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Abstract

The traditional framework for feature selection treats all features as costing the same amount. 

However, in reality, a scientist often has considerable discretion regarding which variables to 

measure, and the decision involves a tradeoff between model accuracy and cost (where cost 

can refer to money, time, difficulty or intrusiveness). In particular, unnecessarily including an 

expensive feature in a model is worse than unnecessarily including a cheap feature. We propose 

a procedure, which we call cheap knockoffs, for performing feature selection in a cost-conscious 

manner. The key idea behind our method is to force higher cost features to compete with more 

knockoffs than cheaper features. We derive an upper bound on the weighted false discovery 

proportion associated with this procedure, which corresponds to the fraction of the feature cost 

that is wasted on unimportant features. We prove that this bound holds simultaneously with high 

probability over a path of selected variable sets of increasing size. A user may thus select a set of 

features based, for example, on the overall budget, while knowing that no more than a particular 

fraction of feature cost is wasted. We investigate, through simulation and a biomedical application, 

the practical importance of incorporating cost considerations into the feature selection process.
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feature cost; feature selection; multiple knockoffs; weighted false discovery proportion

1. | INTRODUCTION

The traditional framework for feature selection ignores the fact that, in practice, different 

features may have different costs. In reality, practitioners must balance the opposing 

demands of model accuracy and budget considerations. For example, as we will see in 

Section 4, in medical diagnosis, doctors often have a wide range of options for what 

features to measure: A laboratory result may provide highly relevant information yet is 

expensive in terms of money, time, and the burden on patients; a simple questionnaire 
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or even demographic information may be less informative but incurs lower costs. When 

a questionnaire would suffice for forming an accurate diagnosis, performing a laboratory 

examination would be practically misguided. Likewise, how should we decide whether to 

sequence a patient’s entire genome or simply to conduct some cheap lab tests? This same 

challenge appears in other domains. For example, to determine the veracity of an online 

news article, do we require high-quality features based on an expert’s reading, or do features 

derived from natural language processing suffice?

Consider the response of interest Y  and a set of features X1, …, Xp, where for each feature 

Xj, there is an associated cost ωj > 0. In this paper, we consider a very general model where 

Y ∣ X1, …, Xp follows an arbitrary distribution, and we assume that the joint distribution of 

X1, …, Xp is known. Let ℋ0 be the set of irrelevant features, that is, j ∈ ℋ0 if and only if Xj is 

independent of Y  conditional on the other variables Xk:k ≠ j  (Definition 1 in Candes et al. 

2018). Given a set of selected features ℛ ⊆ 1, …, p , the false discovery proportion FDP
is defined as ℛ ∩ ℋ0 / ℛ , that is, it is the fraction of selected features that are unnecessarily 

included.

Barber and Candès (2015) proposed the knockoff filter, a feature selection procedure that 

provably controls the false discovery rate, defined as E FDP . For each feature, they 

construct a knockoff feature, that is, a carefully constructed fake copy of that feature. A 

feature is then only selected if it shows considerably more association with the response 

than its knockoff counterpart. Katsevich and Ramdas (2018) showed that one can directly 

upper-bound the false discovery proportion, with high probability, simultaneously for an 

entire path of selected models, ℛ1, …, ℛp, where ℛk ⊆ ℛk + 1 for all k.

However, the false discovery proportion and the false discovery rate put all features on an 

equal footing, and do not consider their costs ω1, …, ωp. To overcome this shortcoming, the 

weighted false discovery proportion (wFDP; Benjamini & Hochberg, 1997) is defined as 

wFDP ℛ = C ℛ ∩ ℋ0 /C ℛ , that is, the fraction of the total cost that is wasted, where 

C A = ∑j ∈ A ωj is the cost of measuring the features in A.

The weighted false discovery proportion and weighted false discovery rate are not new 

(Benjamini & Hochberg, 1997; Benjamini & Heller, 2007), and the Benjamini-Hochberg 

procedure (Benjamini & Hochberg, 1995) has been generalized to the weighted false 

discovery rate setting. A related criterion is the penalty-weighted false discovery rate 

(Ramdas et al. 2019), which can be controlled with the p-filter. However, the aforementioned 

procedures only provably control the corresponding criteria under restrictive dependence 

assumptions on the p-values (Benjamini & Yekutieli, 2001). Under arbitrary dependence, the 

reshaping process (Benjamini & Yekutieli, 2001; Blanchard & Roquain, 2008; Ramdas et al. 

2019) needs to be applied, which can greatly reduce power. Basu et al. (2018) proposed a 

procedure that has asymptotic control of a related quantity, namely E C ℛ ∩ ℋ0 /E C ℛ , in 

a mixture model under certain regularity conditions.

In this work, we adapt the ideas of knockoffs (Barber & Candès, 2015) and simultaneous 

inference (Goeman & Solari, 2011; Katsevich & Ramdas, 2018) to the setting where 

features have costs. The key to our method, which we call cheap knockoffs, is to construct 
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multiple knockoffs for each feature, with more expensive features having more knockoffs. 

A feature is selected only if it beats all of its knockoff counterparts; thus, costlier features 

have more competition. This procedure yields a path of selected feature sets ℛ1, … . , ℛp

for which wFDP ℛk  is bounded by a certain computable quantity with high probability, 

regardless of how k is chosen. Unlike existing works on the weighted false discovery rate 

control (Benjamini & Hochberg, 1997; Benjamini & Heller, 2007; Ramdas et al. 2019), our 

method provably bounds the weighted false discovery proportion under arbitrary dependence 

among features. Yu et al. (2022) recently proposed a predictive modelling method in high-

dimensional cost-constrained linear regression problems. Different from their focus which is 

on good prediction performance under budget constraints, our method aims at recovering the 

true set of features (as defined in ℋ0
c) with wFDP control.

