
UC Davis
UC Davis Previously Published Works

Title
Attentional Priority Is Determined by Predicted Feature Distributions

Permalink
https://escholarship.org/uc/item/0632n6p9

Journal
Journal of Experimental Psychology Human Perception & Performance, 48(11)

ISSN
0096-1523

Authors
Witkowski, Phillip P
Geng, Joy J

Publication Date
2022-11-01

DOI
10.1037/xhp0001041
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0632n6p9
https://escholarship.org
http://www.cdlib.org/


Attentional priority is determined by predicted feature 
distributions

Phillip P. Witkowski1,2, Joy J. Geng1,2

1Center for Mind and Brain, University of California Davis, Davis, CA, 95618

2Department of Psychology, University of California Davis, Davis, CA, 95618

Abstract

Visual attention is often characterized as being guided by precise memories for target objects. 

However, real-world search targets have dynamic features that vary over time, meaning that 

observers must predict how the target could look based on how features are expected to change. 

Despite its importance, little is known about how target feature predictions influence feature-based 

attention, or how these predictions are represented in the target template. In Experiment 1 (N=60 

university students), we show observers readily track the statistics of target features over time and 

adapt attentional priority to predictions about the distribution of target features. In Experiments 

2ab (N=480 university students), we show that these predictions are encoded into the target 

template as a distribution of likelihoods over possible target features, which are independent of 

memory precision for the cued item. These results provide a novel demonstration of how observers 

represent predicted feature distributions when target features are uncertain and show that these 

predictions are used to set attentional priority during visual search.
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Introduction

Observers have access to an immense amount of sensory information in natural 

environments but only a subset is relevant for behavior. Optimizing behavior in such 

environments requires knowledge of which information to prioritize and which to ignore 

(Gottlieb, 2018; Niv et al., 2015; Nobre & Stokes, 2019; Wolfe, 2021; Wolfe & Horowitz, 

2017). However, which information to prioritize is often not immediately obvious. For 

example, when searching for a friend in the park you are unlikely to know exactly how she 

will look that day, or the features that will distinguish her from others in the crowd because 

her clothes vary from day to day. One way to address this uncertainty is to make predictions 

about the distribution of features your friend could have rather than trying to match your 

friend to any single instance of her that you have previously seen (i.e., a single memory). If 

Correspondence concerning this article can be addressed to: Phillip P. Witkowski, 267 Cousteau Place, Suite 267, Davis CA, 95618 
Telephone: (530) 754-4551, pwitkowski@ucdavis.edu. 

The authors have no conflict of interest to disclose

HHS Public Access
Author manuscript
J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2023 November 
01.

Published in final edited form as:
J Exp Psychol Hum Percept Perform. 2022 November ; 48(11): 1201–1212. doi:10.1037/xhp0001041.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



she normally wears warm colored shirts, prioritizing only a specific shirt you have seen her 

wear before (e.g., a red t-shirt) is likely to be incorrect since her shirt color might be any 

color between yellow and pink. However, maintaining a predictive distribution across a set 

of colors she is likely to wear can help determine attentional priority in situations where a 

single precise memory is unlikely to be correct. Such scenarios are commonplace in daily 

life. Yet, previous studies have only measured attentional priority as a function of memory 

precision for known target features (e.g., a single red t-shirt), rather than predictions about 

the distribution of ways the target could look (e.g., all warm colored shirts). The current 

experiments test if the inherent uncertainty of target objects informs attentional priority, and 

whether this uncertainty is encoded in predictions about possible upcoming target features.

Theories of attention use the concept of the target template to describe how the weighting 

of task-relevant information is implemented in service of attentional priority (Chelazzi et al., 

1993; Duncan & Humphreys, 1989; Mehrpour et al., 2020; Olivers et al., 2006; Woodman 

et al., 2013; Zhang & Luck, 2009). Target templates have historically been characterized 

as storing a single target’s remembered identity (Olivers et al., 2011; Vickery et al., 2005). 

Many studies have found that more precise memories produce faster and more accurate 

search (Hout & Goldinger, 2015; Malcolm & Henderson, 2009; Schmidt & Zelinsky, 2009; 

Yang & Zelinsky, 2009). For example, Hout and Goldinger (2015) gave participants a single 

target that was either identical to the cue, a rotated version of the cue, or a new exemplar 

of the same category. The authors found that search was most efficient when the cue was 

an exact match for the target. However, most real-world targets have variable features that 

change over time, creating uncertainty about their exact features. Such targets may be 

missed by highly precise templates because the actual features of the target will often be a 

poor match to the target template.

One way attentional systems might overcome this limitation and mitigate the effects of 

uncertainty is by representing a predicted distribution of target features within the target 

template (Knill & Pouget, 2004; Ma & Jazayeri, 2014); that is, representing a distribution 

of expected features rather than any single feature. Theories of perception consider such 

probabilistic representations of sensory data critical to cognition (Clark, 2013; Friston, 

2010; Trapp et al., 2021), and show that perception is often linked to a prior belief 

about what we are likely to see in the world (Kok et al., 2012; Press et al., 2019, 

2020). Indeed, probabilistic expectations are thought to interact with attentional mechanisms 

to guide spatial attention to likely target locations (Chun & Jiang, 1998; Foley et al., 

2017; Geng & Behrmann, 2005; Vossel et al., 2006). Similarly, others have shown that 

probabilistic expectations about distractor features are used to bias attention away from 

possible distractors in an upcoming task (Chetverikov et al., 2017, 2020; Huang et al., 

2021; Lee & Geng, 2020; Won et al., 2021). These studies show that expectations about 

the upcoming search environment increase the efficiency of attentional processing. Despite 

this, few studies have asked whether the target template encodes predicted target feature 

distributions to guide attention when the features of the target are uncertain.

