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Abstract: To enable the physics research that continues to deepen our understanding of the
Universe, future circular colliders will require a critical and unique instrument—magnets that
can generate a dipole field of 20 T and above. However, today’s maturing magnet technology
for low-temperature superconductors (Nb-Ti and Nb3Sn) can lead to a maximum dipole field of
around 16 T. High-temperature superconductors such as REBCO can, in principle, generate higher
dipole fields but significant challenges exist for both conductor and magnet technology. To address
these challenges, several critical research needs, including direct needs on instrumentation and
measurements, are identified to push for the maximum dipole fields a REBCO accelerator magnet
can generate. We discuss the research needs by reviewing the current results and outlining the
perspectives for future technology development, followed by a brief update on the status of the
technology development at Lawrence Berkeley National Laboratory. We present a roadmap for the
next decade to develop 20 T-class REBCO accelerator magnets as an enabling instrument for future
energy-frontier accelerator complex.

Keywords: REBCO; accelerator magnet; technology development

1. Introduction

Higher magnetic field strengths enable a higher beam energy and the potential for particle physics
discovery. For a circular collider, the beam energy scales with the radius of the collider ring and
the field strength of dipole magnets that bend the beams along the collider [1]. Since the Tevtron,
all major circular colliders are enabled by a special instrumentation—superconducting accelerator
magnets [1,2]. Along its 26.7 km long circumference, the Large Hadron Collider (LHC) at CERN has
1232 superconducting arc dipole magnets made of Nb-Ti strands and each magnet can generate a
nominal dipole field of 8.3 T at 1.9 K [2]. In 2012, CERN announced the discovery of Higgs boson
based on the experiments at LHC.

To collide beams with higher energies, we need superconducting materials and associated magnet
technology that can sustain higher magnetic fields [3,4]. Dipole magnets based on today’s Nb3Sn
conductors can generate around 16 T, while research continues increasing the potential of Nb3Sn
conductors towards a dipole field of 20 T at 4.2 K [5–7]. To generate dipole fields above 20 T,
high-temperature superconductors (HTS) are required. Two main candidates are Bi-2212 round
wires [8] and REBCO coated conductors [9]. Here we will focus on REBCO conductors.
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Since the first demonstration of REBCO tape with high current density [10], the REBCO
coated conductor technology has been progressed tremendously due to its potential in utility and
power applications [11]. As of 2019, 15 companies in Asia, Europe, and North America offer
commercial REBCO tape products. Although the anticipated utility applications have not yet been
realized, high-field magnet applications have been rising as an important customer for the REBCO
market [12–14]. An early and strong ongoing direction is the solenoid magnet applications based on
single REBCO tapes that lead to a series of record dc magnetic fields with the most recent one reaching
45.5 T [15–18].

To highlight the opportunities and challenges of REBCO conductors, we compare the typical
properties of Nb-Ti, Nb3Sn, Bi-2212 and REBCO in Table 1. These technical superconducting materials
are currently commercially available and relevant for high-field superconducting accelerator magnet
applications. The attempt here benefits from earlier comparisons [19–26]. The Nb-Ti conductor is
represented by the one for the LHC main dipole [24]. For Nb3Sn, the conductor properties for the
High Luminosity LHC low-β quadrupole magnet is used [27]. The latest record performance for
Bi-2212 round wire is from [28]. Three cable candidates are considered for REBCO, the Roebel
cable [29], the CORC R© wire [30] and the symmetric tape round (STAR) wire [31]. Other cable
configurations such as twisted-stack [32] and exfoliated REBCO cable [33] may also be viable for
accelerator magnet applications.
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Table 1. Typical properties, as of November 2019, of the technical superconducting materials that are currently available and relevant for high-field accelerator magnet
applications.

Property unit Nb–Ti Nb3Sn Bi-2212 REBCO

Cable form - Rutherford cable Roebel [29] CORC R© [30] STAR [34]
Critical temperature K 9 18 90–95 93

Upper critical field at 4.2 K T 11 [35] 26 [8] 105 [8] 110 [36]
Upper critical field at 20 K T 0 0 9 [8] 100 [36]

Typical wire diameter mm 1.065 [24] 0.85 [27] 0.80 [28] 12×1.5 [37] 3.7 [38] 1.3 [34]
Je at 16 T, 4.2 K a A mm−2 0 474 [39] 1300 [28] 964 b [40] 310 c [38] 695 d [34]
Je at 20 T, 4.2 K A mm−2 0 123 [39] 1180 [28] 821 b [40] 267 c [38] 586 d [34]

Demonstrated bending radius mm 15 e 13 e [41] 10 e [42] 4 e [43] 30 [38] 15 [34]
Effective filament diameter f µm 7 [24] 55 [27] 130 [44] 2–5500 g [22] 2000 g [38] 1400–2500 g [34]
Magnetization at 4.2 K, 1 T h mT 10 i [45] 270 [46] 60 [47] 716 j [48] 502 [49] TBD

Strand transposition - Full Full Partial
Peak heat treatment temperature ◦C N/A 665 [27] 892 [50] N/A

Irreversible tensile strain limit - >1% [51] 0.4% [52] 0.3% [53,54] 0.36% [55] 0.85% [56] TBD
Irreversible transverse stress limit MPa >200 [24] 150–260 [57,58] 60–TBD [59] 370–440 [37] 99 k [60] TBD

Stabilizer fraction - 62% [24] 55% [27] 78% [61] 20% [37] 57% l [38] 17% l [34]
Stabilizer RRR - 200 [24] ≥150 [27] 90–440 [61,62] 13–69 m [63,64]

Joint resistance at 4.2 K nΩ <1 [65] 1 1 [50] <19 [66,67] 2–6 [68] TBD
Piece length (order of magnitude) km 1–10 [24] 1–10 [27,69] 1 [70] 0.01–0.1

