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Deep generative AI models analyzing
circulating orphan non-coding RNAs enable
detection of early-stage lung cancer

Mehran Karimzadeh 1,7, Amir Momen-Roknabadi1,7, Taylor B. Cavazos1,7,
Yuqi Fang1, Nae-Chyun Chen1, Michael Multhaup1, Jennifer Yen1, Jeremy Ku1,
Jieyang Wang1, Xuan Zhao1, Philip Murzynowski1, Kathleen Wang1, Rose Hanna1,
AliceHuang1,DianaCorti1, DangNguyen1, Ti Lam1, SedaKilinc1, PatrickArensdorf1,
Kimberly H. Chau1, Anna Hartwig1, Lisa Fish1, Helen Li 1, Babak Behsaz1,
Olivier Elemento 2, James Zou 3, Fereydoun Hormozdiari 1,4 ,
Babak Alipanahi 1 & Hani Goodarzi 5,6

Liquid biopsies have the potential to revolutionize cancer care through non-
invasive early detection of tumors. Developing a robust liquid biopsy test
requires collecting high-dimensional data from a large number of blood
samples across heterogeneous groups of patients. We propose that the gen-
erative capability of variational auto-encoders enables learning a robust and
generalizable signature of blood-based biomarkers. In this study, we analyze
orphan non-coding RNAs (oncRNAs) from serum samples of 1050 individuals
diagnosed with non-small cell lung cancer (NSCLC) at various stages, as well as
sex-, age-, and BMI-matched controls. We demonstrate that our multi-task
generativeAImodel,Orion, surpasses commonly usedmethods inbothoverall
performance and generalizability to held-out datasets. Orion achieves an
overall sensitivity of 94% (95% CI: 87%–98%) at 87% (95% CI: 81%–93%) speci-
ficity for cancer detection across all stages, outperforming the sensitivity of
other methods on held-out validation datasets by more than ~ 30%.

Lung cancer is the leading cause of cancer mortality in the US,
accounting for about 1 in 5 of all cancer deaths1. Each year, more
people die of lung cancer than of colon, breast, and prostate cancers
combined. Earlydetectionof lung cancer improves the effectiveness of
treatments and patient survival rates2 but adherence to screening is
often low3. Nationally, only 23% of lung cancer cases are diagnosed
before metastasis (stage I–III), when the five-year survival rate is 59%.

Previous attempts for detection of lung cancer through circulat-
ing tumor DNA (ctDNA)-based tumor-informed liquid biopsy assays
have a low sensitivity (55%–57%) for early-stage disease, when treat-
ments are most effective4,5. While epigenomic assays have improved
upon the overall sensitivity of mutation-based modalities by

leveraging the cell-type specificity of DNA methylation6,7 or DNA
fragmentation patterns8,9, sensitivity for early stage and small tumors
remains low due to limited DNA shedding10. More recent epigenomic
studies report higher sensitivities for lung cancer detection, but such a
gain usually comes at the cost of the lower specificity. Mazzone et al.11,
for example, report sensitivity of 84% (95%CI 79%–88%) and specificity
of 53% (95% CI: 45%–61%). Similarly, Hong et al.12 report sensitivity of
58% (95%CI: 49%–67%) at specificity of 75% (95%CI: 71%–79%) for stage
I and sensitivity of 74% (95%CI: 63%–83%) at specificity of 30% (95% CI:
24%–37%) for stage II lung cancer detection.

Reorganization of the chromatin, as commonly observed in can-
cer cells13, often results in the de novo access of the cellular
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transcriptional machinery to previously inaccessible genomic
regions14. Global disruptions in the RNA regulatory machinery in
cancer15 may also result in the appearance and stabilization of RNA
fragments not commonly observed in normal tissues16. We recently
reported the discovery of a class of cancer-emergent small RNA
(smRNA)s, termed orphan non-coding RNA(oncRNA)s, that arise as a
consequence of cancer-specific genomic reprogramming17. OncRNAs
are abundant, stable, and actively secreted from living cancer cells into
the blood18. We have generated a catalog of over 777,291 oncRNAs
across major cancer types. Some oncRNAs, such as T3p, exhibit pro-
metastatic roles, while others could emerge as a byproduct of repro-
grammed RNA metabolism. Contrary to DNA-based assays, oncRNAs
do not require cellular death to be released. Active expression and
secretion of oncRNAs allows for early detection of cancer and subtype
stratification in a liquid biopsy setting18.

Since only a fraction of oncRNAsmay be present in the volume of
a blood draw, smRNA fingerprinting results in sparse patterns from
thousands of individual oncRNAs species. Given the zero-inflated
nature of oncRNA patterns, the underlying biological variation distin-
guishing different cancer types or separating cancer from non-cancer
may become dominated by technical confounders, such as differences
in sequencing depth, RNA extraction, sample processing, and other
unknown sources of variation. In addition, often the sample collection
process itself involves known sources of variation that should be
accounted for, including biological differences between donors (age,
sex, BMI, etc.). Therefore, developing a generalizable liquid biopsy
assay requires effective strategies for modeling the biological prop-
erties of circulating biomarkers of interest and disentangling the
technical and biological variation in sequencing data.

In recent years, various classes of neural networks have provided
robust and customizable frameworks for guided representation
learning. Deep generative models can leverage variational inference19

or pre-training on masked data20–22 to facilitate a variety of down-
stream tasks. Given the over-parameterized nature of these networks,
a large number of samples is required for the adaptation of these
models for clinical genomics applications. Furthermore, within the
current framework of these models, explicit encoding of known
technical variation (e.g. batch) is necessary, thus limiting the general-
izability to new datasets. To overcome these challenges, we developed
Orion, a two-armsemi-supervisedmulti-input variational auto-encoder
for a liquid biopsy application using oncRNAs.

Here, we show the capability of Orion in learning a generalizable
pattern of circulating oncRNAs for a variety of applications, including
early detection of lung cancer, tumor subtyping, and removing batch
effects in the presence of confounded signals.

