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Abstract of the Dissertation

Lorentz boosted frame simulation technique in

Particle-in-cell methods

by

Peicheng Yu

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2016

Professor Warren B. Mori, Chair

Accelerators at the energy frontier have been the tool of choice for nearly a century for

unraveling the structure of matter, space, and time. Today’s accelerators are the most

complex and expensive tools for scientific discovery built by humans. The capability of these

accelerators has increased at an exponential rate due to the development of new accelerator

concepts and technology. The capability of existing accelerator technology has plateaued, so

that a future accelerator at the energy frontier will be so large and expensive that it is not

clear it will be built. On the other hand, plasma based acceleration has emerged as a possible

alternative technology with much recent progress in theory, simulation, and experiment. In

plasma based acceleration intense short-pulse laser, or particle beam excites a plasma wave

wakefield as it propagates through long regions of plasma. When a laser is used it is called

laser wakefield acceleration (LWFA), and when a particle beam is used it is called plasma

wakefield acceleration (PWFA). Simulations have contribute greatly to the recent progress

by providing guidance and insight for existing experiments, and for permitting the study

of parameters beyond the current reach of experiments. However, these simulations require

much computing resources. Therefore, alternative numerical techniques are desired, and in

some cases are needed.

In this dissertation, we systematically explore the use of a simulation method for modeling

LWFA using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique.
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In the lab frame the plasma length is typically four orders of magnitude larger than the

laser pulse length. Using this technique, simulations are performed in a Lorentz boosted

frame in which the plasma length, which is Lorentz contracted, and the laser length, which

is Lorentz expanded, are now comparable. This technique has the potential to reduce the

computational needs of a LWFA simulation by more than four orders of magnitude, and is

useful if there is no or negligible reflection of the laser in the lab frame.

To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle

to overcome is a robust and violent numerical instability, called the Numerical Cerenkov

Instability (NCI), that leads to unphysical energy exchange between relativistically drifting

particles and their radiation. This leads to unphysical noise that dwarfs the real physical

processes. In this dissertation, we first present a theoretical analysis of this instability, and

show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes

and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We

then discuss the methods to eliminate them. In EM-PIC simulations of plasmas, Maxwell’s

equations are solved using a finite difference form for the derivatives in real space or using

FFT’s and solving the fields in wave number space. We show that the use of an FFT based

solver has useful properties on the location and growth rate of the unstable NCI modes. We

first show that the use of an FFT based solver permits the effective elimination of the NCI

by both using a low pass filter in wave number space and by reducing the time step. We also

show that because some NCI modes are very localized in wave number space, a modification

of the numerical dispersion near these unstable modes can eliminate them. We next show

that these strategies work just as well if the FFT is only used in the plasma drifting direction

and propose a hybrid FFT/Finite Difference solver. This algorithm also includes a correction

to the current from the standard charge conserving current deposit that ensures that Gauss’s

Law is satisfied for the FFT/Finite Difference divergence operator.

However, the use of FFTs can lead to parallel scalability issues when there are many more

cells along the drifting direction than in the transverse direction(s). We then describe an

algorithm that has the potential to address this issue by using a higher order finite difference

operator for the derivative in the plasma drifting direction, while using the standard second
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order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and

it is shown that the NCI can be eliminated using the same strategies that were used for

the hybrid FFT/Finite Difference solver. This scheme also requires a current correction and

filtering which require FFTs. However, we show that in this case the FFTs can be done

locally on each parallel partition.

We also describe how the use of the hybrid FFT/Finite Difference or the hybrid higher

order finite difference/second order finite difference methods permit combining the Lorentz

boosted frame simulation technique with another “speed up” technique, called the quasi-

3D algorithm, to gain unprecedented speed up for the LWFA simulations. In the quasi-3D

algorithm the fields and currents are defined on an r−z PIC grid and expanded in azimuthal

harmonics. The expansion is truncated with only a few modes so it has similar computational

needs of a 2D r−z PIC code. We show that NCI has similar properties in r−z as in z−x slab

geometry and show that the same strategies for eliminating the NCI in Cartesian geometry

can be effective for the quasi-3D algorithm leading to the possibility of unprecedented speed

up.

We also describe a new code called UPIC-EMMA that is based on fully spectral (FFT)

solver. The new code includes implementation of a moving antenna that can launch lasers

in the boosted frame. We also describe how the new hybrid algorithms were implemented

into OSIRIS. Examples of LWFA using the boosted frame using both UPIC-EMMA and

OSIRIS are given, including the comparisons against the lab frame results. We also describe

how to efficiently obtain the boosted frame simulations data that are needed to generate the

transformed lab frame data, as well as how to use a moving window in the boosted frame.

The NCI is also a major issue for modeling relativistic shocks with PIC algorithm. In

relativistic shock simulations two counter-propagating plasmas drifting at relativistic speeds

are colliding against each other. We show that the strategies for eliminating the NCI devel-

oped in this dissertation are enabling such simulations being run for much longer simulation

times, which should open a path for major advances in relativistic shock research.
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CHAPTER 1

Introduction

Ever since the observation of energetic particles emitted from natural radioactive substances,

humans have never stopped their pursuit of finding new particles by colliding them at high

energies. Particle accelerators, the machines that produce high energy particle beams, have

also seen its own evolution. From electrostatic accelerators that generate particles in the

MeV range, to the powerful Large Hadron Collider [1] that delivers a total energy of 13 TeV

in the center of mass (with 6.5 TeV in each proton beam), particle accelerators at the energy

frontier have led to the discovery of new particles, and to the advancement of science [2]. At

the same time, particle accelerators have continually been the most complex and expensive

tools built for scientific discovery. High energy colliders [3] at the energy frontier have also

produced answers to fundamental questions about the fabric and dynamics of matter, space,

and time. High energy particle accelerators are also the key and most expensive component

in advanced light sources which produce high energy photon beams which are used to answer

fundamental questions in biology, chemistry, and material science.

The output energy of high energy accelerators has continued to increase at an incredible

rate owing to the development of new accelerator technologies. From electrostatic accel-

erators to the linac, and from cyclotrons to storage rings, in the past century accelerator

physicists have invented, experimented with, and constructed many different kinds of accel-

erating structures in order to search for and find new particles. As one technology reached

its limit, another technology was invented. In addition, new types of accelerator concepts

emerged including colliders [3] where beams were collided against each other in their center

of mass, linear colliders, and circular colliders. Present day accelerators use time varying

electric fields stored in a phased array of cavities. The electric fields oscillate at radio fre-
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quencies, and therefore they are called RF accelerators. As the final energy of the accelerator

has increased, so has its overall size and complexity. This has led to the development of sec-

ondary technologies such as storage rings, final focuses, and transport lines with thousands

of focusing elements. It has also led to the emergence of sub disciplines of physics such as

accelerator and beam physics.

There are currently two types of accelerators. Circular and linear accelerators. In a

circular accelerator, beams are gradually accelerated as they move in large “circles”. The

size is determined from the limit of synchrotron radiation. This is why it is preferable to

use hadrons because they radiate less at the same energy. In a circular accelerator, beams

are accelerated in opposite directions and are collided against each other when the beams

reach the desired energy. However, hadrons such as protons (and anti-protons) are not

fundamental particles so extra energy is needed to break them apart, and the collision can

make a shower of particles. The largest accelerator in the world, the LHC, is 30 kilometers

in circumference, and as noted above collides proton beams of 6.5 TeV against each other

[1]. There are advantages to colliding leptons, such as electrons and positrons, as they are

fundamental particles. However, this requires using a linear collider to avoid energy loss from

synchrotron radiation, and the size of a linear collider is limited by the acceleration gradient

as the particles cannot recirculate. The largest linear accelerator in the world is still the

Stanford Linear Accelerator (SLAC). When operating as a collider it could produce 50 GeV

electrons/positrons in 3.2 kilometers. It is now used as the injector of the Linear Coherent

Light Source at SLAC [4], which generates coherent photons at x-ray energies. The key

acceleration element used in a linac, such as SLAC, is the radio frequency (RF) cavity. The

electric field or acceleration gradient in an RF cavity cannot exceed 100 MeV/m, otherwise

there will be “RF breakdown” of the cavity walls. This limit on the acceleration gradient has

significantly affected the feasibility of building a linear collider at the energy frontier. The

high energy physics community has spent several decades on developing a science case and

a design to build a new machine called the International Linear Collider (ILC) [5], for the

purpose of more refined study of the Higgs Boson and the standard model. In the proposed

machine electrons and positrons would collide at 1 TeV in the center of mass, and the length
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of the machine would be more than 30 km long based on current RF technology at a cost of

more than 20 billion dollars. The huge size and cost of the ILC appears to be too high for

even a consortium of countries to build it. Therefore, there is a strong motivation to develop

new methods to accelerate particles at much higher acceleration gradients.

There has been a community of researchers working on so-called advanced acceleration

concepts since the early 1980s. Among the numerous advanced acceleration concepts that

have been proposed over the years, plasma-based acceleration (PBA) has achieved tremen-

dous progress worldwide, and is viewed as the most promising candidate for the basis of

building a potentially cheaper linear collider. In 1979, Tajima and Dawson proposed to use

an intense short pulse laser to create a wake of plasma oscillations for accelerating electrons

[6]. This paper marks the beginning of the field of plasma based acceleration. This was

originally called the Wake Plasmon Acceleration, but it is now universally referred to as the

Laser WakeField Acceleration (LWFA). In this concept an intense laser pulse propagates in

the plasma. The ponderomotive force of the laser pushes the plasma electrons forward and

radially away from the ion background. After the laser passes by, the electrons are pulled

back by the space charge force from the ion background and oscillate around their equilib-

rium positions. Such oscillations are phased such that the wake has a phase velocity close

to the group velocity of the laser pulse. Since the plasma is already fully broken down there

is no breakdown limit. The electric field in the plasma wave wakefield has a longitudinal

component, and its amplitude is proportional to the square root of the plasma density. It

can reach 100 GeV/m for plasma densities of 1018 cm−3 which is more than three orders of

magnitude higher than in an RF cavity. These three features, a longitudinal component of

the electric field, a phase velocity near the speed of light, and no breakdown limit, are ideal

for accelerating charged particles to high energy. As a result, LWFA offers the potential

to construct compact accelerators that have numerous potential applications, including the

building blocks for a next generation linear collider, and being the driver for compact light

sources. We note that there is another plasma-based acceleration concept in which the wake

is driven by the space charge forces of a relativistic particle beam, and this is called the

Plasma WakeField Accelerator (PWFA).
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The last decade has seen an incredible amount of theoretical, experimental, and simu-

lation progress in plasma-based acceleration. This has led to the consideration of how to

design a future linear collider (LC) using beam or laser drivers [7, 8, 9, 10, 11, 12]. These

colliders are based on using at least 20 stages, each one meter long. This progress includes

several recent experimental milestones for wakes driven by a charge particle beam, i.e, plasma

wakefield acceleration (PWFA). These milestones are the demonstration of sustained high

gradient acceleration (∼50GeV/m) over one meter [13], efficient transfer of energy from a

drive beam to a trailing beam [14] , and high gradient positron acceleration in self-loaded

wakes [15]. Experimental progress in LWFA has also led to several milestones, including

the self-injection of electrons into laser-produced wakes [9, 10, 11], the generation of mono-

energetic electrons exceeding 1 GeV [12]. Most of this experimental work in PWFA and

LWFA has been in the nonlinear blowout regime where the wakefield is multi-dimensional

and all (or almost all) of the plasma electrons are expelled forward and radially, leaving

behind what is referred to as an ion column, until all of the electrons rush back to create

the wake. This nonlinear regime is referred to as the blowout or bubble regime [16, 17, 18].

The physics involved in exciting the wake, and in how the laser or particle beam driver

evolves as it propagates until pump depletion is highly nonlinear. It is also difficult to make

direct experimental measurements, and therefore it is difficult to interpret the experimental

results. As a result, simulations have been very helpful, and in some cases necessary for the

rapid progress that has been made in the field of PBA.

When modeling PBA it is necessary to model the evolution of the driver over pump

depletion distances, the generation of the wakefield and its evolution, the injection and

capture of witness beams of electrons/positrons, and the beam loading of the wakefield by

the acceleration of the witness beams. Furthermore, with the current concepts for a linear

collider based on PBA relying on 10’s of stages, it will be necessary to model how sections

are staged. In some schemes such as the afterburner [19] of an existing collider or the use of

a compressed proton beam from the LHC, it is also of interest to study PWFA stages that

are hundreds of meters rather than a meter long.

Within one PBA stage there are many similarities between modeling PWFA and LWFA.
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A key difference is that when modeling a LWFA the smallest spatial scale that needs to be

resolved is often the laser wavelength, and not the wavelength of the wakefield. There is

often a difference in more than two orders of magnitude between them. In addition, there

can be differences between the beam loading scenarios and the spot size of the witness bunch.

However, there is much in common in the PIC methods currently used to model the PBA.

1.1 LWFA PIC simulation and Lorentz boosted frame technique

As mentioned above, the physics in LWFA is usually highly nonlinear. As a result, developing

predictive theoretical models is challenging [16], and numerical simulations are critical for

unrevealing the nonlinear physics LWFA inherents in. The particle-in-cell (PIC) method has

been the tool of choice for simulating PBA, including in the seminal paper by Tajima and

Dawson [6]. The PIC algorithm follows the self-consistent interactions of particles through

the electromagnetic fields directly calculated from the full set of Maxwell equations. Before

diving into the details of the modeling of LWFA physics using PIC algorithm, in the following

section we will first give a brief introduction of the PIC algorithm commonly used in plasma

physics.

1.1.1 Plasma simulation using particle-in-cell method

Ever since the invention of computer, people have been exploring the possibility of modeling

plasma physics using computer simulations. The last fifty years has seen numerous tech-

niques for simulating plasma being explored with great success. Among the most successful

models for computer simulation of plasmas are particle models [20]. In these models, one

simulates the physics by following the motion of a large number of charged particles in their

self-consistent electromagnetic fields. While this method sounds straightforward and sim-

ple, practical computational limitations require the use of sophisticated techniques [20]. In

particular, to significantly reduce the computational loads while preserving the physics, one

particle in a simulation can represent many particles of a real plasma and it can be viewed

to have a finite size. In the particle-in-cell method, the fields are solved in a discretized
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manner using a grid or “cell”. Therefore, the fields are defined on grid points. The particle

positions have continuous values within the cell determined from the relativistic equation

of motion using the Lorentz force. To determine the Lorentz force at the location of the

particle, the fields needs to be interpolated to the particle’s location based on the values at

the grid points. The particles’ locations and velocities are used to deposit the charge and

current density onto the grid so that Maxwell’s equations can be solved to get new fields

(Lorentz force) at a later time.

A basic PIC workflow starts with updating the particle positions using the EM fields

on the grids. Fields are interpolated onto the particles, and the particles are then pushed

by the Lorentz force. After the particle positions and momenta are updated, the values of

the source terms, i.e. the current ~j (and charge density ρ for spectral PIC algorithm), are

derived from the particle information. The source terms are then plugged into the Maxwell’s

equation in order to advance the EM fields. These fields are then used to update particles

in the next computation cycle.

There are many choices to make when developing an electromagnetic PIC code. One

important distinction between codes is how Maxwell’s equations are solved. This routine is

referred to as the Maxwell solver. There are two types of Maxwell solvers. One is called

a finite-difference-time-domain (FDTD) solver [21] and the other is called a spectral solver

[20, 22]. The FDTD solver defines the fields on a grid in which the components of the fields

are staggered onto grid points shifted by a half-cell size from each other in an appropriate

manner on what is called a Yee mesh [21]. This is done so that the derivative of a quantity is

defined at the correct location of the grid so that each term in the component of Maxwell’s

equations is defined at the same location on the grid. In this algorithm it is also common

practice to use Ampere’s Law and Faraday’s Law to advance the EM fields. Gauss’ Law is

then satisfied through two common methods. In the method most commonly used today,

this is done by using a charge conserving current deposition scheme. The charge is never

deposited except for use as diagnostic. If Gauss’s law is satisfied at the first time step

then it is guaranteed to remain satisfied at each ensuing time step. In the other method,

the charge density and current density are both deposited, as ~J =
∑

i qi~viS(~xg − ~xi) and

6



Q =
∑

i qiS(~xg − ~xi), where ~xg are the grid positions ~xi, ~vi and qi are the position, velocity,

and charge of the i-th particle, and ~S(~x) is the particle shape. Then a correction to the

longitudinal component of the electric field is obtained to ensure that Gauss’s law is satisfied

at each step. This is called the Boris correction. The correction requires a Poisson equation to

be solved, which can cause issues when using many computing cores on a parallel computer.

The main advantage of a FDTD EM-PIC algorithm with a rigorous charge conserving current

deposit [23] is that it can easily be scaled to a large number of nodes because all parts of the

algorithm are “local” which means that only information from the nearest cells are needed.

It therefore scales well on parallel computers.

In a spectral solver, Maxwell’s equations are instead solved in ~k space. The derivatives for

each ~k mode are then determined exactly. The electric field is decomposed into longitudinal

parts and transverse parts, ~E = ~EL + ~ET , with ~k× ~EL = 0 and ~k · ~ET = 0. The longitudinal

part of the electric field is obtained at each time step by solving Gauss’ Law, while the

transverse part is advanced by using Ampere’s Law and Faraday’s Law. In a spectral EM-

PIC algorithm the so-called direct current deposition is used, and there is less numerical

noise in its transverse components. The spectral Maxwell solver is generally considered

more accurate than a FDTD solver (for all the modes in the fundamental Brillouin zone), and

hence this algorithm usually produces cleaner simulation results. The downside of spectral

EM-PIC algorithm is that, since the FFT subroutine itself requires global communication,

it is more difficult to obtain good parallel scalability. The node that is performing the FFT

needs global information in the direction that the FFT is being performed. This requires

what is called a transpose of the data. Therefore, to perform an N -dimensional FFT, the

problem can only be partitioned in N−1 dimensions. After the FFT is performed in the non-

partitioned dimension, a transpose is performed so that each node has the global information

of the next dimension. To achieve good scalability one has to carefully program the transpose

subroutine with complex messaging management, and in some cases adopt complex message

passing architecture (e.g. hybrid OPENMP/MPI) in the code. As a result, the development

of the spectral Maxwell solver sets a high bar for the computational physicists, and only

a few research groups in the world have efficient spectral EM-PIC codes that can scale to
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over 100,000 cores. In some cases, it is also more challenging to implement certain types of

boundary conditions in a spectral code.

We find that FDTD and spectral EM-PIC codes are often complementary, and when

choosing which algorithm to use for a particular problem leads to tradeoffs in accuracy and

speed. For some problems, FDTD algorithm is sufficiently accurate, and has greater flexibil-

ity for the boundary condition, and 3D domain decomposition can be used. While for other

problems, one has to take advantage of the more accurate and isotropic EM dispersion of

the spectral solver, and sacrifice some flexibility in parallel partitioning, and computational

cost. As we will show in this dissertation, for the elimination of numerical Cerenkov insta-

bility (NCI) in multi-dimension, the spectral algorithm gives much cleaner results compared

with FDTD algorithm using a Yee mesh. However, it can place certain constraints on the

simulation. Hence a large portion of the work described in this dissertation is devoted to

determining how to take advantage of both algorithms to achieve the best balance between

accuracy and computational cost.

1.1.2 Lorentz boosted frame simulation

When modeling LWFA physics using an EM-PIC code, one has to resolve the smallest

physical length of interest, in this case, the laser wavelength which is often more than two

orders of magnitude shorter than the wavelength of the wake. For existing short wavelength

lasers, λ = 0.8µm, the cell size in the laser propagation direction must be on the order of

∼ 0.1λ. On the other hand, the length of the plasma that the laser driver is propagating

through is typically between a centimeter to a meter. The disparity in these two critical

physical lengths makes the simulation of LWFA very CPU time consuming, as the algorithm

can only advance the laser at most one cell per time step. For instance, using a standard

PIC code to study a 10 GeV stage in a nonlinear regime takes approximately 10-100 million

core hours (depending on resolution etc.) on today’s computers. While computing resources

now exist to do a few of 100 million core hour simulations, it is not possible to do parameter

scans in full three-dimensions for these problems. Therefore, reduced models such as using
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the ponderomotive guiding center approximation (the laser frequency is averaged out of the

theory and an envelope equation for the laser and a ponderomotive force term is added to the

particle push) with full PIC [24] for the wake or with quasi-static PIC [25, 26] are used for

parameter scans. However, while these models are very useful, they cannot as yet model full

pump depletion distances and the quasi-static approach cannot as yet model self-injection.

In a 1992 NSF proposal by Mori et al., a novel simulation technique, called the Lorentz

boosted frame simulation technique, was proposed [27]. The basic idea was that in a Lorentz

boosted frame the plasma length (in the laser propagation direction) is Lorentz contracted

while the plasma wake wavelength and laser pulse length are Lorentz expanded. The number

of laser cycles is an invariant so the necessary number of cells needed to resolve the laser is

also an invariant while the cell size, and hence time step are Lorentz expanded. This idea

implicitly assumes that there is negligible, or no reflected laser energy, as the wavelength of

the reflected light would be Lorentz contracted and not be properly resolved. The increase in

time step and decrease in the plasma length lead to savings of factors of γ2
b = (1− v2

b/c
2)−1

as compared to a lab frame simulation using the so-called moving window [28]. In the

moving window only the region around the laser is simulated, and the window keeps up

with the laser. This proposal was not funded. However, in the early 1990s simulations

using the Lorentz boosted frame technique were attempted using the code WAVE. Although

unpublished, it was found that in one-dimension that the idea worked. However, when tried

in multi-dimensions a robust numerical instability was observed and the work was abandoned.

In 2007, the idea of using a Lorentz boosted frame received a “boost” through the 2007

publication of J-L. Vay [29], who was not aware of the earlier work on this subject. Lorentz

boosted frame simulations were carried out using the code OSIRIS [30] as well as WARP

[31]. This led to working through ideas on launching a laser as well as how to effectively

compare results from the lab frame to the boosted frame. The recent work also found that

there was a robust numerical instability for multi-dimensional simulations algorithm. This

led to various groups experimenting with strongly filtering the current and the fields. The γ

that the plasma drifted across the grid was increased until the instability was observed. It

was also found by several groups that the instability was not as strong for an optimum time
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step (around ∆t = 0.5∆x/c, where x̂ is the plasma drifting direction). Despite several years

of effort, the root cause of the instability could not be identified.

Little did people realize that the starting point to understanding this instability, now

known as the multi-dimensional numerical Cerenkov instability (NCI), was hidden in a 1975

paper by Dr. Brandon Godfrey [35]. However, it was not until nearly forty years later, that

people began to unlock the secret of this instability. Interestingly, this instability is also a

limiting factor in relativistic shock studies. In these studies the shock is studied by colliding

plasmas with γ ∼ 20 or by reflecting a drifting plasma off a wall. While the early work of

Godfrey was very useful, the study of NCI in the PIC algorithm is far from complete.

1.2 Numerical Cerenkov Instability: Past and Present

When performing LWFA simulation in the Lorentz boosted frame, an intense laser driver

is moving into a counter-propagating plasma. The plasma is drifting relativistically at γ.

When performing such a simulation using a PIC code with a standard finite-difference-time-

domain (FDTD) Maxwell solver, e.g., Yee solver, a robust numerical instability is observed.

The same phenomenon can be observed when there is only a plasma drifting relativistically

in the simulation, including in relativistic shock simulations. In the early work on Lorentz

boosted frames, the UCLA group attributed the observed instability to an under resolved

reflection from of Stimulated Raman Scattering [36]. In the most recent efforts, people

began to wonder if it was instead connected to the Numerical Cerenkov Instability (NCI).

The numerical instability of a drifting plasma had been previously studied by Dr. Brandon

Godfrey which led to two classic papers [34, 35]. In his 1974 paper, Godfrey studied the

numerical dispersion of a 1D drifting plasma. He found that for sub-cycling algorithms where

the particles are pushed every N time steps of the field solver, that there was an instability

if a particle moved more than a cell size during a particle push. He concluded that there was

no instability if particles were pushed every time step. In the second paper [35], he studied

multi-dimensional effects for thermal plasmas. He found that in multi-dimensions that there

was an instability, however, he did not do a relativistically correct analysis. He attributed
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the instability to the coupling of light waves to resonant particles through what he referred

to as the incompatibility between the Eulerian treatment of the inter-particle forces and

the Lagrangian treatment of the particle positions, and through aliasing. Because of the

importance of resonant particles the phenomenon is similar to Cerenkov radiation in which

a particle can couple to light waves supported by the media with phase velocities less than

the speed of light. The difference is that in this case the radiation is slowed down due to

numerical errors from the finite grid size and time step applied in the PIC algorithm [37, 38],

which leads to the under-resolution of high |~k| EM modes in the fundamental Brillouin zone,

and therefore it was named by Godfrey as the numerical Cerenkov instability (NCI).

However, the original work of Godfrey [34, 35] is far from satisfactory, and from what

we can tell cannot be directly applied to a relativistically drifting plasma. Specifically, the

first paper is 1D in nature, and as noted above is only relevant to sub-cycling algorithms

which are not currently used. The second paper, writes out a dispersion relation for the

potentials, φ and ~A, including the effects of a warm plasma. This dispersion relation did not

include the relativistic correction, and is therefore not applicable to relativistic drifts. The

dispersion relations were not analyzed in detail, and as will be seen in the work presented in

this dissertation, is not in a clear form. Therefore, it was not clear if the NCI as described by

Godfrey could explain the observations in UCLA’s (and LBNL’s) early work on the Lorentz

boosted frame LWFA simulation, and in the work of relativistic shock simulations.

As noted above it was not until 2012, thirty-seven years after Ref. [35] was published, that

the PIC community first started to connect the observed instability in a Lorentz boosted

frame to the work in [35]. To our knowledge, the first connection was the work of Yu et

al., [39] that was presented at, and published in the proceedings of, the 2012 Advanced

Accelerator Concept Workshop at Austin Texas. In this paper, Yu et al. showed that the

observed instability occurred at the intersection of the particle resonances (fundamental and

aliases) and the light wave dispersion relations. A dispersion relation was derived using

some of the methods of Godfrey [35]. The authors then began a more careful analysis that

properly included relativistic effects as well as that accurately plotted the growth rates for

different choices in the field solver and interpolation schemes. The results showed that the
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solution to the numerical dispersion relation of a cold relativistically drifting plasma could

be used to explain the pattern and growth rates of the instability observed in the PIC

simulation involving relativistic plasma drift. The authors showed that an FFT based solver

had advantages for potentially mitigating the instability. It is worth noting that, a paper

by B. Godfrey and J-L. Vay was submitted on the arXiv (and was subsequently published

in Journal of Computational Physics [40]) several days before our journal submittal. This

paper [40] analyzed FDTD solvers and predicted the location of the optimal time step. After

glancing at this paper, we realized that we missed a term in our analysis that when properly

included also predicted that there was an optimal time step (the value depended on the field

interpolation scheme) that reduced the growth rate. We updated our work rapidly as most

of the content in our paper was not changed. However, as can be seen by reading the two

papers, the work is independent. In addition, in our work FFT based solver and NCI in 3D

were also considered.

The two groups have continued to work on the NCI. We have shown that the instability

is not simply from a coupling between particle resonances and EM modes, but rather from

a coupling between two plasma modes. These modes are best identified in the plasma rest

frame where one is purely longitudinal (cold plasma or Langmuir oscillation) and the other

is purely transverse (a light wave). In the continuum limit these modes cannot couple to

each other in any frame. In a new form for the dispersion relation we showed that in the

boosted frame there is a coupling term that vanishes in the limit of the time step and cell

size approaching zero [46]. The coupling term also depends on the order of the spatial and

temporal aliasing. We also showed that it is easiest to mitigate and essentially eliminate the

NCI when FFT or higher order solvers are used. Our work and the work of Godfrey, Vay,

and co-workers [40, 41, 42, 43, 44] are complementary.

1.3 Outline

In this dissertation, we start in Chapter 2 by presenting a theory that can explain the source

of the NCI. Much of Chapter 2 is taken from two published papers [45, 46]. The theory
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also provides a way to accurately and rapidly calculate the patterns and growth rates of

these NCI modes. In [46], we showed that the NCI can be explained as the unphysical

coupling between the EM modes and Langmuir modes (both main and aliasing), which is

fundamentally inevitable due to the fact that we are using finite grid sizes and finite time

steps in the PIC system.

Based on this theory, in Chapter 3 we developed strategies for systematically eliminating

the unphysical modes. These include the use of a spectral Maxwell solver that spatially

advances Maxwell equations in Fourier space, and the modification of the EM dispersion

near the location of the unphysical coupling between the EM and Langmuir modes. In

Chapter 4, we exploit the insight from Chapter 3 to develop a hybrid Yee-FFT solver that

has similar NCI properties as the fully spectral solver, but which has some advantages in

parallel scalability, and in boundary conditions along the directions that are not Fourier

transformed. This idea is then extended to a customized Maxwell solver in Chapter 5, in

which we apply a customized spatial derivative in the plasma drifting direction. This scheme

corrects the current in ~k space in the drifting direction so that Gauss’ Law is satisfied. This

is done on each local domain so that global communication in the FFT is not required. The

customized solver allows the use of completely FFT-free Maxwell solvers (only 1D local FFT

is needed for the current) that has excellent scalability in all directions, and which makes it

possible to apply the NCI mitigation schemes for FFT solvers. The idea has been tested in

both LWFA, and relativistic collisionless shock simulations [47, 48, 49, 50].

The fact that one only needs to change the spatial derivatives in the plasma drifting

direction for the NCI elimination indicates that the hybrid Yee-FFT solver, and customized

solver methods can both be extended to cylindrical/quasi-3D geometries, as will be discussed

Chapter 4, 5, and 7. The quasi-3D algorithm is another reduced model that has been recently

proposed to speedup LWFA simulations [51]. The idea is to treat the numerical system as

PIC in r − z, and gridless in azimuthal angle φ. The electromagnetic fields and currents

are decomposed and truncated into azimuthal modes, and the Maxwell equations are then

solved mode by mode. The corresponding EM fields are subsequently added up for updating

the particle positions and momenta. The particles are defined in a full 3D geometry, but the
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current is deposited only on the r − z grid. As a result, this algorithm can reduce modeling

a 3D problem with low azimuthal asymmetry into the similar computational cost as using a

2D r− z code. In Chapter 7, we apply the NCI elimination into the quasi-3D geometry, and

achieve the combination of Lorentz boosted frame technique and the quasi-3D technique.

This results in an unprecedented speed up of LWFA simulations.

In Chapter 6 and 7, we will also describe details for how we modified our production

codes, UPIC-EMMA and OSIRIS, to eliminate the NCI, and present additional sample

simulation results of LWFA in both Cartesian and quasi-3D geometry. In Chapter 6 and

7, details regarding the simulation setups of performing Lorentz boosted frame simulation

will likewise be presented. This includes the output and post-processing of boosted frame

simulation datas to conveniently transform them back to the lab frame, and the choice of

moving window in the boosted frame. Directions for future work are presented in Chapter

8.

In the Appendices, we define notation for the numerical dispersion of drifting plasmas,

and present the application of NCI elimination scheme in other simulation scenarios, e.g.

down ramp injection simulation for FEL injector (Appendix B). We show that by applying

the NCI elimination schemes in the lab frame PIC simulation of plasma-based accelerator,

we can eliminate the unphysical emittance growth imposed by the grid, and obtain a more

accurate estimate of injected beam emittance.
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CHAPTER 2

Theory of numerical Cerenkov instability

As mentioned in Chapter 1, in a LWFA simulation the smallest length of physical interests is

the wavelength of the driver laser. In the corresponding PIC simulation, one needs to resolve

this wavelength, which is on the scale of 1µm. On the other hand, the plasma column that

the laser driver propagates through is on the scale of a meter. In the LWFA PIC simulation

the laser is advanced a distance less than the smallest cell size in each time step. Due to the

disparity between the cell size and the length of the plasma column, LWFA PIC simulations

require large number of time steps, and therefore this kind of simulations become very CPU-

time consuming. To resolve this disparity in the two physical lengths, one can perform the

simulation in a so-called Lorentz boosted frame [27, 29]. In this frame, the laser wavelength

will be stretched by γ(1 + β), while the plasma column will be contracted by γ, where γ

is the Lorentz factor of the boosted frame. As a result, one can use a much larger cell size

and hence much larger time step, and use a plasma column that is much shorter. Assuming

that the number of particles per cell remain fixed, this will lead to a theoretical speed up on

the scale of ∼ γ2 as compared to lab frame simulations that were already using the moving

window.

However, in the Lorentz boosted frame we are simulating the head-on collision between

a laser pulse, and a plasma that is drifting relativistically across the grid. As mentioned in

Chapter 1, when the plasma is drifting relativistically across the grid, a violent instability

will rapidly grow in the simulation. One can observe this numerical artifact by filling a

2D simulation box with plasma drifting relativistically in the x1 direction. Apply periodic

boundary condition in both the x1 and x2 directions, and give the plasma a very small

temperature to seed the instability. By tracking the total EM energy in the box, it is clear

15



that there is an exponential growth of the EM energy as the simulation proceeds, and the

growth rate of this instability is high. A drifting plasma should be stable in reality, and this

exponential growth of EM energy is clearly a numerical artifact.

In the following sections we will start with a theoretical analysis of the simple scenario

of a 2D drifting plasma as described above. We derive the numerical dispersion relation of

this drifting plasma. We will discuss the exact form of the dispersion when the distribution

function of a cold relativistically drifting plasma is applied. After that, we will discuss our

approaches to solve the dispersion relation, and obtain the expressions of the NCI modes.

As we can see later in this chapter, examining the dispersion relation will shed light on the

fundamental cause of this instability, and will also give us directions on how to eliminate

them.

2.1 Derivation of the numerical dispersion relation

We will follow the notation in Ref. [35] to derive the numerical dispersion relation for a

cold plasma drifting with relativistic velocities. The multi-dimensional analysis in [35] solves

for scalar potential φ and vector potential ~A and is not valid for relativistic drifts. In our

analysis we include relativistic mass effects, and provide a framework for studying the effect

of using different types of field solvers and current deposition schemes. Since most EM-PIC

codes now in use solve for the electric field ~E and magnetic field ~B directly (with finite

difference or spectral solvers), we derive a numerical dispersion relation directly using these

two quantities. Gaussian units will be used; in addition, particle mass and velocity will be

normalized to electron mass and the speed of light.

