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Abstract 

Architected materials with stretching-dominated designs are attractive due to their high stiffness 

and strength per unit mass density. Particularly, plate-lattices have been demonstrated to achieve 

theoretical upper bounds on the stiffness and strength at low density. However, simultaneously 

attaining high energy absorption in these plate-lattices still remain elusive, which is critical for 

many structural applications such as shock wave absorber and protective devices. In this work, we 

present bi-material isotropic cubic+octet sandwich plate-lattices composed of carbon fiber 

reinforced polymers (stiff) skins and elastomeric (soft) core. This bi-material configuration 

enhances their energy absorption capability while retaining stretching-dominated behavior. We 

investigate their mechanical properties through an analytical model and finite element simulations. 
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Our results show that they achieve enhanced energy absorption approximately 2-2.8 times higher 

than their homogeneous counterparts while marginally compromising their stiffness and strength. 

When compared to previously reported materials, these materials achieve superior strength-energy 

absorption characteristics, making them an excellent candidate for stiff and strong, lightweight 

energy absorbing applications. 

Keywords: lightweight; metamaterial; toughness; modeling; composite; 3D printing  

  

Introduction 

Ultralight materials that are simultaneously stiff, strong, and tough (high energy absorption) are 

attractive. These materials (unattainable with monolithic bulk solids) can be achieved by designing 

the unit cell topology of a periodic, porous biphasic network (one phase is the material whereas 

the other phase is the void), also known as “cellular materials” or “lattices”1,2, such that their 

effective Young’s moduli, E, strength, σ (initial yield or fracture-dominated), and energy 

absorption, U, can be tuned over their relative density 𝜌̅. While 𝐸~𝜌̅𝑎 and 𝜎~𝜌̅𝑏 (a = b = 1 for 

stretching-dominated topologies; a = 2 and b = 1.5 for bending-dominated topologies)2–4, U 

depends on the topology, constituent material properties and several other factors. Owing to this 

linear dependence of E and σ on 𝜌̅, stretching-dominated open-cell beam-based lattices, such as 

octet5,6 and cubic truss7,8, have dominated the lightweight material design space.  

 

Furthermore, beam-based lattices have been manufactured by a wide variety of additive 

manufacturing techniques such as self-propagating polymerization waveguide (SPPW)9,10, powder 

bed fusion11,12, projection micro-stereolithography (PμSL)13,14 and direct laser writing (DLW)15,16 

and provided opportunities for unique combinations of constituent material and topology. 

However, it was shown that these open-cell beam-based lattices can only achieve fractions of the 
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isotropic elastic limit17 (Hashin-Shtrikman upper bound18). On the other hand, closed-cell plate 

lattices (although more limited in suitable fabrication methods), such as cubic+octet19 and n-fold 

symmetry plate lattices20, have been identified to approach both isotropic upper bounds of the 

Young’s modulus and strength at low 𝜌̅ through numerical21 and experimental22 investigations. 

However, these closed-cell plate lattices, due to their stretching-dominated deformation mode, 

often experience brittle fracture or exhibit a short and none-plateaued post-yield stress-strain 

curve3,23,24 under compression at low 𝜌̅, which is undesirable for energy absorbing applications. 

While bending-dominated lattices (for example, Kelvin foams25–28 and hollow pyramidal 

lattices29,30) can potentially be a good energy absorber, they show significant lower E and σ (often 

orders of magnitude lower), not suitable for strong, lightweight applications. As such, the 

simultaneous optimization of stiffness, strength, and energy absorption is not achievable by a 

single-material lattice.  

 

One way to increase the energy absorption without significantly compromising the stiffness and 

strength of an open-cell lattice is to introduce a much softer material into its complementary void 

space, resulting in a bi-material interpenetrating phase composite (IPC)31,32. These IPCs benefit 

from two topologically interconnected material phases exhibiting enhanced energy absorption by 

different deformation mechanisms including buckling suppression, crack resistance or stress 

redistribution at the interface33–35. The enhanced energy absorption through IPC designs, however, 

have two main disadvantages: (i) the design approach is not suitable for closed-cell lattices where 

the bi-continuous interpenetrating layout cannot be achieved; (ii) it often comes at the cost of 

increasing mass36, due to the introduction of additional topology from the second phase. 
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Another way to increase the energy absorption of a lattice with minimal reduction on its stiffness 

and strength is to apply the two material phases (stiff and soft phases) directly into the lattice 

topology; for instance, a beam-based lattice can have each of its beams consisting of a soft material 

in the center surrounded by a thin stiff material phase37. We hypothesize that this idea can be 

applied to a closed-cell plate lattice such that each of its plates consists of a soft material ply 

sandwiched between two stiff material plies (analogous to a laminated composite) to achieve high 

energy absorption and strength. This plate configuration will potentially permit the exploitation of 

both stretching-dominated mechanisms and energy absorption via its two-phase composite plates.  

Additionally, as these material phases only occupy the original topology space, there will not be 

any significant increase in the lattice mass.  