Results
The liquid biopsy and approach for cancer detection proposed here
uses newly annotated lung cancer-emergent and tumor-released
oncRNAs as a signature for cancer detection from blood. In this
approach, using publicly available smRNA-seq data from The Cancer
Genome Atlas (TCGA)23,24, first, we discovered a set of oncRNAs; pre-
viously un-annotated scarce smRNAs that are selectively expressed in
lung tumors versus normal lung tissues. Next, we used the expression
of the selected oncRNA features in an in-house dataset of serum
samples for cancer detection (Fig. 1a, see Methods).

We then developed a deep generative AI model, Orion, for cancer
detection using the abundance of cell-free oncRNAs in serum samples
(Fig. 1b). The proposed model is a generalizable approach that
accounts for potential batch and vendor effects and other sources of
expression variance that are not related to disease status. By removing
these sources of noise, Orion improves the overall accuracy of cancer
detection and is generalizable to unseen samples. At a high level, Orion
uses variational inference to learn a Gaussian distribution from
oncRNA data. We added several additional constraints through cross-

entropy (CE) and triplet margin loss (see Methods) to emphasize the
task-relevant information (e.g. cancer vs. control) whileminimizing the
task-irrelevant information (e.g. differences in library size or between
sample sources) within the embedding space. A cancer inference
neural network then samples from this distribution to predict labels of
interest including detection of cancer or tumor subtype. The model
achieves these objectives by minimizing a negative log-likelihood loss
based on zero-inflated negative binomial distribution to allow for the
relative sparsity of biomarker measurements from the blood. We used
20% of the samples as a held-out validation dataset and the remaining
samples for training within a 10-fold cross-validation setup.

Description of datasets
Non-small cell lung cancer (NSCLC) and tumor-adjacent normal
smRNAdataset for oncRNAselection.Weused theTCGA smRNA-seq
database to identify 255,393 NSCLC-specific oncRNAs through differ-
ential expression analysis of NSCLC and non-cancerous tissues (see
Methods).

smRNA data. We generated an in-house dataset of serum collected
from 1050 treatment-naive individuals (419 with NSCLC and 631
without a history of cancer). These samples are sourced from two
different suppliers, where each supplier provided both cancer and
control samples collected from multiple sites (Table 1, see Methods).
We used 80% of these samples for model training and evaluation
through 10-fold cross-validation (training dataset). During cross-vali-
dation, for each of the 10 folds, we used 90% of the samples (training
set) for training 5 models with different random seeds and the
remaining 10% of the samples (tuning set) for assessing the cross-
validated performance of themodel. We used the average score of the
50 models on the held-out 20% of the data (validation dataset). We
sequenced cell-free smRNA isolated from 0.5mL of serum to quantify
the expression of NSCLC-specific oncRNAs identified in the TCGA data
(Fig. 1a, see Methods). A total of 237,928 (93.15%) of the selected
oncRNAs from tissue samples were detected in at least one of the
samples.

Orion model architecture
To distinguish cases from controls on the basis of their cell-free
oncRNA content, we developed Orion; a customized, regularized,
multi-input, and semi-supervised variational auto-encoder (VAE)
(Fig. 1b). As a VAE, Orion uses variational Bayes objectives to learn the
parameters of a zero-inflated negative binomial distribution for
expression of each oncRNA. This class of distribution accounts for
over-dispersion and low sensitivity which are inherent to blood-based
genomic and transcriptomic measurements (Supplementary
Fig. 1a–c). It has a two-arm architecture, modeling the expression of
oncRNAs in one arm and the expression of annotated smRNAs in the
other. The latter is used to account for differences in the size of
sequencing libraries across samples. Orion also includes additional
classification and contrastive learning objectives to accommodate
label prediction and remove unwanted confounders in the learned
representations (Fig. 1b).

The semi-supervised nature of Orion allows its representation
learning to capture the biological signal of interest (e.g. cancer
detection) while removing unwanted confounders (such as batch
effects). The generative capability of Orion during classifier training
enables learning a robust pattern of biomarkers for cancer detection.
To ensure that the model learns a biologically grounded representa-
tion of the data irrespective of technical confounders, we used con-
trastive distance metric learning with a triplet margin loss (Fig. 1b).

To evaluate the capability of Orion in cancer detection and its
generalizability, we divided our dataset into a held-out 20% and a
remaining 80%. For 80% of the data, we trained Orionmodels in a non-
overlapping 10-fold cross-validation setup. During each fold, we
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identified a subset of TCGA-derived oncRNAs that within the training
set, were enriched among the cancer samples compared to control
samples of each data source supplier, resulting in an average of 6376 ±
60 (S.D) oncRNAs per fold. We trained 5 Orion models with different
random seeds on each fold and averaged the scores on the tuning set.

Based on the cross-validated scores of the training dataset, the
model achieved area under the receiver-operating characteristic curve
(ROC) of 0.97 (95%CI 0.96–0.98) and overall sensitivity of 94% (95%CI
91%–96%) at 90% specificity (Fig. 2a). In an identical setup with the
same set of oncRNAs for each training fold, support vector machine
(SVM) classifier25 had an area under ROC of 0.87 (95% CI 0.84–0.89)
andoverall sensitivity of 61% (95%CI 55%–66%).Othermethods such as
the commonly used ElasticNet26 model, XGBoost27, and k-nearest
neighbors (k-NN) classifier28 also performed worse than Orion (Sup-
plementary Table 1). More importantly, stage I sensitivity (n = 88) was
90% (95% CI 83%–94%) for Orion versus 56% (95% CI 47%–65%) for the
SVM classifier at 90% specificity (Fig. 2a). Sensitivity for later stages (II,
III, and IV with n = 243) was 97% (95% CI 93%–99%) and 63% (95% CI
56%–70%) for Orion and the SVM classifier, respectively (Fig. 2b).
For detecting tumors smaller than 2 cm (T1a–b, n = 52), Orion achieved
a sensitivity of 87% (95% CI 74%–94%) at 90% specificity, while the
SVM classifier had a sensitivity of 44% (95% CI 30%–59%) at 90%
specificity.

