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Abstract—This paper presents an interactive visualization
system, based upon previous work, that allows for the analysis
of scene structure uncertainty and its sensitivity to parameters
in different multi-view scene reconstruction stages. Given a set
of input cameras and feature tracks, the volume rendering-
based approach creates a scalar field from reprojection error
measurements. The obtained statistical, visual, and isosurface
information provides insight into the sensitivity of scene structure
at the stages leading up to structure computation, such as frame
decimation, feature tracking, and self-calibration. Furthermore,
user interaction allows for such an analysis in ways that have
traditionally been achieved mathematically, without any visual
aid. Results are shown for different types of camera configura-
tions for real and synthetic data as well as compared to prior
work.

I. INTRODUCTION

In the reconstruction process, three-dimensional (3D) ob-

jects and scenes can be computed from a collection of im-

ages taken from different camera viewpoints. Most common

reconstruction algorithms produce a point cloud representing

the scene’s structure. In the literature, such a reconstruction

typically involves a number of stages, such as feature tracking,

frame decimation, self-calibration, camera pose estimation,

structure computation, and parameter optimization. State-of-

the-art algorithms [1] provide very accurate final scene recon-

structions. These are based on sparse feature detection and

matching, such as SIFT [2] and SURF [3].

Accurate feature tracks fundamentally deteremine the ac-

curacy of a multi-view reconstruction, as this affects the

subsequent camera intrinsic and extrinsic calibrations, as well

as the computation of scene structure. Even when using

robust estimation procedures and outlier detection, such as

RANSAC [4], lighting conditions, occlusions, and repetitive

patterns limit feature tracking efficacy and skew subsequent

calibration and structure estimation. These stages are prone

to additional sources of error and numerical instability. Fur-

thermore, the absence of ground-truth camera and structure

parameters forces multi-view algorithms to resort to non-linear

optimization of parameters to reduce reprojection error in

order to obtain accurate point clouds. However, high numbers

of scene points and cameras can make such bundle adjustment

an expensive element in a reconstruction pipeline, despite

efficient sparse implementations [5].

Recker et. al [6] introduced an interactive tool, which

allowed for the analysis of scene structure uncertainty and

its sensitivity to various parameters. Their analysis provided

visual and numerical results of an angular error cost func-

tion evaulated on a user specified uniform grid. The main

contribution of this paper is to analyze reprojection error in

the same scalar field context. We define sensitivity according

to the same definition [6], such that sensitivity is defined as

the change in scalar field values as a specific parameter’s

value changes. Our work provides a unique visually-aided

numerical exploration of the most commonly used error metric

in structure computation, reprojection error [4]. Screenshots

from our visualization system are shown in Fig. 1.

II. RELATED WORK

As mentioned, point cloud scene reconstruction obtains a

3D representation of the underlying scene from a collection

of images. The following sequential stages are necessary for

performing multi-view reconstruction, keeping in mind that

there are many different algorithms for this purpose and

that these are the most common steps. Corresponding pixels,

known generally as feature tracks, can be computed using

dense or sparse algorithms. This is the most important process

in scene reconstruction, as errors in this stage will affect

all subsequent stages [4]. Frame decimation [8] should be

applied at this point to filter out frames that lead to very

small or very large baselines. Numerical instability occurs with

small baselines, while large baselines lead to feature tracking

inaccuracies. Next, camera intrinsic calibration is performed

by a process known as self-calibration, which aims to recover

the cameras’ intrinsic parameters, for example focal length [4].

Also, the ‘epipolar geometry’ can be estimated from matches

between consecutive image pairs or triplets [4]. The epipolar

geometry mathematically encapsulates the intrinsic projective

geometry between groups of views, and is directly related

to pose estimation, or the recovery of the cameras’ extrinsic

parameters of translation and rotation [4]. Between pairs and

triplets of views, only relative extrinsic parameters can be

computed, but with a previously-computed scene structure,

the Direct Linear Transformation [4] can be used to estimate

absolute poses. Once the camera parameters are estimated,

computation of the scene’s 3D structure can be achieved by



Fig. 1. Images of the “dinosaur” dataset [7] (top) used in the reconstruction view (left and middle) and structure uncertainty view (right) in our tool. Camera
positions are shown in blue. The bounded region in green (left and magnified in the middle image) corresponds to the visualized scalar field (right). The
scene point under consideration is highlighted in red (left and middle). The scalar field (right) depicts lower uncertainties enclosed in a red isosurface (also
containing the scene point) and higher ones in cyan and blue.