 

In this work, we present the design of bi-material isotropic cubic+octet sandwich plate-lattices, 

that are potentially light, stiff, and strong with enhanced energy absorption via the above-

mentioned multi-material design strategy (i.e., each sandwich plate is composed of a soft material 

ply sandwiched between two stiff material plies). Inspired by our previous success in multi-

material printing of carbon fiber reinforcement polymer (CFRP)- and soft polymer-based lattices38, 

we select these two representative materials as a stiff and soft phase, respectively. First, we extend 

the analytical solution for linear elastic moduli of single-material plate-lattices19 to dynamic 

moduli of bi-material plate-lattices, revealing the viscoelastic effects of the embedded soft phase 

on their macroscopic mechanical properties. Then, we evaluate the plate-lattice performance by 

numerically investigating its effective modulus, peak strength, and energy absorption up to failure 

for different relative densities with the volume fraction of the soft phase ranging from 0 to 40%. 

These simulation results are cross-validated by comparing the moduli with those obtained from 
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the analytical solutions. Lastly, we assess their strength and energy absorption performance against 

previously reported carbon-based architected materials.  

Results and Discussion 

Design of the bi-material isotropic cubic+octet plate-lattice 

We designed our bi-material plate-lattices by adopting the isotropic cubic+octet configuration as 

a baseline topology, where a cubic-plate unit cell is combined with an octet-plate unit cell. This 

unit cell configuration is stretch-dominated and was shown to achieve the theoretical Hashin-

Shtrikman18 and Suquet39 upper bounds on stiffness and strength19,21,22, respectively (Fig. 1). We 

also introduced small holes at the center of the plate faces for the removal of residual (i.e., 

unpolymerized resin) which are needed for available additive manufacturing processes (an 

example is given in Appendix A). The relative density of a single-material isotropic cubic+octet 

plate lattice, taking the holes into account, can be approximated as 𝜌̅cubic+octet = (3/L – (12πr2)/L3 ) 

∙ tcubic + ((4√3)/L – (32πr2)/L3 ) ∙ toctet, where L is the unit cell size, r is the radius of the holes, tcubic 

and toctet are the plate thickness of the cubic and octet unit cell respectively19,21 with thickness ratio:  

𝑡cubic

𝑡octet
=

8√3𝐿2 − 64𝜋𝑟2

9𝐿2 − 36𝜋𝑟2
 (1) 

To introduce bi-material composition to the isotropic cubic+octet plate architecture, we replaced 

each of its constituent plates by a two-phase sandwich plate (CFRP†-Soft††-CFRP ply), as shown 

in Fig. 1. We can then relate the total plate thickness to the thickness of each material phase through 

tcubic,i = Vi ⋅ tcubic and toctet,i = Vi ⋅ toctet, where the subscript i denotes either CFRP or soft phase, 

tcubic,i is the ply thickness of material phase i in the cubic-plate architecture, toctet,i is the ply 

thickness of material phase i in the octet-plate architecture, and Vi is the volume fraction of the 

                                                           
† CFRP stands for carbon fiber reinforced polymer, a stiff and strong material (see more details in Appendix B). 
†† Soft phase is made of Flexible, a soft and weak rubber-like material (see more details in Appendix B). 
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material phase i in the cubic+octet architecture. We then designed the plate-lattices with 

𝜌̅cubic+octet of 10, 20, and 30% and Vsoft from 0 to 40%. 

 

Fig. 1. Illustration of bi-material isotropic cubic+octet plate-lattice with 3×3×3 unit cells. Each 

plate is designed as a sandwich plate (CFRP-soft-CFRP ply). To achieve isotropy, the 

thickness ratio is enforced as tcubic/toctet = (8√3L2 - 64πr2)/(9L2 - 36πr2), where L is the unit cell 

side length and r is the radius of a hole at the center of the plate faces allowing removal of 

unpolymerized resin after fabrication. The thicknesses of CFRP and soft phases are defined by 

their volume fractions such as tcubic,CFRP = VCFRP ⋅ tcubic, tcubic,soft = Vsoft ⋅ tcubic, toctet,CFRP = VCFRP ⋅ 

toctet, and toctet,soft = Vsoft ⋅ toctet, where VCFRP + Vsoft = 1. 

Evolution of stress-strain curves from elastic-brittle to elastoplastic response 

Compressive stress-strain curves of the designed bi-material isotropic cubic+octet plate-lattices, 

obtained from the simulations (see the detailed material models and boundary conditions in “Finite 

Element Simulations”), for relative densities, 𝜌̅, of 10, 20, 30% with volume fractions of the soft 

phase, Vsoft, between 0 and 40% are shown in Fig. 2. With an increase in Vsoft, we observed an 

evolution of a stress-strain curve, changing from a linearly elastic response followed by brittle 

fracture to a behavior mimicking linear elastic-plastic response. This transition can be explained 

by examining variations in yield and failure strains and the peak strength (Fig. C1 and Fig. 2). 
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When Vsoft is below 30%, yield strains gradually decrease whereas failure strains significantly 

increase as Vsoft increases. By contrast, at high Vsoft (e.g., >30%), yield strains remain nearly 

constant at ~0.6% and failure strains progressively approach approximately 1.5% for all modeled 

relative densities. In addition, the magnitude of the peak strength reduces as Vsoft increases. These 

interconnected variations, attributed to a change in the stiff-soft phase ratio in the constituent plate, 

facilitate the evolution of stress-strain curves of the plate lattice, enabling various failure 

mechanisms which progressively change from brittle fracture to more ductile failure caused by 

plate-buckling. Furthermore, when holding the stiff-soft phase ratio constant, the stiffness and 

strength of the plate-lattices follow the power-law scaling with 𝜌̅, similar to other typical cellular 

materials1, and this scaling relation will be discussed later in this section. 