One benefit of maintaining predictive representations of target feature distributions is 

that this information can be used to reduce uncertainty by setting attentional priority for 

features with lower variability. For example, if the friend you are searching for wears only 
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warm colored shirts, but pants of any color, prioritizing the low-variability distribution of 

shirt colors over the high-variability distribution of pant colors will maximize predictive 

information in the target template (i.e., minimize target uncertainty). Target features encoded 

into working memory are known to be remarkably sensitive to the task-relevance of 

information (Becker et al., 2010; Boettcher et al., 2020; Geng & Witkowski, 2019; Nobre & 

Stokes, 2019; Rajsic et al., 2020), and it has been shown that object features are flexibly 

removed or compressed so that only the most informative features are used to guide 

attention (Bravo & Farid, 2012, 2016; Kerzel & Huynh Cong, 2021; Reeder et al., 2017; 

Woodman & Vogel, 2008; Zivony & Lamy, 2016). Previous work has also shown that when 

sensory information differs in reliability, perception is optimally weighted toward the most 

reliable cue (Fetsch et al., 2012; Hillis et al., 2004), resulting in a “push-pull” dynamic 

for attentional priority (Foley et al., 2017; Kozyrev et al., 2019; Mehrpour et al., 2020; 

Pinsk et al., 2004). However, it is still unknown whether feature-based attentional biases 

depend on probabilistic representations of the expected target, or merely on the precision 

of memories for target features. Linking predictions about target feature distributions to 

attentional priority would show that attentional biases are inherently connected to predictive 

processes that minimize our uncertainty about the upcoming task, rather than being only a 

consequence of the quality of memories from previously seen targets.

In the current studies we investigated the role of predictive representations in the target 

template when the identity of upcoming targets is uncertain. We did this by using a 

visual search paradigm in which target features were stochastically determined, creating 

uncertainty in the target’s appearance. Our main hypothesis was that observers would use 

predictions about the variability of upcoming target features to set attentional priority and 

encode these predictions into the target template prior to search. To anticipate, we found 

that attentional priority is set by explicit predictions about the variability of upcoming 

target features, and not by the precision of memory for specific cues. Our results suggest 

that predictive representations are a key element in determining attentional priority and 

illuminate how attentional systems mitigate feature uncertainty inherent to the natural world.

Experiment 1

In Experiment 1, we tested if predictions about the distribution of possible target features 

underlie changes in attentional priority. We used a visual search task in which target 

features were drawn from distributions that change in standard deviation (STDEV) over time 

without notice, requiring participants to actively maintain predictions about the distribution 

of possible features to know which feature dimension should be prioritized on each trial. If 

participants use these predictions to set attentional priority, we should see that response 

times (RT) to select targets is modulated by the STDEV of underlying target feature 

distributions.

Methods

We recruited a sample of 60 participants (self-reported females=47, males=13; mean age 

=19.05) from the University of California, Davis SONA system. This sample size was 

calculated to have 90% power to detect the desired RT effect based on simulations from 
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pilot data. All procedures were approved by the University of California, Davis Internal 

Review Board (IRB). The experiment was completed online using the Testable platform 

(www.testable.org), and all participants were required to calibrate their screens before 

beginning the experiment so that search stimuli were a constant size (approximately 2.5 

degrees of visual angle). Participants did so by holding a standard credit card up to the 

screen and adjusting a line so that it matched the size of the card.

At the beginning of each trial participants were given a “cue” object composed of a colored 

circle with a bar that indicated orientation (Fig. 1). On each trial, the cue was randomly 

selected to have one of three colors (RGB values: (194.9, 156.4, 226.8), (210.2, 160.9, 

104.0), (56.9, 190.3, 180.7)) and one of three orientations (35, 155, 275-degrees) for a 

total of 9 possible combinations. The same cues were used throughout the experiment, 

irrespective of the current STDEV. Cues were shown for 500ms and followed by a 1000–

3500ms interstimulus-interval (ISI). The ISI was followed by a visual search display during 

which participants were asked to report the location of the target as quickly and accurately 

as possible by pressing “j” if it was on the left and “k” if it was on the right. The target 

was defined as the item that was most similar to the cue. Calibration for color on individual 

monitors was not possible. The search display was visible for 500ms, after which the 

stimuli disappeared, but participants had an unlimited time to respond. Each trial ended with 

feedback about whether or not they correctly identified the target (“Correct”, “Incorrect”), 

followed by a randomly jittered 500–2500ms intertrial-interval. Each participant completed 

160 trials in total during the experiment.