2 | CHEAP KNOCKOFFS

2.1 | A review of model-X knockoffs and simultaneous inference

Our method is based on the model-X knockoff procedure (Candes et al. 2018) and its 

multiple knockoff extension (Roquero Gimenez & Zou, 2018), which provably control the 

false discovery rate for an arbitrary sample size n and a number of features p. For simplicity, 

we focus on the following linear model setting

E Y ∣ X1, …, Xp =
j = 1

p
βjXj, X1, …, Xp

T N 0, Σ .

(1)

We start by briefly reviewing the model-X knockoff approach in the simultaneous inference 

setting, applied specifically in the linear model (1). Throughout this paper, we denote 

X ∈ ℝn × p as a data matrix and y ∈ ℝn as a response vector, where Xi1, …, Xip, Yi ∈ ℝp × ℝ
are independently and identically distributed as X1, …, Xp, Y  for i = 1, …, n.

1. For each variable Xj, construct a knockoff variable Xj that satisfies:

a. E Xj = E Xj

b. Cov Xj, Xk = Cov Xj, Xk  for all k

c. Cov Xj, Xk = Cov Xj, Xk − sj1 j = k  for some sj ≥ 0.

The knockoff variables X = X1, …, Xp  are constructed to resemble X without 

any knowledge of the response Y . We denote X ∈ ℝn × p as the constructed 

knockoff matrix of X in a way that Xi1, …, Xip  is a knockoff of Xi1, …, Xip  for 

i = 1, …, n.

2. For each j ∈ 1, …, p , compute statistics T j and T j for the variables Xj and Xj, 

respectively. For example, these could be the absolute values of the coefficients 

of a lasso regression (Tibshirani, 1996) on the augmented design matrix 

Z = X, X ∈ ℝn × 2p :
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θ̂ λ = arg min
θ ∈ ℝ2p

1
2 ∥ y − Zθ ∥2

2 + λ ∥ θ ∥1 ,

(2)

with T j = θ̂ λ j  and T j = θ̂ λ j + p . The value of λ can be fixed in advance, 

or selected using cross-validation. The knockoff statistics are then defined as 

W j = T j − T j. Barber and Candès (2015) and Candes et al. (2018) discuss other 

choices of T j’s and W j’s. Intuitively, a large value of W j indicates that Xj is a 

genuine signal variable, that is, the distribution of Y  depends on Xj, whereas a 

small or negative value of W j indicates that Xj may be irrelevant.

3. For any ordering of variables σ 1 , …, σ p ,  e.g., W σ 1 ≥ W σ 2 ≥ … ≥ W σ p , 

report the sets of selected variables ℛk = σ j :σ j ≤ σ k , W σ j > 0 , for 

k ∈ 1, …, p .

Katsevich and Ramdas (2018) work within the simultaneous inference framework (Goeman 

& Solari, 2011), in which a practitioner wishes to obtain a final set of selected variables 

with false discovery proportion control when choosing among ℛk, k = 1, …, p . To allow for 

such behavior, Katsevich and Ramdas (2018) form a computable upper bound Uk such that 

FDP ℛk ≤ Uk holds simultaneously over all k with some known probability.

2.2 | Multiple knockoffs based on cost

The knockoff procedure described in the previous section constructs a single knockoff 

variable for each feature, and then selects features based solely on the values of W 1, …, W p. 

Barber and Candès (2015) and Candes et al. (2018) discuss the possibility of constructing 

K knockoffs per feature for some value K > 1 with the goal of achieving higher statistical 

power and stability. This has been pursued in Roquero Gimenez and Zou (2018) and Emery 

et al. (2019).

We make a simple yet crucial modification to the multiple knockoff idea, allowing different 

features to have different numbers of knockoffs, so that an expensive irrelevant feature will 

have a lower chance of entering the model than a cheap irrelevant feature. Assume that the 

feature costs ω1, …, ωp are integers with ωj ≥ 2. We construct ωj − 1 knockoff variables for 

each original variable Xj. If Xj is irrelevant, that is, j ∈ ℋ0, then we expect it to be selected 

with probability 1/ωj. We also incorporate costs into the construction of the sequence of 

selected feature sets ℛk. The cheap knockoff procedure generalizes the multiple knockoff 

procedure of Roquero Gimenez and Zou (2018) to the cost-conscious setting:

1. For each variable Xj with cost ωj, denote Xj
1 = Xj and construct the knockoff 

variables Xj
2 , Xj

3 , …, Xj
ωj  such that(a) E Xj

ℓ = E Xj  for ℓ ∈ 2, …, ωj .

(b) Cov Xj
ℓ , Xk

m = Cov Xj, Xk − sj1 j = k 1 ℓ ≠ m  for all 

ℓ ∈ 1, …, ωj , m ∈ 1, …, ωk , j, k ∈ 1, …, p , and some constant sj ≥ 0.
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We denote Xj
ℓ ∈ ℝn as the constructed knockoff variables of Xj, such that 

Xij
ℓ

j = 1, …, p

ℓ = 1, …, ωj
 satisfies the condition above for Xij j = 1, …, p for i = 1, …, n.

