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Decoding the mechanisms of MAP kinase-mediated dynamic signaling for control of

cellular processes

Abstract

Extracellular-signal regulated kinase (ERK) has long been studied as a key molecule in cel-

lular homeostasis. ERK is a driver of essential cellular processes and is often dis-regulated

in human diseases. A persistent question has been how a single pathway is able to direct

multiple cell behaviors, including growth, proliferation, and death. Modern biosensor studies

have revealed that the temporal pattern of ERK activity is highly variable and heteroge-

neous, and critically, that these differences in dynamic signaling mediate cell fate. This

dissertation discusses the current understanding of dynamic activity in the ERK pathway,

how it regulates cellular decisions, and how these outcomes lead to tissue regulation and

pathology. Furthermore, I address the question of how the ERK pathway exerts distinct and

context-specific effects on multiple processes. In brief, the dynamics of ERK activity induce

selective changes in gene expression programs which induces subsequent changes in cellular

behavior. In my research study, I combine an ERK biosensor approach with multiplexed

measurement of downstream target proteins to ask how well ERK activation correlates to

protein expression at the single-cell level. This analysis produces a model that can distin-

guish different classes of ERK dynamics within a heterogeneous population, providing a tool

for assaying ERK dynamics within fixed tissues. By understanding the dynamic mechanisms

involved in ERK signaling, there is potential for improving detection of oncogenic behav-

ior, and adopting pharmacological strategies that not only inhibit ERK, but also restore

functional activity patterns and improve disease outcomes.
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Chapter 1

Introduction

1.1 Preface

This introductory chapter provides a brief, broad, and layperson’s overview of the biology

of MAP Kinase signaling. The aim of this chapter is to educate readers who are not well

versed in biology and to explain the basic concepts needed to understand the entirety of this

dissertation.

1.2 Abstract

Cells are the basic unit of life and how they are maintained is crucial to human health.

Maintenance involves multiple cellular processes which have to be precisely timed and reg-

ulated. These processes involve movement, creating new cells, or using different cell types

for various functions. One of the most important molecules for these processes is Extra-

cellular signal-regulated kinase (ERK). This chapter discusses how ERK is at the center of

these cellular functions and provides a brief background into the research presented in the

subsequent chapters.
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1.3 Cells use signaling pathways for homeostasis

The human body is composed of cells that coordinate together to allow us to breath, move,

heal, and think. Not only do cells work together, they must also function independently to

maintain themselves or sense changes in the body. This process is referred to as maintaining

“homeostasis.” One of the main questions that this work seeks to address is how do cells

maintain homeostasis? Cells must grow, multiply (proliferate), or die in a precisely regulated

manner, which allows for the body to function normally. In other words, if there is damage

to the body (e.g. a cut on the skin), the skin cells will grow to heal the wound. Alternatively,

if a cell is damaged, it must kill itself to prevent further problems. These are complicated

cellular processes that cells execute by using signaling pathways (Lodish et al. 2000).

1.4 What are signaling pathways?

Cells are made of molecules, sugars, and fats which all contribute to how a cell functions.

A specific type class of molecules are called proteins. There are many different types of

proteins, and they play a critical role in the structure and function of cells. Proteins can be

enzymes which break down sugars or catalyze other types of biochemical reactions, they can

replicate DNA, and can even generate force to move other proteins around the cell. Proteins

are the core components of signaling pathways. There are different types of proteins within

these pathways, however, the most essential parts are receptors, enzymes, and transcription

factors. Receptors are proteins that reside on the outer surface of the cell, and allow the cell

to sense its surroundings. There are many types of receptors, each of which can uniquely

identify different molecules that surround the cell. Once a receptor attaches to (binds)

another molecule (ligand), this is perceived as a signal and other proteins will react to this

message. Each receptor is wired to its own specific set of downstream proteins. Once a signal
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is perceived, a set of proteins will interact with each other, and carry (transmit) the signal

into different parts of the cell, hence why this is referred to as a signaling pathway. Enzymes

help transmit the signal from the receptor by modifying other proteins. In many cases,

several enzymes sequentially act on other enzymes, where one enzyme modifies another,

and so on. Ultimately, the signal will be transmitted into the nucleus of the cell, where

transcription factors will trigger the creation of other proteins (transcription). Once these

new proteins are completely synthesized (translation), they will go on to execute their specific

tasks. Signaling pathways consist of unique sets of proteins that act as controllers of other

proteins, thereby regulating specific cellular functions (Alberts et al. 2014).

1.5 The central dogma

To better comprehend the work presented in this dissertation, it is important to understand

a few core principles of biology. Firstly, cells are bags of proteins. While there are many

other parts of a cell, proteins provide structure and function to a cell. Proteins reside in

three main parts of a cell, the membrane, the nucleus, and the cytoplasm. The cellular

membrane separates the outside of the cell from the inside, keeping unwanted molecules out,

and letting wanted molecules in (i.e. oxygen and nutrients). The cytoplasm is the fluid-like

substance inside of the cell containing nutrients, proteins, and other components of the cell

(organelles). Finally, the nucleus is an organelle that is itself a bag within the cell; it houses

the DNA.

Deoxyribonucleic acid (DNA) is often described to non-biologists as “the blueprint of

life.” To be more specific, DNA is the blueprint for proteins. Each protein has its own design

written in DNA, which is known as a gene. Humans have over 20,000 genes; therefore,

there are over 20,000 different proteins. Proteins originate from DNA, and there are steps

that involve reading the blueprint, and building each protein from smaller molecules. When

3



synthesizing a new protein, other proteins read DNA and create simpler blueprints called

mRNA molecules. This process is deemed DNA transcription. mRNA is similar to DNA;

however, it is much smaller and can be transported outside the nucleus. Once mRNA is

transcribed, a new protein is produced by reading the mRNA molecule; this is referred to as

mRNA translation. The central dogma of biology explains the process of turning DNA into

mRNA, and turning mRNA into proteins. These steps are also known collectively as gene

expression (Lodish et al. 2000).

1.6 The Ras/MAP Kinase pathway

The research conducted in this dissertation focuses on one of the most important signaling

pathways in cell biology: the Ras/MAP Kinase pathway or the Ras/ERK pathway. This

pathway is essential for cells and a functioning organism because it mainly controls cell divi-

sion (proliferation) and cell survival. Furthermore, the Ras/MAP Kinase pathway is unique

due to its role in additional cellular processes such as cell death, or turning one cell type into

another (cell differentiation). The ability to control multiple, different processes is another

reason why this pathway is highly studied. The core proteins of the pathway are named

Epidermal Growth Factor Receptor (EGFR), Ras, RAF, MEK and ERK. EGFR is a recep-

tor that recognizes extracellular molecules that may be secreted from other cells. Another

important protein, Ras, is a molecular switch which turns on when EGFR is bound to a

molecule such as Epidermal Growth Factor (EGF). Once Ras is switched on, it will lead to a

specific chemical modification in RAF known as a phosphorylation. RAF, along with MEK

and ERK, are enzymes that switch into active enzymes when they are phosphorylated. In-

terestingly, these enzymes will modify other proteins by phosphorylating them. Hence, they

are switched on by phosphorylation, and will phosphorylate other proteins; these proteins

are known as kinases. Overall, the pathway activates once the receptor binds a ligand,
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Ras becomes activated which in turn activates RAF, then RAF phosphorylates MEK, MEK

phosphorylates ERK, and ERK phosphorylates many other proteins. These proteins include

transcription factors, which are proteins that help begin the transcription of genes (Alberts

et al. 2014).

1.7 ERK is the main character

ERK is the most important kinase of the pathway because it directly phosphorylates over

1000 different proteins, depending on the signal at the initiation of the pathway and the

state of the cell. This seemingly allows the pathway to control several cellular processes

with just one central kinase. A fundamental question in the Ras/ERK field is how ERK

regulates different cellular outcomes, and how ERK decides which process to initiate. This

question is discussed in depth in the subsequent chapters of this dissertation. Broadly,

the current understanding is that different ERK targets are phosphorylated depending on

the stimulus that activates the pathway. ERK can rapidly switch between active and non-

activated states, which becomes a mechanism to control the rate of production of different

genes. Importantly, the strength of ERK activation is also dependent on the initial stimuli.

By varying the strength of activity, genes become produced at varying amounts. Certain

extracellular stimuli trigger specific patterns of ERK activation, which leads to different sets

of genes being produced in the cell. Subsequently, these genes continue on to control unique

cellular processes (Lavoie, Gagnon, and Therrien 2020).

The most classic example of this signal transmission was shown by giving rat cells (grown

in plastic dishes) two different growth factors, Epidermal growth factor (EGF) or Nerve

growth factor (NGF). Cells treated with NGF undergo a long and sustained activation

of ERK, while EGF triggers only a short burst of ERK activation. As a consequence of

sustained ERK, cells differentiate into a different cell type (Gotoh et al. 1990; Nguyen et
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al. 1993; Traverse et al. 1992). In contrast, the transient ERK activation by EGF causes

cells to divide instead of differentiate (Marshall 1995). The sustained ERK activation causes

accumulation of the proteins: c-Fos, c-Jun, and others which subsequently leads to cell

differentiation (Eriksson, Taskinen, and Leppä 2007; Murphy et al. 2002). It was previously

thought that only EGF and NGF were stimulating different pathways to induce the two cell

fates. However, the above work demonstrates that the growth factor signal is encoded by

different patterns of ERK activation.

1.8 Why study the ERK pathway?

ERK drives cell proliferation, and mutations in ERK or other parts of the pathway lead

to uncontrolled cell division. This is the basis of cancer and why the Ras/MAP Kinase

pathway is highly researched. Understanding the biology of the pathway in both normal

and cancer cells has helped develop many drugs that target specific proteins in the pathway.

Furthermore, there are several developmental disorders that ERK plays a role in. These

disorders are known as RASopathies and studying them will help identify better prevention

and treatments (Tidyman and Rauen 2009).

1.9 How ERK mediates several cell processes

As previously stated, a core question this work answers is how ERK controls cellular pro-

cesses. This question is addressed with two chapters that cover previous work on this topic,

and another chapter which presents new research conducted with cutting edge methods.

Firstly, ERK undergoes intricate patterns of activation as a mechanism to create different

signals depending on the context of the cell. While there are many reviews that discuss

this process, few emphasize research that conducts mathematical modeling, which involves
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representing the Ras/MAP kinase pathway as equations and quantitatively describing the

interactions in the system. Chapter 2 provides an in depth review of the history of ERK

biology, specifically describing ERK behavior and how it can undergo complex patterns of

activation. One of the more recent advances in the field of ERK biology is the use of single-

cell biosensors. These are tools that allow researchers to measure ERK activation in live

cells over time. Chapter 2 also discusses the different forms of ERK activation patterns that

have been observed using biosensors.

In the past decade, live-cell biosensors have revealed dynamic patterns of ERK signaling

that occur in many different cells and tissues. These ERK patterns are associated with

changes in gene expression, and chapter 3 provides an in depth description of this topic.

Additionally, chapter 3 describes how ERK alters cellular processes and regulates tissues.

This chapter also discusses how ERK is dysregulated in cancer and developmental diseases.

Finally, chapter 4 is a research study on the effect of ERK activation on eight genes that are

directly or indirectly regulated by ERK. No study to our knowledge has measured live-cell

ERK signaling and measured the protein levels of many genes downstream of ERK in the

same, individual cell. Furthermore, activation of the ERK pathway is typically assayed by

measuring phosphorylated ERK. Live-cell biosensors have made measurements more accu-

rate, but are not always feasible. Therefore, we set out to find other proteins that capture

ERK dynamics, which can serve as alternative measurements to assay ERK activity. These

results will improve detection of abnormal ERK behavior in disease settings.

1.10 Appendices

The appendix of this dissertation contains three projects related to the Ras/MAP Kinase

pathway. Appendix A displays preliminary results showing the c-Jun, a target of several

MAP Kinases, is highly dynamic in basal settings. It demonstrates oscillations in its ex-
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pression, an observation that has not previously been shown. Appendix B, is a commentary

article written about a recent study from the lab of Olivier Pertz. This study investigates

the spatial patterns of ERK observed during embryonic development. Finally, appendix C

is a methods chapter describing how to quantitatively investigate paracrine signaling in the

Ras/MAP Kinase pathway.
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Chapter 2

Models and Mechanisms Driving Intricate

Patterns of ERK Activity

2.1 Preface

This chapter was originally submitted to The Biochemical Journal on May 30th, 2023, as

part one of a two part review on ERK dynamics: Abhineet Ram, Devan Murphy, Nicholaus

DeCuzzi, Madhura Patankar, Jason Hu, Michael Pargett, and John Albeck. A Guide to

ERK Dynamics, part 1: Models, Mechanisms, and Mayhem.

J.A. conceptualized and the review and contributed to the text. A.R., D.M., N.D., MaP.,

contributed to the writing and editing the text. Mi.P. assisted with reviewing sections of the

text. J.H. created all figures.

The article has been modified to satisfy the formatting requirements of this dissertation.
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2.2 Abstract

Extracellular-signal regulated kinase (ERK) has long been studied as a key driver of both

essential cellular processes and disease. A persistent question has been how a single pathway

is able to direct multiple cell behaviors, including growth, proliferation, and death. Modern

biosensor studies have revealed that the temporal pattern of ERK activity is highly variable

and heterogeneous, and critically, that these differences in dynamic signaling mediate cell

fate. This two-part review discusses the current understanding of dynamic activity in the

ERK pathway, how it regulates cellular decisions, and how these outcomes lead to tissue reg-

ulation and pathology. In part 1, we cover the optogenetic and live-cell imaging technologies

that first revealed the dynamic nature of ERK, as well as, current challenges in analysis of the

resulting data. While hurdles still remain, it is clear that higher temporal and spatial reso-

lution provides mechanistic insights on pathway circuitry. We also discuss the mathematical

models that describe ERK dynamics, including receptor-level regulation, negative feedback,

cooperativity, and paracrine signaling. Alongside improvements in experimental capabilities

are the advancement of computation models that arise from this type of data. Exciting new

algorithms and advanced computational tools enable quantitative measurements of single-

cell ERK activation, which in turn inform better models of pathway behavior. However, the

fact that current models still cannot fully recapitulate the diversity of ERK responses calls

for a deeper understanding of network structure and signal transduction.

2.3 Introduction

The extracellular signal regulated kinase (ERK) pathway (2.1) plays a widespread role in

the development and physiology of animals (Lavoie et al., 2020). ERK is a member of the

mitogen-activated protein kinase (MAPK) family, which is found in all eukaryotes. Among

10



GRB-2
SOS

RAS

RAF

MEK

ERK

HRAS
KRAS
NRAS

ARAF
BRAF
CRAF

MEK1 
MEK2

ERK1/2 

Core 
MAPK/ERK 

Pathway

EGFR
EGF

ERK

Nucleosome

Nucleus

ERK ERK

AREG

MMP

PP2A

DUSP

EZH2

Transcription: AP-1, ETS, Fra1, EGR1, Fos
Cell Cycle: p21, p16, Cyclin D
Cell Survival: Myc
Ligand: HB-EGF, TGF-α, TGF-β
Regulators: DUSP1, DUSP5, DUSP6

DUSP

FOS
ETS

PDGFR TrKA FGFR

EGF Ligands

Cellular Substrates

Proliferation

Migration

Metabolism

Cell Growth

Cell Survival

Differentiation

Ligand Secretion

Cytosol

Figure 2.1 The central ERK signaling pathway

11



Figure 2.1: The central ERK signaling pathway a Initiation of the MAPK/ERK pathway
begins with ligand binding of tyrosine receptor kinases (RTKs). This begins the phospho-
rylation cascade and activation of the core MAPK/ERK pathway consisting of RAS, RAF,
MEK, and ERK (blue box, individual isoforms are listed). Active ERK either translocates to
the nucleus where it stimulates gene expression, or dimerizes and phosphorylates cytoplasmic
substrates. Depending on ERK dynamics, several gene programs are activated including cell
cycle, cell survival, pathway regulation, and ligand production (pathways bolded and specific
genes listed in the box within the nucleus). Outside the nucleus, ERK regulates cytoplasmic
proteins involved in cell growth, metabolism, and differentiation. Pathway termination is
regulated by numerous phosphatases (PP2A and DUSPs), as well as several negative feed-
back loops. For a more comprehensive illustration see Lavoie review (Lavoie et al., 2020).
This complex network regulates ERK dynamics and is responsible for driving many cellular
behaviors.

the MAPK family, ERK has received a disproportionate amount of attention, owing to

its essential involvement in many processes that impact human health. ERK activity is

required for the proliferation of cancer cells, the formation of memory by neurons, and

morphological changes in development, among many other examples. Compared to its close

MAPK relatives, JNK and p38, ERK shows a unique propensity for dynamic fluctuations in

activity over time (Regot et al., 2014). These dynamics arise from the regulatory topology

of the pathway, which includes numerous feedback loops. It has been recognized for two

decades that the frequency, duration, and amplitude of ERK activation are important in

determining its effect on the cell (Ebisuya et al., 2005).

Several early studies laid the conceptual groundwork for understanding the importance

of ERK dynamics. In the 1990s, observations from several groups first established a rela-

tionship between ligand stimulation, the timing and duration of ERK activity, and cell fate

(Wells et al., 1990). Manipulating ERK activation patterns by different growth factors, re-

ceptor expression levels, or oncogenic mutants led to alternate cell fates (Marshall, 1995). In

parallel, Ferrell et al. showed that MAPK activation occurs in a highly switch-like manner

in individual Xenopus oocytes (Ferrell and Machleder, 1998). These results demonstrated

that a pathway’s output does not necessarily operate as a simple linear response to stimuli,

12



but instead is shaped heavily by feedback, especially when viewed at the single-cell level

(C. Y. Huang and Ferrell, 1996). Finally, it was found that the regulatory structure for

a number of ERK target genes can make them sensitive to the duration of ERK activity

(Cook et al., 1999; Murphy et al., 2002, 2004). Together, these concepts form the overarching

framework for dynamics-based information encoding and decoding by the ERK pathway. In

this review, we focus on the unique dynamic behavior observed for ERK and examine how

it arises from the biochemical organization of the pathway. In a companion review (Insert

reference to jointly submitted manuscript), we look further into the impact of ERK dynamics

on downstream processes and cell phenotypes.

Mathematical models have played an essential role in the study of ERK, providing a way

to test questions that are not accessible experimentally and to explore possible mechanisms

for dynamic behavior. In general, the flux of protein-protein interactions and modifications in

the pathway can be represented as a system of ordinary differential equations (ODEs), which

simulate pathway dynamics under different conditions. Historically, Ferrell and colleagues

used such models to understand how MAPK pathways could exhibit the observed non-linear

responses without explicit cooperativity and positive feedback (C. Y. Huang and Ferrell,

1996). This behavior is termed zero-order ultrasensitivity and occurs for MAPK systems

when both the kinase and the competing phosphatase are limited enough to be saturated

(Ferrell and Ha, 2014). Subsequently, the question of how transient ERK behavior arises

under constant stimuli led to an expansion of MAPK models. Early evidence implicated

the internalization of the EGF receptor (Wiley et al., 1991), but it was also argued that

transient assembly of signaling complexes at the EGF receptor could explain the observed

transient kinetics (Kholodenko et al., 1999). Multiple models then began to explore the

possibility of oscillations in activity due to feedback phosphorylation (Brightman and Fell,

2000; Kholodenko, 2000). Orton and colleagues elegantly summarize the early mathematical

models of MAPK signaling (Orton et al., 2005), and the field of MAPK modeling continues to
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evolve, exploring the complex effects of feedback and more subtle concepts such as buffering

of ERK by its substrates (Ahmed et al., 2014). The concepts of transient, oscillatory, and

excitatory behavior remain actively studied, especially with regard to distinguishing between

the roles of true oscillations of the MAPK pathway and of pulsatile responses excited by

fluctuating external stimulus. Throughout this review, we discuss the relevant mathematical

models that can be used to understand the dynamic operation of the ERK pathway.

2.4 Forms of dynamic ERK activity

Experimentally observed ERK dynamics can be grouped into several major categories (Box

1), including sustained, transient, peak with sustain, oscillatory, sporadic, and complex.

These categories are not rigid but provide a useful framework for discussing ERK activity

over time. In early studies, the PC-12 rat pheochromocytoma cell line served as a useful

model system, as it responds with ligand-specific ERK dynamics: sustained activity to NGF

stimulation and transient activity to EGF (Cowley et al., 1994). Importantly, these dynamics

have phenotypic consequences resulting in cell proliferation and differentiation, respectively.

At the time, population-level assays, such as immunoblots, were only able provide rough

estimates of ERK patterns, such as, sustained activation lasting several hours, or transient

activation peaking at about 20 minutes before returning to baseline (Marshall, 1995; Muroya

et al., 1992; Nguyen et al., 1993; Wells et al., 1990). More complex ERK dynamics such

as oscillations were postulated (Kholodenko, 2000), but were only clearly observable with

the development of fluorescent ERK biosensors (Green and Alberola-Ila, 2005; Harvey et

al., 2008). These reporters are briefly summarized in the following section and have been

reviewed in depth elsewhere (Nakamura et al., 2021).

Using live-cell reporters, Pertz and colleagues re-examined the classic PC-12 system, con-

firming the original findings from Marshall et al., but also uncovering substantial cell-to-cell
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Sustained - Long Term: Continuous, near-maximal activation of ERK in response to a stimulus. 

Pheochromocytoma PC-12 cells treated with 50 ng/mL NGF [5,24,52]

H1666 Cells treated with 10 ng/mL EGF [52,134]

TrkA expressing MCF10A treated with 50 ng/mL NGF [5,24,18,41]

WT HRAS expressing MEF cells treated with bFGF [73]

Possible Mechanisms: Stimulation of receptors with low internalization and weak negative feedback; 
activating oncogenes in the RAS/RAF/MEK cascade

Membrane

Cytoplasmic

Nuclear

Time 

Endosome

Short-Term Transient Peak: A single 5–20-minute ERK response to ligand-stimulation with minimal 
or no subsequent ERK activity for the duration of stimulation.

Pheochromocytoma PC-12 cells treated with 1 ng/mL EGF [5,24,52]

NIH 3T3 cells treated with 50 ng/mL Anisomycin [2]

WT HRAS expressing MEF cells treated with 100 ng/mL PDGF or IGF-1 [73]

Possible Mechanisms: Stimulation of receptors with high internalization rate or strong negative 
feedback.

Peak with Sustain: A strong initial ERK activation peak that gradually decays to a steady-state. 

Simulated HeLa cells treated with 0.5 ng/mL EGF [64]

A431 cells treated with 5nM EGF [62]

Pheochromocytoma PC-12 cells treated with 50 ng/mL NGF [24]

WT HRAS expressing MEF cells treated with 0.1 - 10 ng/mL EGF [73]
 
Possible Mechanisms: Stimulation of receptors with intermediate internalization and negative 
feedback strength.

Oscillatory: Regular transient ERK activations, or “pulses” of ERK with a fixed period.

Simulated generic MAP Kinase [14,100]

NIH 3T3 cells treated with 25ng/mL bFGF [135]

184A1 cells treated with 1ng/mL EGF [25]

Mouse Embryonic Stem Cells exposed to 20ng/mL FGF [136]

Possible Mechanisms: Combination of positive cooperativity and negative feedback.
Sporadic Pulsing: Intermittent pulses of ERK activity with similar amplitudes but irregular spacing, whose 
frequency increases with the concentration of stimulus.

MCF10A cells treated with 10-100 pg/mL EGF [26]

NRK-52E cells in normal culture medium (DMEM+10% FBS) [27]

Mouse epidermis in vivo, localized to regions where cell division events occur [92]

C. elegans vulval precursor cells during differentiation [137]

Serum starved MCF10A cells adjacent to a cell that undergoes apoptosis [138]

Possible Mechanisms: Paracrine signaling between cells via secreted EGFR ligands or other cytokines.

Sub-cellular ERK Dynamics: ERK activity can vary depending on the sub-cellular region where the activity 
is measured within the cell. 

● HEK293T cells expressing Plasma Membrane localized ERK reporter or Cytoplasmic localized ERK 
ERK reporter treated with EGF. Plasma Membrane ERK activity was sustained whereas cytoplasmic 
ERK activity was transient [31].

 
● HEK293T expressing SNAP-β2AR and either cytoplasmic, plasma membrane, or endosome 

localized ERK reporter. When treated with 10uM adrenaline transient, none, and sustained ERK 
activity was observed for each reporter, respectively [141].
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Biosensor Western Blot 

Complex Peaks: Dynamic ERK activity consisting of pulses with varying duration and amplitudes.

H1395 cells that obtained G469A BRAF mutation have aberrant ERK “off” kinetics, resulting in irregular 
dynamics compared to wt BRAF cells. [139]

HMT-3255 S1 cells treated with 100 ng/mL AREG [112]

MCF10A cells after induction of Oncogenic BRAF (V600E) [43]

Primary Mouse Keratinocytes, complete or growth factor-free media [140]

Possible Mechanisms: High levels of paracrine secretion; oncogenic mutations. 
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Figure 2.2: Box 1: A field guide to ERK dynamic behaviors
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variation (Ryu et al., 2015). This variation is extremely broad; Ryu et al. found both

sustained and transiently responding cells at different proportions within any population of

PC-12 cells, regardless of EGF or NGF stimulation. Further intricacies were revealed in

the form of oscillations (Shankaran et al., 2009) and sporadic pulses (Albeck et al., 2013;

Aoki et al., 2013) in growth factor-stimulated cells. The cell-to-cell variation also found in

these systems made it clear why these diverse ERK activity forms were not measurable in

immunoblot studies; because they occur asynchronously between cells, they are irrevocably

blurred in the average of thousands of cells in an immunoblot sample. In addition to dis-

tinguishing single-cell variation, live-cell assays also provide much greater time resolution,

allowing dynamics to be closely tracked on the scale of minutes for many hours or even days,

in contrast to the small number of time points typically captured in an immunoblot.

The subcellular distribution of active ERK within a cell is also an important facet of

ERK dynamics. ERK sequestration to different subcellular regions can be a mechanism to

regulate interactions between ERK and its substrates, altering the subset of targets that are

phosphorylated (Nakakuki et al., 2010; Wortzel and Seger, 2011). This is highlighted by the

requirement of ERK translocation from the cytoplasm to the nucleus for the phosphoryla-

tion of transcription factors such as Elk1 and their subsequent induction of gene expression

(Brunet et al., 1999). ERK biosensors localized to the plasma membrane and endosomes

have begun to uncover examples of distinct subcellular ERK activity patterns. For example,

activity at the plasma membrane can be sustained, in contrast to the transient activation

observed in the cytosol and nucleus (Keyes et al., 2020). However, complexities in the sub-

cellular milieu remain yet to be fully resolved. ERK translocation is not necessarily required

for the phosphorylation of ERK substrates within the nucleus (Raman et al., 2007; Wilson

et al., 2017). It is possible for ERK to interact with and phosphorylate its substrates irre-

spective of their bulk localization because of shuttling between compartments on the scale of

minutes. Even with the biosensors now available, further work will be needed to understand
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the full temporal and subcellular features of ERK activity dynamics (Kholodenko et al.,

2010).

2.5 Advances in measuring ERK activity and remain-

ing challenges

ERK dynamics are most easily detected by fluorescent protein-based ERK activity reporters

(i.e., biosensors) which have recently been reviewed in detail (Nakamura et al., 2021). The

main categories of reporter include FRET-based (EKAR series), translocation-based (ERK-

KTR; ERK-FP fusions), and degradation-based (FIRE) (outlined in Table 1). While the

FRET-based ERK sensor has undergone many generations of improvements, the ERK-KTR,

ERK-FP and FIRE reporters remain essentially unchanged (Table 1). Furthermore, as

each reporter type has advantages and disadvantages, the choice of reporter used is critical

when studying live-cell ERK activity. For instance, FRET-based ERK reporters are spec-

trally limited to FPs capable of FRET, such as CFP/YFP for their function. Alternatively,

translocation-based reporters use only a single FP of any color, providing much more flexi-

bility to combine with other reporters or fluorescent markers (Kudo et al., 2018; Regot et al.,

2014). Additional markers to distinguish the nucleus from cytosol are still needed to quantify

translocation reporters, and cells with complex three-dimensional or dynamic shapes can be

a significant challenge to accurately quantify. Reporters also vary in the timescale of ERK

activity changes they can detect, with FRET reporters showing the fastest responses, fol-

lowed closely by translocation-based reporters, and degradation reporters being the slowest.

While rapid reporter responses are needed to accurately distinguish closely grouped pulses

of ERK activity, the slow responses of a degradation-based reporter can be very useful for

measuring the integrated activity of ERK over time (Albeck et al., 2013; Benary et al., 2020;

Brandt et al., 2019).
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In most cases, the specificity of ERK reporters is high, as judged by the ability of either

MEK or ERK inhibitors to eliminate their signal. However, one notable exception is the

tendency of FRET and translocation-based reporters to show a non-ERK-specific increase

in activity late in the cell cycle. This non-specific response is attributable to the fact that

the ERK substrate sequences used in many of the existing reporters can also be phospho-

rylated by cyclin-dependent kinases (CDKs) that are most active in that G2 and M phases

(Aoki et al., 2013), causing a slow increase in reporter signal that is resistant to MEK or

ERK inhibitors and rapidly disappears following cell division (Gerosa et al., 2020). In our

experience, the onset of this non-specific activity varies between cell lines; some cells show

an increase in non-specific signal 1-2 hours prior to mitosis while others show a much longer

period of accumulation. A recent set of FRET-based reporters derived from the EKAR-EV

reporter, EKAR-EN4 and EKAR-EN5, addressed this problem by mutating two residues in

the target phosphorylation sequence to eliminate the CDK affinity (Ponsioen et al., 2021).

An ongoing challenge for accurate reporter readouts lies in quantifying the intensity

of ERK activity. This is an inherently difficult problem, as “ERK activity” at any given

time is not a uniform parameter across the cell. In addition to spatial variability, different

endogenous substrates can be phosphorylated to different extents, depending on the affinity

of the substrate-kinase interaction (Burkhard et al., 2011). Thus, any individual reporter

is inherently limited to a single “perspective” on ERK activity, while the set of endogenous

ERK substrates represent multiple perspectives. Combining multiple ERK reporters in the

same cell has been a useful exercise to show how the same pulse of ERK activity can be

received differently by alternate targets (Aikin et al., 2020; Gillies et al., 2017; Sparta et al.,

2015). These studies show that FRET and translocation ERK reporters agree in large part,

but they also reveal subtle differences in on-rate and off-rate. Another key difference is in

the measured amplitude of ERK activity. Dual readouts highlight systematic differences in

dynamic range between reporters. For example, the FRET reporter EKAR3 shows greater
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sensitivity than ERK-KTR to small ERK activity changes but saturates easily (Gillies et

al., 2017). While the dynamic range of FRET-based reporters has increased (Ponsioen et

al., 2021; Vandame et al., 2014), a head-to-head comparison between the newest FRET

reporters and translocation reporters to assess their relative advantages has not yet been

performed. Altogether, these differences emphasize the caveat that the amplitude of ERK

reporter signals must be interpreted with caution and not as an absolute linear measurement.