Both target orientation and target color were drawn from t-distributions centered on the 

cued feature (Mean=0) on each trial, but the variability of the distribution randomly changed 

without warning throughout the experiment (Fig. 2a). Thus, while there were only nine 

possible cue values, there were over 180 possible targets. However, each feature had a 

particular variability that was consistent across cues and could be utilized to reduce the 

uncertainty of the upcoming target features. Target distributions were bounded such that 

the cue-to-target feature difference could never be greater than 90-degrees to minimize 

correlations between target and distractor values. Since distractors were required to be more 

dissimilar from the cue than the target, trials with large cue-to-target differences were also 

more likely to have small target-to-distractor differences, making it difficult to dissociate 

their influence on the search process. However, bounding the target distribution minimized 

these correlations (Pearson r=.05) allowing us to capture the unique influence of target 

variability and distractor features on search.

At seven predetermined “change points” during the experiment, the variability of orientation 

and color abruptly shifted. These “change points” in the STDEV of both target features 

occurred every 25 to 50 trials and followed a fixed schedule: STDEV=25,10,65,45,40,25 

for orientation and STDEV=40,10,20,15,45,60 for color. Values of STDEV for each feature 

distribution were chosen such that they produced noticeable shifts in feature variability over 

time based on simulations and independent pilot experiments. All participants experienced 

the same transitions in STDEV. Notably, participants were not given any prior information 

about the variability of each feature, how the variability would change, nor which feature 

would be most similar to the cue on the upcoming trial. Thus, participants had to predict the 
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distribution of possible target features in the upcoming trial based on recent experiences in 

order to determine which feature would be the most useful to prioritize in order to maximize 

the efficiency of target selection.

Finally, distractors in each trial were randomly selected from a uniform distribution between 

−179 degrees and 180 degrees away from the cue. The only constraint on the distractor 

features were that distractors must be at least 20 degrees more distant from the cue than the 

target. All stimuli that appeared on the screen had colors taken from a CIE color space color 

wheel, which contained 360 colors of equal luminance separated by one degree units (Bae, 

Olkkonen, Allred, & Flombaum, 2015).

Bayesian Modeling of Predicted Variability—To understand if participants used 

predictions about the distribution of target features to set attentional priority, we created a 

Bayesian learning model that allowed us to estimate feature predictions based on previously 

seen targets, without assuming perfect knowledge of the new distribution at each change 

point. We modeled predictions about the distribution of target features as beliefs about 

the STDEV of the target distribution for the upcoming trial, given the history of observed 

targets. We used a normative Bayesian learning model (O’Reilly et al., 2013; Summerfield 

et al., 2011). On each trial t, the probability of observing a specific target feature (for 

orientation and color separately) y given the variance of the feature distribution was written 

as:

yt ∣ σt N μ = 0, σt (1)

where μ is the mean and σ is the STDEV of the feature distribution. The range of σ was 

bounded between STDEV = 2 and STDEV = 80. Each new target revealed information that 

participants could use to update their beliefs about the STDEV of each feature for the next 

trial. The true STDEV of each distribution (Fig. 2a, gray lines) stayed constant until a 

change point occurred. Thus, prior beliefs in the STDEV of the underlying distribution were 

modeled as the following:

p σt ∣ σt − 1, Jt = δ σt − σt − 1 Jt = 0
U 2, 80 Jt = 1 (2)

This equation states that the estimated standard deviation of the feature distribution σ  on 

trial t stayed the same as the previous trial if a change point was not estimated to have 

occurred Jt = 0  or switched to any value between 2 and 80 with uniform probability if a 

change point was estimated to have occurred Jt = 1 . This allows the model to down-weight 

the influence of trials after a change point occurs. Change points were estimated to have 

occurred by v, based on the likelihood that the current feature value was more likely to have 

been sampled from a distribution with a different standard deviation:

v = p Jt = 1 (3)

Where p Jt = 1  is the marginalized probability that σ has changed, over all values of σ. The 

conditional prior for σt can be written as:
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p σt ∣ σt − 1, v = 1 − v δ σt − σt − 1 + vU 2,80 (4)

Importantly, integrating the change probability, v, allows the model to quickly switch beliefs 

about the STDEV of each feature distribution when the evidence changes dramatically. At 

these same points, participants would be expected to rapidly change their beliefs given new 

observations. The generative model can then be inverted using Bayes rule and written as:

p σt, v ∣ y1: t = p yt ∣ σt p σt, v ∣ yt − 1

∬ p yt ∣ σt p σt, v ∣ yt − 1 dσtdv (5)

The model’s predicted variability estimates for color and orientation (Fig. 2a) reflect an 

“optimal observer’s” prior belief in the STDEV of each feature distribution on the next trial 
t + l . That is, each estimate of the feature distribution contains information leamed from 

previous trials and are applied prior to the next trial before the true target features have been 

observed.

We then used these estimates to compute the difference in predicted variability of each 

feature. The difference in predicted variability is positive when color is more predictive, and 

it is negative when orientation is more predictive. If participant RT follows the difference 
in predicted variability, it would mean that they use predictions about the distribution 

of possible target features to weight attentional priority towards the feature with lower 

variability on the upcoming trial.

