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Distributed Stochastic Market Clearing with
High-Penetration Wind Power

Yu Zhang,Student Member, IEEEBnd Georgios B. Giannakisgllow, IEEE

Abstract—Integrating renewable energy into the modern power
grid requires risk-cognizant dispatch of resources to acaont
for the stochastic availability of renewables. Toward thisgoal,
day-ahead stochastic market clearing with high-penetratin wind
energy is pursued in this paper based on the DC optimal power
flow (OPF). The objective is to minimize the social cost which
consists of conventional generation costs, end-user didltt,
as well as a risk measure of the system re-dispatching cost.
Capitalizing on the conditional value-at-risk (CVaR), the novel
model is able to mitigate the potentially high risk of the reourse
actions to compensate wind forecast errors. The resultinganvex
optimization task is tackled via a distribution-free sample average
based approximation to bypass the prohibitively complex hgh-
dimensional integration. Furthermore, to cope with possilly
large-scale dispatchable loads, a fast distributed solveis devel-
oped with guaranteed convergence using the alternating déction
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min max
up down
R;", R§

t
PsL

max
PDRAj

min max

pjrs ’ pjrs

Ejrs
T
fmm, fmax

max

Minimum and maximum power output of
conventional generatar

Ramp-up and ramp-down limits of conven-
tional generatot.

Fixed base load power demand in stot
Maximum power provided by demand re-
sponse aggregatgr

Minimum and maximum power consump-
tion of appliances.

Total energy consumption of applianse
Start and end times of applianee

Minimum and maximum power flow limits.
Maximum committed wind power.
Branch-node incidence matrix.

Incidence matrices of conventional genera-
tors, wind farms, and DR aggregators.
Nodal susceptance matrix.

Matrix relating bus angles to branch power
flows.

Branch susceptance matrix.

Susceptance of liné.

Vector collecting selling prices in slat
Vector of purchase prices in slot
Tolerance of the ADMM termination crite-
rion using primal feasibility.

Weight of augmented Lagrangian.

Weight of CVaR-based transaction cost.
CVaR probability level.

Output of conventional generatoin slot ¢.
Consumption of appliance in slot ¢.

Total power consumption of aggregaton
slot ¢.

Power committed by wind farmm in slot ¢.
A variable in the CVaR-based transaction
cost.

Vector of nodal voltage phases in slot
Vector collectingPf,, for all i € N.
Vector collectingPpy , . for all j € N,.
Vector collectingPy;, for all m € N,,.
Vector collectingp},  for all t € 7.
Vector collectingn andp’,, phra, Ply, 0°
forallteT.

method of multipliers (ADMM). Numerical results tested on pl
a modified benchmark system are reported to corroborate the A
merits of the novel framework and proposed approaches. "
Aga Awa Aa
Index Terms—ADMM, conditional value-at-risk, demand re-
sponse aggregator, market clearing, stochastic optimizen, wind B,
ower.
p By
B;
NOMENCLATURE by
St
A. Indices, numbers, and sets bt
T, T Number and set of scheduling periods. epr
Ny, N; Number of buses and lines.
Ny, Ny Number and set of conventional generators.
No, N Number and set of aggregators. Iz
Ny, Ny Number and set of wind farms. B
N,, N, Number and set of wind power generation
samples. o _
R Set of end users served by aggregator ~ C- Decision variables
Srj Set of smart appliances of residential user PL
served by aggregatgr p'}r;
Pirs Set of operational constraints of appliance Plra.
of residential user served by aggregatgr !
7;-;?5 Set of s_ched_uling periods of appliange Pvtvm
k ADMM iteration index. n
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D. Uncertain quantities with renewables have been extensively investigated rcent
wt Actual power output of wind farmn in slot ¢. A key challenge o_f the _assomated power dlspat_ch tasks is
wt Vector collectingwt, for all m € A, to account for the intrinsically random and non-dispatdédab

nature of RES so that total power demand can be satisfied
by total power supply, while the social cost is minimized.

E. Functions Being resilient to communication outages and maliciouseyb
Ci(+) Cost function of generatar attacks, efficient decentralized algorithms deployed dier
Ujrs () Utility function of appliances. interdependent power entities are indispensable as well.
Fg(") CVaR transaction cost. Limiting the loss-of-load probability (LOLP), risk-aware
Fs(-) Sample mean of(-). energy management approaches including economic dispatch
Ly(-) Partial Lagrangian function of the (ED), unit commitment (UC), and optimal power flow (OPF)

stochastic market clearing problem. were formulated as chance-constrained optimization probl
I, ,Ipra,, Iw, Revenues or payments of the suppliein [4]-[8]. Leveraging scenario sampling, a general non-
the aggregator, and the wind farmconvex chance-constrained program can be relaxed anddsolve
located at bus.. efficiently as a convex one, which however turns out to be too
conservative in certain scenarios [5]. As an alternatiisk-r
F. Abbreviations limiting dispatch has been formulated as a multi-stagersisc
tic control problem[[B]; see alsd [10], where direct couglin
of the uncertain energy supply with deferrable demand was
accounted for using stochastic dynamic programming.

ADMM Alternating direction method of multipliers.
CvaR  Conditional value-at-risk.

géM giﬁi?]?jagae management Additional early works relied on the so-termed co_mmit—
DR Demand response ' ted rgnewable energy. ED _penahz!ng (under-) over-estimat

L ' of wind power was investigated i [L1]. Worst-case robust
ED Economic dispatch. distributed ED with demand side management (DSM) was
ISO Independent system operator.

