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Abstract. Isoprene hydroxynitrates (IN) are tracers of the

photochemical oxidation of isoprene in high NOx environ-

ments. Production and loss of IN have a significant influ-

ence on the NOx cycle and tropospheric O3 chemistry. To

better understand IN chemistry, a series of photochemical re-

action chamber experiments was conducted to determine the

IN yield from isoprene photooxidation at high NO concentra-

tions (> 100 ppt). By combining experimental data and cal-

culated isomer distributions, a total IN yield of 9(+4/−3) %

was derived. The result was applied in a zero-dimensional

model to simulate production and loss of ambient IN ob-

served in a temperate forest atmosphere, during the Southern

Oxidant and Aerosol Study (SOAS) field campaign, from 27

May to 11 July 2013. The 9 % yield was consistent with the

observed IN/(MVK+MACR) ratios observed during SOAS.

By comparing field observations with model simulations, we

identified NO as the limiting factor for ambient IN produc-

tion during SOAS, but vertical mixing at dawn might also

contribute (∼ 27 %) to IN dynamics. A close examination

of isoprene’s oxidation products indicates that its oxidation

transitioned from a high-NO dominant chemical regime in

the morning into a low-NO dominant regime in the after-

noon. A significant amount of IN produced in the morning

high NO regime could be oxidized in the low NO regime,

and a possible reaction scheme was proposed.

1 Introduction

Isoprene (C5H8) accounts for approximately half of the

global non-methane biogenic volatile organic compound

(BVOC) emissions (Guenther et al., 2006) and has a signifi-
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cant influence on the budgets of OH, O3 and NOx (Horowitz

et al., 2007). Isoprene oxidation by OH in the presence of

NOx can lead to the formation of isoprene hydroxynitrates

(IN), as described in Reactions (R1) and (R2). The chain-

terminating Reaction (R2a) removes peroxy radicals (RO2)

and NO from the atmosphere and decreases tropospheric O3

production (Carter and Atkinson, 1996). IN serve as a tempo-

rary NOx reservoir, and the transport and photooxidative de-

composition of these compounds can further modulate NOx
and O3 concentrations (Horowitz et al., 2007; Paulot et al.,

2012; Xie et al., 2013). Gas-phase organic nitrates can also

partition into the particle phase and undergo hydrolysis, con-

tributing to the growth of secondary organic aerosols (SOA)

(Jacobs et al., 2014; Rindelaub et al., 2015).

isoprene+OH(+O2)→ RO2 (R1)

RO2+NO→ RONO2 (R2a)

RO2+NO→ RO+NO2 (R2b)

The initial OH addition (followed by O2) to isoprene (Reac-

tion R1) produces eight isomeric RO2 radicals. Reaction of

these RO2 radicals with NO proceeds primarily via two reac-

tion pathways (Reaction R2a and b). Laboratory studies sug-

gest that the nitrate formation channel (Reaction R2a) is mi-

nor compared to the alkoxy radical (RO) formation channel

(Reaction R2b), with reported total IN yields ranging from 4

to 14 % (Chen et al., 1998; Patchen et al., 2007; Lockwood et

al., 2010; Paulot et al., 2009; Sprengnether et al., 2002; Tu-

azon and Atkinson, 1990). Reaction (R2a) leads to the for-

mation of eight IN isomers, including four β-IN isomers and

four δ-IN isomers (Table 1). The wide range of reported IN

yields has led to uncertainty in quantifying isoprene’s influ-

ence on the NOx cycle and O3 enhancement (Xie et al., 2013;

Horowitz et al., 2007; Paulot et al., 2012). Isoprene hydrox-

ynitrates can also be produced at night through NO3-initiated

isoprene oxidation with a yield around 20 %, adding to a to-

tal organic nitrate yield of 65–70 % (Rollins et al., 2009; Per-

ring et al., 2009; Kwan et al., 2012). The major daytime IN

sink is reaction with OH, which leads to a lifetime of 2.5 to

6.5 h, according to a recent kinetics study (Lee et al., 2014b).

At night, IN are more susceptible to loss from ozonolysis,

and potentially NO3 oxidation when the NOx concentration

is high (Xie et al., 2013). IN have been observed in the ambi-

ent environment, primarily in forested areas under the influ-

ence of anthropogenic NOx plumes (Grossenbacher et al.,

2001; Giacopelli et al., 2005; Grossenbacher et al., 2004;

Beaver et al., 2012; Lee et al., 2014a). During the BEARPEX

2009 study conducted in the Sierra Nevada of California, IN

constituted 38 % of the total organic nitrates (Beaver et al.,

2012).

Methods to quantify organic nitrates include infrared spec-

troscopy (IR), thermal-dissociation laser-induced fluores-

cence (TD-LIF) spectroscopy, chemiluminescence, gas chro-

matography (GC)-based separation and detection techniques,

and mass spectrometry (MS) (Rollins et al., 2010; Tuazon

and Atkinson, 1990; Sprengnether et al., 2002; Day et al.,

2002; O’Brien et al., 1995; Beaver et al., 2012; Lee et al.,

2014a; Lockwood et al., 2010; Paulot et al., 2009; Gia-

copelli et al., 2005; Grossenbacher et al., 2004; Patchen et

al., 2007; Hartsell et al., 1994; Kwan et al., 2012; Teng et al.,

2015). IR, TD-LIF, and chemiluminescence can only mea-

sure total organic nitrates because they respond solely to the

nitroxy functional group (Day et al., 2002; Rollins et al.,

2010; Tuazon and Atkinson, 1990; Sprengnether et al., 2002;

O’Brien et al., 1995; Hartsell et al., 1994). GC- and MS-

based methods can speciate organic nitrates and have been

employed previously to quantify IN in both laboratory and

field studies (Lockwood et al., 2010; Patchen et al., 2007;

Giacopelli et al., 2005; Paulot et al., 2009; Lee et al., 2014a;

Grossenbacher et al., 2004; Beaver et al., 2012; Kwan et al.,

2012). For MS-based techniques, the fragile O–NO2 bond

in organic nitrates often fragments during ionization (Per-

Atmos. Chem. Phys., 15, 11257–11272, 2015 www.atmos-chem-phys.net/15/11257/2015/
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ring et al., 2009), so soft-ionization methods with reagent ion

such as H+(H2O)4, CF3O−, and I− are necessary to detect

the molecular ion for organic nitrates (Patchen et al., 2007;

Beaver et al., 2012; Lee et al., 2014a; Crounse et al., 2006).

Here we present a comprehensive laboratory and field

study of the formation of IN from the isoprene reaction with

OH. In the summer of 2013, we quantified ambient IN in

rural Alabama for 6 weeks during the Southern Oxidant

and Aerosol Studies (SOAS, http://soas2013.rutgers.edu/). In

parallel with the field study, laboratory experiments were

conducted to determine the yield of IN from isoprene oxi-

dation. For laboratory experiments, we synthesized authentic

standards for the quantification of IN, using multiple cali-

bration techniques. The IN yield obtained from lab experi-

ments was applied in a zero-dimensional model to simulate

IN production and loss in the atmosphere, which was then

compared with the measurements from SOAS, to examine

our understanding of atmospheric IN chemistry.