 

Fig. 2. Simulated compressive stress-strain curves of bi-material isotropic cubic+octet plate-

lattices for different relative densities, 𝜌̅, with the volume fractions of the soft phase, Vsoft, 

between 0 and 40%. (a) 𝜌̅ = 10 %, (b) 𝜌̅ = 20 %, (c) 𝜌̅ = 30 %. A stress-strain evolution from 

brittle response to elastoplastic-like behavior was realized through a change in Vsoft. 

Effective storage modulus, peak strength, and energy absorption 

The effective modulus, peak strength, and absorbed energy of the bi-material isotropic cubic+octet 

plate-lattices were extracted from their simulated stress-strain curves. Figure 3a shows that the 
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storage modulus, 𝐸’ or real(E*), is inversely but linearly proportional to Vsoft. When compared with 

our analytical model (see the detailed formulation of the effective modulus in “Analytical 

derivation of the effective modulus”) plotted as solid lines in Fig. 3a, 𝐸’ was only slightly lower 

due to the holes at the center of each plate face. When fitted against 𝜌̅ using least square method, 

near-linear scaling for the modulus was found (i.e., real(E*) ∝ 𝜌̅ 1) for all modeled lattices, 

confirming their efficient stretching-dominated behavior consistent with the previous work22. In 

addition, for the plate-lattices entirely constructed with the CFRP phase (i.e., Vsoft = 0%) for all 𝜌̅ 

under consideration, we verified that their moduli obtained from our simulations approach the 

theoretical Hashin-Shtrikman upper bound of a single material cubic+octet plate-lattice as reported 

previously19. By contrast, the magnitude of the loss modulus, 𝐸’’, was found to be trivial compared 

to that of 𝐸’ (hence low tanδ shown in Fig. 3b) when Vsoft is below ~90%, justifying the constituent 

material models in our simulations neglecting viscoelastic effects. More specifically, the effective 

loss tangent, tanδ, starts from the inherent tanδ of the CFRP phase (equal to 0.068), and slowly 

increases with the increasing Vsoft and then rapidly ramps up to 0.3 (equal to the inherent tanδ of 

the soft phase) at Vsoft ≈ 0.9 due to a much steeper negative slope of 𝐸’ than that of 𝐸’’ with 

increasing Vsoft. We also found that the effective tanδ in a linear regime of a stress-strain curve, 

representing intrinsic mechanical damping, is invariant with 𝜌̅ since it is the ratio of the loss 

modulus to storage modulus which both scale with 𝜌̅1. 
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Fig. 3. Effective viscoelastic properties of bi-material isotropic cubic+octet plate-lattices for 𝜌̅ 

of 10, 20, 30% with Vsoft between 0 to 40%. (a) Effective storage modulus, 𝐸’ or real(E*). (b) 

Effective loss tangent, tanδ, representing intrinsic mechanical damping. The lines in these 

figures are obtained from the analytical model whereas filled markers represent results from 

finite element simulations. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

Figure 4a plots the peak strength, σpeak, against the volume fraction of the soft phase, Vsoft. The 

strength decreases nonlinearly with an increase in Vsoft, owing to plate buckling. With least square 

fitting, the strength has the scaling exponent of ~1 (i.e., σpeak ∝ 𝜌̅1) consistent with the reported 

value22, where their strength-to-weight ratios do not substantially degrade as density decreases (i.e., 

efficient stretching-dominated behavior). Figure 4b reveals the absorbed energy of the bi-material 

plate-lattices as a function of Vsoft, computed by integrating stress over strain in Fig. 2. This 

relationship does not show monotonic trends as observed in other obtained properties (E′, tanδ, 

and σpeak in Figs. 3a-b and Fig. 4a, respectively) but shows local maxima at specific Vsoft for 

different relative densities. This is due to the competition between the peak strength and failure 

strain (Fig. 4a and Fig. C1b) attributed to plate buckling, while the latter contributes more to the 

overall energy absorption. For example, at 𝜌̅ = 0.1, failure strain rapidly increases but becomes 
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plateau at Vsoft = 35% whereas the peak strength only slowly decreases with an increase in Vsoft. 

This combination gives rise to a concave-down curve of absorbed energy against Vsoft (Fig. 4b), 

where its optimum is achieved when failure strain becomes plateau (i.e., at critical Vsoft = 35%) in 

the failure strain - Vsoft plot. Similarly, the critical Vsoft results in the optimal energy absorption for 

other relative densities (i.e., Vsoft of 25% and 27.5% for 𝜌̅ = 0.2 and 0.3, respectively). As a result, 

we found that the optimal absorbed energy obtained from all modeled relative densities were 

improved by approximately a factor of approximately 2-2.8 compared to plate-lattices entirely 

made of the CFRP phase. A more accurate energy absorption estimation, which accounts the 

viscoelastic contributions from the soft phase, could be accomplished if the soft phase is modeled 

as a viscoelastic material in the simulation, however we believe a change would be minimal since 

the analytically obtained tanδ barely varies at low Vsoft (Fig. 3b).  