For a multi-dimensional simulation setup in Cartesian coordinates, the EM field that is

interpolated on a particle can be expressed as

~E(t, ~x) =
∑
m,~n

←→
SE(t,m, ~x, ~n) ~Em,~n

~B(t, ~x) =
∑
m,~n

←→
SB(t,m, ~x, ~n) ~Bm,~n (2.1)
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where m is the time index and ~n is the grid index;
←→
S are the interpolation tensors used to

obtain the appropriate field at ~x and t = m∆t; ~Em,~n and ~Bm,~n stands for the electromagnetic

forces at time grid index m and space grid index ~n. For a momentum conserving field

interpolation method
←→
SE and

←→
SB are equal and are scalar functions times the unit tensor

while for the energy conserving field interpolation method
←→
SE and

←→
SB are not equal in each

direction. We have listed typical interpolation functions used in a EM-PIC code in Appendix

A.2. The momentum change of the particle is related to the change in the distribution

function of the plasma by the linearized Vlasov equation

∂

∂t
f(t, ~x, ~p) +

~p

γ
· ∂
∂~x
f(t, ~x, ~p) + q

{
~E(t, ~x) +

~p

γ
× ~B(t, ~x)

}
· ∂f0

∂~p
= 0

where ~p is the particle momentum, and γ is the particle Lorentz factor. After Fourier

transforming, the Vlasov Equation becomes

f(ω,~k, ~p) = −iq
{
←→
SE(ω,~k) ~E(ω,~k) +

~p

γ
× {
←→
SB(ω,~k) ~B(ω,~k)}

}
· ∂f0

∂~p
(ω − ~k · ~p

γ
)−1 (2.2)

Note that ~E and ~B are defined at discrete grid positions and discrete values of time, so

its Fourier transform in (w,~k) is periodic, i.e.,

~E(ω,~k) = ~E(ω′, ~k′) ~B(ω,~k) = ~B(ω′, ~k′) (2.3)

where

ω′ = ω + µωg ωg =
2π

∆t
µ = 0,±1,±2, . . .

k′i = ki + νikgi kgi =
2π

∆xi
νi = 0,±1,±2, . . . (2.4)

Note that when the EM fields are staggered (such as on a Yee mesh), there is an additional

(−1)
∑

i νi term for each component ~E(ω′, ~k′) and ~B(ω′, ~k′), where î is summed over the

directions for which the specific component of the EM field is staggered a half-grid offset

from where charge density is defined. Details for where this term arises from can be found

in Appendix A.1. We absorb these additional coefficients into the quantities
←→
SE and

←→
SB to

keep Eq. (2.1) correct when ~n includes only integer indices.
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Replacing (w,~k) with (w′, ~k′) in Eq. (2.2), and using Eq. (2.4), we obtain

f(ω′, ~k′, ~p) =− iq
{
←→
SE(ω′, ~k′) ~E(ω,~k) +

~p

γ
× {
←→
SB(ω′, ~k′) ~B(ω,~k)}

}
·

∂f0

∂~p
(ω′ − ~k′ · ~p

γ
)−1 (2.5)

The current density ~j due to the movement of the particles can be expressed as

~j(t, ~x) = q

∫ ←→
Sj (~x′ − ~x)

~p

γ
f({m+ 1/2}∆t, ~x′, ~p)d~x′d~p (2.6)

where
←→
Sj (~x′− ~x) is the tensor for the current deposit. After Fourier transforming we obtain

~j(ω,~k) = q
∑
µ,~ν

(−1)µ
∫
d~p

←→
Sj (−~k′)~p

γ
f(ω′, ~k′, ~p) (2.7)

We can now proceed in the normal way to obtain a dispersion relation. We start from

Faraday’s and Ampere’s Law,

∇× ~E = −∂
~B

∂t

∇× ~B =
∂ ~E

∂t
+ 4π~j

which upon Fourier transforming gives,

[~k]E × ~E = [ω] ~B (2.8)

[~k]B × ~B = −[ω] ~E − 4πi~j (2.9)

where [k]E and [k]B are the finite difference operators for the specific Maxwell solver schemes

being used to solve for the ~E and ~B fields. We follow the notation in Ref. [35], and use [ · ]

exclusively to indicate the Fourier representation for the finite difference operator. Applying

[~k]B× to both sides of Eq. (2.8), and using Eq. (2.9), we end up with the coupled wave

equation for ~E and ~j,

([ω]2 − [~k]E · [~k]B + [~k]E[~k]B) ~E = −4πi[ω]~j (2.10)

Using Eq. (2.7) and (2.10), we could obtain

([ω]2 − [~k]E · [~k]B + [~k]E[~k]B) ~E = −4πiq
∑
µ,~ν

(−1)µ[ω]

∫
d~p

←→
Sj (−~k′)~p

γ
f(ω′, ~k′, ~p) (2.11)
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If we normalize the distribution function such that f0 = n0f
n
0 , use the definition of plasma

frequency

ω2
p =

4πq2n0

m
(2.12)

and use the expression for the distribution function in Eq. (2.5), we finally obtain [39]

([ω]2 − [~k]E · [~k]B + [~k]E[~k]B) ~E

= − ω2
p

∑
µ,~ν

(−1)µ
{∫ ←→

Sj (−~k′)~pd~p
γω′ − ~k′ · ~p

{
[ω]
←→
SE(ω′, ~k′) ~E +

~p

γ
× {
←→
SB(ω′, ~k′)([~k]E × ~E)}

}
· ∂f0

∂~p

}
(2.13)

which is a generalized dispersion relation for a plasma of finite size particles drifting on a

grid. We note that the use of additional smoothers and filters can be incorporated into the

dispersion relation by adding additional SSM(~k′) terms outside the summation over Brillouin

zones (essentially it multiplies the ω2
p term).

We next examine the dispersion relation in the limit of a cold plasma including the

possibility that the drift is near the speed of light. Note that
←→
S for the fields and current

has only three diagonal elements S1, S2, S3 in each case. In 3D, we can expand Eq. (2.13)

explicitly as
([ω]2 −

∑3
i=1[k]Ei[k]Bi)E1 + [k]E1[k]B1E1 + [k]E1[k]B2E2 + [k]E1[k]B3E3

([ω]2 −
∑3

i=1[k]Ei[k]Bi)E2 + [k]E2[k]B1E1 + [k]E2[k]B2E2 + [k]E2[k]B3E3

([ω]2 −
∑3

i=1[k]Ei[k]Bi)E3 + [k]E3[k]B1E1 + [k]E3[k]B2E2 + [k]E3[k]B3E3



= − ω2
p

∑
µ,~ν

(−1)µ
∫

dp1dp2dp3

γ(γω′ − k′1p1 − k′2p2 − k′3p3)


Sj1p1

Sj2p2

Sj3p3



∂fn0 /∂p1

∂fn0 /∂p2

∂fn0 /∂p3


T

·


γ[ω]SE1E1 + p2SB3([k]E1E2 − [k]E2E1) + p3SB2([k]E1E3 − [k]E3E1)

γ[ω]SE2E2 + p3SB1([k]E2E3 − [k]E3E2) + p1SB3([k]E2E1 − [k]E1E2)

γ[ω]SE3E3 + p1SB2([k]E3E1 − [k]E1E3) + p2SB1([k]E3E2 − [k]E2E3)

 (2.14)
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This can be rewritten as

←→ε (ω, k) ~E =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33



E1

E2

E3

 = 0 (2.15)

where we note that ←→ε is not the dielectric tensor. In addition, we are most interested in

a cold plasma that is drifting relativistically. For such a case, the unperturbed normalized

distribution function is given by

fn0 = δ(p1 − p0)δ(p2)δ(p3) (2.16)

where p0 = γv0, and v0 is the drifting velocity of the plasma. Substituting the above form for

fn0 , Eq. (2.16), into Eq. (2.14), and carrying out the integration we obtain all the elements

in the tensor as

ε11 = [ω]2 − [k]E2[k]B2 − [k]E3[k]B3

−
ω2
p

γ

∑
µ,~ν

(−1)µ
Sj1{SE1[ω]ω′/γ2 + v2

0(SB3k
′
2[k]E2 + SB2k

′
3[k]E3)}

(ω′ − k′1v0)2

ε12 = [k]E1[k]B2 −
ω2
p

γ

∑
µ,~ν

(−1)µ
Sj1v0k

′
2(SE2[ω]− v0SB3[k]E1)

(ω′ − k′1v0)2

ε13 = [k]E1[k]B3 −
ω2
p

γ

∑
µ,~ν

(−1)µ
Sj1v0k

′
3(SE3[ω]− v0SB2[k]E1)

(ω′ − k′1v0)2

ε21 = [k]E2[k]B1 −
ω2
p

γ

∑
µ,~ν

(−1)µ
v0Sj2SB3[k]E2

ω′ − k′1v0

ε22 = [ω]2 − [k]E1[k]B1 − [k]E3[k]B3 −
ω2
p

γ

∑
µ,~ν

(−1)µ
Sj2(SE2[ω]− v0SB3[k]E1)

ω′ − k′1v0

ε23 = [k]E2[k]B3

ε31 = [k]E3[k]B1 −
ω2
p

γ

∑
µ,~ν

(−1)µ
v0Sj3SB2[k]E3

ω′ − k′1v0

ε32 = [k]E3[k]B2

ε33 = [ω]2 − [k]E1[k]B1 − [k]E2[k]B2 −
ω2
p

γ

∑
µ,~ν

(−1)µ
Sj3(SE3[ω]− v0SB2[k]E1)

ω′ − k′1v0

(2.17)
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The dispersion relation is then finally obtained from the condition that

Det(←→ε ) = 0 (2.18)

which is valid in any number of dimensions.

Much can be learned from examining the 1D and 2D limits to the general dispersion

relation. In 1D simulations all physical quantities only depend on one coordinate x1, hence

[~k], ~k, and ~k′ only have the 1̂-component. It follows then the elements of ←→ε are

ε11 = [ω]2 −
ω2
p

γ

∑
µ,ν

(−1)µ
Sj1SE1[ω]ω′/γ2

(ω′ − k′1v0)2

ε22 = [ω]2 − [k]E1[k]B1 −
ω2
p

γ

∑
µ,ν

(−1)µ
Sj2(SE2[ω]− SB3[k]E1v0)

ω′ − k′1v0

ε33 = [ω]2 − [k]E1[k]B1 −
ω2
p

γ

∑
µ,ν

(−1)µ
Sj3(SE3[ω]− SB2[k]E1v0)

ω′ − k′1v0

ε12 = ε13 = ε21 = ε23 = ε31 = ε32 = 0 (2.19)

Using Eq. (2.18), the dispersion relation for the 1D case consists of three uncoupled modes,

ε11 = 0 ε22 = 0 ε33 = 0 (2.20)

where each mode corresponds to separate components of the electric fields E1, E2, and E3

respectively. Each of these modes is numerically stable as long as ∆t is sufficiently small. If

we take the limit ∆t→ 0, and ∆x→ 0, then Eq. (2.19) and (2.20) reduce to the dispersion

relations in a real drifting plasma (which is completely stable). Therefore, there is no NCI

in one dimension, which is consistent with the early work of Godfrey [34].
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Similarly, the elements of ←→ε in the 2D limit can be written as

ε11 = [ω]2 − [k]E2[k]B2 −
ω2
p

γ

∑
µ,~ν

(−1)µ
Sj1(SE1ω

′[ω]/γ2 + SB3[k]E2k
′
2v

2
0)

(ω′ − k′1v0)2

ε12 = [k]E1[k]B2 −
ω2
p

γ

∑
µ,~ν

(−1)µ
k′2v0Sj1(SE2[ω]− SB3v0[k]E1)

(ω′ − k′1v0)2

ε21 = [k]E2[k]B1 −
ω2
p

γ

∑
µ,~ν

(−1)µ
Sj2SB3[k]E2v0

ω′ − k′1v0

ε22 = [ω]2 − [k]E1[k]B1 −
ω2
p

γ

∑
µ,~ν

(−1)µ
Sj2(SE2[ω]− SB3[k]E1v0)

ω′ − k′1v0

ε33 = [ω]2 − [k]E1[k]B1 − [k]E2[k]B2 −
ω2
p

γ

∑
µ,~ν

(−1)µ
Sj3(SE3[ω]− SB2[k]E1v0)

ω′ − k′1v0

ε13 = ε23 = ε31 = ε32 = 0 (2.21)

Using Eq. (2.18), we can obtain the dispersion relation for the 2D case

ε11ε22 − ε12ε21 = 0 ε33 = 0 (2.22)

Note that E3 is de-coupled from the other two directions.

2.2 Numerical solution v.s. simulation

The key to understanding the NCI from the numerical dispersion relation of drifting plasma

is to solve Eq. (2.17) and (2.18). In the following sections, we will solve it both numerically

and analytically. For the numerical method, by plugging the [~k] for a particular Maxwell

solver, and numerically solving Eq. (2.18) and looking for the unstable modes, one can obtain

the patterns and growth rates of NCI for that Maxwell solver. Correspondingly, one can also

directly perform PIC simulations to observe and measure the NCI by applying the same

parameters used in the numerical evaluation, and compare the simulation results against the

numerical results.
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2.2.1 Numerical solution

Without loss of generality, we study the numerical instability induced by the relativistic

plasma drift in a 2D system. According to the dispersion relation in 2D, we expect to

observe instability in E2 (and B3). By calculating the maximum imaginary part of ω for real

values of (k1, k2) for Eq. (2.22), we can obtain the characteristic pattern of the instability in

Fourier space, as well as the growth rate of the instability. We can also plot the real part of

ω for k1, k2. These results can be used later to compare with the simulation results.

The dispersion relation is general and can be used to examine how the NCI depends

on different choices for the Maxwell solvers, on different choices on the field interpolation,

e.g. energy and momentum conserving field interpolation, and on the use of smoothing and

low pass filters. In this chapter, we show that our dispersion relation agrees well with the

simulation results for the cases studied; that we can predict the region of unstable modes

by plotting where the beam modes (resonances) and EM modes intersect in ~k and ω space;

that we can obtain an asymptotic expression for the growth in 3D which agrees well with

the simulations for various finite difference solvers (including the optimal time step that

minimize the growth rate); and there are advantages for using a spectral (FFT-based) solver

from the point of view of eliminating the instability. Nonetheless, we do not attempt to

carry out a comprehensive survey of all available choices listed above in this chapter.

We illustrate the instability using a 2D case with the standard Yee solver [21]. We

choose the grid parameters and time step that satisfies the Courant Condition to eliminate

the well known numerical instability for the EM modes. We use the parameters in Tab.

2.2, and substitute the finite difference operators for the Yee solver into the 2D dispersion

relation. We assume linear (area) interpolation, momentum conserving field interpolation,

and a charge conserving current deposition.

After obtaining all the roots (ω, k1, k2), we plot the dependence of the growth rate in the

(ωr, k1) space [figure 2.1 (c)], as well as in the (k1, k2) space [figure 2.1 (d)]. It is evident

that all the instabilities are near the main or aliased beam modes (resonances). Since the

terms with |µ| ≤ 1, and |ν1| ≤ 1 are the most important, we neglect higher order terms when
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solving Eq. (2.22). Higher order µ and ~ν terms can be included in the summation if needed.

These additional terms lead to additional unstable modes in (k1, k2) space with lower growth

rates as well as to small modifications to the growth rate and location of the original modes.

A plot in (k1, k2) space with more terms included are presented in figure 2.1 (b).

While the results in figure 2.1 (c) and (d) are numerically calculated from Eq. (2.22), the

location of the unstable modes can also be conveniently predicted by plotting the intersection

of the EM modes and beam resonances in (k1, k2, ωr) space. This is shown in a 3D plot [figure

2.1 (a)]. By examining the unstable pattern in (k1, k2) space we see that the central part of

the pattern comes from the intersections of the EM modes and main beam resonance (µ = 0

and ν = 0), while the part at the four corners can be identified with the intersections of the

EM modes and first order spatial aliasing beam resonances (µ = 0 and ν1 = ±1). Making

a plot in (k1, k2, ωr) of the intersection of the EM modes and beam resonances for various

solvers becomes a useful method for examining where the unstable modes reside without

having to solve the full dispersion relation. We note that although this permits a quick

survey of the location of the unstable modes, it does not mean the instability arises from

the coupling between EM modes and “beam resonance”. As we show later, the NCI modes

arises from the coupling between modes which are purely transverse (EM) and longitudinal

(Langmuir) in the rest frame of the plasma.

Parameters Values

solver Yee

grid size (kp∆x1, kp∆x2) (0.1, 0.1)

time step ωp∆t 0.9×Courant limit

boundary condition Periodic

simulation box size (kpL1, kpL2) 51.2×25.6

plasma drifting Lorentz factor γ = 50.0

plasma density n/np = 1

Table 2.1: Simulation parameters for the 2D relativistic plasma drift simulation. In the table

kp = ωp/c, where ωp is defined in Eq. (2.12).
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Figure 2.1: Numerical instability pattern in the Yee solver. Growth rates are color-coded,

and normalized with ωg. (a) EM modes intersect with the main beam resonance (µ = 0,

ν = 0), and first order space aliasing beam resonances (µ = 0, ν1 = ±1); (b) is the instability

pattern (µ = 0, |ν1| ≤ 4) in (k1, k2) space; (c) and (d) are the instability pattern (|µ| ≤ 1,

|ν1| ≤ 1) in (ωr, k1) and (k1, k2) spaces obtained from solving Eq. (2.21) and (2.22). EM

modes for different propagating angles [in degree] and the beam resonances are likewise

plotted in (c). (e) presents the corresponding simulation results in (ωr, k1) space, and (f) in

(k1, k2) space.
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Figure 2.2: We present in (a) the energy evolution of the EM energy for the two cases.

The corresponding dotted line indicates their variation in time after t = 100 ω−1
p ; (b) is the

plasma electron density perturbation in (k1, k2) space. (c) presents the E3 in (k1, k2) space,

and (d) presents the E2 in (k1, k2) space.
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2.2.2 Simulation comparisons

To compare with the results in the previous section, we conducted simulation studies in the

2D system using the EM-PIC code OSIRIS [30]. In these simulations, a neutral plasma with

both the ion and electrons drifting in x1 at the same relativistic Lorentz factor of γ = 50.0 is

initialized throughout the entire simulation box. Periodic boundary conditions for fields and

particles are used. Other parameters for the simulation setup are identical to the numerical

solution of dispersion mentioned earlier.

As is shown in figure 2.2 (a), the total EM energy starts to grow violently as the plasma

drifts relativistically. The exponential growth indicates that a numerical instability occurs.

In addition, the EM field energy in E2 and B3 and that in E3 and B2 are shown separately.

As predicted by the 2D dispersion relation the E3 and B2 modes are stable and do not grow.

The pattern of E2 at t = 100 ω−1
p is plotted in figure 2.1 (e) and (f), and good agreement

for the location and relative amplitude of the unstable modes is obtained when compared

against the theoretical prediction [figure 2.1 (c) and (d)].

The EM energy grows with a lower rate after t = 110 ω−1
p [figure 2.2 (a)]. The plasma

density in this regime is highly modulated by the EM fields. The first order perturbation

in plasma electron density [figure 2.2 (b)] shows a similar pattern as for E2 [figure 2.2 (d)],

which confirms they are coupled. Note that no exponential energy growth can be seen in

the E3 field [figure 2.2 (c)]

From the simulation we find that for later times after the instability has evolved into a

nonlinear state, the same pattern in (k1, k2) space as that of the linear regime still exists.

This indicates that the instability will remain near the intersections of the EM modes and

beam resonances and that both the linear and nonlinear growth can be mitigated through

eliminating or controlling the intersections.

We also carried out a numerical investigation of the 1D dispersion relation Eq. (2.19),

and (2.20) using the same simulation parameters as in Tab. 2.2 (with the 1D Courant

condition). This confirmed that there is no numerical instability under these conditions

which is expected since E1 is de-coupled from E2 and E3 in Eq. (2.19) and each mode is
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itself stable.

2.2.3 Parameter scans for minimal instability growth rate

Even before the NCI was analyzed using the numerical dispersion relation, people have

found two so-called “magic time steps” under which the NCI growth rate is reduced. This

corresponds to ∆t = 0.707∆x1 when using the energy conserving field interpolation [52, 53],

and ∆t = 0.5∆x1 when using momentum conserving field interpolation [52]. In the following,

we use the dispersion relations in previous sections to confirm these empirical observations.

In figure 2.3, we scanned the grid sizes ∆x1 and time step ∆t/∆x1 for the 2D and 3D

Yee solver, and Karkkainen solver [59], and compared the growth rates with the OSIRIS

simulations. We have kept ∆x1 = ∆x2(= ∆x3) during the parameter scan for 2D (and

3D). We likewise presented the OSIRIS simulation data for ∆x1 = 0.1 together with the

asymptotic data. There are several interesting points worth noting in figure 2.3. First, we

can see there is an optimized time step [53] ∆tm/∆x1 where the growth rate is minimized

in most cases; on the other hand, the instability growth rate decreases monotonically as the

grid sizes increase; second, when the grid sizes are square (2D) or cubic (3D), the optimized

time step ∆tm/∆x1 is an invariant for different ∆x1, in both the momentum conserving

(MC) scheme, and energy conserving (EC) scheme; third, the instability growth rate for 2D

and 3D are nearly the same for given ∆x1 and ∆t/∆x1 under the same field interpolation

scheme; the values for the optimized time steps are also nearly the same in 2D and 3D (note

that according to the asymptotic expression, the optimized time step for the Yee solver 3D

EC scheme also resides at around ∆tm/∆x1 ≈ 0.65, but we did not plot it out since that

∆tm is beyond the Courant limit for this solver). The parameter scan using the asymptotic

expression for the Karkkainen solver with the EC scheme shows the optimized time step

at around ∆tm/∆x1 = 0.7, which agrees with the results reported in Ref. [53]. However,

according to our simulation and theoretical results, we found the optimized time step not

only in the Karkkainen solver, but also in the Yee solver; and not only for the EC scheme,

but also for the MC scheme. This is also reported in Ref. [40] for the 2D cases.
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Figure 2.3: Parameter scans of ∆x1 and ∆t/∆x1 for the Yee (first two rows), and Karkkainen

(last two rows) solvers. The first and third row uses momentum conserving (MC) scheme,

while the second and fourth row uses the energy conserving (EC) scheme. The simulation

results are likewise plotted in (c), (f), (i), and (l) at ∆x1 = 0.1 for comparisons. In (c) and

(f) the dotted line at ∆t/∆x1 ≈ 0.577 is the 3D Yee solver Courant limit (CL), and that at

at ∆t/∆x1 ≈ 0.707 is the 2D Yee solver CL.
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2.3 Analytical solution of numerical dispersion relations

In this section, we will discuss the analytical approach to systematically obtain the NCI

modes from solving Eq. (2.17) and (2.18) [46]. Without losing generality, we will start with

its 2D correspondence Eq. (2.21) and (2.22).

As can be seen in Eq. (2.21), when the ω′ and k′1 are near the

ω′ − k′1v0 = (ω + µωg)− (k1 + ν1kg1)v0 = 0. (2.23)

lines, the numerical solution of Eq. (2.18) for each mode can be analytically obtained by

keeping only the corresponding µ and ~ν terms in Eq. (2.21) since these terms are dominant

near the corresponding resonance lines. Note for the cases considered in this disertation, we

find it is a good approximation to truncate the sum of ν2 and only keep the ν2 = 0 term. For

a particular µ and ν1 the corresponding dispersion relation ε11ε22−ε12ε21 = 0 for a particular

(µ, ν1) pair becomes(
[ω]2 − [k]E2[k]B2 −

ω2
p

γ
(−1)µ

Sj1(SE1[ω]ω′/γ2 + SB3v
2
0[k]E2k2)

(ω′ − k′1v0)2

)
×(

[ω]2 − [k]E1[k]B1 −
ω2
p

γ
(−1)µ

Sj2(SE2[ω]− SB3[k]E1v0)

ω′ − k′1v0

)
−(

[k]E1[k]B2 −
ω2
p

γ
(−1)µ

Sj1v0k2(SE2[ω]− SB3[k]E1v0)

(ω′ − k′1v0)2

)
×(

[k]E2[k]B1 −
ω2
p

γ
(−1)µ

Sj2SB3v0[k]E2

ω′ − k′1v0

)
= 0 (2.24)

After some algebra, Eq. (2.24) can be written as(
(ω′ − k′1v0)2 −

ω2
p

γ3
(−1)µ

Sj1SE1ω
′

[ω]

)
×(

[ω]2 − [k]E1[k]B1 − [k]E2[k]B2 −
ω2
p

γ
(−1)µ

Sj2(SE2[ω]− SB3[k]E1v0)

ω′ − k′1v0

)
+ C = 0 (2.25)

where C is a coupling term in the dispersion relation

C =
ω2
p

γ

(−1)µ

[ω]

{
Sj1SE1ω

′[k]E2[k]B2(v2
0 − 1) + Sj2SE2[k]E2[k]B2(ω′ − k′1v0)

+ Sj1[k]E2(SE2[k]B1k2v0 − SB3k2v
2
0[ω])

}
(2.26)
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Much can be learned by investigating Eq. (2.25). First, in the continuous limit (∆t→ 0,

∆xi → 0, and µ = ν1 = 0), we have [ω] → ω, SE,B → 1, so the coupling term C vanishes;

second, the two factors in the first term of Eq. (2.25) are the Lorentz transformation of the

dispersion relation of the Langmuir (longitudinal) mode, and the EM (transverse) mode in

a stationary plasma, which in the continuous limit reduce to

(ω − k1v0)2 −
ω2
p

γ3
= 0 ω2 − k2

1 − k2
2 −

ω2
p

γ
= 0 (2.27)

Consequently, we can identify the numerical Langmuir modes and EM modes for a drifting

plasma as

(ω′ − k′1v0)2 −
ω2
p

γ3
(−1)µ

Sj1SE1ω
′

[ω]
≈ 0 (2.28)

[ω]2 − [k]E1[k]B1 − [k]E2[k]B2 −
ω2
p

γ
(−1)µ

Sj2(SE2[ω]− SB3[k]E1v0)

ω′ − k′1v0

≈ 0 (2.29)

In addition, from Eq. (2.25) we see that when finite grid sizes and time steps are used

neither Eq. (2.28) nor Eq. (2.29) leads to instabilty (if the Courant condition is satisfied).

Therefore it becomes clear that the NCI is caused by the numerical coupling between modes

which are purely longitudinal and purely transverse in the plasma rest frame due to the

non-vanishing term C. With the new form Eq. (2.25), we can directly see how the Langmuir

mode couples to EM modes. Therefore, reducing or eliminating the coupling term C is the

key to mitigating the NCI. Another interesting fact obtained from Eq. (2.25) is that, if we

assume that the ω2
p term in Eq. (2.28) and (2.29) are small and can be neglected, when

determining the positions of these two modes in Fourier space, the time and space aliasing

µ and ν1 are in the Langmuir modes, while there is no aliasing part in the EM mode. As a

side note, it is evident from Eq. (2.26) that in 1D the coupling term vanishes, i.e. C = 0 in

the numerical dispersion relation, hence no NCI is found in 1D.

For each pair of (µ, ν1) there is a corresponding Eq. (2.25). However, in PIC algorithm

the range of (ω, k1) for the quantities defined at discrete locations and time step is limited

to the fundamental Brillouin zone ki ∈ (−kgi/2, kgi/2), ω ∈ (−ωg/2, ωg/2). As a result,

not all the (µ, ν1) wave-particle resonances exist within the fundamental Brillouin zone. In

the following, we describe a way to systematically identify the wave-particle resonance lines
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inside the fundamental zone. Taking the parameters in Table 2.2 as an example, we first

plot the (µ, ν1) = (0, 0) line [blue line in Fig. 2.4]. As the line extends to the right it

meets the boundary of the fundamental zone at k1 = 0.5kg1. To further extend it into

the fundamental zone we increase ν1 by 1, fold the line to the right boundary of k1, and

obtain the (µ, ν1) = (0, 1) line [red line in Fig. 2.4]. The red line extends further until it

reaches the ω = 0.5ωg boundary. To extend it further we increase µ by 1, and obtain the

(µ, ν1) = (1, 1) line. Additional higher order modes in the fundamental Brillouin zone can

be obtained in this way. The negative (µ, ν1) lines can likewise be obtained by starting from

the main Langmuir mode and then extending it to the left, and sets of these (µ, ν1) lines

can be obtained as the lines hit either the boundary at ω = −0.5ωg (µ is reduced by 1), or

k1 = −0.5kg1 (ν1 is reduced by 1). Using the normalization

ω̂ + µ = v0(k̂1 + ν1)λ1 (2.30)

where

ω̂ =
ω

ωg
k̂i =

ki
kgi

λi =
∆t

∆xi
(2.31)

the criterion for the Langmuir modes to be inside the fundamental Brillouin zone are |v0λ1ν1−

µ| < 0.5 + 0.5v0λ1.

Parameters Values

grid size (kp∆x1, kp∆x2) (0.2, 0.2)

time step ωp∆t 0.4kp∆x1

boundary condition Periodic

simulation box size (kpL1, kpL2) 102.4×102.4

plasma drifting Lorentz factor γ = 50.0

plasma density n/np = 100.0

Table 2.2: Simulation parameters for the 2D relativistic plasma drift simulation. np is the

reference density, and ω2
p = 4πq2np/me, kp = ωp (c is normalized to 1).

Note for explicit Maxwell solvers λ1 < 1 is a requirement for stable propagation of

EM waves in vacuum. The NCI occurs where a resonance line intersects the EM dispersion

32



Figure 2.4: The EM dispersion relation together with the beam resonance ω′ − k′1β = 0 is

shown. The parameters used to plot this figure are listed in Table 2.2.
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relation. In Fig. 2.4 we also plot the EM dispersion relation in vacuum as dashed lines. Note

for the EM curves we only show ω̂ v.s. k̂1 at k̂2 = 0, but this line varies as k̂2 changes. For

the NCI pattern and growth rates associated with each resonance line, we can numerically

solve Eq. (2.25) using the corresponding µ and ν1. Note in [40] a plot similar to Fig. 2.4

can be found (Fig. 1 of Ref. [40]). However, in [40] all the µ are summed over analytically,

while in this chapter we emphasize that for a particular resonance line, only one µ term in

the elements of ←→ε is playing a dominant role. Furthermore, care should be taken when

summing over µ and ν1 as they are not independent sums.

Eq. (2.25) can be used to study the fastest growing mode at (µ, ν1) = (0,±1), yet in here

we concentrate on the additional modes. We use Eq. (2.25) to develop analytical expressions

within the parameter space we are interested in. Starting from Eq. (2.25), we expand ω′

around the beam resonance ω′ = k′1v0, and write ω′ = k′1v0 + δω′, where δω′ is a small term.

In addition, we use the relativistic limit v0 → 1, and expand the finite difference operator

[ω] as

[ω] ≈ [ω]

∣∣∣∣
k̃1v0

+δω′
∂[ω]

∂ω

∣∣∣∣
k̃1v0

(2.32)

where

[ω]

∣∣∣∣
k̃1v0

≡ ξ0 =
sin(k̃1∆t/2)

∆t/2

∂[ω]

∂ω

∣∣∣∣
k̃1v0

≡ ξ1 = cos(k̃1∆t/2) (2.33)

where k̃1 = k1 + ν1kg1−µωg, and [ω]2 ≈ ξ2
0 + 2ξ0ξ1δω

′. In addition, we found it is sufficiently

accurate if we neglect the ω2/γ3 term in the Langmuir mode in Eq. (2.25). This is why it

is essentially the same to say that the instability occurs at wave-particle resonances, beam

resonances, or at Langmuir resonances. Moreover, note that ω terms likewise appear in ~SB,

and we will separate it from ~SB by writing

~SB = cos(ω∆t/2)~S ′B (2.34)

and expand ~SB to first order as

~SB = (ζ0 + ζ1δω
′)~S ′B ζ0 ≡ cos(k̃1∆t/2) ζ1 ≡ − sin(k̃1∆t/2)∆t/2 (2.35)
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Using these approximations, we obtain a cubic equation for δω′,

A2δω
′3 +B2δω

′2 + C2δω
′ +D2 = 0 (2.36)

where

A2 =2ξ3
0ξ1

B2 =ξ2
0

{
ξ2

0 − [k]E1[k]B1 − [k]E2[k]B2 −
ω2
p

γ
(−1)µSj2(SE2ξ1 − ζ1S

′
B3[k]E1)

}
C2 =

ω2
p

γ
(−1)µ

{
ξ2

0Sj2(ζ0S
′
B3[k]E1 − SE2ξ0)− ξ1Sj1[k]E2k2(SE2[k]B1 − ζ0S

′
B3ξ0)

+ ξ0[k]E2(Sj2SE2[k]B2 − Sj1ζ0S
′
B3k2ξ1 − Sj1k2ζ1S

′
B3ξ0)

}
D2 =

ω2
p

γ
(−1)µξ0[k]E2k2Sj1

(
SE2[k]B1 − ζ0S

′
B3ξ0

)
(2.37)

The coefficients A2 to D2 are real, and completely determined by k1 and k2. When the

discriminant of this cubic equation

∆ = 18A2B2C2D2 − 4B3
2D2 +B2

2C
2
2 − 4A2C2 − 27A2

2D
2
2 (2.38)

satisfies the condition ∆ < 0, the cubic equation has one real root and two non-real complex

conjugate roots. Therefore, by calculating the discriminant of the cubic equation Eq. (2.38),

we can quickly identify the position of the instability for a particular ν1. We can then

use the general formula for the roots of a cubic equation to obtain the growth rate of the

corresponding ~k mode. As a result, by solving Eqs. (2.36) and (2.37) we can rapidly calculate

the location and growth rate of the instability.

2.4 NCI patterns and growth rates for spectral solver

In section 2.2 we presented the NCI patterns for the Yee solver, by comparing the numerical

solution of the dispersion against the simulation results. These patterns can likewise be

obtained by using Eqs. (2.36) and (2.37). Nonetheless, to better illustrate the process of

analyzing the NCI modes in a systematic way, we will focus on the spectral solver, where the

Maxwell’s equations are advanced in ~k space rather than ~x space. Specifically, the spatial
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derivatives, or correspondingly the spatial finite difference operators [~k] of the spectral solver

are,

[k]i = ki (2.39)

meanwhile, the temporal finite difference operator is the same as for the Yee solver

[ω] =
sin(ω∆t/2)

ω∆t/2
(2.40)

2.4.1 2D scenario

Without loss of generality, we will start with the 2D case. When using the scheme with

spectral solver, we have

SE1 = SE2 = SE3 ≡ SE = Sl SB1 = SB2 = SB3 ≡ SB = cos
ω∆t

2
Sl.

Sj1 = Sj2 = Sj3 ≡ SE = Sl

where

Sl =

(
sin(k1∆x1/2)

k1∆x1/2

)l+1(
sin(k2∆x2/2)

k2∆x2/2

)l+1

(2.41)

and l corresponds to the order of the particle shape. Eq. (2.25) reduces to(
(ω′ − k′1v0)2 −

ω2
p

γ3
(−1)µ

SjSEω
′

[ω]

)(
[ω]2 − k2

1 − k2
2 −

ω2
p

γ
(−1)µSj

SE[ω]− SBk1v0

ω′ − k′1v0

)
+

ω2
p

γ[ω]
(−1)µSjk

2
2{v2

0(SEω
′ − SB[ω])− v0ν1SEkg1} = 0 (2.42)

And the coefficients A2, B2, C2, and D2 of Eq. (2.37) become

A2 = 2ξ3
0ξ1

B2 = ξ2
0

{
ξ2

0 − k2
1 − k2

2 −
ω2
p

γ
(−1)µS2

l (ξ1 − ζ1k1)

}
C2 =

ω2
p

γ
(−1)µS2

l

{
ξ2

0(ζ0k1 − ξ0) + ξ0k2(k2 − ζ0k2ξ1 − k2ζ1ξ0)− ξ1k
2
2(k1 − ζ0ξ0)

}
D2 =

ω2
p

γ
(−1)µξ0S

2
l k

2
2(k1 − ζ0ξ0) (2.43)
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The coefficients are real and completely determined by k1 and k2. We note that this dis-

persion relation could have been obtained from Eq. (23) if more terms were kept in the

expansions for the Qij.

We now use the cubic equation for δω′ for the coefficients in Eq. (28) to systematically

investigate the NCI modes for the spectral solver. In Fig. 2.5 (b), (d), and (f) we present the

three sets of modes with the highest growth rate calculated by the analytical expressions Eqs.