We discuss these quantitative issues in more depth in Box 2.

Another current challenge lies in extracting meaningful information from the hundreds

or thousands of cells that are interrogated in a typical live-cell imaging experiment. The first

step in this process is the extraction of ERK activity “traces” from image datasets, which can

now be performed automatically using various segmentation and tracking algorithms (Blum

et al., 2017; Bray and Carpenter, 2015; Pargett et al., 2017). While this step was often

rate-limiting in the past, advances in computational image analysis have made it routine. In

particular, machine learning software such as StarDist and CellPose have greatly increased

the reliability of automated cell recognition (Schmidt et al., 2018; Stringer et al., 2021).

Tracking algorithms, such as uTrack (Jaqaman et al., 2008) and EllipTrack (Tian et al.,

2020), link cells from one image frame to the next, creating a time-series vector for each

cell. Typically, it is possible to track over 90% of cells in each experiment; however, tracking

efficiency is reduced by abnormal cell morphology, over-confluency, fast migration, or cell

death. Despite these limitations, recent studies have used data from thousands or even

hundreds of thousands of cells to draw statistically well-supported conclusions. Subsequent

challenges emerge in the analysis of high-content time-series data, which we briefly discuss

in Box 2.
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2.5.1 Box 2: Rigor and Challenges in Quantification and Analysis

Reporter Calibration

For true quantitative measurements of ERK activity, two problems must be dealt with.

First, the reporter signal itself must have its linear range of response characterized. This can

be done by western blotting, to relate the fraction of the reporter in their phosphorylated

form to its readout detected by FRET (Gillies et al., 2020; Kosaisawe et al., 2021). When

performed carefully, reporter signals can be interpreted quantitatively, relative to the maxi-

mal signal, and any nonlinear regions of the readout can be identified. Second, the reporter

readout must be linked to the level of ERK activity in the cell. This calibration can be ap-

proached by relating ERK FRET readouts to immunoblots on parallel samples that measure

the fraction of ERK phosphorylation or endogenous ERK substrate phosphorylation. How-

ever a crucial caveat is that ERK reporters indicate not simply ERK activity, but instead the

balance of ERK activity relative to any phosphatase activity on the reporter’s ERK target

site. The rapid reversibility of reporter signals upon ERK inhibition indicates high cellular

phosphatase activity, and it seems reasonable that these phosphatases are the same ones

that act on endogenous ERK substrates. However, this assumption has not been established

experimentally. Any change in this phosphatase activity will affect the relationship between

ERK activity and the observed reporter signal. This complicating factor can be approached

by mathematically modeling both ERK and phosphatase effects on the reporter, or by em-

pirically determining the relationship between phosphorylated ERK and the reporter signal

(Gillies et al., 2020). While often overlooked, phosphatase activity may be one of the main

drivers of heterogeneity in observed ERK readouts, both within and between cell types.
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Quantifying features in time series data

Once live-cell data is collected, one must choose the appropriate technique to mathematically

describe, or “featurize”, the time-dependent signal of ERK activity. Several mathematical

methods are available to extract information from time series data (Fulcher and Jones, 2017).

Pulse detection algorithms identify peaks of signal activity and then quantify parameters such

as signal amplitude, pulse duration, or frequency (2.3A) (Pargett and Albeck, 2018; Foreman

and Wollman, 2020). Other methods include Fourier and wavelet transformation (Kobrinsky

et al., 2005; Geva-Zatorsky et al., 2010), which decompose time series measurements into

simpler components (which, added together, reconstruct the original signal). With any of

these methods, the challenge lies in identifying the information that is most relevant for

the cellular process under study, whether it be the amplitude, duration, average, or another

aspect of ERK activity. Typically, it is necessary to experiment with more than one method

to quantify the relationship of interest.

Clustering cells by dynamics

Parsing cells with similar reporter activity is often necessary as a first step during analysis.

This task is not trivial as cellular kinetic data frequently have overlapping distributions, and

thus determining the appropriate number of clusters is often arbitrary. A critical considera-

tion is whether to predefine the number of clusters or allow the algorithm to determine the

final number of groupings. There are many clustering functions to choose from, including K-

means clustering, hierarchical clustering, K-nearest neighbor, principal component analysis,

and other deep learning-based methods. Another important consideration is which distance

metric to use; dynamic time warping has proved to be one useful approach, which allows

signals that are similar in shape but have different timing to be grouped together (Strasen

et al., 2018). Each of these approaches require significant user input which must be guided
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by awareness of algorithm limitations and the structure of the data. As a result, clustering

can be challenging to implement in exploratory research.

Deep learning and neural networks offer a more sophisticated approach to classify dy-

namic signaling behaviors. Rather than directly breaking down signals into unique char-

acteristics, neural networks are trained to recognize distinguishing features in the data. A

recent example of this is CODEX, which can recognize dynamic “prototypes” for signal be-

havior that can be used to group similarly behaving cells (Jacques et al., 2021). This method

allows a computer to learn which classifiers patterns distinguish signal activity between spec-

ified categories, such as treatment conditions. Although these methods allow for analysis of

large, multidimensional datasets, it can be difficult for humans to understand the abstract

patterns that the algorithms learn. CODEX resolves this issue by providing prototypical

time trajectories for each of the cell categories it identifies. An additional advantage is that

CODEX can be used on datasets where multiple biosensors are measured in the same cell.

Thus, with the increasing size and complexity of reporter datasets, deep learning methods

provide an attractive tool to facilitate data interpretation.

2.6 Modeling the mechanisms driving dynamics

The question of how different forms of ERK dynamics are generated at the molecular level

has captured scientific interest for at least 30 years (Wells et al. 1990). Approaches to this

question have spanned structural analysis, subcellular localization, and mass-action kinetic

modeling (Sasagawa et al. 2005; Filippi et al. 2016; Markevich, Hoek, and Kholodenko

2004; Sturm et al. 2010; Nakakuki et al. 2010; Lemmon et al. 2016; Freed et al. 2017).

Many mechanistic details can shape the dynamic behavior of ERK, and here we group these

mechanisms into several overarching concepts and discuss the evolution of mathematical

models that explore these factors. Computational models play an increasingly essential role
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in this question because the complexity of multiple layers of regulation make it difficult or

impossible to predict system behavior from intuition alone. A major caveat that applies

across these studies is that many mathematical models pre-date the ability to track ERK

activity in live cells. Consequently, many published models, although intended to represent

a prototypical cell, have been fit only to population-average data, which does not always

accurately represent the true behavior of any individual cell. Thus, conclusions from models

must be interpreted with caution in cases where it is unknown how single cells differ from

the mean.

2.6.1 Predominance of RTKs in setting ERK dynamics

From the earliest studies of ERK signaling, it was observed that ligands for different RTKs

can specify distinct activity kinetics (Muroya, Hattori, and Nakamura 1992). These receptor-

specific patterns can be attributed either to differential binding of adaptor and RAS-family

G proteins to the receptor (Kao et al. 2001), or to differences in the kinetics of receptor

dimerization, internalization, degradation, and recycling (Sorkin and Goh 2008; Wells et al.

1990). EGFR dimers perform autophosphorylation of their partner receptors, which targets

them for internalization by both clathrin-mediated and clathrin-independent mechanisms

(Sigismund et al. 2008). Although the receptor may continue to signal from endosomal

compartments of the cell, this internalization ultimately results in EGFR inactivation and

transient ERK activation (??B) (Burke, Schooler, and Wiley 2001; Sorkin and Goh 2008).

Numerous mathematical models of ERK signaling have incorporated the mechanisms of

receptor processing as a focus of regulation (W. W. Chen et al. 2009; Kleiman et al. 2011;

Schoeberl et al. 2002; Hendriks et al. 2005; H. Steven Wiley, Shvartsman, and Lauffenburger

2003; Sasagawa et al. 2005; Santos, Verveer, and Bastiaens 2007; Richard J. Orton et

al. 2005; Starbuck and Lauffenburger 1992). These models enabled exploration of how

receptor internalization rates determine the duration of ERK activity and predict responses
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to different EGF levels.

The importance of receptor kinetics is underscored by converging evidence that ERK

activity tracks very closely with RTK activity. When ERK activity is stimulated by light-

induced optogenetic constructs upstream of RAS, the activity follows the intensity of light

stimulation with very little lag or adaptation (Toettcher, Weiner, and Lim 2013; Dessauges et

al. 2022b). This “memoryless” behavior is surprising given that several downstream negative

feedback loops (detailed in the next section) are operative under these conditions and would

be expected to complicate the signal dynamics. However, a strong correlation between

upstream initiation and ERK output has been observed in multiple systems, regardless of

whether the signaling is initiated at the level of RAS or the intracellular domain of RTKs

(Dessauges et al. 2021). Further corroborating this concept are data showing that ERK

activity terminates within seconds to minutes upon RTK inhibition (Kleiman et al. 2011;

Sparta et al. 2015), and that ERK activity tracks dynamically with receptor phosphorylation

across different receptors (Kiyatkin et al. 2020).

Another line of evidence for the importance of receptors in dynamics is that oncogenic

or activating mutations in proteins downstream of the receptor, including RAS, RAF, or

MEK generally promote more sustained ERK activity in single cells (??A) (Gillies et al.

2020; Aikin et al. 2020). Together, these data argue that tendency toward transient or

sustained activity of ERK is primarily a reflection of the activation and deactivation of the

ligand-bound receptor, in at least several commonly studied cell types. However, under

more atypical experimental conditions, the regulation of EGFR internalization can result in

surprising behavior. Under conditions in which EGF is slowly ramped to high concentra-

tions, receptors become downregulated and fail to activate ERK (Krause et al. 2021). This

adaptation persists for hours, and even withdrawal of EGF for several hours and subsequent

re-stimulation does not elicit ERK activation. Thus, receptor-level regulation also acts as

a noise filter to reduce spurious ERK activity in the face of incremental or gradual ligand
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Figure 2.3: A Comparison of experimental techniques to investigate the strength of negative
feedback. Left: ERK inhibits both MEK and RAF. Middle: Experimental knockdown of
Raf weakens negative feedback from ERK; however, signaling from RAF to MEK will also
be disrupted. Right: Feedback insensitive mutants only weakens the negative feedback from
ERK, and allows for wild type RAF to MEK signaling. B List of genes that have been
shown to positively or negatively regulate unique features of ERK activity. This list is
curated from experiments where ERK activity features were measured after knockdown or
knockout (KD/KO) of respective genes. KD/KO of positive regulators resulted in decreased
features of ERK activity. KD/KO of negative regulators resulted in increased features of
ERK activity. Most experiments were performed at single-cell resolution (Dessauges et al.
2022b), or from western blot experiments (indicated in bold).
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changes. The additional complexities that occur when more complex, but likely physiolog-

ically relevant, stimulation patterns that deviate from simple bolus treatments will be an

important area in which to refine models of EGFR internalization and feedback.

2.6.2 Additional regulation by downstream negative feedback

Another essential feature of ERK regulation is an intricate negative feedback structure.

Active ERK can negatively regulate several upstream targets, including EGFR (X. Li et

al. 2008), MEK1 (Catalanotti et al. 2009), RAF (Ritt et al. 2010) or SOS (Corbalan-

Garcia et al. 1996; Kamioka et al. 2010). Still another level of negative feedback is the

ERK-mediated transcriptional induction of phosphatase genes, such as the dual specificity

phosphatases (DUSPs) and MAPK phosphatases (MKPs) (Amit et al. 2007). Increased

expression of DUSPs and MKPs leads to dephosphorylation of the MAP kinases, reducing

their activity. The net result of these seemingly redundant negative feedback mechanisms is a

strong tendency of ERK activity to fall sharply within 15-30 minutes after its peak activation,

even independently of the receptor internalization described above, to enforce the transient

pulse shape observed in many cell types (??B). In contrast, systems with weaker collective

negative feedback show sustained signaling (??A) (Sasagawa et al. 2005; Brightman and

Fell 2000; Kao et al. 2001). Studies combining both modeling and experiments have built

a consensus that negative feedback loops vary in their relative importance, explaining the

diverse ERK dynamics found across different cell types (Cirit, Wang, and Haugh 2010; R.

J. Orton et al. 2008; W. W. Chen et al. 2009).

One of the most thorough efforts to deconvolve feedback mechanisms in ERK dynam-

ics was a pathway-wide RNAi screen of 50 MAPK genes (Dessauges et al. 2022b). With

its large scale and detailed analysis employing optogenetic stimulation at different points

in the pathway, this landmark study provided two important conclusions. First, a number

of subtle changes in ERK dynamics resulted from knocking down certain genes, including
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CRAF, RSK2, PP2A, PLCG1 (2.3A), several of which are involved in negative feedback.

Some of these knockdowns led to increased oscillatory behavior, while others moderately

increased ERK amplitude. Second, this study underscores the remaining challenge of dis-

entangling highly redundant signaling systems. In many cases, ERK activation was not

affected by knockdown of core pathway genes such as ERK2, GRB2, or SOS2, likely because

additional isoforms of these proteins maintained their function. Perhaps most strikingly, the

authors found that even this extensive dataset was still insufficient to fully specify a multi-

feedback computational model. Thus, redundancy of negative feedback loops continues to

be a formidable challenge for both experiments and modeling.

While computational models can capture basic ERK kinetics using one or more of these

feedback loops (W. W. Chen et al. 2009; Kocieniewski and Lipniacki 2013; H. Steven Wiley,

Shvartsman, and Lauffenburger 2003; Boris N. Kholodenko 2000), it is difficult to verify that

these models capture the underlying biology. Due to the redundancy of feedback circuitry

(2.3B, left), isolating single feedback loops is experimentally difficult. Simple knockdown

or overexpression experiments are often limited in their ability to test feedbacks, because

they would change both the forward and the feedback effects of the protein within the loop

(2.3B, middle). Ideally, feedback nodes could be isolated experimentally by replacing the

proteins involved with feedback-insensitive versions (2.3B, right). This requires either editing

multiple sequences in endogenous genes or expressing a mutated protein while simultaneously

knocking out the endogenous protein, both of which would be highly time-intensive. The

closest examples to date ablate specific feedback loops via phopho-insensitive RAF (Ritt

et al. 2010; Brummer et al. 2003; Dougherty et al. 2005) or SOS mutations (Saha et

al. 2012; Corbalan-Garcia et al. 1996). Current computational models may suffer from

overfitting due to the large number of components and limited experimental controls to

constrain these parameters. Future experiments aimed at accurately disentangling individual

feedback nodes, without altering the protein’s forward signaling activity, will refine models
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and improve prediction performance.

In addition to simply terminating pathway activation, negative feedback plays an impor-

tant role in producing linear ERK responses that are robust to noise (Nunns and Goentoro

2018; Sturm et al. 2010). Because ERK inhibits upstream pathway components, the system

takes on the topology of a negative feedback amplifier, a design frequently used in engineer-

ing to stabilize system output and reduce sensitivity to environmental perturbations. Acting

in this fashion, pathway inputs that would normally saturate ERK output instead show a

graded linear response over a wide range of stimuli (Sturm et al. 2010; Nunns and Goentoro

2018). Finally, another function of negative feedback is that it can render the amount of

ERK activity output insensitive to the total ERK protein level (Fritsche-Guenther et al.

2011). Together, these studies highlight the importance of negative feedback in setting the

system-level input-output properties of ERK activity and the need for models to represent

the multiple feedback loops accurately. A simplified interpretation that reconciles many of

the existing observations is that negative feedback loops within the RAF-MEK-ERK cascade

act on the scale of seconds or minutes and provide linearity and robustness to the input-

output behavior of this module, while feedback at the receptor level varies the input to the

cascade on a longer time scale, creating the overall form of the dynamics. However, this

concept has yet to be fully tested, both computationally and experimentally.

2.6.3 Pulsatile and oscillatory behavior due to cooperativity

In many systems, the ERK cascade exhibits evidence of cooperativity - that is, a steeply non-

linear response curve to ligands that tends toward full activation once stimulated (Das et al.

2009; Altan-Bonnet and Germain 2005; C. Y. Huang and Ferrell 1996). In experiments using

single-cell assays, ERK activity often transitions rapidly from fully off to maximally active,

with few intermediate responses observed (Aoki et al. 2013; C. Y. Huang and Ferrell 1996).

Cooperativity is important in allowing the ERK pathway to act as an excitable system in
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which activity can propagate spatially, either within a cell or from cell to cell. This form of

activity is referred to as a trigger wave, and has been observed in various types of monolayer

cultures, both in vitro and in vivo (De Simone et al. 2021; Hiratsuka et al. 2015; Lin et al.

2022; Ogura et al. 2018). In the slime mold Dictyostelium, the RAS-linked signaling network

displays excitability that allows regions of RAS activity to propagate within individual cells

(C.-H. Huang et al. 2013).

The most comprehensive study of cooperative MAPK behavior has been carried out in

Xenopus oocytes, where cooperative activation is driven by positive feedback from MAPK

to the MAPKKK Mos (J. E. Ferrell Jr and Machleder 1998; J. E. Ferrell Jr 1999). However,

in other systems, the source of cooperativity has been more difficult to identify definitively.

It has been suggested that the requirement for dual phosphorylation of MEK and ERK

enables cooperative behavior of the cascade, and modeling of these effects shows that they

are sufficient to create switch-like behavior or oscillations in ERK/MAPK activity (e.g.,

??D) (Markevich, Hoek, and Kholodenko 2004). Another potentially important positive

feedback occurs at the level of SOS, a guanine nucleotide exchange factor that mediates

RAS activation by RTKs (Gureasko et al. 2008; Margarit et al. 2003). SOS has two

binding sites for RAS - one at which it catalyzes guanine nucleotide exchange on RAS, and

one at which GTP-bound RAS binds and allosterically enhances exchange activity at the

first site. This allostery creates a positive feedback loop, which has been proposed as the

source of cooperative ERK activation in mammalian cells (Das et al. 2009). However the

observations that optogenetic stimulation either at the receptor level or the SOS level fail to

elicit cooperative activation of ERK suggest that these mechanisms alone are insufficient for

cooperativity (Dessauges et al. 2021). Thus, similar to the situation of redundant negative

feedbacks, there remains substantial difficulty in unambiguously establishing contributions

of individual positive feedback mechanisms in most cell types examined to date.

Despite ambiguity in the molecular mechanism, it is likely that some combination of
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negative feedback and cooperativity underlies the oscillatory or highly pulsatile behavior

that has been observed for ERK in various systems (Shankaran et al. 2009; Shankaran

and Wiley 2010). The first demonstration of such a possibility used a model in which high

cooperativity (also known as ultrasensitivity) was coupled to negative feedback from ERK

to RAF to produce oscillatory behavior (Boris N. Kholodenko 2000). A number of other

models have confirmed that such combinations can produce oscillatory behavior. In a more

recent example, Kochańczyk et al. constructed a MAPK pathway model with one positive

feedback from Ras to SOS, and three negative feedbacks from ERK acting on MEK, RAF,

and SOS (Kochańczyk et al. 2017). They found that the positive feedback from Ras to SOS

allows for bistable pathway activation, and the negative feedback from ERK to SOS then

refashions the network’s bistable behavior into oscillatory patterns of ERK activation. In

this model, negative feedback from ERK to MEK and RAF primarily modulates the shape

of ERK activity pulses. Finally, similar models are supported by additional work from

Arkun and Yesemi, who argue that bistability and switch-like behavior arises from positive

feedback from Ras to SOS, but add that internal negative feedback from phosphatases allow

for dampened oscillations (Arkun and Yasemi 2018).

2.6.4 Autocrine and paracrine signaling as a source of sporadic

pulses

While feedback and cooperativity can explain regular oscillations in ERK activity, irregular

patterns of pulses (??E, F) indicate a strong source of variability. Several lines of evidence

suggest that autocrine and paracrine signaling through EGFR plays a dominant role in

driving irregular pulsatile dynamics. Epithelial cells secrete numerous EGFR ligands (Shi et

al. 2016), each eliciting distinct ERK activities. For example, high-affinity ligands, such as

TGF-alpha rarely escape capture by the secreting cell’s own receptors, and thus act primarily
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as an autocrine signal (DeWitt et al. 2002). Lower-affinity ligands such as AREG can diffuse

more broadly to stimulate surrounding cells. Release of these ligands is controlled by matrix

metalloproteinases (MMPs) on the cell surface that cleave the membrane anchor motif to

release the soluble mature forms into the extracellular space (Loffek, Schilling, and Franzke

2011). MMPs are in turn stimulated by ERK activity, which effectively forms a positive

feedback loop that operates across intracellular and extracellular compartments (Aoki et al.

2013). In addition to canonical EGFR ligands, other growth factors, including those from the

fibroblast growth factor (FGF) and G-protein coupled receptor (GPCR) families, stimulate

ERK and act in a paracrine fashion (Chavez-Abiega et al. 2022; Tany et al. 2022; Simon

et al. 2020). The combination of these different ligands and irregular timing of their release

create a dynamically evolving microenvironment for the neighboring cells. An additional

layer of complexity arises from the fact that different EGFR ligands can trigger distinct

patterns of ERK activity even though they signal through the same receptor. Freed et al.

examined ligand-specific EGFR dimer interactions and found that high-affinity ligands such

as EGF or TGF-beta create highly stable EGFR dimers, whereas low affinity ligands such as

Epiregulin and Epigen (EREG and EPGN) form weakly bound asymmetric dimers (Freed

et al. 2017). The varying stability of these complexes results in differences in internalization

rate, effectively altering the strength of a key negative feedback. Strong EGFR binders

(e.g. heparin binding-EGF like growth factor, betacellulin) target all EGFRs for lysosomal

degradation and attenuate signal (Roepstorff et al. 2009). As a result, EGFR molecules

bound to EREG and EPGN are less subject to internalization and drive more sustained

ERK signaling (Roepstorff et al. 2009). Furthermore, differences in ligand dissociation from

internalized EGFR allows the receptors to be recycled to the plasma membrane surface rather

than broken down, permitting rapid re-activation by ligand and potential for sustained ERK

activation (Waterman et al. 1998; Roepstorff et al. 2009). This diversity of activation

mechanisms further diversify the ERK responses that result from paracrine stimulation.
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In in vivo imaging studies, some form of dynamic ERK pulses, resembling those described

in cell culture, have been observed in every case where single-cell resolution was available.

The patterns of pulses vary depending on the tissue and organism. Examples of focal points

of ERK activity that radially spread to neighboring cells include the mouse epidermis (Hi-

ratsuka et al. 2015) and Drosophila embryonic epithelium (Valon et al. 2021). In some

cases, ERK activity only travels limited distances (3-4 cell diameters), suggesting that prop-

agation is limited by diffusion of the ligand. However, in regenerating fish scales, wound

healing, or cultured MDCK epithelial cells, waves of ERK activation travel much farther,

spreading out across dozens of cell layers. In these cases, ERK activity causes shedding of

EGFR ligands via MMPs, allowing for continued propagation of the wave (Lin et al. 2022;

De Simone et al. 2021; Hiratsuka et al. 2015; Aoki et al. 2017). Other cell systems show

rapid, sporadic patterns of well-defined pulses with limited spatial correlation, suggesting

multiple overlapping sources (Aoki et al. 2013; Albeck, Mills, and Brugge 2013). At the

extreme end of this continuum, cells containing oncogenic mutations show a complex and

seemingly stochastic pattern of ERK activity without clearly separated pulses, which has

been linked to increased secretion of amphiregulin, a paracrine EGFR ligand (Davies et al.

2020; Ponsioen et al. 2021; Aikin et al. 2020). In nearly all of these cases, EGFR inhibition

eliminates ERK pulses, confirming the importance of receptor-level regulation of these pat-

terns and dynamics. Thus, paracrine ligand secretion underlies a variety of highly dynamic

ERK behavior.

Several mathematical models have been developed to simulate the propagation of ERK

activation between cells (Aoki et al. 2013). For instance, a spring model was used to

investigate ERK-driven collective cell migration. In this model, ERK activity increases the

length of each cell and subsequently changes in cell density and decreases myosin light chain

(MLC) phosphorylation. The model indicates that as ERK waves propagate through cells,

MLC dephosphorylation is sufficient for collective cell migration in the opposite direction
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of the ERK wave, whereas cell density is not sufficient (Aoki et al. 2017). This model

was restricted to observations in a one-dimensional monolayer. Therefore, the spring model

was transformed into a continuum model, which allows for a two dimensional analysis that

accurately represents the 2D epithelial cell movement. The continuum model averages the

heterogenous and noisy properties of individual cells in order to successfully recapitulate

tissue-level dynamics driven by single cells (Asakura et al. 2021). Finally, biophysical models

further our understanding of how monolayer mechanics coupled to ERK translate to polarity

changes and active cell migration (Boocock et al. 2020).

2.6.5 Cell states create variability in ERK responses

Another prominent feature of ERK activation revealed by biosensors is cell-to-cell variation

in activity patterns. Such variation is found even in cases where genetically identical cells

with controlled spatial differences in stimulating ligands often have substantial divergence

in the timing and intensity of ERK activation. Studies investigating this phenomenon have

found that the variation can be accounted for by pre-existing differences in cell state, also

termed “extrinsic noise”, rather than true stochastic behavior of the pathway, or “intrinsic

noise” (Selimkhanov et al. 2014). This finding is consistent with the findings in several

signaling pathways (Cheong et al. 2011) and confirmed by a recent study measuring dozens

of cell state parameters, including local cell density, cell shape, and expression of various

non-pathway markers (Kramer, Sarabia del Castillo, and Pelkmans 2022). The latter study

demonstrated that factors such as calreticulin, Sec13 levels, and cell density may exert an

even larger effect on a given cell’s ERK activation (as well as for many other signaling

pathways) as compared to different concentrations of EGF. This concept helps to explain a

disparate set of findings that ERK pathway activation depends strongly on actin cytoskeletal

protrusions (J.-M. Yang et al. 2018), the presence of caveolin pits in the plasma membrane

(Kortum et al. 2014), and the rate of glycolysis (Peeters et al. 2017). If all of these “non-
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canonical” mechanisms each impact ERK activation, the pathway can be considered not only

as output of growth factor stimulation, but also as an integrated index of both intracellular

and extracellular factors.

2.7 Conclusion

The diversity of ERK dynamics helps to explain how this ubiquitous pathway plays a vari-

ety of cell-specific roles in controlling cell proliferation, differentiation, and migration. Col-

lectively, the work highlighted here demonstrates that ERK activation dynamics are well

positioned to provide acute sensing of the extracellular microenvironment, allowing cells to

respond in unique ways to paracrine signals, cell density, and extracellular matrix. When

connected to pathway outputs, such as gene expression, that are selectively responsive to

different dynamic patterns, the ERK pathway makes it possible for the cell to continuously

adjust its state and behavior based on its physical context. In the companion review, we

delve into the “output” side of this function, exploring how dynamics regulate gene expres-

sion. We also examine the potential for pharmacological inhibitors of the ERK pathway to

promote different cellular functions depending on how they affect ERK dynamics.

Fully understanding and exploiting the ERK signaling code will depend on accurate quan-

titative models. The rich history of pathway models that we discuss here have provided an

excellent start in capturing the main mechanisms driving dynamic ERK activity. Nonethe-

less, as the most recent work shows, a complete model that accurately predicts the effects

of pharmacological and genetic perturbations remains some distance away (Dessauges et al.

2022b). While the existing models provide the conceptual building blocks to understand how

dynamic behaviors arise, many cell systems contain several of these mechanisms operating

together. As noted above, predictive models of highly redundant systems are challenging to

validate, especially when relatively few experiments perform a careful dissection of the com-
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ponent mechanisms. Furthermore, even in the absence of mutations, genetically identical

cells can diverge in their dynamics due to variation in the copy numbers of pathway proteins

(Niepel, Spencer, and Sorger 2009). Such differences explain the observed differences between

cell types in an organism and the heterogeneity of cells within the same tissue. Fully model-

ing these differences would require information on the hundreds of parameters (i.e. protein

concentrations) that vary between contexts, which remains experimentally challenging.

The new technologies highlighted here, including improvements in biosensors, image pro-

cessing, and large dataset analysis, will likely be critical in overcoming the remaining obsta-

cles. Machine learning is an exploding field that has rapidly expanded into biology. From

predicting protein structure, cell segmentation, and improving CRISPR guide RNA design,

neural networks have pushed the boundaries of many fields (Jumper et al. 2021; Meijering

2012; H. K. Kim et al. 2018). Recently, convolutional neural networks have been used to

identify ERK patterns and characterize signaling motifs in single cells (Jacques et al. 2021;

Dessauges et al. 2022a). These newer models are able to recognize objective and abstract

patterns in large-scale data; therefore, they are an approach that may fully connect sig-

naling, gene expression, and cell fates. Future work should be aimed at creating a model

that connects network topology and the functional and phenotypic consequences of signal

propagation. Specifically, how do the positive regulators of the pathway shape the spatial

and temporal activation and deactivation of ERK? What features of the pathway are most

important for regulation, and which are redundant? Furthermore, how important is the

pathway topology for generating dynamic patterns of gene expression? Although it is un-

likely there will be one universal model that represents all aspects of the pathway, a future

computational model may be able to capture the entire network circuitry and generate the

various pulsatile behaviors of ERK.
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Chapter 3

The control of gene expression and

physiological outcomes by ERK

3.1 Preface

This chapter was originally submitted to The Biochemical Journal on May 30th, 2023, as

part two of a two part review on ERK dynamics: Abhineet Ram, Devan Murphy, Nicholaus

DeCuzzi, Madhura Patankar, Jason Hu, Michael Pargett, and John Albeck. A guide to ERK

dynamics, part 2: Decoding the control of gene expression and physiology.

J.A. conceptualized and the review and contributed to the text. A.R., D.M., N.D., MaP.,

contributed to the writing and editing the text. Mi.P. assisted with reviewing sections of the

text. J.H. created all figures.