Price of single strand/tape [25] $ m−1 1.2 6.5 12.4 40
a Current density across the whole wire for the Rutherford cable cases, the individual tape for the Roebel cable case and the entire CORC R©or STAR wires. Multiply by a packing factor
such as 85% to obtain the current density averaged over the entire cross sectional area of the Rutherford or Roebel cable case. b Field perpendicular to the tape broad surface. c At a
bending radius of 30 mm. d At a bending radius of 15 mm. e Easy-way bend along the cable broad surface. f Sub-element diameter for Nb3Sn and bundle diameter for Bi-2212 strands.
g When the magnetic flux lines are in parallel with the broad surface of the REBCO tape, the REBCO layer thickness becomes the characteristic length scale for an effective filamnet size.
When the flux lines are perpendicular to the tape broad surface, the width of the REBCO tape becomes the filament size. h The value at 1 T during the second up ramp from zero applied
field following the virgin up and down ramp. i 2 K data. j A 9-tape Roebel cable with the field perpendicular to the cable broad surface. k Estimated based on a load of 115 kN m−1 with 3%
Ic reduction. Sample is not epoxy-impregnated. l The Cu core is considered as part of the stabilizer assuming it carries current during the superconducting to normal transition. m RRR of
the Cu stabilizer in REBCO tapes. Similar RRR may also apply to the Cu core used in CORC R©or STAR wires.
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Table 1 highlights the unique capability of REBCO conductors to generate a high magnetic field
over a broad temperature range. High mechanical strengths, no heat treatment, and possible round
wire configurations are attractive for magnet development. On the other hand, the performance
of round REBCO wires (the whole-conductor current density and total transport current capacity
at a small bending radius) needs to improve. Indeed, there is significant potential to enable this
improvement as evidenced by the record current density recently demonstrated in short REBCO tape
samples [71]. This can also be seen in Figure 1 where we compare the current density across the whole
conductor cross-sectional area. A comparison of the upper critical fields can be found in [8].
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Figure 1. Comparison of the whole-conductor current density (Je) for superconductors at 4.2 K
(log-log scale). The Nb-Ti data are from the LHC outer cable strand [72]. The Nb3Sn data are from the
High Luminosity LHC conductor [39]. The Bi-2212 data are from [28,39]. The data for the commercial
SPI 2 mm wide tape (30 µm thick substrate) with the magnetic field perpendicular to the tape broad
surface were measured by D. Abraimov and A. Francis at ASC/NHMFL/FSU and provided by D. van
der Laan and J. Weiss at ACT. The data for the REBCO tape developed by University of Houston are
from [71] with the magnetic field perpendicular to the tape broad surface. The data for the CORC R© wire
at a bending radius of 30 mm with projected performance at 20 T are from [38]. The data for the STAR
wire at a bending radius of 15 mm are from [34].

Several programs in the high-energy physics (HEP) community are developing REBCO magnets
as a new technology paradigm [4]. The EuCARD series programs, an European collaboration
lead by CERN, have been pioneering the development for REBCO accelerator magnets [73,74].
The collaboration successfully demonstrated a record bore field of 5.37 T in racetrack coils with
a stack of two tapes at 4.2 K [75,76]. Focusing on the Roebel cables [22,77], the EuCARD2 program
demonstrated the record dipole field of 3.1 T at 5.7 K with an aligned-block dipole magnet [78,79].
Designs of hybrid dipole magnets with HTS inserts [80] and stand-alone REBCO dipole magnets were
also developed [67].

In Japan, the development of REBCO accelerator magnet technology focuses on conduction-cooled
applications ranging from cancer therapy to accelerator-driven subcritical reactors in collaboration
with industry [81]. An automated winding machine was developed to wind coils in complex 3D
shapes using single tapes [81,82]. Detailed experimental and simulation studies have been performed
to understand the current distribution and its impact on the spatial and temporal field quality critical
for accelerator magnet applications [83–86].
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In the U.S., the magnet technology development is shifting its foucs from single tapes [87–89]
to multi-tape cables under the framework of the U.S. Magnet Development Program (USMDP).
The USMDP, supported by the Office of High Energy Physics at the U.S. Department of Energy,
has a dedicated component to develop HTS accelerator magnet technology with an initial goal to
demonstrate a 5 T dipole field and to measure its field quality [90].

In this paper, we discuss the research needs to develop high-field dipole magnets as an enabling
instrument for future energy-frontier accelerator complex. More specifically, we focus on a dipole
field of 20 T and above using REBCO conductors. We present a series of driving questions that we
believe are critical to achieve the goal of 20 T. The research required to address these driving questions
covers the technology development on both REBCO magnets and conductors. We will discuss the
direct and significant needs of the instrumentation and measurements for the technology development.
The strong coupling and feedback between the magnet and conductor development are most effective
to advance the performance of REBCO accelerator magnets. The synergies with the development
needs for high-field fusion magnets and conductors are also highlighted. We also present a roadmap
for the REBCO technology over the next decade towards the 20 T dipole field. Finally, we briefly
summarize the status of REBCO magnet technology development at Lawrence Berkeley National
Laboratory (LBNL).

2. Overarching Goal

Our goal is to generate a dipole field of 20 T and above using REBCO conductors. By developing
and demonstrating the REBCO high-field magnet technology as an enabling instrument for high-energy
physics and fusion applications, we hope to stimulate various applications and industrial competition
to drive down the cost of REBCO conductors and magnets.

There are two approaches to reach a 20 T dipole field. The first is to use an LTS/HTS hybrid
configuration. An HTS magnet is inserted into the aperture of an LTS magnet to boost the total dipole
field in the magnet aperture, similar to the hybrid solenoid magnet configurations [16,91,92]. Designs
of hybrid dipole magnets were proposed for high energy circular colliders [80,93]. The main issues are
the technical complexity of the system and the ultimate field one can reach.

