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Model-free Volatility Prediction
Abstract

The well-known ARCH/GARCH models with normal errors ac-
count only partly for the degree of heavy tails empirically found in
the distribution of financial returns series. Instead of resorting to an
arbitrary nonnormal distribution for the ARCH/GARCH residuals we
propose a different viewpoint via a novel normalizing and variance–
stabilizing transformation (NoVaS, for short) that can be seen as an
alternative to parametric modelling. Some properties of this trans-
formation are discussed, and algorithms for optimizing it are given.
Special emphasis is given on the problem of volatility prediction and
the issue of a proper measure for quality of prediction. A new pre-
diction algorithm with favorable performance is given based on the
NoVaS transformation. For motivation and illustration of this new
general methodology, the NoVaS transformation is implemented in
connection with three real data series: a foreign exchange series (Yen
vs. Dollar), a stock index series (the S&P500 index), and a stock price
series (IBM).

1 Introduction

Consider data X1, . . . , Xn arising as an observed stretch from a financial
returns time series {Xt, t ∈ Z} such as the percentage returns (or, equiv-
alently, the differences of the logarithms) of a stock price, stock index or
foreign exchange rate; the returns may be daily, weekly, or calculated at dif-
ferent (discrete) intervals. The returns series {Xt} will be assumed (strictly)
stationary with mean zero which—from a practical point of view—implies
that trends and other nonstationarities have been successfully removed.

Bachelier’s (1900) pioneering work suggested the Gaussian random walk
model for (the logarithm of) stock market prices. Because of the aforemen-
tioned equivalence of percentage returns to differences in the logarithm of the
price series, the implication of Bachelier’s thesis was that the returns series
{Xt} can be modelled as independent, identically distributed (i.i.d.) random
variables with Gaussian N(0, σ2) distribution.

The assumption of Gaussianity was challenged in the 1960s when it was
noticed that the distribution of returns seemed to have fatter tails than the
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normal; see e.g. Fama (1965). The adoption of some non-normal, heavy-
tailed distribution for the returns seemed—at the time—to be the solution.
However, in the early paper of Mandelbrot (1963) the phenomenon of ‘volatil-
ity clustering’ was pointed out, i.e., the fact that days with high volatility
are clustered together and the same is true for days with low volatility; this
is effectively negating the assumption of independence of the returns in the
implication that the absolute values (or squares) of the returns are positively
correlated.

The popular ARCH (Auto-Regressive Conditional Heteroscedasticity) mod-
els of Engle (1982) were designed in order to capture the phenomenon of
volatility clustering by postulating a particular structure of dependence for
the time series of squared returns {X2

t }. A typical ARCH(p) model is thus
described by an equation of the type:

Xt = Zt

√√√√a +

p∑
i=1

aiX2
t−i (1)

where the series {Zt} is assumed to be i.i.d. N(0, 1) and p is an integer
indicating the order of the model. Note that under this ARCH(p) model,
the best (in a Mean Squared Error sense) prediction of X2

n+1 based—i.e.,
conditional—on the observed past Fn = {Xt, 1 ≤ t ≤ n} is given by

E(X2
n+1|Fn) = a +

p∑
i=1

aiX
2
n+1−i; (2)

the quantity on the RHS of (2) is commonly referred to as the ‘volatility’
(although the same term is sometimes also used for its square root).

Volatility clustering as captured by model (1) does indeed imply a mar-
ginal distribution for the {Xt} returns that has heavier tails than the normal.
However, model (1) can account only partly for the degree of heavy tails em-
pirically found in the distribution of returns, and the same is true for the
Generalized ARCH (GARCH) models of Bollerslev (1986); see Bollerslev et
al. (1992) or Shephard (1996) for a review. For example, the market crash
of October 1987 is still an outlier 6-7 standard deviations away even after
the best ARCH/GARCH model is employed; see Nelson (1991).

Consequently, researchers and practitioners have been resorting to ARCH
models with heavy-tailed errors. A popular assumption for the distribution
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of the {Zt} is the t-distribution with degrees of freedom empirically chosen
to match the apparent degree of heavy tails in the residuals; see Shephard
(1996) and the references therein.

Nevertheless, this situation is not very satisfactory since the choice of a
t-distribution seems quite arbitrary. In a certain sense, it seems that we have
come full-circle back to the 60s in trying to model the excess kyrtosis by an
arbitrarily chosen heavy-tailed distribution. Perhaps the real issue is that
a simple and neat parametric model such as (1) could not be expected to
perfectly capture the behavior of a complicated real-world phenomenon such
as the evolution of financial returns that—almost by definition of market
‘efficiency’—ranks at the top in terms of difficulty of modelling/prediction.

As a more realistic alternative, one may resort to an exploratory, non-
parametric approach in trying to understand this type of data; such an ap-
proach is outlined in the paper at hand. In the next section, a normalizing
and variance–stabilizing transformation for financial returns series is defined,
and its properties are analyzed. Section 3 is devoted to the interesting (and
quite challenging) problem of volatility prediction while Section 4 contains
some conclusions.

For motivation and illustration throughout the paper we consider three
datasets of daily returns taken from a foreign exchange rate, a stock price,
and a stock index; a description of the datasets is as follows.

• Example 1: Foreign exchange rate. Daily returns from the Yen
vs. Dollar exchange rate from January 1, 1988 to August 1, 2002;
the data were downloaded from Datastream. A plot of the returns is
shown in Figure 1a; the sample size is 3600 (weekends and holidays are
excluded).

• Example 2: Stock index. Daily returns of the S&P500 stock index
from October 1, 1983 to August 30, 1991; the data are available as part
of the garch module in Splus. A plot of the returns is shown in Figure
1b; the sample size is 2000.

• Example 3: Stock price. Daily returns of the IBM stock price from
February 1, 1984 to December 31, 1991; the data are again available as
part of the garch module in Splus. A plot of the returns is shown in
Figure 1c; the sample size is 2000.
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The phenomenon of volatility clustering is quite apparent in the three
returns series of Figure 1. Note, in particular, the extreme volatility and
outlying values around the mid-point of Figure 1(b) and slightly before the
mid-point of Figure 1(c); those points of time correspond to the aforemen-
tioned market crash of October 1987.

2 Normalization and variance-stabilization

2.1 Definition of the NoVaS transformation

Observe that, under the ARCH model (1), the quantity

Xt√
a +

∑p
i=1 aiX2

t−i

(3)

is thought of as perfectly normalized and variance–stabilized as it is assumed
to be i.i.d. N(0, 1). From an applied statistics point of view, the above ratio
can be interpreted as an attempt to ‘studentize’ the return Xt by dividing
with a (time-localized) measure of the standard deviation of Xt.