The article has been modified to satisfy the formatting requirements of this dissertation.
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3.2 Abstract

Signaling by Extracellular signal regulated kinase (ERK) controls many cellular processes

including cell division, differentiation, and death. In the second installment of this two-part

review, we address the question of how this single pathway exerts distinct effects on multiple

processes. We discuss how ERK activation leads to changes in gene expression and the

mechanisms that further diversify the transcriptional output of ERK signaling. With a focus

on single-cell, biosensor-based studies, we summarize four major functional modes for ERK

signaling in tissues: adjusting the size of cell populations, gradient-based patterning, wave

propagation of morphological changes, and diversification of cellular gene expression states.

These modes of operation are disrupted in cancer and other related diseases and therefore

represent potential targets for therapeutic intervention. By understanding the dynamic

mechanisms involved in ERK signaling, there is potential for pharmacological treatment to

not only simply inhibit ERK but to restore functional activity patterns and improve disease

outcomes.

3.3 Introduction

The extracellular signal regulated kinase (ERK) pathway regulates many aspects of cellular

physiology, including cell growth, proliferation, differentiation, and death. Since the identifi-

cation of the pathway’s core components, which are found in all eukaryotes, it has served as

a paradigm for how signal transduction pathways convey information from the cell surface

to the nucleus, driving cell fate decisions (Lavoie, Gagnon, and Therrien 2020). Activation

of ERK also plays an essential role in tissue development, homeostasis, and cancer. As with

many signal transduction pathways, ERK controls multiple cellular effects, which raises the

fundamental question of how specific cellular outcomes are determined in a given context
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(Vasudevan and Soriano 2016). Two basic types of explanation can be proposed. First,

unique cellular responses could be determined by contextual cues, such as the coincidence

of ERK activation with other signaling activities or cell type-specific gene regulation (Va-

sudevan et al. 2015). Alternatively, changes in the amplitude, duration, or timing of ERK

activity - collectively referred to as “dynamics” – could specify distinct downstream behav-

iors. Both of these modes contribute to cellular regulation (Vasudevan and Soriano 2016;

J.-Y. Chen et al. 2012), but dynamics-based encoding poses a unique challenge for cell bi-

ology (Boris N. Kholodenko, Hancock, and Kolch 2010), in part because standard methods

are not well suited to study this type of information processing.

In this review, we focus specifically on the dynamic modes of ERK signaling. We ex-

plore the concept that information about the identity and strength of extracellular stimuli

is carried (or encoded) not only in the identity of the intracellular molecules activated, but

in the specific timing of their activation and deactivation (Marshall 1995; Jones and Ka-

zlauskas 2001). In the past 10 years, long-standing challenges in rigorously evaluating the

role of dynamics have become tractable through new tools including optogenetics, biosensors,

microfluidics, and computational models. These developments have revealed a surprisingly

elaborate array of dynamic behaviors of the ERK pathway, which may act as a “code” to

specify cellular behaviors. In a companion review (2), we survey the observations of dynamic

activity and mechanistic models for the cell-specific operation of this ubiquitous pathway.

Here, we explore the concept that specific patterns of ERK activity define its downstream

effects on gene expression and tissue behavior.

The concept of temporal coding is already well appreciated in neural circuits, where the

timing and frequency of action potentials can transmit specific information between neu-

rons. Activation of signaling pathways is typically less discretized and occurs on a slower

time scale (minutes) than action potential firing (milliseconds). Nonetheless, it is now es-

tablished that many signaling pathways show highly dynamic activity, featuring pulses that
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occur repeatedly on a time scale relevant to pathway function (Antebi, Nandagopal, and

Elowitz 2017; Levine, Lin, and Elowitz 2013). Beyond the ERK pathway, there are several

examples of signal transduction pathways in which dynamic activation figures prominently,

including NF-kB (Hoffmann et al. 2002; Tang et al. 2021), p53 (Purvis et al. 2012; Hafner

et al. 2017), and Msn2 (Hansen and O’Shea 2013). There is already an expansive field

investigating communication by intracellular calcium dynamics, which have been accessible

at the single cell level for decades through fluorescent dyes (Giorgi et al. 2018; Kraus et

al. 2000; Dolmetsch et al. 1997). Elegant work in each of these systems has established

that downstream gene expression patterns are indeed strongly influenced by the temporal

pattern of pathway activity. In the Msn2 pathway in particular, the experimental power of

yeast genetics has enabled a careful quantitative analysis of the pathway’s temporal coding

capacity (Hansen and O’Shea 2015; Hansen, Hao, and O’Shea 2015), culminating in the

demonstration that four distinct expression programs can be determined by different input

patterns of Msn2 activation (Hansen and O’Shea 2016).

These findings establish the importance of dynamic encoding in the ERK pathway, which

influences many cell fate decisions. Because these cell fates ultimately control tissue home-

ostasis and repair, the physiological function of the ERK pathway – to shape tissues during

development or regeneration – depends on its temporal activation profile. The dysfunction

of the pathway in diseases such as cancer is closely tied to changes in its temporal activity

profile (Bugaj et al. 2018; Davies et al. 2020). In the sections that follow, we explore how

dynamic regulation of ERK defines its downstream effects on gene expression and tissue

behavior, with implications for its dysfunction and drug responses in disease.
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Figure 1. Differential gene expression responses to ERK signaling A. Differential 
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ERK initiates c-Fos expression, and sustained ERK activation induces a c-Fos 
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peak of Egr-1 levels, Egr-1 represses its own transcription (auto-inhibition), thus 
returning to an equilibrium with low baseline expression. C. Pulsatile signaling 
generates short bursts of Egr-1 levels. Since Egr-1 transcription is brief, auto-inhibition 
does not persist. This allows Egr-1 levels to oscillate. Conversely, pulsatile signaling 
weakly induces Fra-1 and c-Fos because sustained signaling is required for protein 
stabilization. Figure adapted from Davies et al. [22].

Figure 1

Figure 3.1: Differential gene expression responses to ERK signaling A Differential regulation
of Egr-1, Fra-1, and c-Fos. Egr-1 protein binds to its promoter, inhibiting further transcrip-
tion. ERK initiates Fra-1 transcription and also stabilizes Fra-1 protein. ERK initiates c-Fos
expression, and sustained ERK activation induces a c-Fos repressor. B Sustained signaling
generates high concentrations of Fra-1 and c-Fos. Subsequently, c-Fos repressor inhibits
further expression of c-Fos. After the initial peak of Egr-1 levels, Egr-1 represses its own
transcription (auto-inhibition), thus returning to an equilibrium with low baseline expres-
sion. C Pulsatile signaling generates short bursts of Egr-1 levels. Since Egr-1 transcription
is brief, auto-inhibition does not persist. This allows Egr-1 levels to oscillate. Conversely,
pulsatile signaling weakly induces Fra-1 and c-Fos because sustained signaling is required for
protein stabilization. Figure adapted from Davies et al. 2020.

41



3.4 Effects of ERK dynamics on gene expression

The cellular effects of ERK dynamics are exerted largely through regulation of gene ex-

pression. ERK has over 1000 identified target genes (Ünal, Uhlitz, and Blüthgen 2017),

many of which are themselves involved in transcriptional regulation, allowing ERK to exert

widespread influence on the expressed genome. ERK activity can stimulate cell prolifera-

tion, differentiation, metabolism, and cancer drug resistance, through numerous target genes

including Cyclin D1, c-Fos, c-Myc, and Fra-1. ERK target genes have been categorized into

rapidly responding immediate-early genes (IEGs), immediate-late genes (ILGs) and delayed

early genes (DEGs) based on their timing of expression following ERK activation (Uhlitz et

al. 2017). Here we discuss how dynamic ERK activation can lead to selective target gene

expression, which provides a mechanism to induce distinct cellular processes.

ERK activity modulates gene expression at multiple levels. First, ERK directly phospho-

rylates transcription factors, including ETS family members such as Elk-1, inducing allosteric

changes that increase DNA binding and increase transcriptional activity (Q.-J. Li et al. 2003;

S.-H. Yang et al. 1999). Once mRNA is produced, prolonged ERK activity increases mRNA

half-life for certain genes, including so-called “late response genes” (EGFR, DUSP6), but

not early (EGR1, FOS) or mid (PHLDA1) response genes (Nagashima et al. 2015). For

many of these genes, the synthesized proteins can also be phosphorylated by ERK to protect

them from degradation (Ferrara et al. 2003). Such stabilizing phosphorylations are present

in Fra-1, c-Fos, and other AP-1 family members (3.1a) (Ferrara et al. 2003; Gomard et al.

2008). Furthermore, ERK activity regulates chromatin modifiers, such as EZH2, and RNA

splicing factors, like DAZAP1, which can together modulate the transcriptional productivity

of many loci (Choudhury et al. 2014). As we discuss below, these overlapping mechanisms

enable significant opportunity to build gene regulatory circuits that are sensitive to different

spatial and temporal patterns of ERK activity.
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3.4.1 Persistence detection in Immediate Early Genes

The parallel regulation of multiple steps in the gene expression process by ERK creates a

feedforward regulatory motif. In principle, this configuration can make target gene expression

sensitive to the duration of ERK activity (Murphy et al. 2002; Murphy, MacKeigan, and

Blenis 2004). Because stimulation of transcription and protein stabilization both require

active ERK but are separated in time, short periods of ERK activity can be unproductive

because they stimulate RNA production but do not persist for long enough to phosphorylate

and stabilize the newly translated protein. Conversely, persistent ERK activity permits both

gene transcription and stabilization of proteins. Mathematical modeling of this feedforward

motif confirms that it can in fact act as a “persistence detector” that preferentially responds

to longer durations of ERK activity, allowing genes such as c-Fos to be selectively induced by

growth factors such as HRG that stimulate prolonged, rather than transient ERK activity

(Nakakuki et al. 2010).

Additional modeling analysis has added depth to this concept, demonstrating that per-

sistence detection depends critically on the kinetic parameters of RNA induction and degra-

dation (Gillies et al. 2017). Effective persistence detection by a gene requires that mRNA

and protein production be very low in the unstimulated state, because any pre-existing pool

of protein can be directly phosphorylated and stabilized by ERK, bypassing the feedforward

requirement for ERK duration. Consequently, strong persistence detection can be difficult

to achieve. Analysis of Fra-1 expression using a knock-in fluorescent tag revealed that it

has a significant basal rate of production and does not require a threshold duration of ERK

activity (Gillies et al. 2017). Instead, Fra-1 production integrates total ERK activity over

time, regardless of its duration. Thus, ERK target genes vary in their capacity for persistence

detection and their responses to ERK activity dynamics.
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3.4.2 Gene expression as a filter for ERK dynamics

Expression of IEGs, which include c-Fos and Egr-1, increases within minutes following ERK

activation (Uhlitz et al. 2017). Models indicate this response profile is due to mRNA

kinetics, whereby genes with short half-life have a higher transcription rate, quickly reach

high mRNA levels, and quickly decay in the absence of ERK activity. c-Fos and Egr-1 fit

into this category as they are sensitive to rapid changes in ERK activity; however, they are

insensitive to long-term ERK activity since they quickly reach their maximal mRNA levels.

Although c-Fos and Egr-1 do not integrate signals as effectively as Fra-1, their high basal

expression allows for rapid responses to ERK (H. Steven Wiley 2017; Gillies et al. 2017).

Overall, mRNA half-life appears to be a critical factor, as the short-half lives of IEGs allow

responsiveness to ERK duration while long-half lives of ILGs and DEGs integrate both ERK

duration and amplitude. These gene properties, combined with transcriptional control and

post-translational modification, allow for differential gene expression in response to ERK

dynamics (3.1b) (Davies et al. 2020).

An extension of this concept is that gene expression output can respond to the frequency

of ERK activity pulses. Frequency modulation of ERK is sufficient for cell behaviors, like

proliferation (Albeck, Mills, and Brugge 2013), however, how ERK encodes frequency into

gene expression is still unknown. One hypothesis is a logic gate, referred to as a “band-pass”

filter, that allows target genes to respond to different frequencies of ERK signaling (Wilson

et al. 2017). In this framework, each gene has a different sensitivity of its promoter to

ERK pulses. For example in fibroblasts, c-Fos and other IEGs can be maximally induced

by intermediate frequencies of ERK stimulation, but longer or shorter pulse frequencies lead

to lower protein expression (Wilson et al. 2017). Interestingly, they found that negative

feedback to be essential for band-pass filtering, however mRNA stability was not needed,

which directly contrasts Uhlitz, et al. findings.
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Recently, mathematical modeling has also been used to design synthetic genes that can

selectively respond to pulsed but not constant ERK activity (Ravindran et al. 2022, 2020).

These gene designs were experimentally tested in cells and confirmed to respond preferentially

to pulsatile ERK activation; it is not yet clear whether natural examples of this type of

behavior exist. The closest candidate for this type of regulation so far is Egr-1, a protein

with a short half life, that inhibits its own transcription (3.1a) (Cao et al. 1993). Data-driven

modeling indicates that Egr-1 selectively decodes pulsatile ERK activity, compared to c-Fos

(3.1b) (Saito et al. 2013). These results imply that genes which can encode ERK frequency

likely have similar characteristics as Egr-1 – fast responding yet short-lived.

Despite the large body of work mechanistically linking ERK dynamics to gene expres-

sion, we postulate that ERK dynamics do not reliably guarantee specific gene expression

profiles, but rather shift probabilities towards certain outcomes. Several studies have de-

veloped reporter cells in which both ERK activity and the expression of a target gene can

be measured, by using CRISPR-based tagging of endogenous genes with fluorescent protein

fusions at genomic loci (Gillies et al. 2017; Wilson et al. 2017). These systems allow con-

tinuous monitoring of ERK and its target gene expression in the same cell. Data from these

experiments are useful to examine the fidelity and precision of the process by which ERK

drives the expression of IEGs such as FOS or FOSL1. There is a striking degree of variabil-

ity; in Gillies, et al. ERK activity only explained 35% of the variation in Fra-1 expression

in single cells (Gillies et al. 2017). Thus, ERK activity can be strictly required for IEG

expression but paradoxically show a low correlation at the single cell level. This observation

can best be explained by the existence of unmeasured factors that also impact expression,

such as epigenetic regulation of IEG loci, or metabolic changes that impact transcription or

translation rates. Another explanation is that IEG expression may only respond to ERK

stimulation in a subpopulation of cells, perhaps due to chromatin modification (Jena, Yu,

and Toettcher 2021). In general,the effect of ERK on gene expression at single-cell resolution
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is not as clear as classical bulk measurements report; therefore, future studies will require

careful analysis of how ERK activation affects the distribution of its target gene expression

within a cell population. Furthermore, there is yet to be a comprehensive quantification of

the effects of ERK dynamics on the transcriptional and translational response of many ERK

target genes in an individual cell.

3.4.3 ERK dynamics in the nucleus vs. cytoplasm as a mechanism

for transcriptional diversification

Sub-cellular compartmentalization provides another mechanism to generate distinct down-

stream responses to ERK. Nuclear import of ERK is necessary for proliferation (Brunet et

al. 1999) and activation of stress pathways (Sebastien Cagnol and Chambard 2010). On

the other hand, cytosolic sequestration of ERK promotes expression of differentiation fac-

tors that drive myogenesis, suggesting a link between cytosolic signaling and differentiation

(Michailovici et al. 2014; Marenda et al. 2006). Cytosolic ERK signaling is also linked to

growth arrest and autophagy (Sebastien Cagnol and Chambard 2010). Control of nuclear

and cytosolic ERK localization and phosphorylation is achieved through differentially lo-

calized DUSPs, or anchoring proteins (i.e. PEA-15) which sequesters ERK in the cytosol

(Formstecher et al. 2001; Maik-Rachline, Hacohen-Lev-Ran, and Seger 2019). Spatially

regulated ERK activity within the cytosol and the nucleus is another mechanism to diver-

sify gene expression and cellular responses. In MCF-7 cells for example, either epidermal

growth factor (EGF) or heregulin (HRG) can induce transient nuclear ERK activity; how-

ever, only HRG causes a sustained cytoplasmic ERK response. This sustained ERK activity

in the cytoplasm stabilizes the c-Fos protein in HRG treated cells (Nakakuki et al. 2010).

The transient nuclear activity is largely due to the negative feedback system in which ERK

activity induces DUSP4 transcription, which targets nuclear ERK activity, while cytosolic
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p-ERK remains constant (Wilson et al. 2017). This logic can be applied to the opposite

scenario where ERK is only active in the nucleus; nuclear targets such as MYC, Jun, ETS

may be phosphorylated while cytosolic targets (RSK1, cPLA2, PDE4, BIM) may not. The

complex effects of nuclear versus cytoplasmic ERK activity is not fully examined, and more

studies are needed to understand how different transcriptional programmes can arise from

compartmental control of ERK.

3.5 ERK dynamics in tissue regulation

Gene knockout studies in roundworms, fruit flies, zebrafish, and mice have established the

genetic requirement for ERK in many developmental and physiological systems. However,

knockouts reveal little about the timing and dynamics of ERK activation needed to control

tissue function. Recent work with optogenetic tools has begun to address this question

by making it possible to create custom spatiotemporal patterns of ERK activation in a

Drosophila embryo (Johnson et al. 2017; Johnson and Toettcher 2019). These new tools

make it possible to understand when and where ERK activity is required during development.

Live-cell reporters also demonstrate transient, localized ERK activation involved in adult

tissue homeostasis and wound healing (Valon et al. 2021; Hiratsuka et al. 2015). Here, we

describe four main roles for ERK dynamics within tissues (3.2).

3.5.1 Setting cell fate probabilities by integrated signal strength

or duration

The most basic function of ERK within tissues is as a rheostat for mitogenic activity, where

ERK activity controls cell division (3.2A). The average frequency of entry to S-phase can be

modulated by increasing or decreasing ERK activity through growth factors, pharmacological

compounds, or cell density (J.-Y. Chen et al. 2012; Fan and Meyer 2021; Min et al. 2020).
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Figure 3.2 ERK Dynamics During Development and Tissue Homeostasis
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Figure 3.2: ERK Dynamics During Development and Tissue Homeostasis A Increasing ERK
activity increases the probability of cell division within the population on average. Schematic
of single-cell ERK activity within a population (top panel) exposed to different EGF concen-
trations (bottom panel). Variations in signal activity indicated by different colors of cells.
B Spatially restricted ERK activity is essential during development. Within the C. elegans
gonad, the anchor cell (AC) is the point source for EGF ligand secretion. This creates a
gradient to cells beneath the basement membrane around the AC (blue triangle below cells).
Cells closest to the anchor cell receive the most stimulation (individual cell colors, with 1’
cell being red), and thus show highest ERK activity leading to increased division and mi-
gration up through basement membrane to create the mature vulva. C. An apoptotic cell
secretes EGF-like ligands, which creates a radial gradient from the dying cell. Cells closest
to the center show high ERK activity, which conveys a survival advantage. Cells farther
away from the dying cell see lower concentration of ligand (blue halo in left panel) resulting
in slower and lower ERK activity and incomplete responses within the cell layer. Individual
ERK activity traces shown to the right, color shading indicates variability within the pop-
ulation. Figure adapted from Gagliardi et al. 2021. D. During tissue injury, ERK activity
provides both directional and migratory signals. Initially, cells adjacent to the injury have
high ERK activity (first row, red cells) and secrete a short range ERK stimulus gradient
that activates its neighbors (abutting gradient, blue). Once the neighbors are activated, the
ERK activity in the previous cell layer decays, ultimately creating a wave of ERK activity
(second through fourth panel). ERK activation waves repeatedly propagate from the site of
injury. This directs cells to migrate towards the site of injury (red arrows below) resulting
in gap closure and wound healing. E Altogether, many processes that cause ERK activity
happen simultaneously within biological systems. Cells that are actively shedding EGF-like
compounds such as apoptotic ligands, cytokines, and amphiregulin, create microenviron-
ments (blue gradients) within the larger tissue. This is in contrast to subfigure A in which
all stimuli are uniform. Due to the wide range of stimuli across a tissue, ERK activity will
be heterogeneous. These complex and overlapping microenvironments allow diverse gene
expression within a population, however it also makes predicting the behavior of a single-cell
difficult.
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Canonically, ERK acts primarily at a point in the cell cycle, termed the restriction point,

by inducing Cyclin D transcription. Cyclin D enables CDK4/6 activity, promoting Rb

phosphorylation and a concerted switch in kinase activities and gene expression that commits

cells to enter S phase (Albanese et al. 1995; Weinberg 1995; Meloche et al. 1992). However,

an important question remains to be fully answered, as to which features of ERK activation

are essential for activating this transition. Earlier studies suggest that ERK activity timing is

crucial during discrete time windows, in cells re-entering the cell cycle after serum starvation

(Jones and Kazlauskas 2001; Zwang et al. 2011). However, in cells that are continuously

cycling, the probability of S-phase entry for a newly-divided cell is proportional to ERK

activity throughout the cell cycle of the mother cell (Min et al. 2020; Spencer et al. 2013).

A further surprise revealed by this quantitative single-cell analysis is that ERK activity

directs the rate of cell cycle entry by setting an overall translational capacity of the cell,

and not simply by inducing Cyclin D expression. An important caveat in many studies of

cell cycle regulation is that they employ cells exposed to high levels of growth factor or

serum, or cells that are starved and then restimulated with a large bolus of serum or growth

factors. These conditions drive rapid cell cycle times (¡20 hours) and abrupt transitions in

metabolism that are unusual within most adult tissues, where cells experience intermittent

stimulation by low concentrations of growth factors and cell cycle durations range from days

to weeks.

Further complicating ERK’s as a cell cycle driver, high levels of ERK activity can induce

cell cycle arrest or senescence, especially when driven by oncogenes (Michaloglou et al. 2005;

Deschênes-Simard et al. 2013). In an in vivo RAS-driven mammary tumor model, immediate

induction of high RAS/ERK activity induced senescence rather than tumorigenesis, and

effective tumor growth was only stimulated if RAS activation was initiated at low levels

(Sarkisian et al. 2007). Conversely, human fibroblast cultures showed very low ERK activity

linked to senescence (Tresini et al. 2007). In both stem cells and non-tumor cell line modes,
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pulsatile activity is linked to cycle progression whereas sustained ERK activation correlates

with cell cycle arrest (Aikin et al. 2020; Hiratsuka et al. 2020). While these results are

context dependent, a compelling model suggests ERK is a non-monotonic driver of cell fates

like proliferation and arrest (Deschênes-Simard et al. 2013). Using population and single-cell

methods, a recent study reports that low and high levels of ERK activation induce arrest,

whereas intermediate levels lead to maximal proliferation (J.-Y. Chen et al. 2023).

A similarly complicated situation is found in the regulation of cell death by ERK. Apop-

tosis in both normal and cancer cells occurs via the release of mitochondrial pro apoptotic

factors including cytochrome c to the cytoplasm, which promote activation of initiator and

effector caspases. While ERK is often regarded as a pro-survival signal that suppresses BIM

to prevent cytochrome c release (Craxton et al. 2005; Sheridan, Brumatti, and Martin 2008),

other studies have demonstrated a pro-apoptotic role in inducing caspase-8 activation which

stimulates cytochrome c release mediated by Protein Kinase B (AKT) activation (S. Cagnol,

Van Obberghen-Schilling, and Chambard 2006; H. Li et al. 2007). Paradoxically, both MEK

inhibitors and active forms of MEK/ERK/RAF/RAS pathway have been associated with

apoptosis induction (Sebastien Cagnol and Chambard 2010). A recent study used an im-

proved ERK biosensor to clarify the role of ERK in apoptosis and necroptosis in murine

fibrosarcoma cells. (Sipieter et al. 2021). In response to cell death-inducing ligands, cells

demonstrated strong ERK signaling, including an increase in amplitude and duration during

early stages of apoptosis compared to necroptosis. During later stages of cell death, the

signaling characteristics of apoptosis and necroptosis were similar, except apoptosing cells

displayed higher amplitudes (Sipieter et al. 2021). Interestingly ERK inhibition delayed TNF

induced necroptosis while it sensitized cells to hFas ligand induced apoptosis, bolstering the

context dependent role of ERK as both a pro-death and pro-survival regulator.

Thus, while ERK is a major regulator of quiescence, senescence, proliferation, and cell

death, we still lack a comprehensive model of how its activity decides between these cell
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fates. Developing such a model remains challenging due to the difficulty in accurately mea-

suring the intensity of ERK activity, as well as differences between cell types. As noted

above, the context of ERK activity is also very important; several studies emphasize coop-

erative interactions between ERK activity and other kinases such as PI3K/AKT for cells

to enter into S-phase (Benary et al. 2020; J.-Y. Chen et al. 2012). Furthermore, coopera-

tion between ERK and c-Jun-N-terminal kinase (JNK) is required to initiate DNA damage

induced-senescence (Netterfield et al. 2022). Given the above examples, a comprehensive

model will be dependent on the cell type and the context of each cell fate.

3.5.2 Providing a spatial cue for patterning and maintaining tis-

sues

In many of its physiological roles, ERK activity is localized to certain cells, serving as a spatial

cue. A classic example of this function is the differentiation of vulval precursor cells (VPCs)

in C. elegans (3.2B). Development of this tissue is regulated by each cell’s proximity to the

EGF-releasing anchor cell (AC). Cells closest to the AC (i.e. VPC P6.p) show increased

frequency of ERK pulses throughout development compared to VPCs that are farther away

(Barkoulas et al. 2013; de la Cova et al. 2017). Critically, any disruption in this EGF

gradient and resulting ERK dynamics disrupts normal vulval development. Furthermore,

the dynamics of ERK activity in the Drosophila embryo play a role in driving cell fates

(Gabay, Seger, and Shilo 1997; Lim et al. 2015; Grimm et al. 2012). One hour of ERK

signaling is required to drive gut-endoderm-like gene expression, while a 30-minute pulse

initiates an ectodermal neuroblast cell fate (Johnson and Toettcher 2019). The Drosophila

embryo is less sensitive to the dose and more perceptive to the spatial distribution and timing

of ERK activation (Johnson et al. 2017). In mouse blastocysts, spatially graded ERK pulses

differentiate polar versus mural lineages, and pluripotent blastocysts exhibit opposing levels
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of basal ERK activity compared to primitive endoderm (Simon et al. 2020).

Localized ERK signals can also be found in adult organisms, where they help to maintain

tissue homeostasis. As noted in part 1 of this review, spatial propagation of radial ERK

activity distribution, or SPREADs, have been observed in live mice (Hiratsuka et al. 2015).

Similar patterns are also found in organotypic cultures of epithelial cells, where SPREADs

occur preferentially in the outer layer of cells and reduce their propensity for apoptosis,

relative to inner cells (Ender et al. 2022). In monolayer cultures, apoptotic cells trigger

radially propagating waves of ERK pulses, which prevents apoptosis in the surrounding cells

(3.2C) (Gagliardi et al. 2021). By preventing large numbers of adjacent cell deaths, these

waves help to maintain integrity of the epithelium (Valon et al. 2021). In contrast, tissue

compaction during Drosophila pupal notum development leads to downregulation of ERK

signaling. In this context, ERK maintains tissue homeostasis by upregulating pro-apoptotic

genes and driving excess cell elimination (Moreno et al. 2019).

3.5.3 Driving morphogenesis via wave-like activation

In some systems, the wave-like activity of ERK plays a specialized role in rapid structural

changes needed for tissue morphogenesis. Importantly ERK regulates cell motility on the

scale of hours (Mendoza et al. 2015, 2011). For example, coordinated effects on motility

have been reported in 3D mammary epithelial cell cultures (Gagliardi et al. 2021) and

immune cells (Kamioka et al. 2012; Zhang et al. 2016). Elevated ERK activity can also

drive collective migration, a phenomenon crucial for tissue morphogenesis and wound repair

(3.2D) (Aikin et al. 2020; Aoki et al. 2017; Matsubayashi et al. 2004). Cell-cell relay of

ERK activity across contracting tissues drives proper invagination in the Drosophila tracheal

placode. In this process, cells are activated in a sequential manner with a positive feedback

from EGFR to Rho acting as a switch cooperatively triggers high ERK activity that is

then relayed to the next cell (Ogura et al. 2018). Spatiotemporal patterns of ERK activity
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drive base to apex multicellular flow in the developing murine inner ear. This suggests

that ERK-driven helical collective cell movement mediates the spiral morphogenesis of the

inner ear (Ishii et al. 2021). This type of tissue behavior is thought to be a product of a

mechanical feedback loop where cell extension triggers ERK activation subsequently leading

to cell contraction and pulling neighbor cells into an elongated and ERK activated form

(Hino et al. 2020). In a similar manner as gradient based spatial activation, zebrafish scale

regeneration is triggered by oscillating waves of ERK activity through the regenerating tissue.

The wave-like activation is important for their optimal growth as sustained, non-wave-like

ERK pattern impairs regeneration times (De Simone et al. 2021). These examples clearly

demonstrate the importance of dynamic ERK signaling in regulating cell motility and tissue

morphology.

3.5.4 Diversification of cell states

Cell fate decisions are often thought of as deterministic responses to a given stimulus, but

emerging lines of evidence point to a more probabilistic view. In many of the examples

above, the cell fates driven by ERK occur only in a subset of stimulated cells. Yet, this

heterogeneity may often be an advantage in physiological tissues. Diversification of cellular

behaviors allows a population of cells to adjust its responses over a wider range of stimuli

strength and to behave more robustly (Suderman et al. 2017; Albeck, Pargett, and Davies

2018). An interesting possibility is that ERK dynamics may actively facilitate such cellular

heterogeneity. The properties of ERK-mediated signaling and gene induction make it well

suited to increase the diversity of gene expression within a cell population (3.2E) (Davies et

al. 2020). In comparison to other signaling pathways examined via live-cell imaging, ERK

activation is especially sensitive to local environmental stimuli (Regot et al. 2014), and it can

amplify small changes in local growth factor ligands into high dynamic range pulses (Gillies

et al. 2017). As noted above, these pulses trigger disparate patterns of IEG expression,
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and because IEGs are transcriptional regulators themselves, this variation can translate into

diversified expression profiles across the entire genome (Davies et al. 2020). Other data

corroborate this idea; for instance, during developmental plasticity, autocrine ligands may

provide deciding ability to cells by adjusting their fate in response to changing environmental

signals (Shvartsman, Muratov, and Lauffenburger 2002). Reversible regulation of transcrip-

tional enhancer activity by ERK may explain this concept: sustained ERK activity induces

AP-1 proteins to bind DNA and displace pluripotency transcription factors from genes such

as Nanog, while fluctuating ERK activity can allow for continued expression of pluripotency

network factors (Hamilton et al. 2019). In this context, sporadic ERK signaling contributes

to plasticity, allowing cells to maintain multi-fate potential.

