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Distributed Stochastic Market Clearing with
High-Penetration Wind Power

Yu Zhang,Student Member, IEEE,and Georgios B. Giannakis,Fellow, IEEE

Abstract—Integrating renewable energy into the modern power
grid requires risk-cognizant dispatch of resources to account
for the stochastic availability of renewables. Toward thisgoal,
day-ahead stochastic market clearing with high-penetration wind
energy is pursued in this paper based on the DC optimal power
flow (OPF). The objective is to minimize the social cost which
consists of conventional generation costs, end-user disutility,
as well as a risk measure of the system re-dispatching cost.
Capitalizing on the conditional value-at-risk (CVaR), the novel
model is able to mitigate the potentially high risk of the recourse
actions to compensate wind forecast errors. The resulting convex
optimization task is tackled via a distribution-free sample average
based approximation to bypass the prohibitively complex high-
dimensional integration. Furthermore, to cope with possibly
large-scale dispatchable loads, a fast distributed solveris devel-
oped with guaranteed convergence using the alternating direction
method of multipliers (ADMM). Numerical results tested on
a modified benchmark system are reported to corroborate the
merits of the novel framework and proposed approaches.

Index Terms—ADMM, conditional value-at-risk, demand re-
sponse aggregator, market clearing, stochastic optimization, wind
power.

NOMENCLATURE

A. Indices, numbers, and sets

T , T Number and set of scheduling periods.
Nb, Nl Number of buses and lines.
Ng, Ng Number and set of conventional generators.
Na, Na Number and set of aggregators.
Nw, Nw Number and set of wind farms.
Ns, Ns Number and set of wind power generation

samples.
Rj Set of end users served by aggregatorj.
Srj Set of smart appliances of residential userr

served by aggregatorj.
Pjrs Set of operational constraints of appliances

of residential userr served by aggregatorj.
T E
jrs Set of scheduling periods of appliances.

k ADMM iteration index.
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B. Constants

Pmin
Gi

, Pmax
Gi

Minimum and maximum power output of
conventional generatori.

R
up
i , Rdown

i Ramp-up and ramp-down limits of conven-
tional generatori.

pt
BL Fixed base load power demand in slott.

Pmax
DRAj

Maximum power provided by demand re-
sponse aggregatorj.

pmin
jrs , pmax

jrs Minimum and maximum power consump-
tion of appliances.

Ejrs Total energy consumption of appliances.
T st
jrs, T

end
jrs Start and end times of appliances.

fmin, fmax Minimum and maximum power flow limits.
pmax
W Maximum committed wind power.

An Branch-node incidence matrix.
Ag,Aw,Aa Incidence matrices of conventional genera-

tors, wind farms, and DR aggregators.
Bn Nodal susceptance matrix.
Bf Matrix relating bus angles to branch power

flows.
Bs Branch susceptance matrix.
bℓ Susceptance of lineℓ.
st Vector collecting selling prices in slott.
bt Vector of purchase prices in slott.
ǫpri Tolerance of the ADMM termination crite-

rion using primal feasibility.
ρ Weight of augmented Lagrangian.
µ Weight of CVaR-based transaction cost.
β CVaR probability level.

C. Decision variables

P t
Gi

Output of conventional generatori in slot t.
ptjrs Consumption of appliances in slot t.
P t
DRAj

Total power consumption of aggregatorj in
slot t.

P t
Wm

Power committed by wind farmm in slot t.
η A variable in the CVaR-based transaction

cost.
θt Vector of nodal voltage phases in slott.
pt
G Vector collectingP t

Gi
for all i ∈ Ng.

pt
DRA Vector collectingP t

DRAj
for all j ∈ Na.

pt
W Vector collectingP t

Wm
for all m ∈ Nw.

pjrs Vector collectingptjrs for all t ∈ T .
p0 Vector collectingη andpt

G, pt
DRA, pt

W , θt

for all t ∈ T .
pj Vector collectingpjrs for all r ands.

http://arxiv.org/abs/1504.03274v1
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D. Uncertain quantities

wt
m Actual power output of wind farmm in slot t.

wt Vector collectingwt
m for all m ∈ Nw.

E. Functions

Ci(·) Cost function of generatori.
Ujrs(·) Utility function of appliances.
Fβ(·) CVaR transaction cost.
F̂β(·) Sample mean ofFβ(·).
Lρ(·) Partial Lagrangian function of the

stochastic market clearing problem.
ΠGn

,ΠDRAn
,ΠWn

Revenues or payments of the supplier,
the aggregator, and the wind farm
located at busn.

F. Abbreviations

ADMM Alternating direction method of multipliers.
CVaR Conditional value-at-risk.
DA Day-ahead.
DSM Demand side management.
DR Demand response.
ED Economic dispatch.
ISO Independent system operator.
LMPs Locational marginal prices.
LOLP Loss-of-load probability.
MC Market clearing.
OPF Optimal power flow.
RES Renewable energy sources.
RT Real-time.
SCED Security-constrained economic dispatch.
SCUC Security-constrained unit commitment.
SAA Sample average approximation.
UC Unit commitment.
VaR Value-at-risk.
WPPs Wind power producers.

I. I NTRODUCTION

The future smart grid is an automated electric power grid
that capitalizes on modern optimization, monitoring, com-
munication, and control technologies to improve efficiency,
sustainability, and reliability of generation, transmission, dis-
tribution, and consumption of electric energy. Limited supply
and environmental impact of conventional power generation
compel industry to aggressively utilize the clean renewable
energy sources (RES), such as wind, sunlight, biomass, and
geothermal heat, because of their eco-friendly and price-
competitive advantages. Growing at an annual rate of20%,
wind power generation already boasted a worldwide installed
capacity of 318GW by the end of2013, and is widely
embraced throughout the world [1]. Recently, both the U.S.
Department of Energy (DoE) and the European Union (EU)
proposed ambitious blueprints towards a low-carbon economy
by meeting20% of the electricity consumption with renew-
ables by2030 and2020, respectively [2], [3].

Towards the goal of boosting the penetration of RES, robust
and stochastic planning, operation, and energy management

with renewables have been extensively investigated recently.
A key challenge of the associated power dispatch tasks is
to account for the intrinsically random and non-dispatchable
nature of RES so that total power demand can be satisfied
by total power supply, while the social cost is minimized.
Being resilient to communication outages and malicious cyber-
attacks, efficient decentralized algorithms deployed overthe
interdependent power entities are indispensable as well.

Limiting the loss-of-load probability (LOLP), risk-aware
energy management approaches including economic dispatch
(ED), unit commitment (UC), and optimal power flow (OPF)
were formulated as chance-constrained optimization problems
in [4]–[8]. Leveraging scenario sampling, a general non-
convex chance-constrained program can be relaxed and solved
efficiently as a convex one, which however turns out to be too
conservative in certain scenarios [5]. As an alternative, risk-
limiting dispatch has been formulated as a multi-stage stochas-
tic control problem [9]; see also [10], where direct coupling
of the uncertain energy supply with deferrable demand was
accounted for using stochastic dynamic programming.

