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Key Points: 8 

• Hydropower reservoir revenue can be optimized by simultaneously adjusting contract 9 

specifications and the release operating rule.  10 

• Predictive operating rules based on stochastic models of the reservoir and its inflows can 11 

perform better than standard operating rules. 12 

• Stochastic performance assessments provide convenient measures of revenue uncertainty 13 

and facilitate quantitative performance comparisons of alternative operating strategies.  14 
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Abstract 15 

Revenues from hydropower generation often depend on the operator’s ability to provide firm 16 

power in the presence of uncertain inflows. The primary options available for optimizing revenue 17 

are negotiation of a firm power contract before operations begin and adjustment of the reservoir 18 

release during operations. Contract and release strategy optimization are closely coupled and 19 

most appropriately analyzed with stochastic real-time control methods. Here we use an 20 

ensemble-based approach to stochastic optimization that provides a convenient way to construct 21 

non-parametric revenue probability distributions to explore the implications of uncertainty. The 22 

firm power contract is a simplified bilateral fixed price agreement that partially insulates 23 

operator and buyer from price fluctuations. The release control laws and firm energy target are 24 

jointly optimized to maximize the operator’s expected revenue. Revenue probability distributions 25 

and related spill performance statistics indicate that predictive operating strategies such as 26 

stochastic dynamic programming and model predictive control can give significantly better 27 

performance than standard deterministic operating rules. The performance obtained from batch 28 

optimization with perfect inflow information establishes a convenient upper bound on potential 29 

revenue and provides a baseline for assessing the significance of differences between real-time 30 

operating strategies. Sensitivity analysis indicates that the benefits of predictive operational 31 

strategies are greatest for reservoirs with medium non-dimensional residence times and less 32 

important for reservoirs with large residence times. Overall, probabilistic analysis of the coupled 33 

hydropower contract-operations problem provides a realistic way to assess revenue and risk for 34 

reservoirs that must provide firm power when inflows are uncertain. 35 

 36 

1 Introduction 37 

Hydroelectricity contributes 71% of global renewable electrical energy and 16% of total 38 

global electricity demand. Much of this energy is sold to institutional and industrial buyers under 39 

power purchase agreements that specify the price to be paid per unit energy for a firm amount of 40 

energy to be delivered over a designated time period. Firm power output is particularly important 41 

for industrial clients with predictable, possibly constant, energy demand.  It is difficult for a 42 

hydropower facility to precisely track a firm power target since reservoir inflow and 43 

consequently power output are variable and uncertain. A hydropower operator must decide how 44 

much water to release at a given time without knowing with certainty how this will affect future 45 

power output. When selecting a contracted firm energy target, the operator must trade off the risk 46 

of having to purchase make-up power during low inflow periods when the target cannot be met 47 

vs. the risk of forgoing future income by releasing excess water during high inflow periods. Both 48 

of these situations can reduce revenue if the energy target is not properly chosen. Management 49 

decisions are further complicated when power may be obtained from multiple sources that have 50 

different characteristics and contractual arrangements. The various costs and demand functions 51 

encountered in these arrangements change continuously. Financial and economic uncertainties 52 

adds to the physical uncertainty contributed by fluctuations in reservoir inflows. All of these 53 

factors combine to make it difficult for a hydropower operator to determine the best way to 54 

manage a reservoir in real time or to identify the best strategy to pursue when negotiating a 55 

power purchase agreement. 56 
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In this paper we consider a simplified version of the hydropower firm power generation 57 

problem that enables us to focus on two particular factors that impact revenue performance: i) 58 

the operating strategy used to determine releases and ii) the firm power target. Our objective is to 59 

use insights from our probabilistic problem formulation to derive a release strategy and a firm 60 

power target that together maximize expected operator revenue when reservoir inflows are 61 

uncertain. We consider several different operating strategies that bracket the likely range of 62 

revenues that can be achieved with variable inflow and a given firm power target. These 63 

strategies include options that examine multiple replicates of future inflows to better anticipate 64 

the long-term effects of current releases. The power agreement we adopt specifies fixed prices 65 

over a long-term contract period and accounts for the decreasing marginal value of power. This 66 

type of agreement is becoming popular for renewable energy purchases by corporate entities 67 

with well-defined demands (Baker & A.McKenzie, 2015). Our use of a long-term fixed price 68 

agreement acknowledges the increasing desire among hydropower operators and buyers to 69 

reduce the risk associated with dependence on short-term market prices (Barroso et. al., 2006; 70 

Boneville Power Administration, 2013; World Energy Council, 2016). 71 

 72 

Many optimization studies have addressed aspects of our problem formulation, including 73 

release operating strategies and power purchase agreements. Yeh (1985), Wurbs (1993), Labadie 74 

(2004), and Rani & Moreira (2010)  provide comprehensive literature reviews on reservoir 75 

operating strategies. . In practice, most hydropower reservoirs are managed with deterministic 76 

operating rules that fall under the umbrella of a Standard Operating Policy (SOP) with hedging 77 

(Neelakantan & Pundarikanthan, 1999; Tu, Hsu, & Yeh, 2003; You & Cai, 2008). These rules 78 

typically relate the current reservoir release to the current reservoir storage and do not attempt to 79 

predict or adjust for future inflow variations.   80 

Reservoir operators may be able to extract more benefit than can be achieved with 81 

Standard Operating Policies if they use decision rules that rely on probabilistic models of future 82 

inflows. The gold standard of this approach is Stochastic Dynamic Programming (SDP) 83 

(Bertsekas, 1995). The SDP method has been applied to the control of a single reservoir and to 84 

networks of multiple reservoirs (Zhao et al., 2014; Stedinger et al., 2013; Castelletti et al., 2007; 85 

Cervellera et al., 2006; Hall et al., 1968; Hooper et al., 1991; Yakowitz, 1982; Yeh, 1985). The 86 

popularity of SDP lies in its flexibility to accept a variety of objectives, constraints (equality 87 

and/or inequality), and random inflow models. Its main limitation is its computational 88 

complexity, which grows very quickly with the number of state and control variables used to 89 

describe the reservoir system (the so-called “curse of dimensionality’). This reflects the fact that 90 

SDP derives a general control law that specifies the optimal release at any time as a function of 91 

current state (Bertsekas, 1995).  This control law depends on a reservoir inflow sequence that is 92 

specified for the entire operating period. In the stochastic version of dynamic programming the 93 

revenue to be maximized is averaged over an ensemble of many randomly sampled inflow 94 

realizations, using a version of Monte Carlo simulation, for each possible value of the current 95 

state. Several approximate SDP techniques have been developed to deal with the method’s 96 

computational demands. These take advantage of distinctive structural features applicable to 97 

reservoir operations problems (Bar-Shalom & Tse, 1974; Bertsekas, 1995; Bertsekas & 98 

Castañon, 1999). 99 

Model Predictive Control (MPC) (García et al., 1989; Mayne et al., 2000; Rawlings, 100 

2000) method is a limited look ahead real-time optimization technique that can use either 101 
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deterministic or probabilistic inflow models. The stochastic version of MPC (SMPC) adopted 102 

here assesses the expected revenue for a given current release by averaging over an ensemble of 103 

random inflow replicates, following an approach similar to the one used in an ensemble SDP 104 

algorithm. An SMPC algorithm is generally less computationally intensive than SDP, and is able 105 

to readily handle complex constraints. This relative efficiency of SMPC reflects the fact that it 106 

optimizes the current release only for a particular (observed) current state rather than for all 107 

possible values of the state. SMPC plays an important role in process control where efficiency 108 

requires operating the system near specified bounds on the state and the control. Examples of 109 

relevant SMPC applications include process control (Arnold & Andersson, 2011), reservoir 110 

operations (Barjas Blanco et al., 2010; Linke, 2010; Tu et al., 2003), irrigation (Negenborn et al. 111 

2009; van Overloop at al., 2008), and supply chain management (Perea-López et al., 2003; Qin 112 

& Badgwell, 2003). Here we consider the performance obtained with all three of the reservoir 113 

operating rules mentioned above (SOP, SDP, and SMPC) when they are coupled with a contract 114 

optimization procedure.  115 

There is also an extensive literature on power purchase agreements and contracts. In 116 

particular, (Baker & A.McKenzie, 2015; ACORE, 2016; Shrestha et al. , 2005) discuss fixed 117 

price bilateral agreements that share important features with the one adopted in this paper. Many 118 

other types of contracts are available to manage operator and buyer risk. Examples relevant to 119 

hydropower applications are discussed in the financial risk literature (Catalão, Pousinho, & 120 

Contreras, 2012; Foster, Kern, & Characklis, 2015; Mo, Gjelsvik, & Grundt, 2001; Stickler et al., 121 