Nevertheless, there seems to be no reason—other than coming up with a
neat model—to exclude the value of Xt from an empirical (causal) estimate
of the standard deviation of Xt. Hence, we may define the new ‘studentized’
quantity

Wt,a :=
Xt√

αs2
t−1 + a0X2

t +
∑p

i=1 aiX2
t−i

for t = p + 1, p + 2, . . . , n; (4)

in the above, s2
t−1 is an estimator of σ2

X = V ar(X1) based on the data up
to (but not including1) time t; under the zero mean assumption for X1, the
natural estimator is s2

t−1 = (t − 1)−1
∑t−1

k=1 X2
k .

Equation (4) describes our proposed normalizing and variance–stabilizing
transformation2 (NoVaS, for short) under which the data series {Xt} is

1The reason for not including time t in the variance estimator is just for notational
clarity: we want to isolate and identify the effect of the coefficient a0 associated with X2

t

in the denominator of equation (4).
2Note that—unlike the usual i.i.d. framework—the normalizing and variance–stabilizing

transformation in this time series setting is not an instantaneous function of each data
point; rather, it is a function of a whole stretch of past data points.
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Figure 1: (a) Plot of the daily Yen/Dollar returns from December 31, 1987
up to August 1, 2002; (b) Plot of the daily S&P500 stock index returns from
October 1, 1983 to August 30, 1991; (c) Plot of the daily returns of the IBM
stock price from February 1, 1984 to December 31, 1991.

6



mapped to the new series {Wt,a}. The order p(≥ 0) and the vector of non-
negative parameters (α, a0, . . . , ap) are chosen by the practitioner with the
twin goals of normalization/variance–stabilization in mind that will be made
more precise shortly.

The NoVaS equation (4) can be re-arranged to yield:

Xt = Wt,a

√√√√αs2
t−1 + a0X

2
t +

p∑
i=1

aiX
2
t−i. (5)

Note that the only real difference between the NoVaS eq. (5) and the ARCH
eq. (1) is the presence of the term X2

t paired with the coefficient a0. Replacing
the term a in eq. (1) by the term αs2

t−1 in (5) is only natural since the former
has—by necessity—units of variance; in other words, the term a in eq. (1) is
not scale invariant, whereas the term α in (5) is.

Equation (5) is very useful but should not be interpreted as a “model”
for the {Xt} series; rather, the focus should remain on equation (4) and the
effort to render the transformed series {Wt,a, t = p + 1, p + 2, · · ·} close—in
some sense to be described shortly—to behaving like the standard normal
ideal.

A further note of caution on viewing eq. (5) as a “model” comes from
the observation that exact normality is not feasible for the series {Wt,a} as
the latter comprises of bounded random variables; to see this, note that

1

W 2
t,a

=
αs2

t−1 + a0X
2
t +

∑p
i=1 aiX

2
t−i

X2
t

≥ a0

if all the parameters are nonnegative. Therefore,

|Wt,a| ≤ 1/
√

a0 (6)

almost surely, assuming of course that a0 �= 0. However, with a0 chosen small
enough, the boundedness of the {Wt,a} series is effectively (and practically)
not noticeable.

2.2 Choosing the parameters of NoVaS

In choosing the order p (≥ 0) and the parameters α, a0, . . . , ap the twin goals
of normalization and variance–stabilization of the transformed series {Wt,a}
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are first taken into account. Secondarily, the NoVaS parameters may be
further optimized with a specific criterion in mind, e.g., optimal volatility
prediction; this approach is expanded upon in Section 3. We now focus on
the primary goals of normalization and variance–stabilization.

The target of variance–stabilization is easier and—given the assumed
structure of the return series—amounts to constructing a local estimator
of scale for studentization purposes; for this reason we require

α ≥ 0, ai ≥ 0 for all i ≥ 0, and α +

p∑
i=0

ai = 1. (7)

Equation (7) has the interesting implication that the {Wt,a} series can be
assumed to have an (unconditional) variance that is (approximately) unity.
Nevertheless, note that p and α, a0, . . . , ap must be carefully chosen to achieve
a degree of conditional homoscedasticity as well; to do this, one must nec-
essarily take p small enough—as well as α small enough or even equal to
zero—so that a local (as opposed to global) estimator of scale is obtained. An
additional intuitive—but not obligatory—constraint may involve monotonic-
ity:

ai ≥ aj if 1 ≤ i < j ≤ p. (8)

It is practically advisable that a simple structure for the ai coefficients is
employed satisfying (7) and (8). The simplest such example is to let α = 0
and ai = 1/(p + 1) for all 0 ≤ i ≤ p; this specification will be called the
‘simple’ NoVaS transformation, and involves only one parameter, namely
the order p, to be chosen by the practitioner. Another example is given by
the exponential decay NoVaS where α = 0 and ai = c′e−ci for all 0 ≤ i ≤ p.
The exponential scheme involves choosing two parameters: p and c > 0 since
c′ is determined by (7); nevertheless, the parameter p is now of secondary
importance—see section 2.4. The simple and exponential NoVaS schemes are
most intuitive as they correspond to the two popular time series methods of
obtaining a ‘local’ average, namely moving average (of the last p + 1 values)
and ‘exponential smoothing’; see e.g. Hamilton (1994).

Subject to the variance stabilization condition (7)—together with (8) if
desirable—one then proceeds to choose (the parameters needed to identify)
p and α, a0, a1, . . . , ap with the optimization goal of making the {Wt,a} trans-
formed series as close to normal as possible. To quantify this target it is
suggested that one matches the empirical kyrtosis (and/or possibly some
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higher order even moments) of Wt,a to those of a standard normal random
variable. In order to render joint distributions of the {Wt,a} series more nor-
mal, one may also apply the previous moment matching idea to a few specific
linear combinations of Wt,a random variables; more details are given in the
next subsection.

However, in view of the bound (6), one must be careful to ensure that the
{Wt,a} random variables have a large enough range such that the bounded-
ness is not seen as spoiling the normality. Thus, we also require

1/
√

a0 ≥ C i.e., a0 ≤ 1/C2 (9)

for some appropriate C of the practitioner’s choice. Recalling that 99.7%
of the mass of the N(0, 1) distribution is found in the range ±3, the simple
choice C = 3 can be suggested; this choice seems to work reasonably well—
at least for the usual samples sizes. Alternatively, one may let C depend on
the sample size n; taking into account that the maximum of n i.i.d. N(0, 1)
random variables is of the order of

√
2 lnn, one may let C be equal (or

proportional) to
√

2 lnn.