(2.36) and (2.43), for the parameters listed in Table 2.2, and for linear particle shapes (l = 1).

Fig. 2.5 (b) shows the unstable (µ, ν1) = (0,±1) modes, which are the fastest growing

NCI modes. Fig. 2.5 (d) shows the (µ, ν1) = (0, 0) modes, which have a highly localized

pattern of four dots [note that in (d) only one quadrant is plotted]. These modes usually

have a maximum growth rate one order of magnitude smaller than the (µ, ν1) = (0,±1)

modes. For the parameters listed in Table 2.2, the next fastest growing modes are the

(µ, ν1) = (±1,±2) modes which have a maximum growth rate approximately 3 times smaller

than the (µ, ν1) = (0, 0) modes (for linear particle shape).

We have performed UPIC-EMMA simulations in 2D to observe various NCI modes in

the spectral solver, and to compare with the theory presented above. The simulations use

a neutral plasma drifting at a relativistic velocity, with the Lorentz factor γ = 50.0. The

plasma has a uniform initial spatial distribution, and we used the parameters listed in Table

2.2.

In Fig. 2.5 (a), (c), and (e) we show the FFT of the simulation data E2 at a particular

time during the exponential EM energy growth from the NCI. Fig. 2.5 (a) shows results

from a simulation with no low-pass filter, and the most prominent modes are those from the

(µ, ν1) = (0,±1) resonance. To generate the frames in the middle row, we use a low-pass

filter to eliminate the (µ, ν1) = (0,±1) modes. This makes the unstable (µ, ν1) = (0, 0)

modes more noticeable. It is shown in Fig. 2.5 (c) that the (µ, ν1) = (0, 0) modes have

a highly localized pattern of four dots [in Fig. 2.5 only one quadrant is shown], which

agrees with the prediction of the analytic expression. According to Fig. 2.4, there is no

intersection between the (µ, ν1) = (1, 1) resonance [or (µ, ν1) = (−1,−1) resonance] and

the EM dispersion relation, so the next set of modes of interest are the (µ, ν1) = (1, 2) and
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(µ, ν1) = (−1,−2) modes. To make the (µ, ν1) = (±1,±2) modes more noticeable, we use a

low-pass filter to filter out the (µ, ν1) = (0,±1) mode, plus a four-dot mask filter to remove

the (µ, ν1) = (0, 0) modes. As shown in Figs. 2.5 (e) and (f), the locations of these modes in

the simulation agree with the analytic prediction. As a side note, this numerical experiment

also shows the simplicity and flexibility of using filters (masks) with complicated shapes in

a spectral EM-PIC code to control the unphysical NCI growth.

According to both the theory and simulations, in the parameter space we are interested

in, we usually categorize the NCI for a spectral solver into three categories: the fastest

growing modes at (µ, ν1) = (0,±1); the second fastest growing modes at (µ, ν1) = (0, 0);

and higher order NCI modes with |ν1| > 1 that have an even smaller growth rate. In the

following we will discuss how the locations and positions of these modes change with the

simulation parameters.

For the NCI modes with |ν1| ≥ 1, the instability resides around the intersections of the

Langmuir mode and EM mode (taking the small time step limit):

(1− v2
0)k2

1 + k2
2 − 2βξk1 − ξ2 = 0 (2.44)

where ξ = βν1kg1 − µωg. If we use the normalization in Eq. (2.31) the equations above can

be written as (for square cells)

(1− v2
0)k̂2

1 + k̂2
2 − 2βξ̂k̂1 − ξ̂2 = 0 (2.45)

where ξ̂ = βν1 − µ/λ1. The positions of the unstable NCI modes in
~̂
k space depends only

on ∆t and ∆xi through their ratio λi. Therefore, the position of the |ν1| ≥ 1 NCI does not

change if one keeps the ratio of time step to cell size fixed. Moreover, if µ = 0, λ1 does not

appear in Eq. (2.45), which means that the position of the (µ, ν1) = (0,±1) modes are not

affected by the time step.

For the NCI at (µ, ν1) = (0, 0), there is no true “intersection” between the corresponding

fundamental Langmuir mode and the EM mode [as can be seen by plotting Eq. (2.28) and

(2.29) in (ω, k1) space, see Fig. 2.6 (a)]. However, the two modes interact at highly localized

positions determined by the coupling term in Eq. (2.25). To show how the coupling term
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Figure 2.5: (a), (c), and (e) are the FFT of E2 in the 2D simulations using the parameters

listed in Table 2.2. The filter applied in order to observe these modes are illustrated by

the grey areas in the plots. (b), (d), and (f) are the corresponding predictions by using the

expression Eq. (2.36) and (2.43).
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in Eq. (2.25) modifies the Langmuir and EM modes, we plot the solution of Eq. (2.25) at

k̂1 ≈ 0.21, −0.07 ≤ k̂2 ≤ −0.02, where the instability is observed. Equation (2.25) is solved

both with, and without the coupling term (numerically forcing the coupling term to be zero).

The parameters used in solving Eq. (2.25) numerically are the same as in Table 2.2, with

(µ, ν1) = (0, 0). It is evident in Fig. 2.6 (a) and (c) that when the coupling term is present,

the fundamental Langmuir mode and EM mode are coupled near −0.057 ≤ k̂2 ≤ −0.037.

In Fig. 2.6 (c) where the growth rate is plotted, it becomes clear that in this range of k2

where the fundamental Langmuir mode and EM mode are coupled, the two modes become

complex conjugate pairs with one of them corresponding to instability in this range of k̂2.

In Figs. 2.6 (b) and (d), we scan ranges in both k̂1 and k̂2, specifically, we scan the range

k̂1 ∈ [−0.28,−0.15] and k̂2 ∈ [−0.07,−0.02].

We next investigate the sensitivity of the growth rate and location in ~k-space to the

simulation parameters for the NCI at the fundamental mode (µ, ν1) = (0, 0). Note that we

define the position of these modes at the value of (k̂1, k̂2) where the growth rate is maximum.

In reality there is a range (although highly localized) of modes that go unstable. Fig. 2.7 (a)–

(d) shows how the positions and growth rates of those modes change with plasma density and

time step. For each simulation setup we plot both the simulation results and the predictions

from the analytical expressions. When changing the grid sizes we fix ∆x1 = ∆x2. Fig.

2.7 (a) shows that when the grid sizes increases, the position of the (µ, ν1) = (0, 0) NCI

moves farther away from the center of the (k1, k2) plot where the interesting real physics

resides [red curve in Fig. 2.7 (a)]. We keep ∆t constant as ∆x1 changes in Fig. 2.7 (a).

The (µ, ν1) = (0, 0) mode also moves farther away from the interesting physics when the

time step decreases [see red curve in Fig. 2.7 (b)]. Furthermore, as shown in Fig. 2.7 (c),

the growth rate decreases as the time step decreases [blue curve], which is not the case for

the fastest growing modes of the NCI. The growth rate also decreases when the grid size

increases while keeping ∆t fixed [Fig. 2.7 (c) red curve]. When the density of the plasma

increases (while fixing γb = 50), the position of the (µ, ν1) = (0, 0) NCI moves away from

the center in (k1, k2) space, and the growth rates of these modes increase [Fig. 2.7 (d)].

A parameter scan which shows how the growth rate and position of the (µ, ν1) = (0, 0)
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Figure 2.6: Roots of Eq. (2.25) under the parameters listed in Table 2.2. (a) and (c) shows

the real, and imaginary parts of the roots between k̂1 = 0.21, and −0.07 ≤ k̂2 ≤ −0.2, both

with and without the coupling terms; meanwhile (b) and (d) shows the real and imaginary

part of the roots in the range −0.28 ≤ k̂1 ≤ −0.15 and −0.07 ≤ k̂2 ≤ −0.02.
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Figure 2.7: Dependence of the position (k̂1, k̂2), as well as the growth rate τ of the NCI at

the fundamental Langmuir mode to grid sizes ∆x1 (with ∆x1 = ∆x2 fixed), time step ∆t,

and plasma density np.
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modes change with different choices of the grid sizes and time step, is shown in Fig. 2.8.

Note that we are keeping ∆x1 = ∆x2 in the parameter scan. By examining Fig. 2.8, we

see that by reducing the ∆t/∆x1 ratio, the instability at the fundamental Langmuir mode

moves towards larger k̂1 and the growth rate decreases. This is a unique characteristic

of the (µ, ν1) = (0, 0) modes, i.e., the growth rate of the fastest growing modes does not

decrease as ∆t/∆x1 decreases. This is illustrated in Fig. 2.9 (c) where the growth rate of

the (µ, ν1) = (0, 0) and (0, 1) modes are plotted against ∆t/∆x1 for kp∆x1 = 0.2. When the

fastest growing modes are filtered out in a simulation, if the grid size is restricted to resolve

the characteristic length of physical modes, the position of the (µ, ν1) = (0, 0) mode can be

moved to larger k̂1 by simply using a smaller time step.

Figure 2.8: Dependence of the (a) growth rate, and (b) k1 position of NCI at the fun-

damental Langmuir mode for grid sizes 0.1 ≤ ∆x1 ≤ 0.5 (with ∆x1 = ∆x2 fixed), and

0.1 ≤ ∆t/∆x1 ≤ 0.45.

Meanwhile, when the time step is fixed, the growth rates of higher order NCI (|ν1| > 1)

unstable modes can be efficiently reduced by using higher order particle shapes. In Fig.

2.9 (a) we show how using different particle shapes changes the growth rate of the various

NCI modes. The parameters in Table 2.2 are used for this figure. The result indicates

that, while using higher order particle shapes is very efficient in reducing the growth rate of

higher order NCI modes, it is less efficient for the (µ, ν1) = (0, 0) mode. We also compared
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results with different grid sizes (while fixing ∆t/∆x1 = 0.4), as shown in Fig. 2.9 (b). It

indicates that reducing the grid size (while fixing ∆t/∆x1) helps reduce the growth rate of

the (µ, ν1) = (0, 0) mode, but not for the modes with ν1 6= 0.

Figure 2.9: (a) shows the dependence of the growth rate on particle shapes. (b) shows the

dependence of the growth rate on grid size for various ν1 modes. (c) shows the dependence

of the growth rate on time step when the grid sizes are fixed. Parameters listed in Table 2.2

are used for these plots.

2.4.2 3D scenario

We next discuss the NCI in three dimensions for a spectral solver. Based on the results for

the 2D case, we write the full dispersion relation into the coupling between a Langmuir and

an EM mode. For the spectral solver, the dispersion relation for a specific µ, ν1 mode can

be rewritten as,(
[ω]2 − k2

1 − k2
2 − k2

3 −
ω2
p

γ
(−1)µSj

SE[ω]− SBk1v0

ω′ − k′1v0

)
{(

(ω′ − k′1v0)2 −
ω2
p

γ3
(−1)µ

SjSEω
′

[ω]

)(
[ω]2 − k2

1 − k2
2 − k2

3 −
ω2
p

γ
(−1)µSj

SE[ω]− SBk1v0

ω′ − k′1v0

)
+

ω2
p

γ[ω]
(−1)µSj(k

2
2 + k2

3){v2
0(SEω

′ − SB[ω])− v0ν1SEkg1}
}

= 0 (2.46)
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For the instability mode near the resonance line, we can assume(
[ω]2 − k2

1 − k2
2 − k2

3 −
ω2
p

γ
(−1)µSj

SE[ω]− SBk1v0

ω′ − k′1v0

)
6= 0 (2.47)(

(ω′ − k′1v0)2 −
ω2
p

γ3
(−1)µ

SjSEω
′

[ω]

)(
[ω]2 − k2

1 − k2
2 − k2

3 −
ω2
p

γ
(−1)µSj

SE[ω]− SBk1v0

ω′ − k′1v0

)
+

ω2
p

γ[ω]
(−1)µSj(k

2
2 + k2

3){v2
0(SEω

′ − SB[ω])− v0ν1SEkg1} = 0 (2.48)

which, as in the 2D case, can be viewed as the coupling between the Langmuir and EM

mode. When Eq. (2.48) is compared with Eq. (2.42), we can see that for the spectral solver

the equations in 3D can be obtained by replacing k2
2 with k2

2 + k2
3 in its 2D counterpart. As

a result, the pattern of instability in 3D can be conveniently deduced. The location of the

(µ, ν1) = (0, 0) NCI modes in ~k space in 3D can be obtained as follows. Pick a point in

(k2, k3) space, then the growth rate and location in k1 space of this mode will be the same

as for k2D
2 =

√
(k3D

2 )2 + (k3D
3 )2, where k3D

1,2,3 and k2D
1,2 are the coordinates of the modes in the

3D and 2D scenario respectively (assuming ∆x3D
1 = ∆x3D

2 = ∆x3D
3 = ∆x2D

1 = ∆x2D
2 and

∆t3D = ∆t2D). This indicates that the unstable modes form a “ring” pattern in the (k2, k3)

space at specific values of k̂1. In addition, the maximum growth rate τ of these modes has

τ 2D ≈ τ 3D when ∆x3D
1 = ∆x3D

2 = ∆x3D
3 = ∆x2D

1 = ∆x2D
2 and ∆t3D = ∆t2D.

In Fig. 2.10 we present data from a 3D simulation of a drifting plasma, using the same

parameters as in Table 2.2 except now ∆t3D = 0.35∆x1 (so that the Courant condition is

satisfied). The different values of ∆t and the different noise sources in 3D v.s. 2D means

the results will not be identical. We plot the FFT of E2 in each panel. In Fig. 2.10 (a) the

real frequency v.s. k̂1 are plotted along with the line ω̂r = k̂1β. This data was obtained for

a line out along x1 located at the middle of the box. In Fig. 2.10 (b) a 3D plot of E2 in

~k-space is shown at a time during the exponential growth (before saturation). Only modes

with amplitudes above 1/30 of the maximum mode are plotted. The predicted rings are

clearly present. In Fig. 2.10 (c) and (d) cross sections of the plot in Fig. 2.10 (b) are shown.

In analogy with the 2D case, we can filter out this instability by applying a mask filter

to eliminate the corresponding modes in the ring. For example we have a mask that blocks

45



Figure 2.10: This figure shows the dominant NCI modes after the fastest growing modes are

filtered out for a 3D simulation. (a) shows in 3D the (µ, ν1) = (0, 0) mode which resides at

the main resonance ω = k1β; (b), (c), and (d) are the positions of this NCI mode in
~̂
k space.
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out all the modes between

0.175 ≤ k̂1 ≤ 0.275 0.0272 ≤ k̂2
2 + k̂2

3 ≤ 0.0672

A parameter scan of the growth rate and position of the unstable modes using UPIC-

EMMA, as well as comparison between the analytical predictions is presented in Fig. 2.11

(a)–(d). The variable kR in these plots refers to the radius of the ring pattern. It confirms

that when comparing the unstable mode for a 2D case (see Fig. 2.7) against its counterpart

in 3D, we have approximately k̂3D
1 = k̂2D

1 , and k̂2
R ≡ (k̂3D

2 )2 + (k̂3D
3 )2 = (k̂2D

2 )2 (where

k̂R = kR/kg1), and τ 3D ≈ τ 2D. Therefore, the 3D NCI can effectively be eliminated by using

the same strategies as in 2D.

2.5 Summary

In this section we start by deriving the general numerical dispersion relation of plasma in

a PIC system, and then obtain the detailed expressions for the dispersion tensor for a cold

relativistically drifting plasma. The corresponding NCI modes can be directly solved from

the dispersion, which agrees well with our simulation observations. Alternatively, the NCI

modes can be analytically resolved mode by mode. The idea is that for a specific spatial

and temporal aliasing, only one term will be dominant. This significantly simplifies the

expression of the dispersion tensor, which allows us to write out the dispersion relations in

a compact form Eq. (2.25).

The significance of Eq. (2.25) is two-folded. Firstly, it gives a direct physical interpreta-

tion of the source of NCI: the NCI is the unphysical coupling between the EM modes and

main and aliasing Langmuir modes due to the use of finite spatial grids and time step. Sec-

ondly, it provides an accurate way of deriving the analytical solutions for rapid evaluations

of the pattern and growth rates of the NCI modes Eqs. (2.36) and (2.37). As we can see

in later chapters, these two equations become the workhouse when we are modifying the

Maxwell solver to eliminate the NCI modes.
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Figure 2.11: Dependence of the position (k̂1, k̂R), as well as the growth rate τ of the NCI

at the fundamental Langmuir mode to grid sizes ∆x1 (with ∆x1 = ∆x2 fixed), time step

∆t, and plasma density n0 in 3D. The variable kR refers to the radius of the ring pattern of

(µ, ν1) = (0, 0) NCI modes in 3D.
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CHAPTER 3

Elimination of NCI in multi-dimensional spectral solver

The theory developed in Chapter 2 provides us with solid evidence that the NCI is due to

the unphysical coupling between EM modes and Langmuir modes (both main and aliasing).

Writing down the Langmuir mode in the approximate form as

ω′ − k′1v0 ≈ 0 (3.1)

we can see that for whatever PIC algorithm we apply, the form of the Langmuir modes will

stay the same. It is clear that the Langmuir mode is indistinguishable from wave particle

(or beam) resonances to the lowest order. On the other hand, the EM dispersion

[ω]2 − [k]E1[k]B1 − [k]E2[k]B2 −
ω2
p

γ
(−1)µ

Sj2(SE2[ω]− SB3[k]E1v0)

ω′ − k′1v0

≈ 0 (3.2)

are flexible in the sense that [~k]E,B can be easily modified when an alternative spatial finite

difference form is applied when solving the Maxwell equation. In Chapter 2 we have already

shown how the patterns of the NCI varies with the EM dispersion relation, i.e. it varies

when we switch from a Yee solver to a spectral solver. It is then reasonable to argue that the

design of a NCI-friendly Maxwell solver is the key to develop a NCI elimination scheme. In

fact Chapter 2 already showed that when compared with the Yee solver, the spectral solver

shows great potential in eliminating the NCI as the fastest growing NCI modes are on the

edges of the fundamental Brillouin zone, while the growth rates for the main NCI modes

are already one order of magnitude smaller than the fastest growing modes. We note that

focusing on eliminating the coupling term C can potentially be another path for eliminating

the NCI.

In this chapter, we discuss the NCI elimination scheme for a spectral solver that advances

the Maxwell equations in ~k space. The validity of this scheme proves to be extremely effective
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by the clean simulation results from our production spectral PIC code UPIC-EMMA which

implements this elimination scheme. Note that in the following chapters, we will present our

design for new Maxwell solvers for NCI elimination. The elimination methods for all these

new Maxwell solvers are based on the elimination scheme described in this chapter.

3.1 Strategies for eliminating NCI

Based on the behavior of the unstable NCI modes, we now discuss approaches for controlling

it. Once the NCI is adequately controlled, high fidelity simulations of relativistically drifting

plasma can be carried out. The new form for the dispersion relation in Eq. (2.25) can also

be used to investigate the NCI for a variety of solvers.

The approach we use to eliminate the NCI is to first move the unstable modes to large

~̂
k’s that are outside the region in

~̂
k space where important physics is occurring. As discussed

in Chapter 2, for the spectral solver the fastest growing modes at (µ, ν1) = (0,±1) exist at

large |~̂k| (the edge of the fundamental Brillouin zone). In addition, as discussed earlier their

location in
~̂
k-space does not change much as the grid sizes (for square or cubic cells) and

time step are varied.

As shown in Fig. 2.5, the second fastest growing mode at (µ, ν1) = (0, 0) is highly

localized in
~̂
k-space and can be removed through a mask filter. However, these modes may

exist near modes of physical interest, and for LWFA boosted frame simulations the plasma

only exists in a small region of the simulation window. For such situations simply applying a

mask filter may also effect the physics. We therefore eliminate those modes by first reducing

the time step (while keeping the cell size fixed). As shown in Figs. 2.8 (a) and (b), this both

moves the unstable modes to higher k̂1 and lowers the growth rate.

To investigate how reducing the time step changes the NCI, 2D simulations using the

same parameters as those shown in Fig. 2.5, but with a reduced time step of ∆t = 0.1∆x1

are conducted. The corresponding intersection between beam resonances and the EM wave

for this time step are illustrated in Fig. 3.1 (a), while the corresponding simulation data

and analytical prediction for ∆t = 0.1∆x1 are shown in Fig. 3.1 (c)–(f). From Fig. 3.1 (c)
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and (e) we see as expected that when the time step is reduced, the growth rate and pattern

of the fastest growing modes at (µ, ν1) = (0,±1) do not change much [compared with Fig.

2.5 (a) and (b)]. However, for the (µ, ν1) = (0, 0) modes shown in Fig. 3.1 (d) and (f) , the

locations move away from the center [compared with Fig. 2.5 (c) and (d)], while the growth

rate is reduced by approximately a factor of 4.

In addition, when the time step is reduced to suppress the (µ, ν1) = (0, 0) mode, the

locations and growth rate for the higher order |ν1| > 1 modes also change. As seen in Fig.

3.1 (a), the next aliasing beam resonance after (µ, ν1) = (0,±1) is (µ, ν1) = (0,±2) rather

than (µ, ν1) = (1,±1). It is easy to see that in this case the (µ, ν1) = (0,±2) resonance

line has no intersection with the EM mode in the fundamental Brillouin zone. The beam

resonance line for an intermediate time step of ∆t = 0.225∆x1 is likewise shown in Fig. 3.1

(b). This illustrates how gradually reducing the time step changes the NCI modes in the

fundamental zone.

Reducing the time step in FFT-based Maxwell solvers is preferable in relativistically

drifting plasma simulation as it not only provides better NCI properties, but also provides

better accuracy to the Maxwell solver, and pusher in the algorithm. However, it comes at

a cost of increased computational loads. In the following we describe another approach for

eliminating the (µ, ν1) = (0, 0) NCI modes for the spectral solver with a minor modification

in the EM dispersion curve. This approach can be used alone, or combined with the reduced

time step to achieve complete elimination of the (µ, ν1) = (0, 0) NCI modes.

As seen from Fig. 2.6, the (µ, ν1) = (0, 0) NCI modes = to the intersection between

EM mode and the main Langmuir modes, but rather a coupling when the two curves get

near each other at localized region in ~k space. To eliminate this coupling region, we now

artificially create a small bump to the EM mode by slightly modifying the corresponding

[k]1 operator in the Maxwell solver

[k]1 = k1 + ∆kmod (3.3)
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Figure 3.1: (a) and (b) show the EM dispersion relation together with the beam resonance

ω′− k′1β = 0, for ∆t = 0.1∆x1 and ∆t = 0.225∆x1 (and other parameters the same as listed

in Table 2.2). (c) and (d) are the FFT of E2 in the corresponding 2D simulations. The filter

applied in order to observe the (µ, ν1) = (0, 0) mode is illustrated by the grey areas in (d).

(e) and (f) are the corresponding analytical predictions by using the expression Eq. (2.36)

and (2.43).
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where

∆kmod = ∆kmod,max cos2

(
k1 − k1m

k1,min − k1,max

π

2

)
cos2

(
k2

k2,max

π

2

)
(3.4)

in the range k1,min < |k1| < k1,max, and ∆kmod = 0 otherwise. k1,min, k1,max, and kinc,max are

determined by the (µ, ν1) = (0, 0) NCI modes to be eliminated, and k1m = (k1,min +k1,max)/2.

Consider the drifting plasma simulation with ∆t = 0.4∆x1 and other simulation pa-

rameters are listed in Table 2.2 as an example. In Fig. 3.2 (a), (c), and (d) we illustrate

how the EM dispersion (in vacuum) would change as we apply this modification to the [k]1

operator in the solver in order to eliminate the (µ, ν1) = (0, 0) NCI modes completely. In

Fig. 3.2 (c) we show the distribution of |ω − ω̄|/ωg, to indicate how the EM dispersion is

modified in the fundamental Brillouin zone, where ω and ω̄ are the frequency corresponding

to a particular (k1, k2) in the original, and revised EM dispersion, respectively. In Fig. 3.2

(a) and (d) we show the corresponding EM dispersion for (ω, k̂2) and (ω̄, k̂2) at k̂1 = 0.205,

and (ω, k̂1) and (ω̄, k̂1) at k̂2 = 0 respectively (as the lines of k̂1 = 0.205 and k̂2 = 0 cross

the point where the maximum value of ∆kmod is reached) to show how much the dispersion

is modified. When substituting this [k]1 operator in Eqs. (2.36) and (2.37) while keeping

[k]2 = k2, we can see there are is unstable root for (µ, ν1) = (0, 0), i.e. when the mod-

ified [k]1 operator is used in the solver, there is no (µ, ν1) = (0, 0) NCI mode predicted

by the theory. In this case k1,min/kg1 = 0.15, k1,max/kg1 = 0.26, k2,max/kg2 = 0.125, and

kinc,max/kg1 = 0.0095. In Fig. 3.2 (b) we plot the growth in energy for E2 for the cases with

∆t = 0.4∆x1 and ∆t = 0.2∆x1, as well as the case with ∆t = 0.4∆x1 plus the EM disper-

sion relation modification. In all these cases a low-pass filter is used to eliminate the fastest

growing (µ, ν1) = (0,±1) modes. As shown in Fig. 3.2 (b) for the blue (∆t = 0.4∆x1), and

red (∆t = 0.2∆x1) curve, the exponential energy growth is due to the (µ, ν1) = (0, 0) modes;

meanwhile in the case where the EM dispersion modification is applied (black curve), the

energy growth due to (µ, ν1) = (0, 0) modes is completely eliminated. Note later in time

the energy grows exponentially (with a much lower growth rate, not shown in the plot) due

to the higher order modes (µ, ν1) = (±1,±2). In these simulations we used second order

particle shape. As discussed earlier in section 2, if one needs to further suppress the NCI by
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reducing the growth rate of the (µ, ν1) = (±1,±2) NCI modes, one can use a higher order

particle shape as discussed in section 2.4.

Figure 3.2: (a) shows the EM dispersion relation in vacuum before and after the modification,

at line k̂1 = 0.205 and k̂2 = 0, while (c) shows the modification |ω−ω̄|/ωg in the fundamental

Brillouin zone. (d) is the line out of (c) at k2 = 0. (b) shows the E2 energy evolution for

simulations with ∆t = 0.4∆x1 (with and without modification), and ∆t = 0.2∆x1. Other

simulation parameters are listed in Table 2.2.

In this section, we have shown that we can first move the (µ, ν1) = (0, 0) NCI modes away

from physical modes by reducing the time step, then eliminate them by either applying a

low-pass filter, or slightly modifying the EM dispersion in the highly localized region where

the (µ, ν1) = (0, 0) modes reside. One can take advantage of all these strategies separately

or combine them to obtain the best recipe for a particular application.
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3.2 Sample simulations

In this section, we will demonstrate the approaches discussed in the previous section can

efficiently mitigate the NCI in relativistic collisionless shock simulation, and in LWFA sim-

ulations in a Lorentz boosted frame, both of which involves the modeling of relativistically

drifting plasma.

3.2.1 Relativistic collisionless shock

In Fig. 3.3 we present the results of two colliding plasma simulations, using the parameters

in Table 3.1, with two different time steps. In these simulations we model the interaction of

two counter-streaming plasma flows, each moving with a relativistic Lorentz factor of 20.0.

Each plasma is initialized with a momentum distribution given by

f(~p) ∼ exp

(
−(p1 − p10)2

2p2
th,1

)
exp

(
− p2

2

2p2
th,2

)
exp

(
− p2

3

2p2
th,3

)
(3.5)

where p10 and ~pth are listed in Table 3.1. As the two flows interpenetrate they give rise to the

so-called collisionless Weibel instability [66], which slows down the flows and forms two shocks

that propagate in opposite directions. In both cases we use the low-pass filter to eliminate

the (µ, ν1) = (0,±1) NCI. Comparing the log10 |B3| plots in Fig. 3.3 (b) with ∆t = 0.4∆x1

and (c) with ∆t = 0.08∆x1, it is evident that when the time step is reduced, the noise

originating from the NCI in the region where the two streams have not yet collided (overlap)

with each other [shown in the red boxes in Fig. 3.3 (b) and (c)] is much smaller. In Fig.

3.3 (d) and (e) we also plot the FFT of the B3 field for these same areas. The characteristic

four-dot pattern of the (µ, ν1) = (0, 0) modes is clearly observed only for ∆t = 0.4∆x1. This

illustrates that the (µ, ν1) = (0, 0) modes can limit the length of the plasma that can be

simulated even if the fastest growing modes are filtered out, and that these modes can be

controlled by reducing the time step. The plasma density for the smaller time step at the

same physical time is shown in Fig. 3.3 (a) to show that there is no instability in the parts

of the two streams that have not overlapped yet.
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Figure 3.3: (a) shows the plasma density plot at t = 3360 ω−1
p for the ∆t = 0.08∆x1 case;

(b) and (c) show the corresponding log10 |B3| for the case ∆t = 0.4∆x1 and ∆t = 0.08∆x1,

respectively. (d) and (e) shows the FFT of B3 in the red box regions in (b) and (c), respec-

tively.
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Parameters Values

grid size (∆x1,∆x2) (0.5k−1
p , 0.5k−1

p )

time step ∆t 0.4∆x1, 0.08∆x1

number of grid 32768× 512

particle shape quadratic

electron drifting momentum p10 19.975 mec

electron ~pth (0.001,0.001,0.001) mec

Ion mass ratio mi/me 32

Table 3.1: Simulation parameters for the 2D shock simulation. np is the plasma density, and

ω2
p = 4πq2np/me, kp = ωp (c is normalized to 1).

3.2.2 LWFA simulation in the Lorentz boosted frame

We next present results from a LWFA boosted frame simulation in a nonlinear regime. The

nonlinear regime is more challenging to simulate in the boosted frame due to self-trapping

and the presence of wave harmonics. We first note that in LWFA simulations the plasma

density is not really a free parameter when the simulation is done in the wakefield frame

where γb = γw ≡ ω0/ωp0, ω0 is the laser frequency. In this frame ω′0 = γb(ω0−k0vb) = 2ω0/γb,

and ω2
p/γb = ω2

p0 is an invariant, which leads to

ω2
p

γbω′20
=
ω2
p0γ

2
b

4ω2
0

=
1

4
(3.6)

Therefore, with respect to ω′0 the value of ω2
p/γb is fixed. The time steps and cell sizes are

determined with respect to ω′0, therefore ω2
p/γb is not a free parameter.

In Fig. 3.4 we present results using parameters listed in Table 3.2. These parameters

are the same as in Ref. [71] with γb = 28. It is worth noting that at the time when [71] (on

which Chapter 6 of this dissertation is based) was published, we were not aware of the effect

of the main NCI modes on the LWFA boosted frame simulations, and this effect is studied

in more details in the simulation presented below.

The reference run used the time step ∆t = 0.225∆x1, and additional cases were simulated

to eliminate the NCI growth: a case with a reduced time step of ∆t = 0.0563∆x1, and a case
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with ∆t = 0.225∆x1 plus the EM dispersion modification (with the modification parameter

k1,min/kg1 = 0.151, k1,max/kg1 = 0.222, k2,max/kg2 = 0.125, and kinc,max/kg1 = 0.01). The

spatial resolution and number of simulation particles were kept fixed. In each case the low-

pass filter is applied to eliminate the fastest growing NCI modes. In Figs. 3.4 (a)–(c) we show

the log10 |E2| for the three cases at t = 11135 ω−1
0 . As is shown in Fig. 3.4, the self-injected

particles observed in the case of ∆t = 0.225∆x1 without EM dispersion modification [Fig.

3.4 (a)] are no longer seen in the case with reduced time step ∆t = 0.0563∆x1 [Fig. 3.4 (b)],

or the ∆t = 0.225∆x1 case with EM dispersion modification [Fig. 3.4 (c)]. Note in the 2D

OSIRIS lab frame simulation, no self-injection particles are observed.

The fact that the ∆t = 0.225∆x1 cases without EM dispersion modification shows self-

injected particles, while in the ∆t = 0.225∆x1 case with dispersion modification and the

∆t = 0.225∆x1 case there is no self-injected particle strongly indicates the (µ, ν1) = (0, 0)

NCI modes are interfering with the modeling of the self-injection process. Slightly modifying

the EM dispersion curve does not change the accuracy of the other parts of the algorithm

(e.g. Maxwell solver, pusher), therefore the only difference between the two cases is that for

the modified-dispersion case there is no (µ, ν1) = (0, 0) NCI modes, and the absence of these

unphysical modes brings the simulation results closer to the lab frame results.

As a side note, we see in the green box in Fig. 3.4 (c) there is radiation that is not seen

in Fig. 3.4 (a). This is due to the fact that when we artificially create a bump in the EM

dispersion relation, part of the ~k in the bump has a group velocity difference to the drifting

velocity of the plasma larger than the ~k outside the bump. As a result the radiation that

is in the range of these ~ks will travel faster than the other ~ks. We isolated the green box

region and performed an FFT for the data inside the box, as shown in Figs. 3.4 (d) and (e).

We can see that the range of ~k for the radiation that is in the front of the drifting plasma

corresponds exactly to those that have a larger group velocity.

The fact that both strategies bring the boosted frame simulation results closer to the

lab frame results can also be seen by transforming the on-axis wakefields E1 back to the

lab frame and comparing them with lab frame OSIRIS simulation. In Fig. 3.4 (f) we plot

a lab frame time sequence of line outs of the on-axis wakefield. Here we plot the line outs
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for the time steps ∆t = 0.225∆x1 without the EM dispersion modification (red curve),

∆t = 0.0563∆x1 (green curve), and ∆t = 0.225∆x1 with the EM dispersion modification

(cyan curve), and OSIRIS lab frame data (blue curve). It shows that better agreement with

the lab frame result is found for the reduced time step, and for the case with larger time step

plus EM dispersion modification. For the larger time step case without the EM dispersion

modification (red curve) one can see the wake is perturbed at early times before the electric

field reaches its minimum value in the rear of the first bubble. This is due to the self-trapped

particles which are absent for the lab frame, and the two boosted frame simulations with

elimination strategies applied to eliminate the (µ, ν1) = (0, 0) NCI modes.

Plasma

density n0 1.148× 10−3n0γb

length L 7.07× 104k−1
0 /γb

Laser

pulse length τ 70.64k−1
0 γb(1 + βb)

pulse waist W 117.81k−1
0

polarization 3̂-direction

2D boosted frame simulation

grid size ∆x1,2 0.0982k−1
0 γb(1 + βb)

time step ∆t/∆x1 0.225, 0.0563

number of grid (γb = 28) 8192×256

particle shape quadratic

Table 3.2: Parameters for the 2D LWFA simulations, with a0 = 4.0. The laser fre-

quency ω0 and laser wave number k0 are used to normalize simulation parameters, and

n0 = meω
2
0/(4πe

2).
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Figure 3.4: (a)–(c) shows the log10 |E2| at t = 11135 ω−1
0 for the cases with ∆t = 0.225∆x1

(with and without EM modification), and ∆t = 0.0563∆x1, respectively. In (e) we magnify

the region in the green box in (c) to show the detailed structure of the radiation ahead of

the drifting plasma, and (d) shows the corresponding FFT spectral for these radiation. (f)

shows the on-axis E1 wakefield when transforming the UPIC-EMMA simulations data back

to the lab frame and compared again OSIRIS lab frame simulation data.
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3.3 Summary

In this chapter, we used the theory developed in Chapter 2, and discussed in details the

NCI elimination schemes for the spectral solver in which the Maxwell equations are spatially

advanced in Fourier space. The main advantage of the spectral solver, comparing against

the Yee solver, is that the (µ, ν1) = (0,±1) NCI modes are highly localized in the spectral

solver, and their growth rates are one order of magnitude smaller than the fastest growing

(µ, ν1) = (0,±1) modes. For the Yee solver, the (µ, ν1) = (0,±1) and (µ, ν1) = (0, 0) modes

have similar growth rate and the (µ, ν1) = (0,±1) modes are not localized. In addition,

when a reduced simulation time step is applied, their growth rates are reduced, and their

locations move farther away from the ~k = ~0 where the physical modes reside. Furthermore,

these main NCI modes in the spectral solver can be completely eliminated by creating a

bump near where they are located in the ~k space. Meanwhile, the (µ, ν1) = (0,±1) NCI

modes located near the edge of the fundamental Brillouin zone which is similar to the Yee

solver, and can be eliminated by applying a low-pass filter to the current. As for even higher

order NCI modes, one can use a higher order particle shape to reduce their growth rates.

