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Continuous Estimation Using
Context-Dependent Discrete Measurements

Radoslav Ivanov , Member, IEEE, Nikolay Atanasov , Member, IEEE, Miroslav Pajic , Member, IEEE,
James Weimer , Member, IEEE, George J. Pappas , Fellow, IEEE, and Insup Lee , Fellow, IEEE

Abstract—This paper considers the problem of continu-
ous state estimation from discrete context-based measure-
ments. Context measurements provide binary information
as obtained from the system’s environment, e.g., a medical
alarm indicating that a vital sign is above a certain thresh-
old. Since they provide state information, these measure-
ments can be used for estimation purposes, similar to stan-
dard continuous measurements, especially when standard
sensors are biased or attacked. Context measurements are
assumed to have a known probability of occurring given the
state; in particular, we focus on the probit function to model
threshold-based measurements, such as the medical-alarm
scenario. We develop a recursive context-aware filter by
approximating the posterior distribution with a Gaussian
distribution with the same first two moments as the true
posterior. We show that the filter’s expected uncertainty is
bounded when the probability of receiving context measure-
ments is lower bounded by some positive number for all sys-
tem states. Furthermore, we provide an observability-like
result—all eigenvalues of the filter’s covariance matrix con-
verge to 0 after repeated updates if and only if a persistence
of excitation condition holds for the context measurements.
Finally, in addition to simulation evaluations, we applied the
filter to the problem of estimating a patient’s blood oxygen
content during surgery using real-patient data.

Manuscript received December 2, 2017; accepted January 16, 2018.
Date of publication January 24, 2018; date of current version December
24, 2018. This work was supported in part by the NSF under Grant CNS-
1505799, Grant CNS-1652544, and Grant CNS-1505701, and in part
by the Intel-NSF Partnership for Cyber-Physical Systems Security and
Privacy. This work is also based on research sponsored by the ONR un-
der Agreement N00014-17-1-2012 and Agreement N00014-17-1-2504.
Recommended by Associate Editor Z. Gao. This paper was presented
in part at the 53rd Annual Allerton Conference on Communication, Con-
trol, and Computing, Monticello, IL, USA, 2015, and in part at the 7th
International Conference on Cyber-Physical Systems, Vienna, Austria,
2016. (Corresponding author: Radoslav Ivanov.)

R. Ivanov, J. Weimer, and I. Lee are with the Department of Com-
puter and Information Science, University of Pennsylvania, Philadel-
phia, PA 19104 USA (e-mail: rivanov@seas.upenn.edu; weimerj@seas.
upenn.edu; lee@seas.upenn.edu).

N. Atanasov is with the Department of Electrical and Computer En-
gineering, University of California, San Diego, CA 92093 USA (e-mail:
natanasov@ucsd.edu).

G. J. Pappas is with the Department of Electrical and Systems En-
gineering, University of Pennsylvania, Philadelphia, PA 19104 USA
(e-mail: pappasg@seas.upenn.edu).

M. Pajic is with the Department of Electrical and Computer Engi-
neering, Duke University, Durham, NC 27708 USA (e-mail: miroslav.
pajic@duke.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2018.2797839

Index Terms—Context-aware state estimation, discrete
context measurements, estimation of blood oxygen content,
probit measurement model.

I. INTRODUCTION

W ITH the proliferation of a sensing and computing tech-
nology, modern autonomous systems have access to a

wealth of information when estimating their state. Given the
recent improvements in machine learning, it is now possible to
obtain high-level representations of this information. For exam-
ple, if a robot detects a known building using image processing,
the robot can conclude that it is near that building; similarly, if
a medical device raises an alarm that a vital sign is above a cer-
tain threshold, it might be possible to conclude that the patient
is in a critical state. Consequently, these discrete-valued con-
text data can be viewed as measurements of (functions of) the
system state, similar to conventional continuous sensors such
as accelerometers or GPS (this notion is illustrated in Fig. 1).
Thus, context measurements can be used for state estimation
both as a single source of information and in scenarios when
some of the continuous sensors are noisy/biased (e.g., GPS in
an urban environment [3] or medical sensors disrupted by mov-
ing artifacts [4]) or in security applications when some sensors
might be attacked (e.g., the RQ-170 Sentinel drone that was
captured in Iran [5] is believed to have had spoofed GPS [6]; if
the drone had analyzed Iranian frequency modulation radio sig-
nals using natural language processing, it could have extracted
context information that it is in Iran).

In this paper, we develop a state estimation technique for
linear systems with access to context measurements only. Con-
text measurements are defined as discrete-valued data that have
a known probability given the system state. Context measure-
ments are especially useful when they represent low-level data
that cannot be easily expressed as a function of the state (e.g.,
it is challenging to functionally map raw images to the robot’s
state). Thus, by using the probability distribution of context
measurements given the state, one may use them for estimation
in a rigorous manner. The probabilistic formulation makes sense
intuitively—if a building is far from the robot and appears small
in images, it might be recognized in some images only; if the
building is nearby, we expect to recognize it in most images,
i.e., the probability of receiving a context measurement would
be high for states close to the building.

In this paper, we are specifically interested in binary measure-
ments as an important subclass of context measurements, i.e.,
each measurement is equal to 1 or −1 with a known probability
given the state. Binary measurements capture a rich class of
events that might occur during a system’s operation. Examples
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Fig. 1. General architecture of a system with access to context
measurements.

include a medical device alarm that a vital sign exceeds a cer-
tain threshold (e.g., if the patient’s oxygen saturation is below
a certain threshold, then the overall oxygen content (the state)
must be below a certain threshold [2]) as well as occupancy grid
mapping where a binary measurement is received as the robot
gets close to an obstacle [7].

Estimation with context-based measurements was originally
explored in radar target tracking, where measurements also ar-
rive irregularly and could be discrete [8] (refer to Section II for
a discussion of related work). The models considered in this
domain, however, are very general, which makes it challenging
to derive exact theoretical results and instead leads to com-
putationally expensive approximations. Approaches exist also
for system identification with binary (but not random) observa-
tions [9] and for estimation with quantized measurements where
measurements with known functional relation to the state (e.g.,
linear) are mapped to discrete sets, e.g., sign of innovations [10]
or logarithmic quantizers [11].

In contrast with existing works, we develop a context-aware
filter for linear systems with access to binary measurements.
Unlike prior work, we assume no knowledge about the measure-
ments other than their probability of occurring, given the state.
In particular, we focus on the probit function (i.e., the cumula-
tive distribution function (cdf) of the Gaussian distribution) in
order to model the probability of getting context measurements,
given the state.1 Since it resembles a step/sigmoid function,
the probit function is well suited for modeling threshold-based
context measurements—intuitively, the probability of getting a
measurement is low when the state is well below the threshold
and should rise as the state approaches/passes the threshold.

In our prior work [1], we presented the context-aware filter
for the probit model by deriving the exact posterior distribution
of the state, given a context measurement. At the same time, it
is not known how to compute the posterior for multiple con-
text measurements since the integrals become intractable. As
a result, we proposed to approximate the posterior distribution
with a Gaussian distribution with the same first two moments
as the true posterior. The approximating Gaussian distribution
is then used as a prior for the next measurement, thus obtaining
a recursive context-aware filter.

In this paper, we present theoretical analysis of the context-
aware filter. We first show that the posterior distribution is uni-
modal, so that the Gaussian approximation is indeed justified. In
addition, we show that, for a scalar system, the expected variance
of the filter’s estimates is bounded, provided that the probability
of receiving both a measurement of 1 and −1 is at least some

1In prior work [1], we also considered a second class of probability of detec-
tion functions, namely, inverse-exponential functions. In the interest of space,
however, that discussion is not included here.

positive number η. This result is similar to a corresponding fact
about Kalman filtering with intermittent observations [12], in
the sense that the system needs to perform “useful” updates
often enough in order to keep the uncertainty bounded. Gen-
eralizing this result to multidimensional systems, however, is
challenging due to the fact that we aim to estimate continuous
variables using discrete measurements only; at the same time,
the same intuition could be used to prove a similar claim in the
multidimensional case as well.

To provide further intuition about the filter’s performance in
the multidimensional case, we show convergence results about
systems with no dynamics. We show that the eigenvalues of
the filter’s covariance matrix converge to 0 if and only if a
persistence-of-excitation condition holds for the context mea-
surements. This result is the context equivalent to an observ-
ability claim in a standard linear system—intuitively, if there
exist context measurements that observe all states, then the un-
certainty decreases over time. Furthermore, we show that as the
eigenvalues of the covariance matrix converge to 0, the expres-
sions for the moments of the Gaussian approximations converge
to a form similar to the Newton method [13], which suggests
that the estimates likely converge to the true state, since the pos-
terior distribution is unimodal. This result provides a parallel
with the widely used expectation propagation [14] algorithm,
where similar Gaussian approximations are employed—thus,
the results presented in this paper might be of interest to the
machine learning community as well.