2.3 Simple NoVaS algorithm

We now give specific algorithms for optimizing the NoVaS transformation in
the two previously mentioned examples, simple and exponential NoVaS. First
note that it is a matter of common practice to assume that the distribution
of financial returns is symmetric (at least to a first approximation); therefore,
the skewness of financial returns is often ignored. In contrast, the kyrtosis is
typically very large, indicating a heavy tailed distribution. The above claims,
i.e., approximate symmetry and heavy tails, are confirmed by Figure 2 where
histograms and Q-Q plots for our three returns series are presented.

Let KY RTn(Y ) denote the empirical kyrtosis of data {Yt, t = 1, . . . , n},
i.e.,

KY RTn(Y ) =
n−1

∑n
t=1(Yt − Ȳ )4

(n−1
∑n

t=1(Yt − Ȳ )2)2

where Ȳ = n−1
∑n

t=1 Yt is the sample mean. For our three datasets, Yen/Dollar,
S&P500 and IBM, the empirical kyrtosis was 10.1, 94.0 and 38.3 respectively.
Although even moments of order higher than four may also be used to mea-
sure deviation from normality, in what follows we focus on the kyrtosis for
concreteness.
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Figure 2: Histograms and Q-Q plots for the three returns series of Figure 1.
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Note that the only free parameter in simple NoVaS is the order p; there-
fore, the simple NoVaS transformation will be denoted by W S

t,p.

Algorithm for Simple NoVaS:

• Let α = 0 and ai = 1/(p + 1) for all 0 ≤ i ≤ p.

• Pick p such that |KY RTn(W S
t,p) − 3| is minimized.

The last step of the above algorithm was described as an optimization prob-
lem for mathematical concreteness. Nevertheless, it could be better under-
stood as a moment matching, i.e.,

• Pick p such that KY RTn(W S
t,p) � 3,

where of course the value 3 for kyrtosis corresponds to the Gaussian distrib-
ution.

To see that the moment matching goal is a feasible one, note first that
for p = 0 we have a0 = 1, W S

t,0 = sign(Xt), and KY RTn(W S
t,0) = 1. On

the other hand, it is to be expected that for large p, KY RTn(W S
t,p) will be

bigger than 3. As a matter of fact, the law of large numbers implies that for
increasing values of p, KY RTn(W S

t,p) will tend to the ‘true’ kyrtosis of the
random variable X1 which is understood to be quite large (and may even be
infinite—see the discussion in Section 3.1). Therefore, viewing KY RTn(W S

t,p)
as a (smooth) function of p, one would expect that for an intermediate value
of p the level 3 would be (approximately) attained; this is actually what
happens in practice.

Thus, to actually carry out the search for the optimal p in the Simple
NoVaS Algorithm, one sequentially computes KY RTn(W S

t,p) for p = 1, 2, · · ·,
stopping when KY RTn(W S

t,p) first hits or just passes the value 3. Interest-
ingly, KY RTn(W S

t,p) is typically an increasing function of p which makes this
scheme very intuitive; see Figure 3(a).

The above simple algorithm seems to work remarkably well. A caveat,
however, is that the range condition (9) might not be satisfied. If this is the
case, the following ‘range-adjustement’ step can be added to algorithm.

• If p (and a0) as found above are such that (9) is not satisfied, then
increase p accordingly; in other words, redefine p to be the smallest
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Figure 3: Illustration of the simple NoVaS algorithm for the Yen/Dollar
dataset: plot of KY RTn(W S

t,p) as a function of p; the solid line indicates the
Gaussian kyrtosis of 3.

integer such that 1/(p + 1) ≤ 1/C2, and let ai = 1/(p + 1) for all
0 ≤ i ≤ p.

It goes without saying that this range-adjustement should be used with re-
straint, that is, the choice of C in (9) should be reasonably small, as it effec-
tively over-rides the data-dependent character of choosing p; both concrete
suggestions, i.e., C = 3 or C � √

2 lnn seem to work well in practice.
In Figure 3, an illustration of the simple NoVaS algorithm is given for the

Yen/Dollar dataset. Figure 3 shows a plot of KY RTn(W S
t,p) as a function

of p; the monotonic increase of KY RTn(W S
t,p) is apparent, rendering the

NoVaS algorithm easy to implement. Notably, KY RTn(W S
t,p) is closest to 3

for p = 9; actually, KY RTn(W S
t,9) = 3.03. Interestingly, the data-dependent

choice p = 9 seems very stable; estimating p over different subsamples of the
Yen/Dollar dataset typically yielded the value 9±1 even for subsamples with
length one tenth of n = 3600.

The optimal simple NoVaS transformed series {W S
t,9} for the Yen/Dollar

dataset is plotted in Figure 4(a). Although {W S
t,9} is related in a simple

way to the original data of Figure 1(a), the regions of “volatility clustering”
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corresponding to the {Xt} series are hardly (if at all) discernible in the plot
of the NoVaS series {W S

t,9}.
Similar calculations were performed for our other two datasets; the opti-

mal p values were: 12 for the IBM dataset, and 10 for the S&P500 dataset.
Figure 4 depicts plots of the Simple NoVaS transformed series for the three
datasets of Figure 1. The variance stabilization effect is quite apparent; in
particular, note that the market crash of October 1987 is hardly (if at all)
noticeable in Figure 4 (b) and (c). A comparison with Figure 1 is quite
striking.

Figure 5 shows histograms and Q-Q plots for the three NoVaS series
of Figure 4. Comparing Figure 5 to Figure 2, it is visually apparent that
the goal of normalization has been largely achieved. The histograms look
quite normal and the Q-Q plots look quite straight; there is no indication of
heavy-tails and/or outlying values in Figure 5, i.e., no “left-over” kyrtosis to
account for.

Focusing again on the Yen/Dollar dataset, it should be noted that with
p = 9 the effective range of the Yen/Dollar NoVaS transform {W S

t,9} series
is about 3.16 which is acceptable in terms of (9) being satisfied with C = 3.
However, if one opted for the choice C =

√
2 lnn, then in this case C would

be about 4 and a range-adjustement step would be required leading to the
choice p = 15; note that KY RTn(W S

t,15) = 3.51 which is still quite close to
the target value of 3. As a matter of fact, a Q-Q plot (not shown) of the
simple NoVaS Yen/Dollar {W S

t,15} series actually looks even closer to normal
than the Q-Q plot of {W S

t,9} shown in Figure 5 in terms of showing less
“clipping” near the upper right corner. The higher values of p in connection
with the IBM and S&P500 datasets correspond to ranges of about 3.6 and
3.3 respectively, indicating even less of a need for possible range-adjustement,
especially in view of their smaller sample size as well.