proposed for grid-connected microgrids [12]. However, the
worst-case scenario is unlikely to come up in real-time (RT)
operations. Multi-period ED with spatio-temporal wind déer
casts was pursued im_[13]. The obtained optimal operating
point though can be very sensitive to the forecast accuracy.
Turning attention to power system economics, market clear-
ing (MC) is one of the most important routines for a power
market, which relies on security-constrained UC or OPF.
Independent system operators (ISO) collect generatioa bid
and consumption offers from the day-ahead (DA) electricity
market. The MC process is then implemented to determine the
market-clearing prices [14]. Deterministic MC without RES
has been extensively studied; see €.a), [I5]-[17]. Optmrad
power trading or contract offerings have been investigated
. INTRODUCTION from the perspective of wind power producers (WPPs) [18]-
The future smart grid is an automated electric power gr[@1]. MC under uncertain power generation was recently
that capitalizes on modern optimization, monitoring, conpursued as well. As uncertainty of wind power is revealed
munication, and control technologies to improve efficiencgn a continuous basis, 1SOs are prompted to undertake cor-
sustainability, and reliability of generation, transnoss dis- rective measures from the very beginning of the scheduling
tribution, and consumption of electric energy. Limited glyp horizon [22]. One approach for an ISO to control the emerging
and environmental impact of conventional power generatioisk is through the deployment of reserves following the
compel industry to aggressively utilize the clean renewabtontingencies[[23]. Electricity pricing and power genienat
energy sources (RES), such as wind, sunlight, biomass, autheduling with uncertainties were accomplished via stech
geothermal heat, because of their eco-friendly and pridgie programming[[24],[[25]. In addition, one can co-optimiz
competitive advantages. Growing at an annual rat@(8b, the competing objectives of generation cost and security
wind power generation already boasted a worldwide installindices [26]; see alsd [27] for a stochastic security-c@ised
capacity of 318 GW by the end of2013, and is widely approach. Albeit computationally complex, stochastie\sl
embraced throughout the worldl [1]. Recently, both the U.Brograms are attractive because they can account for the
Department of Energy (DoE) and the European Union (EWpupling between DA and RT (spot) markets][28].1[29].
proposed ambitious blueprints towards a low-carbon ecgnom All existing MC approaches, however, are centralized.
by meeting20% of the electricity consumption with renew-Moreover, they are not tailored to address the challenges of
ables by2030 and 2020, respectively([2],[[3]. emerging large-scale dispatchable loads. Specificallyaahel
Towards the goal of boosting the penetration of RES, robusffers come from demand response (DR) aggregators serving
and stochastic planning, operation, and energy managemnlangje numbers of residential appliances that feature skver

LMPs  Locational marginal prices.

LOLP  Loss-of-load probability.

MC Market clearing.

OPF Optimal power flow.

RES Renewable energy sources.

RT Real-time.

SCED  Security-constrained economic dispatch.
SCUC  Security-constrained unit commitment.
SAA Sample average approximation.

uc Unit commitment.

VaR Value-at-risk.

WPPs  Wind power producers.
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utility functions and inter-temporal constraints. In thizntext
the present paper deals with the DC-OPF based MC with
penetration wind power. Instead of the worst-case or ch:
constrained formulations, a novel stochastic optimizat-
proach is proposed to maintain the nodal power balance
minimize (maximize) the grid-wide social cost (welfarehe
social cost accounts for the conventional generation ctist
dis-utility of dispatchable loads, as well as a risk mea
of the cost incurred by (over-) under-estimating the ac
wind generation. This is essentially a cost of re-dispaig
the system to compensate wind forecast errors, and is ed
as transaction costthroughout this paper. The transact
cost in the spot market is modulated through an effic
risk measure, namely theonditional value-at-risk(CVaR)
(SecI-A), which accounts not only for thexpected cosbf mean B-VaR B-CVaR
the recourse actions, but also for their “risks”. A disttiba- Loss
free sample average approximation (SAA) is employed to _ _
e . . . . Fig. 1. Illgstratlon of VaR and CVaR@_—VaR is the threghold that t_hg loss
bypass the pI’OthItlvely burdensome integration involved exceeds with at most a small probability— 3. 3-CVaR is the conditional
the CVaR-based convex minimization (Jec.TlI-B). To cléwa t expectation of the loss beyond tifeVaR.
market in a distributed fashion, a fast and provably cormetg
solver is developed using the ADMM (Sdc.]1V). Numerical
tests are performed to corroborate the effectiveness of theClearly, the probability of.(x, £) not exceeding a threshold
novel model and proposed approaches using real power markegg given by the right-continuous cumulative distribution

Probability density

data (Sed_V). function (CDF)

The main contribution of this paper is three-fold: i) a CVaR-
based transaction cost is introduced for the day-ahead MC U (x,1n) = / p(§) d&. (1)
to judiciously control the risk of (over-) under-estimaithe L(x.£)<n

wind power generation; ii) a sufficient condition pertineot e _ _ _
transaction prices is established to effect convexity af tHPefinition 1 (VaR). Given a prescribed confidence levék
CVaR-based cost; and iii) a distributed solver of the rasglt (0;1), the 5-VaR is the generalized inverse wfdefined as
stochastic MC task is developed to be run by the market s
operator and DR aggregators while respecting the privacy of ns(x) = min{n € R | W(x,n) 2 B} @
end users. B-VaR is essentially the8-quantile of the randoni(x, £).
Notation Boldface lower (upper) case letters represedinceV is non-decreasing in, 73(x) comes out as the lower
column vectors (matrices); calligraphic letters standdets. endpoint of the solution interval satisfying(x,n) = 3,
R4 xd2 R andR, stand for real spaces df x d> matrices, and the commonly chosen values @fare, e.g.0.99, 0.95,
d x 1 vectors, and non-negative real numbers, respectivelfid 0.9. Clearly, VaR determines maximum tolerabldoss
Symbolsa’ and a - b denote the transpose @f, and the of an investment, i.e., a threshold the loss will not exceed
inner product ofa andb; |Z] is the lower endpoint of the with a high probabilitys. Hence, given the confidence level
interval setZ. Operatorfa]™ := max{a,0} is the projection 3, investors are motivated to solve the so-ternpaxtfolio
to the nonnegative reals, white () indicates the entry-wise optimization problem which yields the optimal investment

inequality. Finally, the expectation is denoted By]. decisions minimizing the VaR valugg(x) is proportional to
the standard deviation i¥ is Gaussian. However, for general
Il. CVAR REVISITED: A CONVEX RISK MEASURE distributions,3-VaR is non-subadditive which means the VaR