The second approach is to develop all-REBCO dipole magnets. This approach eliminates the
interaction between the HTS and LTS magnets and can potentially avoid issues in terms of mechanics,
magnetics and quench protection as the HTS and LTS conductors have significantly different critical
surfaces and stability margins. With the high thermal stability margin, the REBCO magnets may avoid
the training issue typically seen in the LTS magnets. The approach also enables the magnet operation
above the liquid helium temperature. Conductor cost and availability is the main constraint for this
approach.

Both approaches are enabled by the superior properties of REBCO conductors. The irreversibility
field of a REBCO thin film is above 100 T with the field in parallel with the c-axis of the film between 4.2
and 20 K [36,94] (Table 1). The pinning force of laboratory REBCO tape samples has been demonstrated
to be flat up to 30 T at 4.2 K so far [71,95].

The hybrid and all-REBCO approaches are not mutually exclusive. We consider the hybrid
approach a critical first step for the development of an all-REBCO high-field magnet. It allows us
to measure the mechanical resilience of HTS inserts under high Lorentz load and to provide early
feedback to the development of REBCO conductor and magnet technology. Today’s high cost of REBCO
conductors (Table 1) also favors the hybrid approach to achieve 20 T, although the cost can significantly
reduce due to the low raw material cost, given enough production and yield volume [19,25,96].

3. Driving Questions and Research Needs to Reach 20 T Dipole Fields

We introduce a few questions that we believe are important to drive the technology development
of REBCO accelerator magnets towards 20 T and above. Concerning both magnets and conductors,
these questions are naturally intertwined. To effectively address them, the development of REBCO
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conductor and magnet technology should strongly collaborate and interact. The successful technology
development will rely on advanced measurement and simulation techniques. Figure 2 summarizes the
driving questions and their relationship.

Conductor performance 

requirements

Q6: Conductor performance 

requirements

Q7: Performance assessment

Q1: Magnet design & fabrication

Q3: Performance stability under stress

Q4: Quench behavior and detection

Q5: Field quality

Q2: Conductor stress and field limit

Figure 2. Summary of the driving questions highlighting the inter-dependence of the technology
development between the REBCO magnets (Questions 1 to 5) and conductors (Questions 6 and 7).

The ceramic REBCO layer in a coated conductor is brittle. Therefore, the challenge for REBCO
conductor and magnet technology is upfront: in addition to the pre-existing mechanical defects in
the conductors, stress/strain experienced by the REBCO layer during cabling, magnet fabrication
and operation, can degrade or damage the REBCO layer causing an irreversible reduction in its
current-carrying capability. One of the fundamental issues for our quest to a dipole field of 20+ T is
to measure and understand the mechanics of REBCO conductors and to minimize and mitigate the
conductor degradation due to stress/strain.

We assume that high-field accelerator magnets require multi-tape REBCO cables or wires that will
be simply called conductors here. High-current, on the order of 10–20 kA, multi-tape conductors can
reduce the magnet inductance to enable fast charging/discharging and to reduce the voltage gradient
along the coil during current ramping [22,24]. The multi-tape conductor architecture can also allow
current sharing between tapes to accommodate local defects in REBCO tapes.

We focus on the issues critical for field generation to demonstrate the feasibility and capability of
high-field REBCO accelerator magnets. Other important issues such as radiation hardness that can
affect the magnet design and operation will be covered elsewhere.

3.1. How to Make High-Field Accelerator Magnets Using Multi-Tape REBCO Conductor?

By making and testing magnets, we can understand and address the limits to various aspects
of magnet performances. Therefore, the first question addresses the design and fabrication
of magnets. Although racetrack and cos θ-type magnets using single REBCO tapes have been
demonstrated [88,97–99], developing magnets with multi-tape REBCO conductors is in its early stage.

The key issue is to minimize the strain-induced conductor degradation with the magnet design
and during the magnet fabrication such as winding and impregnation. This is a unique challenge
for REBCO: Nb-Ti is ductile; Nb3Sn and Bi-2212 are sufficiently ductile before heat treatment for
winding and only require special care when they are fragile after heat treatments. The winding strain
on the REBCO layer depends on the conductor architecture and magnet design. Conductors with
a high aspect ratio such as the Roebel cable can minimize the strain in REBCO layers by following
the constant-perimeter principle for magnet design and conductor bending [100–104]. From this
aspect, round REBCO conductors are more flexible and can work with diverse magnet designs,
although to understand the critical current degradation and reduce the strain development is still
critical [30,105–110].

In addition, automated cabling and winding process, instruments and associated procedures with
minimum, controlled and reproducible handling of REBCO conductors is an important issue to be
addressed for the design and development of high-current conductors and high-field magnets [81,82].
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Impregnation enables cables to distribute the stresses and to operate with high transverse pressure.
For instance, the transverse pressure that a Roebel cable can withstand increases from below 40 MPa
to at least 170 MPa after impregnation [37,111,112]. Meanwhile, epoxy in contact with REBCO tapes
can substantially degrade the tape Ic due to the low delamination stress in REBCO tapes (about 10
MPa) [113,114]. One approach to address this issue is to tailor the mechanical properties of the epoxy
so as to mitigate the tape degradation as much as possible [112,115–118], although non-negligible Ic

degradation still occurs in some cases when the epoxy touches the REBCO tapes [37,111]. A most
effective approach appears to be completely shielding REBCO tapes from epoxy [15,116,119]. For all
these solutions, a concern is poor or non-exisitent electrcal contact between tapes, which prevents good
current sharing inside a multi-tape conductor (Section 3.4). The ideal situation is a support medium that
provides the requisite stress distribution while enabling current sharing between tapes. For instance,
can we support conductors and individual tapes inside the conductor and allow current sharing
through conductive epoxy [120,121] or solder [122–124]? Can we replace the insulation and epoxy and
embed the tapes in a media whose electrical resistance decreases with increasing temperature [125]?
Systematic measurements will be required to address these questions.