Remark 2.1 In the simple NoVaS algorithm, the target was 4th moment
matching of W S

t,p to the corresponding Gaussian moment, i.e., to obtain
KY RTn(W S

t,p) � 3; this procedure has the goal of (approximately) normal-
izing the marginal distribution of W S

t,p. Interestingly, this simple procedure
seems to be somehow effective in normalizing joint distributions as well,
e.g. the joint distribution of W S

t,p and its lagged version W S
t−1,p, which is a

highly desirable objective. Table 1 gives the sample kyrtosis of the series
W̃ S

t,9,i = W S
t,9 + λiW

S
t−1,9 (in the case of the Yen/Dollar dataset) for different
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values of λi. Notably, all the entries of Table 1 are close to the nominal
value of 3 supporting the claim of approximate normalization of the joint
distribution of the pair (W S

t,9, W
S
t−1,9).

λi -4 -1 -0.5 0 0.5 1 4

KY RTn(W̃ S
t,9,i) 2.92 2.89 2.98 3.03 3.03 3.10 3.12

Table 1: (Yen/Dollar example) Sample kyrtosis of W̃ S
t,9,i = W S

t,9 + λiW
S
t−1,9

for different values of λi.

However, if one wanted to ensure that some joint distributions are also
normalized—at least as far as 4th moments are concerned—then the mo-
ment matching criterion of the algorithm can be modified. To fix ideas, con-
sider the target of normalizing the joint distribution of W S

t,p and W S
u,p. The

Cramér-Wold device suggests that we simultaneously consider some linear
combinations of the type:

W̃ S
t,p,i = W S

t,p + λiW
S
u,p for i = 1, . . . , K,

where the λi’s are some chosen constants as in Table 1. The simple NoVaS
algorithm is then altered to focus on the kyrtosis of W̃ S

t,p,i instead of that of
W S

t,p; to elaborate, the last step of the simple NoVaS algorithm would read:

• Pick p such that maxi |KY RTn(W̃ S
t,p,i) − 3| is minimized.

2.4 Exponential NoVaS algorithm

In the Exponential NoVaS, to specify all the ais, one just needs to specify
the two parameters p and c > 0, in view of (7). However, because of the
exponential decay, the parameter p is now of secondary significance as the
following algorithm suggests; thus, we may concisely denote the exponential
NoVaS transformation by W E

t,c.

Algorithm for Exponential NoVaS:

• Let p take a very high starting value, e.g., let p � n/4 or n/5.

16



• Let α = 0 and ai = c′e−ci for all 0 ≤ i ≤ p, where c′ = 1/
∑p

i=0 e−ci by
eq. (7).

• Pick c in such a way that |KY RTn(W E
t,c) − 3| is minimized.

It is apparent that the above search will be practically conducted over a
discrete grid of c–values; let c0 denote the resulting minimizer. Consequently,
the following range-adjustement safeguard may be added.

• If c0 as found above is such that (9) is not satisfied, then decrease c
stepwise (starting from c0) over the discrete grid until (9) is satisfied.

Finally, the value of p must be trimmed for efficiency of usage of the
available sample; to do this we can simply discard the ai coefficients that
are close to zero, i.e., those that fall below a certain threshold ε which is the
practitioner’s choice. A threshold value of 0.01 is reasonable in connection
with the ai which—it should be stressed—are normalized to sum to one.

• Trim the value of p by a criterion of the type: if ai < ε, then let ai = 0.
Thus, if ai < ε, for all i ≥ i0, then let p = i0, and renormalize the ais
so that their sum (for i = 0, 1, . . . , i0) equals one.

An illustration of the Exponential NoVaS algorithm is now given for the
Yen/Dollar dataset. Figure 6 is a plot of KY RTn(W E

t,c) as a function of
c. Except for values of c very close to zero, KY RTn(W E

t,c) seems to be
monotonically decreasing hitting the value 3 for c � 0.0985. Nevertheless,
the behavior of KY RTn(W E

t,c) for c close to zero is not a fluke; rather it
is a predictable outcome of our truncation/clipping of all coefficients that
are less than ε (which was equal to 0.01 for the purposes of Figure 6). If a
very low value for ε is used—say even that ε is set to zero—then the plot of
KY RTn(W E

t,c) will be decreasing for all values of c.
To further elaborate, note that Figure 6 indicates KY RTn(W E

t,c) hitting
the value 3 for another value of c as well, namely for c � 0.0113. Figure 7
shows a plot of the exponential coefficients ai versus the index i = 1, . . . , p
for the two values of c suggested by Figure 6; due to the truncation effect
with ε= 0.01, we have c � 0.0113 corresponding to p = 10, while c � 0.0985
corresponds to p = 22. Note that the ultra-slow decay of the ai coefficients
in the case c � 0.0113, combined with the truncation effect at p = 10, makes
the Exponential NoVaS with c � 0.0113 very similar to a Simple NoVaS with
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Figure 6: Illustration of the Exponential NoVaS algorithm for the Yen/Dollar
dataset: plot of KY RTn(W E

t,c) as a function of c; the solid line indicates the
Gaussian kyrtosis of 3.
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Figure 7: Plot of the exponential coefficients ai versus the index i = 1, . . . , p
for the two values of c suggested by Figure 6; note that c � 0.0113 corre-
sponds to p = 10, while c � 0.0985 corresponds to p = 22.
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p = 10; this is because the exponential coefficients decay so slowly that are
close to being constant for i = 1, . . . , p.

To sum up: a plot with shape such as Figure 6 is typical when a nonzero
ε is used, suggesting that the function |KY RTn(W E

t,c) − 3| may have two
values of c minimizing it. The higher of those two c values is the bona fide
exponential decay constant; the lower of the two c values is typically not
useful—but the p corresponding to that lower c value is a good indicator of
the optimal p in Simple NoVaS.

Analogs of Figures 4 and 5 can be constructed using the Exponential
NoVaS algorithm on our three datasets; they are not given here to save space
as they are visually very similar to the Simple NoVaS results of Figures 4
and 5. The optimal c values were: 0.070 (with p = 27) for the IBM dataset,
and 0.084 (with p = 24) for the S&P500 dataset.

Note that as in the simple NoVaS algorithm, for the Exponential NoVaS
as well we could focus on moment matching for the linear combinations of
W E

t,c of W E
u,c (say) instead of W E

t,c. In addition, the Exponential NoVaS algo-
rithm could be extended to include a sum of two or more exponentials, i.e.,
a situation where ai = c′e−ci + d′e−di · · ·. The generalization may well in-
clude higher order moment matching and/or looking at linear combinations
of higher order lags.