methods such as ‘linear triangulation’ [4]. In the absence

of ground-truth information, bundle adjustment is the only

valid geometrical evaluation of accuracy and is performed to

optimize all or a number of the different camera and structure

parameters [5]. Typically, the Levenberg-Marquardt algorithm

is used to minimize the ‘reprojection error’ of all computed

structure points across all cameras with respect to the fixed

feature tracks.

There are numerous algorithms in the computer vision

literature based on the described pipeline stages. For example,

Akbarzadeh et al. [9] introduced a method for dense recon-

struction of urban areas from a video stream. Pollefeys et

al. [10] used a similar approach for real-time urban recon-

struction. Goesele et al. [1] presented a reconstruction pipeline

for large, unstructured collections of online photographs of

a scene, based on an adaptive view selection technique that

robustly computes depth maps along with 3D models of the

scene.

There has been some work on uncertainty analysis specifi-

cally for scene structure computation [4], [11], [12], [13], but

it has been mainly a mathematical analysis which has not been

enhanced by visualization techniques. For example, Rodehorst

et al. [14] introduced a ground-truth based approach to eval-

uate camera pose estimation, while Knoblauch et al. [15]

introduced a geometric error extraction of both feature matches

and camera pose errors. This method does not rely on ground-

truth data or any other assumptions about the scene.

Visualization of uncertainty has been applied to image seg-

mentation and recently, scene structure computation. Torsney-

Weir et al. [16] introduced a system which utilized uncertainty

metrics to guide parameters values in image segmentation.

Saad et al. [17] utilized a similar approach to medical image

segmentation based upon probabilities. Recker et. al [6] intro-

duced a system based upon an angular error metric to generate

a scalar field that allowed for a visually enhanced numerical

exploration of scene structure computation. Our work applies

the visual computation, experiments, and analysis from Recker

et. al to reprojection error and compares their proposed cost

function to reprojection error on real data sets.

III. PROCEDURE

In order to generate a scalar field visualization, the pro-

jection matrics for N cameras are given as input to our

system. Alternatively, the cameras’ individual intrinsic and

extrinsic parameters could be provided. A set of feature tracks

across the images and the resulting scene structure are also

required. In the first step, one of the computed scene points

is chosen by the user. A scalar field over 3D space is then

rendered for the chosen point in the visualization tool. To

calculate each value in the scalar field, as shown in Fig. 2,

the standard formulation of reprojection error, as shown in

Eq. 1 is evaluated. Computation proceeds as follows, each

grid position is multiplied by the projection matrix for each

camera and perspective divison is performed. The result is

a two-dimensional (2D) point on the image plane for each

camera, denoted yji. The final value for each grid point is the

summation of the squared distance from the visible projection

of the chosen structure point, xi, to the resulting point, yji,

across all cameras.

Sj,reprojection =
N∑

i=1

||yji − xi||
2 (1)

Recker et. al’s scalar field computation [6] requires that

for each camera center Ci a unit vector vji to be computed

between all 3D positions that lie on a regularly-spaced grid

with M samples, denoted with subindex j. The resolution M

of this grid and spatial location can be specified by the user.

A second unit vector from each camera center, wi, is obtained

by casting a ray from each center Ci through the visible

projection of the chosen structure point on each image plane

(blue image plane dot, xi, in Fig. 2). This projection generally

does not coincide with the projection of a given grid point

with vector vji (purple image plane dot, yji in Fig. 2), and

hence there is typically a non-zero angular difference between



Fig. 2. Scalar field calculations. Scalar fields are created according to
Eqs. 1, 3, and 4. Recker et. al’s method [6] relies upon angular differences
between rays vji and wi. The standard formulation of reprojection error
computes the squared distance between image plane points yji and xi.

each possible vji and wi. A single camera’s contribution to

each scalar field grid point, Sji, is defined in Eq. 2.

Their visualization tool supports both average and range

scalar field types. To obtain the average scalar field Sj,ave,

at every jth grid position the previously-computed N angles

are added and averaged, as shown in Eq. 3. To obtain the

range scalar field Sj,range, at every jth grid position the

range between maximum and minimum angles is obtained,

as shown in Eq. 4.