In the C. elegans vulval system, variability of cell fate induction can have deleterious

morphological effects that reduce organismal fitness. Careful quantitative experiments have

delimited the range of variation in EGF expression that is compatible with wild type mor-

phology. Expression of EGF above or below this range results in variable cell fates and

mutant phenotypes (Barkoulas et al. 2013). While ERK signaling has been observed to be

variable even within the wild-type range (de la Cova et al. 2017), the potential phenotypic

outcome of this variation is suppressed by Notch signaling (Barkoulas et al. 2013). Thus,

EGF-ERK signaling can be an enhancer of cellular heterogeneity in multiple systems, with

either functional or deleterious effects, depending on the system.

3.6 ERK dynamics in disease, therapeutics, and phar-

macology

ERK dynamics are intertwined with its roles in tissue homeostasis, regeneration, cancer pro-

gression, and drug resistance. Sporadic mutations in EGFR, RAS or RAF that steer ERK

activity are strongly associated with cancer development, while somatic mutations in path-
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way genes cause RASopathies, a family of syndromes that share overlapping developmental

abnormalities (Rauen et al. 2015). However, the details of how ERK signaling dynamics

are altered in mutant cells have only recently been examined. Cells with differences in am-

plitude, intensity, or duration of ERK signaling in single cells can still appear identical in a

cell population when measured by immunoblot (Albeck, Pargett, and Davies 2018), which

may help to explain why bulk measurements of ERK phosphorylation do not correlate with

phenotypes in some models, such as RAS-driven tumor induction (Tuveson et al. 2004). Fur-

thermore, different forms of inhibition, including EGFR or MEK inhibitors, can differentially

alter patterns of ERK activity while appearing to produce similar degrees of suppression at

the population level (Albeck, Mills, and Brugge 2013). Distinguishing single-cell behaviors is

critical in diseases such as cancer where small treatment-resistant subpopulations can exert

a disproportionately large effect on disease progression (Hirata et al. 2015; Gerosa et al.

2020). Thus, it is critical to understand how ERK activity dynamics are altered in diseases,

and how they can be modulated for therapeutic benefit.

3.6.1 Differences in ERK activity dynamics in cancer and related

diseases

Recent work has begun to examine the distinction between ERK dynamics in normal and

cancer cells. This question is complicated by the fact that cancer cells contain hundreds of

mutations that can affect pathway function, some of which directly alter the function of the

pathway proteins, and others that exert indirect effects by changing contextual factors such

as gene expression or cell shape. To help restrict this variation and simplify the comparison

of RAS/ERK signaling properties between cancer cells, Bugaj et al. used an elegant strategy

of activating RAS optogenetically at the level of RAS and simultaneously monitoring ERK

activation via the nuclear translocation of FP-tagged ERK (Bugaj et al. 2018). This study
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revealed that tumor cells carrying RAS pathway mutations have reduced temporal resolution

in the transmission of the input light stimulus to the output of ERK (3.3A). In particular,

cells with RAF mutations had a slower off-rate when the input was deactivated, preventing

them from distinguishing sequential pulses of input. This loss of fidelity impacted gene

expression, as Egr-1 showed lower expression levels when pulsatile input signals were blurred

at the level of ERK in mutant cells, while Cyclin D1 and c-Jun expression increased, due to

the extended active period of ERK (Bugaj et al. 2018).

Impaired stimulus resolution is also found in other examples of RAS/ERK pathway mu-

tations. When mutant RAS isoforms were compared to wild type RAS within an isogenic

“RAS-less” background, the major change in ERK dynamics driven by RAS mutants was

a higher baseline activity that reduced the amplitude of ERK activity upon growth factor

stimulation (3.3B) (Gillies et al. 2020). Additionally, a series of MEK mutants found in RA-

Sopathies were analyzed in embryonic Drosophila and zebrafish models (Goyal et al. 2017;

Jindal et al. 2017). While these disease-associated mutants varied in whether they increased

or decreased ERK activity, a shared feature was a reduction in the dynamic range of ERK ac-

tivation gradients within each embryo. Finally, in a structural study of mutant EGFR forms

found in glioblastoma, these variants showed a reduced difference in their response curve to

strong and weak affinity ligands (Hu et al. 2022). Together these studies suggest a general

feature of RAS/ERK pathway mutations in limiting cells’ ability to generate ERK responses

with distinct amplitude and duration to inputs. Interestingly, computational models of the

RAS mutants revealed that although the dynamic range of ERK signaling was reduced, it

was still much greater than would be expected based on the known biochemical properties of

RAS mutants (Gillies et al. 2020). This observation suggests that the RAS/ERK pathway

resists changes in its dynamic range, potentially through feedforward regulation of phos-

phatases. Theoretical work on signaling pathways supports the idea dynamic range is a key

parameter for signaling pathways that can be made robust by certain pathway structures
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Figure 3.3: Alterations in ERK dynamics as a result of oncogenic mutations A Wildtype
(WT) ERK undergoes fast activation and deactivation in response to optogenetic stimulation
of SOS. BRAF G491A mutation leads to slower deactivation time (top). As a consequence,
highly pulsatile ERK become elongated into sustained activity (bottom), leading to aber-
rant ERK signaling and transcriptional regulation (Bugaj et al. 2018). B KRAS and other
mutations lead to increased baseline ERK activity and rescaled maximum stimulation levels
(Gillies et al. 2020). C Mutant/malignant cells release paracrine signals that cause neigh-
boring wild-type cells to become more pulsatile (Davies et al. 2020, Aikin et al. 2020). D
Comparison of the ERK response to different inhibitor targets. EGFR inhibition quickly
prevents ERK activation; however, pulsatile signaling later emerges (Gillies et al. 2020) .
RAFi inhibitors paradoxically increase RAF activity resulting in long, low frequency ERK
pulses. Non-EGFR receptor tyrosine kinase inhibitors result in high frequency pulses of
ERK. (Goglia et al. 2020). Oncogenic mutations lead to decreased sensitivity of cells to
inhibition, leading to heterogeneous reactivation of ERK activity (Ponsioen et al. 2021).
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(Andrews et al. 2016; Janes, Reinhardt, and Yaffe 2008).

A second theme found in models of disease-associated ERK signaling is increased paracrine

signaling, which results in greater spatial or temporal variability between cells in a popula-

tion. Expression of EGFR, RAS, and RAF mutants in a non-tumor epithelial cell line led

to increased amphiregulin (AREG) secretion that activated ERK in neighboring cells and

triggered increased proliferation, migration, and cell extrusion activities (Aikin et al. 2020).

In another mammary epithelial cell model, non-tumorigenic cells were selected in vitro and

in vivo for highly invasive behavior. At the single-cell level, these malignant variants exhibit

disordered pulses of ERK activity, which is driven by secreted AREG (3.3C) (Davies et al.

2020). In this model, the paracrine AREG signaling drives temporally dynamic ERK acti-

vation in neighboring cells, which as noted in section 2, can increase the variation of cellular

transcriptional states.

Connecting the differences in mutation-driven ERK signaling to the gene expression out-

puts discussed above suggests two models for how mutations can drive malignant cell be-

havior. In the first model, the higher baseline ERK activity will drive increased average

expression of genes such as Fra1 or Cyclin D1 that tend to accumulate regardless of the

dynamics of ERK activity (Gillies et al. 2017; Min et al. 2020). This aberrant expression

of Fra1 has been linked to cancer stem cells and clonal selection of resistant phenotypes in

cancer (Tam et al. 2013; Dhillon and Tulchinsky 2015). In the second model, increased

paracrine signaling drives a greater degree of time-varying heterogeneity, which may allow

individual cells under stress to evade death by modifying their transcriptional profile. In any

given tumor, both models could play a role, at different points in time or space. In addition

to the simple paracrine signals modeled by in vitro systems, ERK activity in cancer cells is

likely affected by a mixture of cell-cell, matrix, and nutrient signals from the complex mi-

croenvironment, convolved with the blurring effects of activating pathway mutations (Davies

and Albeck 2018).
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3.6.2 Manipulating ERK dynamics pharmacologically

Many ERK pathway inhibitors are now available, including small molecule inhibitors of

EGFR and other receptor tyrosine kinases (RTKs), certain RAS variants, RAFs, MEKs,

and ERKs. The development of these drugs was driven by the hope they would effectively

target cancers with RTK, RAS, and RAF mutations. However, the history of clinical usage

for these drugs is complex, with some proving effective as combination therapies and ap-

proved for clinical use in certain cancers, while other candidates were less successful. One

explanation for varied performance of ERK inhibitors is the extensive feedback-driven buffer-

ing of ERK activity that we discuss in the companion review (Chapter 2). Although stability

is important for physiological homeostasis, it adds complexity to pharmacological blocking

activity. Mathematical models and in vitro cell-based studies are influenced by intact versus

broken feedback systems resulting in varied ERK activity hence creating a need for tar-

geting the protein outside of the feedback system, or using a combination of inhibitors to

successfully disrupt the feedback loops (Sturm et al. 2010).

A data-driven approach based studies addressed how different inhibitors impact ERK

dynamics. Such large scale screens allow identification of which drugs are potent ERK in-

hibitors and which are not. Such large scale screens are useful to quickly identify which drugs

are likely to be effective candidates for ERK inhibition or to rule out compounds that work

counterintuitively, such as the BRAF inhibitors that increase ERK signaling (Poulikakos et

al. 2010). A systematic study compared the effects of 429 known kinase inhibitors and

related compounds (Goglia et al. 2020) using keratinocyte cells with pronounced pulsatile

ERK activity as baseline behavior. Several compounds showed altered pattern of ERK ac-

tivity classified into three classes: EGFR or MEK inhibitors suppresses strong ERK activity,

B-Raf “paradox activators” that slowed ERK pulsing, and non-ERBB RTK inhibitors, which

increased pulsatile behavior of the keratinocytes (3.3D).
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Despite the clinical successes of MAPK inhibitors, some fail as therapeutic candidates due

to the robust wiring of this pathway. Even with increasing specificity and potency of drugs,

complete inhibition of the pathway is difficult to achieve and a small portion of dividing cells

remain (Albeck, Mills, and Brugge 2013; C. Yang et al. 2021). As ERK is inhibited, so too

are the negative feedback mechanisms it activates. This has far reaching consequences, such

as upregulation of drug insensitive protein isoforms (i.e. B/CRAF dimers), reactivation

receptor-level signaling, and relaxing of phosphatase activity on ERK (3.3D) (Lito et al.

2012; Nazarian et al. 2010). Live-cell imaging confirms that cells progressing through the

cell cycle after BRAF inhibition are not due to mutations, but rather incomplete suppression

of the pathway and sporadic re-entry into the cell cycle (Gerosa et al. 2020; C. Yang et al.

2021). Interestingly, while both authors found upregulation of ERK targets in persister

cells, Gerosa et al. found a spatial clustering of these cells while Yang et al. did not. This

may reflect the differences in mechanisms of resistance, with receptor reactivation showing

paracrine activity and distinct groups of ERK activity, while alternate mechanisms, such

as stress adaptation, do not locally cluster drug resistant cells. Importantly, these different

mechanisms of resistance yield distinct ERK activity patterns, which can be utilized to

formulate personalized treatment plans (Goglia et al. 2020). Ultimately, the power of these

biosensor tools lies in the ability to profile patient derived tumor organoids based on dynamic

ERK activity and identify effective treatment regimes (Ponsioen et al. 2021; Muta et al.

2018). A major caveat to these studies is that dynamics in isolated tumor cells alone are not

reflective of all the possible origins of resistance. ERK dynamics are influenced by numerous

other factors including cell density (Fan and Meyer 2021), substrate stiffness (Farahani et

al. 2021), cell type (Lebedev et al. 2022), and the tumor microenvironment. ERK biosensor

studies in mouse models of melanoma show that extracellular matrix from cancer associated

fibroblasts creates less sensitized tumor cells that escape pathway inhibition within 12 hours

of treatment (Hirata et al. 2015). Future work must address other mechanisms altering
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ERK dynamics in order to overcome the multifactorial nature of resistance.

Heterogeneity further complicates ERK targeting efficacy because each cell or subpop-

ulation within a tumor may have different drug sensitivities. Within melanomas, differen-

tiated melanocytic cells are sensitive to BRAF and ERK inhibitors, while dedifferentiated

cells that have lost their lineage markers (SOX10 and MITF) are drug-resistant (Tsoi et

al. 2018; Sun et al. 2021). This cell-to-cell variation can be due to differences in signaling

pathway activities. Variation MAPK activation within a population of cells may lead to

differential expression of AP-1 transcription factors which results in changes in heterogene-

ity and plasticity. In studies with patient-derived melanomas, transcriptional variation is

well correlated with drug resistance (Shaffer et al. 2017). Single-cells expressing high levels

of EGFR prior to vemurafenib inhibition were more likely to become resistant, and this

resistant state included increased AP-1 expression. Corroborating these findings, AP-1 ex-

pression levels have been found to determine the diversity of states of BRAF-mutant cell lines

upon MAPK inhibition. Specifically, cells with high c-Fos levels correlate with melanocytic

and transitory states, whereas Fra-1/2 and c-Jun levels correlate with undifferentiated cells.

Furthermore, knockdown of AP-1 factors lead to changes in differentiation state markers,

suggesting that targeting AP-1 factors may render cells more vulnerable to pharmacologi-

cal treatment (Comandante-Lou, Baumann, and Fallahi-Sichani 2022; Niepel, Spencer, and

Sorger 2009). Unfortunately, heterogeneity and adaptive tendencies within highly mutated

carcinomas continues to be a challenge for pharmaceutical industries.

Modulating the ERK pathway has great potential in treating RASopathies. One of the

most prevalent RASopathy is neurofibromatosis type I, which affects individuals with mu-

tations in the NF1 gene. NF1 normally down-regulates the ERK pathway by inactivating

RAS, and individuals carrying a heterozygous loss of function of NF1 allele develop numer-

ous neurofibroma tumors throughout their life (Amaravathi, Oblinger, and Welling 2021).

Plexiform neurofibromas (pNFs) cause morbidity and can progress to malignant peripheral
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neural sheath tumors (PNSTs). Sustained treatment with the MEK inhibitor selumetinib

has shown substantial effectiveness at reducing the growth of pNFs, demonstrating that a

sustained reduction in signaling activity over the course of time can counteract the increased

ERK activity which primarily arises from NF1 loss (Gross, Dombi, and Widemann 2020;

Gross et al. 2020). Further investigations are needed to determine the potential of similar

strategies against different RASopathies, and also to decipher if they harbor distinct forms

of ERK activity amplification requiring different patterns of inhibition.

3.6.3 Harnessing ERK activation dynamics for stem cells and re-

generation

While the primary focus of most therapies in cancer and RASopathies remain to inhibit

ERK, here we explore other ways in which manipulating ERK dynamics can be used in

regenerative therapies. One emerging tool is the use of stem cells to repair injured tissues.

ERK plays a multifaceted role in stem cell pluripotency and cell fate choices, which makes

pharmacological targeting of the pathway a potential route for controlling differentiation.

ERK activation, typically through Fibroblast Growth Factor (FGF), leads to differentiation

of Embryonic stem cells (ESCs) (Kunath et al. 2007; Lanner and Rossant 2010; Hamilton

and Brickman 2014; Hamilton et al. 2019). In fact, cultured ESCs can only be maintained

in their naive, fully pluripotent state if ERK activity is strongly suppressed (Ma, Chen,

and Chen 2016). To maintain their pluripotency, culture media dubbed “2i” and “3i” have

been developed. 2i media includes inhibitors for both MEK and GSK3, with the MEK

inhibitor suppressing ERK activity and the GSK3 inhibitor activating the transcription

factor beta-catenin, while 3i additionally includes an FGFR inhibitor. Live-cell imaging

revealed substantial heterogeneity in ERK activity ESCs following removal of 2i media, which

coincided with loss of expression of the pluripotency factor Nanog over time (Deathridge et
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al. 2019). Further study of ESCs revealed that they respond with a unique form of ERK

activity: periods of high-frequency oscillations that are more regularly spaced and have a

much shorter period ( 7 minute) than pulses found in epithelial cells (Raina et al. 2020).

The precise control of stem cell differentiation by ERK is still an ongoing area of research.

An extensive study of biosensor dynamics in hematopoietic stem cells and multipotent pro-

genitor cells reveals that the fate of adult stem cells involves ERK signaling (Wang et al.

2021). Live-cell imaging of these primary cells revealed differential responsiveness to differ-

ent cytokines, as well as strong variation in ERK response between cells of the same type.

Importantly, the specific pattern of ERK activity in individual cells predicted the future

emergence of differentiation markers, suggesting that heterogeneity in ERK dynamics plays

a role in setting the proportions of cells of different cell fate. However, the specific effect

of ERK activity on gene expression is context dependent. Deathridge et al. surprisingly

found a weak correlation between ERK activity and Nanog expression in ESC differentia-

tion, while a study in blastocyst development found a negative correlation (Deathridge et al.

2019; Pokrass et al. 2020). Therefore, ERK activity likely controls cell fate by biasing gene

expression and driving differentiation of cells in a proportional manner (Raina et al. 2021).

These data provide important insights into engineering stem cells and controlling differen-

tiation programs (Yu et al. 2018; Zarrabi et al. 2018), which is shown to be beneficial in

treating a wide range of diseases.

Along with stem cell therapies, directly altering ERK signaling within injured tissue

can be used to improve healing. As previously discussed, waves of ERK activity coordi-

nate epithelial migration close wound gaps (Aoki et al. 2017; Matsubayashi et al. 2004).

Additionally, ERK activity also helps direct movement of immune cells (Kamioka et al.

2012; Zhang et al. 2016) and fibroblasts, which produce the scaffolding, that are necessary

for reepithelialization (Sepe et al. 2013). Live-cell imaging in zebrafish also indicates that

sustained ERK activity is required for angiogenesis (Okuda et al. 2021). Transient epithelial-
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mesenchymal transition (EMT) is thought to be an important part of this process (Kalluri

and Weinberg 2009; Stone et al. 2016), whereby ERK facilitates the temporary phenotypic

changes that result in loss of cell-cell contacts, increased cell motility, and increased expres-

sion of matrix proteins (Janda et al. 2002; Navandar et al. 2017; Shin et al. 2019; Zheng

et al. 2022; Lamouille, Xu, and Derynck 2014). ERK activation leads to epigenetic remod-

eling and expression of transcription factors that facilitate global gene expression changes

(Navandar et al. 2017; Beisaw et al. 2020). Single-cell modeling indicates that pathways are

not rewired during EMT, but rather signaling dynamics are altered during cells transition

from epithelia to mesenchyme (Wade et al. 2020). While the exact ERK dynamics driving

EMT are still unclear, one study by Aikin et al. showed sustained ERK activity via BRAF

and MEK mutations induced increased motility and decreased epithelial cell markers consis-

tent with an EMT-like phenotype (Aikin et al. 2020). Time resolved signaling data would

greatly contribute to our understanding of wound healing. It is clear ERK is necessary for

initial wound healing and is maintained during healing by various growth factors released

at the site of injury. Inhibition of ERK activity prolongs wound closure and could result in

scar tissue (Tomasso, Bartscherer, and Seifert 2022; Matsubayashi et al. 2004). Conversely,

ERK also promotes aberrant EMT and fibrosis (Jeng et al. 2020; S.-J. Kim et al. 2020;

Madala et al. 2012). Resolving the timing and amount of ERK necessary for proper wound

healing will allow for rational design of therapies for faster healing with minimal scar tissue

(Escuin-Ordinas et al. 2016).

3.7 Future directions for dynamic ERK encoding

ERK is a powerful and flexible communication system that has been adapted to many bio-

logical functions. While early models envisioned deterministic signaling programs triggered

by distinct growth factors that encoded discrete outcomes, single-cell studies have provided
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a much more nuanced view. In other words, the relationship between ERK activation, gene

expression, and cell fate is not perfectly correlated in individual cells. Despite the complexity

of this behavior, the emerging principles discussed in this review help to make some sense

of the intricate patterns and their biological functions. These concepts bring us closer to

understanding the “code” of ERK dynamics that determines cell behavior, and they also

bring remaining challenges into focus.

The first challenge is capturing spatiotemporal ERK dynamics in more in vivo, and clin-

ically relevant models (i.e. patient derived tissues). While live-cell biosensors are becoming

standard in studies of ERK dynamics, incorporation of these sensors are not always practical

in clinical settings. We imagine a model that allows for highly accurate inference of ERK

dynamics in patients without the use of biosensors. We have discussed the ways in which

ERK signals are encoded into gene expression and cell fates. Therefore, future models should

be able to decode gene expression and cell fates into ERK signals, providing the ability to

predict or infer a patient’s ERK history profile from simple measurements like fixed tissue

staining. In the clinic, knowledge of this history is crucial for assaying for oncogenic activity

and also pharmacologic efficacy. Models that can precisely recapitulate ERK histories using

more feasible methods will greatly benefit therapeutic success.

Second, the most important actions of ERK occur not in single cells but in groups.

There is ample evidence that collective cell behaviors and gene expression profiles can be

strongly influenced by different forms of ERK dynamics. For example, MDCK cells migrate

against the direction of intercellular ERK activity waves during wound healing (Moreno et

al. 2019). In this instance, the aggregate pulsatile ERK signaling drives the behavior of a

group of cells. A similar process occurs during scale regeneration where wave propagation is

crucial for proper ring-like growth of the tissue (De Simone et al. 2021), or during mechanical

feedback of ERK signaling on mouse ear development (Ishii et al. 2021). Although ERK

is activated at the single cell level, it is the aggregate signaling that results in changes in
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morphology (Potey et al. 2019). This is crucial for tissue homeostasis, where collective cell

behavior is more important than that of an individual cell.

Finally, ERK is a strong causal driver of tissue-level cell behavior, but its actions at

the single cell level are imprecise. Even for the most directly regulated genes, detailed

measurements of a cell’s ERK activity provides only limited predictive power for a given

gene. The majority of this literature points to an essential interplay between signaling

and contextual factors rather than the dynamics alone. The information provided by ERK

dynamics must be interpreted in light of the status of other pathways within each cell.

Thus, precise ERK responses and downstream effects are not the driving principle in most

physiological settings, and the same is true for any signaling pathway. While we often

study signaling pathways in isolation, each cell - and even an individual gene within the

cell - responds to many inputs simultaneously. Viewed from this perspective, each signaling

pathway is only a piece of the puzzle in determining cell behavior. A key question for

future work will be to understand how much information about signaling status would be

needed to predict cell behavior with high confidence. Lessons from the ERK pathway will

need to be integrated with similar insights from other pathways such as NF-kB, p53, and

cyclin regulation for which similarly extensive fields have developed. New methods will be

needed to interrogate pathways with less dynamic information available, such as metabolic

regulation, and to monitor multiple pathways simultaneously within each cell.
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4.2 Abstract

The Ras/ERK pathway drives cell proliferation and other oncogenic behaviors, and quantify-

ing its activity in situ is of high interest in cancer diagnosis and therapy. Pathway activation

is often assayed by measuring phosphorylated ERK. However, this form of measurement

overlooks dynamic aspects of signaling that can only be observed over time. In this study,

we combine a live, single-cell ERK biosensor approach with multiplexed immunofluores-

cence staining of downstream target proteins to ask how well immunostaining captures the

dynamic history of ERK activity. Combining linear regression, machine learning, and dif-

ferential equation models, we develop an interpretive framework for immunostains, in which

Fra-1 and pRb levels imply long term activation of ERK signaling, while Egr-1 and c-Myc

indicate recent activation. We show that this framework can distinguish different classes

of ERK dynamics within a heterogeneous population, providing a tool for annotating ERK

dynamics within fixed tissues.

4.3 Introduction

The RAS/ERK pathway directs multiple cellular behaviors and regulates tissue homeostasis

(Lavoie et al. , 2020). The terminal kinase in this pathway, Extracellular Signal-Regulated

Kinase (ERK), is essential for cellular decisions to enter the cell cycle, migrate, or differenti-

ate. Elevated ERK activity drives cancer and other diseases, and the quantitative strength

and timing of ERK signaling play a critical role in disease progression and treatment. For ex-

ample, individual cell fates can be altered by minor interruptions in ERK activity (Min et al.

, 2020). Additionally, residual ERK activity following targeted kinase inhibitor treatment

determines therapeutic efficacy (Bollag et al. , 2010), showing that proper measurement

of pathway activation is an essential clinical parameter. Measuring phosphorylated ERK
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within patient tissue samples is a widely used diagnostic for cancer drivers and treatment

potency. However, such methods to assay ERK activation are limited in their spatiotemporal

resolution and quantitative accuracy.

The complexity of measuring ERK activity arises from the fact that the duration and

amplitude of ERK activation influence the cellular interpretation of its signal. The pattern

of activity influences expression of numerous target genes (ETGs), including the Immediate

Early Genes (IEGs), both by activating mRNA production and by enhancing protein stability

(Cook et al. , 1999; Murphy et al. , 2002, 2004; Nakakuki et al. , 2010; Uhlitz et al. ,

2017). Advances in live-cell imaging and CRISPR tagging have allowed a higher-resolution

view of how patterns of activation and deactivation (ERK dynamics) correlate with ETG

expression at the single-cell level. Dynamic features of the ERK signal have been shown to

differentially drive its target genes. ERK amplitude and duration are integrated over time

by stabilization of Fra-1 protein levels, whereas c-Fos, Egr-1, and other genes are reported

to respond maximally to intermediate frequencies of activation (Gillies et al. , 2017; Saito

et al. , 2013; Wilson et al. , 2017). In some systems, ERK pulsatility also correlates

with proliferation and protection from apoptosis, while sustained activity correlates with

cell cycle arrest (Aikin et al. , 2020; Ender et al. , 2022). These results highlight that

the dynamic nature of ERK signaling can differentially activate genes, and therefore control

cellular processes.

Current assessments of Ras/ERK pathway activation measure levels of phosphorylated

ERK (pERK) using antibody-based assays (Bollag et al. , 2010; Escobar-Hoyos et al. ,

2020; Flaherty et al. , 2010). However, a more informative measure of ERK activity would

capture its dynamic history, enabling the observer to distinguish between cells with long-

term constitutive activity or intermittent activation. Live-cell reporters provide a method to

achieve this resolution in experimental settings, but cannot be used in humans and are often

inaccessible in animal models. Furthermore, phospho-ERK concentration does not neces-
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sarily capture its activity within the cell, given the variable role of competing phosphatases

(Gillies et al. , 2020), and changes in ERK phosphorylation can occur rapidly within the

cell, especially during pharmacological inhibition of the pathway or tissue isolation (Kleiman

et al. , 2011). Therefore, detection of pERK is an unreliable indicator of the longer-term

activation history of ERK (Albeck et al. , 2013). In this study, we explore the feasibility

of estimating past ERK activity using antibody-based measurements of ETGs. Previous

work has demonstrated that synthetic ETGs can capture ERK dynamics (Ravindran et al. ,

2022). While incorporation of such biosensors remains impractical, endogenous ETGs have

a range of different sensitivities to dynamic ERK activity (Davies et al. , 2020; Wilson et al.

, 2017), which could potentially be used to infer pathway activation history using fixed-cell

measurements only. Such inferences could be used in biopsy tissues to infer the dynamic

nature of ERK activity within tumor tissue. Oncogene induced ERK activation has been

shown to be distinct from normal physiological patterns, and is often sustained (Aikin et al.

, 2020; Bugaj et al. , 2018), thus knowledge of the types of signaling found in a tissue can

be informative about the source of stimulating activity. Moreover, the duration of signaling

suppression by inhibitors is of high interest, therefore this could be a way of assessing the

efficacy of a treatment over a long window of time.

To date, most studies of ETGs have considered how changes in ERK signaling dynamics

impact the expression of a given ETG. We pose the reverse question: can an individual cell’s

ETG expression profile be decoded to infer the history of ERK activation? Furthermore,

what are the best quantitative indicators of ERK activation, and how can the strength,

duration, and frequency of ERK activation be predicted? To investigate these questions, we

used a live-cell biosensor of ERK in combination with cyclic immunofluorescence for ETGs

and other proteins regulated by ERK, including the canonical ETGs Egr-1, Fra-1, c-Jun,

c-Myc, c-Fos, and phosphorylated proteins such as pERK, pc-Fos, and pRb (a downstream

marker of ERK-dependent cell cycle entry; for convenience we collectively refer to all of these
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markers as ETGs). Using statistical models and machine learning to predict ERK activity

features based on the expression of each protein, we find that each gene product reports

ERK history with a different memory span. Of the measurements used, long-term, average

ERK activity is predicted best by levels of Fra-1, while short term, recent ERK activation

is predicted best by levels of Egr-1 and c-Myc. Lastly, we tested the limits of our method

by mathematical simulations of ERK driven gene expression, finding that in theory, static

immunofluorescence measurements can well recapitulate dynamic activation history with as

few as 16 targets.

4.4 Results

4.4.1 A dataset linking live-cell ERK activity to ERK target im-

munofluorescence

To create a dataset that enables correlation of ERK activation to downstream target ex-

pression and modification, we first collected live ERK activity measurements in response to

differential activation of the RAS/MAP Kinase pathway. We used EKAR 3.5, a calibrated,

FRET-based biosensor of ERK activity, to measure single-cell activation in MCF10A mam-

mary epithelial cells (Fig. 4.1a, 4.7a-d). With a series of Epidermal Growth Factor (EGF)

concentrations, ERK activity was stimulated in a dose-dependent manner (Fig. 4.1b, 4.7e).

To increase the diversity of activity patterns, we added MEK inhibitor (MEKi) at varying

times after EGF stimulation, and included treatments where EGF was added at different

timepoints of the experiment (Fig. 4.1c, 4.7e, Supplementary Table 1). The combination

of MEKi treatments and the dose curve of EGF led to a broad spectrum of ERK signaling

behaviors, with pulsatile activity varying in both duration and amplitude (Fig. 4.1d). Con-

sistent with previous studies (Gillies et al. , 2017; Ryu et al. , 2015), we found that ERK

73



activation is heterogenous from cell to cell within each dose of EGF stimulation.

Immediately following live-cell data collection, we fixed the cells, and conducted cyclic

immunofluorescence (4i) staining to measure levels of eight targets downstream of ERK (Fig.