3 Volatility prediction

3.1 Some basic notions: L1 vs L2

In this section, we consider the problem of prediction of X2
n+1 based on the

observed past Fn = {Xt, 1 ≤ t ≤ n}. Under the zero mean assumption, a
first predictor is given by a simple empirical estimator of the (unconditional)
variance σ2

X of the series {Xt, 1 ≤ t ≤ n}, for example, s2
n = n−1

∑n
k=1 X2

k ;
this will serve as our ‘benchmark’ for comparisons.

The above predictor is quite crude as it implicitly assumes that the
squared returns {X2

t , 1 ≤ t ≤ n} are independent which is typically not true.
As a matter of fact, the basic premise regarding financial returns is that
they are dependent although uncorrelated—hence the typical assumption of
nonlinear/non-normal models in that respect. For example, Figure 8(a) con-
firms that for the Yen/Dollar dataset the returns indeed appear uncorrelated.
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Figure 8: (Yen/Dollar example) (a) Correlogram of the returns series {Xt};
(b) Correlogram of the squared returns {X2

t }; (c) Correlogram of the optimal
Simple NoVaS series {W S

t,9}.

However, the squared returns appear quite correlated even for lags as high
as 25 days; see Figure 8(b).

An immediate improvement over the above benchmark should thus be
obtainable by predicting X2

n+1 by a linear predictor of the type

(1 −
r∑

i=1

bi)s
2
n +

r∑
i=1

biX
2
n+1−i; (10)

here the bi coefficients can be estimated by fitting an AR(r) model to the
(de-meaned) squared returns {X2

t , 1 ≤ t ≤ n} with the order r typically
determined by minimizing Akaike’s AIC criterion—see e.g. Brockwell and
Davis (1991).

It should be noted though that this linear predictor is typically subopti-
mal since the series {X2

t } is generally non-normal and nonlinear. However,
the main reason that eq. (10) may give a poor predictor in practice is the fol-
lowing: the correlogram of the squared returns {X2

t , 1 ≤ t ≤ n} does not give
an accurate estimation of the true correlation structure mainly due to the
underlying heavy tails (and non-linearities); see e.g. Resnick et al. (1999).
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For example, using the AIC criterion to pick the order r in connection with
the squared Yen/Dollar returns yields r = 26; this is hardly surprising in
view of the correlogram of Figure 8 (b), but it is hard to seriously entertain
a model of such high order for this type of data. An experienced researcher
might instead fit an AR(1) or maybe an ARMA(1,1) model in this situation.

Notably, fitting an ARMA(1,1) to the squared returns is in the spirit
of a GARCH(1,1) model since the GARCH(1,1) predictor of X2

n+1 has the
same form as predictor (10) with the bi coefficients decaying exponentially
as in an ARMA(1,1) model. The GARCH(1,1) model is the most popu-
lar among the GARCH(p, q) models of Bollerslev (1986) as it is believed to
achieve the most parsimonious fit with returns data. Recall that the ARCH
family is a subset of the GARCH family since an ARCH(p) model is equiv-
alent to a GARCH(p, 0); in addition, a GARCH(p, q) model is equivalent
to an ARCH(∞) with a special structure (typically exponential) for its ai

coefficients—see Hamilton (1994) or Gouriéroux (1997).
In order to compare the different predictors of squared returns, we will

use two popular performance measures: Mean Squared Error (MSE) of pre-
diction and Mean Absolute Deviation (MAD) of prediction both relative to
the benchmark; these are of course nothing other than the L2 and L1 norms
of the prediction error respectively, divided by the corresponding L2 or L1

norm of the benchmark’s prediction error.

Predictor type Yen/Dollar S&P500 IBM
Eq. (10) with AIC 0.971 1.125 1.108

Eq. (2)—GARCH(1,1) with normal errors 1.005 1.164 1.140
Eq. (2)—GARCH(1,1) with t–errors 1.025 1.151 1.139

Table 2: Entries give the empirical Mean Squared Error (MSE) of prediction
of squared returns relative to benchmark.

Table 2 focuses on the L2 prediction performance of the three aforemen-
tioned predictors, namely the linear model (10) with order chosen by mini-
mizing the AIC, and the GARCH(1,1) with normal and t–errors (the latter
having degrees of freedom estimated from the data); all computations were
done in Splus. It is apparent that the performance of all three methods is
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rather abysmal as they seem to perform worse even than the (naive) bench-
mark. Due to results such as those in Table 2, it has been widely believed that
ARCH/GARCH models are characterized by “poor out-of-sample forecast-
ing performance vis-a-vis daily squared returns”; see Andersen and Bollerslev
(1998) and the references therein. To further quote Andersen and Bollerslev
(1998): “numerous studies have suggested that ARCH and stochastic volatil-
ity models provide poor volatility forecasts”.3

Nevertheless, the entries of Table 3a on the L1 prediction performance
tell a different story, namely that all three predictors outperform the bench-
mark when errors are measured in the L1 norm. As intuitively expected, the
GARCH with t–errors has the best performance among the three. Surpris-
ingly, the GARCH with normal errors appears inferior to the linear model
(10); the reason for this will be revealed shortly.

Predictor type Yen/Dollar S&P500 IBM
Eq. (10) with AIC 0.963 0.912 0.941

Eq. (2)—GARCH(1,1) with normal errors 0.971 0.982 0.980
Eq. (2)—GARCH(1,1) with t–errors 0.821 0.818 0.864

Table 3a: Entries give the empirical Mean Absolute Deviation (MAD) of
prediction of squared returns relative to benchmark.

To see why such a big discrepancy exists between the two performance
measures, L1 and L2, we return to our data. Let V ARk(Y ) and KY RTk(Y )
denote the empirical (sample) variance and kyrtosis of dataset Y up to time
k, i.e., {Y1, . . . , Yk}. By the (strong) law of large numbers, as k increases,
V ARk(Y ) should tend to the variance of the random variable Y1 be that
infinite or not. Similarly, KY RTk(Y ) should tend to the kyrtosis of Y1 be
that infinite or not. Thus, plotting V ARk(Y ) and KY RTk(Y ) as functions
of k one may be able to visually gauge whether Y1 has finite second and/or
fourth moments; this is done in Figure 9 for the Yen/Dollar dataset.

It appears that the Yen/Dollar dataset may have finite variance as the

3In turn, Andersen and Bollerslev (1998) define a notion of ‘latent’ volatility based on an
assumed underlying continuous-time diffusion structure, and show that ARCH/GARCH
models are successful in predicting future ‘latent’ volatility instead.
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Figure 9: (Yen/Dollar example) (a) Plot of V ARk(X) as a function of k;
(b) Plot of KY RTk(X) as a function of k.

plot in Figure 9 (a) seems to converge. Nevertheless, it seems that it has
as infinite fourth moment as the plot in Figure 9 (b) seems to diverge with
each extreme value ‘jolt’. The same conclusions, namely finite variance but
infinite fourth moment, seem to also apply to our other two datasets.