2 Experiment

2.1 CIMS IN calibration

A chemical ionization mass spectrometer (CIMS) was used

to measure IN concentrations during the chamber experi-

ments and the SOAS field study. The instrument is similar to

the one described by Liao et al. (2011), which uses I(H2O)−n
to form iodide clusters with the analyte compounds.

Two authentic standards, 4,3-IN and 1,4-IN (a mixture of

trans- and cis-1,4-IN), were synthesized to determine the

sensitivity of CIMS toward IN isomers. 1,4-IN was pre-

pared using the nitrification method described by Lee et

al. (2014b), and the sample was used after flash column chro-

matography without further purification to separate the trans

and cis isomers. 4,3-IN was prepared by nitrification of (1-

methylethenyl)oxirane, and the epoxide was synthesized fol-

lowing Harwood et al. (1990).

The IN gas-phase sample for CIMS calibration was pre-

pared by evaporating an IN /C2Cl4 standard solution of

known volume into 50 L of clean air. The IN concentra-

tion in the standard solution was determined using nuclear

magnetic resonance (NMR) and Fourier transform infrared

(FTIR) spectroscopy, and the results from the two methods

were consistent within 15 %. Multiple CIMS calibrations for

4,3-IN were performed, and the results did not deviate more

than 15 % after 1.5 years (Supplement Sect. 1). The average

sensitivity of 4,3-IN normalized to the reagent ion signal was

2.3(±0.3)× 10−3 ppt−1.

The 1,4-IN calibration was conducted following the same

procedures. Since the 1,4-IN standard contained a mix-

ture of trans- and cis-1,4-IN, the measured sensitivity was

a weighted average of both isomers. The relative abun-

dance of the trans- and cis-1,4-IN isomers was obtained

from NMR, and their individual sensitivities were estimated

using a least-squares method (Supplement Sect. 2). The

CIMS sensitivity was 3(±2)× 10−4 ppt−1 for trans-1,4-IN

and 1.3(±0.3)× 10−3 ppt−1 for cis-4,1-IN.

As we were unable to synthesize the 1,2-IN standard in

the condensed phase, a relative method was used, where the

CIMS was interfaced with a GC equipped with an electron

capture detector (ECD, Fig. 1) to determine the CIMS sen-

sitivity of 1,2-IN relative to 4,3-IN. A mixture of the eight

IN isomers was generated by irradiation of a mixture of iso-

prene, isopropyl nitrite, and NO. The IN mixture was cryo-

focused at the head of a 4 m Rtx-1701 column that separated

the IN isomers, and the effluent was split into two fused-silica

deactivated transfer columns, directed simultaneously to the

CIMS and the ECD.

As the CIMS was operated with water addition to the sam-

ple gas before ionization, the GC-ECD/CIMS setup enabled

direct observation of the influence of water vapor to the sen-

sitivity of the two dominant IN isomers. Figure 2 shows

the GC-ECD/CIMS chromatograms with and without water

added to the CIMS. The change in retention time was the re-

sult of change in initial oven temperature setting, which had

little influence on the elution temperature of IN. 1,2-IN and

4,3-IN were the dominant IN isomers and 1,2-IN eluted be-

fore 4,3-IN, according to a recent study using the same sta-

tionary phase (Nguyen et al., 2014b). 1,2-IN and 4,3-IN are

expected to have the same ECD sensitivity, because the ECD

has similar response to all mononitrates and the hydroxyl

group in hydroxynitrate has no influence on ECD sensitivity

(Hao et al., 1994). Therefore, the CIMS sensitivity of 1,2-IN

relative to 4,3-IN was calculated as the ratio of the CIMS sig-

nal intensity to the corresponding ECD signal intensity, for

the pair of isomers. The calculated relative CIMS sensitivity

was 0.37(±0.06) with water and 0.95(±0.06) without wa-

ter added, determined as the average of three trials for each

setup. The result indicated that water addition to the sam-

ple air lowered the CIMS sensitivity to the 1,2-IN isomer.

The small abundance of the other isomers makes it difficult

to obtain reliable quantification through this method. There-

fore, the sensitivities for cis- and trans-1,4-IN were obtained

with a synthesized standard.

The CIMS sensitivities toward alkyl alcohols and alkyl ni-

trates are both around 5 orders of magnitude smaller than its

sensitivity toward the isoprene hydroxynitrates. Hence, it is

the combination of the OH group and the NO3 group, as well

as their relative positions, that has the dominant influence

on the CIMS sensitivity, which will affect how the molecule

binds with the iodide ion, while the structure of the carbon

backbone would have little effect. For the IN isomers, the rel-

ative positions of the OH group and the nitrate group are α,β

position, trans-α,δ position, and cis-α,δ position. We assume

the same sensitivity can be applied to isomers within each

structural group, namely β-isomers, trans-δ isomers and cis-

δ isomers. This assumption is consistent with our observation

of identical sensitivity for 1,2-IN and 4,3-IN isomers when

water is not added to the CIMS. For the case with water

www.atmos-chem-phys.net/15/11257/2015/ Atmos. Chem. Phys., 15, 11257–11272, 2015
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Figure 1. GC-ECD/CIMS setup for the CIMS sensitivity of 1,2-IN

relative to 4,3-IN.

addition to CIMS, the smaller sensitivity of the 1,2-IN was

caused by the smaller amount of 1,2-IN available for detec-

tion, as 1,2-IN is lost inside the instrument, rather than from a

fundamental difference in the ionization efficiency of 1,2-IN.

Primary nitrates (δ-IN, 3,4-IN, and 2,1-IN) and secondary ni-

trates (4,3-IN) are not as likely to be affected by water (Hu et

al., 2011). As a result, cis-1,4-IN was used as a surrogate for

cis-4,1-IN, and trans-1,4-IN was used a surrogate for trans-

4,1-IN. For the β-IN isomers, 1,2-IN had to be considered

separately due to its loss inside the instrument, but 4,3-IN

was used as a surrogate for 3,4- and 2,1-IN isomers. Our as-

signment of CIMS sensitivities for IN isomers is consistent

with reports from Lee et al. (2014a). Given the significant

difference in sensitivity for different IN isomers, the CIMS

IN data have to be interpreted with the knowledge of relative

IN isomer distribution, which depends on both IN production

and loss. Since the IN isomer distribution was not measured

in either the laboratory or the field studies, model simulation

was used to estimate the relative abundance of IN isomers.

The distribution of IN isomers during the chamber experi-

ments was estimated using an iterative method (Supplement

Sect. 3.1). For IN measurement during SOAS, a diurnal av-

erage of the changing IN isomer distribution (Fig. S9) was

estimated and applied to calibrate IN data for each individ-

ual day. The isomer-weighted IN sensitivity changed by less

than 20 % throughout the day (Supplement Sect. 3.2).