of a combined portfolio can be larger than the sum of the
Value-at-risk (VaR) and conditional value-at-risk (CVa¢ VaRs of each component. This violates the common principle
widely used in various real-world applications, espegiai “diversification reduces risk”. Moreover, it is generallpm
the finance area, as the popular tools to evaluate the cigklit convex rendering the optimization task hard to tackle.
of a portfolio, and reduce the probability of large losse8[{3  Because of these conceptual and practical drawbacks, CVaR
[32]. The following revisit is useful to grasp their role ihe (a.k.a. “tail VaR”, “mean shortfall”’, or “mean excess lops”
present context. was proposed as an alternative risk metric that has many
Consider a loss functio,(x,£) : X x E — R denoting superior properties over VaR.
the real-valued cost associated with the decision variable . . . . .
x € X C R"; and the random vectog with probability D_ef”_"“o_” 2 (CVaR), The_ﬂ-C_VaR is the mean of thé-tail
density functionp(¢) supported on a se€E C R? In the distribution of L(x, ), which is given as
context of power gridsx can represent the power schedules 0, if 7 < 1s(x)
of generators, whil& collects the sources of uncertainty due Ug(x,n) = { Yeen) =B i > (x)
to for instance renewable energy and forecasted load demand -5 = Tpix

®3)
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Truncated and re-scaled fron¥, function ¥z is non- power dispatch outputs, and the corresponding DA clearing
decreasing, right-continuous, and in fact a distributianck prices. The MC procedure proceeds in two stages. A security-
tion. If W is continuous everywhere (without jumpg)rCVaR constrained unit commitment (SCUC) is performed first by
coincides with the lower CVaRy; (x) := E¢ [L|L > 13(x)], solving a large-scale mixed integer program to commit gen-
that is the conditional expectation of the loss beyond he eration resources after simplifying or omitting transnuas
VaR. Hence, roughly speaking-CVaR is the expected lossconstraints. The second stage involves security-consiai
in the worst100(1 — 8)% scenarios; i.e., cases of such seveeronomic dispatch (SCED) obtaining the economical power

losses occur only00(1 — 3) percent of the time. generation outputs and the locational marginal prices (EMP
The 3-CVaR can be also defined as the optimal value of thes a byproduct. With unit commitment decisions fixed, SCED
following optimization problem is usually in the form of DC-OPF, including the transmission

1 network constraints [33].
P3(x) == min{n+ ——E¢ [L(x,€) —n]+}. 4) The MC process is implemented with a goal of mini-
neR 1-8 mizing the system net cost, or equivalently maximizing the
Let F3(x,n) denote the objective function iftl(4). Key prop-social welfare. With the trend of increasing penetration of
erties of I3 and its relationship withjs(x) and ¢(x) are renewables, WPPs are able to directly bid in the forward
summarized next. market [34]. Under uncertainty of wind generation, it now

. o becomes challenging but imperative for the ISOs/RTOs and
Theorem 1( [@] Pp. 1454_1457)':“”“'0”1’/3.(& n)isfinite o et participants to extract forecast information anckena
and convex im. Valuesng(x) and ¢3(x) are linked through

efficient decisions, including reserve requirements, alagad

Fp(x,n) as scheduling, market clearing, reliability commitments,veesl|
ns(x) = |argmin Fj(x,7)] (5) as the real-time_dispatcﬂ[[BS]. In this section, a stocb_asti
S MC approach using the CVaR-based transaction cost will be
op(x) = F(x,m5(x)) (6) developed as follows.
min ¢g(x) = min  Fa(x,n). @)
xeX (GemEX xR A. CVaR-based Energy Transaction Cost
Moreover, if L(x, &) is convex inx, then Fz(x,n) is jointly
convex in(x,7), while ¢s(x) is convex inx. Consider a power system comprising busesV; lines, N,

From Definition[2, it can be seen that CVaR is an upp&onvention_al generatorsy,, wind farms _and]\_fa aggregators, .
bound of VaR, implying that portfolios with small CVaR aISOeach serving a large _number of residential end-users with
have small VaR. As a consequence of Thedrém 1, minimizil’:@mm"able _smart qppllance_s. Let:= {1,2,...,T} denote
the convexs(x) amounts to minimizing?s (x, ), which is the §chedullng horizon of interest, e.g., one_.day ghead. If
not only convex, but also easier to approximate. A readi wind farm is located at bus:, two quantities will be

implementable approximation of the expectation function szocr:ated with 'tr:] tgel thuaL wind power generstm@h,

is its empirical estimate usingV, Monte Carlo samples and t € power schedule to be |nje_c§eudm. !\l_otet 3” N

{SS}Nsl namely former is random, whereas the latter is a decision varidide.
s=11

notational simplicity, define also tw/,,-dimensional vectors

N t t

t / t t t /

R 1 N wt = [wl,...,wNw],ande = [le,...7pWNw].
Fg(x,n) =n+ m Z [L(x,&s)—n]".  (8) Sincew! varies randomly, either energy surplus or shortage
s=1 should be included to satisfy the nodal balance with the

Clearly, the sample average approximation method is dissmmitted quantity?;,. When surplus occurs, the wind farms
tribution free, and the law of large numbers ensuiés can sell the excess wind energy back to the spot market,
approximates wellF;; for N, large enough. Furthermore,or simply curtail it. For the case of shortage, in order to
Fs(x,n) is convex with respect t@x, ) if L(x,&,) is convex accomplish the promised bid in the DA contract, farms can
in x. The non-differentiability due to the projection operatobuy the energy shortfall from the RT market in the form of
can be readily overcome by leveraging the epigraph form afcillary services.
F', which will be shown explicitly in SectioR TII=C. Let b := [b,...,bly ] ands’ := [s],... s} ] collect
With the function Fs(x, ), it is now possible to develop the purchase and selling prices at timeespectively. Clearly,
the CVaR-based stochastic market clearing, as detaileldein tith the power shortfall and surplus being!;,, — w']* and

next section. [w! — pl,|T at timet, the grid-wide net transaction cost is
T
[1l. STOCHASTIC MARKET CLEARING T(pw,w)=>_ (bt phy — Wit =t [wh — p%ﬁ)
In a day-ahead electricity market, participants including t=1

power generation companies and load service entities (LSEs
first submit their hourly supply bids and demand offers to
market operators for the next operating day. Then, the ISO

or regional transmission organization (RTO) clear the fowherew?® := tgst andy® .= bt‘gst; pw andw collectpl;,
ward markets yielding least-cost unit commitment decisjonandw? for all ¢t € T, respectively.