2. For each j ∈ 1, …, p , compute the statistics T j
1  (corresponding to the original 

variable) and T j
2 , …, T j

ωj  (corresponding to the ωj − 1 knockoff variables). For 

example, these could be the absolute values of the coefficients of the following 

lasso regression:

θ̂j
ℓ λ j ≤ p, ℓ ≤ ωj

= arg min
θj

ℓ : j ≤ p, ℓ ≤ ωj

1
2∥ y −

j = 1

p

ℓ = 1

ωj

Xj
ℓ θj

ℓ ∥
2

2

+ λ
j = 1

p

ℓ = 1

ωj

θj
ℓ ,

(3)

with T j
ℓ = θ̂j

ℓ λ . The value of λ in (3) can be selected using cross-validation. 

We define

κj = arg max
1 ≤ ℓ ≤ ωj

T j
ℓ .

(4)

3. For any ordering of variables σ 1 , …, σ p , report the sets of selected variables 

ℛk = σ j :σ j ≤ σ k , κσ j = 1 , for k ∈ 1, …, p .

In Step 1, various methods are available for constructing multiple knockoffs given that the 

distribution of X is known (see, e.g., Candes et al. 2018; Roquero Gimenez & Zou, 2018). 

The computation of κj in Step 2 involves the ωj statistics T j
1 , …, T j

ωj ; κj = 1 indicates that the 

original variable beats all of its ωj − 1 knockoff copies. We show in Appendix B1 that the 

probability of this occurring for an irrelevant feature is inversely proportional to the feature’s 

cost. This is the key property used to show the simultaneous control of the weighted false 

discovery proportion in the next section.

In principle, any ordering of variables can be used to obtain ℛk. In simulations, we 

consider a specific ordering such that τσ 1 ≥ τσ 2 … ≥ τσ p , where τj = 2ωj
−1 T j

κj − maxℓ ≠ κj T j
ℓ . 

One reason for this specific choice of τj is that when ω1 = … = ωp = 2, the above procedure is 

exactly the same as the standard knockoff procedure reviewed in Section 2.1. In particular, 

W j > 0 if and only if κj = 1, and W j = τj. Moreover, all else being equal, we want to make 

use of cheap features over expensive features. For this reason, we set τj to be inversely 

proportional to the feature cost.

2.3 | Simultaneous control of the weighted false discovery proportion

Having constructed a cost-conscious path of selected variable sets ℛ1, …, ℛp, we next 

provide a simultaneous high-probability bound on the weighted false discovery proportion 

along this path. The next theorem and the remark that follows establish that the computable 

quantities U− ℛ1, c , …, U− ℛp, c , defined below in (7), simultaneously upper bound wFDP 
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ℛ1 , …, wFDP ℛp  with a known probability. This means that for any choice of k, with high 

probability our selected feature set is not too wasteful (in terms of the fraction of cost spent 

on irrelevant features).

Theorem 1. For any α ∈ 0,1 , we have

ℙ wFDP ℛk ≤ U ℛk, c  for all k ≥ 1 − α,

(5)

where for any constant c > 0

U ℛk, c = − log α
1 + c j = 1

k 1 j ∉ ℛk

j = 1
k ωj1 j ∈ ℛk ∨ 1

max
k ∈ ℋ0

ωk

log ωk − ωk − 1 αc .

(6)

For the standard knockoff procedure described in Section 2.1, we have ω1 = … = ωp = 2. In 

that case, with c = 1, 6  reduces exactly to the bound from applying Theorem 2 of Katsevich 

and Ramdas (2018) to the Selective and Adaptive SeqStep procedure (Barber & Candès, 

2015) with p* = λ = 1/2.

As mentioned in Section 2.1, our procedure can be generalized to any known distribution 

of X and any unknown conditional distribution of Y  given X. For example, in the binary 

classification data example in Section 4, we consider the statistics T j
ℓ  derived from 

ℓ1-penalized logistic regression. Following the arguments in Candes et al. (2018), we can 

show that Theorem 1 also holds for this choice of T j
ℓ .

Remark 1. The weighted false discovery proportion upper bound U ℛk, c  depends on the 

unknown set ℋ0. In practice, we can use an upper bound

U− ℛk, c = − log α
1 + c j = 1

k 1 j ∉ ℛk

j = 1
k ωj1 j ∈ ℛk ∨ 1

max
k

ωk

log ωk − ωk − 1 αc .

(7)

Moreover, if an estimated set ℋ̂0 satisfying ℋ0 ⊆ ℋ̂0 is available, then (6) with the maximum 

taken over ℋ̂0 gives a tighter bound in (5).

Our procedure yields a sequence of sets ℛk of selected variables, and the bound in (5) gives 

a specific description of the tradeoff between capturing enough of the signal variables and 

incurring too much cost. The simultaneous nature of the bound means that wFDP ℛk  is 

controlled regardless of the approach used to select k: the choice of k can depend on the size 

of ℛk, the cost of ℛk, or in fact any function of the data.
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3 | SIMULATION STUDIES

We now investigate the feature selection performance of cheap knockoffs in simulation. We 

set n = 200 and p = 30. Each element of the design matrix X ∈ ℝn × p is independent and 

identically distributed as N 0,1 . The response is generated from the linear model (1) with 

Gaussian errors ε N 0, σ2  and σ2 = 4n −1 ∥ Xβ ∥2
2. We let β1 = … = β10 = 2, and βj = 0 for 

j > 10. We set the first half of the relevant features to be expensive and the second half to be 

cheap, that is, ω1 = … = ω5 = 6, and ω6 = … = ω10 = 2. For the irrelevant features, that is, for 

any j > 10, we set ℙ ωj = 6 = γ and ℙ ωj = 2 = 1 − γ, where γ ∈ 0,0.25,0.5,0.75,1 .