Sji = 1.0− (vji · wi) (2)

Sj,ave =

N∑

i=1

Sji

N
(3)

Sj,range = Sji,max − Sji,min (4)

Upon providing the necessary information to the visualiza-

tion system, the cameras’ positions, computed structure, scalar

field dimensions, and chosen structure (shown in red) are dis-

played on the left. The right-hand panel displays the resulting

scalar field. The scalar field visualization was implemented in

VTK [18], which utilizes a ray casting technique for volume

rendering. User specification determines the opacity and color

for the scalar values. In addition, a VTK marching cubes

implementation [18] is used to generate an isosurface, which

encloses sub-volumes (shown in dark red) of the best possible

structure locations.

A. Simulation Test Cases

Similar to Recker et. al’s test cases [6], several tests were

conducted to analyze the sensitivity of a reconstructed point to

parameters across different stages of a reconstruction pipeline.

To this end, tests were performed on four different types of

camera configurations, in synthetic scenes with ground-truth

information available. The first configuration represents a set

of cameras positioned in a circle above the scene. The second

configuration uses only a semi-circle of cameras. The third

configuration involves a set of cameras in a line above the

scene. The fourth configuration represents an unstructured

collection of images, or randomly placed cameras. Each

configuration consists of 30 cameras, each looking towards

the origin, (0, 0, 0), of the scene. It was assumed throughout

all tests that the ground-truth position of the analyzed

structure point was located at (0.1, 0.1, 0.1) in world space

and the same physical camera was used to acquire every view.

1) Frame Decimation Simulation: The goal of this simula-

tion was to study the effect of frame decimation [8] on a multi-

view reconstruction, from the point of view of scalar field

analysis. To this end, for the four tested camera configurations,

cameras were evenly decimated from the original 30 down to

15, 10, 8, 4, and finally 2 cameras, such that the baseline

between consecutive cameras increased each time, with equal

spacing between each.

2) Feature Tracking Simulation: The objective of this simu-

lation was to simulate inaccuracy in feature tracking, and then

observe the effect on the obtained scalar fields. To simulate

feature matching error, the correct projected position of the

analyzed structure point at (0.1, 0.1, 0.1) was moved in a

random direction on each camera’s image plane, by the same

fixed amount. The tested amounts were 1%, 2%, 5%, 10%,

and 20% of the image plane size.

3) Self-Calibration Simulation:

a) Principal point variation: The goal of this simulation

was to investigate the effect of varying each camera’s principal

point to positions other than the (0, 0) center of the image

plane. This test, along with a similar one for focal length,

were designed to study the effect of inaccuracy in the self-

calibration process.

b) Focal length variation: For the last test, focal length

was varied with respect to its initial ground-truth value,

similarly to the principal point simulation. Focal length was

decreased by 1%, 2%, 5%, 10%, and 20% of its original value.

B. Comparison Test Cases

Additional tests were conducted to analyze reprojection

error to Recker et. al’s cost function [6]. Several real datasets

were analyzed comparing their average scalar field to the

reprojection error scalar field. The datasets are as follows:

“dinosaur” [7], “castle-P19”, “castle-P30”, and “fountain-

P11” [19]. In all tests, the same scene structure was selected

and the same scalar field properties were used. In contrast

to the simulation tests, no modifications were made to the

datasets.



IV. RESULTS

All tests were conducted on a MacBook Pro machine with

an Intel Core i7 processor at 2.66 GHz with 4 GB of RAM,

running Mac OS X Lion 10.7.3. Analysis was performed on

the resulting scalar fields for all the tests. We used the same

statistics, as proposed by Recker et. al [6], across the entire

scalar field: average µ, standard deviation σ, volume V of

lowest uncertainty enclosed by a given isosurface value, and

ratio R of the longest to shortest sides of the bounding box

that encloses the isosurface, in order to analyze its shape.

A. Simulation Results

1) Frame decimation simulation results: Trend charts for

this simulation are shown in Fig. 5. The scalar fields for each

of the six tests performed on the circle configuration are shown

in Fig. 3. From Fig. 5, it can be seen that the average µ

of the scalar field remains fairly constant as the number of

cameras is reduced but eventually decreases for few cameras.