Additional early works relied on the so-termed commit-
ted renewable energy. ED penalizing (under-) over-estimation
of wind power was investigated in [11]. Worst-case robust
distributed ED with demand side management (DSM) was
proposed for grid-connected microgrids [12]. However, the
worst-case scenario is unlikely to come up in real-time (RT)
operations. Multi-period ED with spatio-temporal wind fore-
casts was pursued in [13]. The obtained optimal operating
point though can be very sensitive to the forecast accuracy.

Turning attention to power system economics, market clear-
ing (MC) is one of the most important routines for a power
market, which relies on security-constrained UC or OPF.
Independent system operators (ISO) collect generation bids
and consumption offers from the day-ahead (DA) electricity
market. The MC process is then implemented to determine the
market-clearing prices [14]. Deterministic MC without RES
has been extensively studied; see e.g., [15]–[17]. Optimalwind
power trading or contract offerings have been investigated
from the perspective of wind power producers (WPPs) [18]–
[21]. MC under uncertain power generation was recently
pursued as well. As uncertainty of wind power is revealed
on a continuous basis, ISOs are prompted to undertake cor-
rective measures from the very beginning of the scheduling
horizon [22]. One approach for an ISO to control the emerging
risk is through the deployment of reserves following the
contingencies [23]. Electricity pricing and power generation
scheduling with uncertainties were accomplished via stochas-
tic programming [24], [25]. In addition, one can co-optimize
the competing objectives of generation cost and security
indices [26]; see also [27] for a stochastic security-constrained
approach. Albeit computationally complex, stochastic bilevel
programs are attractive because they can account for the
coupling between DA and RT (spot) markets [28], [29].

All existing MC approaches, however, are centralized.
Moreover, they are not tailored to address the challenges of
emerging large-scale dispatchable loads. Specifically, demand
offers come from demand response (DR) aggregators serving
large numbers of residential appliances that feature diverse
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utility functions and inter-temporal constraints. In thiscontext,
the present paper deals with the DC-OPF based MC with high-
penetration wind power. Instead of the worst-case or chance-
constrained formulations, a novel stochastic optimization ap-
proach is proposed to maintain the nodal power balance while
minimize (maximize) the grid-wide social cost (welfare). The
social cost accounts for the conventional generation costs, the
dis-utility of dispatchable loads, as well as a risk measure
of the cost incurred by (over-) under-estimating the actual
wind generation. This is essentially a cost of re-dispatching
the system to compensate wind forecast errors, and is referred
as transaction costthroughout this paper. The transaction
cost in the spot market is modulated through an efficient
risk measure, namely theconditional value-at-risk(CVaR)
(Sec. III-A), which accounts not only for theexpected costof
the recourse actions, but also for their “risks”. A distribution-
free sample average approximation (SAA) is employed to
bypass the prohibitively burdensome integration involvedin
the CVaR-based convex minimization (Sec. III-B). To clear the
market in a distributed fashion, a fast and provably convergent
solver is developed using the ADMM (Sec. IV). Numerical
tests are performed to corroborate the effectiveness of the
novel model and proposed approaches using real power market
data (Sec. V).

The main contribution of this paper is three-fold: i) a CVaR-
based transaction cost is introduced for the day-ahead MC
to judiciously control the risk of (over-) under-estimating the
wind power generation; ii) a sufficient condition pertinentto
transaction prices is established to effect convexity of the
CVaR-based cost; and iii) a distributed solver of the resulting
stochastic MC task is developed to be run by the market
operator and DR aggregators while respecting the privacy of
end users.

Notation. Boldface lower (upper) case letters represent
column vectors (matrices); calligraphic letters stand forsets.
R

d1×d2 , Rd, andR+ stand for real spaces ofd1×d2 matrices,
d × 1 vectors, and non-negative real numbers, respectively;
Symbols a′ and a · b denote the transpose ofa, and the
inner product ofa andb; ⌊I⌋ is the lower endpoint of the
interval setI. Operator[a]+ := max{a, 0} is the projection
to the nonnegative reals, while� (�) indicates the entry-wise
inequality. Finally, the expectation is denoted byE[·].

II. CVAR REVISITED: A CONVEX RISK MEASURE

Value-at-risk (VaR) and conditional value-at-risk (CVaR)are
widely used in various real-world applications, especially in
the finance area, as the popular tools to evaluate the credit risk
of a portfolio, and reduce the probability of large losses [30]–
[32]. The following revisit is useful to grasp their role in the
present context.

Consider a loss functionL(x, ξ) : X × Ξ 7→ R denoting
the real-valued cost associated with the decision variable
x ∈ X ⊂ R

n; and the random vectorξ with probability
density functionp(ξ) supported on a setΞ ⊂ R

d. In the
context of power grids,x can represent the power schedules
of generators, whileξ collects the sources of uncertainty due
to for instance renewable energy and forecasted load demand.

Loss
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Fig. 1. Illustration of VaR and CVaR:β-VaR is the threshold that the loss
exceeds with at most a small probability1 − β. β-CVaR is the conditional
expectation of the loss beyond theβ-VaR.

Clearly, the probability ofL(x, ξ) not exceeding a threshold
η is given by the right-continuous cumulative distribution
function (CDF)

Ψ(x, η) =

∫

L(x,ξ)≤η

p(ξ) dξ. (1)

Definition 1 (VaR). Given a prescribed confidence levelβ ∈
(0, 1), theβ-VaR is the generalized inverse ofΨ defined as

ηβ(x) := min{η ∈ R | Ψ(x, η) ≥ β}. (2)

β-VaR is essentially theβ-quantile of the randomL(x, ξ).
SinceΨ is non-decreasing inη, ηβ(x) comes out as the lower
endpoint of the solution interval satisfyingΨ(x, η) = β,
and the commonly chosen values ofβ are, e.g.,0.99, 0.95,
and 0.9. Clearly, VaR determines amaximum tolerableloss
of an investment, i.e., a threshold the loss will not exceed
with a high probabilityβ. Hence, given the confidence level
β, investors are motivated to solve the so-termedportfolio
optimization problem which yields the optimal investment
decisions minimizing the VaR value.ηβ(x) is proportional to
the standard deviation ifΨ is Gaussian. However, for general
distributions,β-VaR is non-subadditive which means the VaR
of a combined portfolio can be larger than the sum of the
VaRs of each component. This violates the common principle
“diversification reduces risk”. Moreover, it is generally non-
convex rendering the optimization task hard to tackle.