2.2 Isoprene chamber experiments

Seven experiments were conducted in the 5500 L Purdue

photochemical reaction chamber (Chen et al., 1998) to de-

termine the yield of IN from OH-initiated isoprene oxidation

in the presence of NOx . OH was generated from the photoly-

sis of isopropyl nitrite. The starting conditions for the exper-

iments are listed in Table 2. Each experiment was initiated

by switching on the UV lamps and was considered complete

when half of the isoprene was consumed or the NO concen-

tration dropped to around 5 ppb.

The IN concentration was measured continuously during

each experiment with the CIMS. Chamber air was sam-

pled through a 5.2 m long inlet, made of 0.8 cm ID heated
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Figure 2. GC-ECD/CIMS chromatogram with water (a) and with-

out water (b) added to the CIMS. The ECD signal is in black and

the CIMS signal is in red.

(constant 50 ◦C) FEP Teflon tubing. A total flow of 5 liters

per minute (L min−1) was pulled through the inlet into a

custom-built three-way valve system (Liao et al., 2011),

where 2 L min−1 was subsampled into the CIMS through a

0.51 mm orifice. Water vapor was added downstream of the

orifice to humidify the sample air to reduce the influence that

variations in ambient RH and temperature have on the dis-

tribution of I(H2O)−n clusters. Laboratory tests showed that

with constant H2O addition, the CIMS sensitivity is not de-

pendent on ambient air humidity (Supplement Sect. 6). The

fractional loss inside the 50 ◦C sampling inlet was measured

to be 5 % for a mixture of the eight IN isomers.

Isoprene and its oxidation products, methyl vinyl ketone

(MVK) and methacrolein (MACR), were quantified with a

proton-transfer reaction linear ion trap mass spectrometer

(PTR-LIT MS), with measurement precision of 3 ppb and

accuracy of ±17 % (Mielke et al., 2010). MVK and MACR

were observed as the same nominal mass without further dif-

ferentiation for relative isomeric abundance. The NO concen-

tration was measured through chemiluminescence using the

total reactive nitrogen instrument (TRENI) (Lockwood et al.,

2010), and the addition of isopropyl nitrite did not cause any

interference signals for TRENI during the chamber experi-

ments.

One wall loss experiment was conducted by keeping the

IN isomers produced from isoprene oxidation in the dark

chamber and sampling the chamber air with CIMS periodi-

cally for 4 h. No significant IN loss was observed, so no wall

loss correction was applied for IN measurement.

Atmos. Chem. Phys., 15, 11257–11272, 2015 www.atmos-chem-phys.net/15/11257/2015/
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Table 2. Initial conditions for IN yield experiments.

Expt. Isoprene Isopropyl NO Expt.

number (ppb) nitrite (ppb) (ppb) duration

(min)

1 140 180 160 16

2 80 180 130 15

3 70 180 130 12

4 120 180 125 14

5 90 180 220 14

6 75 180 210 12

7 85 180 2400 54

2.3 CIMS SOAS measurement

During SOAS, the CIMS was used to measure ambient IN

concentrations continuously from 26 May to 11 July 2013 at

the Centerville (CTR) site (32.90◦ N, 87.25◦W). The CTR

site is located about 50 miles south of Birmingham and

Tuscaloosa near the Talladega National Forest, a region abun-

dant with pine and oak trees. The CIMS was operated un-

der the same conditions as those during the chamber ex-

periments, in terms of voltage setting, gas flow, and sam-

ple humidification. Air was sampled from 5.3 m above the

ground, with the same inlet (heated to constant 50 ◦C) and

valve system that were used for chamber experiments. The

CIMS three-way valve system was used to allow automated

background measurement and in situ Br2 calibration to mon-

itor instrument stability. The background was determined

by passing ambient air through nylon wool coated with

sodium bicarbonate for 2 min every 15 min (Crounse et al.,

2006). Laboratory tests suggested that the scrubber removes

isoprene-derived organic nitrates, including hydroxynitrates,

carbonyl nitrates, and hydroxyperoxy nitrates, and acids such

as nitric acid and formic acid. Br2 calibration was performed

hourly by adding a 30 sccm Br2 /N2 flow from a Br2 perme-

ation device to the ambient air being sampled into the CIMS

for 2 min. The CIMS sensitivity to IN was calibrated rela-

tive to the Br2 sensitivity, which were both normalized to the

reagent ion signal I(H18
2 O)−. The Br2 output rate from the

permeation device was determined daily with the optical ab-

sorption method following Liao et al. (2011). The averaged

Br2 output of the permeation source throughout the cam-

paign was 60(±8) ng min−1, which was 1.8(±0.2) ppb when

diluted with ambient air.

2.4 Zero-dimensional model for IN data interpretation

A zero-dimensional (0-D) model based on the Master Chem-

ical Mechanism (MCMv3.2) (Jenkin et al., 1997; Saunders

et al., 2003) was used to investigate the production and loss

of IN in the chamber and in the SOAS field study. The mech-

anism was updated for recent experimental and theoretical

studies of isoprene chemistry, including the interconversion

of isomeric isoprene RO2 radicals (LIM1) (Peeters et al.,

2014), IN reaction rate constants for OH and O3 (Lee et al.,

2014b), isoprene epoxydiols (IEPOX) reaction rate constants

for OH (Bates et al., 2014), and the branching ratio for NO3

addition to isoprene (Fan and Zhang, 2004).

For the IN observations during SOAS, our analysis is fo-

cused on the production and loss of IN. Therefore, the 0-D

model for the SOAS data analysis was constrained to the ob-

served concentrations of the major species involved in the IN

chemistry, including isoprene, HOx , O3, NOx , α-pinene, β-

pinene, and limonene. The NO2 photolysis frequency in the

0-D model (JNO2
) was calculated using the Tropospheric Ul-

traviolet & Visible (TUV) radiation model (Madronich and

Flocke, 1998) for clear sky conditions with 300 DU ozone,

and the model input was scaled relative to observed radia-

tion. The photolysis frequencies for all the other species were

scaled relative to JNO2
at zero-degree solar zenith angle.

Because the 0-D model does not take into account the

changes in IN concentration as IN was transported to and

out of the measurement site both vertically and horizontally,

the ratio of total IN concentration to the sum of methyl vinyl

ketone (MVK) and methacrolein (MACR) was used to com-

pare the model results with observations. Major sources of

MVK and MACR include isoprene ozonolysis (Grosjean et

al., 1993) and OH-initiated isoprene oxidation (Liu et al.,

2013). Because IN, MVK, and MACR are produced simulta-

neously in the isoprene photochemical oxidation process, the

ratio [IN] / ([MVK]+[MACR]) may reduce the influence of

dilution caused by vertical mixing and changing boundary

layer height, making results from the 0-D model comparable

to ambient observations. Besides chemical loss to reaction

with OH, O3, and NO3, the model also included loss for dry

deposition for IN, MVK, and MACR, with averaged daytime

deposition velocities of 1.5, 0.7, and 0.4 cm s−1 (Nguyen et

al., 2015; Zhang et al., 2002).