2013) These include index methods that provide insurance to protect the operator from 122 

uncertainty. They do not generally consider the use of advanced operating strategies such as SDP 123 

and SMPC.  124 

This paper synthesizes topics addressed in the literature cited above by examining 125 

connections between real-time operations and firm power contracts, with a focus on the effects 126 

of reservoir inflow variability. When developing a strategy for managing inflow uncertainty, it is 127 

best to determine the operating rule and contracted firm power target together, since they affect 128 

one another.  The maximum revenue attainable by adjusting the operating rule depends on the 129 

firm power target and the maximum revenue attainable by adjusting the power target depends on 130 

the operating rule. We believe the synergy between operating strategy and firm power target is 131 

most easily examined with a bilateral fixed price contract. Such a contract partially insulates the 132 

operator and buyer from price fluctuations and is attractive when buyer demand is predictable 133 

and both parties seek to reduce risk from dependence on spot market prices.  134 

 135 

2 Formulation of the reservoir operations problem 136 

 We examine connections between the firm power contract and operating strategy  137 

by considering a single purpose hydropower reservoir that provides energy to a single buyer 138 

according to a long-term bilateral contract agreed upon before operations start. The contract has 139 

a price structure that accounts for both power deficits and surpluses. The buyer agrees to pay a 140 

specified unit price ($ MWhr-1) for the firm power, negotiated at the start of the contract period 141 

and held fixed until the end of the period.  Recognizing that it may not always be possible to 142 

meet a particular firm power value when reservoir inflows are variable, the contract stipulates 143 

that shortfalls be covered by the buyer, who purchases makeup power at the market price and 144 

passes on a fixed unit charge to the operator. If the market price is below the shortfall charge the 145 
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buyer benefits. If it is above then the operator benefits. Similarly, the buyer agrees to purchase 146 

surplus power from the operator for a negotiated fixed price. If this price is above the market 147 

price the operator benefits. If it is lower, then the buyer benefits. This contract arrangement has 148 

the advantage of providing both operator and buyer with a predictable pricing structure so that 149 

the only major source of operational uncertainty is inflow variability. We quantify this 150 

uncertainty with revenue probability distributions that apply for several different operating 151 

strategies.  152 

In a discrete time problem formulation, the firm power value can be interpreted as an 153 

equivalent firm energy generated over a constant time step. Our coupled contract-operational 154 

design optimization focuses on two types of decision variables: 1) the firm energy value 155 

negotiated with the consumer and 2) the reservoir releases at a set of regularly spaced decision 156 

times throughout the contract period. The releases may be determined from an operating rule that 157 

is derived as part of the optimization process. The optimum firm energy value and operating rule 158 

maximize the operator’s expected present value revenue in the presence of uncertain inflows, 159 

subject to relevant physical constraints.  160 

 This coupled stochastic optimization problem can be solved with an iterative algorithm 161 

that starts with an initial value for the firm energy value and an initial operating rule based on 162 

this value. The algorithm evaluates the resulting revenue, adjusts the contract energy to increase 163 

revenue, derives a new operating rule, and again evaluates the revenue, continuing until the 164 

process converges (Figure 1). 165 

 166 

It is helpful to describe the contract in a mathematical form suitable for the optimization. 167 

Suppose for a given firm contract energy 𝐸𝑐  that the reservoir generates actual energy 𝐸𝑘 over 168 

the unit time interval [𝑡𝑘 , 𝑡𝑘+1]. The revenue obtained over this interval is determined by the 169 

piecewise linear concave revenue function illustrated in Figure 2: 170 

 

171 

𝑔(𝐸𝑘 , 𝐸𝑐) = 𝛼1(𝐸𝑘 − 𝐸𝑐) + 𝛼𝑐𝐸𝑐     if   𝐸𝑘 ≤ 𝐸𝑐 172 

(1) 173 

𝑔(𝐸𝑘 , 𝐸𝑐) = 𝛼2(𝐸𝑘 − 𝐸𝑐) + 𝛼𝑐𝐸𝑐     if   𝐸𝑘 > 𝐸𝑐 174 

     175 

Where 𝐸𝑐  is the firm contract energy to be generated in each time interval during the contract 176 

period and 𝛼1 > 𝛼𝑐 > 𝛼2 are coefficients that define the price per unit energy in ($ MWhr-1) that 177 

applies for different situations. The term 𝛼𝑐𝐸𝑐  is the revenue obtained if the contract is exactly 178 

satisfied i.e. 𝐸𝑘 = 𝐸𝑐 .  If 𝐸𝑘is greater than 𝐸𝑐 , there is a surplus and the operator sells the 179 

additional energy 𝐸𝑘 − 𝐸𝑐  at a lower rate 𝛼2 < 𝛼𝑐.  If 𝐸𝑘 is less than 𝐸𝑐 , there is a shortfall and 180 

the operator must purchase makeup energy 𝐸𝐶 − 𝐸𝑘 at a higher rate 𝛼1 > 𝛼𝑐.  As mentioned 181 

earlier, we assume that the prices 𝛼𝑐, 𝛼1and 𝛼2are fixed, but that 𝐸𝐶  is a decision variable. In 182 

contracts based on spot rather than fixed surplus and makeup power prices, variability in 183 

𝛼1, 𝛼𝑐, and 𝛼2 could be an important contributor to revenue uncertainty.  This extension can be 184 

incorporated in the ensemble approach outlined here once the alternative contractural 185 

arrangement is precisely defined. 186 

 187 

We suppose that the contract period extends from times  𝑡1to 𝑡𝐾 
and is divided into K-1 188 

intervals of fixed duration 𝛥𝑡. The firm energy 𝐸𝑐  needs to be known at the beginning of the 189 

contract period when the contract is negotiated. By contrast, the reservoir release 𝑢𝑘 is most 190 



Confidential manuscript submitted to Water Resources Research  

 

appropriately determined in real-time over each discrete time interval in the contract period, as 191 

illustrated in Figure 3. Real-time operation is important since it takes into account unanticipated 192 

variations in inflow and storage. To examine the real-time aspect in more detail we need to 193 

characterize the dynamic behavior of the reservoir system, which is described by the system 194 

states, releases, and energy output. These variables can be related by a set of stochastic 195 

constraints. For the single reservoir hydropower problem considered here the state vector 𝑥𝑘 is 196 

partitioned into a scalar reservoir storage 𝑆𝑘, observed at time 𝑡𝑘, and a vector of states 𝜓𝑘 that 197 

collectively describe an inflow time series model that could be estimated from observed inflow 198 

data using system identification techniques (Ljung, 2001). The associated state equations are 199 

 200 

 
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘 , 𝜔𝑘) ;  𝑥0  specified                                                                       (2)

 

201 

𝑥𝑘 = [
𝑆𝑘

𝜓𝑘
]            202 

𝑆𝑘+1 = 𝑓𝑆(𝑆𝑘 , 𝜓𝑘 , 𝑢𝑘 , 𝜔𝑘)                                                                                          (3) 203 

𝜓𝑘+1 = 𝑓𝜓( 𝜓𝑘, 𝜔𝑘)         (4) 204 

𝐼𝑘 = 𝑀(𝜓𝑘)           (5) 205 

 206 

Here 𝐼𝑘 is the total reservoir inflow over the time interval [𝑡𝑘 , 𝑡𝑘+1] , observed at 𝑡𝑘. This inflow 207 

is related to the time series model state 𝜓𝑘  through a specified function 𝑀(. ). The scalar 𝑢𝑘 (the 208 

control variable) is the total reservoir release over [𝑡𝑘 , 𝑡𝑘+1] (specified by the operator at 𝑡𝑘) and  209 

𝜔𝑘  is a sequence of independent random disturbances that drives the time series model. The time 210 

series model is used to predict inflows for the predictive operating rules considered in our 211 

example. Specific options for this model and its associated functions and variables are discussed 212 

in Section 4.  213 

 214 

The storage state equation is a mass balance expression that neglects evaporation and 215 

seepage but includes spills: 216 

 217 

𝑆𝑘+1 = 𝑓𝑆(𝑆𝑘 , 𝜓𝑘 , 𝑢𝑘 , 𝜔𝑘) = 𝑆𝑘 + 𝛥𝑡[𝐼𝑘+1(𝜓𝑘, 𝜔𝑘) − 𝑢𝑘] − 𝑍𝑘   ; 𝑆0 specified (6) 218 

 219 

where the expressions in (4) and (5) can be used to write 𝐼𝑘+1 in terms of the state vector 𝜓𝑘 and 220 

disturbance 𝜔𝑘. This state equation is used by the predictive operating rules to forecast storage 221 

from a particular predicted inflow sequence. The reservoir spill 𝑍𝑘 over [𝑡𝑘 , 𝑡𝑘+1] is given by an 222 

additional constraint: 223 

 224 

𝑍𝑘 = max{𝑆𝑘 + 𝛥𝑡[𝐼𝑘+1 − 𝑢𝑘] − 𝑆𝑚𝑎𝑥 , 0}       (7) 225 

 226 

Where 𝑆𝑚𝑎𝑥 (L3) is the reservoir capacity.  The energy 𝐸𝑘 generated by releases over 227 