4.1a, e, Supplemental Movie 1). This protocol was adapted from Gut et al. (Gut et al. ,

2018), and validated for our 96-well plate experiments (Fig. 4.8a-d). After quantifying

antibody staining intensities, we found that most targets were dose responsive to EGF and

suppressed by MEKi treatment (Fig. 4.1f, 4.7e). The one exception was c-Jun, which

increased moderately with both MEK inhibition and EGF concentration, suggesting that its

expression is not directly regulated by ERK activity in these cells.

We then analyzed the correlation between ERK activity and the expression of each target.

To link live-cell ERK activity measurements with the respective 4i data for each cell, we

aligned the corresponding image datasets and generated a heatmap arranged by the mean

ERK activity measurement in each cell (Fig. 4.2a). While both ERK activity and 4i targets

were variable across the data set, most of the 4i targets exhibited some discernible correlation

with mean ERK activity, which was especially strong for Fra-1 and pRb. We calculated the

Pearson correlation between ERK pulse features, such as frequency and duration for each

cell, and each ETG measurement (Fig. 4.2b, c). The strongest correlations were between

the sum of pulse duration to Fra-1 and pRb. Interestingly, Egr-1 was uniquely correlated

with the average derivative of ERK activity, supporting the previous notion that Egr-1

selectively decodes pulsatile ERK activation (Saito et al. , 2013). Of note, c-Jun had little

to no correlation with any feature of ERK activation, implying again that its expression

is not directly controlled by ERK in these cells and providing a useful negative control

for subsequent analyses. We also performed a more granular time-sensitive analysis by

calculating the Pearson correlation between each target and the EKAR FRET measurement

at each timepoint of the live-cell movie (Fig. 4.2e). The correlation of Fra-1 and pRb was

distributed across most of the time series (r ≈ 0.5, 0.4, respectively) from the initial stimulus,
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Figure 4.1 ERK activity and target genes are dose-responsive to Epidermal Growth Factor
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Figure 4.1: ERK activity and target genes are dose-responsive to Epidermal Growth Factor
a Schematic of the experimental method. Live cells were imaged in 96-well plates for 19
hours and immediately fixed. Plates were subsequently stained for antibody-based measure-
ments. b Treatment average response measurements for live-cell ERK biosensor (EKAR)
with increasing concentrations of EGF. Data are presented as the mean of each treatment
(nwellreplicates = 9-11 for each dose of EGF, 21 for control). c Treatment average response
measurements depicted as a heatmap. Each row is the treatment average EKAR measure-
ment (FRET measurements are indicated by color). EGF concentration indicated by colored
triangles from Fig. 1b. MEKi = MEK inhibitor PD0325901 (100nM) (nwellreplicates = 2-4 for
each treatment). d Single-cell response plots to indicated treatment. Bold line indicates the
average of all cells in one well of the treatment. e MCF10A cells immuno-stained with cyclic
immunofluorescence. Each row depicts the same group of cells. Scale bar = 100 um. f Quan-
tification of cyclic immunofluorescence measurements from listed EGF treatment. Dashed
line indicates median of vehicle control condition (0 ng/ml EGF). Variance corrected t-tests
were conducted by comparing each EGF treated condition to vehicle control nreplicates = 3.
* p-val <0.05, ** p-val <0.005, *** p-val <0.0005.

apart from a period where ERK activity is weakest, about 2 to 4 hours after EGF addition.

In contrast, c-Myc, c-Fos, and pc-Fos mildly correlate to ERK activity about 5 hours from

prior to fixation (r ≈ 0.3), and the correlation is highest (r ≈ 0.55) during the last hour

before fixation. As expected, pERK most correlates to ERK activity immediately prior to

fixation (r ≈ 0.6). Finally, Egr-1 correlates only to ERK activities 30 minutes to 1 hour

prior to fixation (r ≈ 0.5).

To visualize spatial correlations of ERK-ETG signaling within the dataset, we plotted

a spatial heatmap of signaling and gene expression, where cells within a single image are

clustered in a heatmap visualization by proximity to one another (Fig. 4.2d). This analysis

shows spatial ERK activation of groups of cells throughout the experiment. Interestingly,

recent activation events are typically marked by strong Egr-1 expression within a local group

of cells (Fig. 4.2f).
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Figure 4.2: ERK target gene expression moderately correlates with features of ERK dynamics
a Single-cell heatmap for EKAR FRET measurements and corresponding ETG intensity,
each row represents one cell (ncells = 97,960, nreplicates = 3). ETG expression colored by log
of antibody intensity from immunofluorescence measurements. b Features of ERK dynamics
analyzed. Frequency was also calculated by estimating the mean normalized frequency of
the power spectrum of the EKAR FRET measurement time series for each cell. c Pearson
correlation (r) between each ERK feature and each cyclic immunofluorescence measurement,
where single-cell values were used. d Spatial heatmap of EKAR (left) and ETG (right)
measurements from a single well (control condition). Heatmap is organized by proximity of
cells to each other so that neighboring cells in the well are plotted closer to each other in the
heatmap. Magenta box indicates cells in f. White arrows indicate cells that recently activated
ERK which resulted in higher Egr-1 expression (right). e Pearson correlation (r) between
single-cell ETG measurements and the EKAR FRET measurement at each timepoint from
the live-cell experiment. f Corresponding cells from magenta box in Fig. 4.2d. Scale bar =
50um.

4.4.2 Regression modeling of the ERK-ETG relationship predicts

features of ERK dynamics

For a rigorous statistical analysis of the relationship between ERK activity and ETG expres-

sion, we performed cross-validated linear regression using the 4i measurements as predictors

and ERK pulse features as response variables. We first created single predictor models to

assess how well each target individually predicts each ERK feature in an individual cell.

Analysis of the variance explained (R2) for each model confirms the results from the Pearson

correlation analysis. Fra-1 and pRb best predict the sum of duration of ERK pulses (R2 =

0.42, 0.31, respectively), and the average ERK activity in each cell (R2 = 0.28 and 0.23)

(Fig. 4.3a, b., 4.9a). These results suggest the duration of ERK activation seems to have a

stronger influence on gene expression than the strength of the activation.

To assess whether the prediction models can be improved by considering multiple stains

simultaneously, we generated several multiple linear regression (MLR) models using all 4i

measurements as predictors at once (Fig. 4.3a, c). The ERK parameter with the highest

variance explained was the sum of duration (R2 = 0.52) The models for derivative benefited
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the most from the multivariable models, however, they still only explained 33% of the

variation in the data. c-Jun again served as a negative control, as those models did not

explain any of the variation in ERK activity.

We then investigated which antibody combinations are most important in the MLR

models. For each ERK feature, we created models that successively added predictors, and

measured the resulting R2, and test-set error for each new predictor (Fig. 4.3d, 4.9b). For

most ERK features, we found that the maximum R2 values can be achieved with just 2 to

3 predictors, where adding Fra-1 and pRb typically caused the highest improvement in R2

values and decrease in test-set error. The best model for the average derivative of ERK

had a similar R2 with the model for the ERK mean (R2 = 0.36, 0.33, respectively). The

main distinction for the average derivative model is the strong contribution from Egr-1. To

understand why adding more predictors does not improve models, we calculated the pairwise

correlation between each 4i target, and found that many targets were moderately correlated

with each other (Fig. 4.9c). The slight co-linearity between the predictors suggests that

they share mutual information and thus explains why only a few predictors are needed to

achieve the best possible models. These results indicate that ERK strength and duration are

best inferred using Fra-1 and pRb, while ERK variability (derivative) are best inferred using

Egr-1 and pRb. The fact that pRb predicts both long term ERK activation and variability

suggests that Rb phosphorylation (cell cycle entry) is sensitive to different types of ERK

activity (Min et al. , 2020; Zwang et al. , 2011).

We repeated the regression analysis on treatment averages to explore the difference be-

tween population and single-cell models. To calculate the treatment average for each mea-

surement, we simply grouped cells with similar treatment conditions, and averaged their

respective 4i measurements and ERK features. Overall, bulk models were superior to the

single-cell models, as Fra-1 and pRb individually were excellent predictors for ERK dynamics

(R2 ¿ 0.7, Fig. 4.3e, f). Treatment average MLR models notably improved the predictions for
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average inter-peak interval, average duration, and frequency (R2 = 0.85, 0.72, 0.39, respec-

tively). Fra-1 and pRb retained the most consistent relationship to ERK dynamics and were

the most important predictors in all models. These results further solidify the importance of

Fra-1 and pRb as markers for ERK activity. Furthermore, population average models rec-

oncile the modest predictive power of the single-cell models and confirm the classical view

that ERK determines gene expression.

Both the regression analysis and Pearson correlation indicate the pERK was not strongly

correlated to long-term ERK activation in single cells. The poor relationship is partly due

to the treatments that inhibit MEK at varying times after EGF addition, which lead to the

virtually no pERK signal. When we remove these treatments from the analysis, the regres-

sion models notably improve for pERK, and slightly improve for other 4i measurements (Fig.

4.9d). These results indicate that pharmacological inhibition renders pERK an unreliable

predictor of ERK histories, and that relying solely on pERK staining can lead to misinter-

pretations of pathway activation. Many studies assess the effect of pathway inhibitors using

pERK staining; consequently, we argue other markers should be used. The Fra-1 and pRb

models are robust to MEKi treatments, and therefore are the best predictors of long-term

ERK activation.

4.4.3 Neural network-based models of the ERK-ETG relationship

reveals non-linear time dependence of ERK dynamics

While the previous models of featurized ERK activity provide interpretable correlations

that help to understand the underlying biological process, they assume linearity and may

not capture more complex relationships in the data. Additionally, some ERK parameters

are correlated with each other, and other features of the time series may be missed. To

examine the importance of the timing of ERK activation and identify which timepoints have
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Figure 4.3 ERK target gene expression predicts history of ERK activation
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Figure 4.3: a Single-cell regression showing the coefficient of determination (R2) of linear
regression models which use ETGs to predict each ERK feature. 10-fold cross-validation
was conducted to retrieve the best test-set model. This model was then fitted on the full
dataset. b Scatter plots of single-cell regression models showing line of best fit. Color
indicates relative density of the data. c Scatter plot showing each cell’s predicted (x-axis)
vs true (y-axis) value in the multiple linear regression (MLR) models. d Results of adding
predictors to MLR models. Color of each point indicates which predictor was added at each
step. e Average values were calculated for all cells with the same treatment. These values
were then used to fit regression models that predict each ERK feature using ETGs. f Scatter
plots showing line of best fit and confidence intervals for treatment average regression models.

the greatest impact on final expression levels, we trained a convolutional neural network

(CNN) to use the ERK activity time series to predict expression levels of each ERK target

in individual cells (Fig. 4.4a, top). As a comparison to the CNN, we also fit linear regression

models (TS linear) using the values at each timepoint of the ERK time series as individual

variables to predict final ERK target levels (Fig. 4.4a bottom left). Finally, we compared

the performance of these time series-based models with that of ERK dynamics feature-

based models (Featurized linear). These feature-based models used all nine featurized ERK

measurements (i.e. mean/duration/frequency) to predict the expression of each ERK target

(Fig. 4.4a bottom right).

We found that the CNN achieved the highest performance in predicting all ERK targets,

except for pERK (Fig. 4.4b). To account for overfitting, we calculated the mean squared

error (MSE) on unseen data (test set) and the CNN exhibited the least error for all targets,

except for pERK (Fig. 4.4b bottom). Although the CNN yielded better performance for

most targets, a significant amount of variance is still not captured by the model (Fig. 4.4c).

Notably, the CNN models for Egr-1 and pRb explained much more variance than linear

regression models of other targets, implying that Egr-1 and pRb likely respond to ERK

activation with significant non-linearity. Finally, for many 4i targets, the featurized linear

models underperformed the other two methods, both in R2 and test set error, indicating

that the featurization method often does not capture important aspects of ERK signaling
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that influence gene expression.

We then used the CNN model parameter weights (feature importance) to investigate

which timepoints most influenced the final expression of each target. However, feature

importance across much of the time series was overshadowed by a strong correlation to the

initial stimulus response, which likely reflects a correlation with the treatment delivered

rather than direct biochemical regulation of ETGs (Fig. 4.10a). Therefore, we limited the

model to using only time points more than 5 hours after the initial treatment when training

our time series models, which resulted in a minimal decrease of the CNN performance (Fig.

4.10b). A CNN trained on fewer time points further confirms our regression results, and

captures nuances of the ERK-ETG relationship (Fig. 4.4d). The findings reinforce the

observations from the linear regression analysis, and highlight the importance of considering

both the timing and intensity of ERK activation in understanding how gene expression is

regulated. Fra-1 is influenced by a wide time span with peak influence starting as early as 12

hours prior; the most recent two hours have little effect. c-Fos and pc-Fos are also influenced

by time spans of more than six hours, but focused on the last two to four hours. Egr-1 is

strongly influenced by ERK activation within the last two hours, while pERK, c-Myc and

pRb are influenced strongly by the last hour of ERK activation. This alternate modeling

approach confirms that each ETG is differentially sensitive to timing of ERK activity, and

that in some cases, this relationship is not well characterized as a linear relationship.

4.4.4 Classification models uncover prototypical patterns of ERK

signaling with distinct gene expression profiles

Thus far, we have trained models that predict several continuous variables that represent

ERK history; however, the application of these models is limited by the challenge of concur-

rently visualizing the predictions. Therefore, we demonstrate here how spatiotemporal ERK
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Figure 5: Annotating spatiotemporal ERK patterns in images using Decision Tree model. a Average ERK
activity in each cluster identified by k-means clustering of EKAR time series data. Cells per cluster: C119325,
C29989, C316325 ,C46244, C521523. b Box plot showing median, quartiles, and range of ETG intensity in each cluster.
c Confusion matrix showing the amount of accurate (green) and mis-classified (gray) cells in each class.
Decision tree leaf size was optimized by cross-validation and collecting the leaf size with the minimum test-set
error (129). d Receiver operating characteristic curves for each class in the decision tree model. e MCF10A cell
stained with Hoechst (gray) overlayed with predicted signaling histories. Dark lines indicate the mean ERK
activity for each cluster (as in Fig. 5a), and shaded regions indicate 25th and 75th percentiles.
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Figure 4.5: Annotating spatiotemporal ERK patterns in images using Decision Tree model.
a Average ERK activity in each cluster identified by k-means clustering of EKAR time
series data. Cells per cluster: C119325, C29989, C316325 ,C46244, C521523. b Box plot showing
median, quartiles, and range of ETG intensity in each cluster. c Confusion matrix showing
the amount of accurate (green) and misclassified (gray) cells in each class. Decision tree
leaf size was optimized by cross-validation and collecting the leaf size with the minimum
test-set error (129). d Receiver operating characteristic curves for each class in the decision
tree model. e MCF10A cell stained with Hoechst (gray) overlayed with predicted signaling
histories. Dark lines indicate the mean ERK activity for each cluster (as in a), and shaded
regions indicate 25th and 75th percentiles.

predictions can be represented in a concise and intuitive manner. To do so, we first used k-

means clustering to group cells into similar response classes, or prototypes, of ERK activity.

We clustered cells into five classes: low activation (cluster 1), recent deactivation (cluster

2), long term activation (cluster 3), mid-term activation (cluster 4), and recent activation

(cluster 5) (Fig. 4.5a, 4.11a). Analysis of the 4i target expression levels in each cluster was

consistent with our previous statistical models (Fig. 4.5b). Long-term activation led to the

highest expression of pERK, Fra-1, and pRb, while low activation displayed the lowest for

all targets. Cells with recent activation highly expressed Egr-1 and c-Myc.

We next trained a decision tree classifier that predicts prototypes of ERK signaling history

using ERK target expression levels (Fig. 4.5c, d). The overall prediction accuracy of our

model was 51% (compared to 20% for random selection), while individual class predictions

varied in accuracy. Long-term activation class predictions were the most accurate (64%), and

mid-term activation classifications were the least accurate (36%). These /findings indicate

that long term and recent activation result in distinct patterns of the expressed genes we

measured, while mid-term activation produces the highest variability in gene expression. The

residual confusion in the classifier reflects that some classes are not well separated in the

dataset, and that individual cells vary quite widely in their ERK activity (Fig. 4.5d, 4.11a).

For classification, the predictor importance ranked pc-Fos as the most important predictor,

followed by Fra-1 and pRb (Fig. 4.11b). This result indicates that, while pc-Fos may not
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explain a high amount of variance in ERK history, it carries particularly useful information

for distinguishing among the five classes identified here. Finally, to simulate a potential use

case with fixed tissue samples, we then used our classifier to predict ERK activity classes,

and therefore histories, in cells from a single well in our dataset (Fig. 4.5e). Our analysis

effectively quantifies the distinctiveness in gene expression associated with different ERK

signaling prototypes and illustrates the utility of ETG stains in predicting the spatiotemporal

signaling history of individual cells.

4.4.5 Dynamical systems modeling of ERK-driven gene expression

To investigate the theoretical limits of predicting ERK dynamics from ETG levels, we ex-

tended an ordinary differential equation (ODE) model representing the regulation of ETGs

(Davies et al. , 2020; Gillies et al. , 2017) (Fig. 4.6a). For a given ERK activity time

series, the model simulates the mRNA and protein levels of a hypothetical ERK-responsive

gene (sim-ETG). We constructed 1,000 hypothetical sim-ETGs by randomly assigning each

one with different parameters values for mRNA degradation rate, protein degradation rate,

phosphorylated protein degradation rate, protein dephosphorylation rate, negative feedback

half-max concentration, and fractional expression at baseline (Fig. 4.6c, Supplementary

Table 2). These 1,000 gene parameter configurations survey the parameter space with the

goal of identifying sim-ETGs that capture different aspects of ERK signaling. Using 10,000

randomly selected live-cell ERK activity measurements from our experimental data, we sim-

ulated responses of all 1,000 sim-ETGs for each cell (Fig. 4.6b, 4.12A). Using the end

point sim-ETG protein values (representing a fixed-cell 4i measurement of the hypothetical

protein), we applied single variable regression modeling to characterize each sim-ETG’s ca-

pacity to predict ERK dynamics features. For predicting average ERK activity throughout

the experiment, we found that 49% of sim-ETGs exhibited a R2 above 0.5 and over 100

were excellent predictors (R2 ¿ 0.8) (Fig. 4.6d). For predicting the maximum activation and
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average pulse height, only 12% of sim-ETGs exhibited a R2 above 0.5, with a maximum R2

around 0.6 (Fig. 4.12c). Models for predicting dynamic ERK features like the frequency or

the average derivative were overall worse than integrative features like the mean or sum of

duration, reflecting that sim-ETGs under this model are variations on an integrator of ERK

activity (Fig. 4.12c).

To visualize the gene expression response, we plotted a single cell’s ERK signal along with

the response of the top five predictors of the mean (Fig. 4.6f). These response profiles show

that both genes activated by or inhibited by ERK can serve as reliable predictors of ERK

activity. While our experimental ETG measurements were selected based on known positive

responders to ERK, 20% of sim-ETGs were negatively regulated by ERK (Fig. 4.12b); ex-

perimental prediction of ERK activity would likely be improved by including genes that are

inhibited by ERK (Yamamoto et al. , 2006). We then analyzed which gene parameters most

influence how well an individual sim-ETG predicts mean ERK activity by examining the

weights from a MLR model of sim-ETGs (Fig. 4.12d, e). Consistent with the known behav-

ior of Fra-1, slow mRNA and phosphorylated protein degradation rates allow for accurate

recording of the average ERK history.

Our 4i data analysis determined that while Fra-1 predicts long-term history, Egr-1 and

c-Myc predict recent history. To examine this distinction in sim-ETGs, we calculated the

correlation between the ERK activity at each timepoint and end-point protein expression

(analogous to the experimental data in Fig. 2e). As expected, genes that predict mean

ERK activity tend to be correlated with ERK activity over a wide time span, similarly to

Fra-1. Those that are less effective at predicting mean are correlated with recent activation,

behaving more like Egr-1 or c-Myc (Fig. 4.6e). Notably, no sim-ETG under this model

was specifically predictive of intermediate timescales of activation (i.e. 5-10 hours prior to

fixation).

Finally, to investigate how many gene measurements are required to accurately predict
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Figure 4.6 Annotating spatiotemporal ERK patterns in images using Decision Tree model
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Figure 4.6: Mathematical model identifies limits of ERK activity prediction method. a Ordi-
nary differential equation model representing ERK-dependent modification of a transcription
factor (TF), expression of mRNA, and expression of a protein (P) product. Superscript P
denotes phosphorylation of a molecule. Lowercase k’s indicate rate parameters, uppercase
K indicates a dissociation constant for feedback effects. Clock icons indicate a time delay
(τ). b 10,000 cells were randomly picked from our main dataset. We simulated the gene
response of 1000 genes for each cell using our experimentally collected EKAR measurements.
c 1000 simulated genes (sim-ETGs) were randomly assigned the listed rate parameters while
other rate parameters in the model remained constant. d Coefficient of determination (R2)
of single variable linear regression models using each sim-ETG to predict the average ERK
activity in each cell. e Pearson correlation (r) between each sim-ETG (rows) measurement
and the EKAR values at each timepoint from the live-cell experiment. b Top: one ERK
activity trace from one cell in the dataset. Rest: gene expression response of the top 5
predictors of the mean ERK activity. g Multiple regression models fit to predict each ERK
feature. For each ERK feature prediction model, a single sim-ETG was added as a predictor
at each step. To determine the order of sim-ETGs to add, we performed single regression
and ranked sim-ETG by their ability to individually predict each feature.

the different aspects of ERK signaling, we created MLR models which used many sim-

ETGs at once to predict multiple ERK pulse features. These models greatly improved our

predictions, as most explained 75 to 99% of the variance in the dataset (Fig. 4.6g). Of

note, the derivative and frequency model predictions drastically improved as the number of

predictors increased. This result was not obtained through overfitting, as the test set error

of the models also decreased with more sim-ETGs (Fig. 4.12f). For most ERK features,

between 16 to 20 sim-ETGs are required for obtaining good models (R2 0.7) (Fig. 4.6g

inset). From an experimental standpoint, these results demonstrate that predicting dynamic

features of ERK is highly feasible, and depends largely on which gene products are measured.

From a practical standpoint, measuring for 20 proteins using a multiplex staining protocol

is readily achievable (Comandante-Lou et al. , 2022; Stallaert et al. , 2022). In all, the

ODE model indicates that our ERK activation inference method is a feasible solution for

fixed tissue analysis, and will benefit from further exploration of potential endogenous gene

products to measure.
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4.5 Discussion

Here, we provide proof of principle that end-point ETG staining can be used to infer key

aspects of long-term ERK activity within fixed cell samples. While differences in ETG

activation by ERK were previously known, our analysis formalizes these differences and

shows how quantitative models can be used to infer ERK’s activity history with single-

cell resolution. The ETG measurements in these experiments provide information about

two broad types of ERK behavior, long-term and short-term activation. Additionally, our

model analysis of simulated ETGs demonstrates that additional measurements could even

more finely resolve signaling patterns, such as intermittent pulses. The experimental and

biological limits of these predictions remain to be established; however, this model framework

can be used to estimate properties of ETGs that would optimally improve the measurement

set.

While the main characteristics of ERK activity are captured by our models, a significant

amount of unexplained variance in ERK activity in our analysis prompts the question of what

other parameters can be used to improve ERK history predictions. While our dynamical

systems modeling suggests that other direct ERK targets could be used, a recent study

identified orthogonal markers of cellular state, such as Sec13 (a nuclear pore component)

and Calreticulin (an Endoplasmic Reticulum-resident protein), that correlate highly with

phosphorylated ERK (Kramer et al. , 2022). These results imply that intrinsic cellular

factors modify ERK signaling, and that these markers can improve our ERK prediction

models. Furthermore, other cell state measurements that may improve predictions include

protein translation rates, chromatin accessibility, or transcription factor availability.

The statistical models in this study were trained on data from diploid non-tumor mam-

mary epithelial cells. Generalizing these methods for use in other cell lines or tissues will

require similar datasets from a broad array of cellular settings because there are reported
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differences in some ETG responses among various cell types. For example, B-Raf inhibi-

tion disrupts signal transmission and alters the transcriptional response of c-Jun, Egr-1, and

Cyclin-D1 (Bugaj et al. , 2018). Additionally, different mutations in B-Raf can lead to

induction or suppression of c-Jun (Comandante-Lou et al. , 2022). Accordingly, prediction

models should be trained on cell-line specific data, especially from cancer cells with different

MAPK pathway mutations. Potentially, a much larger scope of experiment is needed to train

a model to simultaneously capture many cell lines, for example by identifying either ETGs

whose responses remain consistent, or additional targets that sufficiently reflect the cellular

context. However, it is also possible that a small set of well-chosen measurements may be

sufficient to generate a broadly useful model (Janes et al. , 2005).

In the dataset presented here, phosphorylated-Rb was a surprisingly good predictor of

both long term and short term signaling in both single-cell and population-level models.

An important caveat about these results is that ERK biosensors (EKAR and ERK Kinase

translocation reporter) have some sensitivity to cyclin-dependent kinases (CDKs). EKAR 3.5

in particular is sensitive to CDK1 during mitosis (Hirashima, 2022). Though mitotic events

are typically much rarer than changes in ERK activity, some of the variation in our EKAR

measurements likely arises from this CDK1 activity. Since EGF increases mitotic activity,

pRb levels, and EKAR measurements, there will be some correlation between EKAR and

pRb that is an artifact. This serves as a reminder that co-variance, or cross-talk, among

measurements will bias these types of machine learning analyses, and should be carefully

evaluated.

The results of this study suggest that the duration of signaling plays a stronger role in

protein expression than the integrated activity. Such an effect could arise from saturation

of a particular gene’s response to ERK, or from differences among genes in phosphatase

specificity or other competing regulators. An alternative explanation for this result is that

our ERK biosensor fails to capture the high ranges of ERK activation. However, we resolved
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this by calibrating the reporter to provide a linear readout of ERK substrate phosphorylation

(Gillies et al. , 2020). This leads to the possibility that ERK target genes have been selected

for duration responders rather than signal integrators. Nonetheless, a fundamental question

remains to be further explored: What is the biological resolution of strength, duration, and

other features of ERK activity, with respect to gene expression? Our analysis provides some

quantitative answers to how ERK activation patterns specify a subset of gene expression.

Finally, the method can be employed further to more closely investigate the effect of ERK

signaling on cell fate changes rather than gene expression.

Our method could be used to provide important details of ERK signaling within fixed

tissue samples in a clinical setting. The ability to infer the long-term patterns of ERK

activity in samples from patients treated with MEK, EGFR, or other targeted pathway

inhibitors would provide a more reliable indication of the effectiveness of long-term ERK

activity suppression, helping to reveal areas of drug resistance. By analogy, measurements

of hemoglobin A1C provide a reliable indication of a patient’s time-averaged blood sugar that

is useful in the clinical management of diabetes. We propose that inferring the longer-term

characteristics of ERK activity will be of similar use in managing tumors that rely on aberrant

signaling in this pathway. This strategy can further be applied to other dynamically regulated

pathways implicated in disease such as metabolic, inflammatory, or stress response signaling.

Both generalized and patient-specific models would allow for more accurate diagnoses and

improve personalized medicine.

93



4.6 Methods

4.6.1 Reporter cell line generation

For these experiments, two stable cell lines were created by electroporating MCF10A 5e cells

with the EKAR 3.5 construct on the piggyBAC transposase system (Pargett et al. , 2017).

Cells were selected with neomycin (250 µg/ml 2 weeks) until they were resistant to selection

( 2 weeks).

4.6.2 Cell culture and media

All experiments were conducted with MCF10A 5e (Janes et al. , 2010). Cells were main-

tained in DMEM/F12 supplemented with 5% horse serum, 20 ng/ml EGF, 10 µg/ml Insulin,

500 ng/ml hydrocortisone, and 100 ng/ml cholera toxin. 10cm plates were passaged approxi-

mately every four days and re-plated at a 1:10 dilution. Imaging experiments were conducted

in custom DMEM/F12 lacking phenol red, riboflavin, and folate. This “imaging media” was

supplemented with 500 ng/ml hydrocortisone, 17.5 mM glucose, 1 mM sodium pyruvate, 2

mM glutamine, 50 µg/ml Penicillin/Streptomycin. Before plating cells for imaging exper-

iments, 5 µl of Rat tail collagen was added to the middle of each well of a glass bottom

96-well plate (Cellvis) and incubated for 45 mins at 37°C. Cells were typsinized, plated at

6000 cells per well, and then incubated at 37°C for 45-60 mins. Growth media was then

added, and the plate was left overnight in the incubator. The next day, immediately before

the imaging experiment, the plate was washed 3x with imaging media, and the media was

changed to imaging media. The experiment began one hour after this media change.
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4.6.3 Live cell microscopy and data acquisition

Prepared 96-well plates were imaged on a Nikon Ti-E inverted microscope with a stage-

top incubator (37°C, 5% CO2). Coordinates within each well of the 96-well plate were

imaged at 6 minute increments which were automated by the Nikon Elements AR software.

Images were captured using an Andor Zyla 5.5 scMOS camera and a 20x/0.75 NA objective.

Chroma #49001 (ET-CFP) and #49003 (ET-YFP) excitation/emission filter cubes were

used for mTurquoise2 and YPet measurements, respectively. Further details are described in

(Pargett et al. , 2017). Coordinates of each acquisition area were saved for future imaging

of immunostaining experiments.

4.6.4 Cyclic immunofluorescence

Immediately after the final acquisition of the live cell experiment, cells were fixed in freshly

prepared 12% paraformaldehyde for 10 min. Cells were then permeabilized with fresh, cold

methanol for 10 mins (2 times total). Cells were then ready for iterative rounds of staining

using a protocol adapted from (Gut et al. , 2018). Briefly, the iterative protocol involves

rounds of elution, blocking, primary staining, secondary staining, Hoechst staining, and

finally image acquisition in a specific imaging buffer. Recipes for buffers are as follows:

Elution buffer (0.5M Glycine, 3M Urea, 3M Guanidinium Chloride, 70mM TCEP), Blocking

buffer (200mM NH4Cl, 300mM Maleimide, 2% BSA in PBS), primary/secondary staining

buffer (200mM NH4Cl, 2% BSA in PBS), Hoechst-33342 stain (1:10,000 in PBS), and 4i

imaging buffer (700 mM N-Acetyl Cysteine). Antibodies were incubated 24 to 48 hours

from varying concentrations recommended by the manufacturer. The protocol was validated

during the first replicate experiment to ensure that antibodies were properly eluted, data is

shown in Fig. 4.8b-d. For the second and third replicate experiment, a visual inspection was

completed prior to each round of staining to ensure proper antibody elution.
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4.6.5 Phos-tag western blotting

MCF10A 5e cells were plated on 6-well dishes the day before lysing. Cells were treated with

EGF, PD0235901, or imaging media and lysed at the indicated timepoints. This procedure

involved rinsing each well twice with ice cold PBS, cell scraping, and lysis with RIPA buffer

(Sigma) with Halt protease inhibitor cocktail and 1 µM DTT. Cells were lysed at 80-90%

confluency with a 50 µl of lysing buffer per well. 2 µl of each sample was then loaded in

pre-cast phos-tag gels (Wako-Chem) and ran at 100V for 3 hours. The gel was chelated

two times with transfer buffer and 10 mM EDTA for 15 minutes each and rinsed once

more with just transfer buffer. Proteins were transferred overnight at 50V. The membrane

was blocked with Li-COR Odyssey blocking buffer and blotted with anti-GFP antibody (24

hr incubation). The membrane was then blotted with Li-COR 800 anti-Mouse secondary

antibody and imaged using a fluorescent scanner (Sapphire-Azure Biosystems). Intensities of

the resulting phosphorylated EKAR 3.5 reporter and total EKAR 3.5 bands were measured

in ImageJ.