This indicates that proper frame decimation can filter out a

great number of frames without structure uncertainty being

affected much. Isosurface volume, V , for the field initially

stays constant due to the maintained good conditioning, but

falls apart with over-decimation, as seen for the four and two-

camera cases. The visual effect of this is clear from Fig. 3. For

30 cameras down to around 8, the isosurfaces shows a sphere-

like structure near the middle of the sampled volume. For the

4 and 2 camera cases, this sphere is deformed toward the

lowest uncertainty values, which are in the direction of each

camera. Furthermore, with over-decimation, feature tracking

suffers from inaccuracy due to perspective, illumination and

occlusion changes in the viewed scene.

2) Feature tracking simulation results: Trend charts for

this simulation are shown in Fig. 6. The scalar fields for each

(a) 30 cameras (b) 15 cameras (c) 10 cameras

(d) 8 cameras (e) 4 cameras (f) 2 cameras

Fig. 3. Scalar fields and isosurfaces for the frame decimation simulation
applied on the circle configuration. In all images, an isovalue of 0.02 was used.
Blue regions indicate high structural uncertainty, whereas red regions indicate
low uncertainty. The deformation in the 2 camera instance demostrates over-
decimation.

of the six tests performed on the semi-circle configuration

are shown in Fig. 4. From Fig. 6, it can be seen that the

average µ of the scalar field increases as the amount of

error introduced increases. This coincides with a decrease in

isosurface volume V . It can be seen in Fig. 4 how the size

of the isosurface-enclosed region diminishes with increasing

error, indicating that it is unlikely to obtain an accurate scene

structure as feature tracking becomes inaccurate, confirming

its known sensitivity to tracking errors from the literature.

3) Self-calibration simulation results: The scalar fields for

each of the six modifications performed on the random con-

figuration are shown in Fig. 7. From our results, we observed

that with increasing principal point deviation, the average µ

(and standard deviation σ), isosurface volume V , and ratio

R for the scalar fields remain constant. This interesting effect

seems to indicate that the final computed scene structure is not

very sensitive to small principal point deviations, unlike with

other parameters such as feature tracks unless very inaccurate.

It affects mainly the position of the final structure in 3D due

to the shift in image plane ray intersections.

As for the focal length simulation, scalar fields for each

of the six modifications performed on the line configuration

displayed in Fig. 8. In general, average µ (and standard

deviation σ), isosurface volume V , and ratio R of the scalar

fields remain unchanged as focal length decreases, across

all camera configurations. This analysis indicates that scene

reconstruction is not distorted or sensitive to large changes

in focal length, which mainly affects its scale but not its

stability. This has been verified in multi-view reconstruction

tests, where a wide range of input focal length values produced

very similar final reconstructions.

(a) No error (b) 1% error (c) 2% error

(d) 5% error (e) 10% error (f) 20% error

Fig. 4. Scalar fields and isosurfaces for the feature matching simulation
applied on the semi-circle configuration. In all images, 0.02 was the isovalue
used for visualization. High structural uncertainty samples are shown in purple
and low uncertainty samples are shown in orange. With increasing feature
tracking error, the overall structural uncertainty increases.



Fig. 5. Frame decimation trend charts. The average µ for the scalar fields vs. number of cameras (left) and the isosurface volume V vs. number of cameras
(right) are shown for each configuration. An isovalue of 0.02 was used for all configurations. Results show that frame decimation maintains structural stability
until around four frames, where over-decimation begins to manifest.

Fig. 6. Feature matching trend charts. The average µ for the scalar fields vs. feature matching offset error (left) and the isosurface volume V vs. feature
matching offset error (right) are shown for each configuration. An isovalue of 0.02 was used in both fields for all configurations. Results confirm that scene
structure is very sensitive to feature tracking errors.

B. Comparison Results

A comparison of the average and reprojection scalar fields

are shown in Fig. 9 for the “dinosaur” dataset [7]. Numerical

results, for these tests, cannot be directly compared as the

metrics produce different values for the same grid position.