 

Fig. 4. Simulated mechanical properties of bi-material isotropic cubic+octet plate-lattices 

having different Vsoft for 𝜌̅ of 10, 20, 30%. (a) Peak strength, σpeak, (b) Absorbed energy, U.  

Assessment of strength-energy absorption performance 

To assess the performance of their strength-energy absorption pair, we compared our bi-material 

isotropic cubic+octet plate-lattices against previously reported carbon-based architected materials 
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(Fig. 5). Here, we adopted normalized strength and normalized absorbed energy as a measure of 

strength-energy absorption characteristics (i.e., U/Es vs. σpeak/σys) to highlight the roles of the 

cellular topology while suppressing the effects of the constituent material properties; herein, Es 

and σys for bi-material lattices represent the homogenized properties of either the constituent plate 

or strut made of the CFRP and soft phase and were approximated using the rule of mixture, whereas 

the reported values of Es and σys
40,41 were used for single-material carbon-based lattices. For 

𝜌̅ ~10%, our bi-material plate-lattice, when designed with the optimal Vsoft, exhibits the largest 

energy absorption (~0.6% over carbon microlattice41 and ~312% over CF octet-truss38) and 

advantageous strength (~1.7 times stronger than carbon microlattice but ~13% weaker than CF 

octet-truss). Furthermore, our bi-material plate-lattices show favorable strength-energy absorption 

characteristics against two-phase CF octet-truss lattices38 (e.g., advantage in U/Es of ~200% and 

in σpeak/σys of 120%) at 𝜌̅ of ~10%. For low 𝜌̅ regime (< 0.1%), we expect our bi-material plate-

lattices with the optimal Vsoft, if manufacturable, would also outperform carbon foams (bending-

dominated). This is because the gain in energy absorption (dictated by both strength and failure 

strain) of these carbon foams are compromised by significant reduction in their strength following 

𝜎 ∝ 𝜌̅2, while the bi-material plate-lattices retain the stretching-dominated efficiency (i.e., 𝜎 ∝ 𝜌̅1) 

with enhanced energy absorption due to the increased failure strain by incorporating soft material 

phase. CF and bi-material plate-lattices with higher 𝜌̅ (10%, 20%, and 30%) are also shown as an 

inset in Fig. 5 to show a trend of their strength-energy absorption pairs at higher 𝜌̅. In summary, 

this comparison indicates that our bi-material plate-lattices are an excellent candidate for impact 

isolation and energy dissipation with simultaneously higher strength and energy absorption. A 

variety of promising fabrication techniques, such as snap-fit, two-photon-polymerization direct 

laser writing with subsequent pyrolysis and PμSL-printed shell lattices followed by soft-phase 
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injection (Appendix A), can be adopted to realize the presented bi-material isotropic cubic+octet 

plate-lattices.   

 

  
Fig. 5. Performance assessment of strength-energy absorption pair of the presented bi-material 

isotropic plate-lattice against previously reported, carbon-based energy absorbing materials in 

terms of normalized absorbed energy and normalized peak strength (i.e., (U/Es) vs. (σpeak/σys). 

CF and bi-material octet-truss adopted from Ref.38. Carbon foam adopted from Ref.40. Carbon 

microlattice adopted from Ref.41. 

Conclusions 

In this work, we designed bi-material isotropic plate-lattices composed of CFRP skins and a soft 

core arranged in a sandwich layout and derived the analytical model estimating their dynamic 

properties. We then investigated the stiffness, strength and energy absorption properties of these 

plate-lattice materials modulated by changing the volume fraction of the embedded soft phase via 

numerical simulations, where the stiffness were verified by analytical calculations. Our results 
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reveal that bi-material plate-lattices, when designed with the optimal volume fraction of the soft 

phase, exhibit 250% (in average) increase of energy absorption with marginal reductions in 

modulus and strength (~30%) when compared to single material CFRP plate-lattices. Furthermore, 

at 𝜌̅ of ~10%, their strength and energy absorption outperform those of two-phase CF truss-based 

lattices (~120% and ~200%, respectively), and they are 1.7 times stronger than the carbon 

microlattices with comparable energy absorption. Our results reveal the roles of multi-material 

designs on the effective material properties of a lattice topology. This study will also motivate 

several areas of interest for future work, including acoustic isolation and impact mitigation. We 

envision that these bi-material enhancement on strength and energy absorption can be extended to 

other plate-based topologies and minimal surface-based topologies (i.e., spinodal lattices34,42,43 or 

triply periodic minimal surfaces44–46) that can be realized via a wide variety of additive 

manufacturing methods. 

 

Theory and Simulation 

Analytical derivation of the effective modulus 

In the following subsections, we will extend the existing analytical solutions for the effective 

modulus, E, of single-material19,47 to bi-material isotropic plate-lattices, from which both quasi-

static, E, and dynamic (viscoelasticity) moduli, E*, can be derived. Our approach is based on the 

strain energy method that relates global effective properties of a lattice to the local homogenized 

properties of each plate via non-directional elastic strain energy density terms, hence allowing 

superposition even for plate- lattices constructed by dissimilar topologies. 