Regression Modeling of Response Time Data—To estimate the effect of feature 

predictions on attentional priority, we used a linear regression model to test how the 
difference in predicted variability, derived from the model, moderates participant RT search 

costs for targets over-and-above cue-to-target similarity alone. Specifically, we hypothesized 

that the effect of cue-to-target similarity in each feature dimension would be modulated 

by expectations about which of the two features was currently less variable (and therefore 

more reliable). For example, the expected RT cost for a target with an orientation that is 

45-degrees from the cue is expected to be large when the difference in predicted variability 
indicates that orientation is the less variable feature (i.e., orientation is more reliable); in 

contrast, the RT cost for the same target orientation should be smaller when the difference 
in predicted variability is positive, indicating that color is the less variable dimension. This 

outcome would lead to a statistical interaction in RT between the cue-to-target difference 
for each feature dimension and the Bayesian model generated estimates of the difference in 
predicted variability. Such an interaction would suggest that participants maintain learned 

predictions about the distribution of each feature and use those predications to weight 

attentional priority during search.

We tested this hypothesis by fitting RT data from trials with correct responses to a gamma-

distributed hierarchical regression model (Lo & Andrews, 2015), using the lme4 package in 

R. Trials with incorrect responses or RTs greater than 3 times the interquartile range (IQR) 

from the median RT were excluded from the analysis (Mean=14 trials total per participant). 

The regression model had one regressor for orientation cue-to-target difference and one 
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for color cue-to-target difference. Each regressor reflects the number of milliseconds added 

to RT for each degree of difference between the cue and the target (ms/degree). In other 

words, each regressor reflects the slope of RT increase as the target becomes more dissimilar 

from the cue along one feature dimension. Importantly, there was also a regressor for the 

difference in predicted variability from the Bayesian model (see above). This regressor 

represents a prediction of how much more reliable orientation is than color, or vice versa. 

If observer’s are sensitive to this difference in predicted variability of the upcoming target, 

attentional priority should be biased towards the feature with lower variability (Fetsch et al., 

2012; Foley et al., 2017; Hillis et al., 2004). We therefore hypothesized that the difference in 
predicted variability would interact with orientation cue-to-target difference and with color 
cue-to-target difference. Because of the way in which the difference in predicted variability 
is calculated (see above), the sign of the interaction will be negative for orientation and 

positive for color. Nevertheless, both interactions reflect change in RT (ms) per degree of 

cue-to-target similarity as a function of the degree of difference in predicted variability 
(ms/deg/deg). This will only occur if participants maintain a representation of the predicted 

distribution of both target features. Finally, we included two regressors for the target-to-

distractor difference in each feature dimension, orientation target-to-distractor difference 
and color target-to-distractor difference (Duncan & Humphreys, 1989; Wolfe & Horowitz, 

2017). The random effects structure included random intercepts for each participant and 

random by-subject slopes for each of the fixed effects explained above.

All significance testing was done using likelihood-ratio tests between the full model and 

models with the relevant fixed effect removed, as is appropriate for hierarchical models 

(Luke, 2017). For example, the significance of the interaction between orientation cue-to-
target difference and difference in predicted variability was tested by fitting a model with 

and without the fixed-effect of the interaction, then comparing the difference in likelihoods. 

The HDI (Bayesian confidence interval) of each parameter was determined by fitting the full 

model in PyMC3 with uninformative priors over parameter values.

Results

Mean accuracy was high across all participants (Mean=.935, SD=.045). We observed the 

hypothesized interaction between orientation cue-to-target difference and difference in 
predicted variability (β =−.024ms/deg/deg, χ2(1)=11.76, p<.001, HDI 95% [−.024,−.001]) 

(Fig. 2C). Greater orientation cue-to-target differences led to longer RTs as expected, but 

this effect proportionately decreased as target orientation became more variable relative to 

target color. Similarly, we found a positive interaction between color cue-to-target difference 
and difference in predicted variability (β =.040ms/deg/deg difference, χ2(1)=15.35, p<.001, 

HDI 95% [.026, .058]). This shows that participants responded slower with increasing 

color cue-to-target differences when color was less variable than orientation. Together, these 

results indicate that predictions about the distribution of possible target features were used to 

bias attentional priority. When the predicted variability in one dimension (e.g., orientation) 

was higher than the other (e.g., color), dissimilar targets in that dimension (e.g., orientation) 

did not slow RT as much as when predicted variability is lower than the other dimension 

(e.g., color) and the dissimilar target feature was more surprising.
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In addition to looking at cue-to-target similarity, we also looked at the effect of target-to-

distractor similarity on search RT. There was a significant interaction between difference 
in predicted variability and orientation target-to-distractor difference (β =.006ms/deg/deg 

difference, χ2(1)= 11.59, p<.001, HDI 95% [.004,.011]), and a weaker opposite interaction 

with color target-to-distractor difference (β =−.004ms/deg, χ2(1)= 6.25, p=.012, HDI 95% 

[−.006, .003]). RTs were longer when distractors had features close to the target, but this 

effect was bigger in the dimension with lower predicted variability. That is, distractor 

features interfered with search more when they were similar to the less variable target 

feature, presumably because that dimension was prioritized for finding the target.

Experiments 2a and 2b

Experiment 1 found that observers readily used predictions about the distribution of possible 

target features to bias attentional priority towards the low-variability feature. However, it 

is still unclear how these predicted distributions are encoded by the target template. One 

possibility is that the target template holds only a single memory of the most likely target 

and adapts the precision of this working memory representation to reflect the predicted 

STDEV (Grubert & Eimer, 2013; Hout & Goldinger, 2015; Olivers et al., 2011). For 

example, the memory representation of the current cue may degrade if the participants do 

not expect the target to match perfectly, leading to less precise memories for the cue as target 

variability increases. If true, this would mean that the expected variability of a distribution 

is not encoded directly but interacts with working memory precision to produce behavior. 