Joints between conductors need low electrical resistance to minimize the heat generation during
magnet operation. Although HTS conductors and magnets can tolerate higher heat load and hence
possibly higher joint resistances, a low joint resistance on the order of 1 nΩ at self field is still desirable
to minimize the refrigeration load [126] for accelerator magnets operating at 10 – 20 kA current range.
This low resistance has been routinely achieved in joints for Nb-Ti and Nb3Sn Rutherford cables [65]
(Table 1) but the joint technology for multi-tape REBCO conductors remains to be demonstrated
to achieve the same low joint resistance. Part of the challenge is to expose each individual tape to
maximize the direct current transfer to the REBCO layer which strongly depends on the conductor
architecture. A fin-block technology demonstrated 10–20 nΩ joint resistance at 10 K for Roebel
cables [66]. Joints for CORC R© conductors demonstrated 2–6 nΩ resistance at 4.5 K [68]. With the well
defined tape-tape contact condition, several studies show that the interfacial resistance inside a REBCO
tape (Cu/Ag, Ag/REBCO) contribute strongly to the joint resistance [64,126,127]. Collaboration with
tape manufacturers is needed to achieve a low and consistent interfacial resistance with the industrial
tape manufacturing process. In addition to the low resistance, uniform joint resistance for each tape in a
multi-tape conductor is critical to allow uniform current distribution to maximize the current-carrying
capability of the multi-tape conductor [128–130].

3.2. What Is the Maximum Field a REBCO Dipole Magnet Can Achieve?

As we start learning how to make REBCO magnets, a natural question is how high can we push
the field. To address this question, let us consider the parameters that can limit the maximum field for
a REBCO magnet. The irreversibility field and transport current of REBCO conductor are not likely the
limiting factors to reach a 20 T dipole field at an operating temperature below 20 K (Table 1). Indeed
designs of all-REBCO magnets have been proposed to generate a 100 T dc solenoid field [92] and a
20 T dipole field [67]. We believe the mechanical load on the REBCO conductor, in particular, the stress
and strain along and transverse to the longitudinal axis of the conductor, will determine the maximum
dipole field one can achieve with REBCO conductors, similar to the case for Nb3Sn conductors [131].

Recent measurements show that multi-tape REBCO conductors can withstand large transverse
stress. For instance, a 15-strand impregnated Roebel cable for the CERN REBCO dipole magnet [132]
shows no degradation in critical current at 4.2 K for up to 370–440 MPa [37]. This stress level is
sufficient for a 20 T block REBCO dipole design [67]. Measurements on commercial CORC R© wires,
without impregnation, showed an estimated irreversible stress limit between 99 and 241 MPa at 76 K,
defined at a 3% Ic degradation criterion [60].
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Two questions need to be addressed:

• In addition to the external loads, what is the impact of Lorentz force (I × B) as an internal load
to the multi-tape REBCO conductors? Measurements similar to those performed on REBCO
fusion conductors [133,134] can provide critical feedback on the conductor development and
magnet design.

• How does the measured stress/strain limit on various conductor architectures translate to the
maximum achievable dipole fields? Similarly, how does a specific field target translate into the
required stress/strain limit on a REBCO conductor? Credible and comprehensive mechanical
analyses are required to address both questions.

To improve the conductor stress/strain limit, one can optimize conductor architecture such as
introducing a stronger core material for the round REBCO wires [60]. It may also be necessary to
support individual tapes in the conductor through impregnation to better distribute the stresses as
discussed in Section 3.1. Magnet designs can also be exploited to reduce the peak stresses on the
conductors. For instance, by embedding conductors in the magnet mandrel, the canted cos θ magnet
concept can intercept the accumulation of Lorentz stress on conductors [135]. The block design can
separate the high-field and high-stress regions to provide more operation margin on the conductors [7].

3.3. What Is the Long-Term Performance of REBCO Magnets under Lorentz Loads?

Accelerator magnets cycle the fields between the injection and collision levels during the physics
experiments. It is therefore important to have a stable magnet performance over a certain lifetime.
However, one concern for REBCO magnets is that their current-carrying capability may degrade over
time. This is because the cracks in the ceramic REBCO layers, for example pre-existing or introduced
during conductor and magnet fabrication, can only become worse under Lorentz loads and further
degrade the conductor and magnet performance during the operation.

The available measurement data, though limited in statistics, indeed show non-negligible
degradation in high-current REBCO conductors after cycling the Lorentz load [133,134,136–138].
On the other hand, cycling tests on CORC R© conductors in liquid nitrogen with external mechanical
loads show that the current-carrying capability does not degrade over 105 cycles when the load is
below the irreversible limit [56,60].

Although the exact mechanism for the observed degradation and its impact on the magnet
long-term performance remain to be clarified [137,139], observations from recent REBCO pancake coils
in high background fields provide relevant insights. First, Lorentz forces can cause deformation and
stress concentration in tapes and joints that are not well supported and lead to Ic degradation [140,141].
One solution is to fully impregnate the coil [141], consistent with the significantly improved resilience
to the transverse pressure in impregnated Roebel cables [37,111,112]. On the other hand, solder-filled
REBCO fusion conductors still show degradation [19,142].

Second, pre-existing cracks in the REBCO layer from the tape-slit process can induce further
degradation under the large hoop tension due to Lorentz load [18,143]. For solenoid insert coils
wound with single tapes, one may avoid this issue by properly orienting the slit edge with respect
to the background solenoid fields [18]. For magnets based on multi-tape REBCO conductors
featuring more complex conductor and magnetic field orientations, more fundamental solutions
are needed to eliminate the crack formation during the tape fabrication process. One option is the laser
cutting technique that yields less damage in the REBCO layer compared to the mechanical slitting
process [144,145]. More measurements are required to prove the performance of alternative slitting
processes.