Finally, we evaluate the context-aware filter both in simula-
tion and on real-patient data collected from the Children’s Hos-
pital of Philadelphia (CHOP). We first show the evolution of the
estimates for a system with no dynamics in order to illustrate
the saw-shaped nature of the estimation curve induced by bi-
nary measurements. In addition, we simulate a moving system
in order to illustrate a case in which the estimator does con-
verge for moving systems as well. Finally, we apply the filter to
the problem of estimating a patient’s blood oxygen (O2) content
during surgery. Since theO2 content cannot be measured nonin-
vasively, we use context measurements extracted from different
medical device data to perform estimation. The results indicate
that adding context reduces the estimation error by about 20%,
on average.

The remainder of this paper is organized as follows.
Section II provides a discussion on related work in several
research communities. Section III formulates the problem ad-
dressed in this paper, and Section IV presents the context-aware
filter. The convergence analysis of the filter is shown in Sec-
tion V. We evaluate the filter’s performance in Sections VI (in
simulation) and VII (on real data). Finally, Section VIII provides
concluding remarks.

II. RELATED WORK

The concept of context-aware filtering has appeared in dif-
ferent forms in several research communities. As mentioned in
Section I, there exist target tracking approaches for filtering with
both discrete and continuous measurements, e.g., the probabil-
ity hypothesis density (PHD) filter [8]. Other nonlinear filters
have been developed as well, such as the hybrid density filter
(HDF) [15], the set-membership filter [16], and the assumed
density filter (ADF) [17] (the context-aware filter is a type of
ADF for which we can compute the moments of the posterior
distribution). Due to their generality, however, these filters do
not provide strong theoretical guarantees about specific classes
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of nonlinear systems; in contrast, by focusing on a specific class
of nonlinear measurements, we can derive a closed-form filter
with strong theoretical properties.

Context measurements are also similar to quantized mea-
surements in that they are discrete valued [10], [11]. Quantized
measurements are different, however, because they are derived
from standard continuous measurements, whereas context mea-
surements are only related to the state through the probability of
detection. System identification with binary measurements [9]
has also been investigated, although no approaches exist for the
probabilistic setting in our paper.

Context-aware filtering is also similar to Kalman filtering with
intermittent observations [12], [18], and unreliable links [19]–
[22] in that measurements arrive irregularly, and the frequency
of measurement arrivals affects the filter’s performance. Related
to this is the area of sensor scheduling, where different sensors
are used at different times so as to minimize interference or
power consumption [23]–[25]. Yet another similar problem has
been considered in wireless sensor networks, where sensors are
deployed over a large area such that the receipt of each sen-
sor’s measurement could be considered a context measurement
[26], [27].

Due to their discrete nature, context measurements can also
be modeled with hybrid systems [28], where different modes
contain different models of context measurements. Such mod-
els include Markov chain switching [29], [30], deterministic
switching [31], [32], and other more general models [33]. How-
ever, due to their complexity, all of these approaches rely on
approximations in order to perform the estimation task.

Different notions of context are also used in robotics for the
purpose of localization and mapping [34] by using scene catego-
rization [35] and object class information [36], [37]. However,
these papers do not provide theoretical guarantees for their ap-
proaches. The work that is closest in its setup and assumptions
to our paper addresses the problem of indoor localization by us-
ing both continuous and discrete measurements [37]; however,
the particle filter used to combine the two types of measure-
ments does not provide theoretical guarantees for a finite set
of particles and may suffer from particle deprivation problems
in high-dimensional spaces. Finally, context-aware filtering is
also related to Gaussian process classification [38] since the
objective is to learn a continuous probability distribution from
discrete data. In particular, the EP algorithm [14] is similar to
the context-aware filter in that posteriors are approximated with
Gaussian distributions as well; however, no convergence results
exist for EP.

III. PROBLEM FORMULATION

This section presents the system model used in this paper,
including the probit context measurement model. The precise
problem statement is provided at the end of the section.

A. System Model

Consider a linear discrete-time system of the form

xk+1 = Akxk + wk (1)

where x ∈ Rn is the system state, x0 ∼ N (μ0 ,Σ0), wk ∼
N (0, Q) is Gaussian process noise, and Ak is a matrix of ap-
propriate dimensions describing the system dynamics.

Fig. 2. Most of the O2 in the blood is bound to hemoglobin.

Instead of the classical continuous sensors, the system con-
sidered in this paper only has access to context sensors.2 Context
sensors provide binary information about the system’s context;
examples include detecting nearby objects with known posi-
tions on a map or a vital sign exceeding a certain predefined
threshold. At each time k, a measurement bk is received that is
equal to 1 if a detection occurs and −1 otherwise.3 We assume
that bk is equal to 1 with a known probability given the state,
denoted by pdk (bk | xk ), i.e.,

bk =

{
1 w.p. pdk (bk | xk )
−1 w.p. 1 − pdk (bk | xk ).

(2)

As noted in Section I, pdk is close to 1 when the system is in a
state that is highly correlated with receiving a context measure-
ment (e.g., a robot is close to a building). Note that pdk is time
varying, i.e., different binary measurements may be received
at different times. It is assumed that, conditioned on the state,
context measurements are mutually independent.

B. Context Measurement Model

As argued in Section I, we use the probit function to model
the probability of detection of context measurements [39]:

pdk (bk | xk ) = Φ((vTk xk + ak )bk ) (3)

where Φ is the cdf of the standard Normal distribution, vk ∈ Rn

is a vector of known parameters, and ak ∈ R is a known param-
eter offset. Note that pdk (bk = 1 | xk ) = 1 − pdk (bk = −1 | xk )
due to the rotational symmetry of Φ, i.e., Φ(−x) = 1 − Φ(x).
We assume there is a finite set of size C of context weights and
offsets V = {(v1 , a1), . . . , (vC , aC )}.

Due to its step-like shape, the probit function is well suited for
modeling threshold-based events such as medical alarms. Con-
sider the problem of estimating the patient’sO2 content (CaO2);
as shown in Fig. 2, most of the O2 is bound to hemoglobin.
Although the precise mapping from hemoglobin-oxygen satu-
ration (SpO2) to CaO2 is unknown (and varies across patients),
if CaO2 is below a threshold ts , then one also expects to see a

2All results in this paper also hold in the addition of classical measurements
of the form yk = Cxk (plus Gaussian noise). To keep the presentation simple,
however, we focus on the case with context measurements only.

3Our framework can handle more than one binary measurement by repeated
updates. We make the one-measurement assumption to simplify notation.
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measurement ofSpO2 below a threshold tm . Thus, we can intro-
duce a context measurement bk that is equal to 1 if SpO2 > tm
and −1, otherwise.

To relate bk to the state (CaO2), note that as CaO2 becomes
much smaller than ts , it becomes more likely for bk to be −1;
conversely, if CaO2 is greater than ts , it is very unlikely for
bk to be −1. The probit function is ideal for capturing such a
scenario: the probability of bk = 1 is close to 0 for low values
of CaO2 and approaches 1 as CaO2 rises above ts . The pa-
rameters in the probit function should be chosen based on the
following considerations: since vk determines the slope of
the step-like response in the probit function, vk should be
large if the relationship between ts and tm is precise (e.g., if
SpO2 < tm , then necessarilyCaO2 < ts) and should be smaller
if some false positives are expected; since ak determines the
threshold where the step response begins, ak should be set to
−vk ts (in the one-dimensional case) to ensure the probability
rises quickly as the threshold is crossed.

C. Problem Statement

Problem: Given the system defined in (1)–(3) and a prior
probability density function (pdf) pk |k (x) = p(x | b0:k ), the
goal is to compute (and analyze) the posterior density

pk+1|k+1(x) := p(x | b0:k+1).

IV. CONTEXT-AWARE FILTER

The problem formulation in Section III naturally leads to a
Bayesian filter of the form:

Predict : pk+1|k (x) =
∫
pfk+1|k (x | z)pk |k (z)dz

Update : pk+1|k+1(x) = ξk+1p
d
k (bk+1 | x)pk+1|k (x) (4)

where pfk+1|k (xk+1 | xk ) is the conditional pdf of the state at
time k + 1 given the state at time k, and ξk+1 is a constant [40].

Equation (4) is impossible to derive in the closed form for
arbitrary dynamics and observation models (with the excep-
tion of the linear Gaussian case, which leads to the Kalman
filter). As discussed in Section II, multiple approximation ap-
proaches with different assumptions exist, such as the ADF,
PHD filter, and the HDF. Due to their generality, all of
these approaches rely on approximations when computing their
estimates.