Isoprene data from the PTR-ToF-MS (Misztal et al., 2015)

were used to constrain the model and its MVK+MACR

data were used for model–observation comparison for most

days. The MVK and MACR data from GC–MS (gas

chromatography–mass spectrometry; Gilman et al., 2010)

were used when knowledge of the relative abundance of

MVK and MACR was required to calculate their initial con-

centrations in the model and when PTR-ToF-MS data were

unavailable. The PTR-ToF-MS data were used primarily be-

cause of their higher time resolution. Model constraints on

α-pinene, β-pinene, and limonene concentrations were based

on measurements from GC–MS, and 2D-GC when GC–MS

data were unavailable.

www.atmos-chem-phys.net/15/11257/2015/ Atmos. Chem. Phys., 15, 11257–11272, 2015
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3 Results

3.1 IN yield from chamber experiments

The IN yield was calculated from the production of IN rel-

ative to the loss of isoprene, using data obtained in the

photochemical reaction chamber experiments. The isomer-

weighted IN sensitivity is expected to change during each

experiment, as IN isomers are lost to OH consumption with

different reaction rate constants. To account for the change

in IN isomer distribution during each experiment, an itera-

tive method was applied to derive a self-consistent set of to-

tal IN yield, IN isomeric distribution, and isomer-weighted

IN sensitivity (Supplement Sect. 3.1). IN loss by OH oxida-

tion was corrected (Atkinson et al., 1982) with an isomer-

weighted rate constant to account for the difference in OH

reactivity for different isomers (Lee et al., 2014b). The cor-

rection factor was around 25 % by the end of each experi-

ment. Figure 3 shows the results from the IN yield chamber

experiments. The average IN yield was 9 %, based on the

slope of 1IN vs. (-1isoprene). We note that the yield has no

apparent [NO] dependence with [NO] varying in the range of

125 to 2400 ppb.

The relative uncertainty for isoprene concentrations is

17 % based on instrument calibration. The uncertainty for

IN concentrations is caused by both the uncertainty in the

CIMS sensitivity for each IN isomer and the uncertainty in

the relative abundance of the IN isomers. Through a sensi-

tivity test on the RO2 interconversion rate constants of the

LIM1 mechanism (Supplement Sect. 5), the IN measurement

uncertainty was estimated to be +23 %/−20 %. The frac-

tional loss for the CIMS inlet was 4(±6) %, making the IN

measurement uncertainty to be +24 %/−20 %. The uncer-

tainty in the reported rate constants for IN oxidation could

cause 20 % error when IN data were corrected for OH con-

sumption. Therefore, the overall relative uncertainty in our

IN yield is +36 %/−33 % and we report our total IN yield

to be 9(+4/−3) % to encompass all the measurement uncer-

tainties. This result lies in the middle of the 4–14 % range

of IN yields determined from previous experiments (Chen et

al., 1998; Patchen et al., 2007; Lockwood et al., 2010; Paulot

et al., 2009; Sprengnether et al., 2002; Tuazon and Atkin-

son, 1990). Previous IN studies conducted in our group using

GC methods consistently resulted in lower IN yields (Chen

et al., 1998; Lockwood et al., 2010). We partially attribute

the discrepancy of our previous and current work to the pos-

sible loss of the 1,2-IN isomer in the GC column and metal

sample injection system. This work employed MS to quan-

tify IN during the chamber experiments to circumvent these

problems. The current yield result will be applied in the 0-

D model to simulate IN concentrations during SOAS. The

model–measurement agreement offers a metric to evaluate

the validity of the laboratory-derived IN yield.
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Figure 3. IN and isoprene data for chamber experiments. An aver-

age yield of 9 % was obtained from data of the seven experiments.

3.2 Observation of IN during SOAS

Figure 4 shows the temporal profile of total IN mixing ra-

tio observed during the SOAS field study with an averaging

10 min time resolution. In general, fast IN production was

observed after sunrise. On average, the concentration rose to

peak around 70 ppt at 10:00 CDT (Fig. 5) and then decreased

to a minimum around 10 ppt by 06:00 the next day, as a result

of vertical mixing, boundary layer expansion, dry deposition,

and further oxidation. IN concentrations were significantly

lower from 4 to 8 July, due to wet deposition and less photo-

chemical reactivity caused by continuous rain events.

In contrast to the IN average diurnal profile (Fig. 5),

the diurnal profiles for isoprene, OH, and NOx , and

MVK+MACR, each peaked at different times of the day

(Fig. 6). While IN and MVK+MACR are products of the

parallel RO2+NO Reactions (R2a) and (R2b), the diurnal

MVK+MACR concentrations are more consistent with the

temporal profiles of isoprene, OH and O3 with peak con-

centration around 13:00 when radiation was strong. The de-

crease in IN, and continued increase of MVK and MACR

around 10:00 can be attributed to the competition among the

four RO2 loss channels (Reactions R2, R3, R4, and R5).

RO2+HO2→ ROOH+O2 (R3)

RO2+RO2→ 2RO+O2 (R4)

RO2→ products (R5)

The fraction of RO2 loss to NO reaction is defined as γ ,

which is calculated with the following equation.

γ = (1)

kRO2+NO[NO]

kRO2+NO [NO] + kRO2+HO2
[HO2] + kRO2+RO2

[RO2] + kisomerize

Atmos. Chem. Phys., 15, 11257–11272, 2015 www.atmos-chem-phys.net/15/11257/2015/
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Figure 4. IN observed during SOAS.
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Figure 5. IN diurnal average from 28 May to 11 July. The blue

shade indicates day-to-day variation (1σ). The abrupt drop of con-

centration at 19:00 is caused by instrument fluctuation during its

daily maintenance.

Isoprene RO2 loss to permutation reactions R4 was

calculated assuming [RO2]=[HO2], and the rate constant

1.6× 10−13 cm3 molecule−1 s−1 was used (Jenkin et al.,

1997). Isoprene RO2 loss rates for reaction with NO and

HO2 (Reactions R2 and R3) were calculated based on ob-

served NO and HO2 concentrations, using rate constants

kRO2+NO = 9× 10−12 cm3 molecule−1 s−1 and kRO2+HO2
=

1.61× 10−11 cm3 molecule−1 s−1 (Saunders et al., 2003;

Stevens et al., 1999). The sum of the first-order RO2 loss

rate for reaction with NO, HO2, and RO2 was 0.01–0.07 s−1

(Fig. 7a). Therefore, the contribution from 1,5-H shift for

β-RO2 was negligible, due to the small isomerization rate

constant (Peeters et al., 2014). However, for isoprene cis-

δ-RO2, the 1,6-H shift rate constant is on the order of 0.1–

1 s−1 (Peeters et al., 2009, 2014; Crounse et al., 2011). This

fast isomerization depletes cis-δ-RO2 radicals rapidly to form

closed-shell products, e.g., hydroperoxy aldehyde (HPALD),

and makes the relative abundance of cis-δ-RO2 radicals very

small (∼ 1 %, Supplement Sect. 4). For this reason, kisomerize

was omitted from the calculation of γ , but the yield of total

RO2 was incorporated when estimating the production rate

of total IN, to account for rapid loss of cis-δ-RO2 to 1,6-H

shift. In addition, the fast 1,6-H isomerization for cis-δ-RO2

decreased the production rates of δ-IN among the IN isomers.