We construct multiple knockoff variables using entropy maximization (Roquero Gimenez & 

Zou, 2018), and we compute the statistics T j
ℓ  as the absolute value of the lasso coefficient 

estimates in (3), with the tuning parameter selected using cross-validation. In Appendix A 

we report the wall-clock running time of cheap knockoffs in the numerical studies (Tables 

A1 and A2). We find that the majority of computation is spent on generating multiple 

knockoffs, which is challenging when p is large and (or) the feature costs are large (after 

dividing by their greatest common factor). In such cases, alternative construction methods 

could be used. For example, Roquero Gimenez and Zou (Appendix A.1; (2018)) show 

that an equicorrelation construction has a closed form expression, which is particularly 

favorable in computation since it does not depend on the number of multiple knockoffs (and 

equivalently, the feature costs).

We first verify the bound in Theorem 1 and compare the performance of cheap knockoffs 

to Katsevich and Ramdas (2018), which ignores feature costs. In particular, by carrying out 

Steps 1 − 3 in Section 2.1 with ω1 = … = ωp = 2 in (7), the bound in (7) coincides with the 

result in Katsevich and Ramdas (2018). We denote this approach as Katsevich and Ramdas 

(2018). For both methods, we take α = 0.2 in (7). In Figure 1 we report both the ratio 

U− ℛk, 1 −1wFDP ℛk  and the actual weighted false discovery proportion wFDP ℛk  for each 

ℛk for both methods in the settings where γ = 0,0.5, and 1. As seen in Figure 1, the ratio 

U− ℛk, 1 −1 wFDP ℛk  for our cheap knockoff procedure is mostly below 1, indicating that 

the bound in Theorem 1 holds. Moreover, when γ is large, the weighted false discovery 

proportion for the cheap knockoff procedure is lower than Katsevich and Ramdas (2018) for 

most values of k. Table 1 gives the estimated probability that the bound is violated, that is, 

ℙ̂ supk U−k
−1 ℛk, 1 wFDP ℛk > 1 , for each method for γ ∈ 0,0.25,0.5,0.75,1 .

We see that the Katsevich and Ramdas (2018) procedure which is not cost-conscious 

performs worse as γ increases, that is, when irrelevant variables are more likely to be 

expensive. Since the method ignores cost, it may erroneously select expensive irrelevant 

features, leading to a poor weighted false discovery proportion.

While our proposal focuses on recovering the correct set of features with simultaneous 

wFDP control, we show empirically that the set of features selected by cheap knockoffs 

usually incurs low cost without compromising prediction accuracy. Specifically, for each set 

of selected variables ℛ1, …, ℛp, we compute both the root-mean-square prediction error of 
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the least squares model fit to the variables in ℛk, and the total cost ∑j ∈ ℛk ωj. We see from 

Figure 2 that for a given budget, the cheap knockoff procedure attains smaller prediction 

error than the procedure in Katsevich and Ramdas (2018), which is not cost-conscious. In 

particular, the cheap knockoff procedure tends to select all five of the cheap relevant features 

before any expensive feature is let in the model, whereas Katsevich and Ramdas (2018) does 

not take feature cost into consideration. For k ≥ 10, ℛk for both methods includes essentially 

all the relevant features, thus giving similar performance.

4 | DATA APPLICATION

To gauge the performance of cheap knockoffs in a real dataset, we consider data from 

the National Health and Nutrition Examination Survey (NHANES) (National Center for 

Health Statistics, 2018, processed in Kachuee, Goldstein, et al., 2019; Kachuee, Karkkainen 

et al., 2019). The dataset contains 92062 samples of survey participants. We consider 30 

features, which can be broadly categorized into four types: demographics, questionnaire-

based, examination-based and laboratory-based. For each feature, medical experts suggest 

a corresponding integer-valued cost (ranging from 2 to 9) for that feature based on “the 

overall financial burden, patient privacy, and patient inconvenience” (Kachuee, Karkkainen, 

et al., (2019)). A brief summary of the 30 features can be found in Table 2. Finally, each 

observation is associated with a label of pre-diabetes/diabetes (as one category) or normal. 

The task is to select features that are closely associated with diabetes while taking feature 

cost into consideration.

We consider the cheap knockoff procedure as in Section 2.2, modified so that the 

statistics T j
ℓ  computed in (3) are derived from ℓ1-penalized logistic regression (instead 

of ℓ1-penalized least squares). Following the arguments in Candes et al. (2018), we can show 

that Theorem 1 also holds for this choice of T j
ℓ .

To numerically verify Theorem 1, we would need to know the true set of relevant variables. 

We test the cheap knockoff procedure using partially-simulated data. To form a reasonable 

ground truth, we start by performing logistic regression on a random set of 72,062 samples. 

In total, we retain 11 variables whose p-values are smaller than 0.01/30 (by Bonferroni 

correction). We take these as the true set of relevant variables (see Table 4 for the list of 

relevant variables). We next generate responses for the remaining 20,000 samples from 

a logistic regression model using only these selected features. The coefficient values 

used correspond to those from the fitted logistic regression estimates. We then randomly 

divide these 20,000 samples (with simulated responses) into 50 non-overlapping sets, each 

containing 400 samples. On each set, we run our method to obtain a path of selected 

variables. Finally, we compute the estimated probability that the bound in (6) is violated, 

that is, ℙ sup
k

Uk
−1 ℛk, 1 wFDP ℛk > 1  for α ∈ 0.05, 0.1, …, 0.5 . We see from Table 3 that the 

estimated probability is lower than the corresponding value of α, indicating that Theorem 1 

holds for our proposed cost-conscious procedure.