Therefore, it is hardly surprising that the L2 measure of prediction per-
formance yields unintuitive results: the MSE of predicting X2

n+1 is essentially
a fourth moment, and the data suggest that fourth moments may be infinite!
It is unreasonable to use an L2 measure of performance in a set-up where L2

norms may not exist.
Nevertheless, this is not the end of the story. To see why, note that the

GARCH predictions for Tables 2 and 3a were performed—as customary—
using the predictor (2). But eq. (2) gives the conditional expectation of X2

n+1

given Fn under the ARCH(p) model (1) with standard normal errors {Zt}.
If the errors are not standard normal, then eq. (2) is not the conditional
expectation any longer. For example, E(t25) � 1.67 which is far from the
value of one which holds under normality; here t5 denotes a random variable
distributed according to Student’s t distribution with 5 degrees of freedom—a
typical value for the degrees of freedom associated with our data.
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Furthermore, under our objective of L1 prediction, the optimal predic-
tor is the conditional median—not the conditional expectation. Hence, the
optimal predictor of X2

n+1 in the L1 sense is given by

Median
(
X2

n+1|Fn

)
= (a +

p∑
i=1

aiX
2
n+1−i)Median(Z2

n+1); (11)

note that Median(Z2
n+1) � 0.45 if Zt ∼ N(0, 1), whereas Median(Z2

n+1) �
0.53 if Zt ∼ t5.

Table 3b shows the L1 prediction performance of our two GARCH(1,1)
models using the optimal L1 predictor (11); again note that (11) in the
GARCH(1,1) setting should be interpreted as having p = ∞ (or very large),
and ai coefficients decaying exponentially according to the GARCH structure—
see e.g. Gouriéroux (1997, Ch. 4.1.5).

Predictor type Yen/Dollar S&P500 IBM
Eq. (11)—GARCH(1,1) with normal errors 0.805 0.817 0.829

Eq. (11)—GARCH(1,1) with t–errors 0.793 0.799 0.831

Table 3b: Entries give the empirical Mean Absolute Deviation (MAD) of
prediction of squared returns relative to benchmark.

Using the correct predictor leads, of course, to ameliorated performance as
a comparison of Table 3b to Table 3a shows. In particular, as was expected,
both GARCH(1,1) models outperform the lineal predictor (10) in the L1

sense. Furthermore, the GARCH(1,1) model with t–errors outperforms the
benchmark by a nontrivial margin of the order of 20%.

Thus, by contrast to what is widely believed, ARCH/GARCH models
do have predictive validity for the squared returns; this is particularly true
for the GARCH with t–errors as expected. However, to appreciate and take
advantage of this one must: (a) use a more meaningful measure of prediction
such as L1, and (b) use the proper predictor, i.e., the conditional median in
the L1 prediction case.

In the sequel we will focus exclusively on the L1 measure of performance
and the Mean Absolute Deviation (MAD) of prediction. Although we have
seen that GARCH models do have reasonable predictive validity, in what

24



follows we show how we can obtain even better volatility predictions using
the NoVaS transformation.

3.2 Volatility prediction using NoVaS

To give an alternative procedure for prediction of X2
n+1 based on the observed

past Fn we now focus on volatility forecasting based on NoVaS. To describe
this, suppose that the order p(≥ 0) and the parameters α, a0, . . . , ap of NoVaS
have already been chosen.

First note that we can further re-arrange the NoVaS equation (4) to yield:

X2
t =

W 2
t,a

1 − a0W 2
t,a

(
αs2

t−1 +

p∑
i=1

aiX
2
t−i

)
(12)

and

Xt =
Wt,a√

1 − a0W 2
t,a

√√√√αs2
t−1 +

p∑
i=1

aiX2
t−i. (13)

The one-step ahead prediction problem can be generally defined as fol-
lows. Let g be some (measurable) function of interest; examples include
g0(x) = x, g1(x) = |x|, and g2(x) = x2, the latter being the function of
interest for volatility prediction. From eq. (13) it follows that the predic-
tive (given Fn) distribution of g(Xn+1) is identical to the distribution of the
random variable

g

(
An

W√
1 − a0W 2

)
(14)

where An =
√

αs2
n +

∑p
i=1 aiX2

n+1−i is treated as a constant given the past
Fn, and the random variable W has the same distribution as the conditional
(on Fn) distribution of the random variable Wn+1,a.

Therefore, our best (in an L1 sense) prediction of g(Xn+1) given Fn is
given by the median of the conditional (given Fn) distribution of g(Xn+1),
i.e.,

̂g(Xn+1) := Median


g


An

Wn+1,a√
1 − a0W 2

n+1,a


 |Fn


 (15)
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Specializing to the case of interest, i.e., volatility prediction and the function
g2(x) = x2, we then have

X̂2
n+1 = µ2A

2
n (16)

where

µ2 = Median

(
W 2

n+1,a

1 − a0W 2
n+1,a

|Fn

)
.

Now observe that—up to the effect of initial conditions—the information
set Fn = {Xt, 1 ≤ t ≤ n} is approximately4 equivalent to the information
set F̃n = {Wt,a, p < t ≤ n}. To see this, note that eq. (13)—when iterated—
gives an expression for Xt in terms of F̃n; conversely, eq. (4) defines Wt,a in
terms of Fn. Thus, we can use the expression

µ2 ≈ Median

(
W 2

n+1,a

1 − a0W
2
n+1,a

|F̃n

)
(17)

in connection with the predictor given in eq. (16).
Our task now is significantly simplified: find the predictive distribution

of the random variable Wn+1,a based on its own recent past F̃n. But—
by construction—Wt,a should be approximately equal to a normal random
variable. In addition, as mentioned in Section 2, the joint distributions of
the series {Wt,a, t = p+1, . . . , n} are also typically normalized by the NoVaS
transformation. Thus, the series {Wt,a, t = p + 1, . . . , n} may be thought
of as an (approximate) Gaussian series in which case optimal prediction is
effectively linear prediction since all dependencies should be captured in the
correlogram; see e.g. Brockwell and Davis (1991).