With this smaller production rates and their faster loss rates
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Figure 6. Diurnal average of OH (a, 13 June–3 July), isoprene (b,

16 June–11 July), NOx (c, 1–15 July) and sum of MVK and MACR

(d, 16 Jun–11 July).

to OH and O3 (Lee et al., 2014b), the relative abundance of

δ-IN during this field study was much smaller than what has

been observed in laboratory studies (Lockwood et al., 2010;

Paulot et al., 2009).

The calculated diurnal average of the γ value is shown in

Fig. 7b. For RO2 radicals that were lost to reaction with NO

or HO2, the RO2+NO reaction was the sole contributor in

the early morning, but it was surpassed by RO2+HO2 reac-

tion before noon, as the NO concentration decreased steadily

throughout the day. The IN production rate was calculated

with the following equation.

PIN = kISOP+OH[OH][ISOP] ·8 · γ ·α (2)

α is the branching ratio (= k2a/(k2a+ k2b)) for isoprene

RO2+ NO reaction for nitrate formation. 8 is the yield of

total RO2 from OH addition to isoprene that is available

to react with NO, HO2, and RO2, with an RO2 lifetime in

the range of 10–20 s. The calculated 8 is 0.83 (Supplement

Sect. 4), with contribution from β-RO2 being 0.81, cis-δ-RO2

being 0.01, and trans-δ-RO2 being 0.02, and the remaining

17 % products from isoprene OH oxidation are closed-shell

species such as HPALD.

The γ value peaked around 6:00 to 08:00 when the iso-

prene and OH concentrations were relatively low. During this

period, the IN production rate was limited by the availabil-

ity of RO2. In the afternoon, when isoprene RO2 was more

abundant with higher isoprene and OH concentrations, the

IN production rate was limited by the availability of NO, and

decreased with the declining γ value (Fig. 7b). The declin-

ing γ value could lead IN loss from OH oxidation to ex-

ceed IN production, making IN peak around the time when

HO2 reaction became the major RO2 loss channel (γ < 0.5).

In this relatively clean environment, MVK and MACR pro-

www.atmos-chem-phys.net/15/11257/2015/ Atmos. Chem. Phys., 15, 11257–11272, 2015



11264 F. Xiong et al.: Observation of isoprene hydroxynitrates

����
�

�

�

�

�

�
	


�
�
�


�

�
��
�
�
�
��
�
�
��
��

��
�
��
�
�
��
�
�
�

� 
�
��
!

��"�� ��"�� ��"�� ��"��

���� �# ��$ �
%&!

�'����
�

�'�

�'�

�'�

�'�

�'�

�'�

()
�
��
�
�
�
���
�
��
��

��
�
��
�
�
��
�
�
�

� �
��!

�'��

�'��

�'��

�

�	
���
� ����������
�*����$���
+,� ���-.�$

), ���-.�$

�/!

���������� ����
()
�	
���
�

�'��

�'��

�'��

�'��

�'��

�
,

�
��
�
�
��
��
��

��
!

��"�� ��"�� ��"�� ��"��

���� �# ��$ �
%&!

0�,��),1),

0�,��+,�1+,�

0�,���,�1�,�

��!

Figure 7. (a) Diurnal average of RO2 loss rates for reaction with

NO, HO2, and RO2 from 22 June to 7 July. (b) Diurnal average of γ

value and production rates of IN and MVK+MACR from 22 June

to 7 July. For MVK+MACR, production from the three reaction

channels are shown in different colors.

duction continued through isoprene ozonolysis (Grosjean et

al., 1993) and OH oxidation in the low NO regime (Liu et al.,

2013). The MVK+MACR production rate was calculated us-

ing the following equation.

PMVK+MACR = kISOP+OH[OH][ISOP] ·8β · γ · (1−α) (3)

+ kISOP+OH[OH][ISOP] ·8 · (1− γ ) · 0.06

+ kISOP+O3[O3][ISOP] · 0.61

8β denotes the yield of isoprene β-RO2, the precursors

for MVK+MACR, and the calculated 8β was 0.81 (Sup-

plement Sect. 4). The term kISOP+OH[OH][ISOP]·8β · γ ·

(1−α) is the production rate of MVK+MACR with the iso-

prene β-RO2 undergoing the RO2+NO reaction pathway.

The term kISOP+OH[OH][ISOP]·8·(1-γ )·0.06 is the produc-

tion rate of MVK+MACR when the isoprene RO2 proceeds

via HO2+RO2 reaction pathways to form MVK+MACR

with an overall yield of 6 % (Liu et al., 2013). The

term kISOP+O3[O3][ISOP] ·0.61 is the production rate of

MVK+MACR from isoprene ozonolysis, with a total yield

of 61 % (Grosjean et al., 1993).

As shown in Fig. 7b, the production rates of IN

and MVK+MACR both plateaued around 10:00. For

MVK+MACR, the decrease was later compensated with

production from the HO2 and O3 pathway, and the produc-

tion rate peaked around 14:00 when radiation was strong.

For IN, however, its production rate did not increase with

radiation due the limited availability of NO (small γ value).

Therefore, the change in the relative importance of the two

RO2 sinks, RO2+NO and RO2+HO2, is likely one of the

reasons that the IN concentration peaked earlier than the

MVK+MACR concentration during SOAS.

The early morning increase in IN concentration could im-

ply significant contribution from downward mixing of accu-

mulated IN in the residual layer (RL), as the inversion is bro-

ken up after dawn (Hastie et al., 1993). When the earth sur-

face cools in the evening, the remnants of the upper daytime

boundary layer are isolated from the lower region near the

ground, and the RL forms. The RL contains the same amount

of isoprene, IN, and NOx as is found near the ground around

sunset, thus serving as an IN reservoir at night (Neu et al.,

1994). While IN in the nighttime boundary layer (NBL) is

slowly lost to dry deposition, IN in the RL, which is isolated

from the ground, is better preserved. In addition, IN produc-

tion from reaction of isoprene with NO3 may also contribute

to RL IN, but this process is not as important in the NBL, be-

cause the NO3+NO reaction decreases the NO3 concentra-

tion near the ground (Stutz, 2004). As a result, the IN concen-

tration in the RL is expected to be higher than that in the NBL

before dawn. Perhaps more importantly, the relative volume

fraction of NBL vs. RL is small (∼ 0.1), and thus surface

level nighttime chemistry cannot contribute significantly to

the surface IN increase at ∼ 10:00. During sunrise, IN in the

RL can mix downward, which in combination with photo-

chemical IN production, leads to an increase in IN near the

ground. The relative importance of these two processes will

be assessed with our 0-D model in the following section.