Because of these conceptual and practical drawbacks, CVaR
(a.k.a. “tail VaR”, “mean shortfall”, or “mean excess loss”)
was proposed as an alternative risk metric that has many
superior properties over VaR.

Definition 2 (CVaR). Theβ-CVaR is the mean of theβ-tail
distribution ofL(x, ξ), which is given as

Ψβ(x, η) :=

{

0, if η < ηβ(x)
Ψ(x,η)−β

1−β , if η ≥ ηβ(x)
. (3)
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Truncated and re-scaled fromΨ, function Ψβ is non-
decreasing, right-continuous, and in fact a distribution func-
tion. If Ψ is continuous everywhere (without jumps),β-CVaR
coincides with the lower CVaRφ−

β (x) := Eξ [L|L ≥ ηβ(x)],
that is the conditional expectation of the loss beyond theβ-
VaR. Hence, roughly speaking,β-CVaR is the expected loss
in the worst100(1−β)% scenarios; i.e., cases of such severe
losses occur only100(1− β) percent of the time.

Theβ-CVaR can be also defined as the optimal value of the
following optimization problem

φβ(x) := min
η∈R

{

η +
1

1− β
Eξ [L(x, ξ)− η]+

}

. (4)

Let Fβ(x, η) denote the objective function in (4). Key prop-
erties ofFβ and its relationship withηβ(x) and φβ(x) are
summarized next.

Theorem 1( [31], pp. 1454–1457). FunctionFβ(x, η) is finite
and convex inη. Valuesηβ(x) andφβ(x) are linked through
Fβ(x, η) as

ηβ(x) = ⌊argmin
η∈R

Fβ(x, η)⌋ (5)

φβ(x) = Fβ(x, ηβ(x)) (6)

min
x∈X

φβ(x) = min
(x,η)∈X×R

Fβ(x, η). (7)

Moreover, ifL(x, ξ) is convex inx, thenFβ(x, η) is jointly
convex in(x, η), while φβ(x) is convex inx.

From Definition 2, it can be seen that CVaR is an upper
bound of VaR, implying that portfolios with small CVaR also
have small VaR. As a consequence of Theorem 1, minimizing
the convexφβ(x) amounts to minimizingFβ(x, η), which is
not only convex, but also easier to approximate. A readily
implementable approximation of the expectation functionFβ

is its empirical estimate usingNs Monte Carlo samples
{ξs}

Ns

s=1, namely

F̂β(x, η) = η +
1

Ns(1 − β)

Ns
∑

s=1

[L(x, ξs)− η]+ . (8)

Clearly, the sample average approximation method is dis-
tribution free, and the law of large numbers ensuresF̂β

approximates wellFβ for Ns large enough. Furthermore,
F̂β(x, η) is convex with respect to(x, η) if L(x, ξs) is convex
in x. The non-differentiability due to the projection operator
can be readily overcome by leveraging the epigraph form of
F̂ , which will be shown explicitly in Section III-C.

With the functionFβ(x, η), it is now possible to develop
the CVaR-based stochastic market clearing, as detailed in the
next section.

III. STOCHASTIC MARKET CLEARING

In a day-ahead electricity market, participants including
power generation companies and load service entities (LSEs)
first submit their hourly supply bids and demand offers to
market operators for the next operating day. Then, the ISO
or regional transmission organization (RTO) clear the for-
ward markets yielding least-cost unit commitment decisions,

power dispatch outputs, and the corresponding DA clearing
prices. The MC procedure proceeds in two stages. A security-
constrained unit commitment (SCUC) is performed first by
solving a large-scale mixed integer program to commit gen-
eration resources after simplifying or omitting transmission
constraints. The second stage involves security-constrained
economic dispatch (SCED) obtaining the economical power
generation outputs and the locational marginal prices (LMPs)
as a byproduct. With unit commitment decisions fixed, SCED
is usually in the form of DC-OPF, including the transmission
network constraints [33].

The MC process is implemented with a goal of mini-
mizing the system net cost, or equivalently maximizing the
social welfare. With the trend of increasing penetration of
renewables, WPPs are able to directly bid in the forward
market [34]. Under uncertainty of wind generation, it now
becomes challenging but imperative for the ISOs/RTOs and
market participants to extract forecast information and make
efficient decisions, including reserve requirements, day-ahead
scheduling, market clearing, reliability commitments, aswell
as the real-time dispatch [35]. In this section, a stochastic
MC approach using the CVaR-based transaction cost will be
developed as follows.

A. CVaR-based Energy Transaction Cost

Consider a power system comprisingNb buses,Nl lines,Ng

conventional generators,Nw wind farms andNa aggregators,
each serving a large number of residential end-users with
controllable smart appliances. LetT := {1, 2, . . . , T } denote
the scheduling horizon of interest, e.g., one day ahead. If
a wind farm is located at busm, two quantities will be
associated with it: the actual wind power generationwm,
and the power scheduled to be injectedpWm

. Note that the
former is random, whereas the latter is a decision variable.For
notational simplicity, define also twoNw-dimensional vectors
wt := [wt

1, . . . , w
t
Nw

]′, andpt
W := [ptW1

, . . . , ptWNw
]′.

Sincewt varies randomly, either energy surplus or shortage
should be included to satisfy the nodal balance with the
committed quantitypt

W . When surplus occurs, the wind farms
can sell the excess wind energy back to the spot market,
or simply curtail it. For the case of shortage, in order to
accomplish the promised bid in the DA contract, farms can
buy the energy shortfall from the RT market in the form of
ancillary services.

Let bt := [bt1, . . . , b
t
Nw

]′ and st := [st1, . . . , s
t
Nw

]′ collect
the purchase and selling prices at timet, respectively. Clearly,
with the power shortfall and surplus being[pt

W − wt]+ and
[wt − pt

W ]+ at time t, the grid-wide net transaction cost is

T (pW ,w) =
T
∑

t=1

(

bt · [pt
W −wt]+ − st · [wt − pt

W ]+
)

=
T
∑

t=1

(

̟t · |pt
W −wt|+ ϑt · (pt

W −wt)
)

(9)

where̟t := bt−st

2 andϑt := bt+st

2 ; pW andw collectpt
W

andwt for all t ∈ T , respectively.
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ReplacingL(·, ·) in (4) with T (·, ·), function Fβ can be
expressed through the conditional expected transaction cost as

Fβ(pW , η) = η +
1

1− β
Ew

[

T
∑

t=1

(

̟t · |pt
W −wt|

+ ϑt · (pt
W −wt)

)

− η

]+

. (10)

A condition guaranteeing convexity ofFβ(pW , η) is estab-
lished next.

Proposition 1. If the selling pricestm does not exceed the
purchase pricebtm for any m ∈ Nw and t ∈ T , function
Fβ(pW , η) is jointly convex with respect to(pW , η).