As we will see in the next chapter, the elimination scheme developed for the spectral solver

provide us with a systematic approach to completely eliminate the two sets of fastest growing

modes, the main, and first spatial aliasing NCI modes. While spectral solver is perfectly up

to the task of NCI elimination, it does have certain shortcomings. This includes a constraint

on the partition of the simulation box, which would eventually affect the scalability of the

PIC code. In addition, as mentioned in Chapter 1, a spectral PIC code is relatively difficult

to develop due to the complex messaging mechanism in the solver. In the next chapter,

we attempt to take advantage of what we learned in this chapter, to design new Maxwell

solvers that are specially designed to eliminate the NCI, while reducing the complexity in

implementing them into the PIC code.
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CHAPTER 4

Hybrid Yee-FFT solver for NCI elimination

In Chapter 3, we have described our approaches to eliminate the NCI based on a multi-

dimensional spectral solver. This elimination scheme can efficiently eliminate the main and

first spatial aliasing NCI modes, which makes it possible to perform high fidelity LWFA

Lorentz boosted frame simulations, as well as colliding plasma or relativistic shock simula-

tions. However, as mentioned in Chapter 1, it is a major effort to develop a spectral EM-PIC

code can scale to millions of CPU cores, and there are only a few research groups in the

world that has production spectral PIC codes for physics studies. Therefore, the following

question naturally follows: is it possible to design a Maxwell solver that has similar NCI

properties to that of the spectral solver, yet does not have the complexity of the spectral

solver when we need to parallel it? The main motivation of this chapter is to seek answers

to this question. In this chapter, we take advantage of the knowledge described in Chapter

2 and 3 as guidelines, and develop solvers that have similar NCI properties to the spectral

solver, yet are much easier to implement into existing PIC codes and that may have better

parallel scalability. In addition, we seek NCI elimination strategies that will work for the

new quasi-3D algorithm to be discussed later.

We will first describe the design of a hybrid Yee-FFT solver, in which Maxwell’s equations

are solved in a hybrid (k1, x2, x3) space. As we will explain in the following sections, this

solver takes advantage of the fact that one only needs to apply the spectral operator in the

direction the plasma is drifting, in order to obtain similar NCI properties to that of the

fully spectral solver. In addition, this solver uses a similar NCI elimination strategy as that

of the spectral solver. Since this solver is only spectral in one direction while retaining its

FDTD structure in the other direction(s), it is much easier to implement into an existing
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FDTD code compared with a multi-dimensional spectral solver. Moreover, this idea can

be extended to a hybrid geometry called quasi-3D geometry, which opens the possibility of

performing relativistic plasma drift simulation in quasi-3D. The quasi-3D geometry by itself

offers speed ups by factors of ∼ 100 for LWFA simulations.

4.1 Hybrid Yee-FFT solver

We will first describe the reasoning and the detailed algorithm of the hybrid Yee-FFT

Maxwell solver. The basic idea of this solver is that the theoretical framework developed in

Chapter 2 indicates that the NCI is easier to eliminate when EM waves are superluminal

along the direction of the plasma drift. This can be accomplished with higher order solvers

or with an FFT based solver in the drifting direction of the plasma (denoted as 1̂-direction).

We note that it is more difficult to satisfy strict charge conservation (Gauss’s law) for higher

order finite difference solvers when using the charge conserving current deposition techniques

[23]. Here we replace the finite difference operator of the first spatial derivative ∂/∂x1 in the

Maxwell’s equation in Yee solver with its FFT counterpart that has an accuracy greater than

order N . We then correct for this change in the current deposit to maintain strict charge con-

servation. Without loss of generality, in the following we will briefly describe the algorithm

of the Yee-FFT solver in two-dimensional (2D) Cartesian geometry. The straightforward

extension to the 3D Cartesian case is also discussed.
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4.1.1 Algorithm

We start from the standard algorithm for a 2D Yee solver, in which the electromagnetic

fields ~E and ~B are advanced by solving Faraday’s Law and Ampere’s Law:
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(4.6)

where the EM fields ~E and ~B, and current ~j are defined with the proper half-grid offsets

according to the Yee mesh [21]. If we perform a Fourier transform of Eq. (4.1)–(4.6) in both

x1 and x2, and in time, Maxwell’s equations reduce to

[ω] ~B = c[~k]× ~E (4.7)

[ω] ~E = −c[~k]× ~B − 4πi~j (4.8)

where

[~k] =

(
sin(k1∆x1/2)

∆x1/2
,
sin(k2∆x2/2)

∆x2/2
, 0

)
[ω] =

sin(ω∆t/2)

∆t/2
(4.9)

In vacuum where ~j = 0, the corresponding numerical dispersion relation for the EM waves

is

[ω]2 = c2([k]21 + [k]22) (4.10)

64



The idea of a hybrid Yee-FFT solver is to keep the finite difference operator

[k]2 = sin(k2∆x2/2)/(∆x2/2) (4.11)

in the directions transverse to the drifting direction, while replacing the finite difference

operator [k]1 in the drifting direction with its spectral counterpart [k]1 = k1. To achieve

this, in the hybrid solver we will solve Maxwell’s equations in k1 space. The current is

deposited locally using a rigorous charge conserving scheme [23] that is valid for second

order finite difference operator. For the EM field and current, we first perform an FFT along

x1 so that all fields are defined in (k1, x2) space. After that we apply a correction to the

current in the drifting direction

j̃
n+ 1

2
1 =

sin (k1∆x1/2)

k1∆x1/2
j
n+ 1

2
1 (4.12)

where j̃1 is the corrected current. In [54], the current is also corrected where they combine

a pure FFT solver with a charge conserving current deposit. This correction ensures that

Gauss’s Law is satisfied throughout the duration of the simulation if it is satisfied initially,

as will be discussed in more detail in section 4.1.3. After the current correction, we advance

the EM field as

B
n+ 1

2

1,κ1,i2+ 1
2

= B
n− 1

2

1,κ1,i2+ 1
2

− c∆t×
En

3,κ1,i2+1 − En
3,κ1,i2

∆x2

(4.13)

B
n+ 1

2
2,κ1,i2 = B

n− 1
2
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n
3,κ1,i2 (4.14)
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2,κ1,i2+ 1

2
+ c∆t×
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En+1
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2

∆x2

(4.18)

where k1 = 2πκ1/N and N is the number of grids in x1 direction, and κ1 = 0, 1, . . . , N/2− 1

is the mode number. Note in the hybrid solver, the EM fields ~E, ~B, and current ~j have the
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same temporal and spatial centering as in the Yee solver, and

ξ± = exp

(
±k1∆x1

2
i

)
(4.19)

is the phase shifting due to the half grid offsets of the E1, B2,3, and j1 in the 1̂-direction.

Compared with the standard Yee solver algorithm, it is evident that if we replace −ik1 with

the corresponding finite difference form we can recover the standard 2D Yee algorithm.

4.1.2 Courant condition

The Courant condition of the hybrid solver can be easily derived from the corresponding

numerical EM dispersion Eq. (4.10). Substituting into Eq. (4.10) the finite difference

operator in time [ω]

[ω] =
sin(ω∆t/2)

∆t/2
(4.20)

and the finite difference operators in space

[k]1 = k1 [k]2 =
sin(k2∆x2/2)

∆x2/2
(4.21)

we can obtain the corresponding constraint on the time step

∆t

2

√
k2

1 +

(
sin(k2∆x2/2)

∆x2/2

)2

≤ 1 (4.22)

Note the ~k range of the fundamental Brillouin zone is |k1| ≤ π/∆x1, |k2| ≤ π/∆x2, so we

can obtain the Courant limit for the hybrid solver

∆t ≤ 2√
π2

∆x21
+ 4

∆x22

(4.23)

For square cells with ∆x1 = ∆x2, this reduces to ∆t ≤ 0.537∆x1.

4.1.3 Charge conservation

In the hybrid Yee-FFT solver, we rely on the Faraday’s Law and Ampere’s Law to advance

the EM field. On the other hand, the local charge conserving current deposition [23] ensures
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the second-order-accurate finite difference representation of the continuity equation,

∂

∂t
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2
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2
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2

2,i1,i2− 1
2

∆x2

= 0 (4.24)

is satisfied, where

∂

∂t
Gn =

Gn+1 −Gn

∆t
(4.25)

where Gn is an arbitrary scalar quantity. Therefore, when combining this scheme with the

second order accurate Yee solver, Gauss’s Law is rigorously satisfied at every time step if

it is satisfied at t = 0. However, when the hybrid solver is used together with the charge

conserving current deposition scheme, we need to apply a correction to the current, as shown

in Eq. (4.12), in order that the Gauss’s Law is satisfied at every time step. This can be seen

by first performing a Fourier transform in the x1 direction for Eq. (7.9),

∂

∂t
ρnκ1,i2 − i

sin(k1∆x1/2)

∆x1/2
j
n+ 1

2
κ1,i2 +

j
n+ 1

2

2,κ1,i2+ 1
2

− jn+ 1
2

2,κ1,i2− 1
2

∆x2

= 0 (4.26)

then applying the divergence operator of the hybrid solver to the left and right hand side of

the Ampere’s Law, Eq. (4.16)–(4.18). Using Eq. (4.26), we obtain

∂

∂t

(
−4πρnκ1,i2 − ik1E

n
1,κ1,i2 +

En
2,κ1,i2+ 1

2

− En
2,κ1,i2− 1

2

∆x2

)
= 0 (4.27)

which shows that if Gauss’s Law, which for the 2D hybrid solver is given by,

−ik1E
n
1,κ1,i2 +

En
2,κ1,i2+ 1

2

− En
2,κ1,i2− 1

2

∆x2

= 4πρnκ1,i2 (4.28)

is satisfied at t = 0, it is satisfied at each time step. We note that this correction can

effectively broaden the range of cells over which a particle contributes to current. This is

discussed in more details in the next chapter.

4.1.4 3D Cartesian geometry

It is straightforward to extend the hybrid solver to 3D cartesian geometry. In 3D Cartesian

coordinates, we solve Maxwell’s equation in (k1, x2, x3) space where we use the same second
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order accurate finite difference form of the Yee solver in the 2̂ and 3̂ directions. As in the

2D Cartesian case, the current correction is applied to j1 to ensure that Gauss’s Law is

satisfied at each time step. We have implemented the hybrid solver in 2D and 3D with

current correction in our finite-difference-time-domain (FDTD) code OSIRIS [30].

4.2 NCI in hybrid solver

To investigate the NCI properties of the hybrid solver, we first consider its corresponding

numerical dispersion relation. Employing the general theoretical framework established in

Chapter 2, we can calculate in detail the NCI modes for any Maxwell solver. The roots of

the numerical dispersion relation that lead to the NCI can be found numerically by solving

Eq. (2.18), or by the analytical expression in Eqs. (2.36) and (2.37). For the Yee solver the

k space representation of the finite difference operator is

[k]i =
sin(ki∆xi/2)

∆xi/2
(4.29)

where i = 1, 2 in 2D. Meanwhile, in the hybrid solver the ~k space operator in the drifting

direction is replaced with that of the spectral solver [k]1 → k1. By substituting the respective

operators for each direction into Eqs. (2.36) and (2.37), we can rapidly find the set of

NCI modes for the hybrid solver. In Fig. 4.1 (a)–(d), we plot the (µ, ν1) = (0, 0) and

(µ, ν1) = (0,±1) modes for the hybrid and spectral solvers by scanning over the (k1, k2)

space in the fundamental Brillouin zone and solve for the growth rates of the corresponding

unstable modes. The parameters used to generate this plot are listed in Table 4.1.

We can see from Fig. 4.1 (a) and (b) that the (µ, ν1) = (0,±1) NCI modes of the two

solvers reside near the edge of the fundamental Brillouin zone, although the patterns are

slightly different due to their different finite difference operators in the 2̂-direction, which

leads to the slightly different EM dispersion curves. In Fig. 4.1 (e) and (f) we show how

different EM dispersion curves leads to different (µ, ν1) = (0,±1) NCI modes for the two

solvers. These modes are distinct, and far removed from the modes of physical interest, and

are relatively easy to eliminate.
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Figure 4.1: The pattern of the (µ, ν1) = (0,±1) modes for the two solvers are shown in (a)

and (b). The pattern of the (µ, ν1) = (0, 0) modes for two solvers are shown in (c) and (d).

The intersection between the EM dispersion relations with the first spatial aliasing beam

modes for the full spectral solver and the hybrid solver are shown in (e) and (f). When

generating these plots we use ∆x1 = ∆x2 = 0.2 k−1
p , and ∆t = 0.08 ω−1

p . Other parameters

are listed in Table 4.1.
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Figure 4.2: In (a) and (b) the dependence of the growth rate and k1 for the fastest growing

(µ, ν1) = (0, 0) mode on the time step is shown. The four lines correspond to the theoretical

prediction for the hybrid solver in 2D, results from OSIRIS and UPIC-EMMA simulations

for the spectral and hybrid solvers in 2D Cartesian geometry, and results for the hybrid

solver in the quasi-3D geometry (where the k2 is obtained from a Hankel transform). In

(c)–(f) the spectrum of E2 (Eρ) is plotted for OSIRIS simulations with the hybrid solver in

2D Cartesian or the quasi-3D geometry. In (c) and (d) results from runs where no filter in

k1 is used to eliminate the (µ, ν1) = (0,±1) modes. In (e) and (f) a filter in k1 was used to

eliminate the (µ, ν1) = (0,±1) modes and now the (µ, ν1) = (0, 0) modes are seen.
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Parameters Values

grid size (kp∆x1, kp∆x2) (0.2, 0.2)

time step ωp∆t 0.4kp∆x1

boundary condition Periodic

simulation box size (kpL1, kpL2) 51.2×51.2

plasma drifting Lorentz factor γ = 50.0

plasma density n/np = 100.0

Table 4.1: Simulation parameters for the 2D relativistic plasma drift simulation. np is the

reference plasma density, and ω2
p = 4πq2np/me, kp = ωp (c is normalized to 1).

More importantly, we see from Fig. 4.1 (c) and (d) that the hybrid solver leads to

(µ, ν1) = (0, 0) NCI modes that are very similar to their spectral solver counterpart. The

pattern of the (µ, ν1) = (0, 0) modes for these two solvers are both four dots (in 2D) and

highly localized in the fundamental Brillouin zone. We also use the theory to perform

parameter scans to study the dependence of growth rates (of the fastest growing mode) and

the locations in k space of the (µ, ν1) = (0, 0) modes on ∆t/∆x1 for the hybrid solver, and

compare this result against that of the fully spectral solver, as shown in Fig. 4.2 (a) and

(b). We likewise carried out OSIRIS simulations using the hybrid solver and UPIC-EMMA

[71, 58] using the spectral solver, to compare against theoretical results. Very good agreement

is found between theory and simulations. Fig. 4.2 (a) and (b) show that both the k1 location,

and growth rates of the (µ, ν1) = (0, 0) modes are almost identical for the two solvers. This

indicates that, just like the spectral solver, the growth rate of the (µ, ν1) = (0, 0) modes

of the hybrid solver is reduced, while their location in k1 increases, when the time step is

reduced.

In Fig. 4.2 (c) and (e) we show the locations of the unstable (µ, ν1) = (0,±1), and

(µ, ν1) = (0, 0) NCI modes for the hybrid solver in OSIRIS for 2D Cartesian geometry. The

agreement between Fig. 4.2 (c) and Fig. 4.1 (b), and between Fig. 4.2 (e) and Fig. 4.1 (d)

are excellent.

The main advantage of the purely spectral solver regarding its NCI properties in com-
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parison to a purely FDTD solver is that the superluminal dispersion relation makes it much

easier to eliminate the NCI modes at (µ, ν1) = (0, 0): the modes have a growth rate that

is one order of magnitude smaller than that for the (µ, ν1) = (0,±1) modes, their locations

are highly localized in ~k space, and they can be moved away from the modes of physical

interest by reducing the time step. We showed above that similar NCI properties can be

achieved by using a hybrid FDTD-spectral solver, where the Maxwell’s equation are solved

in Fourier space only in the direction of the plasma drift. Comparing with an EM-PIC code

using a multi-dimensional spectral solver which solves Maxwell’s equation in ~k space, there

are advantages when solving it in (k1, x2) space in 2D [and (k1, x2, x3) space in 3D]. Firstly,

the hybrid solver saves the FFT in the other directions; secondly, since the solver is FDTD in

the directions transverse to the drifting direction, it is easier to integrate the algorithm into

existing FDTD codes such as OSIRIS where the parallelizations and boundary conditions in

the transverse direction can remain untouched. Last but perhaps most important, the idea

that one can obtain preferable NCI properties by solving Maxwell’s equation in k1 space in

the drifting direction can be readily extended to the quasi-3D algorithm [51], as we can solve

the Maxwell’s equation in (k1, r, φ) space.

4.3 Elimination of the NCI modes

In Chapter 3, we proposed strategies to eliminate the NCI in the spectral solver. These

strategies can be readily applied to the hybrid solver. For square (or cubic) cells, the pattern

of the fastest growing modes resides in a narrow range of k1 near the edge of the fundamental

Brillouin zone. Therefore we can apply a low-pass filter in k1 to the current to eliminate the

fastest growing modes. Since the fields are already in k1 space when solving the Maxwell’s

equations, the filtering can be done efficiently by applying a form factor to the current only

in k1.

As for the (µ, ν1) = (0, 0) mode, if they are near the main or higher order harmonics of

the physical modes, we can move them away towards higher |k1|, and reduce their growth

rates by simply reducing the time step. To further mitigate the (µ, ν1) = (0, 0) NCI modes,
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when they are far away from the physical modes, one can modify the EM dispersion relation

to completely eliminate them. In Fig. 4.3 we plot how the modification is accomplished in

the hybrid solver. As shown in Fig. 4.3 (a) except for the bump region, for most k1 the [k]1

for a particular k1 is k1 itself; near the bump, the [k]1 for k1 is k1 + ∆kmod, where ∆kmod is

a function of k1 with

∆kmod = ∆kmod,max cos

(
k1 − k1m

k1l − k1m

π

2

)2

(4.30)

where k1l, k1u are the lower and upper k1 to be modified, k1m = (k1l +k1u)/2, and ∆kmod,max

is the maximum value of ∆kmod. The values of k1l, k1u and ∆kmod,max are determined by the

position of the (µ, ν1) = (0, 0) modes and their growth rates. According to the NCI theory, for

the parameters in Table 4.1, when the [k]1 is as defined in Fig. 4.3 (a) (with k1l/kg1 = 0.15,

k1u/kg1 = 0.26, and ∆kmod,max/kg1 = 0.01), there is no unstable (µ, ν1) = (0, 0) NCI modes,

i.e., the (µ, ν1) = (0, 0) mode has a theoretical growth rate of zero. To verify the theoretical

results in the hybrid solver, in Fig. 4.3 (b) we plot the E2 energy growth with and without

the modification. In these simulations we used the parameters in Table 4.1. The blue

curve in Fig. 4.3 (b) represents the case without the modification, while the red and black

curves are those with the modification to k1. The cases with blue and red curves used

quadratic particle shapes, while the case for the black curve used cubic particle shapes.

We have likewise plotted the E2 spectra at the time point t = 3200 ω−1
0 indicated in Fig.

4.3 (c) and (d) for the two cases with the modifications (red and black curves in 4.3 (b)).

We can see from Fig. 4.3 (b) and (c) that after the modification, the growth rate of the

(µ, ν1) = (0, 0) NCI modes reduces to zero. Meanwhile, the red curve rises later in time due

to the (µ, ν1) = (±1,±2) NCI modes. As we showed in Chapter 2 the growth rate of these

higher order modes can be reduced by using higher order particle shape. Therefore when

cubic particle shapes are used, as is the case for the black curve, the (µ, ν1) = (±1,±2) NCI

modes do not grow exponentially and are therefore much less observable in the corresponding

spectrum at t = 3200 ω−1
0 in Fig. 4.3 (d) as compared to 4.3 (c).
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Figure 4.3: In (a) the perturbation to [k]1 that is used to eliminate the (µ, ν1) = (0, 0) NCI

modes is shown. In (b) the evolution of the log10 |E2|2 for a reference case and for two cases

with the EM dispersion modification (one with quadratic and another with cubic particle

shapes). In (c) and (d), the spectrum of E2 at t = 3200 ω−1
0 is shown for the two cases

with the EM dispersion modifications. In (c) quadratic particle shapes are used, while in

(d) cubic particle shapes are used.
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4.4 hybrid solver in quasi-3D algorithm

As mentioned at the beginning of this chapter, the idea of the hybrid solver can be easily

incorporated into the quasi-3D algorithm [51, 55] in which the fields and current are expanded

into azimuthal Fourier modes. We can obtain the hybrid Yee-FFT solver for the quasi-3D

algorithm by using FFTs in the ẑ (or x̂1) direction and finite difference operators in r̂ (or x̂2)

direction in the equations for each azimuthal mode. Note in quasi-3D OSIRIS we use a charge

conserving current deposition scheme for the Yee solver (as described in [55]), therefore for the

hybrid solver adapted for the quasi-3D algorithm we can apply the same current correction

for the use of FFTs to jz in order that the Gauss’s Law is satisfied throughout the duration

of the simulation.

The NCI properties of the hybrid solver for the quasi-3D algorithm are similar to that of

the 2D Cartesian geometry [57]. While a rigorous NCI theory for the quasi-3D algorithm is

still under development, we can empirically investigate the NCI for this geometry through

simulation. In Fig. 4.2 (d) and (f) we plot the Er data at a time during the exponential

growth of the EM fields due to the NCI, which shows the (µ, ν1) = (0,±1) and (µ, ν1) = (0, 0)

modes for the hybrid solver in quasi-3D geometry. For the Er data, we conduct an FFT

in x1 and a Hankel transform in x2. Similarly to the 2D Cartesian case, we isolate the

(µ, ν1) = (0, 0) modes by applying a low-pass filter in the current in k1 space to eliminate

the fastest growing (µ, ν1) = (0,±1) NCI modes. The parameters used in the simulations

are listed in Table 4.1, and a conducting boundary is used for the upper r boundary. We

kept azimuthal modes of m = −1, 0, 1 in the simulations.

By comparing Figs. 4.2 (c)–(f) it can be seen that the pattern of the NCI modes are

similar for the (x2, x1) and (r, z) geometries. We have also plotted the dependence of the

growth rate and k1 position of the (µ, ν1) = (0, 0) NCI modes for the quasi-3D geometry

in Fig. 4.2 (a) and (b). These plots show that when the time step decreases the growth

rates of the (µ, ν1) = (0, 0) NCI modes in the quasi-3D geometry decreases, while the k1

position increases (and move away from the physical modes), in a nearly similar fashion to

2D Cartesian geometry. This indicates that the same strategies for eliminating NCI in 2D
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Cartesian geometry can be applied to the quasi-3D geometry. The fastest growing modes

residing at the edge of the fundamental Brillouin zone can be eliminated by applying a

low-pass filter in the current. The (µ, ν1) = (0, 0) NCI modes can be mitigated by either

reducing the time step to lower the growth rate and move the modes away from the physics

in k1 space, or by modifying the [k]1 operator as discussed in section 4.3 to create a bump

in the EM dispersion along the k1 direction. We have implemented the modification to the

[k]1 operator into the hybrid solver for the quasi-3D OSIRIS code, and have confirmed that

this modification completely eliminate the (µ, ν1) = (0, 0) NCI modes. The coefficients used

for the modification are the same as those for the 2D Cartesian case discussed in section 4.3.

4.5 Sample simulations

In this section, we present preliminary results of Lorentz boosted frame LWFA simulations

using the hybrid solver in OSIRIS. In these simulations, to eliminate the first spatial aliasing

NCI modes, we use a low-pass filtering for the current of the form

F (k1) =


1, |k1| < flkg1

sin2
(

k1−fukg1
flkg1−fukg1

π
2

)
, flkg1 ≤ k1 ≤ fukg1

0, |k1| > fukg1

(4.31)

The filter retains the k1 modes smaller than flkg1 and cuts off the modes larger than fukg1.

A sin2 function is used between flkg1 and fukg1 for smooth connection between unity and

zero.

For comparison, we performed simulations with the same parameters using UPIC-EMMA

which uses a spectral Maxwell solver. Table 4.2 lists the simulation parameters. We use a

moving antenna in both cases to launch lasers into the plasma. The results are summarized

in Fig. 4.4.

In Fig. 4.4 (a)–(b) the E1 field at t′ = 3955ω−1
0 for simulations with both the hybrid

solver and spectral solver in the Lorentz boosted frame are plotted, where ω0 is the laser

frequency in the lab frame. Both the spectral solver and hybrid solver give similar boosted
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frame results, and there is no evidence of NCI affecting the physics in either case. We plot

the line out of the on-axis wakefield in Fig. 4.4 (c), which shows very good agreement with

one another. The very good agreement can also be seen when we transformed the boosted

frame data back to the lab frame. In Fig. 4.4 (d)–(h) we plot the on-axis E1 field for the

OSIRIS lab frame data, the transformed data for the OSIRIS boosted frame simulation with

the hybrid solver, and the transformed data from the UPIC-EMMA boosted simulation at

several values of time in the lab frame. As seen in Fig. 4.4 (d)–(h), the transformed data

from the two boosted frame simulations agrees very well with each other.

In this chapter, we mainly focus on LWFA simulations in a Lorentz boosted frame.

However, it is worth pointing out that the hybrid solver can likewise be used for LWFA

lab frame simulations with a moving window. When a self-injected or externally injected

electron beam is accelerated by the wakefield, it will also suffer from numerical Cerenkov

radiation (NCR), and may even be susceptible to the NCI in some cases. The resulting

unphysical EM fields can lead to unphysical emittance growth. Applying the hybrid solver

in lab frame simulations will greatly reduce the NCR, which may lead to more accurate

emittance values. As a result, although not shown in this chapter, we likewise benchmarked

the hybrid solver with Yee solver in LWFA lab frame simulation by comparing the wake fields

and laser evolution in the two cases, and very good agreement was obtained. An example

of how the hybrid solver in the lab frame can limit unphysical emittance growth is shown in

Appendix B.

4.6 Summary

In this chapter we proposed to use a hybrid Yee-FFT and a rigorous charge conserving

current deposit for solving Maxwell’s equations in order to eliminate the numerical Cerenkov

instability in PIC codes when modeling plasmas or beams that drift with relativistic speeds

in a particular direction. In this solver we solve the Maxwell’s equation in k1 space along

the drifting direction (x̂1 direction), and use second order finite difference representation for

the derivatives in the other directions. This provides greater than N -th order accuracy for
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Plasma

density n0 1.148× 10−3n0γb

length L 7.07× 104k−1
0 /γb

Laser

pulse length τ 70.64k−1
0 γb(1 + βb)

pulse waist W 117.81k−1
0

polarization 3̂-direction

normalized vector potential a0 4.0

Lab frame simulation (γb = 1)

grid size (∆x1,∆x2) (0.2k−1
0 , 2.75k−1

0 )

time step ∆t/∆x1 0.996

number of grid (moving window) 4000× 512

particle shape quadratic

2D boosted frame simulation (γb = 14)

grid size ∆x1,2 0.0982k−1
0 γb(1 + βb)

time step ∆t/∆x1 0.125

number of grid 8192×512

particle shape quadratic

low-pass filter (fl, fu) (0.265,0.31)

Table 4.2: Parameters for a 2D LWFA simulations in the lab frame and Lorentz boosted

frame that were used for in 2D Cartesian geometry with the hybrid solver in OSIRIS and

with a fully spectral solver in UPIC-EMMA. The laser frequency ω0 and number k0 in the

lab frame are used to normalize simulation parameters. The density is normalized to the

critical density in the lab frame, n0 = meω
2
0/(4πe

2).

78



(d) (e) (f) (g) (h)

t = 19960 t = 37571 t = 55183 t = 70446t = 2348

on-axis line out of (a) and (b)

Figure 4.4: Comparison between OSIRIS lab frame, OSIRIS with the hybrid solver in the

boosted frame and UPIC-EMMA in the boosted frame. In (a) and (b), 2D plots of E1 for

OSIRIS with the hybrid solver and UPIC-EMMA at t′ = 3955ω−1
0 are shown in the boosted

frame, where ω0 is the laser frequency in the lab frame. In (c), line outs along the laser

propagation direction of the same data are shown. In (d)–(h), line outs of the E1 data

transformed back to the lab frame are shown. The colored lines correspond to an OSIRIS

lab frame simulation, an OSIRIS hybrid solver simulation in the Lorentz boosted frame, and

UPIC-EMMA simulation in the Lorentz boosted frame.
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the spatial derivatives in the x̂1 direction, while keeping the locality of the field solve and

current deposit in the directions transverse to 1̂. For the current deposit, we start from the

charge conserving deposit in OSIRIS and then correct it so that it still satisfies the continuity

equation for the hybrid solver. Thus, Gauss’s law remains rigorously satisfied at every time

step if it is satisfied initially.

It is found from the NCI theory that such a hybrid solver has similar NCI properties in

comparison to a full spectral solver that solves Maxwell’s equations in multi-dimensional ~k

space. As a result, the (µ, ν1) = (0, 0) NCI modes have a growth rate one order of magnitude

smaller than the fastest growing (µ, ν1) = (0,±1) NCI modes, and are highly localized. In

addition, the growth rates of the (µ, ν1) = (0, 0) modes decrease as one reduces the simulation

time step, and their locations in Fourier space also move farther away from the physics.

Compared with the spectral solver, the hybrid solver performs an FFT only along the

drifting direction of the plasma. As a result, it eliminates the computation of FFTs in

other direction(s). In addition, it can be readily adapted into fully operational FDTD codes

without the need to modify various boundary conditions in the transverse directions. Very

importantly, this idea can be readily applied to the quasi-3D algorithm in which the quantities

are decomposed into azimuthal harmonics. In this algorithm FFTs cannot be used in the r̂

direction. We demonstrate the feasibility of the hybrid Yee-FFT solver in 2D/3D Cartesian

geometry, as well as in the quasi-3D geometry. Although we have not conducted a rigorous

theoretical analysis for the NCI in the r-z or quasi-3D geometries, we find in simulations

that the hybrid solver in quasi-3D geometry has very similar NCI properties to that in the

2D Cartesian geometry. This scheme requires a 1D FFT which cannot be parallelized at the

moment.

We show that the strategy to eliminate NCI in the hybrid solver for 2D/3D Cartesian

geometry, as well as quasi-3D geometry, is similar to that for the spectral solver. The fastest

growing NCI modes can be eliminated by applying a low-pass filter in the current. The

(µ, ν1) = (0, 0) NCI modes can be eliminated by reducing the time step which both reduces

their growth rates and moves them away from the physical modes in Fourier space. These

NCI modes can also be fully eliminated by slightly modifying the the EM dispersion relation
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along k1 direction at the location in Fourier space where the (µ, ν1) = (0, 0) modes reside.

This approach is demonstrated in both Cartesian and quasi-3D geometry.

We showed that the new hybrid solver in OSIRIS can be used to conduct 2D LWFA

simulations in a Lorentz boosted frame. With the low-pass filter applied to current and using

a reduced time step, we observe no evidence of NCI affecting the physics in the simulation.

Very good agreement is found between the results from OSIRIS with the hybrid solver,

UPIC-EMMA simulations, as well as OSIRIS lab frame simulations with the standard Yee

solver. This demonstrates the feasibility of using the hybrid solver to perform high fidelity

simulations when plasma or beams drift relativistically across the grid.
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CHAPTER 5

Customized FDTD Maxwell solver for NCI elimination

In this chapter, we take advantage of the previous progress described in previous chapters

[46, 72], and develop a method to design a finite-difference-time-domain (FDTD) solver that

has similar (yet different) NCI properties to the FFT-based solver described in Chapter 3

and 4 [46, 72]. Although it was based on the use of FFTs, when examined more carefully

the previous progress showed that the key to essentially eliminate the NCI is to first isolate

the range of unstable ~k’s for what we refer to as the main NCI mode. This is accomplished

by using a solver that has sufficiently small numerical errors in the spatial derivatives (and

thus small dispersion errors for light waves) for moderate |k1|. Even with perfect dispersion

for light waves in vacuum, there will always be an intersection from the first spatial aliased

beam modes at high |k1| that needs to be filtered out, and coupling between the EM mode

and the main Langmuir mode at moderate |k1|. We note that for this reason the use of the

PSATD solver described in Ref. [41] does not appear to have advantages with respect to

eliminating the NCI. As we have recently shown [46], when the main mode is isolated to a

small range of ~ks then a small modification to the dispersion for the range of unstable modes

can remove the coupling between the EM (purely transverse in the lab frame) modes and

Langmuir (purely longitudinal in the lab frame) modes.

Recognizing how the NCI is being controlled and eliminated by the use of an FFT along

the plasma drifting direction (1̂ direction) leads us to consider the possibility to design a

customized and higher order finite difference operator for the spatial derivatives that provides

sufficiently accurate dispersion for moderate |~k|. This finite difference operator for the spatial

derivative can be implemented into a FDTD solver which is purely local and should thus

scale well on massively parallel computers using domain decomposition. While this new
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solver can eliminate unstable modes at moderate |k1|, it cannot eliminate modes at high |k1|

near the edge of the first Brillouin zone. In addition, such a solver will not conserve charge

i.e., Gauss’s law will not be satisfied. Nonetheless, both of these issues can be resolved by

performing local FFTs for the current which do not use any global communication.

Similar to the hybrid Yee-FFT solver, to ensure the Gauss’ Law is satisfied for the

customized solver, we correct the component of the current in the 1̂ direction in k1 space.

This is done locally on each parallel partition along 1̂ and because the current is already in

k1 space, we can also use a low pass filter and eliminate the unstable high k1 NCI modes.

This filter can also be included into the current correction. We will show that overall this

method is effective at eliminating the NCI while allowing good parallel scalability when

domain decomposition is required along 1̂ direction.

We note that in Ref. [54] a PIC algorithm based on using a “local” FFT Maxwell solver

was proposed. Their work was motivated for maintaining high parallel efficiency and was not

focused on eliminating the NCI. They did show results from LWFA simulations in a boosted

frame in a linear regime, however, no analysis for the NCI for FFT based algorithms was

presented. We note that there are distinct differences between their approaches to ours. In

our case, FFTs are performed only on the current. This is done to ensure that the continuity

equation is satisfied, and also to filter the current for NCI elimination. Because the current

from a single particle is not global this can lead to a current that satisfies the continuity

equation at every location and it can eliminate the NCI. The EM fields remain in real space

and are advanced using Faraday’s and Ampere’s law. So long as the solution for the current

satisfies the continuity equation locally for the finite difference operators used in Ampere’s

Law, then Gauss’s law will be maintained. If the longitudinal components of the fields are

also solved using local FFTs in each partition (as is proposed in Ref. [54]), there will be

errors in the longitudinal components of ~E and ~B due to the enforcement of periodicity.