In a bootstrap analysis, AUC of Orionwas significantly higher than
both the SVM classifier (ΔAUC = 0.1 (95% CI: 0.08–0.13)) and XGBoost
(ΔAUC = 0.03 (95% CI: 0.02–0.04), Supplementary Table 1). While AUC
ofOrion andXGBoost were relatively similar, F1 score and sensitivity of
Orion at 90% specificity were also better for Orion compared to
XGBoost (ΔF1

= 0.05 (95% CI 0.02–0.08), Δsensitivity = 9% (95%
CI 5%–13%)).

To assess the generalizability of Orion, we chose the cutoff cor-
responding to 90% specificity among the 10-fold cross-validated pre-
dictions, and measured various classification metrics on the held-out
validation dataset. Orion demonstrated a strong agreement in per-
formance for the held-out validation dataset, while XGBoost, Elas-
ticNet, and other model performances were on the lower bound of
their 10-fold CV measurements (Fig. 2d, Supplementary Table 1). For
example, at expected specificity cutoffs of 90%, 95%, and 99%, based
on the cross-validated model scores, Orion had observed specificity
values of 87% (95% CI: 80%–93%), 94% (95% CI: 89%–98%), and 98%
(95% CI: 94%–100%), while other methods had inconsistent ranges of
specificity (Supplementary Table 2).

As a measure of successful batch effect removal, we expected the
model scores for control samples to be similar, and therefore, not
distinguish the sample suppliers. Orion had an area under ROC of 0.53
(95% CI 0.47–0.58), suggesting it successfully removed the impact of

Fig. 1 | oncRNA-based liquid biopsy platform and Orion architecture. a We
discovered NSCLC oncRNAs from TCGA tissue datasets and investigated them in
the blood of patients with NSCLC and non-cancer controls. We showed an analogy
depicting NSCLC oncRNA fingerprint as a hand-written digit, serum oncRNA fin-
gerprint as a noisy pattern, and generative AI embeddings as a denoised version.
Created in BioRender. Alipanahi, B. (2024) BioRender.com/b61n795. b Orion
architecture requires two input count matrices for oncRNAs (x) and endogenous
expressed RNAs (r). Each input is fed to a standard VAE where the objective is to
learn a joint representation of oncRNA counts under a zero-inflated negative
binomial distribution (right). A joint embedding will be used by the cancer

inference neural network for classification tasks (bottom right). c Schematic of
triplet margin loss application on simulated data. The left panel shows a label-
agnostic embedding, and the right panel shows an embeddingwith a tripletmargin
loss constraint to minimize technical variations while preserving biological differ-
ences. For each sample, we use positive anchors (same phenotype, different
dataset) and negative anchors (different phenotype, any dataset) to minimize or
maximize the embedding distance, respectively. d Loss convergence plots show
convergence of 5 of the losses of Orion as well as classification accuracy during
training.
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suppliers, while XGBoost and SVM classifier had higher area under
ROCs of 0.59 (95% CI 0.54–0.64) and 0.57 (95% CI 0.52–0.62),
respectively.

Given that the control samples in our cohort had an over-
representation of individuals without smoking history compared to
the cancer samples (54% vs. 10%), we examined the impact of smoking
status of samples on model scores. We found that among control
samples, Orion validation set score had an area under ROC of 0.6 (95%
CI 0.5–0.7) with respect to presence of smoking history, further con-
firming little variation of the model score for individuals with or
without a history of smoking.

To identify the most important oncRNAs for the model, we used
SHapley Additive exPlanations (SHAP)29 average values among model
folds. Among the high-SHAP oncRNAs for the model, we observed
overlap or vicinity of oncRNAs to some of the genes with significance
in lung cancer etiology and prognosis. These included SOX2-OT30,
HSP90AA1,31,32, and FZD233 (Fig. 2e).

To understand the model architecture components of Orion
contributing most to high performance and limited batch detection,
we performed a series of ablation experiments. We trained multiple
models which lacked one or more of Orion’s features, such as triplet
margin loss, cross entropy loss, reconstruction loss, or generative
sampling for computationof the cross entropy loss during training.We
found that tripletmargin loss allows themodel tominimize the impact
of the technical variations (Fig. 3a). Generative sampling allows the
model to achieve higher overall performance and better cross-entropy
loss convergence (Fig. 3b).Orion’s embeddings in thepresence of all of
its components, particularly with triplet margin loss and generative
sampling, result in a better separation of cancer samples from control
samples, which allows Orion’s classifier to operate on a representation
of the data with minimal technical variations (Fig. 3c). The presence of
different components of Orion, particularly the reconstruction loss,
result in a better convergence of the test-set cross entropy
loss (Fig. 3d).

We hypothesized that training the classifier of the model by
sampling from the learned distribution allows Orion to achieve higher
robustness and performance at a smaller sample size. In comparison
with an identical architecture where the classifier uses the expected
value of the distribution instead of sampling, we observed a significant
improvement in convergence and generalizability of the cross entropy
loss with smaller sample sizes (Fig. 3b–d).

To assess if Orion learns more informative task-relevant embed-
dings than commonly used methods such as principal component
analysis (PCA)34 or Harmony35, we examined how these embeddings
compare in downstream tasks. We provided Harmony with the same
variables for batch correction as Orion’s triplet margin loss (sample
supplier and experiment ID). While Orion’s key clusters reflect cancer
and control labels (Supplementary Fig. 2, projected here in UMAP
space solely for visualization), the naive representation of Harmony
and PCA fail to capture this key biological variability. Next, we trained
an XGBoost model on the training set and evaluated the performance
in cancer detection from the embeddings in the tuning set. Label-
agnostic batch correction of Harmony resulted in loss of biological
information and a worse performance than PCA, while Orion out-
performed both PCA and Harmony with at least 30% higher sensitivity
at 90% specificity (Supplementary Fig. 2).