It is worth mentioning that the nighttime ground-level

IN production from NO3+isoprene can afford a different

IN isomer distribution, which can influence the isomer-

weighted IN sensitivity. However, the 0-D model simula-

tion of IN isomer distribution has included IN formation

from the NO3+isoprene pathway. Therefore, our interpre-

tation of the SOAS IN measurement data has considered

the changing IN isomer distribution from both the OH- and

the NO3-initiated IN production near ground. The isomeric

distribution applied to IN production from NO3+isoprene

was 31.1 % trans-4,1-IN, 12.8 % cis-4,1-IN, 40.5 % 2,1-IN,

0.6 % trans-1,4-IN, 2.4 % cis-1,4-IN, 5.5 % 3,4-IN, 0.4 %

1,2-IN, and 0.7 % 4,3-IN, based on the theoretical branch-

ing ratios proposed by Zhao and Zhang (2008). This isomer

composition is consistent with the experimental results of

Schwantes et al. (2015) that NO3 addition to the C1 posi-

tion of isoprene was dominant, which could lead to the for-

mation of 42 % 2,1-IN and 44–46 % 4,1-IN. Since δ-4,1-IN

constitutes an important fraction of IN formation from the

NO3+isoprene reaction, the uncertainty in the relative yield

of trans-4,1-IN and cis-4,1-IN has the largest influence on

the isomer-weighted CIMS sensitivity to the IN isomers, as

the CIMS sensitivity for cis-4,1-IN is over 4 times larger than

for the trans-4,1-IN. By assuming δ-4,1-IN consists of only

the cis isomer or the trans isomer, we calculated that the

isomer-weighted IN sensitivity changed from 1.68× 10−3 to

Atmos. Chem. Phys., 15, 11257–11272, 2015 www.atmos-chem-phys.net/15/11257/2015/
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1.24× 10−3 ppt−1, equivalent to a 35 % change in calculated

IN concentration. This IN sensitivity range is slightly larger

than the model-derived IN sensitivity (Fig. S10), which is

closer to 1.2× 10−3 ppt−1 at night. Therefore, the nighttime

IN concentration may be potentially biased high by up to

35 %, but the general trend of the diurnal IN concentrations

and the IN concentrations during the daytime should not be

affected.

3.3 Zero-dimensional model for IN photochemistry

during SOAS

Due to limited availability of overlapping data for model in-

put from multiple instruments, ambient data for the following

12 days were used: 14 June, 16 June, 22–23 June, 25 June–1

July, and 3 July. For each day, only the daytime chemistry

(05:00–19:00) was simulated, when photochemical reactiv-

ity was high. The observed IN and MVK+MACR concentra-

tions at 05:00 were used as the initial concentrations for sim-

ulations. For isoprene, α-pinene, β-pinene, limonene, NO,

NO2, OH, HO2, and O3, the model concentrations were con-

strained to observations for the entire modeling period. The

branching ratio for IN formation resulting from the isoprene

RO2+NO reaction was set to 0.09 for all isomers, which is

based on our measured 9 % yield from the chamber exper-

iments. As mentioned above, to avoid the complication in

the simulation of the absolute concentration variability from

transport and changing boundary layer height, we compared

the simulated and observed [IN] / ([MVK]+[MACR]) ratio

to evaluate the model.

Figure 8a shows the temporal profiles of the modeled and

observed [IN] / ([MVK]+[MACR]) ratio for the selected 12

days. To gain a statistical overview of the model and ob-

servation comparison, the 12 day average was calculated

(Fig. 8b). The 0-D model generally agrees with the observed

ratio, lending support to the IN branching ratio determined

in the chamber experiments. However, the morning increase

was underestimated by the model on certain days (14, 16, 29

June, 1 and 3 July), while on other days (23 and 25–27 June),

the decrease rate for the [IN] / ([MVK]+[MACR]) ratio was

underestimated in the afternoon. Since the IN yield applied

in the 0-D model has +36 %/−33 % uncertainty, a sensitiv-

ity test on the yield was performed. As shown in Fig. 8c, the

simulated [IN] / ([MVK]+[MACR]) ratio is highly sensitive

to the yield used in the model. The 6 % yield significantly

underestimated the ratio in the morning, and the 12 % yield

significantly overestimated the ratio in the afternoon.

4 Discussion

4.1 Model–observation comparison for SOAS data

As shown in Fig. 8c, the modeled results deviated from ob-

servations from 10:00 to 12:00 for all the three yields applied.

During this period, the simulated [IN] / ([MVK]+[MACR])
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Figure 8. Simulated and observed [IN] / ([MVK]+[MACR]) ratio.

(a) Results for each selected day. (b) Averaged results over the

12 days. The error bars represent day-to-day variation. (c) Sen-

sitivity test with IN yield set as 6, 9, and 12 % in the model.

(d) MVK+MACR data were adjusted by subtracting observed

IEPOX+ISOPOOH concentration from observed MVK+MACR

concentration. (e) Results with enhanced IN photolysis rate.

ratio decreased slowly, but the observed ratio dropped

rapidly. The fast decrease in the [IN] / ([MVK]+[MACR])

ratio implies either fast production of MVK+MACR, or

fast consumption of IN. In terms of fast production of

MVK+MACR, the formation of MVK+MACR from OH

and O3 has been characterized in the model, and the model

was capable of simulating MVK+MACR concentration to

within measurement uncertainty for the chamber experi-

ments (Supplement Sect. 3.1). Therefore, the discrepancy be-

tween model and observation is potentially associated with

underestimated loss rate of IN. The model results with the

6 % yield were lower than observations, despite potential un-

derestimated IN loss rate, so a higher yield (9–12 %) may

be more accurate to describe the branching ratio for isoprene

RO2+NO reaction.

The model overestimation in the afternoon can be caused

collectively by measurement uncertainties for model input,

uncertainties in the IN loss rates for OH oxidation and depo-

sition, uncertainties in ambient IN (25 %) and MVK+MACR

(40 %) measurement, and other missing IN loss processes. A

recent study found that isoprene hydroperoxide (ISOPOOH)

could interfere with MVK and MACR measurement when

www.atmos-chem-phys.net/15/11257/2015/ Atmos. Chem. Phys., 15, 11257–11272, 2015
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standard PTR-MS and GC methods are used (Rivera-Rios et

al., 2014). We found that the model appeared to agree better

with observations in the afternoon, if the ISOPOOH+IEPOX

concentration was subtracted from the MVK+MACR mea-

surement data (Fig. 8d). However, the exact influence of

ISOPOOH+IEPOX on the observations of MVK+MACR is

unclear, as the ISOPOOH conversion efficiency is highly de-

pendent on instrumental sampling configuration, and the in-

terference of IEPOX has not been characterized.