An effective approach to understanding the long-term behavior of REBCO magnets is to measure
the transport behavior of the conductors and coils under large and cycling Lorentz load relevant to the
conditions of magnet operation as is done for fusion conductors [133,137,146]. The HTS/LTS hybrid
approach (Section 2) not only motivates but also provides a natural test bed for this study.
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The first three driving questions focus on achieving the maximum dipole field with REBCO
conductors. Addressing these questions will allow us to exploit the maximum potential of REBCO
conductors. Figure 3 summarizes the relationship between these questions.

Maximum dipole fields

Conductor stress/strain limit 

and performance degradation

Understand the degradation 

mechansims

Develop mitigations:

- Conductor/magnet development

- Support individual tapes

- Enhance current sharing

- Early detection 

Figure 3. Relationship between the maximum achievable dipole fields, the stress/strain limit of REBCO
conductors and the R&D needs as outlined by the first three driving questions.

3.4. How Do REBCO Accelerator Magnets Transit from Superconducting to Normal State and How Can the
Transition Be Detected?

The energy stored in a superconducting coil converts into heat during the
superconducting-to-normal transition (quench). The excessive heat can degrade or damage
the conductor, which must be avoided through the understanding of the quench behavior and early
detection of the quench.

One question is how the heating and temperature develop in a multi-tape REBCO
conductor [147–149]. Would the current sharing between tapes in a multi-tape architecture reduce
the peak temperature compared to a single tape [150,151]? The answer through both experimental
and computational studies will be important to understand the quench behavior of conductors with
different margins due to local defects (Section 3.3) and/or different magnetic fields, temperatures and
strain states in a coil. It will also provide useful feedback on the conductor design.

The key parameters here are the electrical and thermal contact resistances between tapes that
can affect the current sharing and quench dynamics [149,151]. With a contact resistivity ranging from
20 to 100 µΩ cm2 [152], the non-insulation REBCO solenoid magnet technology demonstrates the
self-protection capability thanks to the current sharing between the tapes [153]. On the other hand,
measurements on short (<1 m) tape-stacked and CORC R© conductors indicate that the current sharing
occurs through the terminal dominated by the joint resistance when the electrical contact resistance
between the tapes is high [129,130]. Measurements on the quench behavior of conductors and magnets
with different contact resistances will be useful to clarify the current sharing mechanism and the impact
of contact resistances.

The maximum allowable temperature in a REBCO conductor will determine the strategies for
quench detection and protection. This peak temperature can depend on the conductor architecture [151]
and can be established experimentally [154–157]. Two options can limit the peak temperature during
a quench [158,159]. First, reduce the current density in the normal metal (such as the Cu stabilizer
electroplated around the REBCO tape) during a transition. For round REBCO conductors such
as CORC R© and STAR wires, it would be useful for the metal former to carry most of the current during
the transition since it occupies 30%–90% of the conductor cross-sectional area (Table 1) [38,160].
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Second, reduce the time span when the hot-spot temperature increases with a sensitive quench
detection, a significant challenge for instrument and measurement. New quench detection techniques
measuring the temperature rise in the normal zone are under investigation [161–167]. Compared to
the voltage-based detection technique, these new optic and acoustic techniques are more immune to
electromagnetic interference, attractive for fusion applications. More tests with magnets to prove the
feasibility of these new techniques are required.

Higher normal zone propagation velocity can also benefit the quench detection. For instance,
coating with a high thermal conductivity applied on single tapes can double the turn-to-turn
propagation speed compared to the turn-to-turn insulation with Kapton tape [168]. Increasing the
interface resistance between the REBCO and stabilizer increases the normal zone propagation velocity
by several orders of magnitude to the order of 1 m s−1 [169]. Further measurements in longer tapes
and multi-tape conductors would be useful to demonstrate the benefit for quench detection and the
impact on joint resistance (Section 3.1).

3.5. What Is the Field Quality of REBCO Accelerator Magnets?

In addition to the main field strength, REBCO accelerator magnets must deliver high static and
dynamic field quality to steer particle beams. Design of accelerator magnets generally aim for field
errors less than a few units at a reference radius of one-third of the magnet aperture [103,170]. One
unit corresponds to 100 ppm of the main field. Although we expect that the physics of field quality for
the LTS accelerator magnets [171,172] apply to the REBCO counterparts, several open questions need
to be addressed.

One issue is the dc magnetization effects (persistent-current effects) [171] and whether the tape
striation is needed to reduce the effects [173]. Leveraging the micron-thick REBCO layer and field
orientation, the aligned-block dipole magnet using Roebel cables shows a small persistent-current
b3 (the normal sextupole) of 10–15 units [79,174]. Larger persistent effects are expected for
other accelerator magnet designs such as cos θ designs and other conductor configurations such
as CORC R© and STAR wires (Table 1). As an example, the peak magnetization normalized to the wire
volume of a CORC R© wire at 4.2 K [175] is a factor of five higher than that of a Nb3Sn Rutherford
cable measured at 1.9 K [176]. Tape striation is effective to reduce the magnetization in REBCO
tapes [86,173,177,178], although it may increase the conductor cost/performance ratio. Compensation
from the magnet aspect is another effective approach that should be explored [67,179,180].

If a low electrical contact resistance is required (Section 3.4), would it lead to pronounced
dynamic field errors that depend on the current ramp rates as observed in LTS magnets [181–186]?
Measurements from recent Roebel and CORC R© dipole magnets show no pronounced dynamic field
errors [174,187]. More measurements on magnets and cables preferably with different Rc will be useful
to address the question [188,189].