That is why, in this paper, we focus on a specific observa-
tion model [i.e., the probit model defined in (3)] and derive the
exact posterior distribution after the update with a binary mea-
surement. At the same time, developing a closed-form recursive
filter is not straightforward, since the posterior distribution is
no longer Gaussian. As we argue below, however, a Gaussian
distribution with the same mean and covariance matrix is a good
approximation for the resulting posterior distribution since the
true posterior is unimodal as well.

The following sections present the recursive context-aware
filter, assuming the prior pk−1|k−1 is a Gaussian distribution
with mean μk−1|k−1 and covariance matrix Σk−1|k−1 .

A. Predict

The predict phase is the classical Kalman filter prediction:

pk |k−1(x) =
∫
φ(x;Ak−1z,Q)φ(z;μk−1|k−1 ,Σk−1|k−1)dz

= φ(x;Ak−1μk−1|k−1 , Ak−1Σk−1|k−1A
T
k−1 +Q)

= φ(x;μk |k−1 ,Σk |k−1)

where φ(x;μ,Σ) denotes the pdf of a Gaussian distribution with
mean μ and covariance matrix Σ.

B. Update

The posterior distribution after the receipt of a binary mea-
surement bk is shown in Proposition 1 below (all proofs are
given in the Appendix).

Proposition 1: Upon receipt of a discrete measurement bk ∈
{−1, 1}, the discrete update is as follows:

pk |k (x) =
Φ

((
vTk x+ ak

)
bk

)
φ(x;μk |k−1 ,Σk |k−1)
Zk

(5)

where

Zk = Φ

⎛
⎝ (vTk μk |k−1 + ak )bk√

vTk Σk |k−1vk + 1

⎞
⎠ .

Approximation: We approximate the posterior distribution
in (5) with a Gaussian distribution with the same mean and
covariance matrix.

The posterior distribution in (5) is no longer Gaussian. In fact,
the related work [41], [42] has shown that the posterior is not
Gaussian in multiple truncation scenarios, e.g., with infrequent
measurement transmissions. In such cases, it might be possible
to develop filters for skewed normal distributions. However, a
Gaussian still seems to be a good approximation for (5). In par-
ticular, as shown in Proposition 2 below, the distribution in (5)
is log-concave; log-concavity, in turn, implies unimodality, as
discussed in Corollaries 1 and 2.

In addition, despite the filter’s discrete nature, the posterior
distribution in (5) is not the result of a truncation process but is
actually smooth (infinitely differentiable, in fact). This suggests
that no individual measurement can introduce large skewness
to either side. Finally, the pdf in (5) is computed numerically in
Section VI-C (for multiple updates); the results provide strong
evidence that the posterior is sufficiently symmetric so that a
Gaussian approximation is justified. Thus, we approximate the
posterior in (5) with a Gaussian with the same mean and co-
variance matrix as the distribution in (5)—these quantities are
computed in Proposition 3 below.

Proposition 2: The distribution in (5) is log-concave, i.e., the
function g(x) = ln(pk |k (x)) is concave.

Corollary 1 ([43]): In one dimension, the distribution in (5)
is unimodal, i.e., there exists a point x∗ such that pk |k (x) is
increasing for x ≤ x∗, and pk |k (x) is decreasing for x ≥ x∗.

Corollary 2 ([43]): In many dimensions, the distribution
in (5) is star-unimodal (a random variable X ∈ Rn is said
to have a star-unimodal distribution if for every bounded
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nonnegative Borel measurable function f on Rn , tnE[f(tX)]
is nondecreasing for t ∈ [0,∞)).4

Proposition 3: The mean of the distribution in (5) is

μk |k = μk |k−1 + Σk |k−1vk (vTk Σk |k−1vk + χk )−1bk (6)

where

χk =

√
vTk Σk |k−1vk + 1 − vTk Σk |k−1vkα(Mk )

α(Mk )
(7)

α(x) = φ(x; 0, 1)/Φ(x) (8)

Mk =
(vTk μk |k−1 + ak )bk√
vTk Σk |k−1vk + 1

. (9)

The covariance matrix of the distribution in (5) is

Σk |k = Σk |k−1 − Σk |k−1vk (vTk Σk |k−1vk + γk )−1vTk Σk |k−1
(10)

where

γk =
(1 − h(Mk )) vTk Σk |k−1vk + 1

h(Mk )
(11)

h(x) = α(x)(x+ α(x)). (12)

Remark: The context-aware filter is similar to Kalman fil-
tering with intermittent observations [12] in that measurements
arrive in a stochastic manner. Thus, (10) resembles a standard
Riccati equation (update), where the nonlinear term γk could be
considered as the equivalent of measurement noise.

Note also that the functions α and h defined in (8) and (12),
respectively, have been studied extensively in the statistics com-
munity. The ratio α is known as the inverse Mills ratio; some
properties of the inverse Mills ratio that are used throughout this
paper are summarized below.

Definition: The inverse Mills ratio is defined as the ratio of
the pdf and cdf of a standard Normal distribution, respectively,

α(x) = φ(x; 0, 1)/Φ(x).

Proposition 4 ([44]): The following statements are true
about the inverse Mills ratio:

1) h(x) := −α′(x) = α(x)(x+ α(x))
2) 0 < h(x) < 1 ∀x ∈ R
3) h′(x) < 0 ∀x ∈ R.
Remark: Since 0 < h(x) < 1, we can conclude that γk > 1.

V. CONVERGENCE PROPERTIES

In this section, we analyze the convergence properties of the
context-aware filter. Since the task is to estimate a continuous
variable using only discrete measurements, proving convergence
is hard in general, especially given the random and time-varying
nature of the filter. Ideally, one could hope to prove that the ex-
pected covariance matrix is bounded under some conditions on
the initial condition and the probability of measurement arrivals
(similar to Kalman filtering with intermittent observations [12]).
However, the random nonlinear term γk in the covariance matrix
update in (10) makes it challenging to analyze the system when

4While there is a standard definition of unimodality in one dimension, many
definitions exist in multiple dimensions [43].

dynamics are also considered since γk cannot be upper bounded
in general (as shown in Proposition 4, the function h can be
arbitrarily close to 0). Such an upper bound can be derived in
the special case of a scalar system, as shown in the following
section.

To provide further intuition about the filter’s convergence,
we also show results for a nonmoving system. In particular, in
Sections V-B and V-C, we provide an observability-like claim
for the filter, i.e., the eigenvalues of the covariance matrix con-
verge to 0 if and only if a persistence-of-excitation condition
is true for the weight vectors vk over time. Furthermore, we
show that, as the eigenvalues of the covariance matrix converge
to 0, the discrete update of the filter converges to a Newton-
method-like step, which is an intuitive result given that the filter
approximation matches the first two moments of the true poste-
rior distribution.

A. Bounded Variance for a Scalar System

In this section, we analyze conditions that result in a bounded
variance of the context-aware filter given a scalar system:

xk+1 = axk + wk (13)

where xk , a ∈ R, and wk ∼ N (0, q).
First note that the update in (10) looks like a standard Riccati

equation, except for the nonlinear term γk . Thus, one way to
show that the context-aware filter’s variance is bounded is by
providing an upper bound on γk such that (10) is bounded (with
some positive probability) by a standard Riccati equation. In
such a case, our problem can be reduced to Kalman filtering
with intermittent observations [12], and we can use some of the
known facts for that scenario.

One case in which γk can be bounded (with positive prob-
ability) is when the probability of receiving both a measure-
ment of 1 or −1 is at least some positive number η. In such a
case, γk can be upper bounded (with probability at least η) by
((1 − h(0))vkσkvk + 1)/h(0) by using the fact that h′(x) < 0
for all x. This condition leads to the following result, similar to
a result from Kalman filtering with intermittent observations.

Theorem 1: Consider the system in (13) and suppose that,
for all xk , pdk (bk | xk ) ≥ η for bk = ±1. Then there exists some
ηc ∈ [0, 1) such that

∀σ0 ,E[σk ] ≤Mσ0 , for ηc < η ≤ 1

where Mσ0 is a constant that depends on the initial condition.
Theorem 1 says that the filter’s expected uncertainty is

bounded if the probability of receiving “useful” measurements
is sufficiently high (by “useful” we mean that a measurement
can be both 1 or −1 with probability at least η such that re-
ceiving the measurement does provide significant information).
This result makes sense intuitively—if the system is moving
away from all available context measurements (i.e., if vT x+ a
is very large in absolute value for all (v, a) ∈ V), we cannot
expect to be able to estimate the state; conversely, if context
measurements are available throughout the system’s execution,
then the filter’s uncertainty should be low.

The proof of Theorem 1 does not generalize immediately to
the multidimensional case, as the bound on γk does not lead
to a standard-Riccati-equation bound on the expected covari-
ance matrix. The multidimensional modified Riccati equation
effectively has a time-varying covariance matrix that is difficult
to bound; establishing the convergence of such a filter is an
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open problem in control theory and is part of the future work.
At the same time, we believe the same intuition holds for the
multidimensional case as well.