Il
E

(= Iply = W'+ 9" (ply — ")) (@)

o~
Il

1

T
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ReplacingL(-,-) in (@) with T'(-,-), function F3 can be B. CVaR-based Market Clearing

expressed through the conditional expected transactisinaso
P 9 P Let p., = [P@l,...,P@Ng]’ and php, =
' . t[ﬁDRAlfm PDthxN Iy de(?O:E the power outpu';s of fth?h
_ tont ot ermal generators, an e power consumption o e
Fs(pw,n) =n+ 1-— BEW [; (w [Py — W aggregators at slot, respectively. Define further the sets
a {1,2,...,N,} and N, := {1,2,...,N,}. Each

n
t ot t aggregatorj e N serves a seRR; of reS|dent|aI users, and
+ O (pw —w )) B 77] - 19 eeglgh ?Jserrj € R, has a setS,; of controllable appliances.
Let p;.s be the power consumption of appliansewith
userr corresponding to aggregatgr across the slots. The
operational constraints ob;.s are captured by a s&®j,,
while the end user satisfaction is modeled by a concave
Proposition 1. If the selling prices!, does not exceed theutility function Uj,,(p;-s). Furthermore, let convex functions
purchase priceb!, for any m € N, andt € T, function {C;(-)}; denote the generation costs, apf; the base load
Fs(pw,n) is jointly convex with respect ttpw, 7). detmantd. Fort bretvity, let vectop, collect variablesy and
Proof: Thanks to Theoreml1, it suffices to show th gﬁs’fggﬁéﬁ‘g{ zll};%g’liailisviif:égljgéZ%g;rQ:r power
T(pw,w) = 23:1 (Wt Py — W+ 9" (P — W) Hinging on three assumptions: al) lossless lines, a2) small
is convex inpy, under the proposition’s condition. Clearly,voltage phase differences, and a3) approximated one p.u.
the stated condition is equivalent to* > 0 for all ¢ € 7. voltage magnitudes, the DC-OPF based stochastic MC stands
Thus, by the convexity of the absolute value function, anglith the goal of minimizing the social cost:
the convexity-preserving operators of summation and expec

A condition guaranteeing convexity dfz(pw,n) is estab-
lished next.

Ny

tation [36, Sec. 3.2], the claim follows readily. [ |
. . . in C; (P} U; F ,
In this paper, a perfectly competitive market is assumed ;; i(Fe.) ;TEZR rs(Pyrs) & 1Es (P 1)
such that all participants act as price takers. That is,yever SES;,
competitor isatomisticto have small enough market share so (11a)

that there is no market power affecting the pricel [37]. Forsubject to -

American electricity markets, a single pricing mechanism i " ‘ ¢ ¢
used such thas’ = b’ holds in most of the scenarios. This AgPG + AuPly — AdPbra —Phr, = Baf', €T (11D)

is a special case of the pricing condition in PrBp. 1, whichPe," < PG, < PE™, i € Ny, te T (11c)
facilitates calculating the functio {lL0) since the absmlu — Rdown < PG Pt L < RIP ieN, teT (11d)
value functions vanish. _Note that it is pOSS|bI<_a that défer  cmin < B0 <"t e T (11e)
WPPs may buy (sell) wind energy from (to) different sellers |
(purchasers) in a competitive electricity pool as an aagill 0p=0,teT (119)
service, which can yield different purchase and sellinggsi 0 < pw = py*" (119)
For most of the European markets including UK, France0 < PDRA < Ppia,s JENa tET (11h)
Italy, and Netherlands, the imbalance pricgl!, s}, are " )
commonly set in arex-postway that is knowﬁbasiu}al im- DRA; = ZTGR s€S Pirs: € Nas tE€T (11)
balance pricing[38]. Specifically, if the system RT imbalance p;,, € Pj,.., s € Sj, " €R;, j € Na (11))
is negative, i.e., the overall market is short, thén- x! < b? variables : {p;}Ve
holds, wherex' := [x{,...,x}, ] collects the DA prices CWIG=0
at the buses attached with al,, wind farms. In this case, where the nodal susceptance matBx, := ~A'B,A, €
the RT purchase price is typically higher than the DA pricgg N+ *No and the angle-to-flow matrilB; = —-B,A, €

reflecting the cost of acquiring the balancing energyi [39k™N:*Nv, The (th row of the branch-node incidence matrix
Wind farms with excess energy can sell this part to redugg, ¢ RV*Ne has1 and —1 in its entry corresponding to
the system imbalance but only be paid the DA prices. QRe from and to nodes of bran¢h and0 elsewhere; and the
the other hand, we have’ < x' = b’ if the market is square diagonal matriB, := diag(by, ..., by,) is the branch
long. Hence, market participants selling excess energgivec susceptance matrix collecting the primitive susceptacoesa
a balancing price which is lower than the DA one, whilg|| branches.
those running negative |mbalance pay the DA price. Note Matrices A, € RM*No, A, e RV*Nv and A, €
that the relatlonShlﬂ = X = bt always holds even when RNbXNa in @Iﬂ) are the incidence matrices of the con-
the market imbalance outcome is unknown at the time of thentional generators, the wind farms, and the aggregators,
DA bids. Such a pricing mechanism drives bidders to matgBspectively. TakeA, as an example(A,),,, = 1 if the
their forward offers with the true forecasts of generation 9,th generator is |njected to thexith bus, and( g)mn = 0,
consumption. otherwise. MatriceA,, and A, can be constructed likewise.
Leveraging the CVaR-based transaction cost, a stochasliensider the power network in Figl 2 adapted from the West-
MC problem based on the DC-OPF will be formulated nextern Electricity Coordinating Council (WECC) systeim [40].
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known to the ISO for the DA market clearing. However, such
an assumption can be readily extended to a more practical
setup by taking the price stochasticity into account. Speci
cally, imperfect price information can be modeled by approp
ately designing the functiofi(pw, w) [cf. (@)]. For example,
the expectation can be also taken over the random RT prices
in (I0) as Fs(pw,71) = 1+ 125Ew, (bt} [T (Pw, W) —
n]T. The dependence betweéht, s’} and w can be further
investigated. In addition, worst-case analysis is avdiab
upon postulating an uncertainty sek for {b s}. This
results in a novel risk measure given &5 (pw,n) = n +
ﬁEw [Sup{bf,st}tEA T(pW’ W) - 77]+-

It is worth mentioning that SCED and SCUC yield two
Fig. 2. Modified WECC system featuring 6 buses, 3 generatbeggrega- different market pr'c!”g systems: locational marglnabmg
tors, 4 base loads, and 3 wind farms. and convex hull pricing (a.k.a. extended LMP). The ED
formulation produces the LMPs given by the dual variables
associated with the supply-demand balance constrairte$ri
supporting the equilibrium solution are found at the inters
tion of the supply marginal cost curve with the demand bids.