What is the decay behavior of the field components at the current plateau? For LTS accelerator
magnets, the decay at the injection level can be related to the flux creep of superconductors [171]
and a resistive current diffusion in a cable [190–192]. REBCO magnets may present new behaviors as
the relaxation of the magnetization in REBCO can deviate from the logarithmic-time behavior and
can strongly depend on the operation temperature [193]. The various architectures of multi-tape
REBCO conductors may also yield different current diffusion processes affecting the decay behavior.
More measurements and simulation studies on both conductor [49] and magnet levels are required to
understand and control the behavior.

3.6. What Is the Required Performance for REBCO Conductors to Achieve the Desired Magnet Performance?

As part of the iterative development process for REBCO technology, the sixth question aims at
providing guidance and feedback to the conductor development based on the desired and measured
magnet performance [22,194]. The main aspects for the desired conductor performance include:



Instruments 2019, 3, 62 11 of 28

• Flexible to make magnets and robust/resilient to cycling electromagnetic and thermal loads

Understanding how strain develops in REBCO layer during the cabling and magnet winding
processes will be critical [32,104,106,108–110,195,196]. The design tools based on the
understanding of the conductor mechanics will help guide the development of more flexible
round REBCO conductors and the optimized REBCO tapes with thinner substrates and narrower
widths [34,38,160]. It is also important to systematically measure the impact of electromagnetic
loads on conductors and to understand and mitigate potential conductor degradation.

• High transport current and current density

An ultimate target for round REBCO conductors is 10–20 kA current-carrying capability at 20 T
and a bending radius of 10 mm (Section 4). The current can be carried by a single or multiple
REBCO conductors. Understanding the impact of tensile/compressive strain on tapes with thicker
REBCO layer [71] will clarify its potential for multi-tape conductors. The current density in the
stabilizer will determine the time budget to detect the superconducting-to-normal transition in
multi-tape conductors [158]. The metal former that occupies a significant portion of round REBCO
conductors should be leveraged to reduce the current density during the transition.

• Enhancing current sharing between tapes and suppressing inter-tape coupling currents

We need to clarify the role of electrical contact resistances on both current sharing and inter-tape
coupling and determine an optimal range for Rc. It is important to measure and understand how
current sharing between tapes affects the heat generation in multi-tape conductors during the
transition. Implementing a controlled and reproducible Rc on REBCO tapes can be a challenge.
One option is to start with a minimum Rc and evaluate its impact on the coupling losses and
dynamic field errors.

With several available designs of multi-tape REBCO conductors, the community needs to develop,
test REBCO magnets to build statistics on the magnet performance and understand how it is linked to
the conductor design and optimization. Would different conductor options lead to different magnet
performances? If so, is there a preferred conductor design for high-field REBCO accelerator or fusion
magnets? Given a conductor design, is there a preferred magnet design that can achieve the best
magnet performances? To effectively address these questions, we need a fast-paced technology
evolution with integrated design and development of REBCO conductors and magnets.

3.7. How to Determine the Performance of a Long Multi-Tape REBCO Conductor for More Predictable
Magnet Performance?

The current-carrying capability of REBCO tapes can degrade locally during the fabrication of a
multi-tape conductor. Therefore, it is important to measure the transport performance of the multi-tape
conductor after fabrication. The knowledge can help improve conductor fabrication. Together with
the field, strain and temperature distribution in a magnet, this knowledge can also help predict the
locations where the superconducting-normal transition in a magnet is likely to occur. This can enable a
precision monitoring of transition to avoid magnet quenches, assuming REBCO magnets do not train.

Accelerator and fusion magnets can require a conductor of the order of 10–100 m to minimize the
electrical splices inside coils. How can we measure the transport performance along the entire REBCO
conductor? Non-destructive measurements of the critical current density on long-length single REBCO
tape have been demonstrated [197]. Measurements based on the scanning Hall probe can give valuable
insight on the spatial distribution of the critical current density that can help explain the source
of the observed critical-current fluctuation [198–201]. In particular, the Hall probe measurements
effectively reveal the damage pattern and identify the causes of conductor damage that occurred in the
REBCO pancake coils achieving the record 45.5 T dc field [18]. A similar method has been successfully
applied to individual strands of Roebel cables, identifying the sources of Ic reduction [202]. Can we
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extend these non-destructive methods to measure the transport performance along multi-tape REBCO
conductors as part of the conductor fabrication?

As a closing remark to this section, we recognize that along with the HEP community, the
fusion community has consistently identified REBCO high-field magnets as a transformative enabling
technology for the magnetic fusion devices towards energy generation [203–209]. With the strong
synergy between the high-field accelerator and fusion magnets [19,142,210], the research needs
discussed here can also be leveraged for the development of high-field fusion conductors and magnets
(Table 2).

Table 2. Synergies between the driving questions and the REBCO fusion magnet applications.

Research Needs for High-Field REBCO
Fusion Magnets and Conductors

Synergistic Driving
Questions

Conductor design, fabrication and test Sections 3.1–3.7
Magnet design, fabrication and test Sections 3.1–3.7
Performance stability under Lorentz loads Sections 3.3, 3.4 and 3.6
Quench behavior and detection Sections 3.4 and 3.6
Demountable joints Section 3.1
Radiation hardness Not addressed
AC losses Sections 3.5 and 3.6
Operation above 4.2 K Not addressed

4. A Roadmap Towards a 20 T Dipole Magnet

Figure 4 shows a technology-limited roadmap towards a 20 T dipole magnet with milestones for
the development of magnets and round REBCO conductors. The hybrid approach will address the
insert fabrication technology (driving question in Section 3.1), probe the behavior and performance of
insert magnets in background fields (driving questions in Sections 3.2–3.5) and provide early feedback
to the conductor development (driving question in Section 3.6). The outcome of the hybrid approach
can provide direct input to the development of stand-alone magnets that will require longer conductors
than the insert coils. Therefore, the hybrid approach with measurements in high background fields
(15 T or higher) should take priority.