However, it can be easily observed that Recker et. al’s function

behaves similarly to reprojection error in the same 3D evalu-

ation space. Visually, both fields are smoothly-varying around

the computed structure point, producing cone-like structures

away from the cameras. However, our Recker et. al’s function

can be computed more efficiently than reprojection error,

requiring only a dot product and subtraction as opposed to

a matrix multiply, a divide, and distance calculation.

C. Discussion

The performed simulation tests focused on analyzing the

effect of frame decimation, feature matching inaccuracy, and

self-calibration on structure computation, whereas the compar-

ison tests provided visual similarity between Recker et. al’s

cost function and reprojection error. In the frame decimation

simulation tests, removing cameras up to a certain point does

not cause drastic visual or statistical changes. On the other

hand, our results confirm the effect of over-decimation, where

critical frames are discarded such that information is lost and a

higher structural uncertainty can be expected [8]. The results

for feature matching show that scene reconstruction is very

sensitive to feature tracking inaccuracies. The isosurface vol-

ume decreases dramatically across all configurations as error

increases. In the experimentation of principal point values, it

was surprising to notice that the metrics remained unchanged,

indicating that scene structure is not very sensitive to small

variations. Modifying the camera focal length resulted in the

same behavior, affecting mainly the scale of the final recon-

struction but not distorting it nor affecting its accuracy, even

over a large range of values. Another important observation is

that the different camera configurations produced differently-



(a) No increase (b) 1% increase (c) 2% increase

(d) 5% increase (e) 10% increase (f) 20% increase

Fig. 7. Scalar fields and isosurfaces for the principal point simulation applied
on the random configuration. In all images, an isovalue of 0.02 was used for
rendering. Green regions depict regions of high structural uncertainty and red
regions depict low uncertainty. Interestingly with principal point variation,
there was no observed change in the scalar fields.

(a) No decrease (b) 1% decrease (c) 2% decrease

(d) 5% decrease (e) 10% decrease (f) 20% decrease

Fig. 8. Scalar fields and isosurfaces for the focal length simulation applied
on the line configuration. In all images, 0.02 was the isovalue used for
visualization. Purple samples indicate high structural uncertainty and green
samples indicate low structural uncertainty. There was no observed difference
in the scalar fields when decreasing the focal length for this simulation.

(a) Average field (b) Reprojection error field

Fig. 9. Average scalar field (left) and reprojection error scalar field (right) for
the “dinosaur” dataset [7]. Visually Recker et. al’s function behaves similarly
to reprojection error which, both produce similar smoothly varying regions in
the same 3D space.

shaped isosurfaces. For example, the circle and random config-

urations produce more spherical scalar field isosurfaces, while

the semi-circle and line configurations produce more elliptical

regions, where the axis with most spread indicates the direction

of higher uncertainty, which appears to lie orthogonal to the

actual camera configuration.

V. CONCLUSIONS

In this paper, a user-interactive visualization and statistical

tool is presented based upon the work of Recker et. al, which

provides insight into structure uncertainty and its sensitivity to

parameters in multi-view scene reconstruction. Given a set of

input camera parameters, feature tracks and scene structure,

the user is able to generate a scalar field visualization, based

upon reprojection error, along with corresponding statisti-

cal data, which enables sensititivy analysis in reconstruction

stages such as frame decimation, feature tracking and self-

calibration. This includes the ability to modify opacity and

render isosurfaces. To validate the proposed system, a number

of synthetic tests were performed using four typical camera

configurations, and also applied to real datasets. Results show

that the analysis of the scalar fields, along with corresponding

isosurfaces and statistical data, allows the user to infer struc-

tural uncertainty and sensitivity to the underlying parameters

involved in multi-view reconstruction.

VI. FUTURE WORK

The work presented in this paper continues applying visu-

alization techniques to multi-view reconstruction. We believe

continued interdisciplinarity study between visualization and

computer vision would further both fields, providing inter-

esting data to visualization scientists and improving under-

standing of vision algorithms’ behaviors. Currently, much of

the analysis performed in computer vision literature requires

knowledge of advanced mathematics. With the introduction

of visualization to computer vision, additional metrics and

visual results can be incorporated into the mainly mathematical

analysis. In addition, development in this research would pro-

vide valuable educational tools to computer vision instructors.

These tools would enhance student understanding of advanced

concepts. Finally, we plan to further investigate the use of

Recker et. al’s cost function in scene structure computation

and pose estimation.
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