Another possibility is that observers directly encode a distribution of predicted likelihoods 

for each feature that is separate from the memory of the cue (Knill & Pouget, 2004; Ma 

& Jazayeri, 2014). If true, the memory representation may remain precise but there would 

be additional information regarding variability in the predicted target. Such a result would 

be evidence for the hypothesis that predictions are distinct from memories of the cue and 

that attentional priority is more related to predictions about target variability than memory 

precision. We test these alternative possibilities in Experiments 2a and 2b using probe trials 

interleaved amongst visual search trials.

Methods

We recruited two independent samples of 240 participants for Experiments 2a (self-

reported females=185, self-reported males=55; mean age=20.0 years) and 2b (self-reported 

females=184, self-reported males=56, mean age=19.67 years) from the University of 

California, Davis undergraduate SONA system. This sample size was calculated to have 

90% power to detect the desired RT effect in each experiment alone, based on simulations 

from pilot data. All procedures were approved by the University of California, Davis IRB 

prior to the study.

All methods were the same as in Experiment 1 with a few key differences. To simplify 

the design, we only manipulated the variability of orientation, while color variability 

was kept constant. Participants in each experiment were split into three predicted 
variability conditions (N=60 per condition per experiment) defined by the STDEV of 

the target orientation distribution (Fig. 3AB). As in Experiment 1, all cues had a 
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randomly selected combination of color (RGB values: (194.9, 156.4, 226.8), (210.2, 

160.9, 104.0), or (56.9, 190.3, 180.7)) and orientation (35, 155, or 275-degrees) and 

this was true for all groups. Target orientations were drawn from t-distributions centered 

on the cue (mean=0) and had a standard deviation of 10, 25 or 40 degrees. These 

corresponded to low-variability (STDEV=10), medium-variability (STDEV=25) and high-

variability (STDEV=40) conditions, respectively. Splitting participants into groups with a 

stable STDEV allowed us to probe representations of specific learned distributions more 

accurately. In all variability conditions, color was drawn from a high-variability distribution 

(STDEV=55). Finally, all distractor features were sampled from a uniform distribution but 

were restricted to values that were at least 20 degrees more distant from the cue than the 

target.

An additional 60 participants per experiment were assigned to a control condition, in 

which both color and orientation were drawn from identical low-variability distributions 

(STDEV=10). This established a “baseline” in which expectations of the feature 

distributions were matched and any differences in memory or prediction probe responses 

could only reflect pre-existing differences in each dimension. The data from this control 

group were used to normalize probe responses from the other conditions following the 

procedures in Witkowski and Geng (2019). Specifically, we calculated the difference of 

each participants mean responses from the control group responses, divided by the standard 

deviation in control responses. This gave us a normalized measure of the change in working 

memory precision or predictions in response to the variability conditions.

In Experiment 2a, 14 memory probe trials (7 orientation/7 color) were interleaved between 

40 search trials, following 54 initial “training” visual search trials. On memory probe trials, 

participants were shown either a color wheel or an orientation wheel. Each wheel contained 

24 feature segments of different colors or orientations, respectively, split into 15-degree 

bins. Each feature segment was associated with a number, and participants were asked to 

report the number next to the remembered cue feature. In Experiment 2b, the 14 interleaved 

prediction probe trials asked participants to rate the likelihood that a subsequent object 

would be the target. Participants made their responses on a 1 to 9 scale with 1 being “very 

unlikely” and 9 being “very likely”.

Probe objects spanned the distribution of all possible cue-to-target differences (−90 to 90 

degrees) in 15-degree intervals, with color and orientation being randomly combined such 

that there was no correlation between features. Importantly, although a single participant 

only saw 14 probes, all the possible cue-to-target differences for color and orientation 

were probed across participants. Both probe types were then fit to Gaussian functions 

using maximum likelihood to make these data commensurate with the stimuli generated in 

search, however, see supplementary figure S1 for results with alternative distributions. For 

prediction probes, we allowed amplitude of the Gaussian function (i.e., the height of the 

peak) to range from 1 to 9, so that ratings about the likelihood of target features could be 

directly mapped to predictions about the distribution of possible features.
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Results

Search behavior is determined by the predicted variability of target features
—We used the same regression model to analyze RT data in Experiments 2a and 2b as 

in Experiment 1, except that the three predicted variability conditions were manipulated 

between-subjects. We expected the RT data to be identical given in these experiments that 

the visual search trials were identical. Accuracy was overall high in both experiments 

(Experiment 2a Mean=0.918, SD=0.062; Experiment 2b Mean=0.921, SD=0.060), but 

decreased significantly as orientation variability increased (Exp2a: χ2(1)=37.11, p<.001 

HDI 95% [−0.507, −0.288]; Exp2b: χ2(1)=14.36, p<.001 HDI 95% [−0.405,−0.127]); this 

was consistent with the idea that the task became more difficult as orientation variability 

increased (and color variability did not change). Again, we excluded trials where responses 

were incorrect or greater than 3 IQRs from the median RT (mean=9 trials per subject in both 

experiments).