The remainder of this chapter is organized as follows. In section 5.1 we first present a

method to construct a customized FDTD Maxwell solver that has preferable NCI properties.

The corresponding current correction and filtering strategies are discussed in section 5.2. We

show that the use of local FFTs can provide a current that satisfies the continuity equation
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for a customized solver. We then present sample simulations in section 5.3 showing that

good accuracy and scalability can be obtained. Finally, in section 5.4 a summary is given.

5.1 Customized Maxwell solver

The Numerical Cerenkov Instability (NCI) occurs when a plasma drifts relativistically on

a grid in a PIC code due to the unphysical coupling between the Langmuir modes (both

main and aliasing) and electromagnetic (EM) modes [46]. Categorizing the NCI modes with

their temporal aliasing mode number µ, and spatial aliasing mode number ν1, it is found

that usually the most violently growing NCI modes are those at (µ, ν1) = (0,±1) (we call

them first spatial aliasing NCI modes), and (µ, ν1) = (0, 0) (main NCI modes) [46]. The first

spatial NCI modes usually reside near the edges of the fundamental Brillouin zone, making

them relatively easy to eliminate with a sharp low-pass filter to the current. On the other

hand, the main NCI modes are usually located within the inner half of the ~k modes, where

modes of physical interest are located. It was shown for typical FDTD solvers that these

modes were contained in a broad spectrum such that they cannot be eliminated through

a low pass or mask filter. On the other hand, as shown in Chapter 3 and 4 [46, 72], for

FFT-based solvers (and cell sizes ∆x1 ≤ ∆x2), the main NCI modes are very localized in ~k

space and they move to large |~k| as the time step is reduced.

Therefore, as discussed in [46, 72], to eliminate the NCI modes in FFT-based solvers,

the first step is to find a reduced time step which moves the main NCI modes away from

the physical modes. After these modes are far enough from the physical modes, one can

then apply a highly localized modulation to the EM dispersion relation in ~k space where the

(µ, ν1) = (0, 0) modes reside in order to completely eliminate them. For a multi-dimensional

spectral solver, the modification of the EM dispersion is accomplished by directly modifying

the finite difference operator [~k] in that localized area in ~k space [46]. For the hybrid Yee-

FFT solver, only the operator [k1] is modified in the k1 range where the main NCI modes are

located [72]. The modification of the operator usually creates a bump in the dispersion curve

in the range where the main NCI modes are located, which removes the coupling between
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the EM modes and the Langmuir modes in that area, thereby eliminating the main NCI

modes in that range completely.

When solving the Maxwell’s equation using the FFT-based solvers, the differential oper-

ators in ~k space are explicitly used in the equations, therefore it is straightforward to modify

the operators in ~k space. However, as mentioned in introduction, the use of a 1D FFT when

there are many cells along that direction affects the scalability of the solver (or a multi-

dimensional FFT solver when there are “many” more cells along one direction). Therefore,

a question that naturally follows is whether it is possible to design an FDTD solver to im-

itate the characteristics of the EM dispersion curves of a FFT-based solver that make it

possible to effectively eliminate the NCI. In the following sections, we describe a “recipe”

for designing a finite difference derivative that when written in ~k space leads to the proper

characteristics for the EM dispersion.

In [72] it is found that by replacing the finite difference spatial derivative in the direction

of the plasma drift from a stencil that is second order accurate in cell size with a spectral

solver (which is greater than N -th order accurate), one can restrict the (µ, ν1) = (0, 0) NCI

modes to a highly localized area in the fundamental Brillouin zone [72]. Meanwhile, the

spatial derivatives in the other direction(s) can be kept as second order accurate. Therefore,

when we design an FDTD solver for the purpose of NCI elimination, it is natural to start

with a “hybrid” FDTD solver that resembles the hybrid Yee-FFT solver. We use a higher

order FDTD finite difference stencil [75, 76] in the direction of the drift while keeping them

second order accurate in the other direction(s). Examination of the NCI growth rate where

[k1] is replaced with the expression for a higher order stencil reveals that indeed the NCI is

localized. In addition, we find that new (µ, ν1) = (0, 0) modes arise at large k1 where the EM

dispersion curve rolls over, i.e., the phase velocity drops. We then show how to modify the

expression for [k1] for the higher order finite difference operator such that the EM dispersion

curve has a slight bump at moderate |k1| in order to precisely avoid the coupling between the

EM modes and main Langmuir modes for the main, (µ, ν1) = (0, 0), NCI modes of moderate

|k1|. To accomplish that, we expand the number of terms in the stencil [see Eq. (5.3)] to add

extra degrees of freedom which can create the bump in the k1 range where the main NCI
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modes reside, as we will explain in the following sections. In addition the new (µ, ν1) = (0, 0)

modes at high k1 can be filtered out since they are outside the range of physically relevant

modes.

5.1.1 NCI for high order finite difference solvers

Without loss of generality, we describe the method outlined above in the 2D Cartesian

geometry. In a Maxwell solver, the electromagnetic fields ~E and ~B are advanced by solving

Faraday’s law and Ampere’s law,

~Bn+ 1
2 = ~Bn− 1

2 − c∆t∇+
p × ~En (5.1)

~En+1 = ~En + c∆t∇−p × ~Bn+ 1
2 − 4π∆t ~Jn+ 1

2 (5.2)

where the EM fields ~E and ~B, and current ~J are defined on the staggered Yee grid [21], and

∇±p =
(
∂±p,x1 , ∂

±
2,x2

)
is the discrete finite difference operator for the staggered scheme. Note

according to [72] the NCI can be eliminated if the operator [k1] = k1 is used along the plasma

drifting direction. We now show that for a FDTD solver, a similar dispersion curve can be

obtained by using high order finite difference operator in this direction. We apply a p-th

order operator in the 1̂ direction and a standard second order Yee solver in the 2̂ direction.

The p-th order operator is defined as

∂+
p,x1

fi1,i2 =
1

∆x1

p/2∑
l=1

Cp
l (fi1+l,i2 − fi1−l+1,i2)

∂−p,x1fi1,i2 =
1

∆x1

p/2∑
l=1

Cp
l (fi1+l−1,i2 − fi1−l,i2) (5.3)

where f is an arbitrary quantity, i1 and i2 are the spatial grid indices, and the coefficients

of the finite difference operator Cp
l can be expressed as [75, 76]:

Cp
l =

(−1)l+1161− p
2 (p− 1)!2

(2l − 1)2(p
2

+ l − 1)!(p
2
− l)!(p

2
− 1)!2

(5.4)

If we perform a Fourier transform to Eqs. (5.1) and (5.2) in both time and space, Maxwell’s

equations become

[ω] ~B = c[~k]× ~E (5.5)

[ω] ~E = −c[~k]× ~B − 4πi ~J (5.6)
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where the operators in operators in frequency and wavenumber space are

[ω] =
sin(ω∆t/2)

∆t/2

[~k] =

 p/2∑
l=1

Cp
l

sin[(2l − 1)k1∆x1/2]

∆x1/2
,
sin(k2∆x2/2)

∆x2/2

 (5.7)

where ω and k1,2 are the frequency and wave numbers, and ∆t and ∆x1,2 are the time step

and grid sizes of the PIC system, respectively. Note that when the current vanishes, ~J = ~0,

in Eq (5.6), we obtain the numerical dispersion relation for EM waves in vacuum, i.e.,

[ω]2 = c2
(
[k1]2p + [k2]22

)
(5.8)

where [k1]p and [k2]2 are the components of [~k], and the order of accuracy is denoted by the

subscripts outside the square brackets.

We plot the numerical dispersion relation ω v.s. k1 (assuming k2 = 0) in Fig. 5.1.

We can see from Fig. 5.1 that, when the order p of [k1] increases, the dispersion curve

is converging to (but never approaches) that of the spectral solver (black solid line). To

quantify the locations and growth rates of the NCI modes for high order solvers, in Fig.

5.2, we plot the patterns of the (µ, ν1) = (0, 0) and (0, 1) NCI modes over the (k1, k2) space

in the fundamental Brillouin zone. The plot is generated by applying the p-th order finite

difference operator in k1 and second order finite difference operator in x2 into the theoretical

framework developed in Ref. [45, 46]. From Fig. 5.2 (a) we can see that the main NCI

modes of a high order solver split into two parts: a highly localized part, i.e., a “dot”, near

k1/kg1 = 0.2 (that has a lower growth rate), and another “strip” component that is very

close to the edge of the fundamental Brillouin zone (that has a higher growth rate). To make

both visible on the same scale we multiply the growth rate of the “dot” modes by ten. It is

interesting to note that the highly localized “dot” part of the main NCI modes is located at

almost the same place as for the hybrid Yee-FFT solver [shown in Fig. 5.2 (c)]. Meanwhile,

the “strip” component has a growth rate on the same order of magnitude as the main NCI

modes of the Yee solver, which are comparable to the (µ, ν1) = (0, 1) modes for either FFT

or finite difference solvers [see Fig. 5.2 (b) and (d)]. This can be explained by the fact that

in the low k1 range the dispersion curve of the higher order solver almost overlaps that of the
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hybrid solver, while for the high k1 range the curve bends down, resulting in a similar NCI

pattern to that of the Yee solver (which rolled over for lower k1 values). In the meantime,

the (µ, ν1) = (0,±1) modes of the higher order solver reside very close to the edge of the

fundamental Brillouin zone [shown in Fig. 5.2 (b)], which is similar to the case of the hybrid

Yee-FFT solver [Fig. 5.2 (d)]. This enables us to readily eliminate these modes by applying

a low-pass filter to the current in k1-space.

Figure 5.1: 1D numerical dispersion relations of different finite difference solver and spectral

solver. ∆x1 = 0.2k−1
p and ∆t = 0.05ω−1

p , where np is the reference plasma density, and

ω2
p = 4πq2np/me, kp = ωp (c is normalized to 1), are used to generate the plots.

Just as was the case for the hybrid Yee-FFT solver, the location of the “dot” part of

the main NCI modes also changes for the higher order solver as one reduces the time step.

In Fig. 5.3, we scan the location of the “dot” part of the main NCI modes with different

time steps for various solvers. We can see that the main NCI modes at moderate |~k| move

towards higher |~k| for both the hybrid Yee-FFT solver, 16th order solver, and 24th order

solver. Therefore, it is possible to apply the strategies used for the hybrid Yee-FFT solver to

effectively eliminate the NCI for the hybrid higher order-Yee solver. In addition, as ∆t/∆x1

decreases, so do the growth rates for the “dot” part of the main NCI modes.
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Figure 5.2: The NCI patterns of 16th order solver and hybrid Yee-FFT solver. (a) and

(b) show the (µ, ν1) = (0, 0) and (µ, ν1) = (0, 1) NCI mode of the high order (16th order)

solver. The values in the dashed line box in (a) is multiplied by 10 for better visualization.

(c) and (d) show the (µ, ν1) = (0, 0) and (µ, ν1) = (0, 1) NCI mode of the hybrid solver.

∆x1,2 = 0.2k−1
p , ∆t = 0.05ω−1

p and n = 30np, where np is the reference plasma density, and

ω2
p = 4πq2np/me, kp = ωp (c is normalized to 1), are used to generate the plots.

89



For given simulation parameters, we first calculate the locations of the main NCI modes

for the 16th order solver (16th order in 1̂ direction, and 2nd order in other directions). If

they are too close to the physical modes, we reduce the time step to move them away from

the center towards the edge of the fundamental Brillouin zone. In the next section, we

describe how to modify the higher order stencil such that its k1 v.s. [k1]p curve has a bump

to eliminate the “dot” part of the main NCI modes.
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Figure 5.3: The position of the splitted “dot” in (µ, ν1) = (0, 0) NCI mode at different time

step for 16th order, 24th order solver and Yee-FFT hybrid solver. We scan the position using

∆x1,2 = k−1
0 and np = n0, from ∆t = 0.1∆tCFL to ∆t = 0.9∆tCFL.

5.1.2 Customization of [k]1

In this subsection, we explain how we customize a higher order finite difference first derivative

that also has a slight modification near the location of the NCI modes in wave number space.

For the FFT-based solvers described in [46, 72] this modification to the EM dispersion

relation in the k1 range where the main NCI modes are located can be easily implemented.

Specifically, this is accomplished by changing the definition of k1 inside the field solver
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to [k1](k1) in the range k1 ∈ [k1l, k1u], where the (µ, ν1) = (0, 0) NCI modes reside to

[k1] = k1 + ∆kmod(k1) where ∆kmod(k1) is a small localized perturbation(see Fig. 3(a) in

[72]). It usually takes the form of

∆kmod(k1) =


∆kmod,max sin

(
π k1−k1l
k1u−k1l

)2

, k1l ≤ k1 ≤ k1u

0, otherwise

(5.9)

where k1l, k1u are the lower and upper bounds of the region that is modified, and ∆kmod,max

is the maximum of ∆kmod. In an FFT-based solver this modification is straightforward to

implement, while in a high order FDTD solver, one has to find a stencil that has both

higher order accuracy for the derivative over a wide range of wave number space as well

as a modification in a local region of wave number space. For a regular pth order solver

(where p is an even number), there are p/2 coefficients, Cp
l , for the stencil and the numerical

dispersion relation is uniquely determined. It naturally follows that if we want to customize

the dispersion relation based on the high order solver, we will need to add more degrees of

freedom, i.e., more coefficients, into the operator. This means the stencil will be broader. The

coefficients will still need to be constrained so that the operator has higher-order accuracy,

while at the same time it has the desired modification in a local region of k1 space.

We denote the high order solver as ∇±p∗ =
(
∂±p∗,x1 , ∂

±
2,x2

,
)
. The first component has the

form

∂+
p∗,x1fi1,i2 =

1

∆x1

M∑
l=1

C̃p
l (fi1+l,i2 − fi1−l+1,i2) (5.10)

∂−p∗,x1fi1,i2 =
1

∆x1

M∑
l=1

C̃p
l (fi1+l−1,i2 − fi1−l,i2) (5.11)

while the second component is still the standard second order accurate operator. The mod-

ified solver has M coefficients, C̃p
l , where M > p/2. The corresponding finite difference

operator in k-space becomes

[k1]p∗ =
M∑
l=1

C̃p
l

sin[(2l − 1)k1∆x1/2]

∆x1/2
(5.12)

In order to construct the “bump” in the dispersion curve for the proposed solver, we need

to find an “optimized” set of C̃p
l such that [k1]p∗ will best approximate the modified [k1] =
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[k1]p+∆k described in Eq. (5.9). For the purpose of simplifying the notation, in the following

we normalize [k1]p∗, [k1]p, ∆kmod, k1l, k1u and k1, with kg1 = 2π/∆x1. In the spirit of the

least square approximation, we construct a function F1

F1 =

∫ 1/2

0

([k1]p∗ − [k1]p −∆kmod)2 dk1 (5.13)

which we will minimize to find an optimum set of C̃p
j . We note that a weight function w(k1)

can be included to minimize errors in targeted region of k1 space, and this is an area for

future work. In addition, the high order solver should also meet the requirement of pth

order accuracy and satisfy the condition ∂±p∗,x1 → ∂x1 as ∆x1 → 0. Therefore, the coefficients

should be subject to the linear equations below

M ~̃Cp = ~̂e1 (5.14)

where ~̃Cp = (C̃p
1 , ..., C̃

p
M)T , ~̂e1 = (1, 0, ..., 0)T and the elements of the matrix M are Mij =

(2j − 1)2i−1/(2i − 1)! (i = 1, ..., p/2) and (j = 1, ...,M). This is a constrained least-square

minimization problem so we can use the Lagrange multipliers to solve it.

The Lagrangian is defined by L = F1 + F2 where F2 = ~λT (M ~̃Cp − ~̂e1) and ~λ =

(λ1, ..., λp/2)T . Solving the constrained least-square minimization problem is equivalent to

solving,

∂L/∂C̃p
j = 0 (j = 1, ...,M) and ∂L/∂λi = 0 (i = 1, ..., p/2) (5.15)

It can be straightforward to show that this results in the following set of equations,

∂F1

∂C̃p
j

=


1

2π2 (C̃p
j − C

p
j − Aj), 1 ≤ j ≤ p

2

1
2π2 (C̃p

j − Aj),
p
2

+ 1 ≤ j ≤M

(5.16)

∂F2

∂C̃p
j

=
∑
i

λiMij (5.17)

∂F2

∂λj
=

∑
i

MjiAi − ej (5.18)

where

Aj =
8∆kmod,max(cos[(2j − 1)πk1u]− cos[(2j − 1)πk1l])

(2j − 1)[(2j − 1)2(k1u − k1l)2 − 4]
(5.19)
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Combing Eqs. (5.16)-(5.18), we can reformat Eq. (5.15) into a matrix equation 1
2π2

~I MT

M ~0

 ~̃Cp

~λ

 =

 1
2π2 ( ~A+ ~Cp)

~̂e1

 (5.20)

where ~I is the M × M unit matrix and ~Cp = (Cp
1 , ..., C

p
p/2, 0, ..., 0)T . For given “bump”

parameters ∆kmod,max, k1l and k1u, Eq. (5.20) can be solved numerically. Henceforth, in this

chapter we use M = p.

(a)

(b)

(c)

(d)

(e)

x10

Figure 5.4: In (a) the perturbation (red line) introduced by the modified 16th order solver is

shown. The blue line denotes the [k1]-k1 relation of the regular 16th order solver. The lower

and upper limits of perturbation are k1l/kg1 = 0.18 and k1u/kg1 = 0.33. The perturbation

magnitude ∆kmod,max = 0.01. (b) and (c) are (µ, ν1) = (0, 0) and (µ, ν1) = (0, 1) NCI mode

patterns of the regular 16th order solver respectively. The values in the dashed line box in (b)

are multiplied by 10 to make them more visible. (d) and (e) are the patterns of the modified

16th order solver. When generating these plots we use ∆x1,2 = 0.2k−1
p , ∆t = 0.05ω−1

p and

n = 50np, where np is the reference plasma density, and ω2
p = 4πq2np/me, kp = ωp (c is

normalized to 1).

In Fig. 5.4 we show the comparison of the [k1] operator and the NCI mode patterns

between the regular and customized high order solver. We use a 16th order solver as an
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example. In Fig. 5.4(a), we show that a perturbation (red line) can be introduced to the

[k1]16 operator within the bump region, while the operators [k1]16 and [k1]16∗ are almost

overlapped outside the region. Figs. 5.4 (b) and (c) show the NCI mode patterns for the

regular 16th order solver. We can see the dot of (µ, ν1) = (0, 0) modes presented in the

middle of the fundamental Brillouin zone, for which we aim to eliminate through the use of

the modified solver. In Fig. 5.4(d), the dot has been eliminated and (µ, ν1) = (0, 1) modes

and the remaining of (µ, ν1) = (0, 0) modes are almost identical to what was seen for the

regular high order solver.

5.1.3 Courant condition

The derivation of the Courant condition for the proposed high order solver is straightforward.

From the numerical dispersion relation

[ω]2 = c2
(
[k1]2p∗ + [k2]22

)
, (5.21)

it can be shown that to keep ω a real number, the corresponding constraint on the time step

that must be satisfied is

∆t

2

√√√√( M∑
l=1

C̃p
l

sin[(2l − 1)k1∆x1/2]

∆x1/2

)2

+

(
sin(k2∆x2/2)

∆x2/2

)2

≤ 1. (5.22)

Note that |k1| ≤ π/∆x1 and |k2| ≤ π/∆x2, therefore the Courant condition of the proposed

high order solver

∆t ≤ 1/

√√√√(∑M
l=1 C̃

p
l

)2

∆x2
1

+
1

∆x2
2

(5.23)

For the standard high order solver, given the cell sizes, the Courant limit only depends

on cell sizes and the order solver’s accuracy. For instance, the Courant limit of a 16th order

solver (16th order in x1, while second order in x2) is ∆tCL = 0.6575∆x1 with ∆x1 = ∆x2.

As for the customized solver, although the specified solver coefficients C̃p
l depend on the

modification of numerical dispersion we introduce, the Courant limit on the time step varies

little as we alter the “bumps” in the numerical dispersion curve. Taking the 16th order

customized solver with 16 coefficients and ∆x1 = ∆x2 as an example, the Courant condition
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reduces to ∆tCL = 0.6550∆x1 for kl = 0.1, ku = 0.3, ∆kmod = 0.01, and ∆tCL = 0.6562∆x1

for kl = 0.15, ku = 0.3,∆kmod = 0.005. As we can see, the Courant condition changes little

when switching from the standard high order solver to the customized solver.

5.1.4 Cartesian 3D and quasi-3D scenarios

As can be seen from previous sections, this FDTD solver only modifies the finite difference

operator in the plasma drifting direction. As a result, although not presented in this chapter,

the method described above can be extended to Cartesian 3D and quasi-3D geometry [51, 55]

in a straightforward way.

5.2 Charge conservation and parallelization of the solver

Similar to the case of the hybrid Yee-FFT solver, when the [k1] of the solver is different

from the second order accurate [k1]2, one needs to apply a correction to the current in

order to satisfy Gauss’ Law. This is due to the fact that in a typical FDTD EM-PIC code,

the EM fields are advanced by the Faraday’s law and Ampere’s law, while the Gauss’ Law

is satisfied by applying a charge conserving current deposit [23]. The charge conserving

current deposition is second order accurate in all directions, which matches exactly to the

standard Yee solver. As a result, when the finite difference operator for the derivative along

a particular direction changes in a solver, Gauss’ Law is no longer satisfied if the current

is not corrected correspondingly. Currently no rigorous charge conserving current deposit

exists for higher order solvers.

More specifically, the charge conserving current deposition ensures the second-order-

accurate finite difference representation of the continuity equation,

∂

∂t
ρn +∇−2 · ~Jn+ 1

2 = 0 (5.24)

where ∂
∂t
Gn = Gn+1−Gn

∆t
for an arbitrary scalar quantity Gn. For the Yee solver, Gauss’s

law is rigorously satisfied every time step if it is satisfied at the beginning. However, when

combining the high order solver and the second-order-accurate current deposition scheme,
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we need to apply a correction to the current in the drifting direction in order that Gauss’s

law remains satisfied throughout the whole simulation. After the current has been calculated

locally, we then “correct” them by performing an FFT along the x1 direction,

J̃
n+ 1

2
1 =

[k1]2
[k1]p∗

J
n+ 1

2
1 (5.25)

where J̃1 is the corrected current, in a similar manner to what was employed for the hybrid

Yee-FFT solver. Performing Fourier transform in the x1 direction and applying the correction

scheme in Eq. (5.25), we guarantee

∂

∂t
ρn(k1, x2) + i[k1]p∗J̃

n+ 1
2

1 (k1, x2) + ∂−2,x2J
n+ 1

2
2 (k1, x2) = 0 (5.26)

Combining Eq. (5.26) with Ampere’s law, Eq. (5.2), (replacing ∇−p with ∇−p∗ to be consistent

with the modified high order solver), we obtain

∂

∂t

(
−4πρn + i[k1]p∗E

n
1 + ∂−2,x2E

n
2

)
= 0 (5.27)

We carry out inverse Fourier transform to retrieve the equation in real space,

∂

∂t

(
−4πρn +∇−p∗ · ~En

)
= 0 (5.28)

which indicates that Gauss’s law is satisfied if it is satisfied initially.

It is important to note that one effect that arises from the current correction is that the

current from one particle extends to more cells. Therefore, an originally localized current

distribution would be spread out over more cells after we correct the current in the k-space

and transform back to real space. This results from the use of a less local operator for

the derivative. Nevertheless, the current still rigorously satisfies the continuity equation for

the desired particle shape. We point out that this effect can be neglected and the current

correction is still a nearly error-free scheme in some sense, as will be discussed below.

Assuming we have a point current initially in the real space, located at the grid index

i1 = 0, i.e. J1,i1 = δ(i1). After performing the discrete Fourier transform, the current in the

k-space becomes unity for all k1, i.e. J1,κ1 = 1, where κ1 = −N/2, ..., N/2 − 1 is the mode
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number, and k1 = 2πκ1/N∆x1 with N the number of cells in x1 direction. The corrected

current J̃1,κ1 is therefore the correction factor(
[k1]2
[k1]p∗

)
κ1

=
sin
(
π
N
κ1

)∑
l C̃

p
l sin

[
(2l−1)π
N

κ1

] (5.29)

It can be asserted that the inverse discrete Fourier transform (IDFT) of the correction factor

extends over all space. This can be easily proved by contradiction. Suppose the IDFT of

the corrected point current was confined to a region of space, e.g., it is non zero only in

the interval [−W,W ] and the expanded current distribution in the real space is symmetric,

i.e. J1,i1 = J1,−i1 . The corresponding Fourier coefficients after a DFT would therefore be a

finite summation of cosine functions, i.e. J1,κ1 = J1,i1=0 + 2
∑W

i1=1 J1,i1 cos(2πi1κ1/N). By

inspection, it is clear that, Eq. (5.29) cannot be rewritten in such way. Therefore, we have

proven that the IDFT of the current correction for a delta function cannot be localized in

space, and therefore must exist within the entire space over which the FFT is performed.

However, as we show next the values of the corrected current for an initial delta function

(at the origin) fall off rapidly for cells away from the origin. In fact, the values fall below

double precision accuracy effectively making the corrected current effectively only non-zero

in a finite region. We illustrate this through 1D numerical calculations. We initialize the

current as a Dirac-delta distribution in the center of the grid, i.e. J1 = δ(x0). Then we

perform a 1D FFT to the current, then use the correction according to Eq. (5.25) for solvers

with different orders in the k-space, and finally perform an IFFT to transform the current

back into real space. Fig. 5.5 shows the spatial distribution of the corrected current. It

can be seen that the extent of the current is widened by the correction process and the

width increase as the order of the solver is increased. Nonetheless, the expansion remains

in a localized region in real space and beyond this region the amplitude is on the order of

10−16, which corresponds to double precision roundoff. The fact that the current is localized

indicates that the current correction can be done on a local domain so long as a sufficient

number of guard cells are used. This permits of using domain decomposition along the 1̂

direction and the use of a local FFT on each domain. For example, we have decreased

the size of the domain from 256 grids in Fig. 5.5 (a) to 128 grids in Fig. 5.5 (b). The
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current distribution, the width expansion, and noise level are almost the same. Therefore,

we can see that the size of a parallel partition makes little impact on the simulation results.

Although the current expansion is mathematically infinite as mentioned before, in the sense

of considering the precision of the numerical algorithm, the current expansion can be viewed

as localized. When a sufficient number of guard cells for each simulation partition is used, this

current correction scheme will be nearly free of any error brought by the current expansion.

⠀愀⤀

⠀戀⤀

砀

砀

Figure 5.5: Effect of the current expansion tested by point current. Numerical calculations

are carried out on 256 cells (a) and 128 cells (b), to model the cases using different partition

sizes. Current with Dirac-delta distribution is initialized and the current corrections of

different orders of solver are applied in the k-space. (a) and (b) show the current distributions

in real space with different correction schemes. We set ∆x1 = 1 for the calculations.

5.3 Sample simulations

In this section we present sample simulations using the customized solver and its correspond-

ing NCI elimination schemes. In these simulations, we use a low-pass filtering for the current
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as described in Eq. (4.31).

5.3.1 Drifting plasma

In this subsection we demonstrate the capability of the customized FDTD Maxwell solver to

eliminate the NCI using 2D Cartesian OSIRIS simulations of drifting plasmas. We fill the

simulation box with a plasma drifting relativistically at γ = 20 along 1̂ direction. The plasma

has a very small but finite temperature to seed the NCI. Periodic boundary conditions are

used for both the 1̂ and 2̂ directions. We performed simulations using both the 16th order

solver, the customized solver, and the hybrid Yee-FFT solver, with and without the low-

pass filters. Other simulation parameters are presented in Table 5.1, and the corresponding

coefficients for the customized solver are listed in Table 5.2.

Parameters Values

grid size (∆x1,∆x2) (0.5k−1
p , 0.5k−1

p )

time step ∆t 0.25∆x1

number of grid 512× 512

particle shape quadratic, cubic

electron drifting momentum p10 19.975 mec

plasma density 2.0 np

Table 5.1: Simulation parameters for the 2D drifting plasma simulation. np is the plasma

density, and ω2
p = 4πq2np/me, kp = ωp (c is normalized to 1).

We can see from Fig. 5.6 that, by comparing the red line (16th order solver without

any filters) and the orange line (16th order solver plus low-pass filter), that applying the

low-pass filter to a 16th order solver significantly reduces the growth of the E2 energy. This

is because the fastest growing (µ, ν1) = (0,±1) NCI modes are eliminated by the low-pass

filter. Besides using the low-pass filter, when we add the bump to the 16th order solver

(thus making it a customized solver), the growth rate is further reduced since the main NCI

modes are completely eliminated (see the blue line). Even higher order NCI modes [46] are
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Coefficients Values Coefficients Values

C̃16
1 1.237042976225048 C̃16

2 -0.102548201854464

C̃16
3 0.022015354460742 C̃16

4 -0.009258452621442

C̃16
5 0.000410036656959 C̃16

6 0.002572239519500

C̃16
7 0.001482836071727 C̃16

8 -0.001392055950412

C̃16
9 -0.001472515326959 C̃16

10 0.000478783514362

C̃16
11 0.001200462462019 C̃16

12 -0.000187062256742

C̃16
13 -0.001059471474041 C̃16

14 0.000873314953435

C̃16
15 -0.000281855449164 C̃16

16 0.000034281167855

Table 5.2: Coefficients C̃16
i in Eq. (5.12) for the customized solver based on the 16th order

solver, for the single plasma drift simulation discussed in section 5.3.1.
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Figure 5.6: Evolutions of the E2 energies in the numerical systems for various setups in

drifting plasma 2D Cartesian PIC simulations, as discussed in section 5.3.1.
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attributed to the slight growth in energy for this case (blue line in Fig. 5.6), and when the

cubic particle shape is applied, the corresponding energy growth is effectively suppressed

(green line in Fig. 5.6). We can see that when the low-pass filter, bump, and higher order

particles are applied to the cases of both customized solver (green line) and hybrid Yee-FFT

solver (black dotted line), both the hybrid Yee-FFT solver and customized solver schemes

effectively eliminate the NCI.

5.3.2 Relativistic shock

We next present an example where two plasmas are collided against each other which is

relevant for relativistic shock simulations. The two plasmas drift towards each other with a

Lorentz factor of γ = 20.0. The simulation has a box size of 131072× 2048 cells, for which

the number of cells in 1̂ direction is much larger than that of the 2̂ direction. Since the

plasmas are drifting in the 1̂ direction, the total number of cores that can be used in such

a simulation would be significantly limited if we use FFT-based solvers, which requires one

partition along the 1̂ direction. With the customized solver and corresponding elimination

scheme, we are able to partition in the 1̂ direction. We used a 2D domain decomposition with

256 × 16 partitions along the 1̂ and 2̂ directions respectively. Other simulation parameters

are listed in Table 5.3, and the corresponding coefficients for the customized solver are listed

in Table 5.4.

In Fig. 5.7 we plot the 2D color isosurface plots of the ion density, and line outs of the

x2 averaged ion density for the Yee solver, and customized solver. For the Yee solver case,

we used the optimal time step of ∆t = 0.5∆x1 at which the NCI is minimized [40, 45],

plus a 5-pass current smoothing and compensation for the current, and the EM fields are

also filtered every two time steps. For the case with the customized solver, we used the

same NCI elimination scheme as is used for the single drifting plasma case, but with slightly

different coefficients (different density and time step) for the solver. We can see from Fig.

5.7 that there are noticeable differences. For example, the transverse size of the filaments

in the density are larger for the Yee case than for the customized case. From our NCI
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theory we know that the Yee solver with the optimized time step does not eliminate the

main (µ, ν1) = (0, 0) modes. The growth rate for these modes is reduced, but they are not

localized in space; instead they reside within the range of physics. It is not obvious when,

and how these modes are altering the physics. On the other hand, the customized solver

together with our filters completely removes the (µ, ν1) = (0,±1) and (µ, ν1) = (0, 0) modes;

and the use of the higher order particle shapes reduces the growth rate for the next highest

growing modes.

Figure 5.7: The ion densities and their line outs for a relativistic shock simulation, as dis-

cussed in section 5.3.2. The corresponding simulation parameters are listed in Table 5.3.

5.3.3 LWFA boosted frame simulation

In this subsection, we present 3D Cartesian LWFA boosted frame PIC simulations using the

customized FDTD Maxwell solver in OSIRIS. For comparison, we also carried out simula-

tions using the hybrid Yee-FFT solver and customized FDTD Maxwell solver respectively.

The parameters correspond to the lab frame simulation discussed in [16] in which 1.3 GeV
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Parameters Values

Plasma

density npe, npi n0

initial Lorentz factor γ0 20.0

initial thermal velocity vth,e,i 8.7× 10−5c

mass ratio mi/me 32

Simulation using customized high order solver

cell size ∆x1,2 0.5k−1
0

time step ∆t/∆x1 0.2

number of cells 217 × 211

particle shape cubic

particle per cell (1, 2)

[k1] modification (k1l, k1u,∆kmod,max) (0.1, 0.35, 0.01)

low-pass filter (fl, fu) (0.275,0.3)

Simulation using standard Yee solver

cell size ∆x1,2 0.5k−1
0

time step ∆t/∆x1 0.5

number of cells 217 × 211

particle shape cubic

particle per cell (1, 2)

Table 5.3: Parameters for 2D relativistic collisionless plasma simulations in lab frame using

the modified high order solver and Yee solver. The plasma density n0 and corresponding

wave number k0 are used to normalize the simulation parameters. The parameters of [k1]

modification are normalized to kg1 ≡ 2π/∆x1.
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Coefficients Values Coefficients Values

C̃16
1 1.243205632406442 C̃16

2 -0.096527073844747

C̃16
3 0.017018941335700 C̃16

4 -0.013839950216042

C̃16
5 0.003588768352855 C̃16

6 0.005153133591937

C̃16
7 0.000007068893273 C̃16

8 -0.002317133408538

C̃16
9 -0.001166192174494 C̃16

10 0.000552266782136

C̃16
11 0.001508596910066 C̃16

12 -0.000134050410326

C̃16
13 -0.001599956501178 C̃16

14 0.001305552125425

C̃16
15 -0.000423469804615 C̃16

16 0.000051829248350

Table 5.4: Coefficients C̃16
i in Eq. (5.12) for the customized solver based on the 16th order

solver, for the relativistic shock simulations, and LWFA simulations in the Lorentz boosted

frame, as discussed in section 5.3.2 and section 5.3.3.

electrons are generated. We have also listed the parameters in Table 5.5. Note that al-

though the simulation parameters in this scenario is different from those of the relativistic

shock simulations discussed in section 5.3.2, the locations of the main NCI modes for a 16th

order solver under these two sets of parameters are very close to each other. Therefore we

used the same coefficients for the customized solver as in section 5.3.2, as listed in Table 5.4.