[𝑡𝑘 , 𝑡𝑘+1]  is: 228 

 229 

𝐸𝑘 = 𝜙(𝑢𝑘 , ℎ𝑘 , ℎ𝑘+1) = 𝑢𝑘 ∫ 𝐻(𝑓𝑆)𝑑𝑡
𝑘+1

𝑡=𝑘
   𝐸𝑚𝑎𝑥 = 𝜙(𝐼,̅ ℎ𝑚𝑎𝑥, ℎ𝑚𝑎𝑥) (8) 230 

 231 

 The reservoir head ℎ𝑘 at time 𝑡𝑘 is related to the storage by a specified function 𝐻(. ) that 232 

depends on the reservoir geometry: 233 

 234 

ℎ𝑘 = 𝐻(𝑆𝑘)   ℎ𝑚𝑎𝑥 = 𝐻(𝑆𝑚𝑎𝑥)      (9) 235 
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 236 

The controlled release is constrained to be no greater than the turbine capacity 𝑢𝑚𝑎𝑥 237 

 238 

 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥           (10) 239 

 240 

For purposes of this study, the reservoir capacity, the head-storage function, and the turbine 241 

capacity are all assumed to be given. Note that fluxes are defined over K time intervals indexed 242 

by 𝑘 = 0: 𝐾 − 1 and states are defined at K+1 discrete times indexed by 𝑘 = 0: 𝐾 − 1. The time 243 

series notation can be made more concise if the entire sequence of releases defined through any 244 

time ℎ𝑘 is represented by the vector 𝑢0,1,…,𝑘−1 = 𝑢0:𝑘−1. Similar notation is used for sequences 245 

of other variables. 246 

The desired solution to the real-time operations problem maximizes the following expected 247 

present value objective, which measures performance over the contract period [𝑡0, 𝑡𝐾] for a given 248 

sequence of releases𝑢0:𝐾−1, a given initial state 𝑥0 , and a given firm energy value 𝐸𝑐 : 249 

 250 

𝐽(𝑢0:𝐾−1, 𝑥0, 𝐸𝑐) = ℰ𝜔0:𝐾−1
[∑(1 + 𝑟)−𝑘[𝑔[𝐸𝑘(𝑢𝑘 , 𝑥𝑘 , 𝑥𝑘+1), 𝐸𝑐] − 𝛼𝑍𝑍𝑘(𝑢𝑘, 𝑥𝑘)]

𝐾−1

𝑘=0

+ 𝑔𝐾(𝑥𝐾)] 251 

(11) 252 

Dependence on the vector of random inflow disturbances 𝜔0:𝐾−1is removed by the expectation 253 

operation ℰ𝜔0:𝐾−1
. The first term in the objective function expression is the present values of the 254 

hydropower revenue. The second term 𝛼𝑍𝑍𝑘 penalizes reservoir spills that can cause downstream 255 

flooding. The final term 𝑔𝐾(𝑥𝐾) (the salvage value) assigns a prescribed benefit to reservoir 256 

storage at the final time. This prevents the control strategy from emptying the reservoir at the end 257 

of the contract period. Specification of the spill and salvage value terms is discussed in more 258 

detail in Section 4. 259 

 The objective given in (11) could be maximized simultaneously with respect to the 260 

variables 𝑢0:𝐾−1 and 𝐸𝑐 , using the methods of mathematical programming, imposing the 261 

constraints identified above. Since the contract must be determined before operations begin, at 262 

𝑡0, a simultaneous optimization of 𝑢0:𝐾−1 and 𝐸𝑐  would require the entire release history to also 263 

be derived at 𝑡0, before there are any observations of the actual states (open-loop control). Better 264 

revenue can generally be obtained if the contract is determined at the initial time but the releases 265 

are determined in real-time, as observations of the states become available (closed-loop control). 266 

This is possible if the release at each time is derived directly from the observed state, as specified 267 

by a closed loop operating rule (or decision function) of the following form: 268 

𝑢𝑘 = 𝜇𝑘(𝑥𝑘)     𝑘 = 0: 𝐾 − 1         (12)  269 

 270 

If (12) is substituted into (11) the objective 𝐽 can be written as a functional 𝐽𝜇0:𝐾−1
(𝑥0, 𝐸𝑐) that 271 

maps the K decision functions 𝜇0:𝐾−1  to the scalar revenue. 272 

 273 
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 274 

𝐽𝜇0:𝐾−1
(𝑥0, 𝐸𝑐) = ℰ𝜔0:𝐾−1

{∑(1 + 𝑟)−𝑘[𝑔[𝐸𝑘(𝑥0, 𝜇0:𝑘 , 𝜔0:𝑘), 𝐸𝑐] − 𝛼𝑍𝑍𝑘(𝑥0, 𝜇0:𝑘 , 𝜔0:𝑘)]

𝐾−1

𝑘=0

276 

+ 𝑔𝐾 ((𝑥0, 𝜇0:𝐾−1, 𝜔0:𝐾−1))} 277 

            (13) 275 

This is the real-time optimal control form of the optimization objective given in (11).  278 

 279 

Note that the revenue, spill, and salvage terms are all random by virtue of their 280 

dependence on the random disturbance vector 𝜔0:𝐾−1. In our ensemble implementation of the 281 

stochastic optimal control problem, many random samples (or replicates) of this vector are drawn 282 

from a population determined by the statistics of the inflow time series model. Each inflow 283 

replicate gives a corresponding sample for each of the three terms in the objective and for the 284 

objective as a whole. The objective replicates provide equally likely predictions of the system 285 

performance for a given firm energy and decision strategy. The expected objective value is 286 

estimated by the arithmetic average of these replicates.  287 

A real-time formulation of the operational part of the coupled optimization problem 288 

makes it possible to more precisely describe the iterative procedure outlined in Figure 1. If the 289 

current iterates (for iterations 𝑙 = 1, … , 𝐿 ) of the decision function and firm energy value are 290 

𝜇0:𝐾−1
𝑙 and 𝐸𝑐

𝑙  the new decision strategy 𝜇0:𝐾−1
𝑙+1 is obtained by maximizing with respect to all 291 

decision functions that satisfy constraints (2)-(10). 292 

 293 

𝜇0:𝐾−1
𝑙+1 = arg max

𝜇𝑜:𝐾−1

𝐽𝜇0:𝐾−1
(𝑥0, 𝐸𝑐

𝑙)  (14) 294 

 295 

This real-time optimal control sub-problem can be solved with the SDP, SMPC, and PI methods 296 

described in more detail in Section 3. Then the new firm energy value is obtained by maximizing 297 

𝐽𝜇0:𝐾−1
𝑙+1 (𝑥0, 𝐸𝑐) with respect to the scalar 𝐸𝑐: 298 

 299 

𝐸𝑐
𝑙+1 = arg max

𝐸𝑐

𝐽𝜇0:𝐾−1
𝑙+1 (𝑥0, 𝐸𝑐)        (15) 300 

 301 

This scalar optimization sub-problem can be readily solved with a one-dimensional search 302 

procedure (e.g. the Newton Raphson method). The iteration can be initialized with a plausible 303 

firm energy value, such as the energy that could be generated with a constant inflow somewhat 304 

less than the observed mean.  305 

We denote the converged decision function and firm power by 𝜇0:𝐾−1
∗   and 𝐸𝑐

∗ . We are unaware 306 

of a convergence proof for this algorithm but it has always converged in less than 20 iterations in 307 

the many sensitivity analyses we have performed for all of the predictive operating rules 308 

considered in Section 4. The iterates are well-constrained by the inflows and by the physical 309 

limitations of the reservoir system and all discontinuities (e.g. the reservoir spill expression) are 310 

approximated by locally smooth functions. Our experience has been that these factors lead to 311 

quick and reliable convergence.  312 

 313 
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 The random inflow disturbance replicates generated in the iteration outlined above are 314 

used to guide the search procedure. In a practical application, the resulting optimum decision 315 

function and firm energy are used to determine the actual release from the reservoir. The 316 

corresponding actual inflow disturbance sequence will generally be different from any of the 317 

replicates used in the iteration. It is useful to quantify how well the reservoir system might work 318 

in such a situation. Since we do not know the actual inflows in advance such a performance 319 

assessment should account for uncertainty by considering a range of possible actual inflow 320 

disturbances. The framework for this assessment can be formulated in terms of the actual 321 

objective 𝐽𝜇0:𝐾−1
∗

𝑎 ,which depends on the actual inflow disturbance vector 𝜔0:𝐾−1  
𝑎 and the actual 322 

initial state as follows: 323 

 
324 

𝐽𝜇0:𝐾−1
∗

𝑎 (𝜔0:𝐾−1 
𝑎 , 𝑥0

𝑎 , 𝐸𝑐
∗)326 

= ∑(1 − 𝑟)−𝑘[𝑔[𝐸𝑘(𝑥0
𝑎, 𝜇0:𝑘

∗ , 𝜔0:𝑘
𝑎 ), 𝐸𝑐

∗] − 𝛼𝑍𝑍𝑘(𝑥0
𝑎, 𝜇0:𝑘

∗ , 𝜔0:𝑘
𝑎 )]

𝐾−1

𝑘=0

327 

+ 𝑔𝐾 (𝑥0
𝑎, 𝜇0:𝐾−1 

∗ , 𝜔0:𝐾−1 
𝑎 ) 328 

             (16) 325 

Here 𝐸𝑐  and the decision functions 𝜇0:𝐾−1 
∗  from (14) have been identified from the optimization 329 

procedure and can be considered given.  At the initial time, before the inflows are observed, 330 