Under this Gaussian/linear dependence structure, the conditional (on F̃n)
distribution of Wn+1,a should be close to a normal with mean (and median)

4Note that the information set Fn is exactly equivalent to the information set
{X1, . . . , Xp, Wp+1,a, Wp+2,a, . . . , Wn,a}. Due to the stationarity and subject to a usual
weak dependence condition—such as mixing—on the series {Xt}, the random variables
{Xt, t > t0} will be approximately independent of the “initial conditions” X1, . . . , Xp for
some t0 that is typically only moderately large with respect to p. In other words, the
initial conditions are quickly “forgotten” in the subsequent evolution of the {Xt} series;
the effect of the initial conditions is minimal on the {Xt, t > t0} random variables, and
the same is true for the random variables {Wt,a, t > t0 + p}.
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approximately given by

Ŵn+1,a =

q∑
i=1

ciWn−i+1,a, (18)

and constant variance σ2
pred, i.e., σ2

pred not depending on F̃n. Here again the
order q is usually chosen in practice by minimizing Akaike’s AIC criterion,
and the coefficients ci can easily be found by fitting an AR(q) model to the
{Wt,a, t = p + 1, . . . , n} series. Fitting an AR(q) model, e.g. by the Durbin-
Levinson algorithm, also gives an estimate of the prediction error variance
σ2

pred.
Note that the simplified expression (17) still represents an unknown quan-

tity but it could conceivably be approximated by Monte Carlo, for example
using the normal predictive density that has mean given by (18) and variance
σ2

pred—recall though that this normal density should be truncated to an ef-
fective range of ±1/

√
a0. However, a very large number of replications would

be required due to the heavy tails of the distribution of W 2/(1 − a0W
2). In

addition, it should be stressed that the normal (conditional or unconditional)
density for Wn+1,a is only an approximation; thus, it is more appropriate to
estimate µ2 empirically from the data without resort to the normal distrib-
ution.

To fix ideas, note that if the correlogram of the series {Wt,a, t = p +
1, . . . , n} indicates no significant correlations—as is typically the case in
practice5—then we can infer that the series {Wt,a} is not only uncorrelated
but also independent (by the approximate joint normality of its marginal dis-
tributions). Therefore, the conditional (on F̃n) distribution of Wn+1,a would
equal the unconditional distribution of Wn+1,a. Hence, we may estimate µ2

by a sample median, i.e., let

µ̂2 = median{ W 2
t,a

1 − a0W 2
t,a

; t = p + 1, p + 2, . . . , n} (19)

and subsequently predict X2
n+1 by

µ̂2A
2
n. (20)

5See, for example, the Yen/Dollar Simple NoVaS correlogram in Figure 8 (c).
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Remark 3.1 Although in our examples the NoVaS series {Wt,a, t = p +
1, . . . , n} turned out to be effectively uncorrelated, one can not preclude
the possibility that for other datasets the series {Wt,a} may exhibit some
correlations; in that case, the ci coefficients in eq. (18) are not all zero,
and a slightly more complicated procedure is suggested in order to estimate
µ2. First, the predictive residuals must be collected from the data; to do
this, let et = Wt,a − Ŵt,a for t = r + 1, . . . , n where r = max(p, q). Then
the conditional (on F̃n) distribution of Wn+1,a may be approximated by the

empirical distribution of the points {et + Ŵn+1,a; t = r + 1, . . . , n}, i.e., by
the empirical distribution of the predictive residuals shifted to give it mean
Ŵn+1,a. In that case we would estimate µ2 by6

µ̂2 = median{ (et + Ŵn+1,a)
2

1 − a0(et + Ŵn+1,a)2
; t = r + 1, r + 2, . . . , n} (21)

and again predict X2
n+1 by eq. (20).

Remark 3.2 We can generalize the previous discussion to an interesting
class of prediction functions g as in eq. (14), namely the power family where
g(x) = xk for some fixed k, and the power–absolute value family where g(x) =
|x|k. Let gk(x) denote either the function xk or the function |x|k; then eq. (15)

suggests that our best predictor of gk(Xn+1) given Fn is ̂gk(Xn+1) = µkA
k
n,

where

µk = Median


gk


 Wn+1,a√

1 − a0W 2
n+1,a


 |Fn


 .

As before, µk can be estimated by an appropriate sample median. Let us
consider the two cases separately, Case I (where the NoVaS series {Wt,a}
can be assumed uncorrelated), and Case II (where the NoVaS series appears
correlated). Under Case I, we estimate µk by

µ̂k = median{gk


 Wt,a√

1 − a0W 2
t,a


 ; t = p + 1, p + 2, . . . , n}

6Note that the ratio in eq. (19) is always positive and finite since its denominator is
bigger than zero by eq. (6). Because of the approximate nature of obtaining the predictive
residuals, the same is not necessarily true for the denominator of eq. (21). However, the
sample median is robust against such anomalies and would trim away negative values
and/or infinities of the ratio in eq. (21).
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whereas under Case II the estimator becomes

µ̂k = median{gk


 et + Ŵn+1,a√

1 − a0(et + Ŵn+1,a)2


 ; t = r + 1, r + 2, . . . , n

.

Remark 3.3 In this section, the procedure of one-step ahead volatility pre-
diction using NoVaS was outlined. The multi-step ahead prediction problem,
i.e., predicting X2

n+h given Fn, or in general predicting g(Xn+h) given Fn, for
some h ≥ 1, can be handled in a similar vein; the details are omitted.

3.3 Optimizing NoVaS for volatility prediction

In section 3.2, the methodology for volatility prediction based on NoVaS
was put forth. Using this methodology the L1 prediction performance of the
Simple and Exponential NoVaS was quantified and tabulated in Table 4.

It is apparent that the Simple NoVaS performs comparably to the optimal
GARCH(1,1) with t–errors of Table 3b. In turn, the Exponential NoVaS
performs uniformly better than the Simple NoVaS although they were both
equally successful in normalizing/variance stabilizing the data.

The Exponential NoVaS is the best performing method among all previ-
ously considered candidates; for example, it outperforms the GARCH(1,1)
with t–errors of Table 3b by a margin ranging from 1 to 5%.

Predictor type Yen/Dollar S&P500 IBM
Simple NoVaS 0.800 0.764 0.834

Exponential NoVaS 0.787 0.754 0.820

Table 4: Entries give the empirical Mean Absolute Deviation (MAD) of
prediction of squared returns relative to benchmark.

It is interesting to note that the NoVaS methodology performs so well
in volatility prediction despite its extreme parsimony: both Simple and Ex-
ponential NoVaS have just one free parameter (p and c respectively—since
the p in Exponenential NoVaS is determined by the tolerance level ε). By
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contrast, the GARCH(1,1) with t–errors has four free parameters (the fourth
being the degrees of freedom for the t-distribution).

The single free parameter in Simple and Exponential NoVaS is identified
using the kyrtosis matching ideas of Section 2. Nevertheless, one can enter-
tain more general NoVaS schemes with two (or more) free parameters. In
such set-ups, one (or more) of the parameters can be identified by kyrtosis
matching (of the data or lagged linear combinations thereof); the remain-
ing free parameters can then be identified by specific optimality criteria of
interest, e.g. optimal volatility prediction.