Transverse isotropy of a bi-material sandwich plate 

Each bi-material sandwich plate can be treated as a transversely isotropic plate (Fig. 6b) with five 

independent homogenized elastic constants 𝐸p (in-plane Young’s modulus), 𝑣p (Poisson’s ratio 
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for in-plane strain due to in-plane straining), 𝑣pz (Poisson’s ratio for out-of-plane strain due to in-

plane straining), 𝐸z,(out-of-plane Young’s modulus) and 𝐺𝑝𝑧 (out-of-plane shear modulus). From 

theory of elasticity, these homogenized elastic constants can be expressed in terms of the 

constituent materials’ mechanical properties:  

𝐸p = 𝐸s,CFRP𝑉CFRP + 𝐸s,soft(1 − 𝑉CFRP) (2) 

 

𝑣p =
𝐸s,CFRP𝑣s,CFRP𝑉CFRP − 𝐸s,soft𝑣s,soft(1 − 𝑉CFRP)

𝐸s,CFRP𝑉CFRP − 𝐸s,soft(1 − 𝑉CFRP)
 (3) 

 

𝑣pz = 𝑣s,CFRP𝑉CFRP + 𝑣s,soft(1 − 𝑉CFRP) (4) 

 

𝐸z =
𝐸s,CFRP ∙ 𝐸s,soft

𝐸s,CFRP(1 − 𝑉CFRP) + 𝐸s,soft𝑉CFRP
 (5) 

 

𝐺pz =
𝐺s,CFRP ∙ 𝐺s,soft

𝐺s,CFRP(1 − 𝑉CFRP) + 𝐺s,soft𝑉CFRP
 (6) 

 

where 𝐺s,CFRP and 𝐺s,soft are the shear modulus of the CFRP and soft phases, respectively. Note 

that νzp (Poisson’s ratio for in-plane strain due to out-of-plane straining) is equal to νpz ⋅ Ez/Ep due 

to the symmetry of the compliance matrix.  

 

Dynamic response of the bi-material isotropic cubic+octet sandwich plate-lattice 

We then derived the effective linear-elastic modulus of the bi-material isotropic cubic+octet plate-

lattice composed of the transversely isotropic plates with plane stress assumption (detailed 

derivations in Appendix D), given by:  

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



15 

 

𝐸 =
2(7 − 5𝜈p)𝐸p𝜌̅cubic+octet

(1 − 𝑣p)(27 + 15𝑣p)
 (7) 

 

where Ep and νp are given in Eq. (2)-(3), respectively. To take viscoelastic effects into account in 

the analytical model, we first converted the linear-elastic moduli of the two constituent materials 

into the dynamic moduli (denoted by a superscript *) through the correspondence principle48, 

leading to 𝐸CFRP
∗ = 𝐸CFRP

′ + 𝑖𝐸CFRP
′′  and 𝐸soft

∗ = 𝐸soft
′ + 𝑖𝐸soft

′′ , where prime (′) and double prime 

(′′) represent the real and imaginary parts of the dynamic modulus, respectively (i.e., the storage 

and loss modulus, respectively). Note that “dynamic” in this context has no connection with 

inertial terms or resonance. By replacing the linear-elastic moduli in Eq. (2) by these dynamic 

terms, the dynamic modulus of the bi-material constituent plate comprising the lattice can then be 

written as:  

 

𝐸p
∗ = 𝐸′p + 𝑖𝐸p

′′ 

𝐸p
∗ = 𝑉CFRP(𝐸CFRP

′ + 𝑖𝐸CFRP
′′ ) + (1 − 𝑉CFRP)(𝐸soft

′ + 𝑖𝐸soft
′′ ) 

(8) 

 

Next, the effective dynamic modulus of the bi-material isotropic cubic+octet plate-lattice can be 

readily expressed by substituting Eq. (8) into Eq. (7) as:  

 

𝐸∗ =
2(7 − 5𝜈p)

(1 − 𝜈p)(27 + 15𝜈p)
𝐸𝑝

∗𝜌̅ (9) 

 

where νp denotes the effective in-plane Poisson’s ratio as defined in Eq. (3). Note that Eq. (9) 

exactly reduces to the previously derived expressions19,21 for linear-elastic, single-material plate-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 

 

lattices when viscoelastic effects is suppressed. Lastly, the loss tangent (dimensionless), 

representing intrinsic mechanical damping or internal friction, can be expressed as: 

tan 𝛿 =
Im(𝐸∗)

Re(𝐸∗)
=

𝐸′′

𝐸′
 (10) 

Finite element simulations  

All simulations were performed under the quasi-static condition (the kinetic energy of the whole 

system is assumed to be less than 5% of the internal energy in the same system) with mass scaling 

(scale elements that have a smaller stable time increment to the target time increment 0.005s at the 

frequency of every increment) using explicit dynamic finite element analyses in the commercial 

software Dassault Systemes Abaqus 2018. We used 3D shell models (3×3×3 unit cells meshed 

with S4R shell elements of average mesh size/𝐿 of 0.04; both determined from the convergence 

study in Appendix E), where the plate thickness and multi-material plies can be easily assigned in 

a plate-by-plate basis via the section property function, to represent the bi-material isotropic 

cubic+octet plate-lattice as depicted in Fig. 6. It was shown that the mechanical response between 