On each of the 50 non-overlapping data subsets, we further compute wFDP and cost for 

the path of selected variables ℛk returned by cheap knockoffs and the proposal in Katsevich 
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and Ramdas (2018), which ignores feature costs. Figure 3 reports the 20th, 50th and 80th 

percentiles (over the 50 non-overlapping sets) of wFDP and cost and shows that our proposal 

effectively attains a lower wFDP and a lower cost than the proposal in Katsevich and 

Ramdas (2018).

Although prediction performance of the selected model is not the main theoretical focus of 

our proposal, we next study the prediction performance and the total cost of the selected 

variables. For comparison, we consider the following methods:

1. Katsevich & Ramdas(2018): the proposal of Katsevich and Ramdas (2018) 

applied to the ‘Selective and adaptive SeqStep’ method. It is equivalent to our 

method if we ignore the cost information, that is, we set ω1 = ω2 = … = ω30 = 2.

2. Logistic regression: logistic regression applied to all 30 features. This procedure 

is not cost-conscious, and does not perform features selection. We use this as a 

benchmark for classification performance.

We run these methods on all 92062 observations. Given the large sample size, we expect 

the training error to be a good approximation of the generalization error. Furthermore, to 

highlight the effects of feature costs, we consider exaggerating the feature costs by using 

the squares of their actual costs. From Figure 4, we see that cheap knockoffs can achieve 

favorable classification performance at a low feature cost. In particular, the first two panels 

show that for a fixed model size, the cheap knockoff procedure tends to achieve slightly 

worse classification performance than the procedure of Katsevich and Ramdas (2018), 

which is not cost-conscious. However, our method achieves this classification performance 

at a lower cost. The right panel shows that for a given model cost, our method can obtain 

favorable classification performance compared with the proposal of Katsevich and Ramdas 

(2018). Moreover, our method’s classification performance is close to the benchmark of 

logistic regression, while using a much cheaper set of features.

In Figures 5 and 6, we show the path of variables selected by cheap knockoffs and that 

of Katsevich and Ramdas (2018). Each point represents a variable added to a model (with 

the feature name in the legend). For example, we see that both methods include Gender, 

Height, Weight, and Triglyceride when the model size is 4. However, the cheap 

knockoff procedure tends to select cheaper features first, adding the expensive laboratory 

feature Triglyceride last among these four features. By comparison, the proposal of 

Katsevich and Ramdas (2018) does not show any preference for inexpensive features. For 

the model with two variables, cheap knockoffs selects Gender and Height, which has 

lower cost and better classification performance than the model of Height and Weight 

selected by Katsevich and Ramdas (2018).

In addition, in Figure 6, we present the path of variables selected by cheap knockoffs 

applied with squared feature costs, where squaring has been performed to exaggerate 

the effect of the feature costs. Comparing with Figure 5, we see that cheap knockoffs 

tends to select less expensive features, while still attaining comparable classification 

performance. In particular, when the costs are squared, cheap knockoffs no longer selects 

Diastolic BP(2nd), Systolic BP(4th), Systolic BP(1st), Diastolic 
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BP(3rd), Vigorous activity, and Upper leg length. Among these omitted 

variables, only Upper leg length is considered relevant by the logistic regression (see 

Table 4).

5 | DISCUSSION

In this paper, we proposed cheap knockoffs, a procedure for performing feature selection 

when features have costs. Cheap knockoffs is based on the idea of constructing multiple 

knockoffs for each feature. In particular, cheap knockoffs forces more expensive features to 

compete with more knockoffs, making it harder for expensive features to be selected. Our 

method yields a path of selected feature sets, and we show that the weighted false discovery 

proportion is simultaneously bounded with high probability along this path.

An interesting yet challenging future research direction is to develop a method based on 

the multiple knockoffs idea that provably controls the weighted false discovery rate. The 

martingale-type arguments used in the original knockoff paper rely on certain symmetries 

that are broken when the numbers of knockoffs constructed for different features are not all 

equal.

Finally, an R package named cheapknockoff, implementing our proposed method, is 

available on https://github.com/hugogogo/cheapknockoff. The simulation studies in Section 

3 use the simulator package (Bien, 2016), and the code to reproduce the simulation 

results (in Section 3) and the NHANES data analysis (in Section 4) are available at 

https://github.com/hugogogo/reproducible/tree/master/cheapknockoff. The NHANES dataset 

(National Center for Health Statistics, 2018) is processed in Kachuee, Goldstein et al. 

(2019), Kachuee, Karkkainen et al. (2019) and available at https://github.com/mkachuee/

Opportunistic.
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APPENDIX A: RUNNING TIME COMPARISON IN NUMERICAL STUDIES

TABLE A1

Wall-clock time comparison (in seconds, averaged over 100 simulated datasets) between our 

proposal and Katsevich and Ramdas (2018) in generating Table 1

γ 0 0.25 0.5 0.75 1

Cheap knockoffs (our proposal) 2.796 2.772 2.784 2.798 2.812

Katsevich and Ramdas (2018) 0.273 0.250 0.258 0.251 0.253

TABLE A2

Wall-clock time comparison (in seconds, averaged over 50 non-overlapping data subsets) 

between our proposal and Katsevich and Ramdas (2018) in generating Figure 3

Cheap knockoffs (our proposal) 7.284

Katsevich and Ramdas (2018) 2.678

APPENDIX B: PROPERTIES OF MULTIPLE KNOCKOFFS

We study the properties of the multiple knockoffs constructed in Step 1 of Section 2.2. 