4.6.6 Image processing

Imaging data were saved as .nd2 files and accessed using the Bio-Formats toolbox for MAT-

LAB (available from www.openmicroscopy.org/bio-formats), and processed with a custom

MATLAB cell segmentation pipeline (Pargett et al. , 2017). The procedure identified each

cell’s nucleus using either EKAR 3.5 (live-cell) or Hoechst 33342 (IF) as a nuclear marker.

The cytoplasm was defined as a ring around each cell’s nucleus. Background signal intensity

was measured by imaging a well with no cells, but containing live-cell imaging media or 4i

imaging buffer. Cell position tracking and linking was performed using uTrack 2.0 (Jaqaman

et al,. 2008). The resulting single-cell data was filtered to remove cells with less than 15

hours of tracking data. FRET measurements of ERK activity for each cell were calculated
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with 1 – ( (CFP/YFP) / Rp), where CFP and YFP are the intensities of Cyan and YFP

channels measured in each cell, respectively. Rp is the ratio of total power collected of CFP

over YFP where the power of each channel is the integral of the spectral product of exci-

tation intensity, filter transmittances, exposure time, fluorophore absorption and emission

properties, and quantum efficiency of the camera (detailed in appendix of (Gillies et al. ,

2020)).

4.6.7 Batch effect correction

To correct for batch effects in the immunofluorescence measurements across three replicates,

we scaled measurements in logspace. For each 4i target, we calculated the median value

for each treatment and matched identical treatments across replicates. These treatments

included all EGF doses at timepoint 30, MEKi at timepoint 30, and imaging media control.

We then took the log10 of these values and fit a linear model 4.1

Intensityreplicate3 = β1(Intensityreplicaten) + β0 (4.1)

Where Intensityreplicaten represents log10 median values for either replicate 1 or replicate 2,

Intensityreplicate3 represents the corresponding log10 median values for the third experimental

replicate, and β0 and β1 are the scaling factors. These scaling factors were then used to

correct all single-cell values for replicate 1 and 2. The corrected values were then returned

to the linear scale by exponentiating.

4.6.8 EKAR 3.5 Calibration

FRET measurements were calibrated to deliver a quantitative linear readout of ERK activity,

as described previously (Gillies et al. , 2020). Briefly, we used Phos-Tag immunoblotting to

quantify the fraction of the EKAR 3.5 reporter that is phosphorylated in 3 concentrations of
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EGF (15 mins), phosphorylation inhibited (MEKi for 2 hours), and control conditions. These

values were then linearly fit against the average EKAR 3.5 signal for the same conditions

(4.2).

EKARA

EKART = (KAU +KAP)
EKARP

EKART (4.2)

Where EKARP

EKART represents the phos-tag ratio between phosphorylated and total reporter,

and EKARA

EKART represents the average FRET measurement in the corresponding condition.).

(KAU and KAP represent fractions of EKAR in the “associated” state when completely un-

phosphorylated and when completely phosphorylated, respectively. Single-cell FRET mea-

surements (fA) were then used to estimate the concentration ratio of active ERK to the

competing phosphatase(s) (4.3). This ratio is the quantitative measure of ERK activity in

a cell ( ERKA

PPASEA ).

ERKA

PPASEA =
fA −KAU

KAP − fA
(4.3)

4.6.9 Data analysis and regression modeling

Cells with less than 15 hours of data were removed prior to analysis, and cells out of the

expected range of the FRET measurements were removed. FRET measurements were then

adjusted using the reporter calibration model created from the phos-tag experiments. Thus,

statistical models were created on cells that had complete EKAR and ETG measurements.

Models were created using 10-fold cross validation. The data was randomly assigned to 10

groups, in which the 10th group was held out of the model fitting procedure. The model was

then tested against the 10th group (test-set) to collect the test error (residual mean squared

error, RMSE). This procedure is repeated for a total of 10 times to collect RMSE values

from 10 test sets. The model that produced the lower test-set error was then refitted to the

entire dataset to calculate the reported RMSE values.
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4.6.10 Pulse analysis and peak detection

The findpeaks function in MATLAB was used to find local maxima (peaks) for each cell’s

ERK activity. Pulse features were then calculated based on the identified peaks. Frequency

was calculated using the meanfreq function in MATLAB.This function estimates the mean

normalized frequency of the power spectrum of each ERK activity trace.

4.6.11 Statistical tests

For single-cell immunofluorescence data, each statistical comparison was made by t-test

with unequal variances, and false discovery rate was controlled within each dataset via the

Benjamini and Hochberg Step-Up procedure (α = 0.05). The variance for each experiment

was determined from single-cell samples and added to variance across experiments. This

corresponds to a linear error model: ϵi = ϵcell + ϵexp, where the error (from the mean) of an

individual cell ϵi equals the sum of the errors arising from cell-to-cell variation ϵcell and from

experiment variation ϵexp.

4.6.12 Spatial heatmap generation

Each cell’s time averaged coordinates were used to calculate the average Euclidean distance

between each pair of cells within each well of the 96-well plate. Hierarchical clustering was

performed on this distance matrix. The optimal leaf order was calculated by maximizing the

sum of the similarity between adjacent leaves by flipping tree branches and without dividing

the clusters. This order was then used to sort and display the live-cell and fixed-cell data.
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4.6.13 ETG prediction models and evaluation

For convolutional neural networks, we trained a CNN per ETG prediction. Each model

consisted of 1) feature learning module and 2) prediction module. Feature learning module

consists of 2 convolutional layers (16 channels and kernel size of 16) followed by an FC layer

with size of 192 to match the initial input size. Prediction module consists of 2 FC layers

(each size of 64 with relu activations) followed by a final linear FC layer that outputs a single

ETG prediction. We trained one model per ETG for 100 epochs using Adam optimizer

with learning rate of 0.001 and L2 regularization of 0.001. For the linear model, linear

regression was implemented using sklearn python package with default parameters. The

inputs were either the raw or featurized ERK activity for linear model or featurized linear

model respectively. Evaluation on the model was performed using 5-fold cross validation with

each fold roughly having the same representation from each well of origin and treatment.

Identification of significant input timepoints

For feature attribution approach, we used feature attribution, specifically Integrated Gra-

dient (Sundararajan et al. , 06–11 Aug 2017), to identify input timepoints that the model

considers significant to prediction of ETG. Integrated Gradient was implemented using the

python package Captum (Kokhlikyan et al. , 2020). Feature attribution outputs score from

each input time point to ETG per cell, which was averaged across cells for summarized

visualization in the form of heatmap.

Backwards feature selection with timepoints after stimulation with CNN

To test the importance of the timepoints after the initial stimulation, we trained new CNN

models to only use timepoints 2 hours after stimulation for ETG prediction. This model was

trained on 15 hours of ERK activity data. The model and training setup used is identical
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to the setup used for the model with all the time points (19 hours of ERK activity data).

4.6.14 Decision Tree Classifier

EKAR time series data were clustered into five groups using k-means clustering. Each group

was assigned its class label. An optimized decision tree was fit using 8 ETG measurements to

predict class labels of each cell. Leaf optimization was done by fitting multiple cross validated

models and recording test-set error. This was done using MATLAB’s fitctree function. The

model with the lowest test set error was chosen. Predictor Importance was estimated by

summing the changes in the risk due to splits on every predictor and dividing the sum by

the number of branch nodes–MATLAB predictorImportance function.

4.6.15 Ordinary Differential Equation Modeling

The ODE model was adapted from Davies et al. 2020. The model of ERK dependent gene

expression (Equations 4.4, 4.5, 4.6, and 4.7) was constructed from a mass action approxima-

tion. This process is modeled in four steps (Eq. 4.4) phosphorylation of a transcription factor

by ERK (TFP), (Eq. 4.5) transcription of target mRNA (mRNA), (Eq. 4.6) translation of

target protein (P), and (Eq. 4.7) potential stabilization of target protein by ERK-dependent

phosphorylation (PP). A regulatory term is included in the transcription process allowing

negative feedback from target protein onto its own production. The model is formulated

as a delay differential equation to account for the effective lag times of transcription and

translation without explicitly addressing the complex processes involved.

d

dt
TFP (t) = kpTF × ERK(t)× (TFT − TFP (t))− kdTF

P (t) (4.4)
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d

dt
mRNA(t) =

kb + kmTF
P (t− τm)(

P (t−τm)+PP (t−τm)
kD

)v
+ 1

− k∅m ×mRNA(t) (4.5)

d

dt
P(t) = kP ×mRNA× (t− τP ) + kdP × PP (t)− (k∅P + kPP )× P(t) (4.6)

d

dt
PP (t) = kpP × ERK(t)× P(t)− (k∅PP + kdP )× PP (t) (4.7)
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Figure 4.7 Live cell measurements with a calibrated ERK reporter followed by immunofluo-
rescence
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Figure 4.7: Live cell measurements with a calibrated ERK reporter followed by immunoflu-
orescence. a Schematic of EKAR 3.5 FRET-based reporter. When ERK is inactive,
mTurquoise2 and Ypet are distanced from each other. Active ERK binds the reporter sub-
strate and induces a conformational change, bridging the two fluorescent proteins together.
This causes a change in the ratio of mTurquoise2 and Ypet fluorescence intensities. b Phos-
Tag immunoblot for phospho-EKAR 3.5 under 4 conditions that span the full range of ERK
activity levels. Samples treated with EGF for 15 minutes, or MEKi for 2 hours. nwellreplicates

= 4 for each treatment. c Quantified ratio of the phosphorylated EKAR 3.5 over total
EKAR 3.5 immunoblot intensities (x-axis). Y-axis represents the average live-cell FRET
measurement in all cells within each treatment. FRET measurements were calculated at 15
minutes after EGF treatment, or 2 hours after MEKi. Each point represents the average of
the 4 replicates. Model indicates the line of best fit. d Slope and intercept of the Phos-Tag
model were used to calibrate the live-cell FRET measurements. e Left: Treatment average
responses of EKAR biosensor data. Right: Histogram and box plot showing immunofluo-
rescence quantifications for each treatment corresponding to the biosensor data. Box plot
indicates median, quartiles, and range of the data. Dashed line indicates the median of the
control (imaging media). Variance-corrected t-tests were conducted by comparing each EGF
treated condition to vehicle control (imaging media) (nreplicates = 3). * p-val <0.05, ** p-val
<0.005, *** p-val <0.0005., *** p-val <0.0005.
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Figure 4.8 Batch effect correction and cyclic immunofluorescence protocol validation
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Figure 4.8: Batch effect correction and cyclic immunofluorescence protocol validation. a
Box plot showing immunofluorescence quantifications for each treatment in each replicate
experiment. Box plot indicates median, quartiles, and range of the data. Dots indicate
outliers. nreplicates = 3. b Scatter plot of Fra-1 (left) and Egr-1 (right) intensity in the first
round of staining vs. the ninth round from replicate plate 1. Data includes cells treated
with EGF (all doses), imaging media, or MEKi. nwellreplicates = 2 for each treatment. c
Quantification of pixel intensities of cells in d. Box plot indicates median, quartiles, and
range of the data. Dots indicate outliers. d Images of cyclic immunofluorescence rounds
of staining. Cells were incubated with primary+secondary, eluted, and re-incubated with
secondary only to ensure proper elution of the primary. Egr-1 and Fra-1 antibodies were
both incubated together in round 1. Rab: anti-rabbit primary. Ms: anti-mouse primary.
Cells treated with 31.64 ng/ml EGF. nwellreplicates = 1. Five other wells treated with lower
concentrations of EGF were also imaged and validated for proper elution (data not shown).
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Figure 4.9 Regression modeling of ERK and ETGs

Figure 4.9: Regression modeling of ERK and ETGs. a Scatter plots and line of best fit for
ETGs and ERK features. Color indicates relative density of data. b Test error (RMSE)
of MLR models where additional predictors were added at each step. c Pearson correlation
between each ETG. d Single variable regression models using single-cell data, cells treated
with MEKi were removed from this analysis.
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Figure 4.10: CNN feature importance is overshadowed by initial response. a Convolutional
neural net feature importance of each timepoint in predicting levels of each ETG. Color map
represents relative values within each row. b Comparing CNNs trained on 190 timepoints
(19 hr) or 150 time points (15hr). Top: Bar plot of R2 = value for predicting each ETG using
k-fold cross-validation (k=5). For each ETG, data was partitioned into 5 groups. Within
each k-fold, a training, test, and final set were created. Bar represents the average final set
R2 = value across all 5 groups. Error bars (Standard error) were calculated by dividing the
standard deviation of R2 = values for each ETG by the square root of five. Bottom: Test
set mean squared error values for each ETG. Bar height and error bars were calculated as
described above.
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Figure 4.11: Single-cell variation with clusters. a ERK activity of 20 individual cells from
each cluster identified by k-means clustering. Bottom line represents the cluster average,
and the shading represents the 25th and 75th percentiles. b Predictor importance estimates
for the decision tree classification model

109



Gene expression (end point)ERK activity

50
Time (hr)

Cell #

10 15

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Gene #
1 500250 750 1000

0 100 200 300 400 500
Number of Genes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Te
st
se
tR

M
S
E

MLR test set errorParameter importanceGene parameter model

-0.015

-0.01

-0.005

0

0.005

0.01

Correlation of sim-ETG to ERK mean

0 100 200 300 400 500 600 700 800 900 1000

Simulated Gene

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
ea

rs
on

C
or
re
la
tio
n

0.97753

-0.97974

a

c

d e f

b

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el
at
iv
e
de

ns
ity

R2 = 0.31

Predicted

O
bs
er
ve
d

mR
NA

de
gra
da
tio
n r
ate

C
oe

ffi
ci
en

t

Ne
ga
tiv
e f
ee
db
ac
k

Ph
os
-pr
ote
in
de
gra
da
tio
n r
ate

De
-ph
os
ph
ory
lat
ion

rat
e

Ba
se
lin
e e
xp
res
sio
n

Pr
ote
in
de
gra
da
tio
n r
ate

0 500 1000
Simulated Gene

0

0.5

1

R
2

0.65042

0 500 1000
Simulated Gene

0

0.5

1

R
2

0.31575

0 500 1000
Simulated Gene

0

0.5

1

R
2

0.61412

0 500 1000
Simulated Gene

0

0.5

1

R
2

0.11487

0 500 1000
Simulated Gene

0

0.5

1

R
2

0.12707

0 500 1000
Simulated Gene

0

0.5

1

R
2

0.57904

0 500 1000
Simulated Gene

0

0.5

1

R
2

0.60248

0 500 1000
Simulated Gene

0

0.5

1

R
2

0.18669

Max Average derivative Average peak height Average IPI

Average duration Sum of duration Sum of peak heights Frequency

Mean
Max
Average derivative
Average peak height
Average IPI

Average duration

Sum of duration
Sum of peak height
Frequency

Figure 4.12 Ordinary differential equation modeling
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Figure 4.12: Ordinary differential equation modeling. a Left: single-cell ERK activity
heatmap sorted by the mean of each cell (highest mean at the top). Right: Corresponding
sim-ETG end point values. Color represents the relative expression within each column.
ncells = 10,000. ngenes = 1,000. b Pearson correlation between mean ERK activity and
end-point gene expression. c R2 = of single variable models using end point values of each
sim-ETG to predict each ERK feature. Dashed line represents the maximum value. d Linear
regression using gene parameter values to predict how well each gene tracks with average
ERK activity. The model uses the negative feedback rate, mRNA degradation rate, protein
degradation rate, phosphorylated protein degradation rate, de-phosphorylation rate, and
fraction baseline to predict the R2 = value from Fig. 6d. e Coefficient weights for linear
regression in Fig. 4.12d. f Test set error (residual mean squared error) for each newly added
gene in the prediction model.
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Supplementary table 1: List of treatments/conditions along with the number of replicate wells and replicate experiments.  

Treatment1 T1 Time (hr) Treatment2 

T2 Time 

(hr) 

Well 

replicates 

Experimental 

replicates (days) 

EGF 0.01ng/ml 3     11 3 

EGF 0.03164ng/ml 3     11 3 

EGF 0.1ng/ml 3     9 3 

EGF 0.3164ng/ml 3     10 3 

EGF 1ng/ml 3     11 3 

EGF 3.164ng/ml 3     11 3 

EGF 10ng/ml 3     11 3 

EGF 31.64ng/ml 3     11 3 

PD 100nM 3     21 3 

Imaging media control 3     32 3 

EGF 0.01ng/ml 3 PD 100 nM 18 2 2 

EGF 0.03164ng/ml 3 PD 100 nM 18 3 3 

EGF 0.1ng/ml 3 PD 100 nM 18 3 3 

EGF 0.3164ng/ml 3 PD 100 nM 18 3 3 

EGF 1ng/ml 3 PD 100 nM 18 3 3 

EGF 3.164ng/ml 3 PD 100 nM 18 3 3 

EGF 10ng/ml 3 PD 100 nM 18 3 3 

EGF 31.64ng/ml 3 PD 100 nM 18 3 3 

EGF 0.01ng/ml 3 PD 100 nM 17 2 2 

EGF 0.03164ng/ml 3 PD 100 nM 17 3 3 

EGF 0.1ng/ml 3 PD 100 nM 17 3 3 

EGF 0.3164ng/ml 3 PD 100 nM 17 3 3 

EGF 1ng/ml 3 PD 100 nM 17 3 3 

EGF 3.164ng/ml 3 PD 100 nM 17 3 3 

EGF 10ng/ml 3 PD 100 nM 17 3 3 

EGF 31.64ng/ml 3 PD 100 nM 17 3 3 

EGF 0.01ng/ml 3 PD 100 nM 15 3 3 

EGF 0.03164ng/ml 3 PD 100 nM 15 4 3 

EGF 0.1ng/ml 3 PD 100 nM 15 4 3 

EGF 0.3164ng/ml 3 PD 100 nM 15 4 3 

EGF 1ng/ml 3 PD 100 nM 15 4 3 

EGF 3.164ng/ml 3 PD 100 nM 15 4 3 

EGF 10ng/ml 3 PD 100 nM 15 4 3 

EGF 31.64ng/ml 3 PD 100 nM 15 4 3 

Imaging media control 3 PD 100 nM 18 4 3 

Imaging media control 3 PD 100 nM 17 2 1 

Imaging media control 3 PD 100 nM 15 2 1 

EGF 31.64ng/ml 17.5     2 2 

EGF 10ng/ml 17.5     1 1 

EGF 0.01ng/ml 17.5     1 1 

EGF 3.164ng/ml 17.5     1 1 

EGF 0.01ng/ml 13     1 1 

EGF 0.03164ng/ml 13     1 1 

Supplementary Table 1: List of treatments/conditions along with the number of replicate
wells and replicate experiments.
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Supplementary Table 2: List of gene parameters in the ordinary differential equation model 

Parameter Description Unit 

𝑇𝐹𝑇 Total transcription 

factor concentration 

nM 

𝑘pTF 

ERK-dependent 

transcription factor 

phosphorylation rate 
nM-1min-1 

𝑘dTF Transcription factor 

de-phosphorylation 

rate 

min-1 

𝑘b Baseline target 

mRNA transcription 

rate 

nM/min 

𝑘m ERK-dependent 

target mRNA 

transcription rate 

min-1 

𝑘∅m Target mRNA 

degradation rate 

min-1 

𝜏m Transcription delay min 

𝐾D Negative feedback 

half-maximal 

concentration 

nM 

ν Feedback Hill Coef. - 

𝑘P Target protein 

translation rate 

min-1 

𝑘∅P Target protein 

degradation rate 

min-1 

𝜏P Translation delay min 

𝑘pP 

ERK-dependent 

target 

phosphorylation rate 
nM-1min-1 

𝑘dP Target protein de- 

phosphorylation rate min-1 

𝑘∅pP Phosphorylated 

target degradation 

rate 

min-1 

 

 

 

 

 

 

 Supplementary Table 2: List of gene parameters in the ordinary differential equation model.
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Supplementary Table 3: List of materials, software, and reagents used in the study. 

Reagent or Resource Source Identifier/RRID 

Antibodies 

Anti-Fra-1, clone C-12 Santa Cruz 

Biotechnology 

sc28310; AB_627632 

Anti-Egr-1, clone 44D5 Cell signaling 4153; AB_2097035 

Anti-phospho-ERK p44/42 clone 

D13.14.4E 

Cell signaling 4370; AB_2315112 

Anti-cJun clone 60A8 Cell signaling 9165; AB_2130165 

Anti-c-Myc clone D84C12 Cell signaling 5605; AB_1903938 

Anti-phospho-c-Fos clone D82C12 Cell signaling 5348; AB_10557109 

Anti-c-Fos clone abcam ab190289; AB_2737414 

Anti-phospho-Rb (Ser807/811) 

clone D20B12 

Cell signaling 8516; AB_11178658 

 Goat anti-Mouse IgG Alexa Fluor 

647 

ThermoFisher A-21235 

Donkey anti-Rabbit IgG (H+L) 

Alexa Fluor 555 

ThermoFisher A-31572; AB_162543 

IRDye 800CW Donkey anti-Mouse 

IgG 

Licor 926-32212; AB_621847 

Chemicals, Peptides, and Recombinant Proteins 

Epidermal growth factor Peprotech AF-100-15 

PD0325901 Selleck Biochemicals S1036 

Cholera Toxin Sigma-Aldrich C8052 

Hydrocortisone Sigma-Aldrich H0888 

Insulin Sigma-Aldrich I9278 

Bovine Serum Albumin  Sigma-Aldrich A7906 

Heat Inactivated Horse Serum  Life Technologies 26050 

DMEM/F-12 1:1 Life Technologies 11320 

Neomycin     

Collagen I, rat tail  Life Technologies  A10483-01 

l-Glutamine  Life Technologies  25030-081 

Penicillin streptomycin Life Technologies 15070-063 

0.25% Trypsin-EDTA  Life Technologies 25200-056 

Tris Base Fisher BP152 

Glycine (Crystalline Powder) Fisher BP381 

Ponceau S solution, suitable for 

electrophoresis, 0.1% (w/v) in 5% 

acetic acid, 1L 

Sigma-Aldrich P7170-1L 

Bromophenol blue Sigma-Aldrich B5525 

Supplementary Table 3: List of materials, software, and reagents used in the study.
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Dithiothreitol Fisher BP172 

Ammonium chloride Sigma-Aldrich 254134 

Maleimide Sigma-Aldrich 129585 

N-Acetyl-L-cysteine Sigma-Aldrich A7250 

TCEP hydrochloride ApexBio B6055 

Hoechst-33342 Life Technologies H3570 

Odyssey Blocking Buffer (PBS) Licor 927-40000 

Urea Fisher U15-500 

Guanidinum Hydrochloride Fisher BP178-500 

Phosphate-buffered saline, Fisher BP399-1 

Paraformaldehyde ThermoFisher 043368.9M 

Glycine Fisher BP381-500 

Tween-20 Fisher BP337100 

Halt Protease inhibitor cocktail ThermoFisher 1861278 

Experimental Models/Cell Lines 

Human: MCF-10A, clone 5E Joan Brugge, Harvard 

Medical School 

RRID:CVCL_0598 

Recombinant DNA 

Plasmid: pPBJ-EKAR3.5nls-neo  Sparta et a. 2015 Addgene # forthcoming   

Software and Algorithms 

NIS-Elements AR ver. 4.20  Nikon RRID:SCR_014329 

Bio-Formats ver. 5.1.1 (May 2015)  OME RRID:SCR_000450 

uTrack 2.0 (Jaqaman et al., 2008) http://www.utsouthwestern.edu/labs/danuser/software

/ 

MATLAB 2020a Mathworks  SCR_001622 

ImageJ (1.52p) National Institues fo 

Health 

RRID:SCR_003070 

Python (3.8.16) Python Software 

Foundation 

RRID:SCR_008394 

Proofreading software  

Grammarly Grammarly, Inc www.grammarly.com/ 

ChatGPT OpenAI www.openai.com 

Other     

Glass Bottom Plates, #1.5 cover 

glass  

In Vitro Scientific  P24-1.5H-N, P96-1.5H-N 

SuperSep Phos-tag gels 

(50 μmol/l), 12.5%, 17 wells 

Wako-Chem 195-17991 

 

Supplementary Table 3 (continued): List of materials, software, and reagents used in the
study.
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Chapter 5

Conclusions and Future Directions

5.1 Abstract

This dissertation discusses how ERK signaling mediates homeostasis. We cover the mech-

anisms of how signals are encoded into cellular processes, which in turn regulate tissues.

Much of this regulation is done through gene expression. A key question that remains to be

elucidated is how are other genes regulated by ERK at the single-cell level. Answering this

question will lead to enhanced tools for ERK diagnostics in cancer.

5.2 Summary of work

ERK is responsible for homeostasis, and mutations in ERK signaling lead to disease. Given

its biological and clinical significance, understanding ERK’s exact role in controlling cells

will be highly beneficial. Decades of research clearly indicates that ERK is one of the main

regulators for several cellular processes, and we have discussed the mechanisms that allow

ERK to mediate these tasks. The Ras/MAP Kinase pathway contains many feedback loops

that allow for highly dynamic activation and deactivation patterns of ERK. Depending on the
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context, the pattern of ERK activity determines the fate of cells. ERK activity is different

in dividing cells, growth arrested cells, and dying cells. Since ERK activates transcription,

gene expression is likely driving the differences in these cellular events. To test how well

ERK activation correlates with gene expression we measured live-cell ERK activity along

with protein expression of eight canonical ERK targets. We found that on average, ERK

drives gene expression; however, the correlation at the single-cell level is mild to moderate.

Importantly, the correlation is dependent on the timing of ERK activity. Fra-1 and pRB

correlate to long-term sustained ERK activity while Egr-1 and c-Myc correlate to recent

ERK activation. This information demonstrates that clinical assays of ERK activation can

be improved by measuring optimal ERK targets instead of phosphorylated ERK.

5.3 Conclusions

A major conclusion of this dissertation is that ERK activation in an individual cell is only

moderately correlated with ERK target gene expression. While this is partly due to mea-

surement noise, single-cell studies show an unexpectedly lower correlation between ERK

activity and gene expression (Gillies et al. 2017). This result is in contrast to early work

that hypothesized a more deterministic relationship. Nonetheless, our study showed a high

correlation in bulk measurements, suggesting that the average behavior within a group of

cells may be more important. This notion is supported by the role of ERK in collective

movement, regeneration, and tissue development. The behavior of all cells on average that

drive these processes in order to maintain homeostasis.

Chapter four provides a strong proof of concept for a method to enhance the ERK acti-

vation diagnostics. In many studies, Ras/MAP kinase pathway activation is simply assayed

by immunostaining-based measurement of phosphorylated ERK (p-ERK). However, this re-

quires the assumption that phosphorylated ERK is continuing signal transmission into its
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targets. While this is a sound assumption, ERK can be phosphorylated and dephospho-

rylated quickly. Therefore, a single time point measurement of phosphorylated ERK only

provides a snapshot of its behavior. We hypothesized there is more information about ERK

that can be extracted. Our models demonstrate that ERK targets can be used for spatiotem-

poral predictions of the history of ERK activity. Phosphorylated-ERK measurements have

had a significant impact on basic and translational cancer biology. Here we show that ERK

targets provide more information than p-ERK, and therefore, this strategy can be used to

improve pathway activation assays.

5.4 Future Directions

We observed a very low correlation between ERK activity and c-Jun expression. This obser-

vation led us to further investigate the relationship between these two canonical connected

proteins. Appendix A discusses preliminary data which measures endogenous, live-cell c-Jun

expression. Surprisingly, we show that c-Jun exhibits oscillatory behavior, revealing several

new questions about its regulation.

A natural next step of our prediction method is to improve the accuracy of our ERK

history predictions. Training improved models requires optimal predictors of ERK activity.

While we show that Fra-1, pRB, Egr-1, and c-Myc are better predictors than p-ERK, a larger

screen is needed to find optimal proteins. We show that in theory, ERK prediction models

can be highly accurate with at least 16 different predictors. Therefore, the natural next

step is to find the most informative set of proteins to measure in a feasible and inexpensive

manner. From a biological perspective, finding sets of proteins that report different ERK

histories will answer the question of how ERK encodes differential gene responses. Future

studies will quantitatively connect ERK signaling, gene expression, and cell fates at the

single-cell level.
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Once optimal genes are chosen, continuation of our approach will require repeating data

collection in various models, including other (cancer) cell lines, patient derived tissues, or

even in vivo mouse studies. The goal of which is to collect enough data to train more

cell type specific models that can be used in the clinic. We imagine a tool where images

of stained patient tissue can be uploaded to software which will then use pre-trained cell-

type specific models to annotate the images. The automatic, model based predictions of

spatiotemporal ERK history would facilitate a robust and quantitative analysis of tissues,

and remove the need for subjective visual annotations. Ultimately, these tools will enhance

diagnostic accuracy and lead to more effective treatments for patients with cancer.
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Appendix A

Regulation of c-Jun is heterogeneous and

oscillatory

A.1 Abstract

c-Jun plays an important role in cell cycle progression, survival, apoptosis, and cancer.