𝜔0:𝐾−1 
𝑎  can be viewed as a random sequence sampled from the same population as the w0:K-1 331 

sequence that appears in (13). If  𝑥0
𝑎 is also unknown at the initial time it can also be treated as a 332 

random variable with a specified distribution. We call a collection of 𝜔0:𝐾−1 
𝑎

 
and 𝑥0

𝑎
 samples a 333 

“meta-ensemble” to distinguish it from the ensemble 𝜔0:𝐾−1 used in the iterative search 334 

procedure.  335 

If (16) is evaluated for a meta- ensemble of 𝜔0:𝐾−1 
𝑎  and 𝑥0

𝑎 samples we can derive the 336 

probability distribution of the actual present value revenue before inflows are actually observed. 337 

This distribution can be used to compute various revenue statistics such as the mean, upper 338 

quantile, etc. The process is carried out for selected decision rules in Section 4.  339 

3 Options for deriving the real-time decision strategy 340 

 The options for deriving the operating rule 𝝁𝒌(𝒙𝒌)
 use different methods to relate the 341 

current release to the current state. This section reviews some of the most promising alternatives.  342 

3.1 Stochastic dynamic programming 343 

Stochastic dynamic programming (SDP) provides a comprehensive approach for deriving real-344 

time operating rules before real-time operations begin, without simplifying assumptions. In the 345 

discrete time version used here this method divides the real-time control problem of (12) and 346 

(13) into a sequence of K nested sub-problems that are solved with a recursion (Bellman, 1956). 347 

Each subproblem optimizes a time-dependent objective (the benefit-to-go) from a particular time 348 

to the end of the contract period. The objective for subproblem k, which is associated with time 349 

interval [𝑡𝑘−1, 𝑡𝑘] (commonly called Stage k) is: 350 

 351 

𝐽𝑆𝐷𝑃,𝑘(𝑥𝑘 , 𝐸𝑐) = max
𝜇𝑘(𝑥𝑘)

[ℰ𝜔𝑘
{𝑔[𝐸𝑘(𝑥𝑘 , 𝜇𝑘(𝑥𝑘), 𝜔𝑘), 𝐸𝑐] − 𝛼𝑍𝑍𝑘(𝑥𝑘 , 𝜇𝑘(𝑥𝑘), 𝜔𝑘)352 

+ (1 + 𝑟)−1𝐽𝑆𝐷𝑃,𝑘+1(𝑥𝑘+1, 𝐸𝑐)}] 353 
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            (17) 354 

 The problems are nested because sub-problem k depends on the solution of sub-problem k+1. 355 

The solution is computed with a backward recursion that moves stage by stage from the final to 356 

initial contract times. A decision function 𝜇𝑘(𝑥𝑘) is derived and stored for sub-problem k (for 357 

𝑘 = 𝐾 − 1, … ,0), for a given 𝐸𝑐 . The recursion is initialized at 𝑘 = 𝐾: 358 

 359 

𝐽𝑆𝐷𝑃,𝐾(𝑥𝐾, 𝐸𝑐) = 𝑔𝐾 (𝑥𝐾)            (18) 360 

 361 

Note that the objective 𝐽𝑆𝐷𝑃,0(𝑥0, 𝐸𝑐) obtained at the end of the recursion is equal to optimal 362 

revenue objective 𝐽𝑆𝐷𝑃,0
∗ (𝑥0, 𝐸𝑐)defined in (14). Also, the state equation can be used to express 363 

the term  𝐽𝑆𝐷𝑃,𝑘+1(𝑥𝑘+1 , 𝐸𝑐)appearing in (17) as a functional that depends on  364 

𝑥𝑘 , 𝜇𝑘(𝑥𝑘), 𝜔𝑘  and 𝐸𝑐 .When the recursion is complete, the decision functions for all intervals 365 

are available and can be used to compute releases from actual observations in a forward real-time 366 

sweep (for 𝑘 = 𝐾 − 1, … ,0). 367 

The maximization over 𝜇𝑘(𝑥𝑘) of the expected revenue in (17) gives the optimal release 368 

Stage k for any given value of the current state 𝑥𝑘. In practice, the state vector is usually 369 

discretized into a finite number of grid points and the optimum release value 𝑢𝑘
∗  is found at each 370 

of these points by maximizing the argument of (17), with Ec fixed. The releases at the grid points 371 

are interpolated to give a decision function 𝜇𝑘(𝑥𝑘) that applies at any feasible value of the state 372 

(Cervellera & Muselli, 2007; Johnson et al., 1993). The expectation operation appearing in (16) 373 

and (17) is approximated by the mean over an ensemble of synthetically generated 𝜔𝑘 samples, 374 

as discussed in Section 2. 375 

 376 

Some distinctive aspects of the dynamic programming approach include: 1) the decision 377 

rules for all times are derived prior to the start of operations but each reservoir release is derived 378 

in real-time, after the current state is observed; 2) the decision function in our formulation 379 

depends on the energy contract; 3) the computational effort grows rapidly as the problem size 380 

increases. If 𝑁𝑥𝑡
,𝑁𝑢𝑡

and 𝑁𝜔𝑡
are the number of discretized states, controls and inflow 381 

disturbances and the optimization horizon is K time steps, then the SDP algorithm requires 382 

𝐾𝑁𝑥𝑡
𝑁𝑢𝑡

𝑁𝜔𝑡
 functional evaluations of the objective function; 4) performance is dependent on the 383 

accuracy of the predictive inflow and storage models (the stochastic state equations) 5) the 384 

algorithm implicitly accounts for the information provided by future measurements by relying on 385 

conditional probabilities that determine the likelihood of a transition from a particular observed 386 

state at 𝑡𝑘 to another state at 𝑡𝑘+1.  The computational demands of SDP tend to limit its 387 

application to problems with relatively small state vectors. In the hydropower operations context 388 

this implies that the problem needs to include only a few reservoirs and/or low dimensional 389 

inflow models. 390 

3. 2 Stochastic model predictive control 391 

Stochastic model predictive control (SMPC) derives the optimal release 𝒖𝒌
∗  at each 392 

decision time by maximizing expected revenue over a limited duration window extending into 393 

the future. The complete series of reservoir releases is computed by carrying out a new 394 

optimization at every time step rather than using a pre-computed decision rule. The objective for 395 
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Problem 𝒌 originating at 𝒕𝒌 is the present value revenue from 𝒕𝒌 to 𝒕𝑲, based on (13) and written 396 

directly in terms of releases rather than in terms of a decision function: 397 

𝐽𝑆𝑀𝑃𝐶,𝑘(𝑢𝑘:𝑘+𝑤−1, 𝑥𝑘 , 𝐸𝑐)399 

= 𝛦𝜔𝑘:𝑘+𝑤−1
{ ∑ (1 + 𝑟)−𝑖[𝑔[𝐸𝑖(𝑥𝑘 , 𝑢𝑘:𝑖 , 𝜔𝑘:𝑖), 𝐸𝑐] − 𝛼𝑍𝑍𝑖(𝑥𝑖 , 𝑢𝑘:𝑖 , 𝜔𝑘:𝑖)]

𝑘+𝑤−1

𝑖=𝑘

400 

+ 𝑔𝑘+𝑤 (𝑥𝑘 , 𝑢𝑘:𝑘+𝑤−1, 𝜔𝑘:𝑘+𝑤−1)} 401 

             (19) 398 

The expectation operator is approximated by the mean over an ensemble of synthetically 402 

generated samples 𝜔𝑘:𝑘+𝑤−1. The optimization is carried out over a moving window of length 403 

𝑤 ≤ 𝐾 − 𝑘 time steps. This window spans the interval [𝑡𝑘 , 𝑡𝑘+𝑤]. 404 

 405 

An optimal release sequence over the current SMPC window is obtained by maximizing  406 

𝐽𝑆𝑀𝑃𝐶,𝑘(𝑥𝑘, 𝐸𝑐) with respect to the releases: 407 

  

 408 

𝑢𝑘:𝑘+𝑤−1
∗ = arg max

𝑢𝑘:𝑘+𝑤−1

𝐽𝑆𝑀𝑃𝐶,𝑘(𝑢𝑘:𝑘+𝑤−1, 𝑥𝑘 , 𝐸𝑐)     (20) 409 

 410 

 Although this optimization gives an entire sequence of optimal releases over the current time 411 

horizon, only the first release 𝑢𝑘is actually applied to the reservoir system (at 𝑡𝑘) since the 412 

remaining releases are recomputed at 𝑡𝑘+1 when a new value of the state 𝑥𝑘+1 is observed.  This 413 

process is repeated for every decision time, until the moving window reaches the end of the 414 

contract period. The vector of current states 𝑥0:𝐾−1 and the associated vector of SMPC releases 415 

𝑢0:𝐾−1 implicitly define a set of time-dependent decision functions 𝜇0:𝐾−1  through the 416 

relationship 𝑢𝑘 = 𝜇𝑘(𝑥𝑘) for 𝑘 = 0: 𝐾 − 1. For convenience, we refer to the SMPC decision as a 417 

function in the discussion below, even though SMPC does not explicitly derive such a function.  418 