Given that Orion uses raw count of oncRNAs as one of the inputs
and normalization occurs internally, next we investigatedOrion scores
on an in-house dataset with pool of 3 control samples, divided into 7
technical replicates, and sequenced at 5 different target depths ran-
ging from 4 to 60 million reads. These samples were predicted as
controls among all sequencing depths and correlation of the scores
with sequencing depth wasminimal (linearmodel adjusted R2 of 0.154
(95% CI 0.004–0.546), Supplementary Fig. 3a–b).

To better understand the sensitivity of Orion for detection of
cancer samples, we combined the sequencing reads from cancer and
control samples at different ratios. We noticed that Orion cancer calls
from the validation set can tolerate up to 40% of dilution without an
impact on sensitivity, a property that we did not observe for other
methods (Supplementary Fig. 3c).

To establish if Orion model scores are impacted by a small num-
ber of oncRNAs or they can leverage a large number of oncRNAs, we
investigated how in silico perturbation of oncRNAs impact model
predictions (Supplementary Fig. 4). We perturbed the top-SHAP
oncRNAs, the oncRNAs with the highest SHAP scores as measure of
their importance for the model, in two different ways. In an ablation
experiment, we set such oncRNA counts to zero among all samples of
the validation set. This approach resulted in a decrease in scores of the
cancer samples, impacting sensitivity and area under ROC particularly
when ablating more than 1000 top-SHAP oncRNAs. In another
experiment, we permuted the values of top-SHAP oncRNAs among all
cancer and control samples, resulting in control samples to artificially

Table 1 | Sample demographics

Demographics Training dataset Validation dataset

Control Cancer Control Cancer

Sample size Count, n 506 334 125 85

Age Mean (SD) 62.18 (11.75) 65.84 (9.60) 61.80 (10.80) 63.85 (10.35)

Sex Female (%) 238 (47.04%) 125 (37.43%) 50 (40.00%) 40 (47.06%)

Smoking status Never-Smoked, n (%) 271 (53.56%) 34 (10.18%) 71 (56.80%) 7 (8.24%)

BMI BMI obese (≥ 30), n (%) 124 (24.51%) 72 (21.56%) 28 (22.40%) 15 (17.65%)

Race White, n (%) 253 (50.00%) 220 (65.87%) 62 (49.60%) 55 (64.71%)

Black/African American, n (%) 54 (10.67%) 12 (3.59%) 14 (11.20%) 1 (1.18%)

Asian, n (%) 15 (2.96%) 4 (1.20%) 3 (2.40%) 0 (0.00%)

Other/Unknown, n (%) 184 (36.36%) 98 (29.34%) 46 (36.80%) 29 (34.12%)

Ethnicity Hispanic, n (%) 179 (35.38%) 12 (3.59%) 46 (36.80%) 5 (5.88%)

Non-hispanic, n (%) 281 (55.53%) 316 (94.61%) 59 (47.20%) 80 (94.12%)

Other/Unknown, n (%) 45 (8.89%) 6 (1.80%) 19 (15.20%) 0 (0.00%)

Source Indivumed, n (%) 183 (36.17%) 258 (77.25%) 46 (36.80%) 65 (76.47%)

MT Group, n (%) 323 (63.83%) 76 (22.75%) 79 (63.20%) 20 (23.53%)

Sample size and key demographic aspects of training dataset and held-out validation dataset.
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express cancer features. This approach resulted in a noticeable
increase inmodel scores of control samples anddecrease in specificity.
Overall, the method behaved as expected from a cancer detection
perspective, showing robustness when top-SHAP cancer-oncRNAs are
absent, while showing high sensitivity to expression of top-SHAP
cancer-oncRNAs in samples that lack most cancer-oncRNAs.

Orion can identify tumor subtype from circulating oncRNAs
In addition to the early detection of cancer signals in patients with
NSCLC, understanding tumor histology has major implications in
therapy selection and resistance mechanisms. Squamous cell carci-
noma transformation of lung adenocarcinoma has been reported to
take place spontaneously36 or after targeted therapy resistance. Such
mechanisms of acquired resistance have been reported for epidermal
growth factor receptor (EGFR) inhibitors, tyrosine kinase inhibitors
(TKIs)37, KRAS inhibitors38, and immunotherapies39. Traditional meth-
ods of stratifying patients to evaluate for squamous cell carcinoma
transformation involve repeat biopsies of a lung cancer patient which
can lead to severe side effects such as pneumothorax, hemorrhage,
and air embolism40.

We had previously observed that given the tissue-specific land-
scape of chromatin accessibility in different cancers, oncRNA expres-
sion patterns are unique to cancer types and subtypes41. We
hypothesized that biological differences of lung adenocarcinoma and
squamous cell carcinoma would also be reflected in cell-free oncRNA

content, allowing us to distinguish these major subtypes of NSCLC.
While tumor tissues are vastly different from normal tissue, the dif-
ferences in subtypes of a given tumor are far less substantial. InNSCLC,
for example, the agreement of pathologists for different subtypes is
approximated to be 0.8142. As a result, tumor histology subtype pre-
diction is more difficult than cancer detection.

To evaluate our hypothesis, we investigated the potential of dis-
tinguishing two major NSCLC subtypes, adenocarcinoma and squa-
mous cell carcinoma, using oncRNAs in blood. For this analysis, we
used 20-fold cross-validation to adjust for the reduction in the number
of samples given that this is a NSCLC-specific task. For later stage
tumors (stages III/IV), Orion achieved an area under ROC of 0.75 (95%
CI: 0.67–0.83) and a sensitivity of 71% (95% CI: 56%–84%) at 70% spe-
cificity in distinguishing squamous cell carcinoma from adenocarci-
noma samples in serum samples (Fig. 4).