Consistent with Experiment 1, the RT results from Experiment 2a showed a negative 

interaction between orientation cue-to-target difference and predicted variability (β 
=−.98ms/deg/group, χ2(1)=7.49, p=0.006, HDI 95% [−1.924,−0.769], Fig. 4B). The 

interaction was due to orientation cue-to-target difference having a weaker effect on 

RT as the variability of the feature distribution increased. We found no significant 

interaction between color cue-to-target difference and predicted variability (beta=.18ms/deg, 

χ2(1)=1.65, p=0.20, HDI 95% [−0.064,0.31]), although the sign of the interaction was the 

same as in experiments 1 and 2b (see below). Finally, the model showed a significant 

effect of orientation target-to-distractor difference on search time (β =−.11ms/deg, χ2(1)= 

4.82, p=0.028, HDI 95% [−0.222,−0.056]), but not for color target-to-distractor difference 
(β =.09ms/deg, χ2(1)= 3.19, p=0.074, HDI 95% [−0.058,0.111]). The effect of distractor 

similarity is consistent with the overall attentional prioritization of target orientation over 

color given that orientation was always less variable than color.

Analysis of RT in Experiment 2b replicated these findings. There was a significant 

negative interaction between orientation cue-to-target difference and predicted variability 
(β=−.89ms/deg/grp, χ2(1)=5.26, p=0.022, HDI 95%[−1.93,−0.724], Fig. 4D). There 

was also a significant interaction between color cue-to-target difference and predicted 
variability, but in the opposite direction (β =.35ms/deg/grp, χ2(1)=4.23, p=0.040, HDI 

95% [0.017,0.437]), showing that as orientation variability increased, participants were 

more sensitive to the cue-to-target difference for color. Finally, the results replicated the 

significant effect of orientation target-to-distractor difference (β =−.16ms/deg, χ2(1)=7.83, 

p=0.005, HDI 95% [−0.242,−0.067]), and a null effect of color target-to-distractor difference 
(β =.01ms/deg, χ2(1)=.17, p=.718, HDI 95% [−0.123,0.051]). These results provide further 

evidence that predictions about target feature distributions are used to set attentional priority; 

specifically, attentional priority for orientation decreased when it was predicted to be more 

variable, and priority for color increased.

Predictions, but not memory for the cue, reflect knowledge about the learned 
target feature distribution—We next analyzed differences in memory precision 

(Experiment 2a) and predictions about target features (Experiment 2b) across variability 
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conditions. First, we fit each participant’s memory probe responses to a Gaussian function 

using maximum likelihood, separately for orientation and color. The resulting estimates 

of the standard deviation of memory responses were log-transformed to fit assumptions 

of a linear regression model. The model included regressors for predicted variability (low-

variability, medium-variability, high-variability) and feature dimension (orientation, color), 

and their interaction. If the information about feature variability that is used to compute 

attentional priority is contained in the precision of cue memory, we should see an interaction 

between predicted variability and feature dimension similar to the patten of results on search 

trials. Specifically, the precision of memory for orientation features should decrease with 

variability, and the precision of memory for the color feature should increase or stay the 

same.

The results revealed a marginal main effect of increasing memory precision across predicted 

variability conditions (χ2(1)=3.67, p=0.055, HDI 95% [−0.263, −0.006]), suggesting that 

memory for both features slightly increased in precision when both features were highly 

variable, and the search task was overall more difficult. There was also a main effect 

of feature dimension (χ2(1)=6.04, p=0.014, HDI 95% [0.027, 0.402]), suggesting that 

orientation was held more precisely compared to color (Fig. 5A) across all three variability 

conditions. However, we found no interaction between variability condition and feature 

dimension (χ2(1) = .94, p=.33, HDI 95% [−0.313, 0.122], BF01=14.28), suggesting no 

link in the precision of memory to the pattern of attentional priority during search. The 

main effect replicates previous findings, showing that more reliable (i.e., low variability) 

features are encoded in working memory more precisely compared to low reliability features 

(Witkowski & Geng, 2019), but goes further to suggest that this overall benefit is not 

sensitive to the difference in the predicted variability of each target feature.

In contrast to the memory probes, in Experiment 2b we observed changes in the distribution 

of responses to the prediction probes commensurate with the specific standard deviation in 

each predicted variability condition. The same regression for prediction probe responses 

produced a significant interaction between predicted variability and feature dimension 
(χ2(1) = 23.56, p<.001, HDI 95% [−0.864, −0.384]). Follow up comparisons with simple 

regression showed the distribution of prediction responses for orientation features became 

wider as a function of increasing predicted variability condition (β =.31, χ2(1)=10.67, 

p=0.001, HDI 95% [0.135, 0.503]), but became narrower for color (β =−.32, χ2(1)=11.84, 

p<.001, HDI 95% [−0.494, −0.130]). We then tested whether this pattern was significantly 

different from Experiment 2a by including both sets of data into a single model and adding 

an interaction term between experiments. The results showed that the pattern in Experiment 

2b was significantly different from the pattern shown in Experiment 2a (χ2(1)=9.41, p=.002, 

HDI 95% [0.792, 0.221]).

