4: FDR and power of DE gene identification on doublet reduced single-lineage data

Also, we still see that the FDR of tradeSeq decreases and the power of tradeSeq increases

with doublet reduction, while FDR and power do not change that much for qgamDE and

PseudotimeDE.

In the end, we also compared the uniformity of the p-values of non-DE genes. The p-
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values should be uniformly distributed when the null hypothesis is true (non-DE genes).

Here are the p-value distribution plots for both original data and doublet reduced data, with

the p-values of the Kolmogorov-Smirnov Test being specified (see Fig. 4.5 and Fig. 4.6).

Figure 4.5: P-value distribution on original single-lineage data

Figure 4.6: P-value distribution on doublet reduced single-lineage data

According to the figures, the p-value distributions from qgamDE and PseudotimeDE are

close to the uniform distribution. In contrast, the p-value distributions from tradeSeq are
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right-skewed for both original and doublet reduced data.

4.2 Simulated Bifurcation Data

There are two lineages within each dataset for the bifurcation data, and then there will be

two sets of outputs for each comparative metric. For the ROC curve, we obtaind ROC curves

of DE gene identification for each lineage (see Fig. 4.7 and Fig. 4.8).

Figure 4.7: ROC of DE gene identification on original bifurcation data
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Figure 4.8: ROC of DE gene identification on doublet reduced bifurcation data

The ROC plots show that the performance of tradeSeq is improved after doublet removal.

However, the results for qgamDE and PseudotimeDE are accurate and stable. It seems like

there are no changes before and after the doublet reduction. And we still obtaind the FDR

and power for the three methods (see Fig. 4.9, Fig. 4.10, Fig. 4.11 and Fig. 4.12).

Figure 4.9: FDR and power of DE gene identification of original bifurcation lineage 1
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Figure 4.10: FDR and power of DE gene identification of original bifurcation lineage 2

Figure 4.11: FDR and power of DE gene identification of doublet reduced bifurcation lineage
1
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Figure 4.12: FDR and power of DE gene identification of doublet reduced bifurcation lineage
2

The FDR and power plot shows that the FDR decreases for tradeSeq when doublets are

removed for the cells in the second lineage. At the same time, the FDR does not change for

qgamDE and PseudotimeDE no matter whether the doublets are reduced or not. As for the

power, it is obvious that the power for tradeSeq improved when the doublets were removed.

However, the changes in power are very tiny for qgamDE and PseudotimeDE.

At last, we also checked the uniformity of the p-values of non-DE genes. Here are the

distribution plots of the p-values (see Fig. 4.13, Fig. 4.14, Fig. 4.15 and Fig. 4.16).
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Figure 4.13: P-value distribution of original bifurcation lineage 1

Figure 4.14: P-value distribution of original bifurcation lineage 2
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Figure 4.15: P-value distribution of doublet reduced bifurcation lineage 1

Figure 4.16: P-value distribution of doublet reduced bifurcation lineage 2

According to the figures, the p-value distributions from tradeSeq and PseudotimeDE fix

are either right-skewed or left-skewed. The p-value distributions from qgamDE and Pseudo-

timeDE para are similar to the uniform distribution.

Overall, PseudotimeDE and qgamDE are better than tradeSeq. One cause of the infe-
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rior performance of tradeSeq that we speculate is its problematic p-value calculation. Both

PseudotimeDE paper and tradeSeq paper mentioned that the p-values in tradeSeq are calcu-

lated based on the chi-square distribution [11, 14]. However, such p-value calculation is not

a proper approximation to the null distribution [11]. Based on the uncalibrated p-values,

tradeSeq will generate inaccurate results in the p-value-based statistical procedures such as

FDR control [11].
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CHAPTER 5

Discussion

The key idea behind qgamDE can be summarized as follows: we apply QGAM to fit a model

to find the relationship between the gene expression and the pseudotime, and we test the

hypothesis of whether the additive terms in the fitted model are 0 to decide if a gene is

differentially expressed. If the p-value of this hypothesis is small for a gene, then this gene

tends to be DE; otherwise, the gene should be a non-DE gene. In our current experiment,

we only fit the 0.5 quantile of the response variable. Moreover, it is worth exploring the

results with different quantiles of interest.

Although the performance of qgamDE seems good in our experiment, its p-value of gene

j is theoretically problematic. qgamDE directly puts f̂j from QGAM into Sj, and the p-

value is generated without calibration. To figure out why qgamDE performs well even if its

p-values are uncalibrated needs further exploration. We speculate that such a situation is

related to the fact that QGAM fits the median of the response variable during the DE gene

inference process.

The method of qgamDE has been added to the PseudotimeDE package as new functionality.

In PseudotimeDE (QGAM), users can set the quantile they want to fit to infer the relation-

ship between gene expression and pseudotime. In the PseudotimeDE (QGAM) vignettes,

we apply the inference method to a Smart-seq dataset containing primary mouse dendritic

cells (DCs) stimulated with lipopolysaccharide (LPS). The original dataset can be found at

Gene Expression Omnibus (GEO) under accession ID GSE45719 [11]. Here are the plots of
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Figure 5.2: QGAM fitting with 0.5 quantile of interest

estimated gene trajectories for gene CCL5 and gene CXCL10 with 0.1, 0.5, and 0.9 quantiles:

Figure 5.1: QGAM fitting with 0.1 quantile of interest
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Figure 5.3: QGAM fitting with 0.9 quantile of interest

Our tool can correctly recognize these two genes as DE genes. Besides trying other quan-

tiles of interest, we can also consider the zero-inflation problem. This problem is about the

controversy of whether excess zeros that Poisson or negative binomial distributions cannot

explain are biological meaningful or not [11]. In the GAM-based PseudotimeDE, this is-

sue was overcome by introducing both negative binomial GAM and zero-inflated negative

binomial GAM. The former treats excess zeros as biologically meaningful, and the latter

does not [11]. In such a way, users can choose the model to do the DE gene inference task

accordingly. It is worth seeing if it is possible to let PseudotimeDE QGAM take care of the

zero-inflation issue.
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CHAPTER 6

Conclusion

This thesis introduced a new application of QGAM, DE gene inference. The main difference

between qgamDE and the state-of-the-art DE gene inference methods is that qgamDE used

the quantile generalized additive model instead of the generalized additive model to make

the inference. After we applied both qgamDE and the other two methods to the simulated

scRNA-seq datasets, the experiment showed that qgamDE could produce a relatively accu-

rate and stable result regardless of the number of outliers. However, the current results are

limited because they are all simulation-based. Real scRNA-seq data must be used to check

the practical efficacy of qgamDE.
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Fast calibrated additive quantile regression. Journal of the American Statistical Asso-
ciation, 116(535):1402–1412, 2021.

[2] Pierre-Luc Germain, Aaron Lun, Will Macnair, and Mark D Robinson. Doublet iden-
tification in single-cell sequencing data using scdblfinder. F1000Research, 10(979):979,
2021.

[3] Ashraful Haque, Jessica A. Engel, Sarah A. Teichmann, and Tapio Lönnberg. A practi-
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