Discussion
Variational inference serves as the backbone of a plethora of deep
generative models, particularly for single-cell genomics applications19.
The flexibility of these models allows for reference building through
transfer learning43 or modeling specific perturbations through con-
trastive learning44. However, when biological signals are weak or
scarce, as is the case in liquid biopsies where we are in search of a
needle in the haystack, technical confounders that are due to differ-
ences in sequencing platforms or data sources become more
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Fig. 2 |Model performance on training and validation set. a The ROCplot on the
tuning set of 10 non-overlapping folds of model training for Orion (red), XGBoost
(blue), and SVM classifier (green). The vertical blue line shows specificity at 90%.
The text shows the area under ROC and sensitivity at 90% specificity with 95%
confidence intervals. b Sensitivity of the model for tumors of different cancer
stages at 90%specificity forOrion (red), XGBoost (blue), and SVMclassifier (green).
Error bars indicate the 95% confidence interval. The bar plot shows the number of
samples in each category. c Sensitivity of the model stratified by T score (size)
similar to (b). d Performance measures of binary classification in the held-out

validation dataset. We computed all threshold-dependent metrics (all except area
under ROC) based on the cutoff resulting in 90% specificity in the 10-fold cross
validated training dataset. The bar height shows the point estimate of area under
ROC, F1 score, Matthew’s correlation coefficient (MCC), sensitivity, and specificity.
e Barplot shows log1p of SHAP score (x-axis) for the top 20oncRNAs (y-axis). Y-axis
labels indicate the nearest gene to the oncRNA. The first rows shows the sumof the
next 20 oncRNAs (oncRNAs ranked 21st to 40th by their SHAP score). For gene A,
[A] indicates overlap, []A indicates 1 kbp distance, [] − A indicates 10 kbp distance,
[] − − A indicates 100 kbp, and [] indicates no genes within 1 Mbp distance.
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pronounced. As a result, without any intervention, the naive repre-
sentation learning may regress out the signal of interest, as was the
case with PCA and even the state-of-the art batch correction method,
Harmony45 (Supplementary Fig. 2). Representation learning, therefore,
is rarely used for clinical genomics applications. Instead, classical
regularized supervised learningmethods (e.g., ElasticNet) areadopted,
which are able to resolve the p (number of features) > > n (number of
samples) problem by finding an adequate balance between the num-
ber of features the model utilizes and the individual weight of each
feature. While these methods have been extensively applied in clinical
genomics and liquid biopsy, they fail to model non-linear interactions
among the input features and the higher-order patterns in the data.

Here we sought to leverage representation learning for obtaining
an abstract low-dimensional embedding of cell-free oncRNAs. We
hypothesized that a deep generative AI model can augment the
downstream classifier to learn robust and generalizable patterns of
cancer-specific oncRNAs. This approach not only reduces the number
of features by approximately 300 fold, but it can also enhance the
number of unique samples the classifier is trained on through gen-
erative sampling, essentially converting p ≫ n to a favorable n ≫ p. A
key aspect to the success of our approach is tailoring the process of
representation learning through the addition of contrastive learning46

(Fig. 3). Inherently, theseobjectives are in contradiction, one enforcing
the latent distribution to preserve all sources of data variation, while

the other imposes a constraint to remove unwanted variations. As a
result, these two objectivesmeet at the balancingminima of a sacrifice
in reconstruction at the gain of emphasizing the biological differences
among the samples.

Here we demonstrated the success of our approach in training a
model that not only achieved superior performance for cancer
detection, but also exhibited generalizability to held-out datasets. As a
machine learning method, however, we do not expect Orion to gen-
eralize to out-of-distribution samples. In fact, real-life applications of
machine learningmodelsmust includedetection of out-of-distribution
samples to avoid generating spurious predictions47. The deviation of
Orion loss terms for new samples has the potential of facilitating the
identification of out of distribution samples.

Contrary to other methods, Orion scores remained unchanged
among samples coming from different sources or with different
smoking histories, underscoring the robustness of our model. Orion
demonstrates promising performance in predicting tumor subtypes
fromblood, evenwith the challenges posed by the lack of clear ground
truths in histopathological calls. Given that the pathologist agreement
for this task is itself around 80%42 and the observation that our model
improved by increasing the number of samples in the training set
(Fig. 3b), a larger dataset with molecularly-assigned labels could pro-
vide an opportunity for liquid histology applications beyond cancer
detection using Orion.
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Fig. 3 | AblationofOrioncomponents. aArea under the ROCof 5 differentmodels
when comparing score of the control samples with respect to the sample supplier.
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detection as a function of the number of samples used during training. Orange
shows Orion with generative sampling for computation of cross-entropy loss

during training, and purple shows Orion without this feature. c Scatter plots
overlaid with kernel density estimates show cancer (blue) and control (orange)
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While the adaptation of deep learning models in clinical geno-
mics is in its early days, our results establish a strong case for the
potential of generative AI in advancing the applications of
liquid biopsy, as well as liquid histology. The potential of liquid his-
tology in monitoring tumor subtype transitions, for example, may
allow formore patients to benefit from targeted therapy of emerging
tumor populations. The combination of our liquid biopsy platform
for profiling a stable, abundant, and cancer-specific biomarker—
oncRNAs—and our generative AI model which is compatible
with blood-based measurements, provides a novel opportunity for
filling a clinical gap in sensitive and early cancer detection and
monitoring.

Methods
Dataset
Here, we used an in-house dataset of serum collected from 1050
treatment-naive individuals sourced from two different suppliers:
Indivumed (Hamburg, Germany; 229 controls and 323 NSCLC cases)
and MT Group (Los Angeles, CA; 402 controls and 96 NSCLC cases).
Each supplier also collects samples from multiple sites. Previous
studies on early detection of lung cancer through liquid biopsy have
sample sizes ranging from 288 to 7997–9. Our objective was to gen-
erate more samples than existing studies to allow us to explore the
potential of deep generativemodels in liquid biopsy applications.We
collected the entirety of the samples that we could acquire from our
sources, while ensuring good representation of samples across
stages of the disease. The dataset included 157 stage I, 93 stage II,
106 stage III, and63 stage IVNSCLC cases.WeusedRNA isolated from
0.5mL of serum from each donor to generate and sequence smRNA
libraries of each sample at an average depth of 19.8 ± 5.8 million 50
bp single-end reads. The NSCLC samples included 222 samples with
adenocarcinoma, 160 samples with squamous cell carcinoma, and
37 samples with unknown histological type (Table 1). Despite the
challenges of collecting samples from healthy seniors without
smoking history, NSCLC and control arms included both smoker and
non-smoker samples and similar distributionwith respect to age, sex,
and body mass index (BMI). Given the imbalance of individuals with
smoking history among cases and controls, we observed that the
Orion model score did not vary as a function of smoking history
among control samples.