3D shell and solid models would not differ significantly for 𝜌̅cubic+octet below 40%22. We then 

investigated the mechanical response of the bi-material cubic+octet isotropic plate-lattices under 

compression by applying quasi-periodic boundary conditions (QPBCs) via smooth step amplitude 

in the time duration of 100s to simulate response of an infinite cellular material. To obtain the 

effective modulus E, peak strength σpeak, and energy absorption U of the plate-lattices, we first 

extracted the effective stress-strain (𝜎-𝜀) curve such that σ = F/L2 and ε = δ/L, where F denotes 

reaction force due to the applied compressive displacement δ. Then, the effective modulus E was 

obtained by computing a slope at an initial linear region, the peak strength σpeak was taken at its 

maximum stress, and U was computed by calculating the area under the curve. The detailed 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 

 

constitutive material modeling and implementation of boundary conditions are discussed in the 

following subsections.  

Constituent material modeling 

The stiff and strong CFRP phase was modeled as a linear elastic-plastic material (Young’s 

modulus 𝐸s,CFRP = 2.54 GPa, Poisson’s ratio 𝜈s,CFRP = 0.35, and the initial yield strength 𝜎ys,CFRP 

= 17.74 MPa followed by isotropic hardening, 𝜎s,CFRP = 17.74 + 502𝜀p
0.69 MPa, where 𝜀p is the 

equivalent plastic strain) that fails at a given maximum equivalent plastic strain (𝜀p,CFRP
max = 0.00558) 

while the compliant and soft phase is modeled as a linearly elastic material (𝐸s,soft = 8.2 MPa and 

𝜈s,soft = 0.49) that fails at a given maximum fracture strain (𝜀f,soft
max = 0.37). To simplify the material 

models, we suppressed the viscoelasticity effect in both CFRP and soft phases. We verified that 

such an assumption would not significantly change the mechanical response of the constituent 

materials used in this work (see Fig. B1 for the stress-strain curve comparison between simulation 

and experiment for both CFRP and Flexible bulk materials).  

 

Implementation of quasi-periodic boundary conditions (QPBCs) 

We implemented QPBCs (as shown in Fig. 6c) to represent an infinite plate-lattices. QPBCs allows 

a much simpler prescription of the displacements on very complex topologies and are more 

computationally efficient than the true periodic boundary conditions while achieving similar 

degree of accuracy42,49,50. To implement the boundary conditions in Abaqus, we used the following 

procedures. First, each control point was kinematically coupled to its respective constrained 

surface in all rotational degrees of freedom and in the translational degree of freedom along the 

surface normal direction (for example, MAXZ is coupled to z+ surface and MINZ is coupled to z- 

surface in the z translational degree of freedom as shown in Fig. 6d). Second, a compressive 

displacement δ, corresponding to an effective strain of 2% (all simulated plate-latices lost their 
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load-carrying capacity under this strain) in the negative z-direction, was prescribed in the z 

translational degree freedom of MAXZ and zero displacements are prescribed on all the other 

degrees of freedom of MAXZ. Third, the translation degree of freedom of MAXX along the x-

direction and of MAXY along the y-direction were let free while zero displacements were 

prescribed on the other degrees of freedoms of control points MAXX and MAXY. Finally, zero 

displacements in all degrees of freedom were prescribed on the MINX, MINY, and MINZ control 

points.  

 

 

Fig. 6. Illustration of the cubic+octet shell model that has (a) 3×3×3 unit cells and (b) magnified 

views of a single unit cell with assigned section thicknesses (dark green for the cubic-plate 
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architecture and light yellow for the octet-plate architecture) and an individual plate with 

assigned section materials, under (c) quasi-periodic boundary conditions (triangles and hollow 

circles representing rollers) via (d) the kinematic coupling constraints (yellow light beams) 

between the control points (red circles) and the constrained surfaces (red highlighted surface; 

only one surface is highlighted for the simplicity).  
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Appendix  

A. Fabrication of the bi-material isotropic cubic+octet lattices 

A 30 vol% hollow CAD model of an isotropic cubic+octet plate lattice with 𝜌̅cubic+octet = 0.3 

(shown in Fig. A1) was printed in CFRP via the projection micro-stereolithography (PμSL) system 

developed in previous studies38,51. After printing, the samples were cleaned in ethanol using an 

ultrasonic cleaner. This process was repeated several times until the trapped resin was removed 

entirely. The sample was then left to dry and post-cured under UV light. One of the as-fabricated 
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samples was cut into pieces to verify that the inner hollowed channels are interconnected (Fig. 

A1a). To realize bi-material plate-lattices, the soft phase, comprised of methacrylate monomers 

and oligomers and a thermal initiator (2,2’-Azobis(2-methylpropionitrile), was injected into the 

structure via a small hole at the top of each sample (Fig. A1a). This process was followed by 

thermal post-curing at 150°F for 24 hours. We ground off the extra materials (over 25×25×25 mm) 

on six faces of the samples. One sample after grinding is displayed in Fig. A1b, clearly showing 

the boundary of the two material phases. Note that CFRP and soft phases were strongly bonded at 

their interface allowing the transfer tensile/compression loads between the two phases; this was 

verified through experimental observations in our previous work38. 