With N, = 6, N; = 6, Ny = 3, and N, = 4, matricesA,,
A, and A, take the following form:

100 1 00 0 0 0 0| However, ifdiscrete operations of UC are involved, theneds
010 010 0 0 0 0| exactprice that supports such an economic equilibriums Thi
A — 0 0 1 A 0 0 0 A — 0 0 0 0| issue prompted the introduction of the convex hull pricing
g 0 0 o™ 0 0 of" 1 1 0 0| to reduce the uplift payments[41]. In the present paper, the
0 0 0 0 0 1 0 0 1 0| coreED modelis considered to deal with the high penetration
0 0 0 0 0 0 0 0 0 1| ofrenewables and large-scale DR programs. Therefore, the

A smart appliance example is charging a plug-in hybri@rmulation [I.l) relies on re-solving the dispatch probigitn
electric vehicle (PHEV), which typically amounts to consumxéd UC decisions.
ing a prescribed total energdy;,.; over a specific horizon from Remark 2. (Reliability assessment commitment). The pro-

a start time7 ;7 to a termination time ;7. The consumption posed dispatch model can be cast as a two-stage program.
must remain within a range betwegf}.’ andp7;* per period. The first stage is the DA MC, and the second is simply the

With 77, = {T5,, ..., T}, setP;,, takes the form: balancing operation (recourse action) dealing with diéeces
between the pre-dispatch amount and the actual wind power
Pijrs = {pjrs Z Phrs = Ejrs, Plps € [pﬁi:,pjn;zx], genergtiop_. Between the DA and_RT markets, 1SOs implern_ent
LTk, the reliability assessment commitment (RAC) as a relighili

backstop tool to ensure sufficient resources are availahld a
Vie 7;_55; pl,=0,Vte 7-\7;_1:;5 . (12) coverthe adju_sted foreca_st load onlin_e. One principle @f th
RAC process is to commit the capacity deemed necessary to

Further examples dP;,., andU; . (p,») can be found in [17] reliably operate the grid at the least commitment cost. s th
where it is arguedjzﬁaﬂ?-mﬂi; aﬂéonvex set for severalStep, based on the updated information of the wind power
appliance types of interesjt. forecast, WPPs have an opportunity to feedback to the 1SO if

Linear equality [Z1b) is th@odal balanceconstraint; i.e. they are able to commit the scheduled wind power decided by

the load balance at bus levels dictated by the law of conser{fa® DA MC. Then, the ISO is able to adjust UC decisions as
tion of power. Limits of generator outputs and ramping ratéi€cessary to ensure reliability.

are specified in constraints {11c) and (f11d). Network powerTg this end, reformulation of problefi{l1) as a smooth con-

flow constraints are accounted for in_(11e). Without loss @x minimization is useful for developing distributed ses,
generality, the first bus can be set as the reference bus &fith z35 detailed next.

phase in[(11f). Constraints (11h) afd (l1g) capture thedowe

and upper limits of the energy consumed by the aggregators

and the committed wind power, respectively. Equalify J(11§. Smooth Convex Minimization Reformulation
amounts to theaggregator-user power balana@guation; and
constraints[(11j) define the feasible set of appliancesallyin
the pre-determined risk-aversion parameter 0 controls the
trade off between the transaction cost and the generatisin
as well as the end-user utility.

It is clear that under the condition of Propositibh 1, the
objective and the constraints 6f {11) are convex, which eend
Cit not hard to solve in principle. Nevertheless, due to thghhi
dmensional integration present ifs(pw,n) [cf. @J)], an
analytical solution is typically impossible. To this endl,is
Remark 1. (Availability of real-time prices). In this paper, necessary to re-write the resulting problem in a form silatab
the real-time prices{b’,s'},c+ are assumed to be perfectlyfor off-the-shelf solvers.
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First, as shown in[{8), an efficient approximation oflistributed design. Fewer updates simply imply lower com-
Fs(pw,n) is offered by the empirical expectation using i.i.dmunication overhead between the ISO and the aggregators.

samples{ws}ﬁ’;l; that is, One splitting approach is the dual decomposition with which
) N. T T the dual subgradient ascent algorithm is typically verywslo
Ia ) =n+ wt - |pty — wt Instead, a fast-convergent solver via the ADMM |[45] is
plow,m) =7 Ns(1=5) ; [; ( Py | adapted in this section for the distributed MC.

JF
+9 - (phy _Wt)) _ n] . (13) A The ADMM Method
Consider the following separable convex minimization prob
Next, by introducing auxiliary variableu, } 5, the non- €M with linear equality constraints:

smooth convex prograri (IL1) can be equivalently re-written a min _ f(x) + g(y) (15a)
the following smooth convex minimization: xeX,yey
TN, N, subject to: Ax+ By =c. (15b)
min» "N "Ci(PE) =Y Y Uira(pirs) For the stochastic MC probleni{14), the primal variable
t=1 i=1 j=1reR;, x comprises the groufus}sca. and po, while y collects
S€S;r {pj}jen,. Hence, setX captures constraintd (I1H)—(11h)
Zi\fl Us and [14b) whiley represents (I]Lj). The linear equality con-
Tt N,(1-p) (143)  giraint [@5b) corresponds tb_(11i).
. Let X := [A,..., )L ] € RTYe denote the Lagrange
subject to : (11B)— (1) multiplier vector associated with the constraiif [11i).€Th
T - . . . partially augmented Lagrangian ¢f {14) is thus given[by (16)
Z (w [P — Wi + 9" (P — Ws)) < us 1, where the weightp > 0 is a penalty parameter controlling
t=1 the violation of primal feasibility, which turns out to beeth
s€Ns (14b) step size of the dual update. As the iterative solver[of (16)
variables : {pj}é.V:aO, {us € Ry }N=. proceeds, the primal residual converges to zero that emisure