We also considered that an underestimated IN photolysis

rate could be one of the reasons for the model–observation

discrepancy. The photolysis rate for IN was set to be identi-

cal to the photolysis rate for alkyl nitrates in MCMv3.2, but

IN isomers have double bonds and hydroxyl groups, which

could increase the IN absorption cross section and enhance

the photolytic reactivity for IN. When the IN photolysis rate

was increased by 5 times for the 9 % yield, or 12.5 times for

the 12 % yield, the simulated [IN] / ([MVK]+[MACR]) ra-

tio was brought closer to observation in the afternoon, but

the IN loss rate still appeared underestimated between 10:00

and 12:00 (Fig. 8e). When the higher photolysis rates were

applied, the simulated IN loss to photolysis could contribute

up to 30 % (9 % yield case) or 50 % (12 % yield case) of to-

tal IN loss. Since no experimental data were available on the

absorption cross spectrum and quantum yield for IN, large

photodissociation rate coefficients are purely hypothetical.

While photolysis may be a significant IN sink in the ambi-

ent environment, its contribution to IN loss in chamber ex-

periments is negligible, as the lamp radiation was ∼ 10 % of

solar radiation and the durations of the chamber experiments

were short. Therefore, no correction for the photolytic loss

was made for the IN measurement performed in chamber ex-

periments.

Despite the discrepancy in absolute values, the simulated

[IN] / ([MVK]+[MACR]) ratios all peaked in the morning,

consistent with observation. The peak signifies the time when

the IN loss rate started to exceed the IN production rate. As

the OH-loss lifetime of IN decreased from 8:00 to 13:00, the

IN production rate (Fig. 7b) remained constant during this

time. Although isoprene and OH concentrations were both

greater after noontime, the IN production rate did not in-

crease, due to the small γ value. Therefore, the morning IN

peak can be attributed to the combined effects of slow IN

production and fast IN consumption in the afternoon, with

NOx being the limiting factor for IN production during this

field study.

Although the simulated [IN] / ([MVK]+[MACR]) ratios

all peaked in the morning, they peaked 1 h later than the ob-

served ratio (Fig. 8c). In addition, the modeled ratio had a

smaller growth rate than the observed ratio between 07:00

and 09:00, regardless of the IN yield and IN loss rate applied

(Fig. 8c and d). This underprediction implies an unknown

source of IN, and we can hypothesize that it was caused by

downward mixing of the RL IN, as the fast morning increase

of IN coincided with inversion breakup. By combining the

observations of IN and MVK+MACR during SOAS and the

results from the 0-D model, we can calculate the growth rate

of ambient IN concentration caused solely by isoprene pho-

tochemistry in the daytime (Supplement Sect. 7). This photo-

chemical IN growth rate was compared with the observed IN

growth rate, and from that we estimate that downward mix-

ing can contribute to 27(±16) % of the fast IN increase in

the morning, where the large uncertainty originates from the

uncertainty in the IN yield.

The residual layer IN concentration before mixing (6:00)

was estimated with the 0-D model, using the same initial in-

put as the ground-level observation on the previous day at

20:00. The chemical processes involved are IN production

from isoprene oxidation by NO3 (Reactions R5 and R6b) and

IN consumption by OH, O3, and NO3. Based on our model

calculation, the steady-state NO3 concentration at night was

on the order of 1× 106 molecules cm−3. Nighttime OH was

generated through BVOC ozonolysis, and the simulated con-

centration was on the order of 5× 104 molecules cm−3. Even

though the OH concentration was very low at night, it was

still the dominant IN loss pathway, because of the fast

IN+OH reaction rate constants. It is worth noting that RO2

produced from isoprene+NO3 (Reaction R6) also has com-

peting loss channels for reaction with RO2 (Reaction R7)

and with HO2 (Reaction R8). Therefore, only a fraction of

the isoprene nitrooxy-peroxy radicals (ONO2RO2) can re-

act with other peroxy radicals to produce IN through Reac-

tion (R7b).

C5H8+NO3(+O2)→ ONO2RO2 (R6)

ONO2RO2+RO2→ ONO2RO+RO+O2 (R7a)

ONO2RO2+RO2→ ONO2ROH+R′CHO+O2 (R7b)

ONO2RO2+HO2→ ONO2ROOH (R8)

Figure 9 shows the simulated IN concentration in the RL

and IN observed near ground before dawn, assuming the RL

was completely stable at night with no depositional loss for

IN from the RL. The simulated IN concentration in the RL

before dawn was greater than the concentrations measured

at ground level by up to one order of magnitude, indicat-

ing the IN stored in the RL overnight may be a significant

ground level IN source during inversion breakup. This high

IN concentration above the NBL is the result of IN produced

during the previous day, which is present with the high con-

centration in the RL as it is formed, and zero deposition re-

moval overnight. The NO2 concentration is low when the

RL is formed at sunset, so contribution from IN production

through NO3 chemistry is small (1–10 ppt), a minor fraction

compared with the concentration of IN already present in the

RL in the evening. Isoprene–NO3 chemistry can generate IN
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Figure 9. Modeled IN in the residual layer and IN observed near

ground before dawn the next day. The model includes IN produc-

tion from isoprene oxidation by NO3 and IN consumption by re-

action with OH, O3 and NO3. The modeled IN may be biased, as

concentration change caused by transport is not considered.

isomers with a different isomeric distribution. Since IN pro-

duction from this reaction scheme is small, no sensitivity cor-

rection was performed to account for the changes in isomer

distribution when RL IN mixed with ground-level IN in the

morning.

The calculated residual layer IN does not take into account

the altitude-dependent IN concentration caused by OH oxi-

dation, as well as possible IN concentration change caused

by advection. Therefore, the actual IN concentration may be

very different from the calculated results. This is reflected

in a comparison of the large RL IN excess relative to sur-

face IN on 26 and 27 June (Fig. 9), with simultaneous model

overprediction of daytime IN on these 2 days (Fig. 8a).

Hence, detailed three-dimensional chemical transport mod-

els are needed to fully elucidate the production and storage

mechanisms of IN in the ambient environment.

4.2 High-NOx and low-NOx chemistry during SOAS

OH oxidation was the most important daytime sink for

BVOCs during SOAS. As the γ value decreased from 0.95

at 7:00 to 0.3 at 13:00. (Fig. 7b), the BVOC-derived RO2

radicals are expected to undergo both NO (high NOx) and

HO2 (low NOx) reaction pathways throughout the day. For

isoprene, the presence of the two reaction schemes was sig-

nified by the oxidation products, with IN peaking in the

morning and ISOPOOH and IEPOX peaking in the afternoon

(Fig. 10).

As IN was consumed by OH, it would also undertake

both NO and HO2 reaction pathways. Since the highest OH

concentrations (13:00) were accompanied with a small γ

value (∼ 0.3, Fig. 7b), a significant amount of IN would be

oxidized following the HO2 pathway. A possible reaction

scheme is illustrated in Fig. 11 with 1,2-IN as an example.