 419 

The distinctive aspects of model predictive control include: 1) releases are evaluated only for 420 

observed state values, not all possible values; 2) the decision function in our formulation depends 421 

on the contract energy 3) the decision function is defined implicitly and is available during 422 

operations only at the current time (not earlier), 4) future revenue is evaluated approximately, 423 

over a limited duration time horizon, 5) performance is dependent on the accuracy of the 424 

predictive inflow and storage models (the stochastic state equations) 6) SMPC is approximate, 425 

even in the limit as the time horizon becomes infinitely long, because it does not account for the 426 

impact of the future measurements, 7) computational effort is generally less than SDP, especially 427 

for large problems. 428 

3.3 Standard operating policies 429 

Both SDP and SMPC make an effort to predict the effect of future uncertain performance by 430 

averaging present value revenue over an ensemble of possible inflow disturbances. By contrast, 431 

deterministic (non-predictive) operating rules, such as the Standard Operating Policy (SOP) 432 

(Wurbs, 1993; Yeh, 1985) do not consider the possible impact of future inflows. These rules 433 

typically are heuristic and time-invariant (Figure 4). They do not optimize a particular objective 434 



Confidential manuscript submitted to Water Resources Research  

 

and they are specified rather than derived functions of the system state. Non-predictive standard 435 

operating policies are easy to implement and convenient for multi-purpose reservoir operations 436 

but cannot generally be expected to perform as well in a single-purpose hydropower application 437 

as alternatives that utilize information about inflow variability and reservoir dynamics. They are 438 

considered here because they are widely used in practice and they provide benchmarks for 439 

assessing the potential performance improvement offered by predictive operating rules such as 440 

SDP and SMPC.  Figure 4 shows two SOP variants. The simplest option, indicated by the black 441 

curve, releases all available water up to a nominal value equal to the mean inflow 𝑢𝑛𝑜𝑚 = 𝐼 ̅442 

when the storage 𝑆𝑛𝑜𝑚 − 0.1𝛥𝑆𝑚𝑎𝑥 .This nominal release is maintained until a nominal storage 443 

level 𝑆𝑛𝑜𝑚 + 0.1𝛥𝑆𝑚𝑎𝑥 is reached. At that point additional water is released up to the maximum 444 

turbine capacity 𝑢𝑚𝑎𝑥 . Beyond that, excess water must be spilled. The modified red curve 445 

hedges the release rule by smoothing abrupt transitions between low, nominal, and high storage 446 

conditions. 447 

3. 4 Perfect information 448 

 Reservoir releases and revenues derived by assuming perfect knowledge of future inflows 449 

provide useful upper bounds on the performance that can be obtained for a particular actual 450 

inflow. In this case releases can be expressed in terms of a decision function but they need not be 451 

derived in real time. Instead, they can be computed by maximizing (11) with the assumption that 452 

the inflow disturbances  𝝎𝟎:𝒊−𝟏 = 𝝎𝟎:𝒊−𝟏
𝒂 are not random but are known perfectly: 453 

𝐽𝑃𝐼(𝑢0:𝐾−1, 𝜔0:𝑖−1
𝑎 , 𝑥0

𝑎, 𝐸𝑐)455 

= ∑(1 + 𝑟)−𝑖

𝐾−1

𝑖=0

[𝑔[𝐸𝑖(𝑥0
𝑎, 𝑢0:𝑖 , 𝜔0:𝑖

𝑎 ), 𝐸𝑐] − 𝛼𝑍𝑍𝑖(𝑥0
𝑎, 𝑢0:𝑖 , 𝜔0:𝑖

𝑎 )]456 

+ 𝑔𝐾(𝑥0
𝑎 , 𝑢0:𝐾−1, 𝜔0:𝐾−1

𝑎 ) 457 

            (21) 454 

𝑢0:𝐾−1
∗ = argmax

𝑢0:𝐾−1

𝐽𝑃𝐼(𝑢0:𝐾−1, 𝜔0:𝑖−1
𝑎 , 𝑥0

𝑎, 𝐸𝑐)       (22) 458 

 459 

This problem can be solved with a standard non-linear programming algorithm since perfect 460 

information allows all releases to be computed at once, in batch rather than real-time mode. No 461 

reservoir operations method with imperfect information can do better than the perfect 462 

information case when presented with the same actual inflow. 463 

4. Results and discussion 464 

4.1 Setup of the example problem 465 

The problem formulation and solution methods described above are tested here on a typical 466 

example using an ensemble of synthetically generated inflows. This Monte Carlo approach 467 

enables us to derive revenue probability distributions that quantify the risk associated with 468 

different contract selection/ real-time operations strategies. We suppose that the reservoir is 469 

designed primarily to generate hydropower, with operational objectives similar to those used in 470 

facilities such as Hoover Dam, USA; Tehri Dam, India; or and Itaipu Dam, Paraguay (Barros, et 471 

al., 2003; Fink, 2000) . Figure 5 shows the generic reservoir geometry and head-storage relation 472 
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used in our example. The reservoir geometric information is provided in a tabular form that can 473 

be readily generalized to accommodate more complex head-storage functions. 474 

The methods of this paper can be applied to any reservoir geometry as long as the storage vs. 475 

surface area and the head functions are provided. The standard operating policy used in the 476 

example is based on Figure 4 and uses a cubic function (red curve) to smooth transitions between 477 

the straight lines (black curve). The black lines are defined by the storage and release break 478 

points indicated in the figure. Note that these points depend on the value of the energy target 𝐸𝑐 . 479 

 480 

For the example we consider a single state random inflow model that gives sufficient 481 

variability to examine firm power shortages and surpluses as well as occasional spills.  The 482 

normalized log of the inflow is a positive AR1 time series generated from a specified mean 483 

inflow, variance, and single lag correlation. The corresponding state equations are special cases 484 

of (3) and (4): 485 

 486 

𝑆𝑘+1 = 𝑓𝑆(𝑆𝑘 , 𝜓𝑘 , 𝑢𝑘 , 𝜔𝑘)

= 𝑆𝑘 + 𝛥𝑡[𝐼𝑘+1 − 𝑢𝑘] − 𝑍𝑘

= 𝑆𝑘 + 𝛥𝑡[𝐼̅ exp(𝜌𝜓𝜓𝑘 + 𝜔𝑘) − 𝑢𝑘] − 𝑍𝑘;     𝑆0  specified

𝜓𝑘+1 = 𝑓𝜓(𝜓𝑘 , 𝜔𝑘) = 𝜌𝜓𝜓𝑘 + 𝜔𝑘            𝜓0~𝒩(𝜓̅, 𝜎𝜓
2)   𝜔𝑘~𝒩(𝜔̅, 𝜎𝜔

2 )

    (23)     487 

 488 

where 𝜌𝜓 is the single lag correlation of 𝜓𝑘and the log normal inflow 𝐼𝑘 is related to the unitless 489 

state 𝜓𝑘 by:  490 

 491 

𝐼𝑘 = 𝑀(𝜓𝑘) = 𝐼̅ exp(𝜓𝑘)          (24) 492 

 493 

The time-invariant mean and variance of 𝜓𝑘 are computed from the specified mean and variance 494 

of 𝐼𝑘 : 495 

 496 

𝜓̅ = −
𝜎𝜓

2

2
;       𝜎𝜓

2 = ln (
𝜎𝐼

2

𝐼2̅ + 1)    𝐼,̅ 𝜎𝐼
2 = specified inflow mean and variance  (25) 497 

 498 

The time-invariant mean and variance of 𝜔𝑘 are obtained from: 499 

 500 

𝜔̅ = (1 − 𝜌) 𝜓̅   𝜎𝜔
2 = (1 − 𝜌2)𝜎𝜓

2        (26) 501 

 502 

The AR1 model has the advantage, for testing purposes, of being having smaller correlation 503 

times than higher-order autoregressive models. The AR(1) model yields more variable inflows 504 

that are more difficult to predict than higher-model models. . Seasonality could be readily added 505 

if appropriate. In practice, the time series model should be estimated from historical inflow data 506 

and should be kept sufficiently low-dimensional to make an ensemble analysis of the predictive 507 

decision strategies computationally feasible. 508 

 509 

A sensitivity analysis of the results can be conveniently formulated in terms of a limited 510 

of non-dimensional variables and inputs that are formed from groups of dimensional variables 511 

introduced above, using the definitions given in Tables 1 and 2. These non-dimensional 512 

quantities are identified by primed subscripts. Note that there is no spill penalty (𝛼𝑍 = 0) in the 513 
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nominal case. Also, the maximum possible sustainable energy 𝐸𝑚𝑎𝑥 =514 

𝛷( 𝐼,̅ ℎ𝑚𝑎𝑥, ℎ𝑚𝑎𝑥) appearing in Table 1 is achieved when the reservoir head is fixed at its 515 

maximum value ℎ𝑚𝑎𝑥 = 𝐻(𝑆𝑚𝑎𝑥) and the reservoir inflow and turbine release are both fixed 516 

at  𝐼 .̅ The actual energy generated over a given time step could exceed this value if the release 517 

exceeds the mean inflow. For the example the dimensional problem objective function given in 518 