Proof: Thanks to Theorem 1, it suffices to show that
T (pW ,w) =

∑T
t=1

(

̟t · |pt
W − wt| + ϑt · (pt

W − wt)
)

is convex inpW under the proposition’s condition. Clearly,
the stated condition is equivalent to̟ t � 0 for all t ∈ T .
Thus, by the convexity of the absolute value function, and
the convexity-preserving operators of summation and expec-
tation [36, Sec. 3.2], the claim follows readily.

In this paper, a perfectly competitive market is assumed
such that all participants act as price takers. That is, every
competitor isatomisticto have small enough market share so
that there is no market power affecting the price [37]. For
American electricity markets, a single pricing mechanism is
used such thatst ≡ bt holds in most of the scenarios. This
is a special case of the pricing condition in Prop. 1, which
facilitates calculating the function (10) since the absolute
value functions vanish. Note that it is possible that different
WPPs may buy (sell) wind energy from (to) different sellers
(purchasers) in a competitive electricity pool as an ancillary
service, which can yield different purchase and selling prices.

For most of the European markets including UK, France,
Italy, and Netherlands, the imbalance prices{bt, st}t are
commonly set in anex-postway that is known asdual im-
balance pricing[38]. Specifically, if the system RT imbalance
is negative, i.e., the overall market is short, thenst = χt � bt

holds, whereχt := [χt
1, . . . , χ

t
Nw

]′ collects the DA prices
at the buses attached with allNw wind farms. In this case,
the RT purchase price is typically higher than the DA price,
reflecting the cost of acquiring the balancing energy [39].
Wind farms with excess energy can sell this part to reduce
the system imbalance but only be paid the DA prices. On
the other hand, we havest � χt = bt if the market is
long. Hence, market participants selling excess energy receive
a balancing price which is lower than the DA one, while
those running negative imbalance pay the DA price. Note
that the relationshipst � χt � bt always holds even when
the market imbalance outcome is unknown at the time of the
DA bids. Such a pricing mechanism drives bidders to match
their forward offers with the true forecasts of generation or
consumption.

Leveraging the CVaR-based transaction cost, a stochastic
MC problem based on the DC-OPF will be formulated next.

B. CVaR-based Market Clearing

Let pt
G := [P t

G1
, . . . , P t

GNg
]′ and pt

DRA :=

[P t
DRA1

, . . . , P t
DRANa

]′ denote the power outputs of the
thermal generators, and the power consumption of the
aggregators at slott, respectively. Define further the sets
Na := {1, 2, . . . , Na} and Ng := {1, 2, . . . , Ng}. Each
aggregatorj ∈ Na serves a setRj of residential users, and
each userr ∈ Rj has a setSrj of controllable appliances.
Let pjrs be the power consumption of appliances with
user r corresponding to aggregatorj across the slots. The
operational constraints ofpjrs are captured by a setPjrs,
while the end user satisfaction is modeled by a concave
utility function Ujrs(pjrs). Furthermore, let convex functions
{Ci(·)}i denote the generation costs, andpt

BL the base load
demand. For brevity, let vectorp0 collect variablesη and
{pt

G,p
t
DRA,p

t
W , θt}t∈T ; and vector{pj}j∈Na

the power
consumption of all appliances with the aggregatorj.

Hinging on three assumptions: a1) lossless lines, a2) small
voltage phase differences, and a3) approximated one p.u.
voltage magnitudes, the DC-OPF based stochastic MC stands
with the goal of minimizing the social cost:

min

T
∑

t=1

Ng
∑

i=1

Ci(P
t
Gi
)−

Na
∑

j=1

∑

r∈Rj,
s∈Sjr

Ujrs(pjrs) + µFβ(pW , η)

(11a)

subject to :

Agp
t
G +Awp

t
W −Aap

t
DRA − pt

BL = Bnθ
t, t ∈ T (11b)

Pmin
Gi

≤ P t
Gi

≤ Pmax
Gi

, i ∈ Ng, t ∈ T (11c)

− R
down
i ≤ P t

Gi
− P t−1

Gi
≤ R

up
i , i ∈ Ng, t ∈ T (11d)

fmin � Bfθ
t � fmax, t ∈ T (11e)

θt1 = 0, t ∈ T (11f)

0 � pW � pmax
W (11g)

0 ≤ P t
DRAj

≤ Pmax
DRAj

, j ∈ Na, t ∈ T (11h)

P t
DRAj

=
∑

r∈Rj , s∈Sjr

ptjrs, j ∈ Na, t ∈ T (11i)

pjrs ∈ Pjrs, s ∈ Sjr , r ∈ Rj , j ∈ Na (11j)

variables : {pj}
Na

j=0

where the nodal susceptance matrixBn := −A′
nBsAn ∈

R
Nb×Nb and the angle-to-flow matrixBf := −BsAn ∈

R
Nl×Nb . The ℓth row of the branch-node incidence matrix

An ∈ R
Nl×Nb has 1 and −1 in its entry corresponding to

the from and to nodes of branchℓ, and0 elsewhere; and the
square diagonal matrixBs := diag(b1, . . . , bNl

) is the branch
susceptance matrix collecting the primitive susceptance across
all branches.

Matrices Ag ∈ R
Nb×Ng , Aw ∈ R

Nb×Nw and Aa ∈
R

Nb×Na in (11b) are the incidence matrices of the con-
ventional generators, the wind farms, and the aggregators,
respectively. TakeAg as an example,(Ag)mn = 1 if the
nth generator is injected to themth bus, and(Ag)mn = 0,
otherwise. MatricesAw andAa can be constructed likewise.
Consider the power network in Fig. 2 adapted from the West-
ern Electricity Coordinating Council (WECC) system [40].
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G1

W1

G2

G3

W2

W3
A1

A2 A3

A4
BL6

BL1

BL4 BL5

4

3

5

6 2
1

Fig. 2. Modified WECC system featuring 6 buses, 3 generators,4 aggrega-
tors, 4 base loads, and 3 wind farms.

With Nb = 6, Nl = 6, Ng = 3, andNa = 4, matricesAg,
Aw, andAa take the following form:

Ag =

















1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

















,Aw =

















1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0

















,Aa =

















0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

















.

A smart appliance example is charging a plug-in hybrid
electric vehicle (PHEV), which typically amounts to consum-
ing a prescribed total energyEjrs over a specific horizon from
a start timeT st

jrs to a termination timeT end
jrs . The consumption

must remain within a range betweenpmin
jrs andpmax

jrs per period.
With T E

jrs := {T st
jrs, . . . , T

end
jrs }, setPjrs takes the form:

Pjrs =

{

pjrs

∣

∣

∣

∣

∣

∑

t∈T E
jrs

ptjrs = Ejrs, p
t
jrs ∈ [pmin

jrs , p
max
jrs ],

∀ t ∈ T E
jrs; p

t
jrs = 0, ∀ t ∈ T \ T E

jrs

}

. (12)

Further examples ofPjrs andUjrs(pjrs) can be found in [17],
where it is argued thatPjrs is a convex set for several
appliance types of interest.