Experimental studies by Jacobs et al. (2014) suggest that

OH addition to IN can invoke IEPOX formation with a yield
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Figure 10. Diurnal averages of IN and ISOPOOH+IEPOX from 30

May to 4 July.

of 13 % at atmospheric pressure, which simultaneously re-

leases NO2. Although IEPOX can be produced from IN

oxidation, the ISOPOOH pathway was still the dominant

IEOPOX precursor during this study, due to the higher con-

centrations of ISOPOOH and its higher yield for IEPOX

(∼ 70–80 %) (St. Clair et al., 2015). For RO2 radicals pro-

duced from OH addition to IN, 30 % will react with NO and

70 % will react with HO2 for a γ value of 0.3 at 13:00.

For the RO2+NO reaction, Lee et al. (2014b) observed

the formation of dinitrate for δ isomers of IN and estimated

a branching ratio of less than 18 % for β-4,3-IN based on

missing carbon in the gas phase. The RO radicals from the

RO2+NO reaction will dissociate to make either MACR ni-

trate or lose NO2 to form hydroxyacetone and glycoalde-

hyde. Both Jacobs et al. (2014) and Lee et al. (2014b) re-

ported MACR nitrate being the dominant product with an

overall yield of 70 %, thus making the corresponding branch-

ing ratio for the RO radical to be around 80 %.

The RO2+HO2 products from IN oxidation are less un-

derstood. The alkyl peroxy radical reaction with HO2 can

undergo two reaction channels to afford either hydroperox-

ide or RO radical and OH. The branching ratio is highly

structure-dependent. Simple alkyl peroxy radicals, such as

CH3CH2O2, can form hydroperoxide with almost unity yield

(Hasson et al., 2004). However, for peroxy radicals with β

carbonyl groups, such as RC(O)CH2O2, the branching ratio

for the OH formation pathway is more than 60 % (Hasson et

al., 2004, 2012). The β carbonyl oxygen can stabilize the re-

action intermediate through internal hydrogen bonding, thus

making the reaction favor the formation of OH and RO (Has-

son et al., 2005). The RO2 from IN oxidation has a β-OH

group and a β-NO3 group, both capable of forming inter-

nal hydrogen bonding with the hydrogen of HO2. Therefore,

formation of OH and RO radicals may be a significant re-

action channel when the RO2 radicals derived from IN re-

act with HO2. The closed-shell product from the RO2+HO2

www.atmos-chem-phys.net/15/11257/2015/ Atmos. Chem. Phys., 15, 11257–11272, 2015
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Figure 11. Possible oxidation mechanism for 1,2-IN with γ = 0.3.

reaction is dihydroxy hydroperoxy nitrate (DHHPN). This

compound has not been identified in any laboratory stud-

ies. However, Lee et al. (2015) found a significant amount

of compounds with the corresponding molecular formula of

C5H11O7N in the aerosol phase during SOAS, which sug-

gests that hydroperoxide formation and aerosol uptake could

be an important sink for IN.

A range can be estimated for the NO2 recycling efficiency

for IN oxidation, as the detailed RO2+HO2 reaction mecha-

nism is unclear. If RO2+HO2 reaction forms only hydroper-

oxide, the NO2 yield from IN oxidation will be 17 %. If

RO2+HO2 reaction only undergoes the radical formation

channel, the NO2 yield will be 30 %, and the major products

of IN oxidation are highly oxidized secondary nitrates.

5 Summary and atmospheric implications

Our chamber experiments indicate a 9(+4/−3) % nitrate

yield from isoprene hydroxyperoxy radical reaction with NO.

The product yield provides a more reliable groundwork for

future modeling studies on the interplay of isoprene oxida-

tion, NOx cycling, and tropospheric O3 production.

Our field measurements and model simulations suggest

that in the southeast US, the formation of organic nitrates in

the boundary layer is controlled by the availability of NOx .

During the SOAS field study, when isoprene was oxidized

by OH addition, the NO peak in the morning consumed 95 %

on average of the isoprene RO2 to form high NOx photooxi-

dation products such as IN, MVK, and MACR. As the NOx
concentration decreased during the day, the RO2+HO2 re-

actions became more important, and by ∼ 13:00 only 30 %

of the RO2 react with NO, and thus only 2.7 % of the RO2

would form organic nitrates. The high NOx concentration in

the early morning caused an early IN maximum at 10:00, a

combined result of slow afternoon IN production with lim-

ited NOx , and fast IN consumption due to peak radiation and

fast OH production in the afternoon. By comparing simu-

lation results with observations, we estimate the inversion

breakup after sunrise may contribute to 27(±16) % of the

rapid IN increase in the morning. The observed daytime IN

loss can be approximated with the current understanding of

IN oxidation reactions and dry deposition, but some discrep-

ancies still exist, which could be caused by other less stud-

ied loss pathways, such as nitrate photolysis. Aerosol uptake

could also be an IN sink, but the contribution is expected to

be small (Surratt et al., 2010b). Observations during SOAS

suggest that the isoprene-derived SOA components were as-

sociated with IEPOX and more oxidized organic nitrates, not

the first-generation hydroxynitrates (Xu et al., 2015b; Lee et

al., 2015).

While IN were produced and destroyed in the morning

through high NOx chemistry, a major portion of the after-

noon IN oxidation process involved low NOx chemistry,

which could yield products such as the highly oxidized dihy-

droxy hydroperoxy nitrate (DHHPN). DHHPN is expected to

have very low vapor pressure and undergo fast dry deposition

and aerosol partitioning, possibly followed by hydrolysis and

formation of NO−3 and trihydroxy hydroperoxide. This pro-

cess removes NOx from the atmosphere and helps to shift the

photochemical processes further toward the low NOx regime,

forming a positive feedback mechanism to reduce the at-

mospheric NOx concentration. However, more experimental

studies are required to elucidate the detailed mechanism for

the RO2+HO2 reactions.

During the past 15 years, NOx emissions in the southeast-

ern US have decreased by more than 50 % (Hidy et al., 2014).

As more effort is devoted to controlling anthropogenic emis-

sions, the BVOC oxidation processes will start to shift fur-

ther toward the low NOx regime. Isoprene products resulting

from oxidation in the low NOx condition, such as IEPOX,
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are more prone to reactive uptake and thus contribute more

effectively to the growth of SOA than IN (Xu et al., 2015a;

Surratt et al., 2010a; Nguyen et al., 2014a), indicating po-

tentially higher SOA burdens from isoprene chemistry in the

future. The low NOx photochemistry is often complicated

by radical reactions including intramolecular H-shift and au-

toxidation (So et al., 2014; Peeters et al., 2014; Savee et

al., 2015; Crounse et al., 2013), so more theoretical and ex-

perimental studies of the fundamental reaction kinetics are

needed to unravel the complete BVOC oxidation mechanism.

The photochemical reactions that involve both the high NOx
and low NOx pathways can yield new highly oxidized multi-

functional nitrate products. Identification, quantification, and

study of the chemistry of these organic nitrates is essential

to understand the fate of NOx . As the highly oxidized com-

pounds, such as DHHPN and dinitrate, tend to partition into

the aerosol phase, it will be a challenge for the development

of analytical techniques to investigate their aging process in

the particle phase and their role in the NOx cycle.

The Supplement related to this article is available online

at doi:10.5194/acp-15-11257-2015-supplement.
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