Und id diti h imal soluti 14 optimality. Judiciously selecting thus strikes a desirable
hder mild con |_t|ons, the op_t|ma solution set fX14) COMtradeoff between the size of primal vis-a-vis dual resislua
verges exponentially fast to its counterpart bfl(11), as tmf-

le sizeN. i Th fis based the th ote also that by varying over a finite number of iterations
Sample slzey, Increases. The prool 1S based on he eOl%ay improve convergencé [45]. In a nutshell, finding the

of large deviations[[42], but is omitted here due to Spac‘Sptimal” value of p is generally application-dependent that

limitations. . : :
.. requires a trial-and-error tuning.
Problem[(1#) can be solved centrally at the ISO in principle. yigeo ot from [46] where the power balance and phase

Hovx_/ever, with large-scale DR, _distribut_ec_zl solvers are Weélonsistency constraints are relaxed, in this work only the
mptlvated not only for .c_omputatlonlal efficiency but also foéggregator-user power balance equationl (11i) is dualized s
privacy reasons. Specifically, functior;, ,(p;rs) and Sets ¢ yhe nodal balance equatidn (IL1b) is kept in the subpnobl

{Pjrs} are private, and are not revealed to the ISO; and (I the |50 Decomposing the problefi{14) in such a way
the operational Set§P;,.} ;... Of very large numbers of het- .o g ce the heavy computational burden at the 1ISO while
erogenous appliances may become proh_|b|t|vely Compht;atEFespect the privacy of end users within each aggregator.
€.g., mix-integer constralr_lts can even be qulved_to mtue! he ADMM iteration cycles between primal variable updates
ON/OFF status and un-interruptible operating time of en sing block coordinate descent (a.k.a. Gauss-Seidel)daal

user appliances [43][[44]. This renders the overall prlc"blevariable updates via gradient ascent. The resulting diged

|n|tractabl_e_ folr thle ISO. r_—o ;h's endl,_the DR ?ggfeggs CRft is tabulated as Algorithiial 1, wheteis the iteration index.
play a critical role to split the resulting optimization kaas g |5t step is a reasonable termination criterion base¢deon

detailed next. primal residual[[4b, Sec. 3.3.1]
IV. DISTRIBUTED MARKET CLEARING VIA ADMM T Na 2112
- miza €= |20 (A, - Tl ) | @D
Selecting how to decompose the optimization task as well DRA; DPjrs
as updating the associated multipliers are crucial for the t=1j=1 s
T Ng Ng ZNS w
LP(Xay?A):ZZC’L(PéT)_Z Z Ujrs(pjrs)+ﬂ n+£
=1 i=1 1 reR, Ns(1-p)
=1 1= Jj=1reR;,,
se€S;r

T N,

T N, 2
D9 9 LINED PR TE 95 of CHNES ) as)
7,8 t=1 j=1 7,8

t=1 j=1



Algorithm 1 ADMM-based Distributed Market Clearing
1: Initialize A(0) =0
2: repeat fork=0,1,2,...
3 update primal variables:

x(k+1)= argergin Ly(x,y(k), X(k))

(18)

y(k+1)=argmin L,(x(k+1),y,A(k)) (19)
yey

4: update dual variables:for all j € A, andt € T
Ni(k+1) = No(k) + p(Phra, (k+ 1) me k+1))
(20)

5. until ¢ < Pl

Specifically, given the Lagrangian multiplied%) and the
power consumptioqp;,s(k

ZN—Sl Us
po(k + 1) = argmin Ci(PL) +p | n+ ==—
p07{us} t; Ns(l_/B)
16/\/
2
P
+ Z /\g'(k)PIt)RAj T3 Z <P1t)RAj - ZPﬁm(@)
teT, teT, T8
JENa JEN
(21a)
subject to :
Agpi + Auply — AcPhra — Phr = Ba8', t € T (21b)
PR < PL < PR i€eN, teT (21c)
Rdown <SP, —PLETSRP GeEN, teT (21d)
o < Bso < U e T (21e)
i =0,teT (21f)
0 < pw = py™~ (219)
0 < Phra, < Pbia,» JE€ENa, t €T (21h)
T
S (= Iply = il + 9" (o —wh) <.+,
t=1
andu, >0, s € N,. (21i)

Interestingly, [(IP) is decomposable so that,s(k)}, s can
be separately solved by each aggregator:
{pPjrs(k+ 1)}, s = argmin — Z /\t )Zp;-m
Pjrs br,s t=1 .8

= 3" Ujra(pjrs) + gz <Zp7rs Phia, (k+1)>

TGRJ',
SGS]‘T
(22a)
subject to : {pPjrs € Pjrs}rs- (22b)

Having foundpy (k) and{p;,s(k)} s, the multipliers{y} ; ;

are updated using gradient ascent as[in (20). To solve the

)},rs Of the end-user appliances
The 1SO solves the convex subprobldml (18) given as follow:

IEEE TRANSACTIONS ON POWER SYSTEMS (TO APPEAR)

convex problem[{22), each aggregator must collect the €orre
sponding users’ information including;,, andP;,,. This is
implementable via the advanced metering infrastruc{urg. [4

Remark 3. (Distributed demand response). It must be further
pointed out that the quadratic penal()PDRA >, Spm)

in (@I8) couples load consumptior{s)g-m} over different resi-
dential users. Hence, the ADMM-based distributed solvey ma
not be applicable whenevqaﬁm must be updated per end
user rather than the aggregator. This may arise either to
strictly protect the privacy of end users from DR aggregstor

or, to accommodate large-scale DR programs where each
aggregator cannot even afford solving the subprobi@3).

In this case, leveraging the plain Lagrangian function (no
coupling term), the dual decomposition based schemes can be
utilized by end users to separately updgjg, .} in parallel;

see e.g.,[[17] and[48].

The convergence of the ADMM solver and its implications

’for the market price are discussed next.