 
Fig. A1. Fabrication of bi-material isotropic cubic+octet plate-lattices. (a) Schematic of the 

injection thermal curing method. Soft resin is injected into the 3D printed octet-cubic shell made 

by CFRP then cured via heating. (b) Photograph showing the printed sample after injection and 

sanding. 

 

B. Mechanical properties of the constituent materials 

(i) Development of CFRP and Flexible 

Consistent with the methods used in our previous study38. an ultraviolet (UV) curable CFRP 

composite was made with a UV sensitive resin (Formlabs Rigid, Formlabs Inc) reinforced with 5 

vol% short carbon fibers (PC100, E&L Enterprises, Inc).  A high energy ball mill was used to mix 

the monomer and carbon fiber thoroughly. The resulting CFRP composites are stiffer than the 

monomer, benefiting from the high stiffness of the carbon fibers and the interfacial friction52–54 
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between fibers and monomer. On the other hand, the soft material was comprised of methacrylate 

monomers and oligomers (Formlabs Flexible, Formlabs Inc) and a thermal initiator 2,2’-Azobis(2-

methylpropionitrile) (Sigma-Aldrich). 

(ii) Mechanical testing 

To quantify the mechanical properties of CFRP and soft materials, we built ASTM standard 

(D3039) bulk samples to test along the same built direction via projection micro-stereolithography 

(PμSL). Two mechanical testing methods were performed: uniaxial tension and dynamic 

mechanical analysis (DMA). The uniaxial tension tests were performed using an Instron 5944 

equipped with Bluehill data acquisition software and a 2000N load cell to evaluate the stress-strain 

curve of the base material. A strain rate of 10-3/s (quasi-static strain rate) was conducted on each 

sample until fracture. The dynamic mechanical properties (storage and loss modulus) of the 

constituent materials were measured via a DMA apparatus (TA Instruments DMA 850) at 0.1 Hz 

(equivalent frequency for quasi-static condition30). The measured material properties are listed in 

Table B1; the measured stress-strain curves under uniaxial tension are compared with those 

obtained via constituent material modeling (see “Constituent material modeling”) in Fig. B1. 

 

Table B1. Bulk material properties. 

Material 

Storage 

modulus*,  

E’ (MPa) 

Loss 

modulus*,  

E’’ (MPa) 

Loss tangent*,  

tanδ (-) 

Yield strength**, 

σy (MPa) 

Poisson’s 

ratio**,  

ν (-) 

CFRP 2534.1 172.4 0.068 17.74 0.35 

Formlabs 

flexible 
8.2 2.4 0.299 - 0.49 

* measured by DMA apparatus at 0.1Hz 
** measured from uniaxial tensile test 
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Fig. B1. The comparison of the tensile stress-strain curves between the simulation and 

experiment for CFRP and Formlabs flexible constituent materials under uniaxial tension. 

 

C. Yield and failure strains of the bi-material isotropic cubic+octet plate-lattices 

Figure C1 shows yield and failure strains of the bi-material isotropic cubic+octet plate-lattices that 

were obtained from simulated stress-strain curves in Fig. 2.  
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Fig. C1. Yield and failure strains measured from simulated stress-strain curves of bi-material 

isotropic cubic+octet plate-lattices. 

D. Quasi-static response of the isotropic bi-material cubic+octet sandwich plate-

lattice 

Consider a cubic+octet unit cell oriented in a global Cartesian coordinate system as shown in Fig. 

6b. We apply two different strain fields separately as follows: 

(i) Uniaxial strain (εxx = εyy = εxy = εxz = εyz = 0 and εzz = ε) 

First, we transform the uniaxial strain tensor from global 𝑥𝑦𝑧 coordinate to each plate’s local 

𝑥′𝑦′𝑧′  coordinate. Second, we enforce the plane-stress condition and obtain the principal stress 

(𝜎I, 𝜎II, and 𝜎III)  and principal strain (𝜀I, 𝜀II, and 𝜀III) components. Strain energy density of each 

plate then can be calculated via 𝑈el =
1

2
(𝜎I𝜀I + 𝜎II𝜀II + 𝜎III𝜀III). This leads to the effective strain 

energy density of the unit cell under uniaxial strain as: 

 

𝑈el,cubic+octet,uni =
𝐸p(2𝜌̅octet + 3𝜌̅cubic)𝜀

2

9(1 − 𝑣p
2)

 (D.1) 

 

(ii) Hydrostatic strain (𝜀xy = 𝜀xz = 𝜀yz = 0 and 𝜀xx = 𝜀yy = 𝜀zz = 𝜀) 

Similarly, we obtain the effective strain energy density of the unit cell under hydrostatic strain as: 

 

𝑈el,cubic+octet,hydro =
𝐸p(𝜌̅octet + 𝜌̅cubic)𝜀

2

1 − 𝑣p
 (D.2) 

 

Once we obtain the effective strain energy density of the unit cell, we enforce the isotropy with 