B. Covariance Matrix Convergence for
Nonmoving System

While we cannot bound the filter’s expected uncertainty in
the multidimensional case, we provide such a result in the spe-
cial case of a nonmoving system. Estimation for nonmoving
systems has interesting applications as well, e.g., the robotics
mapping problem where a robot with a known position attempts
to locate all (nonmoving) obstacles on the map by receiving bi-
nary measurements when objects are detected. We show that for
a system with no dynamics, the eigenvalues of the covariance
matrix converge to 0 if and only if a persistence-of-excitation
condition (formalized below) is true for the weight vectors vk
over time.

To simplify notation and since no dynamics predictions are
performed in this section, we drop the prediction notation in
the rest of this section (i.e., we write Σk instead of Σk |k =
Σk+1|k ). Before presenting the main result of this section, we
first describe the behavior of the covariance matrix after multiple
binary updates, as presented in the following lemma.

Lemma 1: After applying N updates at time k, the covari-
ance matrix update from (10) can be written as

Σk+N = Σk − ΣkV
T
k (VkΣkV

T
k + Γk )−1VkΣk , (14)

where Vk = [vk+1 , . . . , vk+N ]T , [Γk ](i,j ) = γk+i if i = j, and
[Γk ](i,j ) = 0 otherwise.

The update in Lemma 1 is similar to a standard Riccati equa-
tion (without the dynamics elements). Thus, it is not surprising
that convergence of the covariance matrix depends on similar
conditions on the matrix Vk as for a Ck matrix in a standard
linear system. One such property is the widely used persistence
of excitation [45].

Definition (Persistence of Excitation): The sequence of con-
text weights and offsets (vk , ak ) is persistently exciting if there
exist n linearly independent weight vectors with correspond-
ing offsets P = {(v1 , a1), . . . , (vn , an )} that appear infinitely
often, i.e., for every k, there exists lk ∈ N such that

∀(vi, ai) ∈ P,∃t ∈ {k, . . . , k + lk} s.t. (vt , at) = (vi, ai).

Persistence of excitation is a standard assumption in estima-
tion and system identification [45].5 Intuitively, it means that
there exists a set of context measurements that are received in-
finitely often such that their corresponding weights span Rn .6

The offsets are also important because even if the same weights
repeat over time, the change of offsets might still affect the
probability of receiving new context measurements.

Theorem 2: Suppose the system has no dynamics (i.e.,Ak =
I , the identity matrix, andQ = 0). Let λjk > 0 be the eigenvalues
of Σk . Then λ

j
k

a.s.−−→ 0 as k → ∞ if and only if (vk , ak ) is
persistently exciting.

5The definition used in our paper is a special case of standard definitions
since we have a finite set of context weights.

6Persistence of excitation does not require the received context measurements
to take on a specific value, i.e., they can be either −1 or 1. Intuitively, the
definition only requires the same classifiers to run infinitely often.

Theorem 2 is essentially an observability result. It suggests
that if some states are not observed through binary measure-
ments, then the uncertainty about those states does not decrease
over time. If all states are observed, however, then the uncer-
tainty is reduced in a manner similar to the standard Kalman
filter with a persistently exciting Ck matrix.

Even if the covariance matrix converges to zero, it is not
clear whether the filter’s estimates converge to the true state.
However, as shown in Section VI, simulations suggest that the
estimates do converge to the true state. Furthermore, similar con-
vergence results exist for the EP algorithm (which also contains a
Gaussian approximation), namely, EP converges to the true state
for strongly log-concave observation models [46] (the probit
model is log-concave but is not strongly log-concave); and in
the limit, EP has a fixed point at the true state if the observation
model has bounded derivatives [47] (true for the probit model).
Thus, it is likely that the context-aware filter’s mean also con-
verges to the true state but we leave proving this result for future
work.

C. Convergence of “Site” Approximations

In an effort to better understand the asymptotic behavior of
the context-aware filter for systems with no dynamics, in this
section, we analyze the effect of a single update in the limit.
In particular, we show that as more data are available, discrete
updates converge to a Newton-method-like step (this result is
similar to a recent result about the limit behavior of EP [47]).

Definition: The Newton method for finding the minimum of
a twice-differentiable function f is computed as follows: given
the previous iteration point xn , the next step is [13]

xn+1 = xn −
[
f

′′
(xn )

]−1
f

′
(xn ).

The significance of this property is that the Newton method
converges to the optimal value (i.e., the peak of the distribu-
tion) of concave or quasi-concave functions. Since the posterior
distribution in (5) is log-concave (i.e., quasi-concave), there is
strong evidence to believe that the context-aware filter does in-
deed converge to the true state.

Each update of the context-aware filter could be viewed as
a Gaussian approximation of the observation model itself (i.e.,
of the probit model). Specifically, the posterior Gaussian ap-
proximation could be considered as a Gaussian distribution that
resulted from an update in which the observation model was
also a Gaussian distribution with the appropriate parameters
(also known as a “site” approximation in machine learning).

Definition (Site Approximation): Given a Gaussian prior
φ(x;μk−1 ,Σk−1) and a binary update with observation model
Φ((vTk x+ ak )bk ), a site approximation is a Gaussian distribu-
tion ps(x) := φ(x;μs,Σs) such that the distribution (normal-
ized by the constant β)

pG (x) = βφ(x;μk−1 ,Σk−1)φ(x;μs,Σs)

has the same mean and covariance matrix as the true posterior

pk |k (x) =
1
Zk

Φ
((
vTk x+ ak

)
bk

)
φ(x;μk−1 ,Σk−1).

Site approximations are easily computed when we consider
the natural parameters of the distribution. Suppose the prior
distribution is φ(x; Ω−1

k−1ωk−1 ,Ω−1
k−1), where Ωk−1 = Σ−1

k−1
and ωk−1 = Ωk−1μk−1 are the prior’s information matrix and
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mean, respectively. Similarly, suppose the posterior Gaussian
approximation is φ(x; Ω−1

k ωk ,Ω−1
k ). Then the parameters of

the site approximation φ(x; (Ωs
k )

−1ωsk , (Ω
s
k )

−1) are [48]:

Ωs
k = Ωk − Ωk−1 (15)

ωsk = ωk − ωk−1 . (16)

The site approximation abstraction is useful as it allows us to
reason about the “contribution” of each update.

Theorem 3: Suppose the prior is φ(x; Ω−1
k ωk ,Ω−1

k ) (where
Ωk = Σ−1

k and ωk = Ωkμk ). After performing an update in the
context-aware filter, the natural parameters of the site approxi-
mation are

Ωs
k+1 = vk+1γ

−1
k+1v

T
k (17)

ωsk+1 = Ωs
k+1μk + (I + Lk+1)vk+1N

−1
k+1bk+1 (18)

where

Nk+1 = vTk+1Σk vk+1 + χk+1

Lk+1 = vk+1γ
−1
k+1v

T
k+1Σk .

Corollary 3: Suppose the system has no dynamics (i.e.,
Ak = I , the identity matrix, and Q = 0). If (vk , ak ) is persis-
tently exciting, then the natural parameters of the site approxi-
mations converge to

Ωs
k+1

a.s.−−→ ψ
′′
k+1(μk ) (19)

ωsk+1
a.s.−−→ Ωs

k+1μk − ψ
′
k+1(μk ) (20)

where ψk+1 is the negative log likelihood of the measurement
bk+1 , i.e.,

ψk+1(x) = − ln(Φ((vTk+1x+ ak+1)bk+1)).

Remark: Since Ωs
k+1μ

s
k+1 = ωsk+1 , we can conclude that

μsk+1
a.s.−−→ μk − [ψ

′′
k+1(μk )]

−1ψ
′
k+1(μk ). This is not the same

as the Newton method since it contains the site approximation
mean instead of the posterior distribution mean. Yet, it shows
that the site approximations themselves behave as a Newton
method update that is added to the prior mean.

The significance of Corollary 3 is that the Newton method
converges to the minimal (maximal) point of a log-convex
(-concave) function. Although the site approximations are not
identical to the Newton method (since the ψk+1(x) functions
change over time), they do perform a Newton method update
at each time step. In turn, a Newton method behavior im-
plies that the site approximations converge to the Canonical
Gaussian Approximation (CGA) [46], i.e., the Gaussian distri-
bution whose mean is the maximizer of the true observation
model’s probability distribution and whose covariance matrix is
the Hessian at that maximum. Finally, it is known that CGAs
converge almost surely to a large class of posterior distribu-
tions, e.g., as shown by the Bernstein-von Mises Theorem [49].
Thus, Corollary 3 presents strong evidence to believe that the
context-aware filter does indeed converge to the mean of the
true posterior distribution. The following section presents sev-
eral simulation scenarios in support of this claim as well.