B. Pricing Impacts

Suppose two additional conditions hold for the convex
problem [I#): c1) function§C;(-)}; and {—Uj,s(-)},rs are
closed and proper convex; and c2) the plain Lagrangighas
a saddle point. Then, the ADMM iterates of the objective Jj14a
and the dual variable§\’ } ; ; are guaranteed to converge to the
optimum [45]. In addmon if the objective is strongly cax
then the primal variable iterates includipg;, ppra, pw and
{p;}jen, converge to the globally optimal solutions.

The guaranteed convergence of the dual variables alse facil
itates the calculation of LMPs. LeX’ := [Af,..., A}, | and
7t = [7{,...,7y,) denote the optimal Lagrange multipliers
associated with the aggregator-user balance constfaliy, (1
and the nodal balance constrainf (lL.1b), respectively. Ntk
with the optimal solutions\! and {Pjrs};rs Obtained by the
ADMM solver, the LMPs{7*}, can be found by solving the
subproblem[{21) with primal-dual algorithms. In additid,

0 < PE)RA < PpRi,» Vit holds at the optimal solution
PDRA , then At — A ‘t, i.e., \i = 7/ for all aggregators
Ji attached with bus: (see aIso[@?]) To this end, payments
of the market participants can be calculated with the obkthin
LMPs and optimal DA dispatches. In the RT market of a two-
settlement system if the supplier at busjeliversf?tn with

the real-time price, then the supplier gets paid

T
= TP, + (PG, — PG,
t=1

Likewise, the aggregator at busneeds to pay

T
_ _t bt ~t Pt
Ipra, = E T Fora,, + 7 (PoRra,
=1

- péRAn)'

The revenue of the wind farm at busis
T

Iy, = Y (Tabiv, + snlw), — by, 1" = bl [ply, — wi]™).
t=1
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TABLE |
CONVENTIONAL GENERATOR PARAMETERS THE UNITS OFa; AND b; ARE
$/(MWH)2 AND $/MWH, RESPECTIVELY THE REST ARE INMW.

=]
unit | a; b PR PR R ROV 3
1 0.3 50 90 10 50 50 P
2 | 015 30 50 5 35 40 z ! : ‘ ‘ ‘ ‘ ‘
3 0.2 40 60 8 40 40 152':1m 3am 6am 9am 12pm 3pm 6pm 9pm 12am
TABLE Il -
PARAMETERS OFPHEVS. ALL LISTED HOURS ARE THE ENDING ONES$ 150 Exlﬂﬂm_i E
W.P. MEANS WITH PROBABILITY. I \Vind farm-3

100

Epugv (KWh) Uniform on {10, 11, 12

pRax . (kwh) Uniform on {2.1, 2.3, 2.5 50

Buying prices b ($/MWh)

pEn . (KWh) 0 .
Jsrt.s lam 12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am
Tend 6am w.p. 70%, 7am w.p. 30% . _
Fig. 3. Fixed base load demarfgh}, } and energy purchase pricéb’}.
. . . 10*
Remark 4. (Pricing consistence). In a perfectly competitive 452/ ‘ ‘ ‘ 10'

market, any arbitrage opportunities between the DA and F
markets are exploited by market participants. Hence, the [ asis}
nodal prices are consistent with the DT nodal prices meanir
the expectations of the latter converge to the former. TI
concepts of price distortions and revenue adequacy have bt
recently proposed for the stochastic MC [n[49]. In the setu
of a single snapshot therein, it has been proved that tl
medians and expectations of RT prices converge to the |
counterparts for the/; and ¢, penalties between the RT anc o7
DA power schedules, respectively. Building upon this sol
result, it is possible to establish bounded price distarsidor 4.495¢
the proposed model, while its consistent pricing propegw c
also be analyzed in a similar fashion. The involved impdrta aaol 0
analysis is however beyond the scope of this paper, andtis | Iteration k Iteration k

for future work.

4511

4,505

Objective value ($)
Primal residual &

Fig. 4. Convergence of the objective vallie [14a) and thegirasidual [(I7).

V. NUMERICAL TESTS

In this section, simulated tests are presented to verify thbtained by scaling the real data from the Midcontinent ISO
merits of the proposed CVaR-based MC. The tested pow@®SO) [52]. Two peaks of{ b’} appear during the morning
system is modified from the WECC system as illustrated ifam to12pm, and early nighépm to 9pm. The selling prices
Fig.[D. Each of thet DR aggregators serveX)0 residential {s’} were set tas’ = 0.9b’ satisfying the convexity condition
customers. The scheduling horizon starts frafam until in Propositior L. The rated capacity of each wind farm was

23pm, a total of24 hours set to20 MW, yielding a23% wind power penetration of the
Time-invariant generation cost functions were chosdntal power generation capacity.
quadratic asC;(P4,) = ai(P§,)* + b;P,, for all i and  Wind power output samplegw’}, ; are needed as inputs

t. For simplicity, each end user has one PHEV to chargé (21). These samples can be obtained either from foreofsts
from midnight. All detailed parameters of the convenwind power generation, or, by using the distributions of avin
tional generators and loads are listed in Talles | Ehd Hpeed together with the wind-speed-to-wind-power mapping
The upper bound of each aggregator's consumption [i&f. [B]]. In this paper, the needed samples were obtainewh fr
PERX, = 50 MW. At a base of100MVA, the values of the modelw, = W'+ n{, vVt € 7. The DA wind power
the network reactances af&( 1, X¢o, Xo5, X53, X34, X41} = forecasts{w’} were taken from the MISO market on March
{0.2,0.3,0.25,0.1,0.3,0.4} p.u. Finally, no flow limits were 8, 2014. The forecast errar, was assumed zero-mean white
imposed, while the utility function§U;,s(-)} were set to Gaussian. Possible negative-valued elements of the gedera
zero. The resulting convex progranis(21) and] (22) wesamples{w’}:, were truncated to zero. Finally, the sample
modeled using the Matlab-based pack&y& [50], and solved size N, = 200, the probability levelg = 0.95, the trade-off
by SeDuM [51]. weight 4 = 1, and the primal-residual tolerane& = 10—
Variable characteristics of the daily power market are capere set for all simulations, unless otherwise stated.
tured via two groups of parameters shown in Eig. 3: the fixed Figure[4 demonstrates the fast convergence of the proposed
base load demandpf, }, and the purchase priceb’} at ADMM-based solver. The pertinent parameters were set to
the buses attached with three wind farms. The prices were= 35 and A§(0) = p§rs(0) = 0. Clearly, both the cost and
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1 /-y—
0.9 —— CVaR-based J
— With expected wind power
0.8 — Without wind power -