Sample exclusion criteria
During sample selection, we excluded samples of individualsmatching
any of the following criteria:

• Cancer patient is not treatment-naive at time of collection
• Age ≤ 18
• Prior cancer diagnosis (with or without treatment)
• Any surgery within one month of collection
• Received non-cancer systemic immune modulation therapy
within 60 days of collection (e.g. monoclonal antibodies)

• History of organ transplantation
• Infusion of any blood products within 30 days of collection
• Current active COVID-19 infection
• Any prior history of cancer therapy (e.g., surgical, radiation, or
medical including neoadjuvant treatment)

• Current or prior pregnancy within 12 months of collection

Laboratory workflow
Sample Acquisition and initial processing. Serum samples were
acquired from vendors Indivumed (Hamburg, Germany) and MT
Group (Los Angeles, CA). All samples were acquired under valid IRB
approvals. Serum samples were collected according to standard pro-
tocols and frozen at −80 ∘C after processing.

RNA extraction and library preparation. RNA was extracted from 1
mL of serum either using the Quick-cfRNA Serum & Plasma Kit (Zymo
Research, Cat # R1059). Libraries were prepared using the SMARTer
smRNA-Seq Kit for Illumina (Takara, Cat # 635031) using custom RT
primers to incorporate UMIs. Libraries were PCR amplified using
Takara SeqAmp DNA Polymerase (Cat # 638504) and indexed during
the PCR reaction. Amplified libraries were combined and size selected
using either 8%NuPAGETBEgels (ThermoFisher, Cat# EC6215BOX) or
BluePippin (Sage Science, Cat # BDQ3010) using 3% Agarose Cassette
DF Marker Q3 (Sage Science). Pooled libraries were purified using the
Nucleospin Gel and PCR Cleanup Kit (Machery Nagel, Cat #
740609.50). Purified libraries were quantified either using the Tapes-
tationusingHighSensitivityD1000SampleBuffer (Agilent, Cat # 5067-
5585) or by using the qPCR-based NEBNext library quant kit for Illu-
mina (NEB, Cat # E7630) and sequenced on a NextSeq 2000 instru-
ment (Illumina) using P3 flowcells, 50 bp single-end, to an average
depth of 19.8 ± 5.8 million mapped reads.
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Data processing
For processing of raw sequencing files, we used bclconvert (v4.0.3),
cutadapt48 (v4.1), FASTQC (v0.12.1), UMICollapse49 (v1.0.0), Bowtie-250

(v2.4.5), samtools51 (v1.16.1), pysam52 (v0.20.0), and
bedtools53 (v2.30.0).

Orion architecture
Orion is a variational auto-encoder54, adapting scVI19 with additional
input, connections, and objectives for removing known sources of
technical variation as well as performing regression or classification
tasks. Let xi 2 Zd

+ and r i 2 Zm
+ denote counts for d oncRNAs and m

endogenous highly-expressed smRNAs for the i-th sample, respec-
tively. Moreover, let yi 2 f0, 1gb ×Rt and vi 2 Zc

+ denote the b binary
and t real targets (cancer status) and the c known confounders (sample
source, processing batch, etc), respectively.

The core idea is that there are linear and nonlinear dependencies
between different oncRNAs, e.g., they are generated due to disruption
in the same pathway hence their counts are correlated. Therefore, we
will be able to project the space of X — that can be very high-
dimensional— onto a low-dimensional latent spaceZ using amapping
f z : X ! Z (called oncRNA encoder), while capturing the essence of
variation in X . This means that we could find a mapping g : Z ! X
(called decoder), such that x̂ = gðzÞ= gðf ðxÞÞ is approximately the same
as x, e.g., jjx � x̂jj22 is small. In variational auto-encoders instead of
deterministically mapping x to z, we map x to a (usually Gaussian)
distribution qz(z∣x). When reconstructing x, we sample from z ~ qz(z∣x)
andusing this sample,we cangenerate adistribution for reconstructed
x as x̂ =pxðxjzÞ.

A common source of variation in transcriptomic data originates
from the total sequenced RNA. An oncRNA might not be observed for
two reasons: either it does not exist and is not secretedor it is indeed in
blood but due to low-volume blood sampling or limited sequencing, it
has not been picked up in the experiment. We assume that z will take
care of the former, but for the latter effect, ‘ 2 R is another unob-
served random variable that accounts for input RNA level and library
sequencing depth. Here, since oncRNA counts x are usually small and
unsuitable for computing library size — unlike scVI — we use a set of
endogenous highly-expressed RNAs and an additional encoder f ‘ :
R ! ‘ to compute a normal distribution qℓ(ℓ∣r) as a proxy for the logof
library size. In other words, the library size is log-normal with priors
originating from the log of mean and variance of ∑mri in a given min-
batch. As a result, ℓ shows a strong correlationwith the total number of
oncRNA reads, even though it is not derived from oncRNAs (Supple-
mentary Fig. 1a, b).

Similar to gene counts across cells in single-cell RNA-seq data, any
oncRNA is observed in only a few samples and its counts are mostly
zeros, also called zero-inflated. We assume the non-zero counts
follow a negative binomial distribution. Inspired by scVI19, we model
the oncRNAs count as a conditional zero-inflated negative binomial
(ZINB) distribution p(x∣z, ℓ), where z 2 Rk , k ≪ d is the latent embed-
ding of x.

Orion decoders learn the zero-inflation parameterϕi through f ϕ :

Z ! ϕ and the transcription scale parameter ρi through f ρ : Z ! ρ. fρ
involves a softmax step, enforcing representation of the expression of
each oncRNA as a fraction of all expressed oncRNAs.