𝜌̅cubic =
2

3
𝜌̅octet

19,21. Eq. (D.1)-(D.2) are then reduced to, 
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𝑈el,cubic+octet,uni =
4𝐸p𝜌̅cubic+octet𝜀

2

15(1 − 𝑣p
2)

 (D.3) 

 

𝑈el,cubic+octet,hydro =
𝐸p𝜌̅cubic+octet𝜀

2

(1 − 𝑣p)
 (D.4) 

 

Since the unit cell is isotropic, we can write the effective constitutive relation as follows: 

 

(

  
 

𝜎xx

𝜎yy

𝜎zz
𝜏yz

𝜏xz

𝜏xy)

  
 

=

[
 
 
 
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12

𝐶11 𝐶12

𝐶11

Symm

Symm

𝐶11 − 𝐶12

2
𝐶11 − 𝐶12

2
𝐶11 − 𝐶12

2 ]
 
 
 
 
 
 
 
 
 

(

 
 
 

𝜀xx

𝜀yy

𝜀zz

2𝜀yz

2𝜀xz

2𝜀xy)

 
 
 

 (D.5) 

 

where 𝐶11 = 2𝑈el,cubic+octet,uni/𝜀
2  and 𝐶11 + 2𝐶12 = 2𝑈el,cubic+octet,hydro/(3𝜀2) . Using Eq. 

(D.3)-(D.4), we can obtain elastic constants C11 and C12 as: 

 

𝐶11 =
8𝐸p𝜌̅cubic+octet

15(1 − 𝑣p
2)

 (D.6) 

 

𝐶12 =
𝐸p𝜌̅cubic+octet(1 + 5𝑣p)

15(1 − 𝑣p
2)

 (D.7) 

 

Finally, using 𝐸 = (𝐶11 − 𝐶12) ∙ (𝐶11 + 2𝐶12)/(𝐶11 + 𝐶12) , we can obtain the linearly elastic 

effective modulus as: 

 

𝐸 =
2(7 − 5𝜈p)𝐸p𝜌̅cubic+octet

(1 − 𝑣p)(27 + 15𝑣p)
 (D.8) 
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where Ep and νp were defined in Eq. (2)-(3), respectively. 

E. Convergence study 

Since both buckling and fractures can occur in the simulations (two situations that can break the 

material symmetry required for periodic boundary conditions†††), we first performed both the mesh 

and unit cell convergence studies and determined that a 3×3×3 lattice configuration and an average 

mesh size ratio 𝑒̃avg (the ratio of the average element size to the unit cell size) of 0.04 are close to 

the converged values (see Fig. E1 and Fig. E2). The determined number of unit cells and mesh 

size ratio were then used in all simulations of the isotropic cubic+octet lattices with 𝜌̅cubic+octet = 

0.1, 0.2 and 0.3 and several Vsoft from 0 to 40% under compression.  

Quasi-periodic boundary conditions (QPBCs) discussed in “Finite element simulations” were used 

in Abaqus to perform both the mesh and the unit cell convergence study on the isotropic 

cubic+octet lattice shell models with 𝜌̅cubic+octet  = 0.3. For each convergence study, two 

constituent materials (100% volume fraction of CFRP, VCFRP = 1 or 100% volume fraction of soft 

phase, Vsoft = 1) are considered, hence representing two extreme ends of material behaviors. In the 

case of CFRP, a displacement δ, corresponding to 2% effective strain, is applied in the QPBCs; in 

the case of soft phase, a δ, corresponding to 10% effective strain is applied instead. The detail is 

discussed below: 

 

(i) Mesh convergence study 

Only a single unit cell was used. The average mesh size ratio 𝑒̃avg was then refined from 0.06 to 

0.03 to study the convergence of Young’s modulus, peak strength, and strain at the peak strength. 

                                                           
††† For example, large number of unit cells are often required to investigate the crack propagations and fractures in cellular materials55,56. 
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𝑒̃avg = 0.04 was deemed appropriate for all cases (Fig. E1a and E1b) and then used in the unit cell 

convergence study.  

 

(ii) Unit cell convergence study 

The chosen average mesh size ratio 𝑒̃avg = 0.04 was used to mesh the models and the number of 

unit cell was increased cubically from 1×1×1 to 4×4×4 to study the convergence of Young’s 

modulus, peak strength, and strain at the peak strength. The optimal number of unit cells is 

determined to be 3×3×3 from Fig. E2. 

 

Fig. E1. The Young’s modulus, peak strength, and strain at peak strength of the isotropic 

cubic+octet plate-lattice with 𝜌̅cubic+octet = 0.3, made of (a) 100% volume fraction of CFRP, 
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VCFRP = 1 or (b) 100% volume fraction of the soft phase (Vsoft = 1) is plotted against the 

decreasing average mesh ratio for the mesh convergence study.  

 

 

Fig. E2. The Young’s modulus, peak strength, and strain at peak strength of the isotropic 

cubic+octet plate-lattice with 𝜌̅cubic+octet = 0.3, made of (a) 100% volume fraction of CFRP, 

VCFRP = 1 or (b) 100% volume fraction of the soft phase (Vsoft = 1) is plotted against the 

increasing number of unit cells per side for the unit cell convergence study. 
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