Linear equality (11b) is thenodal balanceconstraint; i.e.,
the load balance at bus levels dictated by the law of conserva-
tion of power. Limits of generator outputs and ramping rates
are specified in constraints (11c) and (11d). Network power
flow constraints are accounted for in (11e). Without loss of
generality, the first bus can be set as the reference bus with zero
phase in (11f). Constraints (11h) and (11g) capture the lower
and upper limits of the energy consumed by the aggregators
and the committed wind power, respectively. Equality (11i)
amounts to theaggregator-user power balanceequation; and
constraints (11j) define the feasible set of appliances. Finally,
the pre-determined risk-aversion parameterµ > 0 controls the
trade off between the transaction cost and the generation cost
as well as the end-user utility.

Remark 1. (Availability of real-time prices). In this paper,
the real-time prices{bt, st}t∈T are assumed to be perfectly

known to the ISO for the DA market clearing. However, such
an assumption can be readily extended to a more practical
setup by taking the price stochasticity into account. Specifi-
cally, imperfect price information can be modeled by appropri-
ately designing the functionT (pW ,w) [cf. (9)]. For example,
the expectation can be also taken over the random RT prices
in (10) as Fβ(pW , η) = η + 1

1−βE{w,{bt,st}t}[T (pW ,w) −
η]+. The dependence between{bt, st} andw can be further
investigated. In addition, worst-case analysis is available
upon postulating an uncertainty set∆ for {bt, st}. This
results in a novel risk measure given asFβ(pW , η) = η +
1

1−βEw[sup{bt,st}t∈∆ T (pW ,w)− η]+.

It is worth mentioning that SCED and SCUC yield two
different market pricing systems: locational marginal pricing
and convex hull pricing (a.k.a. extended LMP). The ED
formulation produces the LMPs given by the dual variables
associated with the supply-demand balance constraint. Prices
supporting the equilibrium solution are found at the intersec-
tion of the supply marginal cost curve with the demand bids.
However, if discrete operations of UC are involved, there isno
exact price that supports such an economic equilibrium. This
issue prompted the introduction of the convex hull pricing
to reduce the uplift payments [41]. In the present paper, the
core ED model is considered to deal with the high penetration
of renewables and large-scale DR programs. Therefore, the
formulation (11) relies on re-solving the dispatch problemwith
fixed UC decisions.

Remark 2. (Reliability assessment commitment). The pro-
posed dispatch model can be cast as a two-stage program.
The first stage is the DA MC, and the second is simply the
balancing operation (recourse action) dealing with differences
between the pre-dispatch amount and the actual wind power
generation. Between the DA and RT markets, ISOs implement
the reliability assessment commitment (RAC) as a reliability
backstop tool to ensure sufficient resources are available and
cover the adjusted forecast load online. One principle of the
RAC process is to commit the capacity deemed necessary to
reliably operate the grid at the least commitment cost. In this
step, based on the updated information of the wind power
forecast, WPPs have an opportunity to feedback to the ISO if
they are able to commit the scheduled wind power decided by
the DA MC. Then, the ISO is able to adjust UC decisions as
necessary to ensure reliability.

To this end, reformulation of problem (11) as a smooth con-
vex minimization is useful for developing distributed solvers,
as detailed next.

C. Smooth Convex Minimization Reformulation

It is clear that under the condition of Proposition 1, the
objective and the constraints of (11) are convex, which renders
it not hard to solve in principle. Nevertheless, due to the high-
dimensional integration present inFβ(pW , η) [cf. (10)], an
analytical solution is typically impossible. To this end, it is
necessary to re-write the resulting problem in a form suitable
for off-the-shelf solvers.
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First, as shown in (8), an efficient approximation of
Fβ(pW , η) is offered by the empirical expectation using i.i.d.
samples{ws}

Ns

s=1; that is,

F̂β(pW , η) = η +
1

Ns(1− β)

Ns
∑

s=1

[

T
∑

t=1

(

̟t · |pt
W −wt

s|

+ ϑt · (pt
W −wt

s)
)

− η

]+

. (13)

Next, by introducing auxiliary variables{us}Ns
s=1, the non-

smooth convex program (11) can be equivalently re-written as
the following smooth convex minimization:

min
T
∑

t=1

Ng
∑

i=1

Ci(P
t
Gi
)−

Na
∑

j=1

∑

r∈Rj ,
s∈Sjr

Ujrs(pjrs)

+ µ

(

η +

∑Ns
s=1 us

Ns(1− β)

)

(14a)

subject to : (11b)− (11j)
T
∑

t=1

(

̟t · |pt
W −wt

s|+ ϑt · (pt
W −wt

s)
)

≤ us + η,

s ∈ Ns (14b)

variables : {pj}
Na

j=0, {us ∈ R+}
Ns

s=1.

Under mild conditions, the optimal solution set of (14) con-
verges exponentially fast to its counterpart of (11), as the
sample sizeNs increases. The proof is based on the theory
of large deviations [42], but is omitted here due to space
limitations.

Problem (14) can be solved centrally at the ISO in principle.
However, with large-scale DR, distributed solvers are well
motivated not only for computational efficiency but also for
privacy reasons. Specifically, functionsUjrs(pjrs) and sets
{Pjrs} are private, and are not revealed to the ISO; and (ii)
the operational sets{Pjrs}j,r,s of very large numbers of het-
erogenous appliances may become prohibitively complicated;
e.g., mix-integer constraints can even be involved to modelthe
ON/OFF status and un-interruptible operating time of end-
user appliances [43], [44]. This renders the overall problem
intractable for the ISO. To this end, the DR aggregators can
play a critical role to split the resulting optimization task as
detailed next.

IV. D ISTRIBUTED MARKET CLEARING VIA ADMM

Selecting how to decompose the optimization task as well
as updating the associated multipliers are crucial for the

distributed design. Fewer updates simply imply lower com-
munication overhead between the ISO and the aggregators.
One splitting approach is the dual decomposition with which
the dual subgradient ascent algorithm is typically very slow.
Instead, a fast-convergent solver via the ADMM [45] is
adapted in this section for the distributed MC.

A. The ADMM Method

Consider the following separable convex minimization prob-
lem with linear equality constraints:

min
x∈X ,y∈Y

f(x) + g(y) (15a)

subject to : Ax+By = c. (15b)

For the stochastic MC problem (14), the primal variable
x comprises the group{us}s∈Ns

and p0, while y collects
{pj}j∈Na

. Hence, setX captures constraints (11b)–(11h)
and (14b) whileY represents (11j). The linear equality con-
straint (15b) corresponds to (11i).