VI. SIMULATION EVALUATION

We evaluate the context-aware filter both in simulation and
on real data collected from CHOP. In this section, we provide

evaluation in simulation. The following section presents the ap-
plication of the context-aware filter to the problem of estimating
the blood oxygen content during surgery.

A. System With No Dynamics

We first evaluate the filter on a system with no dynamics, in
order to illustrate the significance of Theorem 2. Fig. 3 shows the
filter’s evaluation on a scalar system with a constant statexk = 3
and with access to one context measurement with parameters
vk = 1 and ak = −5. The initial condition is μ0 = 1, Σ0 = 2.
Fig. 3(c) shows the evolution of the covariance for ten runs
of the system; as expected, the covariance converges to 0 for
each one, thus ensuring the convergence of the filter overall.
Fig. 3(b) shows the estimation errors for the same ten runs; the
estimates are close to the true state, although some estimates
converge more slowly due to different random realizations of
the measurements. Finally, Fig. 3(a) shows the toothed shape of
the estimates for an example run, with discrete jumps as new
context measurements are incorporated.

B. System With Unstable Dynamics

In the second simulation, we evaluate the filter’s performance
on an unstable system. The system dynamics are

xk+1 =
[

1.01 0
0 1.01

]
xk + wk

wherewk ∼ N (0, 0.001I) and x0 = [1 1]T .7 Twenty four con-
text measurements are received at each time, 12 with weights
vk,1 = [0 1]T and 12 with weights vk,2 = [1 0]T ; the 12 offsets
ak are decreased linearly from 0 to −240 (i.e., they provide
rough information as to whether each state is between 0 and 20,
20 and 40, etc.).

Fig. 4 shows the results of the simulation. Fig. 4(a) shows
that the filter tracks the state very well after the initial period of
uncertainty. The total number of context measurements equal to
1 at each step are shown in Fig. 4(b); as can be seen in the figure,
eventually the system crosses almost all 24 context thresholds.
In addition, we observe similar trends as in Fig. 3, i.e., the
estimates track the real system well after the initial period of
uncertainty [see Fig. 4(c)], and the trace of the covariance matrix
[see Fig. 4(d)] converges over time. The spikes in the trace
of the covariance matrix around step 200 are due to the fact
that the system receives the same context measurements around
steps 150–230; once more context thresholds are crossed, the
filter’s uncertainty decreases again. These results suggest that
the filter does converge over time (given certain observability-
like conditions) and is likely asymptotically unbiased.

C. Shape of the True Posterior Distribution

In this section, we provide simulation results in order to in-
spect the shape of the true posterior distribution and to justify the
Gaussian approximation used in the context-aware filter. Since
we cannot derive a closed-form expression for the true posterior
after more than one update, we simulate multiple different sys-
tems, compute the posterior numerically, and analyze its prop-
erties in order to compare it to the approximating Gaussian. We

7Systems with larger-eigenvalue dynamics were tested as well with similar
results; the system used in this section was chosen for visualization purposes.
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Fig. 3. Illustration of the performance of the context-aware filter on a nonmoving scalar system. (a) Example run. (b) Estimation error for ten runs.
(c) Magnitude of variance for ten runs.

Fig. 4. Illustration of the performance of the context-aware filter on an unstable system. (a) Example run. Note that each axis represents one state
of the system. (b) Total number of context measurements equal to 1 (out of 24) over time for the example run in Fig. 4(a). (c) Estimation error for ten
runs. (d) Trace of the covariance matrix for ten runs.

aim to show that the true posterior is sufficiently symmetric so
that the Gaussian approximation is reasonable.

One measure of symmetry is the closeness between the dis-
tribution’s mean and mode—the more symmetric a distribution
is, the closer its mean and mode are. Thus, we measure the dif-
ference between the posterior’s mean and mode as indication of
its symmetry. We simulate multiple nonmoving scalar systems
with access to one context measurement; in different systems,
we vary the value of the offset parameter in the probit function
ak ,8 and the system’s initial covariance. For each system, we
record the absolute difference between the posterior’s mean and
mode after 1000 updates.

Table I presents the results. When ak is close to the true
mean 0, the difference between the mean and the mode is very
small, i.e., the posterior is very symmetric. As ak gets larger,
the difference becomes bigger, which means that the posterior is
more skewed. This is due to the fact that for these systems only
measurements of −1 are observed during the 1000 simulation
steps because the probability of receiving a measurement of
1 is low (≤ 10−4). To explore this issue, we simulate two of

8Since systems are not moving, it is sufficient to only vary ak in vTk x + ak .

TABLE I
ABSOLUTE DIFFERENCE BETWEEN THE TRUE POSTERIOR DISTRIBUTION’S

MEAN AND MODE (IN ONE DIMENSION) AFTER 1000 UPDATES

μ0 = 0 μ0 = 0 μ0 = 0 μ0 = 0 μ0 = 0
σ0 = 1 σ0 = 3 σ0 = 5 σ0 = 7 σ0 = 9

vk = 1 ak = −0.5 0.0049 0.0051 0.0035 0.0007 0.0017
vk = 1 ak = −1.5 0.0019 0.0018 0.0033 0.0024 0.0071
vk = 1 ak = −2.5 0.0353 0.0144 0.0218 0.0309 0.0193
vk = 1 ak = −3.5 0.3095 0.7392 0.1132 1.3231 1.567
vk = 1 ak = −4.5 0.1986 0.6484 1.0011 1.2933 1.5569

these systems for longer time; the results are shown in Fig. 5.
As the number of updates increases, measurements of both 1
and −1 are observed, resulting in the means and modes getting
closer. In addition, the true posterior distribution of the system
in Fig. 5(a) is plotted after 1000 steps in Fig. 5(c)—although no
measurements of 1 have been observed, the distribution appears
very similar to a Gaussian. Thus, we conclude that the posterior
distribution is close to symmetric for many systems, especially
when context measurements have a high probability of being
both 1 and −1.
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Fig. 5. Detailed analysis of two systems from Table I. (a) System with μ0 = 0, σ0 = 1, vk = 1, ak = −3.5. (b) System with μ0 = 0, σ0 = 1, vk =
1, ak = −2.5. (c) True posterior pdf of the system in Fig. 5(a) after 1000 steps (same as in Table I).

Fig. 6. Typical hemoglobin dissociation curve forO2 . It shows the com-
position ofO2 content in the blood as well as the shape of the relationship
between the overall content and the pressure of dissolved O2 .

VII. CONTEXT-AWARE ESTIMATION OF BLOOD

OXYGEN CONTENT

To evaluate the effectiveness of the context-aware filter, in this
section, we apply it to the problem of estimating the O2 content
in the blood, one of the most closely monitored variables in
operating rooms. The O2 content has to be maintained within
safe ranges; high values could be toxic, whereas low values may
lead to organ failure. Thus, controlling the O2 content is one of
clinicians’ top priorities during surgery.

Currently, theO2 content can only be measured through blood
gas analysis, which is invasive and not real-time. As a real-time
noninvasive alternative, clinicians use a proxy, the hemoglobin-
oxygen saturation in the peripheral capillaries (SpO2), measured
by a pulse oximeter at an extremity (usually a fingertip). SpO2
is a good measure of theO2 content because hemoglobin-bound
O2 accounts for the majority of O2 in the blood. O2 appears in
two forms in the blood: it is bound to hemoglobin or dissolved in
the blood; the relationship between these variables is captured
in Fig. 6. However, the saturation is usually constant at 100%
in healthy people; thus, when reduced SpO2 is observed, the
O2 content has already decreased and is potentially entering the
steep portion of the curve in Fig. 6, where the patient might be
in a critical state.

In contrast, estimating the partial pressure of dissolved O2
(PaO2) is proactive because large drops in PaO2 are observed
before a sharp decrease in the O2 content, i.e., when the patient

is still in the top-right portion of the curve in Fig. 6. Currently,
measuringPaO2 also requires blood gas analysis. It is, however,
possible to relate other available (real-time and noninvasive)
measurements toPaO2 ; in particular, one could use the available
pulmonary measurements (e.g., partial pressures of inhaled and
exhaled O2) and construct a (parameterized) model relating the
measurements to the state. Once PaO2 is estimated, it is also
possible to obtain an estimate of the O2 content by using a
(parameterized) functional form of the curve in Fig. 6. Thus,
the problem addressed in this section is to estimate both the
O2 content and PaO2 using only the noninvasive pulmonary
measurements.

If the model parameters were known, one could use standard
filtering techniques to perform the estimation task. However,
there are two confounding factors when identifying these pa-
rameters from data: 1) The physiological model only captures
general trends and does not have great predictive power; and
2) The available data are noisy and insufficient to obtain good
parameter estimates. Thus, instead of identifying the parameters
for each patient, we use population averages for the parameters
(as obtained from medical literature) and augment the measure-
ment model with context measurements in order to improve the
overall estimation accuracy.