In Fig. 5.8(a) and (b) we plot the E1 field at t′ = 3746 ω−1
0 for simulations with either

a modified high order solver or a hybrid Yee-FFT solver. Both solvers give nearly identical

results and no evidence of NCI is observed in either case. In Fig. 5.8 (c) and (d) 2D plots of

the electron density in the two cases are given. We also plot the line out of the on-axis E1

fields for different time points in the boosted frame, as shown in Fig. 5.8 (e)–(h). As we can

see from the comparisons, very good agreement between the results with these two solvers

is obtained.
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Figure 5.8: Comparison of simulations in the boosted frame between the customized high

order solver and Yee-FFT hybrid solver. 2D plots of E1 field at t′ = 3746 ω−1
0 for both

solvers are shown in (a) and (b). The electron density profiles are shown in (c) and (d). (e)

to (h) plot the on-axis lineouts of E1 fields at different times.
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Parameters Values

Plasma

density np 8.62× 10−4n0γb

length L 8.0× 104k−1
0 /γb

Laser

normalized vector potential a0 4.0

focal waist w0 153.0k−1
0

pulse length τ 86.9k−1
0 γb(1 + βb)

polarization circular

Simulation setups

cell size ∆x1,2,3 0.1k−1
0 γb(1 + βb)

time step ∆t/∆x1 0.125

number of cells 2048× 512× 512

particle shape quadratic

particle per cell (2, 2, 2)

NCI elimination parameters

Customized solver

[k1] modification (k1l, k1u,∆kmod,max) (0.1, 0.35, 0.01)

lowpass filter (fl, fu) (0.3,0.325)

Hybrid Yee-FFT solver

[k1] modification (k1l, k1u,∆kmod,max) (0.141, 0.24, 0.007)

lowpass filter (fl, fu) (0.3,0.35)

Table 5.5: Parameters for a 3D LWFA simulations in the Lorentz boosted frame using the

customized high order solver and hybrid Yee-FFT solver. The laser frequency ω0, wave num-

ber k0 and the critical density n0 = meω
2
0/(4πe

2) in the lab frame are used to normalize the

simulation parameters. The parameters of [k1] modification are normalized to kg1 ≡ 2π/∆x1.
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5.4 Summary

In this chapter, we have presented a new customized high-order FDTD solver combined with

a current correction (such that Gauss’s law remains satisfied) that effectively eliminates the

NCI. The current is corrected and filtered by using a local FFT on each parallel partition

when using domain decomposition. The customized higher order solver, and the correspond-

ing current correction/filtering that is done locally on each partition, permits the systematic

elimination of the Numerical Cerenkov Instability (NCI), while also permitting high paral-

lel scalability in particle-in-cell codes without errors in the longitudinal fields. Using the

theoretical framework we developed previously [45, 46] and illustrative PIC simulations, it

is found that a high-order FDTD solver has similar NCI properties to that of a fully spec-

tral solver or a hybrid Yee-FFT solver. By reducing the time step, the fastest growing

(µ, ν1) = (0,±1) NCI modes and (µ, ν1) = (0, 0) NCI modes can reside very close to the edge

of the fundamental Brillouin zone. This enables the use of a lowpass filter on the current

to effectively eliminate the NCI. For regular high-order FDTD solvers, highly localized NCI

modes [which are part of the (µ, ν1) = (0, 0) modes] are seen in analogy to those observed

in a spectral or hybrid Yee-FFT solver. These modes reside close to the physical modes in

~k-space. Elimination of these modes can be achieved by a combination of applying reduced

time step and creating a bump in the EM dispersion relation in k1 space. This solver can

be readily implemented in 2D/3D Cartesian and quasi-3D geometries contained within the

existing framework of OSIRIS without the need to modify the boundary conditions in the

transverse directions. We note that the boundary conditions in the 1̂ direction do not need

to be changed since we can gradually reducing the order of the solver from 16th to 2nd order

in the last 16 cells to match the boundary condition.

When the finite difference operators are modified, then the charge conserving current

deposit must also be appropriately modified. We first deposit the current using the second

order accurate charge conserving current deposit [23] in OSIRIS. The current is then Fourier

transformed on each local partition, and then corrected, and filtered; it is then transformed

back to real space for use in the field solver. The use of a current deposit that satisfies the
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continuity equation for the higher order divergence operator is necessary such that Gauss’

Law remains satisfied at each time step. We show that making such correction to the current

will expand the range of cells over which the current for a particle is increased. Theoretically,

a delta function for the current will extend to the entire simulation domain. However, the

current falls below the double precision roundoff within a finite number of cells. Therefore,

the current from a single particle is effectively localized. This permits using FFTs and the

current correction and filtering for only the data on each parallel partition if the number of

guard cells is properly chosen.

We have shown how the customized solver, together with its NCI elimination scheme,

can systematically eliminate the NCI in a single drifting plasma. We have also shown how

this scheme can be applied to relativistic shock simulation, with excellent NCI elimination

achieved without sacrificing the parallel scalability of an FDTD EM-PIC code for problems

with disproportionate number of cells in one direction. We have also shown the usefulness

of the proposed high-order solver combined with local FFTs by conducting full 3D LWFA

simulations in a Lorentz boosted frame.
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CHAPTER 6

LWFA Lorentz boosted frame simulation

Now that the elimination strategies and techniques have been well discussed and developed in

the previous chapters, in this chapter we discuss specifics on additional issues for performing

LWFA simulation in the Lorentz boosted frame. In order for this chapter to be self-contained,

we reuse some material from earlier chapters.

As mentioned in Chapter 1, when modeling LWFA physics using EM-PIC code, one

has to resolve the smallest physical length of interest, in this case, the laser wavelength on

the scale of a micro-meter, in order to ensure the evolution of the laser profiles is accurately

simulated. On the other hand, the plasma column length that the laser driver is propagating

through is on the centi-meter to meter scale. The disparity in these two critical physical

lengths makes the simulation of LWFA very CPU time consuming, as the algorithm can only

advance the laser propagation at the speed of micro-meter per time step. For instance, using

a standard PIC code to study a 10 GeV stage in a nonlinear regime takes approximately

10–100 million core hours on today’s computers. While computing resources now exist to

do a few of such simulations, it is not possible to do parameter scans and convergence tests

in full three-dimensions. Therefore, reduced models such as combining the ponderomotive

guiding center with full PIC [24] for the wake or with quasi-static PIC [25, 26] are used for

parameter scans. However, while these models are very useful, they cannot model full pump

depletion distances and the quasi-static approach cannot model self-injection.

Recently, it was shown that by performing the simulation in an optimal Lorentz boosted

frame with velocity vb, the time and space scales to be resolved in a numerical simulation

may be minimized [27, 29]. The basic idea is that in the boosted frame the plasma length

(the laser propagation distance) is Lorentz contracted while the plasma wake wavelength
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and laser pulse length are Lorentz expanded. The number of laser cycles is an invariant

(assuming there is no or negligible reflected wave) so the necessary number of cells needed

to resolve the laser is also an invariant while the cell size and hence time step are Lorentz

expanded. The increase in time step and decrease in the plasma length lead to savings which

scales with the factors γ2
b = (1− v2

b/c
2)−1, as compared to a lab frame simulation using the

so-called moving window [28]. Using such simulations, it has been shown that using a 1–

3 PW laser one could generate a 10 GeV electron beam in a self-guided stage and a 50 GeV

beam in a channel guided stage [32]. For these cases the savings can be larger than factors

of 104. The boosted frame technique opens the possibility to study how the output electron

energy of the LWFA scales to much higher energy when the laser energy is increased and the

plasma density is decreased.

However, in the boosted frame LWFA simulations the NCI can be an issue. As discussed

in previous chapters, the noise results from a numerical Cerenkov instability induced by the

plasma drifting with relativistic speeds through the grid. According to the dispersion relation

this numerical instability is attributed to the coupling between the wave particle (or beam)

resonances with EM modes (including aliased modes) in the numerical system. The pattern

of the instability in Fourier space can be found at the intersections of the EM dispersion

relation of the solver used in the simulation algorithm, and the wave particle resonances (or

more accurately, from coupling between EM and Langmuir modes).

In this chapter we mitigate this instability by using a multi-dimensional spectral Maxwell

solver that greatly reduces growth rate of the numerical instability at the main NCI modes.

In this case, the instability occurs only at high |~k| modes which are far away from the

physics of interest. As the EM dispersion curves for most finite-difference time domain

(FDTD) solvers inevitably bends down (i.e., supports waves with phase velocities less than

the speed of light) at high |~k|, a broad spectrum of additional numerical instability modes at

the main beam resonance are found in these solvers. However, when using a spectral solver

that spatially advances the EM fields in Fourier space, the NCI at the main beam resonance

is greatly reduced. In addition, the pattern at the first space aliasing beam mode is found

to indeed be located at high |~k| values that are far away from the interesting physics. For
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the spectral solver the numerical Cerenkov instability is located at a predicted pattern in ~k

space so it can be conveniently eliminated by applying simple filters directly in ~k space.

We describe the development of a fully parallelized three-dimensional electromagnetic

spectral PIC code called UPIC-EMMA that was rapidly built using components of the

UCLA PIC Framework (UPIC) [58]. Here we use the word “spectral” to mean the fields

are expanded using global basis functions. We used a truncated Fourier series and used

FFTs to solve the field equations. In other respects, the code uses similar methods as the

FDTD PIC codes, including interpolation of particle information to and from a grid [22]. We

demonstrate in Chapter 3 that through the use of appropriate filters, Lorentz boosted frame

simulations of LWFA at the optimum frame velocities can be carried out without limitations

from the numerical Cerenkov instability. We show that a simple low pass filter with a hard

cutoff at |~k| works very well. This completely eliminates modes with |~k| above a selected

value. Meanwhile, it is not as easy to use such a filter in |~k| space using a FDTD solver

(and such solvers have instabilities at lower |~k|). In Chapter 3 we likewise showed how to

eliminate the main NCI modes.

We have benchmarked UPIC-EMMA by comparing the 2D and 3D simulation results

of LWFA in Lorentz boosted frames with the corresponding OSIRIS lab frame simulations.

Good agreement is found between the OSIRIS lab frame simulations, and UPIC-EMMA

boosted frame simulations, in both linear, and nonlinear regimes. We also compare UPIC-

EMMA simulations for different values of γb and excellent agreements are found.

It is worth noting that the main purpose of this chapter is to describe UPIC-EMMA,

as well as to illustrate the detailed simulation setups for the LWFA Lorentz boosted frame

simulations using UPIC-EMMA. Much of the material is taken from [71]. However, at the

time [71] was published, we were not fully aware of the effect of the main NCI modes, which

when using the spectral solver has a highly localized pattern with a growth rate one order

of magnitude smaller than the first spatial aliasing modes. In the simulations presented in

the remainder of this chapter, we have not eliminated the main NCI modes. The subtle

differences between simulations with and without the elimination of the main NCI modes
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will be discussed in section 6.4, and was discussed in Chapter 3.

The remainder of this chapter is organized as follows. In section 6.1 we review the firsts

spatial NCI modes induced by relativistic drift. In section 6.2, we describe the development of

UPIC-EMMA, and how using the algorithms in UPIC-EMMA can eliminate the instability

induced by relativistic plasma drift. In section 6.3, we discuss details of LWFA Lorentz

boosted frame simulations using UPIC-EMMA. In section 6.4, we benchmark UPIC-EMMA

results with different γb, and with OSIRIS lab frame simulations. A summary is given in

section 6.5.

6.1 NCI in LWFA boosted frame simulation

The numerical Cerenkov instability induced by relativistic plasma drift has been extensively

discussed in previous chapters. In a PIC system, when the plasma is drifting relativistically,

the velocity of the drifting particles can be equal to the component of (be in resonance with)

the phase velocity of the main EM mode along the drift direction. In addition, its aliased

modes can always be in resonance with the EM modes. Due to the nature of wave-particle

resonances, the numerical instability occurs at the intersections of the beam resonances and

EM modes determined by the Maxwell solver used in the simulation. By carefully choosing

the Maxwell solver, the instability pattern can be manipulated so that mitigation can be

achieved. As discussed in Chapter 2 and 3, when a spectral solver is used, the growth rate

of the main beam resonance is greatly reduced and becomes highly localized. As a result,

the instability is dominated by the aliased resonances, and the fastest growing modes are

the first spatial aliases. These resonances reside at high |~k| in Fourier space far away from

the important physics.

Since the instability pattern is found near the intersections of the EM modes and beam

resonance, we can obtain a simple analytical expression for the instability pattern in the

limit ∆t → 0 (which leads to [ω] = ω). Under this assumption, in the 2D scenario the
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equation for the EM dispersion curves in the spectral solver is

ω2 ≈ k2
1 + k2

2

And the equations for the beam resonances are

ω + µωg = β(k1 + ν1kg1)

where β ≡ v/c. Defining ξ ≡ βν1kg1−µωg, we can obtain the expressions for the intersections

as

(1− β2)k2
1 + k2

2 − 2βξk1 − ξ2 = 0 (6.1)

Note that the fastest growing modes for the instability pattern are at the µ = 0 and ν1 = ±1

resonances. In the limit of interest β → 1, we obtain

k2
2 ∓ 2k1kg1 − k2

g1 = 0 (6.2)

In figure 6.1 (a) we plot Eq. (6.2) for µ = 0 and ν1 = ±1. Note the “ring” pattern of the

instability, which crosses the k2 = 0 axis near the point (±kg1/2, 0); therefore this mode is

located at high |~k| values which are far away from the region of interesting physics. Therefore,

the numerical Cerenkov instability can be effectively eliminated in some cases if the fastest

growing modes (µ = 0, ν1 = ±1) are suppressed in the Maxwell solver. Note in Chapter 2

and 3, we discussed how to eliminate additional modes.

In the simulations, we identify the unstable modes in Fourier space using the approximate

expression Eq. (6.2). We then apply filters with specific masks which multiply the undesired

modes by zero. In figure 6.1 (b) we plot the “ring-shaped” filter used in some of the two-

dimensional simulations for testing the instability mitigation. We put “ring” in quotes

because it is not a true ring but rather a range between two parabolas. We also used a low

pass filter with a hard cut-off. We filled the simulation box with neutral plasma drifting

relativistically at γ = 14000 in the x1 direction, and ran cases without a filter, with the

“ring” filter, and the low pass filter with a hard cutoff. As seen from figure 6.1 (c), these

filters efficiently suppresses the instability modes at µ = 0, ν1 = ±1 in E2. Therefore, the
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mitigation of the instability using this filter shows the flexibility and efficiency of a spectral

solver in being able to pinpoint the suppression of the unphysical modes in PIC simulations

while leaving the modes near the interesting physics completely unaffected.

Figure 6.1: (a) shows the analytical expression for the µ = 0, ν1 = ±1 mode of numerical

Cerenkov instability for the 2D spectral solver in (k1, k2) plot; (b) shows the “ring-shaped”

filter applied in the 2D spectral solver; and (c) shows the E2 energy evolutions for various

simulation setups.

6.2 EM-PIC code with spectral solver

As mentioned in the section 6.1, an EM-PIC code with a spectral solver has superior proper-

ties in suppressing the numerical Cerenkov instability induced by a relativistic plasma drift.

They also have superior properties with respect to numerical dispersion errors and noise. We

will briefly explain the algorithm of a spectral EM-PIC code, as well as discuss the challenges

in optimizing the performances of such a code in the following paragraph.

Spectral PIC codes have a long history [20, 22]. However, despite their advantages

in better accuracy and less noise, they are not currently as widely used, partly because

implementing boundary conditions and sustaining high parallel scalability are not as straight

forward in spectral PIC code. A spectral EM-PIC code has the same basic flow chart as

an FDTD PIC code. In a spectral EM-PIC code both the charge and current are deposited

on the mesh from the particles; the forces exerted on the particles are interpolated from
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the mesh points, and particles are advanced using the Lorentz forces. The main difference

between the spectral PIC code and FDTD PIC code is the solver used to advance the

electromagnetic field, and that in the spectral PIC code all field quantities, including the

charge and current densities, are defined at the same locations on a cell (no Yee mesh [21]

is needed). In a spectral PIC code the charge and current are directly deposited, and a

strict charge conserving current deposit is not needed because Gauss’s law is solved at each

time step using the charge density [22]. This gives the longitudinal part of the electric

field. The longitudinal component of the magnetic field is set to zero at each time step.

Faraday’s law and Ampere’s law are used to advance the transverse electric and magnetic

fields forward in time. Note that because Gauss’s law is solved for directly at each time step,

a charge conserving current deposit or Boris correction to the longitudinal component of the

electric field is not required to maintain that Gauss’s law is satisfied. The equation for the

longitudinal component of electric field ~EL becomes:

~EL(~k) = −4πρ(~k)
i~k

k2
(6.3)

and the transverse electric field and magnetic field are leap-frogged forward in time using

Faraday’s and Ampere’s law:

∂ ~ET (~k)

∂t
= ic~k × ~B(~k)− 4π~jT (~k)

∂ ~B(~k)

∂t
= −ic~k × ~ET (~k) (6.4)

where the transverse component of the current is:

~jT = ~j −
~k(~k ·~j)
k2

(6.5)

We also multiply ρ(~k) and ~J(~k) by a shape function S(~k) = exp(−|k|2a2/2) where a is the

particle size. The fields are also multiplied by this shape function then interpolated to the

particles [20].

In addition, just as in a FDTD code, the particle positions and velocities (and corre-

spondingly the charge and current densities) are defined at half integer values in time with

respect to each other. If positions are defined at whole time steps and velocities (momentum)

at half integer values, then the longitudinal and transverse components of the electric field
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are defined at whole time steps (when particle positions are defined) and the magnetic field

is defined at half-integer values. The current at the half integer time are time centered by

averaging the new and old positions during the deposit. Once the fields are transformed back

from ~k space to real space then the particles can be pushed. The particle push is identical

to that of a FDTD except for the interpolation of the forces because all field quantities are

defined at the same locations in a cell.

There are no dispersion errors due to the spatial grid. However, in our implementation

where we use second order leap frog scheme for the time advance there are errors due to

the finite time step. While a FDTD code (that uses two cells to define the derivative)

describes the [k]i operator to O(∆xi)
2, the spectral code has a [k]i operator with the accuracy

exceeding O(∆xi)
N where N is the number of grid points. However, this improved accuracy

arises because the equivalent finite difference operator is non-local [37]. This may be an

issue when plasma or laser with very sharp gradient exists. We note that in an FFT based

code [~k] = ~k can be replaced with [~k] of any form. We use this feature in a test-bed

code to study the effects of local v.s. global operators. Both a spectral and a FDTD code

effectively truncate the highest |ki| to π/∆xi. In addition, when including time step errors,

the numerical dispersion of a spectral PIC code is superluminal, while that of the FDTD code

is subluminal. As we discuss elsewhere in this chapter, the more accurate and superluminal

aspect of the EM dispersion relation provided by the spectral solver (together with the

simple filters) is crucial for eliminating the fastest growing modes of numerical Cerenkov

instability. Others have discussed using the PSATD method to get perfect dispersion in

vacuum [41]. However, we do not find this to be advantageous regarding NCI elimination.

The corresponding Courant condition in 2D and 3D are (for the square and cubic cells) [20]:

∆t2D =
2√
2πc

∆t3D =
2√
3πc

(6.6)

A spectral PIC code is also distinguished from a FDTD code in the way it is parallelized.

For the field solver, the simulation box is usually partitioned in one dimension in 2D, and

two dimensions in 3D, so that each processor holds global information in the dimension to

be transformed. As a result, a parallel spectral PIC code requires a fast parallel transpose
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routine for efficient execution of the FFT in multi-dimensions. The parallel spectral PIC

code scales well on parallel computers if the problem size is large enough [22]. Scaling stops

when the all-to-all transpose used in the FFT becomes latency dominated, which depends

on the network being used. In many cases the decomposition for the particles is the same

as that for the fields although this does not have to be the case. Recently, Vay et. al. have

proposed solving for the transverse fields within each domain separately to reduce some

parallel communication and showed some success in LWFA boosted frame simulation [54].

However, this technique may lead to errors in the longitudinal fields.

We have developed a multi-dimensional EM-PIC code called UPIC-EMMA that uses a

spectral field solver. This code was rapidly put together using components provided by the

UPIC Framework, a PIC framework with spectral solvers developed at UCLA [58]. UPIC-

EMMA is fully relativistic and fully parallelized. Inherited from the UPIC Framework,

UPIC-EMMA is coded in layers for convenient extension with different programming styles.

The lowest layers are written in Fortran77 for high performance. They can be easily ex-

tended to many other languages. On top of this layer exists a library of Fortran90 wrapper

functions which hide the complexity of the Fortran77 layer and that provide simpler argu-

ments which enables strict type checking. The code separates the physics procedures from

the communication, and utilizes the Message-Passing Interface (MPI) for parallel process-

ing. In addition, a multi-tasking library was implemented to enable mixed multi-tasking and

MPI messaging, where multi-tasking is used on a shared memory node with multiple cores,

and message-passing is used between such nodes [58]. UPIC-EMMA also features 3D load

balancing where the fields and particles use different partitions.

6.3 LWFA Simulations in the Lorentz boosted frame

In section 6.1 we described general issues regarding the numerical instability that arises when

a plasma drifts near the speed of light. In this section we describe some details regarding

issues specific to modeling LWFA in a Lorentz boosted frame. We describe issues related to

numerical dispersion in the lab frame, in the boosted frame, and in transforming from the

117



boosted frame back to the lab frame for comparison. We also discuss the moving antenna

and interactions between the laser and the drifting plasma boundary.

6.3.1 Numerical dispersion errors for the laser

As mentioned in the introduction, one of the first obstacles in modeling LWFA in a boosted

frame is to mitigate the numerical Cerenkov instability. For the FDTD PIC code which uses

a combination of a Yee solver together with the momentum conserving field interpolation

scheme, it is useful to choose the optimal time step ∆t ≈ ∆x1/2, where the 1̂-direction is

the plasma drifting direction, to minimize the numerical Cerenkov instability growth rate

[40, 45, 53]. The need to use this time step eliminates the flexibility in tuning the time step

to minimize numerical dispersion errors for the laser. In figure 6.2 we present the error in

the group velocity of an EM wave on a grid in the 2D scenario (we let ∆x1 = ∆x2). Note

that for the Yee, and Karkkainen solvers [59] which were discussed in Ref. [40, 45], the

most accurate dispersion relation occurs at their Courant Limit, but not the corresponding

optimal time step at ∆t ≈ ∆x1/2 (for momentum conserving field interpolation). On the

other hand, for a spectral PIC code the instability mitigation does not rely on the relation of

grid sizes and time step. In particular, the EM dispersion relation can be made arbitrarily

accurate by reducing the time step [see figure 6.3 (a)]. As we showed in Chapter 3, this also

greatly reduces the growth rate of the main NCI modes, and moves them away from the

physical modes near ~k = ~0. In general when simulating relativistically drifting plasma, a

spectral PIC code can provide more accuracy and flexibility over the FDTD PIC code with

respect to numerical dispersion in the simulated frame.

6.3.2 Lorentz transform of boosted frame data

While numerical dispersion errors exist when using a finite size grid in vacuum, here we show

that when modeling the LWFA in the Lorentz boosted frame, these errors in the boosted

frame are not necessarily an issue when the results are transformed back to the lab frame.

While the value for γb in the boosted frame can be arbitrary, the speed up increases as
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Figure 6.2: The plot shows the errors in the group velocity defined as vg − 1 of the 2D EM

dispersion relation for various cases. Defining θ = 0 to be the laser propagating direction,

this plot shows the propagation angle in (−π/2, π/2). If the error (vg−1) is larger than zero,

its corresponding point is in the right side of the vertical axis, and vice versa. The group

velocity is calculated for the k0 = 1.0 mode while we are using k0∆x1 = k0∆x2 = 0.1 for the

calculation.
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γb is increased. However, choosing γb ≈ γw, where γw is the phase velocity of the wake,

is generally optimum because in this frame the plasma length and the laser pulse length

are nearly matched. When the laser and plasma frequency are comparable, each is resolved

similarly, i.e., there is no over-resolution of either the laser wavelength or plasma wavelength.

In the boosted frame, the length of the plasma contracts by γb, the electron and ion mass are

both γb times heavier, the plasma density is γb times larger, and the corresponding plasma

frequency is a Lorentz invariant. As for the laser, there is a γb(1 + βb) stretch to the pulse

length, while the Rayleigh length contracts by γb. Therefore, while the pulse waist does not

change, the effective spot size at the rear of the pulse increases by a factor of γ2
b (1+βb). Hence

for sufficiently large γb an antenna is needed to launch the laser from the laser pulse waist

that is moving backwards [60, 61]. The antenna is usually placed at the plasma boundary

(see section 6.3.3 for details).

In the lab frame simulation, a moving window which only models the region of interest

around the laser is often used to reduce the simulation box size. Implementation of a

moving window is challenging in a spectral PIC code due to the non-local nature of the field

solver which necessitates knowledge of boundary condition at both of the moving boundaries.

However, the relative range of x1 and t contracts when Lorentz transforming the data of

interest from lab frame to boosted frame [33, 62]. If γb is appropriately chosen, in this frame

the length of the plasma column is of the same order as the laser pulse length [16]. As a

result, for γb ∼ γw it is feasible to conduct the boosted frame simulation without the moving

window. We discuss a moving window in the boosted frame that follows the drifting plasma

in the next chapter.

In LWFA lab frame simulations, an EM wave with frequency ω0 is incident on a station-

ary plasma slab. This leads to reflected and transmitted waves, each having the incident

frequency. Their wave numbers are determined from the dispersion relation in vacuum (re-

flected wave), and in plasma (transmitted wave). In a simulation the same physics occurs

except the EM wave now satisfies the numerical dispersion relation in vacuum and plasma.

In the boosted frame there are still reflected and transmitted waves, except in this case the

incident wave, reflected wave, and transmitted wave each have different frequencies. Fur-
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thermore, numerical issues can lead to some subtle effects. An effective method to identify

the frequencies of the reflected and transmitted waves is to use an (ω, k) diagram, which

was previously used in studying the radiation generated from ionization fronts [70]. At the

plasma boundary z0 = −vbt, the phase of each wave φ = kz−ωt = −(kvb +ω)t must be the

same, otherwise the continuity of fields cannot be satisfied at every instant in time. This

leads to

kivb + wi = −krvb + ωr = ktvb + ωt (6.7)

where i, r, t correspond to incident, reflected, and transmitted waves respectively. For

example, if vb = 0 then ωi = ωr = ωt. If the incident and reflected waves obey the vacuum

dispersion relation ω = k then

ωr =
1 + βbωi
1− βb

(6.8)

which can also be obtained from a double Lorentz transformation. In a Lorentz boosted

frame the plasma is drifting but ωi = ω0 is Lorentz transformed to ω′i and we want ω′r and

ω′t [where the (′) sign refers to the boosted frame variables]. In this frame

ω′ + k′vb = ω′0 + k′0vb (6.9)

where ω′ can be either the reflected or transmitted wave. The constant ω′0 +k′0vb is obtained

by Lorentz transforming ω0 and k0 into the boosted frame: ω′0 = γ0(ω0 − k0vb) and k′0 =

γ0(k0 − vbω0/c
2). Therefore, ω′ + k′vb = ω0/γb regardless of the relationship between ω0 and

k0. In a real system ω0 = k0 although numerical errors in the dispersion relation do not alter

the constant ω0/γb. Therefore, the reflected and transmitted waves must fall along the line

ω′ = −k′vb + ω0/γb in (ω′, k′) space (here we are ignoring the aliasing modes). In addition,

they must also fall on the dispersion curves for light in a plasma [45]

[ω]2 = [k]2c2 +
ω′2p
γb
S2 [ω]− [k]vb

ω − kvb
(6.10)

or in vacuum

[ω]2 = [k]2c2 (6.11)
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on the grid where we assume S = Sj3 = SE3 = SB2, and ω′2p /γb = 4πe2n′0/me is Lorentz

invariant where n0 is the lab frame density, e is the electron charge, and me is the electron

rest mass. The reflected and transmitted waves lie at the intersection between Eq. (6.9),

and Eq. (6.10) in plasma or Eq. (6.11) in vacuum. This is shown in figure 6.3 (a) for a

case where ∆t ≈ 0.5∆x1, ω0/ωp ≈ 30, and γb = 8.0. The line ω′ = −vbk′ + ω0/γb and the

dispersion curve for a real plasma (black dashed lines), a FDTD Yee solver (red lines), and

a spectral solver (green lines for inside the plasma; magenta lines for in vacuum) are shown.

The vacuum dispersion relation is plotted for the spectral solver in the upper left quadrant

for the reasons given in the next paragraph. In figure 6.3 (b), we have expanded the region

in (ω, k) space near the origin to illustrate the frequency and direction of the transmitted

wave which does not depend strongly on the solvers used. When γb = γw = ω0/ωp then

ω′t = ωp = ω′p/
√
γb and k′t = 0. If γb > γw then ω′0 would be negative and the phase velocity

and group velocity of the transmitted wave would be negative; however, since |v′gt| < |vb| the

transmitted wave would still be in the plasma.

Figure 6.3 (a) also illustrates that numerical errors in the dispersion relation effect the

location of the reflected wave. In a real system where ω′ = ck′ in vacuum and ω′2 =

ω′2p /γ
2
b + c2k′2 in the plasma, then the reflected wave would occur where ω′ = −vbk′ + ω0/γb

intersects the vacuum curve, i.e., at ω′ = ωbγb(1+βb) ∼ 2ωγb, which is larger than the largest

ω′ in the fundamental Brillouin zone. However, for the numerical dispersion curves shown

in figure 6.3 (a), the reflected wave resides at the intersection with the plasma dispersion

relation in the lower right quadrant for the FDTD solver or with the vacuum dispersion

relation in the upper left quadrant for the spectral solver. For the FDTD case, the reflected

wave has a negative phase and group velocity. However, the group velocity is less than vb so

the reflected wave propagates backwards while staying inside the plasma. For the spectral

solver the group velocity is slightly larger than the speed of light so it resides outside the

plasma. The predicted locations of the transmitted and reflected waves are confirmed in an

OSIRIS (FDTD) simulation. This is seen in figure 6.3 (c), in which the ω′ and k′ spectrum is

plotted from a simulation for parameters identical to those used to generate the theoretical

plot in figure 6.3 (a). Strong signals are seen at the predicted locations. For cases of
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interest the reflection coefficient is small [the reflected signal is significantly smaller than the

transmitted signal in figure 6.3 (c)] so the unphysical mode is not energetically important,

and it does not complicate the physics.

We have also investigated the invariance of transforming results back to the lab frame

based on the numerical dispersion relations. It has been demonstrated that good agreements

can be found when the boosted frame data are transformed back to the lab frame [60].

However, we note that solving Maxwell’s equations on a grid using discrete time steps is not

strictly Lorentz invariant. For example, the group velocity of light in vacuum for a spectral

solver is greater than the speed of light, and it depends on ω∆t. Nevertheless, when carrying

out LWFA (or other) simulations in a boosted frame, the results are transformed back to

the lab frame using the Lorentz transformations. This is assumed to be reasonable if one is

looking at modes which are properly resolved.

As noted earlier, when γb is chosen near γw there is a balance between the laser pulse

length and the plasma length. In addition, for γb ≈ γw the transmitted wave k′ ∼ 0, and

errors in the boosted frame due to the finite cell size are minimized. In figure 6.3 (d) we

show that when v′φ and v′g for the transmitted wave are Lorentz transformed back to the lab

frame using the velocity addition formulas,

βφ =
β′φ + βb

1 + β′φβb
βg =

β′g + βb

1 + β′gβb
(6.12)

where βφ and βg are the phase and group velocity normalized to c, that the numerical

errors are nearly absent for sufficiently large γb. The values for v′φ and v′g are calculated

from the linear dispersion relation, where ω∆t = 0.5k∆x1 is given and k∆x1 = 0.2 is from

the dispersion relation in the lab frame. In the boosted frame ∆t′ = γb(1 + βb)∆t and

∆x′1 = γb(1 + βb)∆x1. According to the plot, for γb = 1 there are clear numerical errors;

however, for γb ≥ 5, the numerical errors are minimized.

These results can be understood as follows. In a Lorentz boosted frame where βb = βw ≡

(1− γ−2
w )1/2, the group velocity β′g → 0, while the phase velocity β′φ → ∞ in the numerical

system, which when substituted back to Eq. (6.12) leads to

βφ = 1/βw βg = βw (6.13)
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which are the accurate values for a continuous system. In addition, writing β = β + δβ, and

β′ = β
′
+ δ′β, where β and β

′
corresponds to the correct values in the lab and boosted frame,

and defining

βφ,g =
β
′
φ,g + βb

1 + β
′
φ,gβb

(6.14)

we can obtain the expressions of the error δβ ≡ βφ,g − βφ,g as

δβ =
1

(1 + β
′
βb/δ′β + βb)(1 + β

′
βb/δ′β)γ2

b

(6.15)

Note the γ2
b in the denominator indicates that when γb is sufficiently large, the errors in

velocity when transformed back to the lab frame will be small for all waves. We also note

that the arguments going from Eq. (6.12) to Eq. (6.15) hold for any velocity including those

of the particles. This indicates that if we choose the γb large enough that we would obtain

more accurate results compared to a simulation done in the lab frame (with typical cell sizes

and time steps).

6.3.3 Moving antenna

As discussed in [33, 60], the effective spot size of the laser increases by a factor of γ2
b (1 + βb)

because the Rayleigh length of the laser contracts by γb and the pulse length expands by

γb(1 + βb). To prevent the need for using a simulation box with transverse size ∼ γ2
b times

that in needed in the lab frame, we utilize a thin slice of grids at the plasma boundary (where

the laser beam waist resides) as an antenna to drive the laser pulse into the plasma [60, 61].

The antenna is moving together with the plasma boundary [see figure 6.4].

The EM field in the moving antenna as a function of ~x and time t can be derived as

follows. For instance, for a laser linearly polarized in the 2̂ direction, the expression for the

electric field E2(~x, t) of a Gaussian pulse in the lab frame can be expressed as:

E2(x1, x2, x3, t) =
E0W0

W (x1)
exp

[
−x

2
2 + x2

3

W 2(x1)

]
exp

[
−2(x1 − ct)2

σ2
s

]
exp

[
ikx1 + ik

x2
2 + x2

3

2R(x1)
− iarctan

x1

xR

]
exp(−iωt)
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Figure 6.3: (a) shows the intersections of the line ω = −vbk+ ω0

γb
and various EM dispersion

curves, while in (b) we magnified the region near the origin; (c) shows an example of the E3

spectrum of a 1D LWFA boosted frame simulation with the Yee solver. The hot spots in (c)

show where the transmitted and reflected waves are, and agrees with the prediction in (a).