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

3 T 5 T

8 T 

10 - 14 T 15 - 19 T 20 T

1 T @ 8 T 3 T @ 12 T 5 T @ 12 T 5 T @ 15 T

25 mm 20 mm 15 mm 10 mm

8 T

Hybrid

Stand-alone

Rmin

> 5 T @ 15 T

Lorentz force 300 kN/m 400 kN/m 600 kN/m

Figure 4. A roadmap towards a dipole field of 20 T with the hybrid and stand-alone approaches.
Also shown are the milestones for the minimum bending radius and Lorentz load for REBCO
round conductors.

In the U.S., BNL hosts a 10 T common-coil dipole magnet with a rectangular aperture that is ideal
to test race-track type insert coils [211]. For cylindrical insert coils, we propose to start the hybrid test
with CCT5, an 8.5 T, 90 mm aperture dipole magnet available at LBNL [212]. The U.S. is planning to
develop a 15 T dipole magnet with a large aperture (∼100 mm) that is expected to be commissioned
around 2025 [213]. Between the 8 T and 15 T outsert magnets, we consider two candidates. One is
the FRESCA2 dipole magnet at CERN that has an aperture of 100 mm and successfully generated
14.6 T at 1.9 K [214]. The other is a 12–13 T class dipole magnet to be developed with an aperture of
about 120 mm.
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Similar to the hybrid approach, the stand-alone approach addresses all the driving questions.
With a suitable outer diameter, some of the stand-alone magnets can be tested as insert magnets. We
propose to develop a 8–9 T stand-alone REBCO dipole magnet as a first step after the 5 T dipole field is
achieved. Almost doubling the 5 T, it is a stretched but achievable goal to be reached by 2023 assuming
the conductors will be available. In addition, the magnet can be compared to the Nb-Ti LHC main
dipole magnets (8.3 T operation field). We consider two stepping stones covering 10–14 T and 15–19 T
ranges to develop the required conductor and magnet technologies towards a 20 T stand-alone REBCO
dipole magnet. The stand-alone REBCO dipole magnets can have large apertures and serve as a facility
magnet to provide the 20–25 T background fields for insert and cable testing [213].

The progress of both approaches relies on the continuous performance improvement, production
scale-up and cost reduction of the REBCO conductors. The roadmap focuses on the development of
round conductors such as CORC R© and STAR wires with the following performances:

• Minimum bending radius (Rmin) as shown in Figure 4 with at least 80% of Ic retention after
bending. Although the CCT design drives this requirement to improve the efficiency of dipole
field generation [215], a small bending radius can benefit other magnet designs.

• The 10–20 kA total transport current at 20 T, 4.2 K and the minimum bending radius, assuming a
dipole transfer function of 1–2 T kA−1 at 20 T. Higher transfer functions will reduce the required
total transport current. Multiple conductors can be grouped to reach the target current.

• No Ic degradation at the transverse Lorentz load. Figure 4 shows only the Lorentz force per unit
length of straight conductor based on I × B with 100% margin.

The roadmap calls for the continuous development of REBCO insert and stand-alone magnets.
The magnet development requires a strong collaboration between the magnet programs domestic
and abroad. Meanwhile, a close collaboration is indispensable among magnet programs, material
development programs, and the conductor industry. The USMDP is an excellent platform to pursue
and nurture the collaborations.

5. Development of REBCO Magnet Technology at LBNL

As part of the USMDP, the effort at LBNL currently focuses on developing CCT dipole magnet
technology using round REBCO conductors. The CCT concept has several features that are attractive
particularly for high-field accelerator magnet applications. First, embedding the conductor in magnet
mandrels can effectively intercept the accumulation of Lorentz stresses on the conductor. Several
REBCO fusion cable designs have a similar feature [38,216]. Second, the CCT design gives excellent
geometric field quality. The drawback is a lower efficiency of field generation and a lack of experience.

Although one can make CCT magnets using stacked-tapes or Roebel cables [104,110], we focus on
round conductors that are under active development in the U.S. [31,34,38]. With multiple layers of tapes
wrapped helically around a round former, the tapes are transposed within each layer. The neighboring
layers of tapes are in contact allowing current sharing. The round conductor can simplify the magnet
design and winding compared to the conductor based on stacked tapes. Our focus complements the
effort on the Roebel cables in Europe [22,73,74].

Our near-term goal is to generate a dipole field of 5 T in a stand-alone CORC R© CCT dipole magnet
operating at 4.2 K (Figure 4). To achieve this goal, we are developing magnets with increasing fields,
complexity and technical challenges. We aim for two outcomes: (1) developing magnet technology
for round wires (driving question in Section 3.1), understanding the magnet performances (driving
questions in Sections 3.3, 3.4 and 3.5) and (2) collaborating with industry to improve conductor
performance to enable higher fields based on the feedback from the magnet development and
performance (driving question in Section 3.6).

After the first introduction of the concept of CCT using CORC R© conductors [217,218], several
CCT coils were developed since 2016 as the first step in collaboration with ACT. These magnets
(C0) had only three turns and used less than 3 m long CORC R© wires. Two double-layer magnets
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were developed to test winding and joints. One magnet (C0a) used a 16-tape CORC R© wire and
the other (C0b) used a 27-tape wire [215]. Both magnets were hand-wound without tension. Je of
900–1200 A mm−2 was demonstrated at 4.2 K, self-field. Resistance across the joint between two layers
was measured with a best performance of reaching 10 nΩ at 12 kA, 4.2 K with no background field.

Based on the experience from C0, we developed the C1 magnet that is identical with C0a except
with 40 turns of conductor. C1 reached a dipole field of 1.2 T with 4.8 kA at 4.2 K, consistent with the
design target [187]. The field quality of a CORC R© CCT dipole magnet was measured for the first time.
Reasonable geometric field quality was observed considering that the conductor was wound with
minimum tension (10 N) and was not impregnated after winding. Strong persistent-current effects
were observed in the main field and b3.