This pattern mirrors the pattern of attentional priority seen during search (Fig. 5B), showing 

that manipulations of the underlying feature distribution change both predictions about the 

likely target feature and attentional priority for each feature during search (see figure S2 for 

an exploratory analysis of this effect at the participant level). Even though the variability 

of color did not change across conditions, participants estimated the predicted variability as 

lower, presumably because perceived estimates of color variability were yoked to estimates 
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of the variability of orientation, paralleling attentional priority. This result indicates that 

predictions about the likelihood of target features, but not memories of the cue, are used to 

set attentional priority during visual search.

Discussion

In the current experiments, we test whether observers learn the feature distributions of 

uncertain targets and we measure the consequences of this knowledge on attentional priority. 

We used a novel visual search paradigm in which target features were drawn from a 

distribution and participants learned the feature variability from observing targets over time. 

Search behavior showed that attentional priority for each feature tracked the predicted 

distribution of the feature distributions over time, such that low-variability features were 

prioritized over high-variability features in a push-pull manner. We then probed memory 

precision for cued features and explicit predictions about target features. Our results showed 

that the target-template dynamically encoded the variability as explicit predictions about 

target features, while memory for the cue remained static. These data suggest that observers 

use predictions about the likelihood of possible features to determine attentional priority 

when target features are uncertain.

The current studies provide novel evidence that attentional priority is tied to predictions 

about upcoming targets, and not memories of a cue. Previous research has generally focused 

on how the precision of memories determines attentional priority (Hout & Goldinger, 

2015; Olivers et al., 2011; Schmidt & Zelinsky, 2009; Vickery et al., 2005) but have not 

examined how attentional priority is set when the target features are variable. Our results 

show that when faced with feature uncertainty, observers actively generate predictions 

about the distribution of possible features before the true target features can be observed. 

These predictions are then used to mitigate uncertainty by prioritizing features with the 

least variability. This predictive process is also highly flexible. When observers learn that 

the variability of the target has changed, they rapidly update priority settings for each 

feature. These findings directly connect feature distribution learning to information biases 

in the target-template and show how predictions are used by attentional systems to reduce 

uncertainty.

The results observed in search behavior also shed light on how target variability is translated 

into attention priority. Push-pull dynamics have been observed throughout the literature, 

showing that attending to one place or feature results in decreased encoding of an unattended 

feature (Kozyrev et al., 2019; Mehrpour et al., 2020). In Experiment 1, we observed that 

the attentional priority for both orientation and color were oppositely modulated by the 

difference in the predicted variability of each feature. Experiment 2b confirmed this finding 

by showing that attentional priority for color increased in response to manipulations of 

the orientation feature distribution, even though the color distribution remained the same. 

Although this effect did not reach significance in experiment 2a, we found the data across 

experiments 2a and 2b show substantially more evidence for this effect compared to the null 

(BF10=6.3, Scheibehenne et al., 2016). This pattern of results is exactly what is expected if 

predicted variability was translated into attentional priority in a push-pull manner (Carandini 

& Heeger, 2012; Louie et al., 2013; Pinsk et al., 2004). These findings suggest that target-
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templates help reduce uncertainty by optimally weighting features based on the relative 

predicted utility for identifying the target, rather than removing or adding features in an 

“all-or-none” fashion.

Knowledge about the variability of feature distributions also moderated distractor 

interference. Distractor similarity to targets is known to decrease the efficiency of search 

due to the competition that arises when distractors and targets have similar features (Driver, 

2001; Duncan & Humphreys, 1989; Wolfe & Horowitz, 2017). RT analyses in all three 

experiments revealed that the effect of target-to-distractor difference on search was greater 

for prioritized feature dimensions (i.e., the low-variance feature). This shows that distractors 

only affect the search process when they share features used to identify the target.

Finally, in Experiments 2a and 2b we tested two possibilities for how predicted variability 

is encoded by the target template. One possibility was that the predicted distribution would 

only be reflected in the precision of a single feature encoded into working memory (i.e. the 

cue) (Grubert & Eimer, 2013; Olivers et al., 2011). The other possibility was that predictions 

were encoded as a likelihood distribution over possible target features - separate from cue 

memory. While our data showed that memory was more precise for low-variance features 

compared to high variance features (Boettcher et al., 2020; Kerzel & Witzel, 2019; Niklaus 

et al., 2017), we also found that only prediction probes were sensitive to changes in the 

actual distribution of target orientation. This suggests that separate representations are held 

for memories of the cue and for predictions about what the target will look like, with the 

latter being used to set attentional priority.

Interestingly, predictions about the target color, which did not change in variability in 

Experiment 2, became more precise as predictions about target orientation became more 

variable. This could be due to the fact that predictions about the reliability of target features 

are coded relative to each other (Foley et al., 2017; Horan et al., 2019). This would result 

in color seeming “less variable” because all target orientations became more variable. 

However, further experiments will be needed to confirm this interpretation. Nonetheless, 

the changes in both color and orientation revealed that feature predictions showed the same 

pattern of changes as visual search performance, suggesting that predictions about the target 

distribution, not specific memories of the average target, are linked to attentional priority. 

These results highlight the fact that when target features are uncertain, observers rely on 

predictions about possible target features rather than a single memory trace.

One outstanding question about the representation of target feature variability concerns 

whether the knowledge of variability is specific to targets or represented across targets. For 

example, it is difficult to tell with these data if there is a unique representation of variability 

for each target, which appear similar because all targets follow similar statistics. Or in 

contrast, if feature variability is coded in a common representation across targets. Future 

studies may address this question by using multiple targets which share features but differ in 

variability to test for target specific knowledge of the variability.