(d) shows the dependence of the transformed phase and group velocity of the EM waves in

the plasma with γb. The phase and group velocity converges quickly as γb increases from 1.
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Figure 6.4: UPIC-EMMA simulation setup for LWFA boosted frame simulation. The blue

block is the plasma column; the green slice is the moving antenna at t = 0. The laser is

launched via the moving antenna (moving together with the plasma column boundary at

v = −βb) by initializing the appropriate curent in the green slice which has a typical width

of λ/2. The laser is likewise plotted for t = 0. Note when the laser is launched via the

antenna, only the area within the antenna is initialized.
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with

W (x1) = W0

√
1 +

x2
1

x2
R

R(x1) = x1

(
1 +

x2
R

x2
1

)
xR =

πW 2
0

λ

where E0 is the amplitude, W0 is laser pulse waist, σs is the laser pulse length, ω and k

are the laser frequency and wavenumber, and xR is the laser Rayleigh length. A similar

expression holds for the magnetic field B3(~x, t). After Lorentz transforming, we can readily

obtain the new expression of the laser pulse in the boosted frame

E ′2(η, x′2, x
′
3, t
′) =

E ′0W0

W ′(η)
exp

[
−x

′2
2 + x′23
W ′2(η)

]
exp

[
−2[η − (1 + β)ct′]2

σ′2s

]
exp

[
ik′η + ik′

x′22 + x′23
2R′(η)

− iarctan
η

x′R

]
exp(−iω′t′) (6.16)

where

η = x′1 + βbct
′ σ′s = γb(1 + βb)σs E ′0 =

E0

γb(1 + βb)
(6.17)

k′ =
k

γb(1 + βb)
ω′ =

ω

γb
x′R =

xR
γb

(6.18)

W ′(η) = W0

√
1 +

η2

x′2R
R′(η) =

η

1 + βb

(
1 +

x′2R
η2

)
(6.19)

In the spectral code, the transverse and longitudinal components of the fields are solved

for separately [22]. Therefore, on the antenna we set ρ = 0 so there are no longitudinal

fields on it. When launching a laser from the antenna, we assign current (in the direction

of the laser polarization direction) at every point inside the antenna such that ~E has the

desired form and polarization. The other components and the magnetic field follow naturally

from the Maxwell field solver. The antenna has a finite width of around λ/2 where λ is the

wavelength of the laser in vacuum to eliminate any backward propagating signal. The current

for generating the laser is added after the current is deposited for all the particles in the

system.

The moving antenna implemented in UPIC-EMMA is benchmarked by transforming

the data back to the lab frame and then comparing it to data from an OSIRIS lab frame

simulation. In the OSIRIS lab frame run, the laser propagates in the x1 direction together

with the moving window; as in the UPIC-EMMA run, the laser is launched from a moving
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antenna. In the UPIC-EMMA simulation γb = 14 is used. Periodic boundary conditions are

used for transverse directions in both cases. The transformed UPIC-EMMA boosted frame

data (to the lab frame) are plotted together with the lab frame OSIRIS data in figure 6.5.

Good agreement is found between the two cases. Note the shift in the laser wave packet

between the OSIRIS data and UPIC-EMMA data. We verified that the shift was attributed

to the difference in group velocity between the Yee solver and spectral solver (transformed

back to lab frame).

6.3.4 Filters

Earlier the mode numbers of the fastest growing modes of the numerical Cerenkov instability

in the spectral solver were identified as Eq. (6.2). Based on this equation, we use filters that

eliminate a range of ~k’s centered around this parabola. Specifically, we multiply all modes

by either 1 or 0. Those modes multiplied by 0 are those in the range:

k2
2 = ±2kg1(k1 + ∆k1) (6.20)

in 2D, and

k2
2 + k2

3 = ±2kg1(k1 + ∆k1) (6.21)

in 3D. ∆k1 is usually chosen to be

0.9× kg1
2
< |∆k1| < 1.02× kg1

2
(6.22)

6.4 LWFA simulations with UPIC-EMMA

We next present simulation results using UPIC-EMMA to model LWFA in a boosted frame.

Two-dimensional simulations in the linear and nonlinear regimes are presented for two dif-

ferent choices of γb and the results are compared to OSIRIS simulation results in the lab

frame (the UPIC-EMMA results are transformed back to the lab frame). We also present 3D

results from UPIC-EMMA including comparison with OSIRIS lab frame simulations. For
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Figure 6.5: (a) is the 2D plot of the laser (polarized in x3 direction) E3 field at t = 13680 ω−1
0 ,

and (b) shows the laser E3 field transformed back from the boosted frame data. (c)–(f) shows

the comparison of on-axis E3 field between OSIRIS data and UPIC-EMMA data at various

time points. x1 − t is the coordinates moving together with the moving window.
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the linear cases a0 = 0.1 (a0 is the normalized vector potential of the laser) while for the

nonlinear cases a0=3.0 or 4.0. Precise values for the simulations parameters are shown in

tables 6.2 and 6.1.

Plasma density n0 8.611× 10−4n0γb

Laser

pulse length τ 70.64k−1
0 γb(1 + βb)

pulse waist W 117.81k−1
0

polarization circular

Lab frame simulation (γb = 1)

grid size (∆x1,∆x2,∆x3) (0.2k−1
0 , 3.40k−1

0 , 3.40k−1
0 )

time step ∆t 0.199ω−1
0

number of grid (moving window) 4000× 512× 512

particle shape quadratic

3D boosted frame simulation

grid size ∆x1,2,3 0.2k−1
0 γb(1 + βb)

time step ∆t 0.04ω−1
0 γb(1 + βb)

number of grid (γb = 17) 4096× 256× 256

particle shape quadratic

Table 6.1: Simulation parameters for the 3D simulations (related to figure 6.10). The laser

frequency ω0 and laser wave number k0 are used to normalize simulation parameters, and

n0 = meω
2
0/(4πe

2).

In figure 6.6, results from the a0=0.1 case are shown. In the top row, the wakefield E1

is shown at various lab frame times for an OSIRIS lab frame simulations (blue) and for two

UPIC-EMMA simulations where γb=14 (red) and γb=28 (green) respectively. This figure

shows that the two UPIC-EMMA results agree well for all times while the OSIRIS result

lines up with UPIC-EMMA results at early times and then slips backwards due to numerical

dispersion. There is no evidence of noise in these plots in the wake and laser fields due to the

numerical Cerenkov instability. The fact that the OSIRIS lab frame result slips backwards
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is due to the numerical dispersion error in vg that was discussed earlier. In the bottom row

of figure 6.6, the laser field (E3) is plotted at the same times. The same colors are used to

show the results from the three simulations. The slippage of the OSIRIS lab frame curve is

also seen in the laser field.

Figure 6.6: Comparison of the on-axis E1 and E3 between OSIRIS lab frame simulation,

and UPIC-EMMA boosted frame simulation (γ = 14, 28) at various time steps, for a0 = 0.1.

x1 − t is the coordinates moving together with the moving window.

We next show results for a more nonlinear case where a0=3.0. As before, there is a lab

frame OSIRIS simulation and two UPIC-EMMA boosted frame simulations with γb=14 and

γb=28. The same colors as in figure 6.6 are used to distinguish the data from these three

simulations. We plot the accelerating field in the upper row and the laser field in the lower

row at four various lab frame times (different times than used in figure 6.6). Similar to the

linear a0 = 0.1 case, the wakefields from the three simulations agree well at early times while

for later times the OSIRIS results slip behind. While the agreement between the two boosted

frame simulations is still good, it is not as good as for the previous case. The differences in

the laser field are small for larger values of x1 − t (at the head of the laser) and there are

differences at later times.

Next in figures 6.8 and 6.9, we present results from a case where the laser amplitude is

increased to a0 = 4.0. In the top row of figure 6.8, the plasma density and wakefield in the

Lorentz boosted frame with γb = 14 are plotted at t′ = 6180ω−1
0 . There is no evidence of the
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Figure 6.7: Comparison of the on-axis E1 and E3 between OSIRIS lab frame simulation,

and UPIC-EMMA boosted frame simulation (γ = 14, 28) at various time steps, for a0 = 3.0.

x1 − t is the coordinates moving together with the moving window.

numerical Cerenkov instability. Only a small region of the simulation box, including where

the instability is most robust, is plotted. In the lower row of figure 6.8 we also plot in the

lab frame the wakefields obtained in these three simulations. As in the two previous cases,

good agreement is found in the wakefield amplitude. There is slippage of the wakefield in

the OSIRIS simulation and small differences between the two boosted frame simulations.

It is worth noting that the main purpose of this chapter is to illustrate the detailed

simulation setups when performing LWFA Lorentz boosted frame simulation using UPIC-

EMMA, which is the main content of [71]. When [71] was published, we were not fully aware

of the effect of the (µ, ν1) = (0, 0) modes on these simulations. In fact the a0 = 4 simulations

discussed here were repeated in section 3.2.2, with the (µ, ν1) = (0, 0) eliminated by either

reducing the time step, or modifying the EM dispersion relation in the spectral solver at

localized ~k regions. By comparing Fig. 6.8 with Fig. 3.4, we can see that by eliminating

the (µ, ν1) = (0, 0) modes, better agreements with the lab frame simulations are obtained

for the self-injection.

Figure 6.9 shows the comparison of the laser E3 fields for the three a0=4.0 cases. In the

top row we show line outs of the laser at four different propagation distances (times). The
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Figure 6.8: UPIC-EMMA boosted frame simulation (γ = 14, 28) for a0 = 4.0. First

row shows the 2D plots of plasma electron density (left), and the corresponding E1 for

t′ = 6180 ω−1
0 in the boosted frame (γ = 14). The second row shows the on-axis E1 compar-

ison between OSIRIS lab frame, and UPIC-EMMA boosted frame simulation (γ = 14, 28).

x1 − t is the coordinates moving together with the moving window.
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Figure 6.9: Comparison of the E3 field between OSIRIS lab frame simulation, and UP-

IC-EMMA boosted frame simulation (γ = 14, 28) at various time steps, for a0 = 4.0. The

first row shows on-axis E3 comparison between OSIRIS lab frame, and UPIC-EMMA boosted

frame (γ = 14, 28). The second and third rows show the 2D comparison between the OSIRIS

lab frame results and the transformed data from UPIC-EMMA boosted frame (γ = 14). x1−t

is the coordinates moving together with the moving window.
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OSIRIS lab frame curve slips backwards. As in the other cases, the boosted frame curves

line up at the front of the laser and as in the other nonlinear case differences in the curves

are seen in the back of the laser. In addition, for the γb = 14 case we transform not only

the on-axis data, but also the off-axis data in order to compare the 2D laser profile between

OSIRIS lab frame run and UPIC-EMMA boosted frame run. The OSIRIS lab frame data is

shown in the middle row and the UPIC-EMMA data in the bottom row. Only a part of the

simulation box is shown. Good agreement is found in how the laser pump depletes between

the two runs and in how the shape evolves. The slippage of the OSIRIS simulation results

is seen.

Last, to illustrate that UPIC-EMMA is fully working in three-dimensions, we present the

3D results of UPC-EMMA using the simulation parameters in table 6.1 and a0=4.0. These

parameters are similar to those in Ref. [16]. In figure 6.10 (a) and (b) we present 2D slices

in the boosted frame of the plasma density and wakefield at the center of the box in the

3̂-direction at t′ = 15335ω−1
0 . As in the 2D cases, no noise from the numerical Cerenkov

instability is evident. In figure 6.10 (c), the wakefield at t = 3980 ω−1
0 in the lab frame from

the OSIRIS lab frame simulation (blue) and UPIC-EMMA boosted frame simulation (red)

are shown. The curves agree well but not perfectly. Note that in (c), there is no slippage

because we are showing the result at a time where little slippage has occurred. Future work

will involve understanding these differences for these nonlinear cases.

6.5 Summary

In this chapter, we described the rapid development of a new 3D PIC code that can be used

to model laser wakefield acceleration in the Lorentz boosted frames. In such simulations

a plasma is drifting at relativistic speeds towards the laser, which leads to the numeri-

cal Cerenkov instability. The growth rates and unstable mode numbers of the numerical

Cerenkov instability depends on the type of Maxwell field solver used. The new code, called

UPIC-EMMA, uses a spectral field solver, and is fully parallelized. It is built using the

components of the UPIC Framework, which is a set of modules for building parallelized PIC
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Plasma density n0 1.148× 10−3n0γb

Laser

pulse length τ 70.64k−1
0 γb(1 + βb)

pulse waist W 117.81k−1
0

polarization 3̂-direction

Lab frame simulation (γb = 1)

grid size (∆x1,∆x2) (0.2k−1
0 , 2.746k−1

0 )

time step ∆t 0.199ω−1
0

number of grid (moving window) 4000× 512

particle shape quadratic

2D boosted frame simulation

grid size ∆x1,2 0.0982k−1
0 γb(1 + βb)

time step ∆t 0.0221ω−1
0 γb(1 + βb)

number of grid (γb = 14) 16384×512

number of grid (γb = 28) 8192×256

particle shape quadratic

Table 6.2: Simulation parameters for the 2D simulations, with a0 = 0.1, 3.0, 4.0 (related to

figure 6.6, 6.7, 6.8, and 6.9). The laser frequency ω0 and laser wave number k0 are used to

normalize simulation parameters, and n0 = meω
2
0/(4πe

2).
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Figure 6.10: Results from 3D UPIC-EMMA boosted frame simulation (γ = 17). (a) and

(b) present 2D cross section plot of the plasma electron density, and E1 at t′ = 15335 ω−1
0 ,

while (c) shows the on-axis E1 comparison at t = 3980 ω−1
0 in the lab frame. x1 − t is the

coordinates moving together with the moving window.

codes with FFT based (spectral) solvers. The use of a spectral solver in which the fields are

solved for in Fourier space allows for more convenient mitigation of the numerical Cerenkov

instability. The phase velocity of light in vacuum and in a plasma is always greater than the

speed of light for a spectral solver. In such cases, the fastest growing modes of the numerical

Cerenkov instability are due to the first spatial aliased beam mode and they reside at large

values of |~k|. These modes can be easily filtered out using a “hard” low pass or “shell” filters,

thereby eliminating the fast growing modes of the instability.

We presented examples of LWFA boosted frame simulations using UPIC-EMMA. Several

different values of the laser amplitude were simulated ranging from a very linear regime to

a nonlinear regime. For the cases shown there was no evidence of the numerical instability

and good agreement was found between OSIRIS lab frame and UPIC-EMMA boosted frame

simulations. In Chapter 3 we repeated some simulations in which we eliminated the main

NCI modes and differences were seen. This illustrates an important observation that even

if no evidence of the NCI is seen in the field fluctuations, NCI can still alter the physics in

very subtle ways. The comparison showed that the wake and laser from OSIRIS lab frame

simulation slipped behind the results from the boosted frame simulations as expected from

numerical dispersion errors. We showed that the dispersion errors become smaller when

results are transformed back to the lab frame.
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CHAPTER 7

LWFA boosted frame simulation in the quasi-3D

geometry

In the previous chapter, we showed the LWFA Lorentz boosted frame simulation using UPIC-

EMMA, and the comparison against the corresponding lab frame results [71]. The good

agreements demonstrate the accuracy, as well as the speedups that can be provided by the

Lorentz boosted frame simulation technique. As mentioned in previous chapters, recently a

method to expand the fields in to azimuthal harmonics and to truncate the expansion [51, 55],

called the quasi-3D algorithm, has been proposed. This can reduce the computational costs

of modeling 3D problem with low azimuthal asymmetry to that on the order of 2D r −

z simulations. Since both the Lorentz boosted frame technique and quasi-3D algorithm

provides tremendous speedups for the LWFA simulation, it would be intriguing to combine

these two methods in order to combine the speedups provided by each. Similarly to full

PIC simulations in the Cartesian geometry, the key to the combination is the elimination

of the NCI that inevitably arises due to the unphysical coupling between Langmuir modes

(main and aliasing) and EM modes of the relativistic drifting plasma in the simulations. The

coupling arises in the Lorentz boosted frame between modes which are purely longitudinal

(Langmuir modes) and purely transverse (EM modes) in the lab frame. The coupling occurs

at specific resonances (ω − µ2π/∆t) = (k − νz2π/∆z)vb where µ and νz are the time and

space aliases and ∆t and ∆z are the time step and grid size respectively.

While the multi-dimensional NCI theory in Cartesian coordinates has been well described

in previous chapters, there are currently no analytical expressions for the numerical dispersion

relation of relativistic plasma drifting in the quasi-3D geometry. However, OSIRIS [30]

simulations have shown that its behavior for the quasi-3D r − z geometry is very similar
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to that in Cartesian geometry. As was proposed and demonstrated in Chapter 4, a hybrid

Yee-FFT solver could be used to suppress the NCI in the Cartesian and quasi-3D geometries

[72]. In the regular Yee (a finite difference) solver in a quasi-3D geometry [51, 21], Maxwell

equations are solved in (r, z) space for each azimuthal mode m. In the hybrid Yee-FFT solver,

we perform a Fourier (discrete) transform in the drifting direction of the plasma (denote as

ẑ), and solve Maxwell equations in kz space for each mode m; meanwhile, in the r̂ direction

the derivatives are represented as second order finite difference operators on a Yee grid. The

current is corrected to maintain the correctness of Gauss’ Law. When Maxwell’s equations

are solved in this way, the corresponding NCI modes can be systematically eliminated by

applying the same strategies used for a multi-dimensional spectral Maxwell solver. The

fastest growing modes of the NCI at (µ, νz) = (0,±1) can be conveniently suppressed by

applying a low-pass filter in the current, the highly localized (µ, νz) = (0, 0) NCI modes

can be moved away from physical modes by reducing the time step, and can be completely

eliminated by modifying the EM dispersion at the kz range where the (µ, νz) = (0, 0) NCI

modes are located. Furthermore, higher order spatial aliasing NCI modes can be suppressed

by applying higher order particle shapes. We present OSIRIS simulation results which show

that Lorentz boosted simulations of LWFA can be performed in this geometry with no

evidence of the NCI. It is worth noting that recently a PIC algorithm based on a fully

spectral solver in quasi-3D geometry has been proposed by Lehe et. al. [65]. This scheme

was demonstrated with a single-node algorithm.

In addition, according to how the lab frame information is located in the (z′, t′) space,

we show that the computation loads can be further reduced by applying a moving window

in the boosted frame simulation. In the boosted frame the window follows the plasma as

opposed to the laser, which is the case when using a moving window in the lab frame.

The remainder of this chapter is organized as follows: in section 7.1 we briefly discuss

the hybrid Yee-FFT solver in quasi-3D geometry, and the corresponding NCI mitigation

strategies. In section 7.2, we discuss the simulation setups for modeling LWFA in the Lorentz

boosted frame. We discuss the distribution of the data needed for the reconstruction of lab

frame information with an emphasis on showing that using a moving window in the direction
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of the plasma drift can further reduce the computational load. We then show sample quasi-

3D simulations of LWFA in the Lorentz boosted frame in section 7.3, and compare the

results with the corresponding 3D boosted frame and lab frame data. In particular, we

concentrate on the study of the laser driver evolution as it propagates through the plasma.

Good agreement is obtained when comparing the driver evolution in lab frame against that

obtained from the boosted frame simulation. This demonstrates the feasibility of combining

the Lorentz boosted frame technique, the quasi-3D algorithm, and a moving window. We

also discuss the preliminary speedups achieved in these sample simulations. The results are

summarized in section 7.4.

7.1 Hybrid Yee-FFT solver in quasi-3D geometry

In Chapter 4 we discussed the hybrid Yee-FFT solver in quasi-3D geometry. In this solver,

Maxwell equations are Fourier transformed in the drifting direction of the plasma (denoted

as the ẑ direction). The fields are solved in the corresponding (kz, x, y) space, where con-

ventional second order finite difference operators on a Yee mesh are used in (x, y). When

Maxwell equations are solved in this way, the corresponding EM dispersion of the solver

leads to NCI patterns that are very similar to those from a fully spectral Maxwell solver in

which Maxwell equations are solved in multi-dimensional ~k-space. Therefore one can sys-

tematically eliminate the NCI using approximately the same strategies developed for a fully

spectral solver. Importantly, the hybrid Yee-FFT solver works for both Cartesian geometry

(z, x, y), and quasi-3D geometry (z, r, φ).

When the Maxwell solver is modified from a standard Yee solver to a hybrid Yee-FFT

solver, essentially the spatial finite difference operator in the ẑ direction is modified from

second-order accuracy (derived from its finite difference form) into a greater than N -th order

accuracy. However, in OSIRIS (and most of the modern PIC codes) the ~E and ~B fields are

advanced using Faraday’s Law and Ampere’s Law, while Gauss’s Law is satisfied by applying

a charge conserving current deposition scheme [23, 55, 56]. This scheme begins by calculating

the current using the charge conserving current deposit scheme of [23, 56] for a purely r− z
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code. It then uses this as a common factor in the amplitude for each azimuthal harmonic of

Jz and Jr together with a factor that depends on the particle position in φ at the half time

step; and it uses this together with the particle motion in φ to get Jφ for each harmonic (see

section 3.2 of Ref. [55] for more details). If the continuity equation is rigorously satisfied

at each time step then by taking the finite difference version of the divergence of Ampere’s

law, Gauss’ Law is seen to be satisfied if it is satisfied at t = 0.

However, the rigorous charge conserving current deposit is known only for second order

finite difference operators in the ẑ direction. Therefore, when we use a FFT for the differential

operator along ẑ direction in Faraday’s and Ampere’s Law, we need to modify the current

appropriately so the continuity equation is still true for the modified differential operator.

To accomplish this, for each azimuthal mode of current ~Jm(z, r) obtained from the charge

conserving current deposition scheme described in [55], we Fourier transform it along ẑ-

direction, and then apply a correction with the form,

J̃mz (kz, r) =
[k]z
kz

Jmz (kz, r) (7.1)

where

[k]z =
sin(kz∆z/2)

∆z/2
(7.2)

is the second order first spatial finite difference operator. This correction ensures the satis-

faction of Gauss’ Law throughout the simulation, as will be discussed shortly afterwards.

Each azimuthal mode of the EM fields are initially stored in the memory in (z, r) space,

and are advanced in (kz, r) space. We Fourier transform ~E and ~B along ẑ-direction, and

solve Faraday’s Law and Ampere’s Law for each azimuthal mode m, and each Fourier mode
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kz, using the corrected current as the source term,

∂tB
m
r = −im

r
Em
z − ikzEm

φ (7.3)

∂tB
m
φ = ikzE

m
r + ∂rE

m
z (7.4)

∂tB
m
z = −1

r
∂r(rE

m
φ ) +

im

r
Em
r (7.5)

∂tE
m
r =

im

r
Bm
z + ikzB

m
φ − Jmr (7.6)

∂tE
m
φ = −ikzBm

r − ∂rBm
z − Jmφ (7.7)

∂tE
m
z = −1

r
∂r(rB

m
φ )− im

r
Bm
r − J̃mz (7.8)

Here ~Em, ~Bm, and ~Jm are all in (kz, r) space. Note that ∂t and ∂r adopt the conventional

finite difference form as in the Yee solver. The code is gridless in φ so ∂φ is replaced with im.

The fields are then transformed back to (z, r) space, summed over m modes, and gathered

for the particle pushing.

The reasoning behind the current correction Eq. (7.1) is that the charge conserving

current deposition scheme described in [55] ensures that

∂tρ
m(kz, r) + i[k]zJ

m
z (kz, r) +∇rJ

m
r (kz, r) +

im

r
Jmφ (kz, r) = 0 (7.9)

where [k]z is given in Eq. (7.2) for this expression, and ∇r( · ) is the second order accurate

finite difference operator in r̂ direction. Therefore this correction ensures that Gauss’s Law

in the hybrid solver

ikzE
m
z (kz, r) +∇rE

m
r (kz, r) +

im

r
Em
φ (kz, r) = 4πρm(kz, r) (7.10)

is satisfied throughout the simulation if it is satisfied at t = 0.

7.1.1 Elimination of Numerical Cerenkov instability

We have found previously that the NCI pattern for the quasi-3D hybrid Yee-FFT solver is

similar to its counterpart in the Cartesian 3D geometry [57, 72]. As a result, we can apply

approximately the same mitigation strategies used for the fully spectral solver in Cartesian

geometry to systematically eliminate the NCI modes for this solver [45, 46].
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We first eliminate the fastest growing (µ, νz) = (0,±1) modes (νz is the spatial aliasing in

ẑ direction) by applying a low-pass filter in the current. The filter covers the entire kz range

in which the (µ, νz) = (0,±1) NCI modes reside to prevent an unphysical exponential energy

growth in these kz modes. This can be efficiently accomplished since the current density is

already in kz space after the Fourier transform. For instance, in the sample simulation in

section 7.3.2 we are using a low pass filter that has the following expression:

F (kz) =


1, |kz| < flkgz

sin2

(
kz − fukgz
flkgz − fukgz

π

2

)
, flkgz ≤ |kz| ≤ fukgz

0, fukgz < |kz|

(7.11)

where kgz = 2π/∆z. This filter cuts off all the kz modes larger than fukgz, while allowing

modes smaller than flkgz to go through the filter. A sine square function connects the two

regions to ensure a smooth filtering function.

The second fastest growing NCI modes (µ, νz) = (0, 0) can be eliminated by reducing

the time step, and then slightly modifying the kz operator to create a small bump in the

dispersion relation to precisely avoid intersections between the main EM modes and main

Langmuir modes that are highly localized in kz [46]. When determining the simulation time

step, we first choose a time step such that the (µ, νz) = (0, 0) NCI modes are significantly

far away from the physical modes. The time step we used for the simulations presented in

this paper are ∆t = ∆z/4. After that, we apply the [k]z modification in the highly localized

|kz| range. This modification makes the growth rate of the (µ, νz) = (0, 0) NCI modes to be

zero in theory. The [k]zmodification is straightforward in a hybrid Yee-FFT solver since we

are essentially solving the Maxwell equation in kz space. In the sample simulation presented

in section 7.3.2 we applied the following correction to the [k]z operator

[k]z =


kz + ∆kmax cos2

(
kz − kzm
kzl − kzm

π

2

)
, kzl < |kz| < kzu

kz, otherwise

(7.12)

where kzu = 2kzm − kzl, and kzm, kzl, ∆kmax are listed in Table 7.1 and 7.2.

As for higher order NCI modes, their growth rates can be reduced if needed by applying

higher order particle shapes. However, for the parameter space explored in this paper, the
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higher order NCI modes have growth rates several orders of magnitude smaller than the

fastest growing modes, and are not seen in the simulations even when the modes with higher

growth rates are suppressed. Therefore, for the simulations presented here we used the

quadratic particle shapes.

Applying the strategies described above, we can systematically mitigate the NCI modes

in the quasi-3D geometry. Note the Fourier transform of the current into kz space is not only

important for the efficient filtering of the NCI modes, but also required to accurately correct

(compensate) the current in kz space to exactly match the modified Maxwell solver. It is

worth noting that it is now a common practice to modify either the Maxwell solver or the

field interpolation to change the EM dispersion relation in order to obtain a more desirable

dispersion relation [39, 40, 42, 45, 46, 64, 72]. Within these schemes, Gauss’ Law is satisfied

by either directly solving it (as is the case in UPIC [20, 22, 58]), or by using a current that

satisfies the continuity equation through a correction (compensation) to match the current

deposition scheme with the Maxwell solver (as is the case in here and in [72]).

7.2 Simulation setups in the boosted frame

The setup of a quasi-3D LWFA simulation in a Lorentz boosted frame is almost identical to

its counterpart in Cartesian 2D/3D geometry. In a boosted frame with Lorentz factor γ that

moves in the propagation direction of the laser, the laser pulse is colliding with a counter-

propagating relativistically drifting plasma [32, 33, 53]. Due to the Lorentz transform, the

plasma density increases by γ while the total plasma column length contracts by γ. The

laser wavelength and pulse length stretch by γ(1 +β), while its Rayleigh length contracts by

γ. To avoid initializing a laser with very wide transverse size due to the contracted Rayleigh

length and stretched pulse length, a moving antenna is placed at the edge of the plasma

boundary to inject a laser pulse into the plasma [60, 61].
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7.2.1 Relationship between lab and boosted frame data

In LWFA simulations in the lab frame (i.e., a stationary plasma) the use of a moving win-

dow [28], which only follows the physical domain near the laser, significantly reduces the

computational load. The moving window essentially drops plasma sufficiently far behind the

laser and adds fresh plasma in front of the laser. This is illustrated in Fig. 7.1 (a) where

we plot the range of space time data from a lab frame simulation. The solid box shows the

total space time area while the dashed box shows the reduced area through the use of a

moving window. The moving window has a length 800 [k−1
0 ], and the simulation duration is

tmax = 100000 [ω−1
0 ]. We also show the simulation data that is dumped as colored lines. The

data is dumped every 20000 [ω−1
0 ]. The red ends of the data lines indicate the starting end

of the moving window, while the blue ends indicate the rear end. Connecting the red ends

of the data lines, we obtain the z − t relation for the head of the moving windows, t = z

(the speed of light c is normalized to 1). The data obtained in the lab frame (assuming the

code dumps data at a constant time interval) rotates in space-time in the boosted frame

since the Lorentz transform is essentially a hyperbolic rotation of coordinates in Minkowski

space [33, 60]. Therefore lines of data in ẑ taken at fixed time from a Lorentz boosted frame

are rotated by the Lorentz transform, i.e, t′ = t/γb − βbz′. The slope of each data line now

becomes −βb, where βb = (1 − γ−2
b )−1/2 and each data line in the lab frame which belongs

to the same point in time in lab frame is now spread over a range of t′ and z′. Interestingly,

when we connect the red end of each data line in the boosted frame it still has a slope of c,

i.e. t′ = z′. The range of data in the boosted frame is shown in Figs. 7.1 (b), (c) and (d).

The data in Fig. 7.1 (b), (c) corresponds to γb = 20 while that in Fig. 7.1 (d) corresponds

to γb = 5. In Figs. 7.1 (b) and (c) we also show the smallest area (domain enclosed by

dashed lines) in t′, z′ space that includes the area needed to reconstruct the lab frame data

for the two different values of γb. This illustrates that the space-time area in the boosted

frame can be minimized by using a moving window in this frame. In Fig. 7.1 (b) it is seen

that this window moves to the left (backwards); while in Fig. 7.1 (c) the window moves to

the right (forwards). We use such moving window in the boosted frame OSIRIS simulations.

Currently, UPIC-EMMA boosted frame simulations in Cartesian 2D/3D geometry uses a
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stationary window [Fig. 7.1 (d)] [71].

⠀愀⤀ ⠀戀⤀

⠀挀⤀ ⠀搀⤀

Figure 7.1: Range of important data in lab and boosted frame simulations. (a) Range of

data in lab frame (stationary plasma) simulation with and without a moving window, (b)

range of data in a boosted frame simulation with γb = 20 including with a moving window,

(c) range of data in a boosted frame simulation with γb = 5 with a moving window, and (d)

range of data in a boosted frame simulation with γb = 20 without a moving window.

From Fig. 7.1 it is evident that in lab frame simulations we usually dump data sparsely

in time (large time intervals between time outputs), but the data at each grid is dumped at

each time output. On the other hand, in order to recover the equivalent lab frame data in

a boosted frame simulation, we need to sample boosted frame data at a much higher rate

in time, but only need a small number of spatial locations. This can be seen by plotting a

line across z′ for a fixed t′. This line only intersects the equivalent lab frame data at the

same number of spatial locations as the number of time outputs. We typically dump the
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boosted frame data in a standard form (all grid points at small number of time steps) as

well as the data needed to transform the results back to the lab frame (a small number

of interpolated grid points at a large number of time steps). We then post-process the

later data by performing the inverse rotation back into lab frame for comparison with the

lab frame data. When running in the lab frame we also plot the necessary data needed to

reconstruct the data into a boosted frame. This inverse construction method is useful during

the development of a boosted frame code, as one can transform the lab frame data that has

been extensively cross checked with theory, to the boosted frame, and compare the results

against the results obtained by the boosted frame code.

7.2.2 Basic setup

In Fig. 7.2, we present a typical setup for a boosted frame simulation. The moving window

moves from right to left following the drifting plasma. The moving antenna is also moving

from right to left and injects the laser pulse from the left plasma boundary into the plasma.

We place a damping section at the rear (right) end of the moving window (there is a gap

between the plasma and the damping region) to damp the EM field to zero in this region.

This is done because periodic boundary conditions are applied in the ẑ direction when using

the hybrid Yee-FFT solver, which requires that the EM fields need to be zero at the rear

end of the simulation window to match the fields at the opposite side; otherwise the EM

field at the rear end will reappear at the starting end. We note that there will be a low level

of EM reflection from the damping section. In an FFT solver, the group velocity of light in

vacuum is greater than the speed of light, however, since the simulation window is moving

at the speed of light and the drifting plasma is drifting ultra-relativistically away from it,

the reflected energy is not able to catch up with the drifting plasma. Hence the physics

inside the plasma will not be affected by the reflecting EM waves. We have compared cases

with the moving window plus the damping regions against cases without the moving window

to confirm that the moving window plus damping region works [68]. We also note that for

high γb boosted frame simulations, we find that the modified pusher described in Ref. [69] is

required in order to get the evolution of the bubble correct. As pointed out in Ref. [69] the
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usual leap frog staggering leads to issues for the Lorentz force when there is near cancellation

of the electric and magnetic forces for relativistically moving particles. Determining at what

γb the modified pusher in [69] is needed is an area of future work.

Figure 7.2: Simulation setup for a typical LWFA simulation in the boosted frame. The

moving window follows the drifting plasma moving from right to left. A moving antenna

injects laser pulse from left to right, and a damping region is located at the rear end of the

moving window which also moves from left to right.
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7.3 Sample simulations

In this section, we present two sets of sample simulations. We begin by comparing results

from two boosted frame simulations where in one case we use full 3D OSIRIS and in the

second case we use quasi-3D OSIRIS, in order to justify the truncation of higher azimuthal

modes m in the quasi-3D boosted frame simulations. In both cases hybrid Yee-FFT solvers

and the corresponding NCI mitigation schemes are used. The parameters match those in

Ref. [16] whereby a 200 TW laser is focused to a spot size of 19.5 µm at the entrance

of a 1.5 × 1018 cm−3 density plasma. The FWHM pulse length of the laser was 35 fs and

the normalized vector was a0 = 4.0 for a linearly polarized laser or a0 = 4.0/
√

2 for a

circularly polarized laser. This corresponds to a 1.3 GeV output electron energy according

to the scaling laws in Ref. [16]. The numerical parameters are shown in Table 7.1. We

then compare the output in the boosted frame for various azimuthal mode numbers. This

comparison requires the use of a post-processing algorithm which decomposes the full 3D

data into azimuthal modes [74].

We then compare the data of a LWFA boosted frame simulation in quasi-3D lab with

the corresponding quasi-3D boosted frame simulation. For these simulations we explore

parameters for which a full 3D lab frame simulation is not feasible due to the large CPU

hours required. The parameters correspond to a 1.8 PW laser focused to a spot size of

45 µm at the entrance of a 2.5 × 1017 cm−3 density plasma. The FWHM pulse length of

the laser was 130 fs and the normalized vector was a0 = 4.44 for a linearly polarized laser

or a0 = 4.44/
√

2 for a circularly polarized laser. This corresponds to a 10.4 GeV output

electron energy according to the scaling laws in Ref. [16]. The numerical parameters are

shown in Table 7.2. The data from the boosted frame simulation is transformed back to the

lab frame and it is compared against the data from the lab frame simulation.