Although many different multi-parameter NoVaS schemes can be devised,
we now elaborate on the multi-parameter idea by allowing for the possibility
of a nonzero value for the parameter α in (4) in connection with the best
method so far, i.e., the Exponential NoVaS. We thus define the General Ex-
ponential NoVaS that has two free parameters, α and c, and will be denoted
by W GE

t;c,α. The search is performed using a grid of possible values for α, say
α1, α2, . . . , αK ; in picking the grid values, note that the kyrtosis matching
goal may only be possible with small values of α.

Algorithm for General Exponential NoVaS:

• For k = 1, . . . , K perform the following steps.

– Let p take a very high starting value, e.g., let p � n/4 or n/5.

– Let α = αk and ai = c′e−ci for all 0 ≤ i ≤ p, where c′ = (1 −
αk)/

∑p
i=0 e−ci by eq. (7).

– Pick c in such a way that |KY RTn(W GE
t;c,αk

)−3| is minimized, and
denote by ck the minimizing value.7

– Trim the value of p to some value pk as before: if ai < ε, then
set ai = 0. Thus, if ai < ε, for all i ≥ ik, then let pk = ik, and
renormalize the ais so that their sum (for i = 0, 1, . . . , pk) equals
1 − αk by eq. (7).

• Finally, compare the models W GE
t;ck,αk

, for k = 1, . . . , K, in terms of their
volatility prediction performance, and pick the model with optimal such
performance.

7As before, if ck is such that (9) is not satisfied, then decrease it stepwise over its
discrete grid until (9) is satisfied.
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An illustration of the General Exponential NoVaS Algorithm in connec-
tion with our three datasets is presented in Table 5, where for each different
value of α, the L1 volatility prediction performance is given together with its
corresponding optimal exponent c (in parentheses).

The results of Table 5 are very interesting. Firstly, the L1 measure ap-
pears convex in α making the minimization very intuitive; a unique value
of the optimal α (given in bold-face font) is easily found in each of the
three datasets. Secondly, although all three datasets seems to benefit from a
nonzero value of α, it is apparent that the significance of α differs according
to the type of data involved: the Yen/Dollar series is not at all sensitive to
the parameter α; the S&P500 index is more sensitive, while the single stock
price (IBM) is most sensitive.

Note that, as α increases, c increases accordingly, and p decreases (the
latter is not shown as it can be easily calculated). Table 5 was compiled using
tolerance level ε = 0.01; with that value, the optimal General Exponential
NoVaS for the IBM dataset has α = 0.60, c = 0.580 and p = 4 by contrast
to the p = 27 that is associated with α = 0. The extreme case where α = 0.7
for the IBM dataset corresponds to p = 0, i.e., a model with no exponential
term—just α and a0 in the denominator of NoVaS. The interpretation is that,
at least for the stocks datasets, it may be beneficial to use a very local (high
c, low p) exponential, i.e., concentrating on just the last 3-4 days of data,
paired with a relatively large value of α.

Finally, note that all (c, α) combinations in Table 5 are equally succesful
in normalizing the NoVaS transformation in terms of achieving a kyrtosis
of about 3. However, as previously alluded to, the N/A entries in Table 5
indicate values of α that are too big for the kyrtosis matching to be successful.

As a conclusion, recall that the Exponential NoVaS (with α = 0) yielded
a 1-5% improvement over the GARCH(1,1) with t–errors in terms of L1

volatility prediction performance; see Tables 3b and 4. The introduction
of a nonzero α in the General Exponential NoVaS yields only a small im-
provement over the Exponential NoVaS in the Yen/Dollar dataset but does
yield appreciable improvements in the two stock price datasets, S&P500 and
IBM. All in all, the General Exponential NoVaS is seen to outperform the
GARCH(1,1) with t–errors by the margins 1.25%, 8.75%, and 5.25% for our
three datasets Yen/Dollar, S&P500, and IBM respectively.
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α Yen/Dollar S&P500 IBM
0.00 0.787 0.754 0.820

(0.098) (0.084) (0.069)
0.05 0.786 0.750 0.815

(0.109) (0.095) (0.075)
0.10 0.785 0.746 0.811

(0.120) (0.108) (0.080)
0.20 0.785 0.739 0.806

(0.140) (0.135) (0.098)
0.30 0.784 0.733 0.803

(0.183) (0.195) (0.127)
0.40 0.783 0.730 0.797

(0.260) (0.300) (0.180)
0.50 0.787 0.733 0.789

(0.410) (0.520) (0.290)
0.60 0.787 N/A 0.787

(0.813) (—) (0.580)
0.65 N/A N/A 0.788

(—) (—) (0.990)
0.70 N/A N/A 0.796

(—) (—) (2.740)
> 0.7 N/A N/A N/A

(—) (—) (—)

Table 5: Entries give the empirical Mean Absolute Deviation (MAD) of
prediction of squared returns relative to benchmark using the General Ex-
ponential NoVaS with parameter α; below each entry in parentheses is the
optimal exponent c from kyrtosis matching.
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4 Conclusions

In this paper, a new methodology was introduced for dealing with financial
returns data. By contrast to the customary viewpoint that is based on para-
metric and/or semi-parametris models (such as ARCH/GARCH) the new
approach is totally nonparametric. This model-free methodology has at its
core a novel normalizing and variance–stabilizing transformation (NoVaS,
for short). For motivation and illustration of this new general methodology,
the NoVaS transformation is implemented in connection with three real data
series: a foreign exchange series (Yen vs. Dollar), a stock index series (the
S&P500 index), and a stock price series (IBM).

Properties of the NoVaS transformation were discussed, and intuitive
algorithms for optimizing it were presented in detail. Special emphasis was
given on the problem of volatility prediction and the issue of a proper measure
for quality of prediction. In particular, the case was made that the returns
data may not have a finite fourth moment in which case L2 methods—such
as conditional expectations—are inappropriate for the squared returns. Con-
trary to wide-spread beliefs, we show that ARCH/GARCH models actually
do have predictive validity for the squared returns when applied properly,
i.e., in an L1 setting.

An algorithm for prediction of a general function g(Xn+1) given the data
X1, . . . , Xn was devised based on the NoVaS transformation. Finally, with
some simple and intuitive choices for the NoVaS structure, e.g. Exponential
or General Exponential NoVaS, it was shown that the prediction algorithm
based on NoVaS empirically outperforms the popular ARCH/GARCH mod-
els in the case at hand where g(x) = x2.
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