Furthermore, while our data suggest that predictions influence feature-based attentional 

priority, it is difficult to tell whether this change in priority is specific to changes in guidance 
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or target decisions. Previous work has shown that the initial guidance of attention is a 

distinct process from target-match decisions, and that these two processes may rely different 

information about target objects (Rajsic & Woodman, 2019; Wolfe, 2021; Yu et al., 2022). 

However, this study cannot determine how predictions influence attentional priority at each 

stage of visual search. Thus, we are agnostic to whether these results describe a change in 

the information being used for guidance or target-match decisions within a visual search 

cycle.

In conclusion, we have shown that the target template encodes detailed predictive knowledge 

that is vital to the search process and determines how attention is allocated in feature-

based attention. Our work joins a growing literature that reframes the target template as 

an inherently prospective construct that seeks to maximize predictive information for the 

upcoming task and ignore information with little predictive value (Nobre & Stokes, 2019). 

These findings inform theories of attention by showing how attentional systems overcome 

the uncertainty of dynamic stimuli during goal directed processing, and by showing that 

predictive processes play a key role in setting priority for uncertain targets.
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Significance statement

Theories of attention and working memory posit that when we engage in complex 

cognitive tasks, our performance is determined by how precisely we remember task-

relevant information. However, in the real world, properties of objects change over 

time, creating uncertainty about many aspects of the task. There is currently a gap in 

our understanding of how cognitive systems overcome this uncertainty when engaging 

in common behaviors like visual search. In two studies we show that when searching 

for target objects, observers readily learn the distribution of possible target features 

and leverage this information to make predictions about which features will best guide 

attention in the upcoming search. Further, we show that these predictions are distinct 

from memory, and uniquely influence attention when search targets are uncertain. These 

results help advance theories of attention and working memory by explaining how we use 

learning and prediction to overcome uncertainty in the environment.
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Figure 1). 
Task schematic for Experiment 1 with example trial where orientation is the low-variability 

feature. Each trial began with the presentation of a cue, which lasted 500ms. After a short 

delay, participants were asked to search for the target most similar to the cue as quickly as 

possible and report its location. Stimuli were visible for 500ms. The set of targets illustrate 

possible target features for one example cue with particular color and orientation features. 

The actual distribution of features was continuous in 1-degree units over each feature space. 

The “Target Color” and “Target Orientation” distribution represent the relative likelihood 

with which a target object would have each feature in a case where color variability is high, 

and orientation variability is low, but these distributions changed overtime (see methods).
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Figure 2: 
A) Predicted variability estimates for each feature were derived from a Bayesian learning 

model that tracked changes in the STDEV of each target feature distribution given 

previously seen targets (Black lines). These estimates of STDEV were the same across 

participants. Estimated STDEV per trial are overlayed on the true STDEV of each feature 

distribution (Grey lines). Background hue (blue to purple) indicates the difference in 

predicted variability. Blue colors indicate trials when orientation STDEV is lower than color 

(i.e., orientation has lower predicted variability); purple colors indicate trials when color 

STDEV is lower (i.e., color has lower predicted variability). B) Same as A but shows the 

difference in predicted variability across trials used in the regression model. C) Illustration 

of the interaction between cue-to-target difference and difference in predicted variability 

for orientation (dark blue) and color (teal). Color bars at the top indicate the trials in A 

from which the data were taken. Bins were created such that there were approximately 

equal trial numbers in each bin per participant. The Y-axis indexes the change in RT (in 

milliseconds) per degree of cue-to-target dissimilarity for each feature. Error bars represent a 

95% confidence interval.
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Figure 3: 
A) Task schematic for Experiment 2a. Each trial began with the presentation of a cue, 

which lasted 500ms. On each trial, participants were asked to either search for the target 

object (86% of trials) or complete a memory probe task (14%) in which they reported 

the remembered features of the cue item by pressing the number associated with the 

remembered feature. Participants were split into 3 predicted variability conditions and 1 

control condition defined by the distribution of target features (see Figure 1 for illustration 

of search target variability). B) Same as A but for Experiment 2b. In this experiment, 

participants completed a “prediction probe trial” by reporting the predicted likelihood of a 

possible stimulus being the target.
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Figure 4: 
A) Mean response time for binned values of cue-to-target difference in Experiment 2a 

for color and orientation separately. Bins were created by splitting the data into equally 

portioned quantiles. Each line represents the increase in response times due to a specific 

cue-to-target difference for orientation (light blue) or color (dark blue) in each predicted 
variability condition (denoted by marker points). B) Points represent the slopes from A for 

each predicted variability condition with error bars representing the 95% confidence interval. 

C) same as A but for Experiment 2b. D) Same as B but for Experiment 2b. *=p<.05, ** = 

p<.01
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Figure 5: 
A) Fitted standard deviation of memory probe responses in each predicted variability 
condition for Experiment 2a. Error bars represent the 95% confidence interval around the 

mean of each group. Y-axis represents the difference in variability relative to the control 
condition B) Same as A but for prediction probe responses in Experiment 2b. The colored 

lines show the best-fit line for differences between variability conditions. ** = p<.01, *** = 

p<.001
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