The following section provides a summary of the physiolog-
ical model mapping the measurements to the state (including a
general-trends dynamic model for the state). Then we introduce
two classes of context measurements as derived from medical
device data that are not directly used as a measurement. Finally,
we provide the case-study evaluation.

A. Physiological Model

This section presents the dynamic physiological model for
the O2 content and for PaO2 . In the interest of space, only a
summary of the model is provided. For a full description of the
modeling process, please refer to our preliminary work [2].

At a high level, the circulation of O2 can be described as
follows. As O2 is inhaled, it reaches the lungs and the alve-
oli, where O2 enters the blood stream through diffusion. The
pulmonary veins carry O2 to the heart, which pumps O2 into
the arteries and eventually to the peripheral capillaries where
metabolism occurs. Metabolism burns O2 and produces carbon
dioxide (CO2). TheCO2-rich blood is transported via the veins
back to the heart, whence it is pumped into the pulmonary ar-
teries that take it to the lungs for a new round of diffusion.
A simplified schematic of this process is presented in Fig. 7;
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Fig. 7. Simplified schematic model of O2 variables in the respiratory
and cardiovascular systems.

Fig. 8. Illustration of shunted versus nonshunted blood dynamics in the
lung. O2 -rich nonshunted blood participates in diffusion and then mixes
with CO2 -rich shunted blood.

variables starting with a P denote partial pressures, and vari-
ables starting with aC denote concentration (in the blood only);
the subscripts denote the corresponding location.

The process of diffusion is complicated by the fact that some
blood does not pass through the lungs (e.g., due to blood draining
directly into the cavity of the left ventricle through the thebesian
veins [50]). Thus, as shown in Fig. 8, the shunted blood remains
CO2-rich, whereas blood that passes through the lungs diffuses
until the partial pressures of O2 in the blood and the lungs are
equal.

By using the intuition from Figs. 7 and 8 and two widely
used equations from the medical literature, namely, the oxygen
content equation and the alveolar gas equation [50], we arrive
at the final model:

ak+1 = (1 − f)(1.34Hb+ 0.003(c1uk + c2,k ek ))

+ f(ak − μ) + v1,k

ek+1 = ek + v2,k

yk = ek + wk (21)

Fig. 9. Absolute errors for each of the two compared PaO2 estimators.
Red dashed line shows the average error of the context-aware filter,
whereas blue dashed line indicates the average error of the FiO2 -based
estimator.

where ak is the arterial O2 content, ek is the partial pressure
of exhaled CO2 , Hb is the concentration of hemoglobin in
the blood, uk is the percent of O2 in inhaled air (as input by
clinicians), μ is the effect of metabolism on the O2 content,
f is the proportion of shunted blood, c1 and c2,k are known
constants, and v1,k , v2,k , and wk are white Gaussian noises.
Finally, yk denotes the available continuous measurement, the
partial pressure of exhaled CO2 (denoted by EtCO2).

As discussed above, we use population averages for the pa-
rameters in (21), μ and Hb; f can be estimated through an
initial blood gas measurement [2]. Note that only one of the
states in (21) is observed through a continuous measurement.
The following section describes the context measurements used
to estimate the other state, namely, the O2 content.

B. Context Measurements

In order to estimate the O2 content, we introduce two classes
of context measurements as derived from medical device data
that are not used directly in (21). The first context measurement
can be obtained by using the intuition from Fig. 6. Note that as
soon as SpO2 drops below a certain threshold, the O2 content
is almost entirely determined by hemoglobin-bound O2 . Fur-
thermore, by using the oxygen content equation [50], one can
conclude that CaO2 < (1.34 ∗ SpO2)Hb. Thus, we introduce a
binary context measurement b1k that is equal to 1 ifSpO2 < 99%
and −1, otherwise. The parameters in the observation model are
set to v1

k = [1 0]T and a1
k = −(1.34 ∗ 0.99)Hb (once again, a

population average is used for Hb).
The second class of context measurements aim to capture the

effect of three clinician inputs that are not used in the model
directly but do affect the patient’s state: the volume of inhaled
air (Vt), respiratory rate (RR), and peak inspiratory pressure
(PIP ). Although mapping these inputs to the O2 content re-
quires knowledge of multiple nonidentifyable parameters (e.g.,
lung thickness), it is possible to track relative changes in the
O2 content (as caused by relative input changes) once a base-
line is established. In particular, we construct a signal sk that
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Fig. 10. Example cases for different scenarios. Red SpO2 data points indicate low-SpO2 alarms; blue SpO2 data points indicate no SpO2 alarms.
Diffusion signal: red data points indicate 0.5sq alarms; yellow data points indicate 0.8sq alarms; green data points indicate no alarms; blue data
points indicate 1.2sq alarms; magenta data points indicate 1.5sq alarms. (a) Example case with good estimation by the context-aware filter. (b)
Example case with bad estimation by the context-aware filter.

represents the “expected” amount of diffused O2 , up to the
unknown parameters (refer to our prior work for the exact
functional form of sk [2]). We initialize sk (say, at time q)
with a single blood gas measurement of the O2 content, and
then track relative changes in sk , which correspond to rela-
tive changes in the O2 content. Thus, binary context measure-
ments b2k , b

3
k , b

4
k , and b5k are introduced that are equal to 1 when

sk < 0.5sq , sk < 0.8sq , sk > 1.2sq , and sk > 1.5sq , respec-
tively. The context model parameters are also set accordingly,
e.g., v2

k = [1 0]T , a2
k = −0.5CaO2(q), where CaO2(q) is the

measured O2 content at time q.

C. Evaluation

To evaluate the filter’s performance, we use real-patient data
collected during infant lung lobectomies performed at CHOP.
A lung lobectomy is the incision of a cyst from the patient’s
lung; lobectomies often require one-lung ventilation in order to
keep the perioperative lung still. In infants, one lung is often
not enough to provide sufficient O2 ; hence, critical drops in O2
content are frequently observed during such surgeries.

For evaluation purposes, we use only cases that have at least
two blood gas measurements available; the dataset consists of
51 such cases overall. As noted above, the first blood gas mea-
surement is used to initialize sk ; each subsequent blood gas
measurement is used as ground truth for evaluation purposes.
Finally, the available blood gas data only contain PaO2 mea-
surements, hence only PaO2 estimates are evaluated.

Fig. 9 presents the absolute estimation errors of the context-
aware filter, with all patient measurements stacked together
for easier visualization. We compare the performance of the
context-aware filter with anotherPaO2 estimation approach that

also requires one blood gas measurement for initialization; we
refer to this algorithm as the “FiO2-based estimator” [FiO2
denotes the fraction of O2 in inhaled air—it is denoted by uk
in (21)]. The context-aware filter’s average estimation error is
about 20% lower (51.7 mmHg versus 63.3 mmHg). More im-
portantly, the context-aware filter results in much fewer outliers
(one error above 150 mmHg as compared to 10 for the FiO2-
based estimator); this illustrates arguably the biggest benefit
of context—providing good information in cases with inaccu-
rate models or insufficient measurements. Note that estimation
errors of 100 mmHg (or more) are still significant, and fur-
ther improvements are required to enable automatically closing
the loop; yet, the reasonably uniform distribution of the errors
suggests that the context-aware filter is not greatly affected by
interpatient variability and is thus a reasonable choice of estima-
tor, once a more accurate model and more precise measurements
are obtained.

To further evaluate the context-aware filter’s performance,
we present two cases, one with good and one with bad estima-
tion performance, respectively. Fig 10(a) presents a case where
context measurements bring a significant improvement; this is
due to the fact that the diffusion signal sk raises alarms indi-
cating sk is less than 0.8, but not less than 0.5, of the baseline.
Thus, the context-aware filter estimates are around 80% of the
initial blood gas measurement, i.e., close to the ground truth.
In contrast, the FiO2-based estimator is heavily affected by the
reduced FiO2 and produces large errors.

Fig. 10(b) presents an example with a large estimation error by
the context-aware filter. In this case, the diffusion signal sk is too
low at the initialization stage, and no low alarms are raised later.
A possible explanation for this behavior is a wrong timestamp
of the blood gas sample; timestamps are entered manually and
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are known to be significantly wrong in certain cases [51]. If
the baseline had been established around step 420 (which is
when clinicians first took action by lowering Vt), low sk alarms
would be raised later, thereby improving the performance of the
context-aware filter.

Based on these results, we conclude that the context-aware
filter is a promising direction for the future work, especially in
scenarios with inaccurate models and unobservable states. In
addition to improving estimation performance, context greatly
reduces worst case errors, which is critical in a medical setting,
where good performance for every individual is required.