In the Gamma-Poisson representation of the negative binomial
distribution,μ=ρi × e

‘i will provide the shapeparameter of theGamma
distribution, and input-independent learnable parameter θ will repre-
sent the inverse dispersion.

In short, to train Orion:

1. We learn a low-dimensional Gaussian distributions qz(z∣x) and
qℓ(ℓ∣r), so that zero-inflated negative binomial distribution
qx(x∣z, ℓ) has the generative capability of producing realistic in
silico oncRNA profiles. To do so:

(a) We minimize

LKLZ =DKL qzðzjxÞjjpðzÞ
� �

, ð1Þ

where DKL is the Kullback-Leibler divergence55 and pðzÞ=N ð0, IÞ is the
prior distribution for z.

(b) We minimize

LKLL =DKL q‘ð‘jrÞjjpð‘jrÞ
� �

, ð2Þ

wherep(ℓ∣r) is theprior log-normal distribution for ℓ. Unlike z, theprior
distribution for ℓ is different from batch to batch and its log-mean and
log-standarddeviation are computed based on values of r in eachmini-
batch B.
2. We minimize the reconstruction loss by minimizing the negative

log-likelihood of a zero-inflated negative binomial distribution
describing the distribution of the input oncRNA data:

LNLL = �
X

i

logpxðxijμi,θi,ϕiÞ, ð3Þ

whereμi is the product of the softmax of fρ (representing transcription
scale of each oncRNA) and e‘i ; and θi, ϕi represent inverse dispersion
and zero-inflation probability19, respectively (Fig. 1b).
3. We use contrastive learning (triplet margin loss) to minimize the

impact of known confounders v on z. For example, this ensures
that all the cancer samples fromdifferent sources are projected in
proximity of each other (see Triplet Margin Loss section).

(a) Minimize the distance between samples that have the same
label (e.g. all cancer samples or all control samples) but are
from a different confounder group (e.g. source, supplier, etc.)
in the oncRNA embedding space z

(b) Maximize the distance between samples that have different
labels.

LTML =
1

w× c

X

i2B

X

ði, j, j0 Þ2T i

maxðjjzi � zjjj22 � jjzi � zj0 jj22 +α, 0Þ,

ð4Þ

4. We use supervised learning such that the low-dimensional
embeddings z are used for regression (smooth L1-loss56). For
classification, we minimized the cross-entropy loss LCE to predict
the provided sample labels during training (e.g. cancer vs.
control)

We minimize the summation of these 5 losses with weights as
hyperparameters:

LOrion = λ1LKLZ + L2LKLL + λ3LNLL + L4LTML + λ5LCE ð5Þ

Triplet margin loss. For each sample i, we sample ω triplets for each
confounder vci as follows:
1. Randomly pick a “positive” anchor j ≠ i such that they share the

same classification label yi = yj, but do not share the same con-
founder vci ≠v

c
j .

2. Randomly pick a “negative” anchor j0≠i such that theydonot share
the same classification label yi≠yj0 .

3. Add ði, j, j0Þ to T i, the set of triplets for i.

At the end of this process, each sample will have jT ij=ω× c tri-
plets picked for it, where ω is a hyperparameter set to 16.

During training we add a cost function that moves samples from
different sources or processing batches that share the same label (e.g.,
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cancer samples from different sources) closer to each other, while
moving samples with different labels (e.g., cancer samples from non-
cancer samples) further apart:

LTML =
1

w× c

X

i

X

ði, j, j0 Þ2T i

maxðjjzi � zjjj22 � jjzi � zj0 jj22 +α, 0Þ, ð6Þ

where α is a hyperparameter that enforces what should be the mini-
mum difference of distances between a sample and its positive and
negative anchors in the latent space, and it is set to α = 1.

Model parameters
On its default mode used in this study, Orion has 1 hidden layer for
encoding oncRNAswith 1500hidden units, 1 hidden layer for encoding
library size from endogenous RNAs with 1500 unit, an embedding
space of d = 50 latent variables for learning the Gaussian distribution
underlying the oncRNA data, an embedding space of s = 1 latent vari-
able for learning the library size distribution from endogenous RNAs,
and one hidden layer for decoding oncRNA data from the latent dis-
tribution. We used dropout (p = 0.5), L2 regularization (L2= 2). The
classification layer has 1 hidden layer of size 25, mapping the 50 nor-
malized latent values to generative predictions for each class.

Orion encoders have a hidden layer of size 1500 and map X to
parameters of zd with 50 dimensions and map Q to parameters of zs
with 1 dimension.

The model performs classification through a 2-layer perceptron
head. The input of the classification head comes from the batch-
normalizedproduct of oncRNAs and library size embeddings, i.e., z × ℓ.
during training, we sample from qz(z∣x) η = 100 times for each data
point to improve model robustness and sensitivity to noise. At test
time, we use the deterministic expected values of z and ℓ.

Identifying oncRNAs
To identify a set of orphan non-coding RNAs, we utilized smRNA-
sequencing data from 10,403 tumor and 679 adjacent normal tissue
samples from TCGA spanning 32 unique tissue types. Quality control
was applied to the GRCh38-aligned BAM files to remove reads that
were < 15 base pairs or were considered low complexity based on a
DUST score > 257. Additionally, we removed reads that mapped to
chrUn, chrMT, or other non-human transcripts. After filtering, we
identified de novo smRNA loci by merging all reads across the 11,082
TCGA samples and performing peak calling on the genomic coverage
to identify a set of smRNA loci thatwere < 200basepairs. This resulted
in 74 million distinct (chromosome:start–end:strand), non-
overlapping candidate loci having at least one read mapping to a
unique position in the genome in at least one sample from 10,403 total
number of tumor samples.