(12) and the dimensional constraints given in (2) through (9) are converted to non-dimensional 519 

forms by applying the definitions in Tables 1 and 2, as described in Appendix A. All plots and 520 

sensitivity analysis results are expressed in terms of non-dimensional variables. 521 

Table 1: Non-dimensional variables  522 

Non-dimensional variable Definition Range or distribution 

Storage 𝑆
𝑘

′
=

𝑆𝑘

𝑆𝑚𝑎𝑥
 

0.0 – 1.0 

Head ℎ𝑘
′ =

ℎ𝑘

ℎ𝑚𝑎𝑥
 

 

0.0 – 1.0 

Inflow 𝐼′𝑘 =
𝐼𝑘

𝐼 ̅  

Log normal 

 

Log inflow 𝜓𝑘
′ = log(𝐼𝑘

′ ) 
Normal AR1 timeseries 

Release 𝑢𝑘
′ =

𝑢𝑘

𝐼 ̅  
Non-negative 

Spill 𝑍𝑘
′ =

𝑍𝑘

𝑆𝑚𝑎𝑥
 

Non-negative 

Current revenue 𝑔𝑘
′ =

𝑔𝑘

𝛼𝑐𝐸𝑚𝑎𝑥
 

Non-negative 

Energy  𝐸𝑘
′ =

𝐸𝑘

𝐸𝑚𝑎𝑥

  

𝐸𝑐
′ =

𝐸𝑐

𝐸𝑚𝑎𝑥
 

Non-negative 

Objective (discounted 

revenue ratio)  
𝑅 =

𝐽𝜇0:𝐾−1

′

𝛼𝑐𝐸𝑚𝑎𝑥
 

Non-negative 

Table 2: Non-dimensional inputs 523 

Non-dimensional input Definition Value in example 

Reservoir residence time 𝜏𝑟𝑒𝑠 =
𝑆𝑚𝑎𝑥

𝐼Δ̅𝑡
 Nominal: 𝜏𝑟𝑒𝑠

𝑙𝑜𝑤=12 ; 𝜏𝑟𝑒𝑠
ℎ𝑖𝑔ℎ

= 48   

Maximum reservoir release 𝑢𝑚𝑎𝑥
′ =

𝑢𝑚𝑎𝑥

𝐼 ̅
 

1.5 

Contract Period 𝐾′ =
𝐾

Δ𝑡
 

100 



Confidential manuscript submitted to Water Resources Research  

 

MPC window length, 𝑤′ =
𝑤

Δ𝑡
 12  

Spill penalty coefficient 𝛼𝑍
′ =

𝛼𝑍𝑆𝑚𝑎𝑥

𝛼𝑐𝐸𝑚𝑎𝑥  
Nominal: 𝛼𝑍

𝑙𝑜𝑤 = 0      ; 𝛼𝑍
ℎ𝑖𝑔ℎ

= 20 

Revenue coefficients 𝛼1
′ =

𝛼1

𝛼𝑐
;   𝛼2

′ =
𝛼2

𝛼𝑐
;
 

𝛼1
′ = 2;   𝛼2

′ = 0.15 

Log inflow AR1 statistical 

parameters 
𝜌𝜓 , 𝜎𝜓

2

 

𝜌𝜓 = 0.8,   𝜎𝜓
2 = 0.18 

Number of replicates 𝑁 
50 

Number of meta-replicates  𝑁𝑎
 

	200 

Discount factor r 
4% 

The following subsections examine the results obtained by simulating the reservoir operation 524 

with four different coupled contract selection / real-time operations strategies based on 525 

Stochastic Dynamic Programming (SDP), Stochastic model Predictive Control (SMPC), a 526 

Standard Operating Policy (SOP) and a Perfect Information Scenario (PIS). They also consider 527 

the effect of varying influential dimensionless inputs such as the non-dimensional residence 528 

time, spill coefficient, and log inflow statistics. 529 

  530 
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4.2 Hydropower revenue comparison 531 

 The overall performance of the four decision strategies described in Section 3 can be 532 

assessed in terms of a number of performance measures, such as the net present value of the 533 

hydropower revenue generated over the contract period, revenue volatility over time, spill 534 

magnitude and frequency, etc. In our ensemble analysis many of these performance measures are 535 

random variables by virtue of their dependence on random inflows. To illustrate the capabilities 536 

of an ensemble approach we compare probability distributions for the net present value of the 537 

four decision strategies introduced earlier. Similar comparisons can be made of other 538 

performance measures. It is convenient to compare revenue performance in terms of the 539 

dimensionless revenue ratio 𝑹 defined in Table 1. We first consider performance for the nominal 540 

input values given in Table 2 and then for a few alternatives that use different values for some of 541 

these inputs. 542 

 The perfect information strategy is unique among those considered here since it relies on 543 

advance knowledge of the entire sequence of reservoir inflows. With perfect inflow information, 544 

it is possible to derive a different optimum 𝑬𝒄 for each meta-replicate in the Monte Carlo 545 

simulation. By contrast, each of the other strategies work with a single 𝑬𝒄 value that maximizes 546 

expected revenue over the entire inflow ensemble for that particular strategy.  547 

Figure 6 compares the kernel density estimates of probability distribution of the revenue 548 

ratio for all four decision strategies for nominal inputs. The variation in revenue observed for the 549 

perfect information (PIS) case depends only on the intrinsic variability of the actual inflow, not 550 

on the algorithm’s ability to predict this inflow (since it has access to perfect inflow 551 

information). If the inflow for a particular actual inflow meta-replicate is low for a prolonged 552 

period, revenue will be low, even though the inflow is known perfectly. The other three decision 553 

rules are affected both by the intrinsic variability of the actual inflow and by uncertainty in the 554 

inflow predictions used to make release decisions.  That is why their distributions are shifted to 555 

the left, toward lower revenue. The SDP and SMPC strategies tend to be more sharply peaked 556 

near their modes but have relatively long tails at lower revenue values, reflecting the 557 

consequences of occasional poor predictions. The most visible property of the PIS is its greater 558 

probability of yielding high revenue (𝑅 >0.75). 559 

 Stochastic dynamic programming (SDP) is second among the alternatives in terms of 560 

mean revenue since it makes best use of the ensemble inflow predictions when optimizing the 561 

current release. The backward recursion stores release strategies that maximize the expected 562 

revenue for the remaining contract time from any value of the state. These strategies can be 563 

recovered as the actual state values become known. By contrast, stochastic model predictive 564 

control (SMPC) derives a current release that maximizes expected revenue only from the current 565 

state. The replicates used in this calculation may not reflect the actual evolution of the system at 566 

later times. Also, the SMPC maximization is limited to a window that can be significantly 567 

shorter than the remaining contract time. For these reasons, SMPC is somewhat less likely to 568 

give high revenues and more likely to give low revenues than SDP [Lee, 2011]. The non-569 

predictive standard operating policy performs the worst among the four alternatives, generating 570 

the smallest mean revenue with the highest probability of low revenues. This reflects the 571 

method’s inability to adjust releases when near-future inflows and storages are likely to be lower 572 

or higher than average, given current inflow and storage. By contrast, predictive methods such as 573 

SDP and SMPC adjust releases in anticipation of possible future conditions. Table 3 lists the 574 
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average revenue ratio computed over all the inflow meta-replicates as well as the probability (in 575 

%) of achieving a low revenue ratio below 0.5 or high ratio above 0.75. These percentages 576 

complement information on the mean revenue by considering the probability of low or high 577 

revenue values when comparing decision strategies. 578 

4.3 Sample time series  579 

 The Monte Carlo simulation conducted in our example provides individual replicates of 580 

relevant dynamic variables such as the inflow, storage, release, and energy output as well as the 581 

revenue probability distributions discussed above. Figure 7 compares these variables for four 582 

different decision strategies, all using the nominal inputs from Table 2.  Each of these four cases 583 

maximizes one of the decision strategy objectives specified in Section 3 by selecting the best 584 

possible combination of contract firm energy and release history for a given actual inflow meta-585 

replicate. The normalized values of 𝐸𝑐  for this example (expressed as a fraction of 𝐸𝑚𝑎𝑥) are 586 

0.61 for perfect information (PIS), 0.57 for stochastic dynamic programming (SDP), 0.51 for 587 

stochastic model predictive control (SMPC), and 0.48 for the standard operating policy (SOP). 588 

Comparing to Figure 6, the predictive strategies that generate higher firm power are also more 589 

likely to produce higher revenue. 590 

The top panel of Figure 7 shows the non-dimensional reservoir inflow series together 591 

with four turbine release series computed in real time from the current storage and inflow values, 592 

one for each of the four operating rules. The middle panel shows the non-dimensional reservoir 593 

storage generated from these releases, with the maximum normalized storage given by 1.0. The 594 

challenge for the operating rule is to keep water levels high in order to maximize energy output 595 

while avoiding spills that may have adverse downstream consequences and that also reduce the 596 

quantity of water available for generating power.  597 

In the nominal case shown in Figure 7 the SDP decision strategy generally maintains 598 

higher storage than the other techniques, often approaching the reservoir capacity. This reflects 599 