VIII. CONCLUSION

This paper addressed the problem of continuous estimation
using discrete context measurements. We developed the context-
aware filter that approximates the posterior distribution with
a Gaussian distribution with the same first two moments. We
showed that the filter’s expected uncertainty is bounded provided
that the probability of receiving context measurements is at least
some positive number for all states. Furthermore, we provided
an observability-like result that states that the eigenvalues of the
filter’s covariance matrix converge to zero after repeated updates
if and only if a persistence-of-excitation condition is true for the
context measurements. In future work, we aim to extend the
bounded-uncertainty result to multidimensional systems as well
as to analyze conditions under which the filter is asymptotically
unbiased.

APPENDIX A
PROOF OF PROPOSITION 1

First note that the update equation takes the form

pk |k (x) =
p(bk | x)φ(x;μk |k−1 ,Σk |k−1)∫
p(bk | x′)φ(x′;μk |k−1 ,Σk |k−1)dx′

=
Φ

((
vTk x+ ak

)
bk

)
φ(x;μk |k−1 ,Σk |k−1)
Zk

where

Zk =
∫

Φ
((
vTk x

′ + ak
)
bk

)
φ(x′;μk |k−1 ,Σk |k−1)dx′.

The derivation for Zk is carried out as follows:

Zk =
∫

Φ
((
vTk x

′ + ak
)
bk

)
φ(x′;μk |k−1 ,Σk |k−1)dx′

= Ex

[
Φ

((
vTk x+ ak

)
bk

)]
= Ex

[
P (y ≤ (vTk x+ ak )bk )

]
= E(x,y )

[
11y≤(vTk x+ak )bk

]
= P ((vTk x+ ak )bk − y ≥ 0)

= P

(
(vTk μk |k−1 + ak )bk + z

√
vTk Σk |k−1vk + 1 ≥ 0

)

= P (z ≥ −Mk ) = 1 − Φ(−Mk ) = Φ(Mk )

where y and z are standard Normal random variables indepen-
dent of each other and of x.

APPENDIX B
PROOF OF PROPOSITION 2

To show that the function g(x) = ln(pk |k (x)) is concave, we
need to show that its Hessian (with respect to x) is negative
definite. To see this, first note that

g(x) = − ln(Zk ) + ln(Φ
((
vTk x+ ak

)
bk

)
)

− ln
(√

(2π)n |Σk |k−1 |
)

− 1
2
(x− μk |k−1)T Σ−1

k |k−1(x− μk |k−1).

The first derivative of g(x) is

g′(x) = vkbkα
((
vTk x+ ak

)
bk

) − Σ−1
k |k−1(x− μk |k−1)

where α(x) = φ(x; 0, 1)/Φ(x). The Hessian of g(x) is

g′′(x) = vkv
T
k b

2
k [−α

((
vTk x+ ak

)
bk

)((
vTk x+ ak

)
bk

)
− α2((vTk x+ ak

)
bk

)
] − Σ−1

k |k−1

= −vkvTk h
((
vTk x+ ak

)
bk

) − Σ−1
k |k−1 .

Since vkvTk is positive semidefinite and Σk |k−1 is positive defi-
nite, it remains to show that the term h((vTk x+ ak )bk ) is non-
negative; but this is true as shown in Proposition 4.

APPENDIX C
PROOF OF PROPOSITION 3

First note that

μk |k =
∫
x′

Φ
((
vTk x

′ + ak
)
bk

)
φ(x′;μk |k−1 ,Σk |k−1)
Zk

dx′.

We compute the mean in the closed form, similar to the deriva-
tion in [38, Ch. 3.9], by computing the gradient with respect to
μk |k−1 of the following two equivalent expressions for Zk :∫

Φ
((
vTk x

′ + ak
)
bk

)
φ(x′;μk |k−1 ,Σk |k−1)dx′ = Φ(Mk ).

(22)

The corresponding derivatives are

∂Zk
∂μk |k−1

=
∫

Σ−1
k |k−1(x

′ − μk |k−1)Φ
((
vTk x

′ + ak
)
bk

)
· φ(x′;μk |k−1 ,Σk |k−1)dx′

= bkvk
φ(Mk ; 0, 1)√
vTk Σk |k−1vk + 1

where we used the fact that ∂Φ(x)/∂x = φ(x). Note that the
first term in the integral on the left-hand side is ZkΣ−1

k |k−1μk |k .

The second term is ZkΣ−1
k |k−1μk |k−1 . Therefore, we get

ZkΣ−1
k |k−1μk |k = ZkΣ−1

k |k−1μk |k−1 + vk
bkφ(Mk ; 0, 1)√
vTk Σk |k−1vk + 1

.
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Thus, we arrive at

μk |k = μk |k−1 + bkΣk |k−1vk
α(Mk )√

vTk Σk |k−1vk + 1

where we used the second expression for Zk to get α. The final
expression for μk |k is obtained by solving for χk in the equation
α(Mk )(vTk Σk |k−1vk + 1)−1/2 = (vTk Σk |k−1vk + χk )−1 .

The expression for the covariance matrix is

Σk |k = Σ̂k |k − μk |kμTk |k (23)

where

Σ̂k |k =
∫
x′x′T

Φ
((
vTk x

′ + ak
)
bk

)
φ(x′;μk |k−1 ,Σk |k−1)
Zk

dx′.

Σ̂k |k is computed in similar to the mean, by computing the
Hessians with respect to μk |k−1 of both sides of (22):∫

Σ−1
k |k−1(x

′ − μk |k−1)(x′ − μk |k−1)TΣ−1
k |k−1

· Φ((
vTk x

′ + ak
)
bk

)
φ(x′;μk |k−1 ,Σk |k−1)dx′

−
∫

Σ−1
k |k−1Φ

((
vTk x

′ + ak
)
bk

)
φ(x′;μk |k−1 ,Σk |k−1)dx′

= −bkvkvTk
φ(Mk ; 0, 1)(vTk μk |k−1 + ak )

(vTk Σk |k−1vk + 1)3/2 .

Note that one of the terms in the integral on the left-hand side is
ZkΣ−1

k |k−1Σ̂k |kΣ−1
k |k−1 . Therefore, we rearrange terms and divide

by Zk to obtain the following:

Σ−1
k |k−1Σ̂k |kΣ−1

k |k−1 = Σ−1
k |k−1 + Σ−1

k |k−1μk |kμ
T
k |k−1Σ

−1
k |k−1

+ Σ−1
k |k−1μk |k−1μ

T
k |kΣ

−1
k |k−1

− Σ−1
k |k−1μk |k−1μ

T
k |k−1Σ

−1
k |k−1

− bkvkv
T
k

α(Mk )(vTk μk |k−1 + ak )
(vTk Σk |k−1vk + 1)3/2 .

Finally, we arrive at the expression for Σ̂k |k :

Σ̂k |k = Σk |k−1 + μk |kμTk |k−1 + μk |k−1μ
T
k |k − μk |k−1μ

T
k |k−1

− bkΣk |k−1vkv
T
k Σk |k−1

α(Mk )(vTk μk |k−1 + ak )
(vTk Σk |k−1vk + 1)3/2 .

Thus, the covariance matrix can be computed by plugging in the
expression for Σ̂k |k in (23). To simplify it to the final form shown
in the proposition statement, we first plug in the expression for
μk |k − μk |k−1 from (6) and then solve for γk .

APPENDIX D
PROOF OF THEOREM 1

Consider the (scalar) modified algebraic Riccati equation
(MARE) defined as

gβ (x) = axa+ q − βaxv(vxv + 1)−1vxa

where v = mini |vi |, i.e., the minimum-in-magnitude of all con-
text weights. Note that if β = 1, then this becomes the standard

algebraic Riccati equation, which converges for any σ0 . On the
other hand if β = 0, the covariance matrix diverges for some σ0
if a is unstable. We use the MARE to bound the expected value
of context-aware filter’s variance and give conditions on β for
which the expectation is bounded.

We first bound the expected variance of the filter using the
MARE. From (10), followed by applying the prediction step,
we get (by using the simplified notation σk = σk |k−1):

E[σk+1] = E[aσka+ q − θmaσkvk (vkσkvk + γmk )−1vkσka

− θpaσkvk (vkσkvk + γpk )
−1vkσka]

≤ E[aσka+ q − ηaσkv(vσkv + γmk )−1vσka

− ηaσkv(vσkv + γpk )
−1vσka]

≤ E[aσka+ q − ηaσkv(vσkv + min{γmk , γpk })−1vσka]

≤ E

[
aσka+ q

−ηaσkv
(
vσkv +

(1 − h(0))(vσkv) + 1
h(0)

)−1

vσka

]

= E[aσka+ q − ρaσkv(vσkv + 1)−1vσka]

= E[gρ(σk )]

where ρ = ηh(0) < 1, θm is the probability of bk = −1 (with
resulting γmk ); θp and γpk are their analogues when bk = 1. The
first equality is the expected value of σk+1 for each possi-
ble value of bk . The second inequality uses the fact that both
θp , θm ≥ η. In the third inequality, we discard one of the two
negative terms, keeping the one with smaller γk (i.e., the one that
results inMk < 0; note that 0 < h(x) < 1 and h′(x) < 0, from
Proposition 4). The last inequality is true because h(x) > h(0)
for any x < 0.