7.3.1 3D v.s. quasi-3D boosted frame data for a 1.3 GeV case

When modeling LWFA in quasi-3D geometry, whether it is in the lab frame or boosted

frame, the accelerating (Ez) and focusing fields (Er and Bφ) in the bubble are mainly in
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Plasma

density np 8.62× 10−4n0γb

length L 8.0× 104k−1
0 /γb

Laser

pulse length τ 86.9k−1
0 γb(1 + βb)

pulse waist W 153.0k−1
0

polarization circular

normalized vector potential a0 4.0

Quasi-3D boosted frame simulation (γb = 15.0)

grid size ∆z = ∆r 0.1k−1
0 γb(1 + βb)

time step ∆t/∆xz 0.125

number of grid (moving window) 2048×256

particle shape quadratic

particle per cell (ẑ, r̂, φ̂) (2,2,16)

[k]z modification ([k]zl, kzm,∆kmax)/kgz (0.141,0.240,0.007)

low pass filter (fl, fu) (0.3,0.35)

Full 3D boosted frame simulation (γb = 15.0)

grid size ∆z = ∆r = ∆y 0.1k−1
0 γb(1 + βb)

time step ∆t/∆z 0.125

number of grid (moving window) 2048× 512× 512

particle shape quadratic

particle per cell (ẑ, x̂, ŷ) (2,2,2)

[k]z modification ([k]zl, kzm,∆kmax)/kgz (0.141,0.240,0.007)

low pass filter (fl, fu) (0.3,0.35)

Table 7.1: Parameters for the 3D and quasi-3D LWFA simulations in the Lorentz boosted

frame (discussed in section 7.3.1). The laser frequency ω0 and number k0 in the lab frame are

used to normalize simulation parameters. The density is normalized to the critical density

in the lab frame, n0 = meω
2
0/(4πe

2). The normalized vector potential a0 for the laser

corresponds to linear polarization.
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the m = 0 modes of the EM fields. On the other hand, the fields associated with the laser

are associated with the |m| = 1 mode of fields. Therefore, by keeping at least the |m| ≤ 1

modes the self-consistent evolution of the laser and wake fields can be examined when there

is nearly azimuthal symmetry. For this comparison we truncate the azimuthal harmonics

keeping only the |m| ≤ 1 modes [51, 55]. More modes can be kept in principle to study

laser hosing and asymmetric spot size effects as well as to test the convergence of the results.

In addition, the results and the needed truncation can be verified by comparing LWFA

boosted frame simulation results from the full 3D and quasi-3D geometries. To verify the

azimuthal mode truncation, we decompose the data from the full 3D OSIRIS simulation into

azimuthal harmonics and compare it against the corresponding quasi-3D simulation using

the parameters listed in Table 7.1. In Fig. 7.3, we plot the azimuthal decomposition of

the 3D data for Ez and Er at t′ = 4494.99 [ω−1
0 ], and compare it against the corresponding

quasi-3D data at the same time. For the |m| ≤ 1 modes, very good agreement is observed.

In addition, we plot the higher order m = 2, 3 modes from the 3D data in Fig. 7.4. We can

see that the higher order modes are at least one order of magnitude smaller than those of

the m = 0, 1 modes, which indicates that the truncation of azimuthal harmonics at |m| ≤ 1

in the quasi-3D simulations is reasonable when the laser is nearly symmetric.

7.3.2 Quasi-3D lab frame v.s. boosted frame data for a 10.4 GeV case

Next, we compare data from a quasi-3D LWFA simulation in the lab frame against data

Lorentz transformed back to the lab frame from a quasi-3D simulation. A laser with normal-

ized vector potential of a0 = 4.44 (converted to linear polarization) with pulse length of 130

fs, and spot size of 45 µm propagates into a plasma column 20.8 cm long (in the lab frame).

We use a boosted frame with γb = 26.88, and use a moving window as described earlier that

follows the relativistically drifting plasma. A moving antenna injects the laser pulse into the

plasma, and a damping region absorbs the EM field at the rear end of the moving window.

In the upper r̂ boundary of the simulation box we applied the Perfectly-Matched-Layer [67]

boundary condition (see Ref. [68] for more details). The plasma density is uniform along

the ẑ direction. It is uniform in the r̂ direction from 0 ≤ r ≤ 7000 [k−1
0 ] (where k0 is the
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Figure 7.3: Comparison of simulation results in 3D and quasi-3D geometries for the a0 = 4.0

(converted to linear polarization) 1.3 GeV LWFA stage run (as discussed in section 7.3.1).

All results are from boosted frame simulations. On the left are the m = 0 modes of Ez and

Er. On the right are the real part of Em=1
z and Em=1

r . Results from a full 3D boosted frame

case are compared against a quasi-3D OSIRIS case where only |m| ≤ 1 modes were kept.

Simulation parameters are listed in Table 7.1.
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Figure 7.4: Higher order m modes of Re(Ez) and Re(Er) obtained from a full 3D LWFA

boosted frame data (as discussed in section 7.3.1). On the left are Re(Ez) and Re(Er) for

mode m = 2, while on the right are Re(Ez) and Re(Er) for mode m = 3. The simulation

parameters used are listed in Table 7.1.
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wave number of the laser in the lab frame), and then the density linearly ramps to zero at

r = 8000 [k−1
0 ] near the r̂ upper boundary (an additional gap of 500 [k−1

0 ] is left between the

r̂ upper plasma boundary and simulation box boundary). The linear plasma density ramp

is used to prevent reflection when the laser moving at an oblique angle crosses the upper r̂

plasma boundary into vacuum. Detailed simulation parameters are listed in Table 7.2.

As mentioned in section 7.2, in the boosted frame each azimuthal mode of the EM field

is dumped frequently in time, and sparsely in space. The results can be transformed back

to the lab frame for post-processing. In Fig. 7.5 (a) we present 2D envelope plots of the

real part of the Em=1
r fields. The upper plot in Fig 7.5 (a) is the boosted frame simulation

results (transferred back to lab frame), while the lower plot is the lab frame data. The 2D

envelope of Em=0
z fields for the two simulations are presented in Fig 7.5 (b). In Figs. 7.5

(c)–(h) we present the corresponding line out datas from the two simulations. As we can

see from Fig. 7.5 the data from the two simulations agree well with each other, except for

the area around the rear of the first bubble, which indicates that the two simulations give

different self-injection results. On the other hand, the laser profiles from the two cases agree

extremely well [Fig. 7.5 (e)–(h)]. In Fig. 7.5 (e) line outs of Em=0
z at various time steps

are plotted, and they show that in the transformed boosted frame data there is stronger

beam loading, which indicates that more charge is self-injected into the bubble. This is

likely due to the difference in statistics between the lab frame simulation and boosted frame

simulation. In the boosted frame a macro-particle represents ∼ 2γ2
b more charge than in the

lab frame, while particles in the boosted frame are ∼ 2γb times “fatter” since the grid size

in the boosted frame is ∼ 2γb times larger, and this could affect the self-injection process.

To confirm the differences are related to the self-injection process, we repeated the lab

frame and boosted frame simulations in regimes with no self-injection, at a0 = 3.0 (converted

to linear polarization), while keeping the other parameters as listed in Table 7.2. In Fig.

7.6 (a) and (b) we show the line out of the wakefield Em=0
z at two different times in the

lab frame, and in Figs. 7.6 (c) and (d) we show the corresponding amplitude envelope line

outs of the laser profiles Re(Em=1
r ). We see from Fig. 7.6 that for this case where there

is no self-injection in the lab frame simulation, the wake field results from the lab frame
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Plasma

density np 1.433× 10−4n0γb

length L 1.63× 106k−1
0 /γb

Laser

pulse length τ 296.4k−1
0 γb(1 + βb)

pulse waist W 351.9k−1
0

polarization circular

normalized vector potential a0 4.44

Lab frame simulation (γb = 1)

grid size in (ẑ, r̂) (0.2k−1
0 , 4.74k−1

0 )

time step ∆t/∆xz 0.9974

number of grid (moving window) 7920× 1248

particle shape quadratic

particle per cell (ẑ, r̂, φ̂) (2,1,8)

Boosted frame simulation (γb = 26.88)

grid size (square cell) 0.2k−1
0 γb(1 + βb)

time step ∆t/∆xz 0.25

number of grid (moving window) 8192×792

particle shape quadratic

particle per cell (ẑ, r̂, φ̂) (2,2,16)

[k]z modification ([k]zl, kzm,∆kmax)/kgz (0.135,0.231,0.005)

low pass filter (fl, fu) (0.3,0.35)

Table 7.2: Parameters for the quasi-3D LWFA simulations in the lab frame and Lorentz

boosted frame (discussed in section 7.3.2). The laser frequency ω0 and number k0 in the lab

frame are used to normalize simulation parameters. The density is normalized to the critical

density in the lab frame, n0 = meω
2
0/(4πe

2). The normalized vector potential a0 for the laser

corresponds to linear polarization.
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Figure 7.5: Simulation results for a a0 = 4.44 (converted to linear polarization) 10.4 GeV

LWFA stage run (as discussed in section 7.3.2). (a) shows the comparison of 2D envelope

of Re(Em=1
r ) field, which shows the evolution of laser driver as it propagates through the

plasma; (b) shows the corresponding comparison of the amplitude of Em=0
z , which shows

how the wakefield of the bubble varies in the two frames due to the different self-injection

results; (c), (e), and (g) are comparisons of the Em=0
z lineout, laser envelope Re(Em=1

r ) line

out, and laser spot size respectively at lab frame time t = 101802.7 ω−1
0 , while (d), (f), (h)

are the corresponding plots at t = 570095.3 ω−1
0 . The simulation parameters used are listed

in Table 7.2.
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and boosted frame simulations agree very well. It is challenging to accurately model the

self-injection process in the LWFA blowout regime. Determining the best practices for using

the boosted frame technique to study self-injection at high γb is an area for future work.
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Figure 7.6: Line outs of wakefield Em=0
z and line outs laser field envelope of Re(Em=1

r ) at

various lab frame time for a a0 = 3.0 case (as discussed in section 7.3.2). Since there are

no self-injection in the lab frame for this case, much better agreements are obtained for the

wakefield part. The simulation parameters used are listed in Table 7.2.

We plot the laser envelope and spot size obtained from the two cases in Figs. 7.5 (e)–(h).

Excellent agreement can be seen for the two times presented in Fig. 7.5. Excellent agreement

is also seen for the evolution of the spot size, and laser amplitude of the laser driver as it

propagates through the plasma column. In Fig. 7.7 we show a detailed time history of the

laser spot size and amplitude at the position of the laser where its amplitude is largest. Fig.

7.7 clearly shows that very accurate results can be obtained when using Lorentz boosted

frame technique in quasi-3D geometry to study the evolution of laser driver in the plasma.

We have not yet attempted to optimize choices of parameters or the algorithm itself.

However, it is still useful to compare the total CPU hours for the limited set of lab and

boosted frame simulations presented in the chapter. The quasi-3D lab frame simulations

presented in section 7.3.2 used around 1.6 million CPU hours. Load balancing significantly

reduced the performance, and a corresponding full 3D simulation (using 8 particles per

cell) would take around 300 million CPU hours in theory. Meanwhile the corresponding

quasi-3D boosted frame simulation takes 2000 CPU hours. The speedup from the quasi-
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Figure 7.7: Evolution of the laser spot size and peak amplitude (discussed in section 7.3.2).

(a) shows the comparison of laser spot size evolution as the laser propagates into the plasma

for the two frames. The laser spot size are defined at the location where the laser has the

maximum amplitude. The corresponding maximum laser amplitude evolution is shown in

(b). The simulation parameters used are listed in Table 7.2.
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3D lab frame is around 800. Note when calculating the speedup we take into account the

fact that the transverse resolution, and particles per cell is different in the two simulations.

Correspondingly the speedup achieved from the full 3D lab frame simulation to quasi-3D

boosted frame is on the order of 100,000. Note if the full 3D simulation was run on a large

number of processors then load balancing issues can sometimes increase the CPU hours by a

factor of between 5 and 10. We note the theoretical speed up for boosted frame simulations

is actually not straightforward to calculate as it depends on γb, the plasma length, and the

laser pulse length. As noted, load imbalance is another factor that would greatly affect the

speed up.

7.4 Summary

In this chapter, we described how it is possible to perform LWFA simulations in Lorentz

boosted frame using the quasi-3D algorithm. The key to high fidelity Lorentz boosted frame

simulations in this geometry is the use of a hybrid Yee-FFT solver that solves the Maxwell

equation in kz space in the direction that the plasma drifts, while keeping the second order

finite-difference operators in the transverse directions as in a conventional Yee solver. Using

this Maxwell solver we can then use the same strategies for eliminating NCI in Cartesian

geometry to systematically eliminate the NCI in the quasi-3D geometry. At the same time

all other features of OSIRIS are also available including single core optimization and high

parallel scalability. A current correction is applied to ensure the code rigorously conserves

charge. In addition, we analyzed the space-time area of the lab and boosted frame simulation

data. We showed how using a moving window which follows the drifting plasma in the

boosted frame the further reduce the computational load. We were able to combine Lorentz

boosted frame technique with quasi-3D algorithm, together with moving window technique

to achieve unprecedented speed up for the modeling of LWFA [73].

We presented comparisons of lab frame against boosted frame simulation results for a 10

GeV LWFA example that operates in the blowout regime. It was shown that the evolution of

the laser driver in the plasma can be very well reproduced by the boosted frame simulation.
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We also found that the self-injection process is different in the boosted frame. This is

partly due to the difference in statistics between the simulations in the two frames since

in the boosted frame each macro-particle represent many more real particles then in the

corresponding lab frame simulation. We found excellent agreement between the lab and

boosted frame results for the wake fields when a0 was reduced to avoid self-injection.
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CHAPTER 8

Dissertation summary and future work

8.1 Dissertation summary

In this dissertation, we addressed the challenge of performing PIC simulations in which a

plasma (neutral or non-neutral) drifts across the grid at relativistic speeds. This is moti-

vated by the attractiveness of performing LWFA simulations in a Lorentz boosted frame,

or performing simulations of colliding plasmas in their rest frame (also a boosted frame)

for studying relativistic shocks. Simulations performed in the early 1990s, and then again

in the later half of the last decade revealed that a violent numerical instability occurs in

such simulations. In chapter 2 we began by deriving a dispersion relation for a cold plasma

drifting across the grid. We used some of the methods described in the work by Godfrey

[34, 35] in the mid 1970s in which he discovered and analyzed an instability he called the

Numerical Cerenkov Instability (NCI). Nonetheless, the dispersion relation in this early work

[34, 35] was incomplete, and cannot be readily applied to analyze the parameter space of

current interest. We derived a dispersion relation in the form of the determinant of a matrix.

We then presented a way to systematically solve this equation, and obtain the pattern and

growth rates of a numerical instability from the derived dispersion relation. We still refer to

this instability as the numerical Cerenkov instability (NCI) as this instability can be consid-

ered as multi-dimensional version of the instability investigated in [34, 35]. We also showed

that by rewriting the dispersion relation for different temporal and spatial aliasing that it

was due to the unphysical coupling of modes that are purely transverse (EM) and purely

longitudinal (Langmuir) in the rest frame of the drifting plasma. When using a grid these

two modes are coupled by a term that vanishes in the continuous limit (infinitely small cell
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size and time step).

It is found that usually the fastest growing NCI modes are the (µ, ν1) = (0,±1) (first

spatial aliasing) and (µ, ν1) = (0, 0) (main) NCI modes. In a Yee solver (second order

accurate finite difference solver), the main NCI modes reside in a wide range of k1 in the

fundamental Brillouin zone. Moreover, they are very close to modes of physical relevance,

making it difficult to eliminate them through a filter. To eliminate the main NCI modes,

we found that it is advantageous to use a multi-dimensional spectral Maxwell solver, in

which the electromagnetic (EM) fields are advanced in ~k space. For the parameter space of

interest, in the spectral solver the main NCI modes become highly localized in wave number

space (~k space), and their growth rates are already one order of magnitude smaller than

the Yee solver counterpart. Moreover, as one uses a reduced simulation time step, the main

NCI modes move farther away from the ~k = ~0 (where the physical modes reside nearby),

and their growth rates become even smaller. It is further found that when the main NCI

modes are far away from the physical modes, one can perform a modification to the EM

dispersion curve in wave number space where the NCI modes arise, thereby eliminating the

intersection (coupling) between the EM modes and main Langmuir modes. Meanwhile, the

(µ, ν1) = (0,±1) modes are in a broad strip at high |~k| at the edge of the fundamental

Brillouin zone, and they can be eliminated through the use of a low-pass filter. The growth

rates of higher order NCI couplings which are already several orders of magnitude lower than

the fastest growing modes can be further reduced by using higher order particle shapes.

The scheme based on the multi-dimensional spectral Maxwell solver that effectively elim-

inates the NCI is both efficient, and easy to implement. However, the development of an

EM-PIC code based on multi-dimensional spectral solver itself is complex. In addition, the

parallel scalability of a spectral solver can be limited when the number of cells in the one

direction is much larger than in other direction(s) as is often the case for the simulations

of LWFA, and relativistic shock problems. This is due to the fact that a node needs global

information along the direction the FFT is performed, which imposes constraints on how

the simulation can be partitioned. As a result, in Chapter 4, we further explored ways to

design a Maxwell solver dedicated to the elimination of the NCI. This includes a hybrid
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Yee-FFT solver in which the FFT is only performed in the direction of the plasma drift.

The use of an FFT in only one direction significantly reduces the complexity of implement-

ing this scheme into an existing PIC code. However, this scheme requires care in how the

current is calculated. In this algorithm (unlike the purely FFT based solver) the fields are

advanced from Faraday’s and Ampere’s Law. Gauss’ Law will also be satisfied if the cur-

rent satisfied the continuity equation and Gauss’ Law is satisfied at the first time step. In

a finite-difference-time-domain (FDTD) solver a charge conserving current deposit is used.

However, the existing algorithms conserve charge and maintain the validity of Gauss’ Law

for second order accurate divergence operators. If the spatial derivative is different than

the second order accuracy form, the current needs to be corrected. We show that this is

straightforward to do. We have shown that the NCI for such a solver is very similar to that

of a pure FFT based solver. Therefore, this solver permits the use of the same strategies for

effectively eliminating the NCI.

The use of an FFT in only one direction nonetheless presents challenges for parallel

scalability when the FFT is performed along the direction where there are many more cells

than in other direction(s). In Chapter 5, we described how an FDTD hybrid Yee-high-order

solver with a customized stencil can be used to emulate an FFT based solver but with

nice parallel scalability properties. This indicates that the solver can be partitioned in all

directions without affecting the scalability of the code. The corresponding NCI elimination

scheme includes a local 1D FFT (in x1 direction) to the current. Transforming the current

to k1 space makes it possible to correct the current so that the Gauss’ Law is satisfied for

the higher order divergence operator, and to filter the current to eliminate the NCI modes

at high |k1|. This solver is just as effective at eliminating the NCI as the FFT-based and

hybrid FFT/Finite difference solver, while preserving the scalability of the code.

We also addressed how to eliminate the NCI for a quasi-3D algorithm [51]. Since the two

hybrid solvers only involve modification of the solver along the plasma drifting direction,

they can be easily applied to the quasi-3D geometry. In the quasi-3D algorithm the fields

and currents are defined on an r − z PIC grid and expanded in azimuthal harmonics. The

expansion is truncated with only a few modes so it has similar computational needs of a 2D
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r− z PIC code. We show that NCI has similar properties in z− r as in z− x slab geometry

and show that the NCI can be eliminated using the hybrid FFT/second orderYee or higher

order/second order Yee algorithms.

After describing how the NCI can be effectively eliminated, we apply them to both LWFA

boosted frame and relativistic collisionless shock simulations. We compare results from the

LWFA boosted frame to the lab frame. The agreement was good to excellent. With respect

to LWFA boosted frame simulations, we also described how to minimize the stored data

from the boosted frame in order to transform it back to the lab frame. We also proposed a

method to perform LWFA boosted frame simulations by using a moving window to follow

the drifting plasma (just as a moving window follows the laser as in the lab frame) to further

reduce the computational costs. We performed LWFA Lorentz boosted frame simulations

in the nonlinear blowout regime in Cartesian 2D and 3D geometry, using the FFT-based

solver, and fully FDTD customized solver. In all cases we were able to perform high fidelity

simulations with no evidence of the NCI. However, this comparison can be subtle as effects

of the main NCI mode is not obvious. The comparison of the lab frame simulation data

against the boosted frame data (transformed to the lab frame) showed excellent agreement,

with tremendous speed up obtained in the boosted frame simulations. Moreover, we per-

formed boosted frame simulations using the quasi-3D geometry and excellent agreement was

found with the lab frame results. The combination of the Lorentz boosted frame simulation

technique and quasi-3D algorithm via the use of hybrid solver to eliminate the NCI leads

to an unprecedented speed up. There are also benefits to eliminating the NCI even for lab

frame simulations, since the NCI can occur even for a relativistic electron beam propagating

across the grid.

We believe the development of algorithms that effectively eliminate the NCI opens up

the door for using the PIC simulation to study a wide range of physics problems that involve

relativistically drifting plasma and/or relativistically drifting particle beam. Our study on

the LWFA boosted frame simulation technique has made it possible to scale the electron

energy from LWFA to energy orders of magnitude larger than that can be reached in the lab

frame, and has made it possible to perform parameters scans for these problems.
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8.2 Future work

8.2.1 NCI for ∆x1 > ∆x2,3 cells

As presented in previous chapters, there are now several schemes available to eliminate the

NCI and dispersion relations exist that can accurately predict where it occurs in ω and ~k

space for different choices in cell size, aspect ratios of the cell size, and plasma density. Much

of the elimination schemes developed in this dissertation is for cases in which the cell size

in the drifting direction is smaller than or equal to those in the transverse directions, i.e.,

∆x1 ≤ ∆x2,3 where 1̂-direction of the plasma drift. When ∆x1 > ∆x2,3, eliminating the

NCI becomes more difficult. This is mainly due to the fact that the fastest growing modes,

(µ, ν1) = (0,±1) NCI modes, are no longer located at the edges of the fundamental Brillouin

zone. In Fig. 8.1 we plot the location of the fastest growing modes for several aspect ratios.

As we can see in Fig. 8.1, when ∆x1 is much smaller than ∆x2,3, the (µ, ν1) = (0,±1)

modes are spreading over the entire range of k1, which makes it impossible to use a 1D FFT

plus filtering in k1 for the current to eliminate these modes. In this case, a straightforward

modification to our elimination framework would be to apply a 2D FFT to the current, and

then use a mask that pinpoints the location where the (µ, ν1) = (0,±1) modes reside.

Figure 8.1: (a) shows the pattern of (µ, ν1) = (0,±1) NCI modes for ∆x1 = ∆x2 in a 2D

Cartesian PIC simulation of relativistic plasma drift; (b) and (c) shows the corresponding

patterns for ∆x1 = 2∆x2 and ∆x1 = 4∆x2.
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There are also quite a few important physics problems of which the PIC simulation

setups would be in the ∆x1 > ∆x2,3 regime. This includes the simulation of LWFA down

ramp injection in the lab frame where studying the generation of beams with ultra-high

brightnesses (very narrow bunches) , and plasma wakefield acceleration (PWFA) simulations

in the Lorentz boosted frame. In the former case, one needs to apply the NCI elimination

scheme to mitigate the unphysical beam emittance growth due to the numerical Cerenkov

radiation. Since the transverse size of the beam in the down ramp injection scheme is

extremely small, one needs a much smaller transverse grid size in order to resolve the beam

transverse size, and eventually one approaches the ∆x1 > ∆x2,3 limit. In the latter case,

since the PWFA simulation in the lab frame utilizes square/cubic cells, when performing

such simulations in the Lorentz boosted frame, the grid size in the beam driver propagation

direction the grid size will be ∼ 2γ times larger, which will also reach the ∆x1 > ∆x2,3 limit.

Therefore, exploring a systematic way to the eliminate the NCI for the ∆x1 > ∆x2,3 cell

sizes is important for these simulation problems.

We do not doubt that additional strategies may be developed for controlling the NCI.

These might include the use of local FFTs to solve the fields as well as the currents and then

quantifying the errors in the longitudinal fields for different partition sizes. Furthermore,

when using FFTs one can experiment with the use of different functions for [~k]. Another

idea might be to directly deposit the current and then correct for the longitudinal part of

the fields through a Boris correction. Other ideas might involve experimenting with various

time advance scheme (which effectively modifies [ω] in the dispersion relation).

8.2.2 Modeling of self-injection process in the Lorentz boosted frame

As discussed in previous chapters, one of the challenges in the LWFA Lorentz boosted frame

simulation is to accurately model the self-injection process. One of the most significant

differences between lab frame simulation and its corresponding boosted frame simulations is

that, in the latter case each macro-particle is representing much more actual plasma particles

than in the lab frame simulation. Due to the density compression in the boosted frame, as
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well as the stretching of the x1 grid size, each boosted frame macro-particle represents roughly

∼ γ2 more electrons (assuming the same number of particles per cell are used). This leads to

a significant difference in the statistics of self-injection in the two frames, which could lead to

difference in the self-injection results. Moreover, one of the biggest unsolved physics problems

in LWFA physics is the mechanism of self-injection. For one thing, it is still unknown what

is the smallest physical length that the PIC simulation needs to resolve for the self-injection

process, in order to accurately capture the underlying physics. Therefore, it is unknown

whether the physics of the self-injection process is being under-resolved in the boosted frame

simulation. We believe a systematic study of how the boosted frame simulation parameters,

e.g. particle per cell, γb, and grid sizes, affect the self-injection process would be important

to understand how well the boosted frame simulation is modeling the self-injection process.
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APPENDIX A

(−1)
∑
i νi term, interpolation tensor and finite difference

operator

A.1 (−1)
∑

i νi term due to the half-grid offset

In section 2.1 after Eq. (2.4), we mentioned that when the EM fields are staggered (such

as on a Yee mesh), there is an additional (−1)
∑

i νi term for each component ~E(ω′, ~k′) and

~B(ω′, ~k′), where î is summed over the directions for which the specific component of the EM

field is staggered a half-grid offset from where charge density is defined. In this section, we

explain how this additional (−1)
∑

i νi terms occur in the dispersion relation. For simplicity,

we will depict how the (−1)
∑

i νi term is derived in 1D Cartesian geometry. The electric field

~E and magnetic field ~B are defined according to the Yee mesh, therefore in 1D Cartesian

geometry, E1, B2,3, and j1 have a half-grid offset along 1̂ direction, while other quantities

are defined on the grid point.

We first interpolate the EM fields defined on discrete grid locations to each particle, in

order to update the particle’s position and momentum. The electric field E1,p exerted on a

particle p at position x and time t = m∆t, where ∆t is the time step of the simulation can

be expressed as,

E1,p(m∆t, x) =
∑
n

E1

(
m∆t, (n+

1

2
)∆x

)
S1

(
x− (n+

1

2
)∆x

)
(A.1)

where n is the grid indices along the 1̂ direction. Applying Fourier transform 1
2π

∫ +∞
−∞ dxexp(−jkx)

168



to this equation, we obtain,

E1,p(k)

=
∑
n

E1

(
(n+

1

2
)∆x

)
1

2π

∫ +∞

−∞
dxS1

(
x− (n+

1

2
)∆x

)
exp(−jkx) (A.2)

=
∑
n

E1

(
(n+

1

2
)∆x

)
1

2π

∫ +∞

−∞
dxS1

(
x− (n+

1

2
)∆x

)
exp

(
−jk(x− (n+

1

2
)∆x)

)
exp

(
−jk(n+

1

2
)∆x

)
(A.3)

=
∑
n

E1

(
(n+

1

2
)∆x

)
S1(k)exp

(
−jk(n+

1

2
)∆x

)
(A.4)

=S1(k)E1(k) (A.5)

where

S1(k) =
1

2π

∫ +∞

−∞
dxS1

(
x− (n+

1

2
)∆x

)
exp

(
−jk(x− (n+

1

2
)∆x)

)
(A.6)

E1(k) =
∑
n

E1

(
(n+

1

2
)∆x

)
exp

(
−jk(n+

1

2
)∆x

)
(A.7)

Note when substituting k with k′ in Eq. (A.7), where

k′ = k + νikg kg =
2π

∆x
ν = 0,±1,±2, . . . (A.8)

we obtain

E1(k′) = exp (−jπν)E1(k) = (−1)νE1(k) (A.9)

due to the E1’s half-grid offset in 1̂ direction. The (−1)
∑

i νi terms in other quantities in

multi-dimension can be obtained in a similar way.

A.2 Interpolation tensor and finite difference operator

In this appendix we will write out the explicit expressions for the interpolation tensors
←→
S

for the fields and the currents. For a momentum conserving scheme in 3D the interpolation
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tensor for the EM field after the Fourier transform can be expressed as:

SE1 = sl,1sl,2sl,3η1 SE2 = sl,1sl,2sl,3η2 SE3 = sl,1sl,2sl,3η3

SB1 = cos(ω∆t/2)sl,1sl,2sl,3η2η3 SB2 = cos(ω∆t/2)sl,1sl,2sl,3η1η3

SB3 = cos(ω∆t/2)sl,1sl,2sl,3η1η2 (A.10)

where

sl,i =

(
sin(ki∆xi/2)

ki∆xi/2

)l+1

(A.11)

and ηi = ζνi , ζ = −1 when the EM field has a half-grid offset in the î direction, and ζ = 1

when it is defined at grid point. l refers to the order (l = 1 is area weighting or linear

interpolation for the charge). While for the energy conserving scheme, we have

SE1 = sl−1,1sl,2sl,3η1 SE2 = sl,1sl−1,2sl,3η2 SE3 = sl,1sl,2sl−1,3η3

SB1 = cos(ω∆t/2)sl,1sl−1,2sl−1,3η2η3 SB2 = cos(ω∆t/2)sl−1,1sl,2sl−1,3η1η3

SB3 = cos(ω∆t/2)sl−1,1sl−1,2sl,3η1η2 (A.12)

The space finite difference operator for the Yee solver is:

[k]i =
sin(ki∆xi/2)

∆xi/2
(A.13)

and is the same for electric and magnetic field.

In Karkkainen solver, the space finite difference operator for the magnetic field [k]Bi is

the same as Eq. (A.13), while for the electric field

[k]Ei = ci
sin(ki∆xi/2)

∆xi/2
(A.14)

where

c1 = θ1 + 2θ2{cos(k2∆x2) + cos(k3∆x3)}+ 4θ3 cos(k2∆x2) cos(k3∆x3)

c2 = θ1 + 2θ2{cos(k3∆x3) + cos(k1∆x1)}+ 4θ3 cos(k3∆x3) cos(k1∆x1)

c3 = θ1 + 2θ2{cos(k1∆x1) + cos(k2∆x2)}+ 4θ3 cos(k1∆x1) cos(k2∆x2) (A.15)
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and

θ1 = 7/12 θ2 = 1/12 θ3 = 1/48 (A.16)

are the tunable parameters for the Karkkainen solver [59]. The space finite difference operator

for the spectral solver is

[k]i = ki (A.17)

The time finite difference operator for the Yee, Karkkainen, and spectral solvers are the

same

[ω] =
sin(ω∆t/2)

∆t/2
(A.18)

With respect to the current interpolation, the current interpolation tensor is approxi-

mately:

Sj1 = sl−1,1sl,2sl,3η1 Sj2 = sl,1sl−1,2sl,3η2 Sj3 = sl,1sl,2sl−1,3η3 (A.19)

We note that the expressions for
←→
Sj are for the charge conserving current deposition scheme

of vanishing time step ∆t → 0. Nonetheless, one can obtain the corresponding ←→ε for the

exact charge conserving scheme by replacing Eq. (2.6) with Eq. (19) and Eq. (23) of Ref.

[23] and then Fourier analyzing the expression. This was done in Ref. [40]. We note that

using the more exact form in the dispersion relation the instability growth rates change by

only a few percent. In addition, it does not change the presence of the optimal time step,

i.e, the optimal time step arises from the staggering of the fields on the mesh and not the

choice of the current deposit.

Meanwhile, when the current is directly deposited (as is done in the UPIC framework),

the current interpolation functions are,

Sj1 = sl,1sl,2sl,3η1 Sj2 = sl,1sl,2sl,3η2 Sj3 = sl,1sl,2sl,3η3 (A.20)

Note that in the spectral algorithm, at each time step the longitudinal electric field is directly

obtained by solving Gauss’ Law which effectively ensures charge conservation.
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APPENDIX B

Application of NCI elimination scheme in down ramp

injection

The NCI takes place not only in LWFA Lorentz boosted frame simulation, but also in lab

frame simulation of plasma-based accelerator. In these lab frame simulations, the parti-

cle beams that are being accelerated inside the bubble travel in the same direction as the

driver with a very high Lorentz factor γ. This will lead to numerical Cerenkov Radiation

(NCR), and even the numerical Cerenkov instability, which leads to unphysical increase of

the emittance and energy spread of the accelerated beams. Note this phenomenon has been

previously studied in [64], in which a modified Maxwell solver is proposed to mitigate this

effect.

In this section we show one simulation case that particularly suffers from the existence of

NCR and NCI in the numerical system: density down ramp injection. The idea of down ramp

injection is that a laser or beam driver goes through an under-dense plasma with a density

down ramp [77, 78, 79]. Due to the decrease of the phase velocity of the wake, a tremendous

amount of particles are injected into the bubble, and a beam with very low transverse

emittance is produced [80, 81]. As a result, down ramp injection in the blowout regime is one

of the most promising injection schemes when using plasma-based accelerator as the injector

for FEL application. In the lab frame PIC simulation of this injection scheme, due to the

relatively high γ, and the high density of the injected beam, NCR and NCI becomes a severe

problem. The NCR modulates the beam energy, which leads to the unphysical growth of the

beam slice energy spread. This makes the simulation results practically unusable since the

slice energy spread of the beam is the most crucial parameters that determines the whether

the injected beam is suitable for FEL application.
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In the following, we demonstrate how NCI elimination would significantly affect the

injected beam quality with a plasma wakefield acceleration (PWFA) down ramp injection

simulation. A high energy beam driver propagates through a plasma density down ramp

profile with a z dependence, where ẑ is the driver propagation direction, as presented in Fig.

B.1. As indicated in Fig. B.1, the plasma density profile for the down ramp injection. The

plasma density decrease linearly from np,h at z = 0 to np,l at Z = L. np,h and np,l, as well as

other simulation parameters are listed in Table B.1.

Figure B.1: The plasma density profile for the down ramp injection. The plasma density

decrease linearly from np,h at z = 0 to np,l at Z = L.

In Fig. B.2 we present the beam energy distribution along the beam propagation direction

in two 3D Cartesian OSIRIS simulations that uses the same driver and plasma parameters,

yet with different simulation setups. The results in Fig. B.2 (a) uses the standard Yee solver

(plus a 5-pass binary smoothing of the current), while that in Fig. B.2 (b) uses a hybrid

Yee-FFT solver with the corresponding NCI elimination schemes as described in Chapter 4.

As we can see in Fig. B.2 (a), the slice beam energy distribution is completely modulated

by the NCR, while in Fig. B.2 (b), the NCI elimination scheme efficiently removes the

unphysical modulation from the NCI, leading to a dramatically cleaner result.
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Plasma density profile

np,h 1.5np

np,l np

L 20k−1
p

Beam driver

density 16.0np

γ 2500

RMS pulse length 0.7k−1
p

RMS beam spot size 0.5k−1
p

Full 3D Cartesian lab frame simulation

grid size ∆z = ∆x = ∆y 0.03125k−1
p

particle shape quadratic

particle per cell (ẑ, x̂, ŷ) (2,2,2)

[k]z modification ([k]zl, kzm,∆kmax)/kgz (0.141,0.240,0.007)

low pass filter (fl, fu) (0.3,0.35)

Table B.1: Parameters for the 3D Cartesian PWFA simulation in the lab frame. Time step

ωp∆t = 0.5k−1
p ∆z for the Yee solver case, and ωp∆t = 0.25k−1

p ∆z for the hybrid Yee-FFT

solver case. np is the reference plasma density, and ω2
p = 4πq2np/me, kp = ωp (c is normalized

to 1).
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(a) (b)

Figure B.2: The energy distribution of the injected beam along the beam propagation direc-

tion, for the two simulations. (a) uses standard Yee solver, plus a 5-pass smoothing of the

current. (b) uses the hybrid Yee-FFT solver plus the NCI elimination scheme described in

Chapter 4.
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