The transcriptional and translational control of c-Jun affects cellular phenotype in response

to extracellular stimuli. Here we measured endogenous levels of c-Jun using CRISPR-based

knockins in mammary epithelial cells. We reveal that c-Jun undergoes oscillatory patterns of

expression with a periodicity of 5 to 10 hours. These results suggest that c-Jun is dynamically

regulated by upstream MAP kinases. Furthermore, we show that initial levels of c-Jun may

affect the changes of survival in response to cell stressors. These new insights show that

targeting c-Jun may increase the sensitivity of cells to chemotherapy.
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A.2 Introduction

Cell to cell variability in gene expression results in differences in phenotype and can affect

responses to extracellular stimuli. While genetic heterogeneity allows cells in tissues to be

adaptable to different stimuli, it can lead to drug resistance, posing a significant challenge to

chemotherapy. Heterogeneity arises from multiple sources, including variability in epigenetic

modification, paracrine signals, or stochastic gene expression (Niepel, Spencer, and Sorger

2009). Intrinsic noise is a major driver of stochastic gene expression and is caused by the

inherent noise in transcription and translation (Elowitz et al. 2002). Subtle fluctuations

in intracellular biochemical reactions can have long term consequences for the cell. For

example, naturally occurring differences in the expression of proteins regulating apoptosis

affects the timing and probability of cell death (Spencer et al. 2009). Additionally, cell-

cell variability of p21 expression in response to chemotherapeutics alters the drug response

(Hsu, Altschuler, and Wu 2019). Another source of heterogeneity is cellular state. In an

asynchronous population, cells may be in different stages of the cell cycle or exist in different

metabolic states (Kosaisawe et al. 2021). For example, levels of cyclins oscillate through

stages of the cell cycle (Evans et al. 1983). Furthermore, genes that exhibit rapid response

to extracellular signals are ideal targets for the identification of heterogeneously expressed

genes within a population of cells. Accordingly, the search for other variable genes is critical

to addressing drug resistance in cancer.

c-Jun is an AP-1 transcription factor that responds to various extracellular stimuli and

is also associated with the cell cycle. Several upstream kinases are shown to regulate c-Jun,

including Extracellular signal regulated kinase (ERK), p38 MAP Kinase, and Jun N-terminal

Kinase (JNK) (Dérijard et al. 1994; Humar et al. 2007; Pulverer et al. 1991). The combined

regulation by multiple kinases allow c-Jun to respond to growth factors, DNA damage, and

other stress signals. Additionally, c-Jun is required for progression through the G1 phase of
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the cell cycle, and it plays a role in the survival response to stress (Wisdom, Johnson, and

Moore 1999; Hettinger et al. 2007). Due to its role in the cell cycle, dysregulation of c-Jun

is characteristic of many cancers (Eferl and Wagner 2003).

Here we used a CRISPR-based GFP knockin strategy to monitor endogenous levels of c-

Jun in response to basal and stress conditions in MCF10A cells. Surprisingly, c-Jun displays

oscillatory behavior in basal conditions, and responds quickly to the c-Jun-N-terminal Kinase

(JNK) activator anisomycin. WIth high anisomycin treatment, many cells undergo cell

death, yet the survivors upregulate c-Jun. This is consistent with previous reports of c-Jun’s

pro-survival role. Interestingly, the levels of c-Jun at the time of treatments may affect

the survival of cells responding to high stress conditions. These results reveal a previously

unobserved regulatory behavior of c-Jun and suggest that targeting c-Jun heterogeneity may

lead to higher fractional killing in chemotherapy.

A.3 Results

c-Jun-mVenus knockin cells were stimulated with imaging media control, EGF, or anisomycin

and imaged for 16 hours (Figure 1a). In control cells, c-Jun exhibits a striking oscillatory

pattern of expression where cells range from one to three peaks per cell (Figure 1b). EGF

triggers a slight increase in c-Jun signal, while anisomycin results in a rapid, dose dependent

response (Figure 1c). With 50 ng/ml anisomycin, cells begin to undergo cell death within

one hour of treatment, and further cell death continues until 10 hours post-treatment. Inter-

estingly, survivors immediately begin to express c-Jun-mVenus. In high anisomycin treated

wells, c-Jun expression in survivors is high and sustained while a lower concentration pro-

duces an intermediate level of c-Jun. Interestingly, cells with a lower dose of anisomycin

reach a peak of c-Jun and subsequently undergo smaller oscillations over time. To investi-

gate whether the levels of c-Jun prior to anisomycin treatment affects cell survival, we binned
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Figure A.1: Endogenous tagging of c-Jun reveals dynamic regulation a a MCF10A c-Jun-
mVenus knockin cells treated with control, Epidermal growth factor (EGF), or Anisomycin.
Scale bar = 500 um. b Single-cell measurements for 19 cells in control wells. c Average mea-
surements of c-Jun for all cells treated with the indicated stimulus. d Percent of remaining
cells were quantified by considering dead cells as an initially tracked (live) cell with a scalar
YFP signal which then displayed a NaN value after 2 hours of treatment. Dots represent
the percent remaining in 4 separate wells treated with 50 ng/ml anisomycin.
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cells into three groups (low, medium, or high). These bins represent the level of c-Jun at the

time of anisomycin treatment. After two hours of anisomycin, cells with initially high levels

of c-Jun survived slightly longer than cells with low or medium levels (Figure 1d). These

results indicate that prior expression of c-Jun may prevent cells from quickly inducing cell

death under stress-response conditions.

A.4 Discussion

The data presented here reveal the highly variable nature of c-Jun expression in single-cells.

While previous reports have proposed that c-Jun may accumulate and degrade throughout

the cell cycle (Wei et al. 2005), our observed oscillations occur in periods shorter than

the cell cycle. Many cells display two to three pulses within a 16 hour time frame. These

results suggest that c-Jun regulation is highly dynamic and may be subject to other periodic

cellular states (i.e. metabolism). Alternatively, regulation from ERK, JNK, or p38 could

explain why c-Jun is highly variable. Further work will seek to address the sources of these

oscillations.

We show that initial levels of c-Jun may mediate the cell death/survival response. There-

fore further studies should investigate whether this is the case in other settings such as DNA

damage, hypoxic stress, or chemotherapy. If such is true, treatments that limit the hetero-

geneity in c-Jun may be used in combination with chemotherapeutics to prevent cells from

averting cell death.

A.4.1 Limitations of this study

These experiments were conducted in 4 separate, unvalidated CRISPR knockin cell lines.

Further work is needed to confirm proper incorporation of mVenus into the endogenous

c-Jun locus and to demonstrate that the knockin does not alter endogenous regulation.
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Additionally, these experiments were conducted in non-clonal cell lines; therefore, the het-

erogeneity we observe may be due to clonal differences. Future experiments should be done

with a clonal line.

A.5 Methods

The Eflute CRISPR knockin system was used to generate knockin cell lines (Stewart-Ornstein

and Lahav 2016). Briefly, two different gRNAs were used to target Cas9 to the genomic c-Jun

locus. Cells were electroporated with gRNA/Cas9 plasmid and a homology arm template

containing mVenus/p2a/blasticidin DNA sequences. Cells were then treated with blasticidin

for two weeks to select for cells with homology donor incorporation. These cells were imaged

as described in chapter 4 of this dissertation.
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Appendix B

ERK signaling dynamics: Lights, camera,

transduction!

B.1 Preface

This chapter was published in Developmental Cell as a commentary piece on Gagliardi et al.

”Spatiotemporal control of ERK pulse frequency coordinates fate decisions during mammary

acinar morphogenesis” Developmental Cell 2022:

Abhineet Ram, John G. Albeck. ERK signaling dynamics: Lights, camera, transduction.

Developmental Cell Volume 57, Issue 18, 26 September 2022, Pages 2151-2152.

The article has been modified to satisfy the formatting requirements of this thesis.

B.2 Abstract

Three-dimensional mammary epithelial acini are a model for understanding how microenvironment-

driven signaling coordinates cell behavior and tissue morphogenesis. In this issue of Develop-
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mental Cell, Ender et al. use live-cell imaging to capture dynamic spatiotemporal patterns

of ERK activity that instruct cell migra-tion and survival fates in developing acini.
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Figure B.1: A cinematic view of signaling dynamics in 3D cell culture a Ender et al. com-
bine live-cell biosensor imaging, optogenetic activation, and computational image analysis
to reveal the inner workings of a classic organotypic model.

B.3 Commentary

Development and homeostasis depend on the orchestration of cell fates within tissues. Cell

fates such as proliferation and apoptosis are determined by signaling and gene regulatory

networks that respond to the local cellular environment. A major goal of modern biology is

to understand how these fate “decisions” are made at the molecular level, and how they affect

physiological functions at the tissue level. The gold standard is to establish these answers
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within a living tissue. However, many experiments cannot be done in an organismal context,

especially those requiring intensive intervention or questions specific to human biology. To

address such challenges, organotypic cell culture has emerged as an important tool for in

vitro manipulation of tissue like-structures retaining some authentic elements of the cellular

microenvironment and cell-cell interactions. In this issue, Ender et al elegantly exploit a

widely used mammary epithelial organotypic system to bring a new level of spatio-temporal

resolution to cell fate determination. Employing advanced engineering tools, including 3D

live-cell tracking of activity biosensors and optogenetic activators, they uncover intricate

3D dynamics in growth factor signaling. Importantly, they also document the impact of

transient signaling activity on cell death events that shape the overall organotypic structure.

The MCF10A acinus model has been used for over 20 years to study how cells interact

within an extracellular matrix (ECM) to generate three dimensional structures (Muthuswamy

et al. 2001). This model helped catalyze awareness that traditional two-dimensional cell

culture, where cells adhere to a stiff plastic surface, is limited in its ability to capture phys-

iological cell behavior. The acinus system begins with single MCF10A mammary epithelial

cells suspended in Matrigel, an ECM secreted by cultured tumor cells. As the cells divide

to form spherical cell masses, they undergo heterogeneous activation of signaling pathways

and changes in gene expression (Debnath and Brugge 2005). Within 6 days, the outer layer

of cells polarizes, attaching to the surrounding ECM, while the inner cells, without a strong

ECM attachment, begin to die by apoptosis. By 10-14 days, a single-layered hollow sphere

develops and reaches a stable size due to an equilibrium between cell deaths and divisions.

Disrupting cell signaling during acinar development, for example by expressing active forms

of the ErbB2 receptor or perturbing their metabolic state, leads to phenotypes ranging from

increased acinus size to uncleared acini and multi-acinar structures.

All of this prior work sets up MCF10A acini as an ideal in vitro setting where the

molecular states of cells can be carefully manipulated and connected to the phenotype of the
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larger structure they build. Previous studies have approached this question by looking at

the gene expression profiles of MCF10A cells in developing acini, identifying transcription

factors that control morphogenesis (Janes et al. 2010). However, these approaches have

the drawback that they provide only fixed snapshots in time. A similar caveat extends

to gene expression profiling in other organoid and tissue systems. Although transitions

between expression states can be inferred computationally, there is much that is overlooked

by focusing only on fixed mRNA measurements.

Ender et al bring several important new tools to this question, focusing on the ERK

pathway that plays an important role in acinar morphogenesis (Fig. 1). They employ a

biosensor that reads out ERK activity in living cells, a tool used previously to show wave-

like activation patterns in cell culture and intact tissues (Nakamura et al. 2021; Hiratsuka

et al. 2015). As in other systems, Ender et al. observe that ERK activity in acini occurs

in pulses and waves that propagate from cell to cell. With optogenetic techniques, they

also test specific ERK pulse timings on the acini. Key to using these methods effectively

is sophisticated 3D image analysis software they developed for tracking and quantification

of all cells within the acinus. This combination of tools enables an impressive new level of

precision to define the regulatory processes that shape the developing acinus.

With all these tools in place, a deeper look into ERK’s functions in acinar morphogenesis

produced some action-packed movies. A persistent question in the signaling field is how

information is “encoded” by ERK activity dynamics and “decoded” to determine specific

cellular responses. Ender et al. first note that during the early stages of morphogenesis, high

motility of cells is driven by frequent pulsatile ERK activity. When optogenetic stimulation

is used to induce synchronous ERK activation during this stage, migration speeds decrease.

In later stages, cell motility slows and ERK pulses become less frequent, changing from a

motility cue to an anti-apoptotic signal. This switch confirms that the “meaning” of ERK

activity pulses is specific to particular periods of developmental activity.
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In the later stages of morphogenesis, Ender et al. found that ERK wave propagation

occurs at a rate of about six cells per hour, with variable numbers of cells participating in

the wave. Previous work (Gagliardi et al. 2021) has shown that such transient activation of

ERK can protect cells from apoptosis, and the authors further this concept, finding that cells

require a minimum of one 20-minute pulse every 0.5 to 4 hours to survive. Probing further,

they find that the frequency of ERK pulses, rather than the integrated activity, regulates

the survival fate. An important next question is to understand what mechanisms set this

frequency threshold for survival. One possibility lies in the dynamics-dependent expression

of ERK target genes. For example, Egr1 is an ERK target gene that is highly sensitive to

dynamics (Davies et al. 2020) and has been implicated in cell death regulation. ERK also

protects against cell death in acini by phosphorylating the cell death activator Bim, and the

survival threshold could be linked to the rate of Bim dephosphorylation following an ERK

pulse.

MCF10A acini have long been a tool for investigating the phenotypes of oncogenic mu-

tants, and Ender et al. extend this analysis to the signaling dynamics level. In cells carrying

a mutation in Phosphoinositide 3-kinase (PI3K), the shape of ERK pulses remains the same

but the frequency of ERK pulses is increased, especially in inner cells. This upregulation

correlates with a decrease in apoptosis, leading to a defect in acinar lumen clearance, while

PI3K inhibitors reduce the number of pulses. These findings argue that signaling dynamics

are an important but often overlooked mechanism underlying the actions of mutations and

drugs. Relatively subtle changes in average signaling levels can belie much more dramatic

changes in single-cell dynamics.

Ender et al. contribute not only to the growing appreciation of ERK signaling dynamics

in epithelial morphogenesis, they pioneer new technical capabilities to make spatio-temporal

regulation accessible in a 3D system that is already a mainstay in cancer cell biology. With

similar methods also being pioneered in other in vivo model systems (Johnson et al. 2017;
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Nakamura et al. 2021), this quantitative approach to signaling promises to provide detailed

insight into increasingly complex ex vivo and in vivo models of tissue function. An impor-

tant future challenge still lies in connecting signaling dynamics to gene expression states of

individual cells. In MCF10A acini it will be particularly interesting to determine whether

pulsatile ERK signaling, which is a potent generator of gene expression heterogeneity (Davies

et al. 2020), plays a role in setting up the gene expression variants that arise in the early

stages of morphogenesis as acinar cells self-organize (Janes et al. 2010). Also important will

be to investigate how multiple signaling pathways collaborate to determine cell behaviors,

for example by combining multiple biosensors with gene expression measurements within the

same cell. The next films in this series promise to be as interesting as the latest installment.
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Appendix C

Live-Cell Sender-Receiver Co-cultures for

Quantitative Measurement of Paracrine

Signaling Dynamics, Gene Expression, and

Drug Response

C.1 Abstract

Paracrine signaling is a fundamental process regulating tissue development, repair, and

pathogenesis of diseases such as cancer. Herein we describe a method for quantitatively mea-

suring paracrine signaling dynamics, and resultant gene expression changes, in living cells

using genetically encoded signaling reporters and fluorescently tagged gene loci. We discuss

considerations for selecting paracrine ”sender-receiver” cell pairs, appropriate reporters, the

use of this system to ask diverse experimental questions and screen drugs blocking intra-

cellular communication, data collection, and the use of computational approaches to model

and interpret these experiments.
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C.2 Introduction

Intercellular communication is a core process regulating normal development and pathologi-

cal states such as cancer [1,2,3,4,5]. However, understanding the precise spatial and temporal

aspects of intercellular signaling is challenging. in vivo, one must be able to track cell sig-

naling responses over time and geographically within a tissue. Technical limitations make

these studies challenging to perform, and the in vivo setting limits perturbations that can

be made to quantitatively define signaling dynamics, gene expression, and cell fate. Addi-

tionally, in vivo signaling represents a composite effect from multiple signals, arising from

multiple cell types that converge on individual “receiver” cells. Thus, an in vitro system

that uses a reductionist approach to study intercellular communication, in a simple and con-

trollable environment, represents an attractive model to perform “sender” to “receiver” cell

interaction studies. Herein we describe such an approach that allows detailed exploration

of sender-receiver relationships and has been used successfully to study this relationship

between malignant and adjacent nonmalignant cells [5]. Implementation of this approach

allows for detailed spatial and temporal profiling of signaling, gene expression, and cell fate

in living cells with single cell resolution and yields quantitative information that can inform

computational model development. Importantly, this system is adaptable to multiple sig-

naling pathways and cell types. Therefore, it can be used to answer questions focused on

tissue development, wound healing, and other relevant biological problems coordinated by

intercellular signaling.

During development and homeostasis, intracellular signaling is known to spatially and

temporally orchestrate cell fate changes or behaviors resulting in the generation or mainte-

nance of organized tissue systems [2, 3, 6,7,8]. One such example occurs during postnatal

mammary gland development. At puberty, rising systemic estrogen levels induce mam-

mary luminal epithelial cells to produce and secrete the epidermal growth factor receptor
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(EGFR) ligands, including amphiregulin (AREG), in a paracrine manner, creating a sender-

receiver cell relationship between epithelial and surrounding myoepithelial and stromal cells,

respectively [9,10,11]. Gradients of AREG are received by proximal myoepithelial cells and

fibroblasts resulting in induction of gene expression programs that regulate mammary gland

invasion and morphogenesis [11]. Establishment of such a sender-receiver relationship be-

tween mammary epithelial cells and the surrounding stromal cells is an essential step in

functional gland development. However, this process is hijacked in some tumors of the

breast. Breast cancer cells spontaneously gain the ability to secrete AREG, independent

of estrogen signaling, leading to the establishment of a dysregulated sender-receiver system

between individual tumor cells and between tumor and stromal cells [4, 12, 13]. Secreted

AREG is bound by receiver cell EGFR, resulting in stimulation of the downstream MAPK

terminal signaling effector, ERK, stimulating tumor cell proliferation, and reprogramming

of the surrounding nonmalignant cell types [4, 13]. Consequently, in this specific case, the

basic AREG sender-receiver cell relationship can drive normal morphogenesis, or when dys-

regulated, aberrant tissue function-organization relationships.

Adding complexity to the sender-receiver system, recent advances in light microscopy

and reporter technologies have revealed that signaling is dynamic and varies both spatially

and temporally at the single cell level. Implementation of genetically encoded reporters has

allowed such detailed study using several methodologies and targeting multiple pathways.

The majority of these approaches utilize Förster resonance energy transfer (FRET) or kinase

translocation-based reporters. For extensive review of these reporters, see [15, 16]; FRET

reporters are composed of a donor and acceptor fluorophore (typically cyan fluorescent pro-

tein (CFP) and yellow fluorescent protein (YFP) variants, respectively) separated by a linker

sequence, docking, phosphorylation site for a kinase of interest (e.g., ERK), and a phospho-

amino acid binding domain. Following phosphorylation by the kinase, the phosphorylated

residue and binding domain interact, reorienting the donor-acceptor pair into close proximity
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Figure C.1: Spectral comparison example for multiple fluorescent proteins. Shown as solid
lines are the excitation (upper) and emission (lower) spectra for mTurquoise2 (cyan, left),
YPet (yellow, center), and mCherry (red, right). Dashed lines show filter transmission bands,
for example, CFP, YFP, and RFP filter sets (colored and ordered spectrally). The relative
intensity of light passing from a fluorophore through a filter can be assessed by the shaded
overlap areas. The net channel intensity through a filter set is proportional to the product
of the shaded areas for excitation and emission of that color. Unwanted cross-talk between
channels can be evaluated by the shaded areas where a fluorophore spectrum overlaps a
differently colored filter. For example, the YFP emission filter overlaps the mTurquoise2
spectrum significantly (green shading, center of lower graph). However, in the excitation
graph, these spectra overlap negligibly (center of upper graph). The product of these two
cross-talk areas is very small compared to that for the YFP channel, resulting in well-
separated channels
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resulting in FRET when the CFP is excited. Kinase activity can be measured by the ratio

of CFP to YFP in fluorescent microscopy or by fluorescence lifetime imaging microscopy

(FLIM). Kinase translocation reporters, or KTRs, contain a tandem nuclear import and

export sequence that is also a kinase substrate. Phosphorylation of the reporter by a kinase

suppresses shuttling from nucleus to cytoplasm. As a result, kinase activity can be measured

as the ratio of cytosolic (C) to nuclear (N) fluorescence. KTRs have been designed for a

number of signaling pathways including ERK, Akt, JNK, and others [16]. For a more exten-

sive discussion of basic translocation reporter use and analysis, we suggest reading Pargett

et al. (2017), Pargett and Albeck (2018), and Kudo et al. (2018) [17,18,19]. One benefit of

KTRs is the utilization a single fluorophore resulting in the ability to use and discriminate

different reporters (e.g., ERK and Akt reporters), in a single cell, based on discrete emission

wavelengths (Fig. 1). Additionally, because the tandem import/export and kinase substrate

sequences can be fused to different fluorophores, one can use the same reporter to measure

kinase activity and to discriminate different cell types, for example, an ERK reporter fused

to a different fluorophore in each different cell type. As described in this protocol, this fea-

ture allows different cell types to carry the same functional reporter with spectrally distinct

fluorophores (e.g., mVenus or mTurquiose2) to easily distinguish the signaling dynamics of

sender and receiver cells with single cell resolution (Fig. 2).

With the advent of CRISPR-technologies, we are now able to tag genes of interest with

fluorescent proteins at their endogenous loci. This allows one to track both signaling dy-

namics using genetically encoded reporters and the expression of downstream target genes,

such as ERK target gene Fra-1, in living cells over time. Utilization of this approach allows

determination of both signaling and resultant gene expression under varying conditions (Fig.

2) [20]. In this protocol, we describe the use of this approach to simultaneously measure the

effects of sender cell growth factor secretion on receiver cell signaling and gene expression.

Making full use of reporters requires an analysis pipeline able to track single cells over
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Figure C.2 Modular construction of sender-receiver cell cultures
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Figure C.2: Modular construction of sender-receiver cell cultures. Sender-receiver pairs,
analogous puzzle pieces, can be combined in various ways and are limited only by available
spectra, suitable cell pairs, and analysis capabilities. a In the simplest form, a sender-receiver
pair is constructed using the same reporter (“Rep1” and “Rep2,” e.g., ERK KTR) fused to
different fluorescent proteins (e.g., mVenus (yellow) or mTurquoise2 (blue) allowing visual
and computational deconvolution of the data. b Using this same approach, receiver cells can
be generated that co-express a reporter construct (blue) and another reporter or CRISPR-
based fluorescent protein-gene fusion, represented here as a mCherry fusion (red). c A more
complex assay can be created using cell lines multiple spectrally distinct sender-receiver
combinations (mVenus, mTurquoise2, and mCherry fused reporter constructs; yellow, blue,
and red, (“Rep1-3”), respectively), where, for example, the sender cell engages receiver cell
1 and receiver cell 1 acts as a sender for receiver cell 2.

time and measure the signal intensity of multiple reporters and/or tagged genes with high

fidelity. With the expansion of live-cell markers, several computational methods have been

developed to fill this need. Such software is able to automatically analyze time-lapse images,

identifying and tracking individual cells over time. Software implementations are increasingly

available and are now largely approachable without writing custom code. However, while

some of these software provide visualization and plotting tools, handling and analysis of the

time series data are often performed with custom code via scripting software (e.g., MATLAB,

Python, and R).

In the following protocol, we provide an approach based on experiments reported in

Davies et al. (2020) that can be adapted to explore intracellular signaling biology generally,

or used for other purposes, such as screening for drugs that block tumor-microenvironment

signaling interactions [5]. This system is also highly adaptable to many types of sender-

receiver relationships such as tumor-immune signaling, three-dimensional cultures, and tis-

sue explants in a manner dependent upon available reporters, the appropriate microscope,

environmental control equipment, and a suitable computational analysis pipeline.
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C.3 Materials

C.3.1 Cell Lines

1. 293FT cells for packaging of viral vectors (Thermo Fisher, #R70007).

2. Sender and receiver cells of interest (see Note 1 Choice of Cell Lines). This approach

applies to a wide variety of cell lines and primary cell types. For the example outlined here,

we utilize the isogenic HMT-3522 malignant progression series, pairing the nonmalignant S1

cells with the malignant T4-2 cells. HMT-3522 cell lines are available commercially through

Millipore Sigma (98102210, 98102212, respectively); however, the cells described here were

sourced from the original lineages and only available upon request [21,22,23].

C.3.2 Cell Culture Reagents

Reagents 1–9 are required for replicating the experiments in Davies et al. (2020), if other

cell types are to be utilized, adjust cell culture reagents as required.

1. Prolactin from sheep pituitary gland (Millipore Sigma L6520).

2. Insulin (Millipore Sigma I6634).

3. Sodium selenite (Millipore Sigma S5261).

4. Beta-estradiol (Millipore Sigma E8875).

5. Hydrocortisone (Millipore Sigma H0888).

6. Transferrin (Millipore Sigma T8158).

7. Recombinant human epidermal growth factor (Peprotech AF-100-15).

8. DMEM/F12 containing bicarbonate buffer (Gibco 11320082).

9. DMEM/F12 phenol-free media for imaging (Gibco 11039047).

10. DMEM high glucose containing HEPES (Gibco 12430112).

11. OptiMEM (Gibco #31985088).
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12. Fetal bovine serum (Gemini Biosciences 100-106).

13. 0.25% trypsin solution (Gibco 25200056).

14. Antibiotic selection agents corresponding with reporter plasmid selection marker

expression (e.g., puromycin).

C.3.3 CRISPR Tagging and Validation Reagents

Adapted from Ornstein et al.

1. Cas9/gRNA delivery plasmid (e.g., px330 Addgene #42230).

2. Homology template plasmid backbone (e.g., pENTR, pAAV, TOPO).

3. Custom gRNA PCR primers.

4. Custom homology arm PCR primers.

5. Fluorescent protein template sequence.

6. High fidelity PCR polymerase, dNTPs, and associated standard PCR reagents.

7. Thermocycler.

8. Restriction enzymes (BbsI).

9. T4 polynucleotide kinase.

10. Gibson Assembly Master Mix.

11. PCR or gel purification kits.

12. Competent E. coli.

13. Plasmid isolation kit.

14. Transfection reagents (see Subheading 2.5 for reference).

15. Standard immunofluorescence reagents, including paraformaldehyde, permeabiliza-

tion buffer (e.g., % Trition X-100 diluted in PBS), blocking buffer (e.g., 2% BSA diluted in

PBS containing 0.1% Triton X-100), and wash buffer (e.g., 0.1% Triton X-100 in PBS).

16. Primary antibody specific for CRISPR tagged gene(s) of interest.
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Secondary antibody with a distinct emission spectrum as compared to reporters and

tagged genes. We prefer Alexa Fluor (Life Technologies) tagged secondaries as they are

available in a wide range of emission wavelengths.

C.3.4 Genetically Encoded Reporter Constructs

1. Multiple reporter constructs are available via Addgene corresponding with the published

literature or by request from individual investigators. In the protocol discussed here, the

original ERK-KTR reporter from Regot et al. (2014) was cloned into the pLJM1-puromycin

(Addgene #19319) lentiviral vector followed by the mTurquoise2 or mVenus fluorescent

protein coding sequence [16]. For a discussion on selection of reporters, see Note 2 Choice

of Genetically Encoded Reporters.

2. If genetically encoded nuclear tracking markers are required, we recommend using histone

H2B tagged with mCerulean, mRuby, or iRFP with the specific choice dependent upon the

spectrum of other reporter(s) to be used (Addgene #90234, #90236, #90237, respectively).

If a genetically encoded marker is not required, we recommend the cell permeable nuclear

dye Hoechst 33342.

C.3.5 Viral Production Reagents

Ensure proper virus handling safety protocols are in place.

1. Sterile tissue culture dishes (6-well plate suggested).

2. Sterile 15 mL conical tubes.

3. Polybrene (Millipore Sigma TR-1003).

4. Poly-D-Lysine (Millipore Sigma P6407).

5. Fugene HD (Promega E2311) or JetPRIME (PolyPlus Transfection 114-01).

6. 5 mL syringe.
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7. 0.45 uM sterile filter.

8. Viral packaging vectors – third-generation lentiviral compatible (e.g., psPAX2 Ad-

dgene #12260, and pMD2.G Addgene #12259).

C.3.6 Live Cell and Fixed Imaging Materials and Reagents

Plating conditions must be optimized on a per cell line basis.

1. Laminin-111 (Thermo Fisher 23017015).

2. Laminin working stock (prepared immediately before use): Laminin-111 50 µg/mL

with 20 mM sodium acetate pH 4 and 1 mM CaCl2.

3. Rat tail collagen I coating solution (Gibco A1048301).

4. Rat tail collagen I working stock: 50 µg/mL rat tail collagen dissolved in 0.02N acetic

acid.

5. 10× Phosphate Buffered Saline.

6. Bovine Serum Albumin (BSA).

7. Triton X-100.

8. Multi-well glass bottom imaging plates (e.g., CellVis P96-0-N).

9. Single and multichannel pipettors.

10. Reagent reservoirs.

11. Hoechst 33342 (Thermo Fisher 62249) or genetically encoded marker (e.g., H2B

mCerulean).

12. Recombinant human epidermal growth factor if using ERK-KTR, or another growth

factor capable of stimulating the pathway of interest (Peprotech AF-100-15).

13. MEK inhibitor (e.g., PD0325901, Selleck Chemicals S1036) if using ERK-KTR, or

another inhibitor capable of suppressing the pathway of interest.
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C.3.7 Live Cell Microscopy Equipment

Ensure proper laser safety procedures are in place.

1. Stage top environmental chamber capable of maintaining 5% CO2 and 37 °C for over

12–24 h, such as OkoLabs Bold Line or Tokai Hit STX systems used in our laboratory.

2. Automated microscope capable of taking serial xy images at predetermined time points

for 12–24 h. We utilize a Nikon Ti2E with automated stage and NIS-Elements software.

3. Fluorescence excitation source (e.g., Lumencor Sola II), filter sets corresponding with

the chosen fluorescent reporters, and an image capture device (e.g., Photometric Prime 95B).

C.3.8 Image Processing and Modeling

1. Computer with at least a 2 GHz CPU and 8 GB RAM (though many software can operate

on lesser systems). Depending on software, a dedicated GPU may be required, often with

at least 2 GB video RAM.

2. MATLAB software and Image Processing Toolbox or comparable (see Note 3 Image

Processing Software).