SDP’s somewhat better predictive capabilities and also the fact that spills are not explicitly 600 

penalized in the nominal case. SMPC behaves similarly but gives somewhat more erratic releases 601 

and energy production. Higher variability in energy together with a somewhat lower firm power 602 

value yield somewhat lower revenue for SMPC.  The PIS is able to maintain much more stable 603 

release and energy production levels than any of the other methods. This reflects its ability to 604 

adjust releases in anticipation of future high or low inflow events, which are known perfectly. 605 

The advantage of perfect information also allows PIS to maintain a storage level that is generally 606 

lower than the other alternatives, even though the PIS average energy production and revenue are 607 

higher.  The PIS result suggests the level of performance that SDP and SMPC could approach if 608 

they had access to very accurate inflow estimates. 609 

4.4 Sensitivity analysis 610 

 All of the non-dimensional parameters listed in Table 2 effect the performance of the four 611 

different operational strategies considered here It is useful to examine in detail two key 612 
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dimensionless inputs, the normalized spill penalty coefficient 𝜶𝒛
′  and the residence time 𝝉𝒓𝒆𝒔, and 613 

to briefly consider some of the others. 614 

4.4.2 Sensitivity to spill penalty 615 

 A higher spill penalty tends to make the operational strategy more conservative, lowering 616 

the water level below the maximum to reduce the magnitude and frequency of spills. Table 3 617 

includes a comparison of expected revenue and the probability of low and high revenues for a 618 

moderately high non-dimensional spill penalty value vs. the nominal case that does not penalize 619 

spills. Figure 8 shows revenue ratio probability distributions for the same two spill penalty 620 

options. Increasing the spill penalty consistently shifts the revenue probability density towards 621 

lower values (Figure 8). As the penalty coefficient increases spill occurrences decrease from 622 

15% to 2.7% for dynamic programming, from 7% to 2.1% for model predictive control, and 623 

from 6% to 2.8% for the standard operating policy. Dynamic programming has the highest spill 624 

occurrence for the unpenalized case because its more complete description of uncertain future 625 

conditions benefits more from pushing the reservoir system to capacity in order to achieve 626 

maximum performance. Its more complete treatment of uncertainty also enables dynamic 627 

programming to significantly reduce spill occurrence when spills are penalized. By contrast, SOP 628 

gives a lower unpenalized spill occurrence but does not achieve as great a reduction when spills 629 

are penalized. Model predictive control falls somewhere in between. 630 

 The perfect information option shows a similar sensitivity to the spill penalty but gives a 631 

lower unpenalized spill occurrence than any of the alternatives. Perfect information makes the 632 

most difference during high inflow events that can cause spills since it enables the operating rule 633 

to draw down the reservoir before high flows occur. By reducing the amount of water lost to 634 

spills the perfect information option is able to generate more hydropower and greater revenue. It 635 

is possible to decrease spill occurrence somewhat further than indicated in Figure 8, by further 636 

increasing the spill penalty. But this effect is ultimately limited by the inflow statistics. Overall, 637 

perfect information and dynamic programming sacrifice revenue less than the other alternatives 638 

when spills are penalized. 639 

 640 

Table 3:  Comparison of the average revenue ratio R and probability of low R (< 0.5) and a high R 641 

(>0.75) between the four operational strategies  642 

Technique 

Low Spill Penalty,  𝛼𝑍
𝑙𝑜𝑤 = 0 

(Nominal) 

High Spill penalty, 

 𝛼𝑍
ℎ𝑖𝑔ℎ

= 20 

 ℰ(𝑅) P(R<.5) P(R>.75)
 

ℰ(𝑅) P(R<.5) P(R>.75) 

Perfect information 0.69 3% 25% 0.62 18% 17% 

Dynamic programming 0.64 5% 8% 0.62 10% 4% 

Model predictive control 0.62 11% 6% 0.58 26% 2% 
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 643 

4.4.2 Sensitivity to residence time 644 

 The residence time (𝝉𝒓𝒆𝒔) provides a concise description of the combined effect of the 645 

reservoir capacity and the mean inflow. Increasing the residence time (low inflows/ large 646 

reservoirs) reduces sensitivity to inflow variability, generating higher revenue for extended 647 

periods. Figure 9 shows this behavior by plotting the revenue ratio probability distributions for 648 

two different residence time options: low 𝝉𝒓𝒆𝒔
𝒍𝒐𝒘 (nominal) vs. high 𝝉𝒓𝒆𝒔

𝒉𝒊𝒈𝒉
. Increasing the residence 649 

time reduces the effects of inflow variability and shifts the revenue distributions towards higher 650 

values consistently across all four techniques. The revenue distribution also narrows, reducing 651 

the risk of lower revenues. Increasing the residence time increases the average revenue by 18% 652 

for dynamic programming, 20% for model predictive control, and 18% for the standard operating 653 

policy.  654 

  With a high residence time, high inflow events do not necessarily cause uncontrolled 655 

spills. They can be captured as storage, making it possible to temporarily allow releases greater 656 

than the mean inflow (𝑰̅). This can yield revenue ratios (R) greater than 1 (see, for example, the 657 

perfect information case in Figure 9). For the nominal spill penalty coefficient spill occurrences 658 

decrease significantly with increasing residence time: 4.4% to 0.15% for perfect information, 659 

15% to 3.8% for dynamic programming, 7% to 1.9% for model predictive control and 6% to 660 

0.3% for standard operating policy. Although a large residence time reservoir is clearly desirable 661 

the potential for increased capacity is practically limited by site constraints and higher costs. 662 

When designing a new reservoir such considerations need to be included in the optimization 663 

process.  664 

Table 4:  Comparison of the average revenue ratio R and probability of low R (< 0.5) and a high R 665 

(>0.75) between the four operational strategies 666 

Standard operating 

policy 
0.59 20% 5% 0.51 40% 0% 

Technique 

Low residence time, 

 𝜏𝑟𝑒𝑠
𝑙𝑜𝑤 = 12 (Nominal) 

High residence time , 

 𝜏𝑟𝑒𝑠
ℎ𝑖𝑔ℎ

= 48 

 ℰ(𝑅) P(R<.5) P(R>.75)
 

 ℰ(𝑅) P(R<.5) P(R>.75) 

Perfect information 0.69 3% 25% 0.82 0% 75% 

Dynamic programming 0.64 5% 8% 0.78 1% 79% 

Model predictive control 0.62 11% 6% 0.77 3% 78% 

Standard operating 

policy 
0.59 20% 5% 0.70 6% 38% 
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 667 

4.4.4 Sensitivity to other factors 668 

The preceding sections show that the comparative performance between the three real-669 

time operational strategies (SDP, SMPC and SOP) is sensitive to spill penalty and residence 670 

time. Performance also depends on other parameters such as reservoir geometry, inflow 671 

statistics, discount rate, and revenue function coefficients. For example, predictive operating 672 

strategies such as SDP and SMPC provide a greater performance benefit if the reservoir inflow 673 

series has a high serial correlation 𝜌𝜓 and a low or moderate variance 𝜎𝜓
2. In such cases it is 674 

easier to predict near-term inflows. On the other hand, if the correlation is close to 1 and the 675 

variance is high the possibility of extended periods of anomalous inflows leads to reduced 676 

benefit even for predictive algorithms. The revenue function parameters can also influence 677 

performance through their impact on both the contract value and real-time operations. For 678 

example, increasing 𝛼1 increases the penalty of generating a shortfall, which leads to a more 679 

conservative contract that keeps reservoir storage near capacity and increases spill occurrence. 680 

The combined effect of many sensitivities determines the relative effectiveness of predictive vs. 681 

deterministic operating rules in any given situation. 682 

5 Conclusions and Discussion 683 

5.1 Summary of results 684 

This paper describes a novel stochastic optimization approach that simultaneously selects 685 

a firm power target and a real-time release strategy for a hydropower reservoir. The probability 686 

distribution of operator revenue depends significantly on both of these design elements. 687 