For discovery of lung tumor-specific oncRNAs, we restricted to
lung tumors (n = 999) and all adjacent normals (n = 679) and filtered
the candidate loci for those that appeared in at least 1% of samples
resulting in 1,293,892 smRNAs. We then used a generalized linear
regression model to identify those smRNAs that were significantly
more abundant in lung tumors compared tonormal tissues.Ourmodel
adjusted for age, sex, and principal components to capture the global
smRNA expression variability across tissues and batches. After multi-
testing correction we restricted to suggestively significant smRNA
features (FDR q < 0.1) that were enriched in lung tumors (OR > 1)
resulting in ~ 260k lung-tumor associated oncRNAs for downstream
applications in serum.

Training and evaluation strategy
Our dataset included a total of 1257 samples obtained from 1050
patients, with 189 samples having been sequencedmore thanonce.We
used 20% of the patients as a held-out validation dataset, ensuring an
equal representation of suppliers, histological subtype

(adenocarcinoma and squamous cell carcinoma), and patient cohort
(NSCLC or control) among the training and held-out validation data-
sets. A subset of the 189 samples withmultiple libraries were randomly
assigned to the training set. This resulted in 314 samples obtained from
150 patients where each of these patients had at least 2 replicates.
During training, all replicates of each samplewere allocated either into
training or tuning set during cross-validation to avoid data leakage.
Only one of the replicates of each sample was used for reporting the
final model performance.

Within the training set, we used a similarly stratified 10-fold cross-
validation to select the oncRNAs and train the model on the training
set. Each data split ensured samples of the same patient were either in
the training or test splits. We reported the performancemeasures only
for one sampleof eachpatient.We train 5models per fold, each trained
with a different random seed. The score of the tuning set of each fold
was averaged over these 5 models. The training set performance
measures are based on the held-out set of each fold. For the held-out
validation dataset, we use the average of the 50 models (5 models for
each of the 10 folds). We defined the model cutoff based on the cross-
validated scores of the training set and reported the performance for
the held-out validation dataset using that cutoff.

Feature selection
Weused theTheCancer GenomeAtlas (TCGA) smRNA-seq database to
identify 255,393 NSCLC-specific oncRNAs. Each tissue sample expres-
sed a mean of 37,115 ± 14,457 S.D. of these oncRNAs. After processing
serum samples for the present study, 237,928 (93.16%) of these
oncRNAs were detected in at least one sample.

Within each fold of the training set, we identified oncRNAs pre-
sent in at least 2% of the training set samples provided by each sup-
plier. Additionally, for training set samples of each supplier, we
identified oncRNAs that were over-represented in the cancer samples
(log odds ratio > 0). Within each training fold, we selected oncRNAs
passing these criteria in both of the suppliers (MT Group and Indi-
vumed). Among the features passing these criteria, we performed 8
rounds of XGBoost classification within the training set, each time
setting aside oncRNAs with non-zero Gini impurity index as a measure
of feature importance. This resulted in obtaining an average of
6376 ± 60 oncRNAs in each model fold and a total of 14,014 oncRNAs
identified in at least 1 fold.

Benchmarks
Training other models. We used normalized oncRNA counts by
dividing xi by the total number of highly-expressed small RNA reads ri
as a surrogate of the the sequencing library depth:

1000×xiPm
m= 1 r i,m

, ð7Þ

where ri,m is the counts of m-th smRNA for sample i. We used scikit-
learn’sStandardScaleron the training set of each fold, and applied it
on test-set or held-out set forutilizing themodel.Weused scikit-learn’s
LogisticRegressionCV to identify the best set of hyperparameters
in a 2-fold cross-validation setup within the training set. The
hyperparameters included L1 ratios [0, .1, .5, .7, .9, .95, .99,
1] and the default C parameters. The best hyperparameters were
provided to a scikit-learnLogisticRegressionmodel for training on
the entire training set. ElasticNet models used identical oncRNAs and
samples as Orion. For other models including XGBoost, SVM classifier,
and k-NN, we used the default parameters.

Embeddingbenchmarks. In this study,Orionhas anembedding space
with a multi-variable Gaussian with a dimension of 50. We used 50
principal components from the same oncRNAs (scaled to total miRNA
content).We fed the PCAmatrix to harmony, specifying sample source
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and experiment ID as batch_key parameter. These are the same
variables that we used to guide triplet margin loss.

We used Orion’s embeddings from the training set and the same
subset of PCA and harmony for training XGBoost models to predict
cancer with default parameters. We applied the model on Orion’s
embeddings from the test aswell as the PCA and harmony for the same
subset of samples (Supplementary Fig. 2).

Dilution assay. We performed an in silico dilution experiment to
evaluate the performance of the differentmodels when reads from a
cancer sample are mixed in silico with reads from a non-cancer
sample, at different mixture ratios. From the validation set samples,
we selected 10 highest-scoring cancer samples and 10 lowest-
scoring non-cancer samples from each of the two independent
suppliers (Indivumed and MT Group). We excluded samples with a
raw number of reads below the 10th percentile or above the 90th

percentile among all samples from the same supplier. We down-
sampled each sample without replacement at four ratios: 0.8, 0.6,
0.4, 0.2. We then mixed each downsampled sample with all samples
from the same supplier that had a different cancer status, ensuring
that the sum of downsample rates equaled 1.0. For example, a 0.6x
downsampled cancer sample from Supplier 1 was mixed with all
0.4x downsampled non-cancer samples from Supplier 1. This pro-
cess resulted in the creation of 10 × 10 × 4 × 2 = 800 in silico diluted
samples. We applied the Orion, XGBoost, ElasticNet, and SVM
models without retraining and evaluated the predicted scores
(Supplementary Fig. 3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw small RNA-seq data of the non-small lung cancer and adjacent
non-cancer tissues of the cancer genome atlas data were obtained
through dbGAP (accession phs000178.v11.p8). Samples used in this
study are purchased from commercial sources, were not explicitly
consented for data release, and are governed by regulations limiting
public release of the raw sequencing data. The count matrices and
phenotype information of the validation dataset are available in
Zenodo (https://doi.org/10.5281/zenodo.12809652)58. Source data are
provided with this paper.

Code availability
Orion model source code is available at https://github.com/exai-oss/
orion as well as Zenodo (https://doi.org/10.5281/zenodo.13770567)59.
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