Conv. gen. pg (MWh)

0
12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am
CVaR-based risk-limiting dispatch

Empirical CDFs
o
ul
L

80

= I Gen-1

0.3t b Z cob [IGen-2 B
= I Gen-3

0.2 1 -
= 40

0.1 8 E)
5 20

0 I I I I I I 3

4 42 4.4 46 438 5 5.2 5.4 ©

¥ 0
Optimal total cost ($) x10* 12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am
No risk-limiting dispatch with expected wind power

Fig. 5. Empirical CDFs of the optimal social cost. . ) .
9 P TAIFB)‘LE m Fig. 6. Optimal power dispatch gs.

MEAN AND STANDARD DEVIATION OF THE TOTAL COST AND THE
CONVENTIONAL GENERATION COST RISK-LIMITING VERSUS NO

@
=]

=

RISK-LIMITING DISPATCH. THE UNITS ARE ALL IN $. E I \Vind farm-1

= [ Jwind farm-2

- & 40| I Wind farm-3
Dispatch scheme Mean Std Conv. gen. cost g
CVaR-based risk-limiting | 44363.26  493.15 26047.66 by

With expected wind power 50095.68  498.13 50194.59 g2

Without wind power 51619.24 476.25 57122.82 g
:3

0
12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am
CVaR-based risk-limiting dispatch

the primal residual converge very fast to the optimum wit
10 iterations. Note that due to the infeasibility of the itexs
at the beginning, the objective function starts from a ve
smaller than the optimum, and then monotonically conv
to the latter.
Three methods were tested to show the performanc T Al -Seray s FA
the optimal dispatch and cost: (i) the novel CVaR-based | No risk~limiting dispatch with expected wind power
limiting MC; (ii) the no risk-limiting MC with the expectea _ _
wind power generatiofw'}; and (iii) the MC without wind 197~ ©Optimal power dispatch gy
power integration. Specificallyp!,, = w' was simply used
in the nodal balance[(2lLb) for (ii), while!, = 0 for o o _
(ii). There are no CVaR-pertinent terms in the objectivgom the economic incentive since the ugithas the lowest
and constraints for the last two alternatives. For all thréeneration costamong all three generators [cf. Table I}tr@n
approaches, the generation CEle Zz]-v:g1 Ci(PL ) is fixed contrary, both g?nerat_oESand?) fluctuate wlthln a relatively
after solving [T#). Hence, randomness of the opfimal tatat ¢ 1arge range in (i), r_nalnly to meet the variation of base load
stems from the transaction cost due to the stochasticithef fdemandpp.; see Fig[B.
actual wind power generatiopw'} [cf. (@)]. As shown in Figur&]7, the novel CVaR-based approach also
Figure [3 presents the cumulative distribution functior@ispatches morgj; than that of (ii). This is because the
(CDFs) of the optimal total costs using0, 000 i.i.d. wind energy purchase pricds’ are smaller than the conventional
samples with meafw'}. Clearly, the two competing alter- generation costs [cf. Tab[e | and Fid. 3]. In additip, and
natives always incur higher costs than the novel CVaR-baselg, contribute most of the committed wind powerlg@m and
approach. The values of the mean and standard deviation (€#@m due to the cheaper buying prices during the corresponding
of the optimal total cost are listed in Tabgllll. It can belots [cf. Fig[B]. Interestingly, Figuid 8 shows that theER¥$
seen that, compared with the other two methods, the propogéél scheduled to start charging earlier for the CVaR-baséd M
scheme has a markedly reduced expected total cost and siwWABreppra is jointly optimized withpe andpyy.
changes in the std. Finally, Figure[® shows the effect of the weight parameter
Figured 61, anfll8 compare the optimal power dispatcheson the optimal costs of the conventional generation and
{pL, Pl . Phra bier Of the proposed scheme with those othe CVaR-based transaction. As expected, the CVaR-based
the scheme (ii). In Fig.16, it can be clearly seen that overtensaction cost decreases with the increase. &for a larger
single day the CVaR-based MC dispatches lower and smoothelessp!, is scheduled so that more wind power is likely to
p¢ than the one with (ii). Furthermore, for the novel methodye sold in the RT market that yields selling revenues rather
generatorsl and 3 are dispatched to output their minimumthan purchase costs. Consequently, to keep the supplyrdema
generationPC‘?j“, while the output of the generat@rchanges balance, higher conventional generation cost is incuryeith®
within its generation limits across time. Such a dispatsluits increase ofp’..

I \Vind farm-1
10 ] wind farm-2 N
I \Vind farm-3

Comm. wind gen. py (MWh)
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Il Generation cost
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H
Fig. 9. Optimal costs of conventional generation and CVaRel transaction. (11]
[12]
VI. CONCLUSIONS ANDFUTURE WORK
[13]

Day-ahead stochastic market clearing with high-penetnati
wind power was investigated in this paper. A stochastié]
optimization problem was formulated to minimize the mark
social cost consisting of the generation cost, the utility o
dispatchable loads, as well as the CVaR-based transaction
cost. The SAA method was introduced to bypass the inh&t®!
ent high-dimensional integral, while an ADMM-based solver
was developed to clear the market in a distributed fashion.
Extensive tests on a modified WECC system corroborated
effectiveness of the novel approach, which offers riskitlimy
dispatch with considerably reduced conventional germrati [18]

A number of appealing directions open up towards ex-
tending the proposed framework. First, it is interesting ta9]
study the extended LMPs by solving a large-scale stochastic
SCUC with start-up (-down) and no-load costs. Second, g
deep explore of the price consistence for multi-period time
coupling MC is in our research agenda. Additional topicgl]
worth further investigation include congestion manageime
reserve procurement, as well as security assessment.issues

decomposition algorithms.
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