Predictive techniques such as stochastic dynamic programming (SDP) and stochastic model 688 

predictive control (SMPC) give significantly better revenue (mean improvement > 10%) than a 689 

non-predictive standard operating policy (SOP) for the nominal conditions considered here. For 690 

other conditions the improvement may be either greater or less.  Predictive techniques tend to 691 

work best in situations where reservoir inflow statistics favor the use of inflow and storage 692 

forecasts for optimizing revenue. Between the two predictive techniques, SDP generates higher 693 

revenue than SMPC but can be more computationally demanding, especially for multi-reservoir 694 

systems.  695 

 696 

Sensitivity analysis indicates that a high spill penalty has a negative impact on revenue 697 

since it leads to strategies that operate the reservoir at a lower storage level. Reservoirs with a 698 

higher residence time generate higher revenues and result in less spill since the sensitivity to 699 

inflow variability decreases.  700 

 701 

5.2 Generalization and extensions 702 

The analysis described here makes certain simplifications that could be modified and 703 

generalized if appropriate.  The emphasis is on single purpose hydropower reservoirs operated 704 

with the objective of maximizing revenue, subject to a penalty for excessive spills. Additional 705 

objectives could be incorporated; either through new terms in the objective function or through 706 

chance constraints that require specified measures of, for example, recreational, irrigation, or 707 

flood control benefits, to be exceeded with a certain probability. Tradeoffs among objectives 708 
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could be examined with multi-objective visualization tools such as those described in (Woodruff, 709 

et al. , 2013).  However, as more objectives are added and hydropower revenue is given lower 710 

priority the ability to optimize a firm power target and release strategy becomes more 711 

constrained. For this reason, the methods described here are most relevant for reservoirs that are 712 

primarily intended to generate hydropower. 713 

The long term bilateral fixed price power purchase agreement used in our analysis 714 

insulates both operator and buyer from energy price fluctuations and is most appropriate when 715 

the buyer’s demand is well defined and predictable. Such agreements are becoming more popular 716 

for bilateral corporate renewable energy transactions (Baker & A.McKenzie, 2015). However, it 717 

should be recognized that fixed price agreements may not be desirable or practical in all 718 

situations, especially where demand is uncertain and energy price fluctuations could have a 719 

significant effect on operator or buyer revenue. It would be reasonably straightforward to replace 720 

the fixed price agreement with alternatives with contract terms that vary with market prices. In 721 

such cases it is likely that the number of contract decision variables would increase beyond the 722 

single energy target value considered here. 723 

The ability of a particular release strategy to track a particular energy target depends 724 

significantly on the nature of reservoir inflow variability as well as the reservoir’s physical 725 

properties. The example considered in this paper uses a log inflow that is a normally distributed 726 

AR(1) autoregressive time series with a specified mean, variance, and correlation time. This 727 

choice gives reasonable variability and persistence and provides the basis for the ensemble 728 

predictions used in the SDP and SMPC release strategies. In any given application, the actual 729 

inflows may vary in other ways that should be determined, as much as possible, from historical 730 

data. If the inflow model were changed the relative performance of the different decision 731 

strategies could also change. Both of the predictive release strategies, SDP and SMPC, are able 732 

to accommodate inflow models other than the AR(1) by increasing the dimensionality of the 733 

inflow state vector 𝜓𝑘  in the problem formulation.  It is important to note that the sensitivity of 734 

the results to the inflow model is mitigated somewhat by the real-time nature of the release 735 

decision rules. One of the primary goals of real-time control is to provide a mechanism that can 736 

use observations to compensate for model approximations and simplifications. The inflow model 737 

need not be perfect for the control strategy to improve performance over alternative methods.   738 

 739 

The conceptual framework presented here provides a probabilistic perspective that quantifies 740 

both revenue and spill risk for a hydropower reservoir designed to meet a firm power target. This 741 

framework can be adapted to accommodate different reservoir shapes, inflow models, revenue 742 

functions, and contact structures. It can also be extended to multi-reservoir systems. The example 743 

considered here indicates that a stochastic approach that focuses on the probability distributions 744 

of inflow and revenue can provide useful insights and tangible benefits for both hydropower 745 

reservoir operations and contract negotiations.  746 
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 753 

Figure captions 754 

Figure 1: Iterative search for optimum energy contract. The energy contract Ec proposed at each 755 

iteration requires a new decision rule (turbine release vs. storage) to maximize revenue. 756 

Figure 2: Piecewise linear concave revenue function. The slope of the red-dotted and black lines 757 

shows how the unit revenue at the contract energy compares to the unit cost of makeup power at 758 

lower energy values and the unit revenue of surplus energy at higher energy values

  

759 

Figure 3: Example representation of discrete reservoir variables defined over two consecutive 760 

time intervals. The bottom panel shows the piecewise linear storage state (S) over each interval. 761 

The top panel shows the piecewise constant turbine release (u) and inflow (I) over each interval, 762 

with the inflow measurement (I) observed at the end of the interval.  763 

Figure 4: Schematic representation of two typical Standard Operating Policies, with the 764 

reservoir release expressed as a function of currently available storage. Deviations of the red 765 

(hedged) curve from the black (standard) curve indicate an effort to moderate abrupt transitions 766 

between low, nominal, and high storage conditions. 767 

Figure 5: Reservoir geometry for the example problem. Left panel shows reservoir configuration 768 

and right panel plots the storage vs. head curve for the example 769 

Figure 6: Probability density function of the revenue ratio for SDP, SMPC and PIS operational 770 

techniques 771 

Figure 7: Example reservoir operations with the four techniques (SDP, SMPC, SOP and PIS) 772 

plotted for a particular inflow meta-replicate. Top panel: Reservoir inflow time series and 773 

turbine release; Middle-panel: Reservoir storage; Bottom panel: Energy generated. All 774 

quantities are non-dimensional.  775 

Figure 8: Effect of spill penalty on the revenue density function. Mean revenue and spill 776 

frequency both decrease as the spill penalty is increased from nominal 𝛼𝑧
𝑙𝑜𝑤 = 0 to 𝛼𝑧

ℎ𝑖𝑔ℎ
= 20  777 

Figure 9: Effect of residence time on the revenue density function. Increase in residence time 778 

𝜏𝑟𝑒𝑠 (nominal 𝜏𝑟𝑒𝑠
𝑙𝑜𝑤= 12, 𝜏𝑟𝑒𝑠

ℎ𝑖𝑔ℎ
= 48) shifts the revenue distributions to higher revenue in every 779 

operational strategy 780 
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 781 

Appendix A: Non-dimensional Problem Formulation 782 

The following expressions give non-dimensional versions of the coupled contract-operational 783 

design problem objective and constraints. The non-dimensionalization is illustrated for the 784 

definitions given in Tables 1 and 2 and uses the AR1 log inflow model described in Section 4.1.  785 

𝑱
𝝁𝟎:𝑲−𝟏

′
′ = 𝓔{∑ (𝟏 + 𝒓)−𝒌[𝒈′[𝑬𝒌

′ , 𝑬𝒄
′ ] − 𝜶𝒄

′ 𝒁𝒌
′ ] + 𝒈𝑲

′𝑲−𝟏
𝒌=𝟎 }         𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆  (A-1) 786 

𝒈′(𝑬𝒌
′ , 𝑬𝒄

′ ) = 𝜶𝟏(𝑬𝒌
′ − 𝑬𝒄

′ ) + 𝑬𝒄
′        𝐢𝐟  𝑬𝒌

′ ≤ 𝑬𝒄
′       (A-2) 787 

𝒈′(𝑬𝒌
′ , 𝑬𝒄

′ ) = 𝜶𝟐(𝑬𝒌
′ − 𝑬𝒄

′ ) + 𝑬𝒄
′        𝐢𝐟  𝑬𝒌

′ > 𝑬𝒄
′   788 

𝝍𝒌 = 𝐥𝐨𝐠(𝑰𝒌
′ )          (A-3) 789 

𝝍𝒌+𝟏 = 𝒇𝟐(𝒙𝒌, 𝒖𝒌, 𝝎𝒌) = 𝝆𝝍𝝍𝒌 + 𝝎𝒌   𝒍𝒐𝒈 𝒊𝒏𝒇𝒍𝒐𝒘 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏   (A-4) 790 

𝑺𝒌+𝟏
′  = 𝑺𝒌

′ +
𝟏

𝝉𝒓𝒆𝒔
[𝑰𝒌+𝟏

′ − 𝒖𝒌
′ ] − 𝒁𝒌

′

= 𝑺𝒌
′ +

𝟏

𝝉𝒓𝒆𝒔
[𝐞𝐱𝐩(𝝆𝝍𝒌 + 𝝎𝒌) − 𝒖𝒌

′ ] − 𝒁𝒌
′
 Storage equation  (A-5) 791 

𝒁𝒌
′ = 𝐦𝐚𝐱 {𝑺𝒌

′ +
𝟏

𝝉
[𝑰𝒌+𝟏

′ − 𝒖𝒌
′ ] − 𝟏, 𝟎}    𝐬𝐩𝐢𝐥𝐥 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧    (A-6) 792 

𝑬𝒌
′ = 𝝓′(𝒖𝒌

′ , 𝒉𝒌
′ , 𝒉𝒌+𝟏

′ ) =
𝟏

𝑬𝒎𝒂𝒙
𝝓(𝒖𝒎𝒂𝒙𝒖𝒌

′ , 𝒉𝒎𝒂𝒙𝒉𝒌
′ , 𝒉𝒎𝒂𝒙𝒉𝒌+𝟏

′ )   𝐞𝐧𝐞𝐫𝐠𝐲 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧793 

 (A-7) 794 

𝒉𝒌
′ = 𝑯′(𝑺𝒌

′  ) =
𝟏

𝒉𝒎𝒂𝒙
𝑯(𝑺𝒎𝒂𝒙𝑺𝒌

′ );   𝒌 = 𝟎: 𝑲.  𝒉𝒆𝒂𝒅 − 𝒔𝒕𝒐𝒓𝒂𝒈𝒆    (A-8) 795 

𝒖𝒌
′ ≤ 𝒖𝒎𝒂𝒙

′     𝒓𝒆𝒍𝒆𝒂𝒔𝒆 𝒖𝒑𝒑𝒆𝒓 𝒃𝒐𝒖𝒏𝒅      (A-9) 796 
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