Define

Z = X1
2 , …, X1

ω1 , X2
2 , …, X2

ω2 , …, Xp
2 , …, Xp

ωp T ∈ ℝ j
ωj − 1

as the random vector of all knockoff features, and

Z = X1
1 , X1

2 , …, X1
ω1 , X2

1 , X2
2 , …, X2

ω2 , …, Xp
1 , Xp

2 , …, Xp
ωp T ∈ ℝ j ωj,

(B1)

where Xj
1 = Xj is the original feature for j = 1, …, p. For any p tuple of permutations 

ς = ς1, …, ςp  where ςj is a permutation on the set 1, …, ωj , and for any vector 

v = v1
1 , …, v1

ω1 , …, vp
1 , …, vp

ωp ∈ ℝ∑j ωj, we define

vswap ς = v1
ς1 1 , …, v1

ς1 ω1 , v2
ς2 1 , …, v2

ς2 ω2 , …, vp
ςp 1 , …, vp

ςp ωp T ∈ ℝ j ωj .

Therefore, Zswap ς  denotes the random vector where each ςj permutes the ωj knockoff features 

(including the original one) corresponding to Xj

We generalize the definition of multiple model-X knockoffs (Definition 3.2 in Roquero 

Gimenez & Zou, 2018) to our setting in which each feature can have a different number of 

knockoffs:
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Definition 1. Consider any cost vector ω = ω1, …, ωp , where ωj > 1 are integers. The random 

vector Z is a valid ω-knockoff of X = X1, …, Xp  if

1. Zswap ς  and Z are identically distributed for any tuple of permutations 

ς = ς1, …, ςp ;

2. Z and Y  are conditionally independent given X.

Under the assumption that X follows a multivariate Gaussian distribution, it can be verified 

(see, e.g., Proposition 3.4 in Roquero Gimenez & Zou, 2018) that following Step 1 in 

Section 2.2, the vector Z is a valid ω-knockoff of X. In particular, the second property is 

guaranteed provided that the construction of Z does not use Y , as in Roquero Gimenez and 

Zou (2018).

The next lemma states the exchangeability property of the irrelevant features and their 

knockoffs, that is, we can permute an irrelevant feature and its knockoffs without changing 

the joint distribution of Z and Y .

Lemma 1 Exchangeability of irrelevant features and their knockoffs. Consider any tuple 

of permutations ς′ = ς1, …, ςp , where ςj is the identity permutation for j ∉ ℋ0, and ςj is an 

arbitrary permutation over the set 1, …, ωj  for j ∈ ℋ0. If Z is a valid ω-knockoff of X, then 

Z, Y  and Zswap ς , Y  are identically distributed.

Proof. By the property of a valid ω-knockoff, Zswap  ς  and Z are identically distributed. So it is 

left to show that Y ∣ Z and Y ∣ Zswap  ς  are identically distributed. This can be shown using the 

same arguments as in the proof of Lemma 1 in Candes et al. (2018).

We denote

T = T1
1 , …, T1

ω1 , T2
1 , …, T2

ω2 , …, T p
1 , …, T p

ωp ∈ ℝ i ωj,

for T j
ℓ  defined in Step 2 of Section 2.2. Furthermore, we define component-wise order 

statistics on T ,

Tordered  = T1, 1 , …, T1, ω1 , T2, 1 , …, T2, ω2 , …, T p, 1 , …, T p, ωp ∈ ℝ j ωj

such that T j, 1 ≥ T j, 2 ≥ … ≥ T j, ωj  for all j.

The following lemma characterizes the multiple knockoff statistics κj j = 1
p  computed in Step 

2 of Section 2.2. It essentially states that for j ∈ ℋ0, the statistic κj corresponding to the 

irrelevant feature Xj is uniformly distributed on the set 1, …, ωj , and is independent of the 

statistics corresponding to all other features and the component-wise order statistics Tordered. 

This property generalizes the “coin-flip” property of the standard model-X knockoff (see, 

e.g., Lemma 2 in Candes et al. 2018), and is the key to the proof of Theorem 1.
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Lemma 2 Multiple knockoff statistics. Suppose Z is a valid ω-knockoff of Z. For any 

j ∈ ℋ0, the statistic κj is uniformly distributed on the set 1, …, ωj , and is independent of 

κk k ≠ j and the order statistics Tordered. .

Proof. We adapt the proof idea in B.2 of Roquero Gimenez and Zou (2018). Consider 

any tuple of permutations ς = ς1, …, ςp , where ςj is the identity permutation for j ∉ ℋ0, 

and ςj is an arbitrary permutation over the set 1, …, ωj  for j ∈ ℋ0. We first show that 

ς1 κ1 , …, ςp κp , Tordered   has the same distribution as κ1, …, κp, Tordered  .

We denote ς−1 = ς1
−1, …, ςp

−1  where ςj
−1 is the inverse permutation of ςj. Recall from Step 2 

of Section 2.2, combined with the definition of Z in (B1), that T = f Z, Y  for some map 

f, and observe that T swap ς−1 = f Zswap ς−1 , Y . So by Lemma 1, we have that T swap  ς−1  and T  are 

identically distributed. For any kj ∈ 1, …, ωj  and tjℓ ∈ ℝ for j = 1, …, p and ℓ = 1, …, ωj, we 

have

ℙ
j = 1

p
κj = kj ,

j = 1

p

ℓ = 1

ωj

T j, ℓ = tjℓ

= ℙ
j = 1

p
T j

kj = T j, 1 = tj1 ,
j = 1

p

ℓ = 1

ωj

T j, ℓ = tjℓ

= ℙ
j = 1

p
T j

ςj−1 kj = T j, 1 = tj1 ,
j = 1

p

ℓ = 1

ωj

T j, ℓ = tjℓ

= ℙ
j = 1

p
κj = sj

−1 kj ,
j = 1

p

ℓ = 1

ωj

T j, ℓ = tjℓ

= ℙ
j = 1

p
sj κj = kj ,

j = 1

p

ℓ = 1

ωj

T j, ℓ = tjℓ ,

where the first and the third equalities hold from the definition of κj’s, the second 

equality holds because T swap  ς−1  and T  are identically distributed, along with the fact that 

T swap ς−1
ordered 

= Tordered . Therefore, we have shown that

ς1 κ1 , …, ςp κp , Tordered   and  κ1, …, κp, Tordered   are identically distributed .