The C1 magnet not only presented the first opportunity to understand the conductor and magnet
behavior but also represented two small but important steps for the development of future 20 T
REBCO dipole magnets. First, C1 magnet used 30 m long CORC R© wires, about 15 m in each layer,
a record length of CORC R© wires that were wound into a magnet. The performance of the C1 magnet
indicated no significant defect in the conductors, increasing confidence in the performance uniformity
of longer CORC R© wires that will be required for future magnets.

Second, the winding of C1 magnet demonstrated an option suitable for automated winding
of longer magnets (Section 3.1). During the winding of C1, the conductor spool rotated around
the mandrel like winding a solenoid magnet [187]. The opening of the grooves follows the plane
determined by the local tangent of normal vectors of the CCT curve in the Frenet–Serret frame [215].
The design allows the incoming REBCO conductor to enter the groove with minimum obstacle.
The tensile stress (1.3 MPa) due to the winding tension is well below the irreversible tension stress
measured on CORC R© wires with 27 or 30 tapes [60].

We are making the C2 magnet, a CCT magnet with four layers, aiming at a dipole field of 3 T
(Figure 4). In addition to higher dipole fields, C2 aims at demonstrating the design and fabrication of
metal mandrel (Figure 5) that will be required for high-field REBCO accelerator magnets. We will also
use Stycast to constrain the conductors.

Grooves for the CORC® wires 

following a CCT dipole design

Figure 5. A three-turn aluminum bronze magnet mandrel designed by W. Ghiorso and machined by
M. Maruszewski at Lawrence Berkeley National Laboratory (LBNL) for test winding of CORC R© wires.

Experimental and computational tools are under development to investigate the behavior of
REBCO conductors and magnets under stresses (driving question 3.3). On the level of single tape, we
measure the impact of applied tensile and compressive strains on the critical current of commercial
REBCO tapes under high background field up to 15 T and at various temperatures from 4.2 to
40 K, in collaboration with Tufts University [219]. The measured strain dependence can be used
to understand the transport performance of REBCO tapes under bending that is required for the
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fabrication of multi-tape conductors and magnets. Towards this goal, we develop numerical models
based on a developable surface [104] and finite-element analysis [110] to analyze the strain distribution
in REBCO tapes. The experimental results and computational tools can provide useful input for
the design of robust REBCO conductors and magnets that can benefit both high energy physics and
fusion applications.

As part of the USMDP’s effort to develop underpinning technology to advance the magnet science,
LBNL and collaborators are developing advanced quench detection and diagnostic techniques for
HTS magnets. One example is to use the acoustic thermometry to detect quenches that have been
successfully demonstrated in REBCO tapes and small coils [166,220]. A promising concept based on
the stray capacitance between the coil and its structural elements has also been successfully tested
in Bi-2212 racetrack coils in collaboration with CERN [221,222]. We will test the technique on the
REBCO CCT magnets with metal mandrels that are under development. In collaboration with North
Carolina State University, we are examining the quench detection technique using optic fibers [164].
Preliminary 77 K tests of a three-turn CCT coil with the optic fiber co-wound with the CORC R© wire
revealed multiple local and growing normal zones during the transition [223]. Further investigation
will help correlate the normal zones with the conductor performance and magnet design/fabrication
to address the factors that limit the magnet performance.

We plan to develop a platform to test REBCO conductor and insert coils in a background field
provided by Nb3Sn CCT magnets. We intend to start with the existing CCT5 magnet that reached 8.5 T
in an aperture of 90 mm. Although the field is moderate, the test platform will allow us to obtain initial
results and provide early feedback on the development of conductor and magnets. It will also allow us
to gain experience towards the measurements and tests in higher background fields.

6. Conclusions

High-temperature superconducting REBCO conductors can enable future magnets with a dipole
field of 20 T and above as a critical and unique instrument for future high-energy accelerator complex.
To develop the required REBCO conductor and magnet technology, several critical research needs
should be addressed. In particular, the mechanical stress and strain on the conductor will determine
the maximum dipole field a REBCO magnet can deliver. We proposed a roadmap towards a 20 T
dipole in 2030 with the milestones for the hybrid and stand-alone approaches. The significant
improvement of the conductor performance is required along the magnet development. Various
conductor designs, further optimization and performance improvement bring significant opportunities
for REBCO technology. The most effective approach is to couple the development of REBCO conductors
and magnets to enable a fast-paced technology evolution: make magnets using improved conductors,
measure and understand the magnet performance, and use the magnet data to help guide further
conductor development. With sufficient support and effective collaboration, we are confident that
high-field REBCO magnet technology will deliver a dipole field of 20 T and above as an enabling
instrument for future circular colliders. The technology can also be significantly leveraged for future
compact fusion machines towards energy generation.
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Abbreviations

The following abbreviations are used in this manuscript:

ACT Advanced Conductor Technologies, LLC
ASC Applied Superconductivity Center
Bi-2212 Bi2Sr2CaCu2O8+x
BNL Brookhaven National Laboratory
CCT canted cos θ

CORC R© Conductor on round core
CERN European Organization for Nuclear Research
CTE Coefficient of thermal expansion
EuCARD Enhanced European Coordination for Accelerator Research and Development
FNAL Fermi National Accelerator Laboratory
FSU Florida State University
HEP High Energy Physics
HTS High-temperature superconducting
Ic Critical current
Je Engineering current density, transport current averaged over the entire cross sectional area

of a conductor
LBNL Lawrence Berkeley National Laboratory
LHC Large Hadron Collider
LTS Low-temperature superconducting
NHMFL National High Magnetic Field Laboratory
Rc Electrical contact resistance between superconducting strands
REBCO REBa2Cu3O7−δ, RE = rare earth elements
RRR Residual resistivity ratio
SPI SuperPower Inc.
STAR Symmetric Tape Round REBCO wire
TBD To be determined
USMDP U.S. Magnet Development Program
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