Let λ := [λ1
1, . . . , λ

T
Na

]′ ∈ R
TNa denote the Lagrange

multiplier vector associated with the constraint (11i). The
partially augmented Lagrangian of (14) is thus given by (16),
where the weightρ > 0 is a penalty parameter controlling
the violation of primal feasibility, which turns out to be the
step size of the dual update. As the iterative solver of (16)
proceeds, the primal residual converges to zero that ensures
optimality. Judiciously selectingρ thus strikes a desirable
tradeoff between the size of primal vis-à-vis dual residuals.
Note also that by varyingρ over a finite number of iterations
may improve convergence [45]. In a nutshell, finding the
“optimal” value of ρ is generally application-dependent that
requires a trial-and-error tuning.

Different from [46] where the power balance and phase
consistency constraints are relaxed, in this work only the
aggregator-user power balance equation (11i) is dualized so
that the nodal balance equation (11b) is kept in the subproblem
of the ISO. Decomposing the problem (14) in such a way
can reduce the heavy computational burden at the ISO while
respect the privacy of end users within each aggregator.
The ADMM iteration cycles between primal variable updates
using block coordinate descent (a.k.a. Gauss-Seidel), anddual
variable updates via gradient ascent. The resulting distributed
MC is tabulated as Algorithm 1, wherek is the iteration index.
The last step is a reasonable termination criterion based onthe
primal residual [45, Sec. 3.3.1]

ξ :=





T
∑

t=1

Na
∑

j=1

(

P t
DRAj

−
∑

r,s

ptjrs

)2




1/2

. (17)

Lρ(x,y,λ) =

T
∑

t=1

Ng
∑

i=1

Ci(P
t
Gi
)−

Na
∑

j=1

∑

r∈Rj ,
s∈Sjr

Ujrs(pjrs) + µ

(

η +

∑Ns
s=1 us

Ns(1− β)

)

+

T
∑

t=1

Na
∑

j=1

λt
j

(

P t
DRAj

−
∑

r,s

ptjrs

)

+
ρ

2

T
∑

t=1

Na
∑

j=1

(

P t
DRAj

−
∑

r,s

ptjrs

)2

(16)



8 IEEE TRANSACTIONS ON POWER SYSTEMS (TO APPEAR)

Algorithm 1 ADMM-based Distributed Market Clearing

1: Initialize λ(0) = 0

2: repeat for k = 0, 1, 2, . . .
3: update primal variables:

x(k + 1) = argmin
x∈X

Lρ(x,y(k),λ(k)) (18)

y(k + 1) = argmin
y∈Y

Lρ(x(k + 1),y,λ(k)) (19)

4: update dual variables: for all j ∈ Na and t ∈ T

λt
j(k + 1) = λt

j(k) + ρ
(

P t
DRAj

(k + 1)−
∑

r,s

ptjrs(k + 1)
)

(20)

5: until ξ ≤ ǫpri

Specifically, given the Lagrangian multipliersλ(k) and the
power consumption{pjrs(k)}jrs of the end-user appliances,
The ISO solves the convex subproblem (18) given as follows:

p0(k + 1) = argmin
p0,{us}

∑

t∈T ,
i∈Ng

Ci(P
t
Gi
) + µ

(

η +

∑Ns
s=1 us

Ns(1 − β)

)

+
∑

t∈T ,
j∈Na

λt
j(k)P

t
DRAj

+
ρ

2

∑

t∈T ,
j∈Na

(

P t
DRAj

−
∑

r,s

ptjrs(k)

)2

(21a)

subject to :

Agp
t
G +Awp

t
W −Aap

t
DRA − pt

BL = Bnθ
t, t ∈ T (21b)

Pmin
Gi

≤ P t
Gi

≤ Pmax
Gi

, i ∈ Ng, t ∈ T (21c)

− R
down
i ≤ P t

Gi
− P t−1

Gi
≤ R

up
i , i ∈ Ng, t ∈ T (21d)

fmin � Bfθ
t � fmax, t ∈ T (21e)

θt1 = 0, t ∈ T (21f)

0 � pW � pmax
W (21g)

0 ≤ P t
DRAj

≤ Pmax
DRAj

, j ∈ Na, t ∈ T (21h)
T
∑

t=1

(

̟t · |pt
W −wt

s|+ ϑt · (pt
W −wt

s)
)

≤ us + η,

andus ≥ 0, s ∈ Ns. (21i)

Interestingly, (19) is decomposable so that{pjrs(k)}r,s can
be separately solved by each aggregator:

{pjrs(k + 1)}r,s = argmin
{pjrs}r,s

−
T
∑

t=1

λt
j(k)

∑

r,s

ptjrs

−
∑

r∈Rj ,
s∈Sjr

Ujrs(pjrs) +
ρ

2

T
∑

t=1

(

∑

r,s

ptjrs − P t
DRAj

(k + 1)

)2

(22a)

subject to : {pjrs ∈ Pjrs}r,s. (22b)

Having foundp0(k) and{pjrs(k)}jrs, the multipliers{µt
j}j,t

are updated using gradient ascent as in (20). To solve the

convex problem (22), each aggregator must collect the corre-
sponding users’ information includingUjrs andPjrs. This is
implementable via the advanced metering infrastructure [47].

Remark 3. (Distributed demand response). It must be further
pointed out that the quadratic penalty

(

P t
DRAj

−
∑

r,s p
t
jrs

)2

in (16) couples load consumptions{ptjrs} over different resi-
dential users. Hence, the ADMM-based distributed solver may
not be applicable wheneverptjrs must be updated per end
user rather than the aggregator. This may arise either to
strictly protect the privacy of end users from DR aggregators,
or, to accommodate large-scale DR programs where each
aggregator cannot even afford solving the subproblem(22).
In this case, leveraging the plain Lagrangian function (no
coupling term), the dual decomposition based schemes can be
utilized by end users to separately update{ptjrs} in parallel;
see e.g., [17] and [48].

The convergence of the ADMM solver and its implications
for the market price are discussed next.