(B2)

For any j ∈ ℋ0, now we further assume that ςk is an identity permutation for all k ≠ j, and 

ςj is an arbitrary permutation on the set 1, …, ωj . The equality in joint distributions (B2) 

implies that ςj κj  has the same distribution as κj. Since ςj is an arbitrary permutation on the 

set 1, …, ωj , we have that κj is uniformly distributed on the set 1, …, ωj , that is,

ℙ κj = i = ωj
−1 ∀i ∈ 1, …, ωj .

(B3)

Furthermore, for any ik ∈ 1, …, ωk  for k ≠ j, and t ∈ ℝ∑ϵωℓ ,
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ℙ ςj κj = i ∣
k ≠ j

κk = ik , Tordered  = t =
ℙ ςj κj = i, k ≠ j ςk κk = ik , Tordered  = t

ℙ k ≠ j κk = ik , Tordered  = t

=
ℙ κj = i, k ≠ j κk = ik , Tordered  = t

ℙ k ≠ j κk = ik , Tordered  = t

= ℙ κj = i ∣
k ≠ j

κk = ik , Tordered  = t ,

where the first equality holds from the Bayes formula and the fact that ςk is the identity 

permutation for all k ≠ j, and the second equality holds from (B2). Therefore, for any 

ik ∈ 1, …, ωk  for k ≠ j, and t ∈ ℝ∑eωℓ, we have that

ℙ κj = i ∣
k ≠ j

κk = ik , Tordered  = t = ωj
−1 ∀i ∈ 1, …, ωj .

(B4)

Combining (B3) and (B4), we have that κj is independent of κk k ≠ j and Tordered..

APPENDIX C: PROOF OF SIMULTANEOUS WFDP BOUND

Without loss of generality, we assume that the ordering in Step 3 of Section 2.2 is such that 

σ j = j for j ∈ 1, …, p . Consider

V ℛk, c =
c−1 + j 1 j ∉ ℛk

j ωj1 j ∈ ℛk ∨ 1
=

c−1 + j = 1
k 1 κj > 1

j = 1
k ωj1 κj = 1 ∨ 1

(C1)

for some constant c. Recall that

wFDP ℛk = ∑j ωj1 j ∈ ℋ0 ∩ ℛk
∑j ωj1 j ∈ ℛk ∨ 1 = ∑j ωj1 j ∈ ℋ0 1 κj = 1

∑j = 1
k ωj1 κj = 1 ∨ 1

.

We have the following key lemma:

Lemma 3. Let V ℛk, c  be defined as in (C1). Then for any α ∈ 0,1 , there exists x > 0 such 

that

ℙ sup
k

wFDP ℛk
V ℛk, c ≥ x ≤ α .

(C2)

Proof of Lemma 3. For any x > 0, from (C1),
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ℙ sup
k

wFDP ℛk
V ℛk, c ≥ x

= ℙ sup
k j = 1

k
ωj1 κj = 1 1 j ∈ ℋ0 − x

j = 1

k
1 κj > 1 ≥ c−1x

≤ ℙ sup
k j = 1

k
ωj1 κj = 1 1 j ∈ ℋ0 − x

j = 1

k
1 κj > 1 1 j ∈ ℋ0 ≥ c−1x

= ℙ sup
k

exp θ
j = 1

k
ωj 1 κj = 1 − x

ωj
1 κj > 1 1 j ∈ ℋ0 ≥ exp c−1xθ

for any θ > 0. Define

Zk = exp θ
j = 1

k
ωj 1 κj = 1 − x

ωj
1 κj > 1 1 j ∈ ℋ0

(C3)

for k ≥ 1, and Z0 = 1. Next we find a value of θ > 0 such that Zk  is a super-martingale 

with respect to a certain filtration ℱk. If such a value of θ exists, then from Ville’s maximal 

inequality for super-martingales (Ville, 1939), we have that

ℙ sup
k

wFDP ℛk
V ℛk, c ≥ x ≤ ℙ sup

k
Zk ≥ exp c−1θx ≤ E Z0

exp c−1θx
= exp −c−1θx .

(C4)

So it is left to show that Zk is a super-martingale with respect to a filtration ℱk, where ℱk is 

the σ-field generated from κj j ≤ k, j ∈ ℋ0. First we observe that Zk is adapted to ℱk for all k. By 

definition of a super-martingale, it is left to show that

E Zk
Zk − 1

∣ ℱk − 1 = E exp ωkθ 1 κk = 1 − x
ωk

1 κk > 1 1 k ∈ ℋ0 ∣ ℱk − 1 ≤ 1 .

First, we observe that this holds trivially for k ∉ ℋ0. For k ∈ ℋ0, we have

E Zk
Zk − 1

∣ ℱk − 1 = E exp ωkθ 1 κk = 1 − x
ωk

1 κk > 1 ∣ ℱk − 1

= E 1 κk = 1 exp ωkθ ∣ ℱk − 1 + E 1 κk > 1 exp − θx ∣ ℱk − 1

= exp ωkθ ℙ κk = 1 ∣ ℱk − 1 + exp − θx ℙ κk > 1 ∣ ℱk − 1

= exp ωkθ
ωk

+ ωk − 1 exp − θx
ωk

,

where the last equality holds from Lemma 2.