The rest of the proof mimics the proof [12, Th. 3]. Con-
sider the sequence sk+1 = gρ(sk ), with s0 = σ0 . We show that
E[σk ] ≤ sk using induction. Note that E[σk ] ≤ sk implies

E[σk+1] ≤ E[gρ(σk )] ≤ gρ(E[σk ]) ≤ gρ(sk ) = sk+1

where the first inequality was shown above, and the second and
third inequalities are shown in [12, Lemma 1]. Furthermore,
as shown in [12, Th. 3], sk is bounded from above, given that
ρ > ρ (ρ ∈ [0, 1), as shown in [12]), i.e.,

E[σk ] ≤ sk ≤Mσ0 ∀k.

APPENDIX E
PROOF OF LEMMA 1

The proof proceeds by induction on k. The base case is shown
in (10). For the induction step, we assume that K < N updates
result in the form in (14), with matrices Γk and Vk replaced
by ΓK and VK , respectively. Given weights vk+K+1 , the next
discrete update is

Σk+K+1 = Σk+K − Σk+K vk+K+1β
−1vTk+K+1Σk+K (24)



IVANOV et al.: CONTINUOUS ESTIMATION USING CONTEXT-DEPENDENT DISCRETE MEASUREMENTS 251

where by induction

Σk+K = Σk − ΣkV
T
K (VKΣkV

T
K + ΓK )−1VKΣk

β = vTk+K+1Σk+K vk+K+1 + γk+K+1 .

By rearranging terms and using the block matrix inversion
lemma, (24) can now be written as

Σk+K+1 = Σk −
[
ΣkV

T
K Σk vk+K+1

] ·
·
[
VKΣkV

T
K + ΓK VKΣk vk+K+1

vTk+K+1ΣkV
T
K vTk+K+1Σk vk+K+1 + γk+K+1

]−1

·
[

VKΣk

vTk+K+1Σk

]

i.e.,

Σk+K+1 = Σk − Σk

[
V T
K vk+K+1

] ·
·
[[

VK

vk+K+1

]
Σk

[
V T
K vTk+K+1

]
+

[
ΓK 0

0 γk+K+1

]]−1

·
[

VK

vTk+K+1

]
Σk

which has the desired form of the Riccati (update) equation.

APPENDIX F
PROOF OF THEOREM 2

To prove sufficiency (<=), let V be the matrix of persistently
exciting vi , i.e., V = [v1 , . . . , vn ]T ; V is square and invertible.
Consider the sequence of times k1 , k2 , . . ., where k1 = 1 and
kt+1 = kt + lkt + 1; all vi in V occur between each pair of kt
and kt+1 by construction. Using Lemma 1, it suffices to show
that the eigenvalues of the covariance sequence

Σkt+ 1 = Σkt − Σkt V
T (V Σkt V

T + Γkt )
−1V Σkt (25)

converge to 0 almost surely. Note from (10) that no binary update
can increase the eigenvalues of Σk , so any updates with weights
and offsets not in P can be ignored as they do not affect the
convergence.

Diagonalizing Σkt = UDUT , we rewrite (25):

Σkt+ 1 = U(D −D(D +MΓkt M
T )−1D)UT (26)

where M = UT V −1 . Thus, we conclude that

Σkt+ 1 � U(D −D(D + δmax
kt

I)−1D)UT (27)

where δmax
kt

is the largest eigenvalue of MΓkt M
T , i.e.,

λikt+ 1
≤ λikt −

(λikt )
2

λikt + δmax
kt

.

Therefore, using the second Borel–Cantelli Lemma, λikt
a.s.−−→ 0

as long as the sum of the probabilities of events {δmax
k ≥ δ∗}t

(for some δ∗ > 0) is infinite. But δmax
kt

is lower bounded if γmax
kt

(the largest γk between times kt and kt+1) is bounded from
above. From (11), it can be seen that γk is upper bounded if the

function h is bounded from below. But for each k,Mk < 0 with
probability at least

δ̄ := min
bk ∈{1,−1},(v i ,ai )∈P

Φ(((vi)T x∗ + ai)bk )

where x∗ is the true (nonmoving) state. Thus, h has a nonzero
probability of having negative input, i.e., it is bounded from be-
low by h(0) = α2(0) (note that h′(x) < 0, from Proposition 4).
Thus,

∑
t P [δmax

kt
≥ δ∗ | b0:k ] = ∞ because

P [δmax
kt

≥ δ∗ | b0:k ] ≥ P [h(Mk ) ≥ α2(0) | b0:k ]

≥ P [Mk < 0 | b0:k ] ≥ δ̄.

To prove necessity (=>), note that if (vk , ak ) is not persistently
exciting, there exists a time K such that the set of context
weights vk for k > K do not span Rn , i.e., the matrix VK of
all such weights is not full rank. We now show that this implies
that there exists at least one λik that does not go to 0. Returning
to (14), there exists a rotation matrixU such that one eigenvector
(call it p) of ΣkU

T is aligned with an eigenvector of V ⊥
K , the

null space of VK . Consider the matrix

G = U(Σk − ΣkV
T
K (VKΣkV

T
K + Γk )−1VKΣk )UT .

G has the same eigenvalues as Σk+K but the eigenvalue corre-
sponding to p is also an eigenvalue of Σk , i.e., this eigenvalue
remains unchanged when VK is not full rank.

APPENDIX G
PROOF OF THEOREM 3

First note that applying the matrix inversion lemma to the
covariance update in (10), we get

Ωk+1 = (Σk − Σk vk+1(vTk+1Σk vk+1 + γk+1)−1vTk+1Σk )−1

= Σ−1
k + vk+1γ

−1
k+1v

T
k+1 .

Therefore,

Ωs
k+1 = Ωk+1 − Ωk = vk+1γ

−1
k+1v

T
k+1 .

The mean at time k + 1 is equal to [by using the update in (6)]:

μk+1 = μk + Σk vk+1(vTk+1Σk vk+1 + χk+1)−1bk+1

= μk + Σk vk+1N
−1
k+1bk+1

where Nk+1 = vTk+1Σk vk+1 + χk+1 . Thus, the information
mean of the “site” approximation becomes

ωsk+1 = Ωk+1μk+1 − Ωkμk

= Ωk+1μk + (I + Lk+1)vk+1N
−1
k+1bk+1 − Ωkμk

= Ωs
k+1μk + Ωkμk + (I + Lk+1)vk+1N

−1
k+1bk+1 − Ωkμk

where Lk+1 = vk+1γ
−1
k+1v

T
k+1Σk , and we used the inverse-

lemma expression for Ωk+1 .

APPENDIX H
PROOF OF COROLLARY 3

As shown in Theorem 2, if vk is persistently exciting, then all
eigenvalues of Σk converge to 0. To analyze the convergence of
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the natural parameters of the “site” approximations, first note
that the first two derivatives of ψ are as follows:

ψ
′
k+1(x) = −vk+1α((vTk+1x+ ak+1)bk+1)bk+1 (28)

ψ
′′
k+1(x) = vk+1v

T
k+1h((v

T
k+1x+ ak+1)bk+1). (29)

We first show that Ωs
k+1 = vk+1γ

−1
k+1v

T
k+1 converges to

ψ
′′
k+1(μk ), i.e., that γ−1

k+1 converges to h((vTk+1μk +
ak+1)bk+1). But this is clear from (11): As the eigenvalues
of Σk converge to 0, γ−1

k+1 converges to h(Mk+1), and Mk+1

converges to (vTk+1μk + ak+1)bk+1 .
As derived in (18), the information mean is ωsk+1 =

Ωs
k+1μk + (I + Lk+1)vk+1N

−1
k+1bk+1 . First note that N−1

k+1
converges to 1/χk+1 , which in turn converges to α((vTk+1μk +
ak+1)bk+1), as can be seen from (7). Thus, in order to show that
the second term of ωsk+1 converges to −ψ′

k+1(μk ), it suffices
to show that Lk+1 converges to 0. But this is clear from the
definition of Lk+1 in Theorem 3.
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[46] G. Dehaene and S. Barthelmé, “Bounding errors of expectation-
propagation,” in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 244–252.



IVANOV et al.: CONTINUOUS ESTIMATION USING CONTEXT-DEPENDENT DISCRETE MEASUREMENTS 253
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