B. Pricing Impacts

Suppose two additional conditions hold for the convex
problem (14): c1) functions{Ci(·)}i and {−Ujrs(·)}jrs are
closed and proper convex; and c2) the plain LagrangianL0 has
a saddle point. Then, the ADMM iterates of the objective (14a)
and the dual variables{λt

j}j,t are guaranteed to converge to the
optimum [45]. In addition, if the objective is strongly convex,
then the primal variable iterates includingpG, pDRA, pW and
{pj}j∈Na

converge to the globally optimal solutions.
The guaranteed convergence of the dual variables also facil-

itates the calculation of LMPs. Let̄λt := [λ̄t
1, . . . , λ̄

t
Na

]′ and
τ̄ t := [τ̄ t1, . . . , τ̄

t
Nb

]′ denote the optimal Lagrange multipliers
associated with the aggregator-user balance constraint (11i),
and the nodal balance constraint (11b), respectively. Notethat
with the optimal solutions̄λt and{p̄jrs}jrs obtained by the
ADMM solver, the LMPs{τ̄ t}t can be found by solving the
subproblem (21) with primal-dual algorithms. In addition,if
0 < P t

DRAj
< Pmax

DRAj
, ∀j, t holds at the optimal solution

P̄ t
DRAj

, then λ̄t = A′
aτ̄

t; i.e., λ̄t
j = τ̄ tn for all aggregators

j attached with busn (see also [17]). To this end, payments
of the market participants can be calculated with the obtained
LMPs and optimal DA dispatches. In the RT market of a two-
settlement system, if the supplier at busn deliversP̃ t

Gn
with

the real-time pricẽτ tn, then the supplier gets paid

ΠGn
=

T
∑

t=1

τ̄ tnP̄
t
Gn

+ τ̃ tn(P̃
t
Gn

− P̄ t
Gn

).

Likewise, the aggregator at busn needs to pay

ΠDRAn
=

T
∑

t=1

τ̄ tnP̄
t
DRAn

+ τ̃ tn(P̃
t
DRAn

− P̄ t
DRAn

).

The revenue of the wind farm at busn is

ΠWn
=

T
∑

t=1

(

τ̄ tnp̄
t
Wn

+ stn[w
t
n − p̄tWn

]+ − btn[p̄
t
Wn

− wt
n]

+
)

.
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TABLE I
CONVENTIONAL GENERATOR PARAMETERS. THE UNITS OFai AND bi ARE

$/(MWH)2 AND $/MWH, RESPECTIVELY. THE REST ARE INMW.

Unit ai bi Pmax
Gi

Pmin
Gi

R
up
i R

down
i

1 0.3 50 90 10 50 50
2 0.15 30 50 5 35 40
3 0.2 40 60 8 40 40

TABLE II
PARAMETERS OFPHEVS. ALL LISTED HOURS ARE THE ENDING ONES;

W.P. MEANS WITH PROBABILITY.

EPHEV (kWh) Uniform on {10, 11, 12}
pmax
PHEV

(kWh) Uniform on {2.1, 2.3, 2.5}
pmin
PHEV

(kWh) 0
T st
jrs 1am

T end
jrs 6am w.p. 70%, 7am w.p. 30%

Remark 4. (Pricing consistence). In a perfectly competitive
market, any arbitrage opportunities between the DA and RT
markets are exploited by market participants. Hence, the DA
nodal prices are consistent with the DT nodal prices meaning
the expectations of the latter converge to the former. The
concepts of price distortions and revenue adequacy have been
recently proposed for the stochastic MC in [49]. In the setup
of a single snapshot therein, it has been proved that the
medians and expectations of RT prices converge to the DA
counterparts for theℓ1 and ℓ2 penalties between the RT and
DA power schedules, respectively. Building upon this solid
result, it is possible to establish bounded price distortions for
the proposed model, while its consistent pricing property can
also be analyzed in a similar fashion. The involved important
analysis is however beyond the scope of this paper, and is left
for future work.

V. NUMERICAL TESTS

In this section, simulated tests are presented to verify the
merits of the proposed CVaR-based MC. The tested power
system is modified from the WECC system as illustrated in
Fig. 2. Each of the4 DR aggregators serves200 residential
customers. The scheduling horizon starts from12am until
23pm, a total of24 hours

Time-invariant generation cost functions were chosen
quadratic asCi(P

t
Gi
) = ai(P

t
Gi
)2 + biP

t
Gi

for all i and
t. For simplicity, each end user has one PHEV to charge
from midnight. All detailed parameters of the conven-
tional generators and loads are listed in Tables I and II.
The upper bound of each aggregator’s consumption is
Pmax
DRAj

= 50 MW. At a base of100MVA, the values of
the network reactances are{X16, X62, X25, X53, X34, X41} =
{0.2, 0.3, 0.25, 0.1, 0.3, 0.4} p.u. Finally, no flow limits were
imposed, while the utility functions{Ujrs(·)} were set to
zero. The resulting convex programs (21) and (22) were
modeled using the Matlab-based packageCVX [50], and solved
by SeDuMi [51].

Variable characteristics of the daily power market are cap-
tured via two groups of parameters shown in Fig. 3: the fixed
base load demand{pt

BL}, and the purchase prices{bt} at
the buses attached with three wind farms. The prices were
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Fig. 3. Fixed base load demand{pt
BL} and energy purchase prices{bt}.
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Fig. 4. Convergence of the objective value (14a) and the primal residual (17).

obtained by scaling the real data from the Midcontinent ISO
(MISO) [52]. Two peaks of{bt} appear during the morning
7am to12pm, and early night6pm to 9pm. The selling prices
{st} were set tost = 0.9bt satisfying the convexity condition
in Proposition 1. The rated capacity of each wind farm was
set to20MW, yielding a 23% wind power penetration of the
total power generation capacity.

Wind power output samples{wt
s}s,t are needed as inputs

of (21). These samples can be obtained either from forecastsof
wind power generation, or, by using the distributions of wind
speed together with the wind-speed-to-wind-power mappings
[cf. [5]]. In this paper, the needed samples were obtained from
the modelwt

s = w̄t + nt
s, ∀t ∈ T . The DA wind power

forecasts{w̄t} were taken from the MISO market on March
8, 2014. The forecast errornt

s was assumed zero-mean white
Gaussian. Possible negative-valued elements of the generated
samples{wt

s}
Ns

s=1 were truncated to zero. Finally, the sample
sizeNs = 200, the probability levelβ = 0.95, the trade-off
weight µ = 1, and the primal-residual toleranceǫpri = 10−4

were set for all simulations, unless otherwise stated.
Figure 4 demonstrates the fast convergence of the proposed

ADMM-based solver. The pertinent parameters were set to
ρ = 35 andλt

j(0) = ptjrs(0) = 0. Clearly, both the cost and
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Fig. 5. Empirical CDFs of the optimal social cost.
TABLE III

MEAN AND STANDARD DEVIATION OF THE TOTAL COST AND THE

CONVENTIONAL GENERATION COST: RISK-LIMITING VERSUS NO
RISK-LIMITING DISPATCH . THE UNITS ARE ALL IN $.

Dispatch scheme Mean Std Conv. gen. cost
CVaR-based risk-limiting 44363.26 493.15 26047.66
With expected wind power 50095.68 498.13 50194.59
Without wind power 51619.24 476.25 57122.82

the primal residual converge very fast to the optimum within
10 iterations. Note that due to the infeasibility of the iterates
at the beginning, the objective function starts from a value
smaller than the optimum, and then monotonically converge
to the latter.