For any fixed α ∈ 0,1 , take x = θ−1 − clog α , which is equivalent to exp −c−1θx = α. Then 

it remains to select θ such that for all k ∈ ℋ0
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E Zk
Zk − 1

∣ ℱk − 1 = exp ωkθ
ωk

+ ωk − 1
ωk

exp clog α ≤ 1,

(C5)

which is satisfied for

θ ≤ 1
ωk

log ωk − ωk − 1 αc .

So we take

θ* = min
k ∈ ℋ0

1
ωk

log ωk − ωk − 1 αc .

Then (C5) holds and thus from (C4), the theorem holds with

x = −clog α
θ* = − clog α max

k ∈ ℋ0

ωk

log ωk − ωk − 1 αc .

(C6)

Now we have

U ℛk, c = xV ℛk, c = − log α
1 + j = 1

k c1 κj > 1

j = 1
k ωj1 κj = 1 ∨ 1

max
k ∈ ℋ0

ωk

log ωk − ωk − 1 αc ,

and the results in Theorem 1 follow.
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FIGURE 1. 
Each line represents one of 100 simulated datasets. Jitter is applied to ease visualization. 

The black dashed lines represent cheap knockoffs (our proposal) which incorporates feature 

costs, and the red solid lines represent Katsevich and Ramdas (2018) which does not 

make use of feature costs. Top panel: The cheap knockoff approach controls the weighted 

false discovery proportion with the desired probability α = 0.2 , whereas the Katsevich and 

Ramdas (2018) procedure does not. Bottom panel: The cheap knockoff approach attains a 

lower weighted false discovery proportion than the Katsevich and Ramdas (2018) procedure 

for most values of k when γ is large
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FIGURE 2. 
Tradeoff between prediction accuracy and total cost (averaged over 100 simulations). The 

line with dots in black represents the cheap knockoff procedure, and the line with crosses 

in red represents Katsevich and Ramdas (2018). The cost of the model selected by our cost-

conscious procedure can be much lower than that of the procedure in Katsevich and Ramdas 

(2018) without sacrificing predictive performance randomly divide these 20,000 samples 

(with simulated responses) into 50 non-overlapping sets, each containing 400 samples. On 

each set, we run our method to obtain a path of selected variables. Finally, we compute the 

estimated probability that the bound in (6) is violated, that is, ℙ̂ supk U−k
−1 ℛk, 1 wFDP ℛk > 1

for α ∈ 0.05,0.1, …, 0.5 . We see from Table 3 that the estimated probability is lower than the 

corresponding value of α, indicating that Theorem 1 holds for our proposed cost-conscious 

procedure.
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FIGURE 3. 
The 20th, 50th and 80th percentiles of wFDP (left panel) and cost (right panel) over 

50 non-overlapping data subsets of cheap knockoffs and the procedure in Katsevich and 

Ramdas (2018)
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FIGURE 4. 
Left: The classification performance (in terms of the area under the ROC curve) for different 

sizes of the selected model ℛk k = 1, …, 30 . Center: The total cost for different sizes of the 

selected model. Right: The classification performance versus the cost of the selected model. 

In all three panels of this figure, we consider the squared costs to highlight the effects of 

feature costs

Yu et al. Page 21

Stat. Author manuscript; available in PMC 2024 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5. 
The path of variables selected by cheap knockoffs (top) and the proposal of Katsevich 

and Ramdas (2018) (bottom). Each point represents a newly selected feature in the model. 

Variable indices are ordered from cheapest to most expensive
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FIGURE 6. 
The path of variables selected by cheap knockoffs, with squared costs. Each point represents 

a newly selected feature in the model. Variable indices are ordered from cheapest to most 

expensive
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TABLE 1

Proportion of 100 simulated datasets for which supk U−k
−1 ℛk, 1 wFDP ℛk > 1 is violated

γ 0 0.25 0.5 0.75 1

Cheap knockoffs (our proposal) 0.08 0.05 0.08 0.07 0.04

Katsevich and Ramdas (2018) 0.01 0.05 0.12 0.25 0.31

Note: Our proposed cost-conscious procedure successfully controls the probability below the α = 0.2 level for all values of γ, while Katsevich and 

Ramdas (2018) does not control this probability when γ = 0.75 and γ = 1.
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TABLE 2

Examples of the features in the NHANES dataset

Examples Cost

Demographics Age; Income; Education level 2 to 4

Questionnaire Average sleep length (in hours) 4

Examination Diastolic Blood pressure; Systolic Blood Pressure 5

Laboratory Cholesterol; Triglyceride; Fibrinogen 9
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TABLE 3

Proportion of 50 data subsets for which supk U−k
−1 ℛk, 1 wFDP ℛk > 1 is violated

α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Cheap knockoffs 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06
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TABLE 4

NHANES dataset: Significant features in logistic regression, in the order of increasing p values (smaller than 

0.01 / 30)

Name p value

Gender 1.73 × 10−262

Triglyceride 5.92 × 10−214

Height 1.17 × 10−184

Weight 1.98 × 10−102

Waist circumference 4.09 × 10−37

Body mass index 4.02 × 10−31

High blood pressure history 1.51 × 10−27

Cholesterol 4.92 × 10−24

Education 8.16 × 10−10

Upper leg length 3.17 × 10−5

Systolic BP(3rd) 1.01 × 10−4
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