Three methods were tested to show the performance of
the optimal dispatch and cost: (i) the novel CVaR-based risk-
limiting MC; (ii) the no risk-limiting MC with the expected
wind power generation{w̄t}; and (iii) the MC without wind
power integration. Specifically,pt

W = w̄t was simply used
in the nodal balance (21b) for (ii), whilept

W ≡ 0 for
(iii). There are no CVaR-pertinent terms in the objective
and constraints for the last two alternatives. For all three
approaches, the generation cost

∑T
t=1

∑Ng

i=1 Ci(P
t
Gi
) is fixed

after solving (14). Hence, randomness of the optimal total cost
stems from the transaction cost due to the stochasticity of the
actual wind power generation{wt} [cf. (9)].

Figure 5 presents the cumulative distribution functions
(CDFs) of the optimal total costs using100, 000 i.i.d. wind
samples with mean{w̄t}. Clearly, the two competing alter-
natives always incur higher costs than the novel CVaR-based
approach. The values of the mean and standard deviation (std)
of the optimal total cost are listed in Table III. It can be
seen that, compared with the other two methods, the proposed
scheme has a markedly reduced expected total cost and small
changes in the std.

Figures 6, 7, and 8 compare the optimal power dispatches
{pt

G,p
t
W ,pt

DRA}t∈T of the proposed scheme with those of
the scheme (ii). In Fig. 6, it can be clearly seen that over a
single day the CVaR-based MC dispatches lower and smoother
pG than the one with (ii). Furthermore, for the novel method,
generators1 and 3 are dispatched to output their minimum
generationPmin

Gi
, while the output of the generator2 changes

within its generation limits across time. Such a dispatch results
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from the economic incentive since the unit2 has the lowest
generation cost among all three generators [cf. Table I]. Onthe
contrary, both generators2 and3 fluctuate within a relatively
large range in (ii), mainly to meet the variation of base load
demandpBL; see Fig. 3.

As shown in Figure 7, the novel CVaR-based approach also
dispatches morept

W than that of (ii). This is because the
energy purchase pricesbt are smaller than the conventional
generation costs [cf. Table I and Fig. 3]. In addition,ptW1

and
ptW2

contribute most of the committed wind power at1pm and
2pm due to the cheaper buying prices during the corresponding
slots [cf. Fig. 3]. Interestingly, Figure 8 shows that the PHEVs
are scheduled to start charging earlier for the CVaR-based MC,
wherepDRA is jointly optimized withpG andpW .

Finally, Figure 9 shows the effect of the weight parameter
µ on the optimal costs of the conventional generation and
the CVaR-based transaction. As expected, the CVaR-based
transaction cost decreases with the increase ofµ. For a larger
µ, lesspt

W is scheduled so that more wind power is likely to
be sold in the RT market that yields selling revenues rather
than purchase costs. Consequently, to keep the supply-demand
balance, higher conventional generation cost is incurred by the
increase ofpt

G.
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VI. CONCLUSIONS ANDFUTURE WORK

Day-ahead stochastic market clearing with high-penetration
wind power was investigated in this paper. A stochastic
optimization problem was formulated to minimize the market
social cost consisting of the generation cost, the utility of
dispatchable loads, as well as the CVaR-based transaction
cost. The SAA method was introduced to bypass the inher-
ent high-dimensional integral, while an ADMM-based solver
was developed to clear the market in a distributed fashion.
Extensive tests on a modified WECC system corroborated the
effectiveness of the novel approach, which offers risk-limiting
dispatch with considerably reduced conventional generation.

A number of appealing directions open up towards ex-
tending the proposed framework. First, it is interesting to
study the extended LMPs by solving a large-scale stochastic
SCUC with start-up (-down) and no-load costs. Second, a
deep explore of the price consistence for multi-period time-
coupling MC is in our research agenda. Additional topics
worth further investigation include congestion management,
reserve procurement, as well as security assessment issues.
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Montréal, Canada, Jun. 2012, pp. 4431–4437.

[8] D. Bienstock, M. Chertkov, and S. Harnett, “Chance constrained optimal
power flow: Risk-aware network control under uncertainty,”Feb. 2013,
[Online]. Avaialble: http://arxiv.org/pdf/1209.5779.pdf.

[9] R. Rajagopal, E. Bitar, P. Varaiya, and F. Wu, “Risk-limiting dispatch
for integrating renewable power,”Intl. J. Elec. Power and energy syst.,
vol. 44, no. 1, pp. 615–628, Jan. 2013.

[10] A. Papavasiliou and S. Oren, “Supplying renewable energy to deferrable
loads: Algorithms and economic analysis,” inProc. of IEEE PES
General Meeting, Minneapolis, MN, Jul. 2010.

[11] J. Hetzer, C. Yu, and K. Bhattarai, “An economic dispatch model
incorporating wind power,”IEEE Trans. Energy Convers., vol. 23, no. 2,
pp. 603–611, Jun. 2008.

[12] Y. Zhang, N. Gatsis, and G. B. Giannakis, “Robust energymanagement
for microgrids with high-penetration renewables,”IEEE Trans. Sustain.
Energy, vol. 4, no. 4, pp. 944–953, Oct. 2013.

[13] L. Xie, Y. Gu, X. Zhu, and M. G. Genton, “Power system economic
dispatch with spatio-temporal wind forecasts,” inProc. of IEEE Ener-
gyTech, Cleveland, OH, May 2011.

[14] M. Shahidehpour, H. Yamin, and Z. Li,Market Operations in Electric
Power Systems. New York, NY: John Wiley, 2002.

[15] C. A. Canizares and S. Kodsi, “Power system security in market clearing
and dispatch mechanisms,” inProc. of IEEE PES General Meeting,
Montreal, Canada, Jun. 2006.

[16] E. Hasan, F. D. Galiana, and A. J. Conejo, “Electricity markets cleared
by merit order – Part I: Finding the market outcomes supported by pure
strategy Nash equilibria,”IEEE Trans. Power Syst., vol. 23, no. 2, pp.
361–371, May 2008.

[17] N. Gatsis and G. B. Giannakis, “Decomposition algorithms for market
clearing with large-scale demand response,”IEEE Trans. Smart Grid,
vol. 4, no. 4, pp. 1976–1987, Dec. 2013.

[18] A. Botterud, Z. Zhou, J. Wang, R. J. Bessa, H. Keko, J. Sumaili, and
V. Miranda, “Wind power trading under uncertainty in LMP markets,”
IEEE Trans. Power Syst., vol. 27, no. 2, pp. 894–903, May 2012.

[19] E. Bitar, R. Rajagopal, P. P. Khargonekar, K. Poolla, and P. Varaiya,
“Bringing wind energy to market,”IEEE Trans. Power Syst., vol. 27,
no. 3, pp. 1225–1235, Aug. 2012.

[20] J. M. Morales, A. J. Conejo, and J. Pérez-Ruiz, “Short-term trading for
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