C.4 Methods

C.4.1 CRISPR Gene Tagging

CRISPR-Cas9 systems are widely used to generate gene knock-in cell lines and model systems

[20, 24, 25]. The revolutionary method enables endogenous labeling of proteins of interest

(POI) with fluorescent tags, allowing for careful investigation of expression, localization,

and dynamics. This section will describe an effective protocol to generate knock-in cell lines.

There are several techniques for endogenous tagging that differ in type of Cas9 protein,
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number of guide RNA (gRNA), length of homology arms, and delivery of each component to

the target cell line [24, 26,27,28]. This protocol uses a human codon optimized Streptococcus

pyogenes Cas9 nuclease in a chimeric guide RNA expression cassette (e.g., px330). The

homology repair template is cloned into any desired plasmid vector (pENTR, pAAV, TOPO)

[29]; however, it can optionally be delivered as a PCR product. Because CRISPR gene

tagging can be technically challenging, we recommend generating edited cell lines first, then

freezing down stocks prior to adding genetically encoded reporters (Subheading 3.3). See

Note 4 for considerations prior to gene knock-in studies.

1. Preparation of guide RNA and homology repair template plasmid constructs. Use

online tools to search for 20 nucleotide gRNA sequences followed by PAM (NGG) motifs.

The gRNA will target the Cas9 protein to the cleavage site; therefore, the sequence should

be close to (within 100 base pairs) or directly over STOP codon of the gene of interest.

Most online tools also provide efficiency and off target effect predictions. Consider which is

most important for the proposed study and chose the top three to five gRNA sequences for

cloning. The Broad Institute or Benchling websites host useful gRNA design tools.

2. If the gRNA sequence does not start with a guanine, add a G to the beginning (5’

end) of the sequence to facilitate U6 promoter transcription. Then design a complementary

sequence to be used for annealing and restriction cloning. Add CACC base pairs to the 5’

end of the forward sequence. Then add AAAC base pairs to the 5’ end of the complementary

sequence. This will make the ends compatible for BbsI restriction cloning. An example of

annealed primers is shown below.

Forward primer 5’ CACCGNN..NN 3’

Reverse primer 3’ CNN..NNCAAA 5’

3. Order and anneal each pair of oligos together. Digest the px330 plasmid with BbsI,

and ligate it with each annealed gRNA. A detailed px330 cloning guide can be found on

Addgene.com.
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4. When designing the homology repair template, ensure the following: (1) introduce

silent mutations in the guide RNA recognition sequence of the homology region so that the

Cas9 protein does not continue its nuclease activity after homology-directed repair (HDR).

(2) Insert a flexible linker between the POI and fluorescent protein; this is important for

stability of the fusion protein [30]. We recommend a 3–5× repeating sequence of Gly-Ala

[24] or Gly-Gly-Ser [31] for the linker domain. (3) Ensure there is a STOP codon at the end

of the fluorescent protein to terminate translation of the fusion protein. (4) Each homology

arm (HA) encompasses 1.4 kb-sized base pairs on each side of the target gene stop codon.

An example is shown below.

Native gene locus:

ATGstart. . . GCGGC. . .TAGAC1.4kbTAGstop ...CTGGA. . . TGACGA1.4kb

Repair template:

GCGGC. . . TAGAC1.4kb– Linker domain – Fluorescent Protein – STOP –

...CTGGA. . . TGACGA1.4kb

5. Design PCR primers for a four-piece Gibson assembly of the left homology arm,

fluorescent protein, right homology arm, and the desired plasmid backbone. The linker

domain DNA sequence can be inserted directly into the overhanging region of the PCR

primers. PCR the homology arms from the target cell line genomic DNA, and PCR the

fluorescent protein from its template plasmid. Assemble the final plasmid and amplify. This

cloned plasmid will be used as the homology repair template. The template can be optionally

delivered as a PCR product instead by using a primer pair flanking each homology arm.

6. Transfect the homology repair template, and the Cas9/gRNA plasmid into your target

cells using optimal transfection methods for each specific cell line.

7. Monitor cells after the transfection to ensure normal growth and proliferation.

8. Positive knock-in cells can be isolated through fluorescence-activated cell sorting

(FACS) or limited dilution cloning. If the cell line is tolerant of single cell plating, con-
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duct single cell FACS into a 96-well dish or perform limited dilution cloning. If the POI is

regulated by the cell cycle, consider synchronizing the cells into the stage with highest POI

expression before cell sorting. See Note 5.

C.4.2 Validation of CRISPR Gene Editing

1. Validate expression of tagged proteins. Correct integration of the fluorescent protein can

be checked via western blotting for the POI. Use standard protocols suited to the cell line.

This validation step may require stimulation experiments (i.e., if the POI is not constitutively

expressed) using the knock-in (tagged) cell line and negative control (non-tagged) cells. See

Note 6.

2. Validate accurate genomic insertion of tags. Following standard protocols, extract

genomic DNA from knock-in and non-tagged cell lines, and PCR the edited gene locus

using primers flanking the homology region of the gene (both homology arms). Analyze

PCR products for size by gel electrophoresis, and validate the fidelity of the insertion by

sequencing. See Note 7.

3. Validate intracellular localization of tagged proteins. For the highest confidence that

knock-in cell lines are good representations of the parental lines, cells can be fixed and stained

for immunofluorescence (using standard protocols for the cell line, see Note 8). Compare the

fluorescence of antibodies directed at the POI with that of the fluorescent protein marker

(or from antibodies against that marker).

C.4.3 Establishing Reporter Cell Lines

The first step is to select appropriate sender-receiver cell lines based on pathways of interest.

For example, in Davies et al. (2020) we utilized the HMT-3522 malignant progression series

lines composed of nonmalignant breast epithelial S1 cells and their isogeneic T4-2 malignant
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counterparts [5]. S1 and T4-2 cells form an excellent sender-receiver pair because T4-2 have

acquired the ability to secrete the epidermal growth factor ligand, amphiregulin (AREG),

whereas S1 cells do not. Additionally, S1 cells express the epidermal growth factor receptor

(EGFR) allowing them to receive AREG paracrine signals from T4-2 cells. See Note 1 for

important considerations of cell line selection.

Kinase translocation reporters such as ERK-KTR are an advantageous tool for studying

live, single-cell signaling and can be multiplexed with other biosensors for multiple kinase

activity measurements from the same cell making them suitable for sender-receiver studies

(Fig. 2) [16, 32]. An important consideration is choosing the ideal fluorescent protein that

serves as the readout for the reporter. Several labs have taken advantage of different color

fluorescent proteins for their experiments; these include mClover, mCherry, mVenus, and

mTurquoise2 [2, 5, 33]. If multiplexing with other reporters, confirm spectral compatibility

by analyzing the excitation/emission spectra of the fluorescent proteins (Fig. 1). Addition-

ally, ensure that the microscope florescence filter cubes have proper excitation wavelengths

and emission filters that will allow for accurate measurement of the reporter(s). Regardless

of the reporter chosen, careful selection is warranted before proceeding. This is because some

receptor ligand interactions can stimulate multiple downstream pathways of interest, for ex-

ample, EGFR is capable of stimulating ERK, AKT, STAT, and other signaling pathways for

which reporters exist. Considering the pathway, or pathways, of interest is therefore critical

depending upon the goals of a particular experiment.

A clear nuclear marker must be used for proper computational nuclear and cytoplasmic

segmenting. A common method facilitating accurate nuclear segmentation is to stably inte-

grate a fluorescent protein fused to histone 2B (H2B) [16]. This fluorescent protein must be

a different color than the ERK-KTR reporter. A more convenient method is to stain cells

with Hoechst before the live-cell imaging experiment. These compounds can be visualized

with fluorescence microscopy, have low toxicity, and can be used in live cells for several days.
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1. For further discussion on selecting of sender-receiver cells, see Note 1.

2. For further discussion on selecting of reporters, see Note 2.

3. Thaw and culture 293T cells for transfection in DMEM supplemented with 10% FBS

until 70–80% confluent.

4. Coat 6-well cell culture dish with 1 mL Poly-D-Lysine.

5. Incubate at 37 °C for 20 min.

6. Seed 293T cells at a density of 500,000–750,000 cells per well. Resuspend cells thor-

oughly so that there are no cells attached together.

7. Incubate overnight at 37 °C and 5% CO2.

8. Transfect 293FT cells. Transfection reagents may vary; efficient chemical transfection

reagents include FuGENE® (Promega) and jetPRIME® (PolyPlus) transfection reagent.

Transfection protocol depends on the reagent and follows manufacture instructions. Each

reaction should contain 1 ug of the lentiviral reporter plasmid of your choice, 1 ug of the

viral packaging plasmid (psPAX2), and 100 ng of the viral envelope plasmid (pMD2.G).

9. After transfection, incubate cells for 12 h at 37 °C and 5% CO2.

10. Change media to fresh growth media and incubate for another 24 h. If desired, you

can inspect transfection rates by using a fluorescence microscope. High transfection rates

will leave many cells visibly expressing the reporter construct.

11. Begin to collect virus using appropriate techniques and personal protective equip-

ment. After the previous 24-h incubation step, the media will begin to contain viral particles.

Collect this media and replenish wells with fresh media. Store collected media at 4 °C.

12. If desired, this collection step can be repeated every 24 h for 3–4 days after the initial

transfection step.

13. After the desired amount of virus is collected, sterile filter the virus using a 0.45 uM

filter. Create 500 µL aliquots of virus containing media, and proceed to transduction step

or store aliquots at -80 °C. Aliquots may be stored at 4 °C up to 2 weeks; however, this may
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result in decreased transduction efficiency.

14. Prepare target cell line to be transduced by seeding cells at a density of 100,000

cells per well in a 6-well tissue culture dish, and incubate overnight to allow cells to attach.

Include one well that will not be infected with virus; this will serve as a control for future

antibiotic selection. Cell culture media should be prepared as appropriate for the cell line

chosen. If using the HMT-3522 cell lines, refer Weaver et al. (1997) and Briand et al. (1987)

for a detailed description of media composition and cell handling [22, 23].

15. After 24 h, replace media with 1 mL fresh media containing polybrene at a con-

centration of 12 µg/mL. After virus addition, the final concentration of polybrene will be 8

µg/mL. Depending on the cell line, optimal concentration of polybrene may be within 1–10

µg/mL.

16. Add 500 µL of virus containing media dropwise to each well and gently swirl the

plate.

17. Incubate for 24 h at 37 °C and 5% CO2.

18. Replace virus containing media with fresh media, and allow cells to divide for another

24 h.

19. 48 h after transduction, begin antibiotic selection, and continue for 2 weeks. Trans-

duction rates can be assessed using a fluorescence microscope. The construct should be

visibly expressed in cells.

20. (Optional) If reporter expression levels are heterogenous within the population,

fluorescence-activated cell sorting (FACS) may be conducted to isolate high reporter ex-

pressing cells or cells expressing multiple reporters. Alternative single cell cloning techniques

may be employed to establish clonal populations (see Note 9 Selection of Reporter Cells for

discussion of options).
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Figure C.3: Schematic example of major protocol steps. The complete experiment consists
of (1) acquiring or producing DNA constructs for reporters, (2) inserting constructs into
desired cell lines, (3) mixing “sender” and “receiver” cells in the desired experiment format
(4) imaging co-cultured cells under desired treatments, (5) processing image data, and (6)
analyzing time-series data according to the co-culture conditions used.
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C.4.4 Imaging Experiment Preparation

This section provides a basic outline of imaging plate preparation that can be utilized to

validate cell lines, establish co-culture conditions, and conduct sender-receiver experiments.

As basic diagram is provided in Fig. 3 and will be expanded upon in the following sections.

1. Prepare imaging plate by coating 96-well glass bottom cell culture plate with ex-

tracellular matrix. For a discussion of extracellular matrix selection choice, see Note 10

Extracellular Matrix Choice.

2. If rat tail collagen is chosen, apply 3 µL of 50 µg/mL collagen solution (see Subheading

2) to the center of a well. Incubate at 37 °C for 30 min. After the incubation, add 100 µL

of PBS into each well to wash out unbound collagen; see Note 11 Plating Technique for a

discussion of spotting technique versus whole well plating.

3. If laminin-111 is chosen, apply 3ul of 50 µg/mL laminin solution as prepared according

to MATERIALS. Incubate at 37 °C for overnight. After the incubation, add 100 µL of PBS

into each well to wash out unbound laminin.

4. Trypsinize cells in accordance with the requirements of your chosen cell lines. Neu-

tralize trypsin, and centrifuge cells.

5. Prepare cell culture media. If using the HMT-3522 cell lines, refer to a detailed

description of media composition and cell handling [21, 23].

6. Resuspend and count cells using a hemocytometer. Dilute cells to 1000–3000 cells per

µL in media. Optimal seeding density depends on cell line.

7. Aspirate the PBS from each well of the imaging plate, and ensure that collagen or

laminin spot is not aspirated or dried.

8. Pipette 3 µL of cell suspension directly onto the spot. For best results, aspirate PBS

and immediately pipette cells onto each spot. This is best done by aspirating 5–10 wells at

a time and pipetting cells with a multi-channel pipette.
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9. Incubate the plate at 37 °C and 5% CO2 for 1 h.

10. Gently add 200 µL of media to each well, and incubate overnight.

11. Cells should be growth factor starved for at least 12 h before conducting and experi-

ment. For example, starvation will decrease activity of ERK and allow for robust stimulation

upon growth factor treatment.

12. If there is no nuclear marker stably expressed (e.g., H2B mCerulean), dilute Hoechst

33342 in imaging media to a concentration of 0.1–1 µg/mL (see Note 12 Imaging Media).

13. Replace media with 200 µL of Hoechst containing imaging media, and incubate for

1 hour.

14. Place plate on automated stage, and begin time course experiment, image Hoechst,

and ERK-KTR reporter every 6 min for several hours (typically 12–24 h). The microscope

stage must be equipped with a 37 °C and 5% CO2 environmental chamber to maintain

healthy, viable, cells.

C.4.5 Validation of Reporter Cells

Once reporter cell lines are generated, one must validate the function of the reporter in both

sender and receiver cultures. In the case of ERK-KTR, we utilized EGF to stimulate signaling

and establish the maximal and dose-dependent response for the reporter. Conversely, we

verified the maximal reporter suppression that can be achieved by inhibiting the activation

of ERK-KTR using a MEK inhibitor. The combination of stimulus and inhibitor use allows

one to (1) establish the dynamic range and response characteristics of a particular reporter

in the cell(s) of interest, (2) establish the baseline signaling activity of a signaling pathway

within the receiver cells, and (3) evaluate the expression of a CRISPR tagged gene under these

conditions, if present. See Note 13 for a discussion of baseline signaling activity verification.

1. Prepare your experiment, and begin imaging as outlined in Subheading 3.4.

2. Collect at least 3 h of images before adding growth factor or inhibitors. This will reveal
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baseline ERK-KTR activity after starvation and allow cells to equilibrate to the imaging

conditions.

3. Conduct a dose curve stimulation using EGF to activate ERK if using the ERK-KTR

reporter. Final EGF concentrations in the media should range from 0.01 to 100 ng/mL

and include a vehicle-only treatment. If using another reporter, choose the appropriate

growth factor or stimulus. Add 10 µL of the treatment directly into the media for minimal

perturbation of the cells. This 10 µL “spike in” should be 21× the desired final concentration;

the final volume in each well will be 210 µL.

4. After 6–12 h of growth factor treatment and imaging, spike in the MEK inhibitor

PD0325901 to reach a final concentration of 100 nM. This treatment will fully deactivate

ERK signaling. Image for an additional 2 h. If using another reporter, choose the appropriate

inhibitor and dosage.

5. After completing the experiment, visually inspect the images collected for nuclear

translocation. The ERK-KTR construct should exit the nucleus after activation and enter

the nucleus after inhibition.

6. Conduct cell tracking and segmentation using the nuclear marker. ERK-KTR activity

can be calculated as the ratio of cytoplasmic/nuclear intensity at each timepoint then dose-

dependent activation and deactivation visualized and quantified (see Subheading 3.7 Image

Processing for details).

C.4.6 Establishing Co-culture Conditions

Establishment of optimal co-culture conditions is an essential step in this protocol because it

directly effects sender-receiver dynamics (Fig. 4) and the quality of data obtained by these

assays. To begin, one must consider the optimal seeding density, which will vary by cell line,

since some cell lines prefer a high density to grow effectively and thus may need to be plated

as such. However, this could lead to overcrowding and layered growth which can impede
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tracking of individual cell signaling behaviors. Therefore, careful optimization is required

to achieve adequate density which promotes a uniform monolayer (unless utilizing confocal

microscopy). One must also consider the properties of the sender-receiver relationship. For

example, because AREG has a moderate affinity for EGFR, it distributes widely throughout

the culture to reach receiver cells. Higher (or lower) affinity ligands may distribute with

different kinetics, necessitating that sender-receiver plating ratios be optimized relative to

the goals of a particular experiment. A stepwise discussion of our considerations is as follows:

1. Follow general cell plating steps as outlined in Subheading 3.4.

2. Design an optimal plating density experiment. We suggest starting with a range of

1000–4000 cells per µL with increments of 500 cells per µL. For our experiments, we found

3500 cells per µL to give optimal plating density with appropriate monolayer formation.

Lower cell densities tended to result in round cell morphology forming balls on the plate

surface with reduced ERK activity. High cell densities resulted in crowding, layered growth,

and impeded segmentation and tracking.

3. Establishing sender-receiver cell mixing ratios. For our experiments, we choose to

optimize over a range from 10:90 to 90:10 sender-receiver cell ratios, respectively (see Fig.

4). We found an optimal ratio of 70:30 sender to receiver cells which gave dynamic ERK

activity in both cell types with comparable signaling frequency and amplitude. Increasing

the sender cell ratio resulted in decreased ERK activity, whereas increased sender cell ratios

had no appreciable effect beyond a 70:30 fraction. When using this protocol, you will have

to determine the optimal cell ratios based on the properties of the cell types used and the

particular hypothesis being tested.

C.4.7 Image Processing

This section provides an overview on the extraction of single-cell data from time lapse mi-

croscopy images and distinguishing between nuclear and cytoplasmic subcellular compart-
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Figure C.4: Co-culture conditions dictate sender-receiver signaling dynamics. Left to right,
increasing ratios of sender to receiver cells result in a progressive increase in both sender (au-
tocrine mechanism, yellow cells) and receiver cell (paracrine mechanism, blue cells) signaling
dynamics. Such dynamics correspond with increasing ligand abundance that is proportional
to sender cell density.

155



ments. As this protocol is focused on issues specific to co-cultures, we assume a working

knowledge of processing time-lapse imagery. The procedure is largely unaffected by the pres-

ence of different cell types in culture, but there are several important considerations. For

protocols detailing lower level details of single-cell image analysis, see Pargett et al. 2017

[18]. While custom processing software is often used, there are a variety of accessible soft-

ware tools to perform this processing, many of which include documentation (see Note 3 for

comments on software availability).

1. Import or access data with software of choice. Microscope software stores data in a

variety of formats, often specific to a manufacturer. However, most bio-image processing

software is designed to access many of these formats, often using the Bioformats software

tool (www.openmicroscopy.org/bio-formats/) [34]. See software user guides for details.

2. Segment cell nuclei. This is performed for every image, using the color channel

detecting a reporter or dye localized to the nucleus or cytoplasm. There are several widely

used techniques broadly split between thresholding and machine learning. Thresholding is

simpler and useful for images with clearly defined nuclei. Machine learning requires human

interaction to “train” the algorithm by manually marking out nuclei in sample images.

It is particularly useful when the images are highly complex and nuclei are not clearly

distinct from the rest of the image (see Note 14). In our recent work, we achieved reliable

segmentation using a thresholding approach for images with Hoechst-stained cell nuclei.

Different cells in co-culture were identified by the presence of a particular color of ERK-

KTR reporter (see Note 15 on the use of differentially colored segmentation markers).

3. Estimate cytoplasm regions around each nucleus. Some machine learning approaches

estimate the entire region of a cell’s cytoplasm, given an adequate membrane stain. However,

in practice, it is typically sufficient to sample a ring surrounding the nuclear mask, which is

the methods used in Davies et al. (2020) (see Note 16) [5].

4. Track nuclei over time. With cells identified in each frame, the software will link them
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from frame to frame, forming a time series. A variety of different algorithms are employed,

each with differing strengths, but basic tracking is consistently well handled. See software

user manuals for any details. Problems in tracking can often be mitigated at the experimental

level, for example, optimizing cell density such that each cell is easily delineated. For detailed

culture and imaging conditions that facilitate this process, see Subheading 3.6.

5. Collect and store times series data per tracked cell. Extract the single-cell time

series data from the processing software to analyze with software of your choice (typically a

scripting language, like Python, MATLAB, and R). The quantity extracted should clearly

reflect the underlying feature measured by the markers or reporters used. In many cases,

the average intensity in each mask is appropriate, but other use cases exist. For example, if

the reporter forms puncta, the average intensity of puncta only, or the number of puncta per

mask area, may be more appropriate. Ultimately, the best metric depends on the nature of

the reporter expressed or dye used (see Note 17).

C.4.8 Analysis of Co-culture Signaling and Gene Expression Re-

sponses

This section describes analyses of particular importance when assessing signaling between

cell types in co-culture. Reporters for both signaling (e.g., ERK-KTR) and gene expres-

sion (e.g., CRISPR knock-ins) are handled equivalently. The only processing differences

between reporter types occur in how they are initially interpreted (typically, gene expres-

sion is recorded as the average fluorescent intensity, while some reporters require additional

interpretation, as with the nuclear-to-cytoplasmic ratio of ERK-KTR). A wide array of anal-

yses is possible once the co-culture data can be reliably acquired. Those highlighted here

represent a sampling of the most basic and widely applicable. Overall, these analyses allow

one to quantitatively attribute differences in signaling and cellular responses to the quan-
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tity of different cell types present and to investigate the mechanism of intercellular signal

transmission, for example, using drugs to block shedding of particular ligands.

1. Separate tracks from different cell types. To distinguish the differences between

multiple cell types in culture, the tracks must be separated according to the marker profile

of each cell line. If cells were segmented in separate runs, this is already complete and can be

validated as needed. If cells were segmented in a single run, determine the cell type of each

track by its marker profile (e.g., with a cyan and a yellow marker, cells will be either high

cyan/low yellow or high yellow/low cyan). The best metric to distinguish will depend on the

exact marker profiles but is typically straightforward. In the cyan versus yellow example,

the ratio of cyan to yellow will show two distinct clusters, one high and one low. Below, we

provide sample MATLAB code to set up an index identifying two cell types, assuming a 3D

data array, Cells x Time x Channel.

cyan = mean(celldata (:,:, idx_cyan) ,2); %Get mean of cyan

intensity for each cell

yellow = mean(celldata (:,:, idx_yellow) ,2); %Get mean of yellow

intensity for each cell

cy_ratio = cyan ./ yellow; %Get ratio of cyan to yellow

%If markers are similar in intensity range , the cell identity

can be called based on cy_ratio being greater or less than

one. i.e. iscyan = cy_ratio > 1;

%To be more robust , but a clustering algorithm

[cluster_id , c] = kmeans(cy_ratio , 2); %Get cluster assignments

.

%Make index vector identifying cyan vs. yellow cells.

if c(1) > c(2) %If first cluster has the larger ratio , assign

as cyan , otherwise cyan is cluster 2.
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iscyan = cluster_id == 1;

else

iscyan = cluster_id == 2;

end

2. Estimate average density per cell type. While the ratio of cell types is known at the

time of plating, it is good practice to check the status at the time of imaging (typically days

later). Calculate this estimate as the ratio of average cell number in the frame(s) for each

cell type (see Note 18).

%Estimate the fraction of cells that are cyan vs. yellow

fraction_cyan = sum(iscyan)./ numel(iscyan);

fraction_yellow = 1 - fraction_cyan;

3. Analyze the effect of relative density on signaling. In our experience, high concentra-

tions of receiver cells can result in low ERK activity because, as the fraction of sender cells

decrease, so too does the effective concentration of ligand in the media. Correspondingly, the

reporter activity of both sender and receiver cells is reduced. For our experiments, we defined

the optimal ratio of sender to receiver cells at 70:30, resulting in roughly equivalent dynamic

ERK activity in both cell types. In each new experimental setting, the sender/receiver ratio

(either from original plating, or final estimates of relative density) can be compared with sig-

naling and expression differences (with or without additional stimulus). Because single-cell

data have been collected, not only response means, but their distributions (variance, skew-

ness, any bi-modality, etc.) can be compared with the mixing ratios. Because signaling data

are taken in a time series in this procedure, time-dependent features may also be compared,

such as oscillations or other variability over time (see Note 19)

4. Calculate cross-correlation and time lag between cell types. On an average basis, the

cell-type-specific responses to a stimulus can be compared, both for how they correlate in
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time. This is especially useful in a scenario where a receiver cell type may be responding

to the activity of a sender cell type. For this average analysis, it is important to deliver

a stimulus that synchronously activates one (or both) cell types. Cross-correlation delivers

two values: the maximum correlation between the signals and the lag time between them

(e.g., how much later the receiver cells respond, after the sender cells activate).

[rho , lag] = xcorr(sender_avg , receiver_avg);

[rhomax , idx_rhomax] = max(rho); %Get maximum correlation

lagmax = lag(idx_rhomax); %Get lag corresponding to maximum

correlation

5. Estimate the dependence of cellular responses on the spatial organization of cells.

Knowing the position of each tracked cell in the culture, it is possible to investigate if

signaling appears dependent on which other cells are nearby. One approach is to compare

each cell’s signaling trace with its proximity to other cells of each type. If there is a cell-type-

specific interaction, cells surrounded by their own cell type would be expected to respond

differently from those surrounded by other cell types. On a per cell basis, estimate the local

density of each cell type, for example, as the number of tracked cells of each type within a

chosen radius (see Notes 20 and 21).

%Calculate average signal for each cell

avg_signal = mean(celldata (:,:, reporter_idx) ,2);

%Calculate average local density around each cell

cellxy = mean(celldata (:,:,[x_idx , y_idx]) ,2); %Get average x,

y location values per cell

for s = 1:size(,1)

cell_dist = sqrt(sum(( cellxy(s,:) - cellxy).^2 ,2)); %Distance

to each other cell
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nearby_cells = cell_dist <= local_radius; %Flag each cell as

local or not

ldens(s,1) = sum(nearby_cells(iscyan)); %Count local cyan cells

ldens(s,2) = sum(nearby_cells(isyellow)); %Count local yellow

cells

end

%Correlate signal with local density

[rho , pval] = corr(avg_signal , ldens)

6. Extensions to mathematical modeling. The data gathered with this protocol open a

wide range of options to inform and extend mathematical modeling studies. While these

applications are outside the scope of this protocol, we briefly discuss the potential. A typical

scenario would involve a paracrine signaling model, describing the receiver response to a

ligand shed by sender cells in the culture, potentially including expression of a downstream

gene product. Dynamic signaling models may take a variety of forms, from more generic

ARMAX (auto-regressive moving average exogenous) models to detailed ODEs (ordinary

differential equations), or even spatial PDEs (partial differential equations). The data gath-

ered via this protocol are applicable to all of these types of models. After formulating or

adopting a relevant model, basic parameters may be fitted via dedicated datasets (see Note

22). Remaining parameters can then be fitted to the single-cell dataset(s) and model analy-

ses performed (see Note 23). Single-cell interaction data allow these models to be tested at

much higher resolution than was previously feasible.

C.5 Notes

1. Choice of Cell Lines. When choosing cell lines for sender-receiver studies the following

must be considered: (1) Properties of the ligand will dictate the suitability of a particular
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sender cell line. Consider the disposition of the ligand. Is it secreted or membrane bound? If

secreted, does the molecule freely diffuse or is it maintained bound to the local ECM? Such

properties will determine the spatial range of ligand activity and will dictate the sender-

receiver cell ratios to be determined later in this protocol. If the ligand is membrane bound,

it will be important to determine if the ligand is accessible to stimulate receiver cell signaling

and if the quantity expressed is capable of promoting detectable changes in signaling. This

last consideration is less important for secreted ligands because most are secreted in excess

within the microenvironment. Finally, does the ligand, whether membrane bound or secreted,

require activation. Some ligands are secreted in an inactive form that requires enzymatic

activation. In such cases, if the sender and receiver cells do not express this enzyme, signaling

activity may not occur. (2) One must also consider ligand-receptor affinity. For certain

high-affinity ligands that stimulate autocrine activation, secreted ligand may bind sender

cell receptors, prior to diffusing, leading to weak or no detectable paracrine activity. (3) In

choosing a receiver cell, one must consider if the cognate receptor is expressed in the cells.

Usually simple confirmation using western blotting to verify receptor expression is sufficient.

(4) Confirm that the secreted ligand is not produced by the receiver cell. If the ligand is

expressed, one must consider if it is abundant enough to mask the effects of ligand produced

by the sender cell. In cases where ligand is expressed at relatively low levels and signaling is

weakly activated, one can work around the elevated baseline by adapting the computational

methods outlined in this protocol.

2. Choice of Genetically Encoded Reporters. The choice of reporter should be made

based on the signaling network of interest and the overall experimental hypothesis. For

example, binding of AREG to EGFR results in activation of both Ras-ERK and PI3K-Akt.

Since several Akt and ERK reporters exist, either or both can be used depending upon the

goals of the experiment. Consideration of FRET-based versus translocation reporters is more

nuanced on the technical level and has been discussed elsewhere [14]. However, in general,
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translocation reporters are more easily employed, and the same reporter (e.g., ERK-KTR)

is available or can be sub-cloned to produce reporters of different colors without effecting

function.

3. Image Processing Software. Image processing software for live-cell microscopy is

a rapidly evolving industry. At the time of this publication, there are many published

implementations and a wide variety of additional techniques under development. Major

microscope manufacturers (Nikon, Leica, etc.) and bioscience companies (ThermoFisher,

PerkinElmer, etc.) offer image analysis software. Open-source implementations include

ImageJ, CellProfiler, BioImageXD, 3D Slicer, Icy, Ilastik, and many others. For those looking

to set up a new software pipeline, we recommend performing a search to ensure an up-to-date

survey of the field. Include any keywords related to additional complexities of the intended

experiments, such as “puncta,” “3D,” or “mitochondria.” As many implementations are now

formally distributed, they are accompanied with instructions for installation and use.

4. Considerations for CRISPR Gene Editing. Before proceeding, there are some im-

portant considerations that may affect the success of the gene knock-in study. First, we

recommend generating knock-in cells prior to adding genetically encoded reporters. This

process can be time-consuming, and generation of knock-in lines prior to reporter line gen-

eration has added flexibility – allowing for the same lines to be used with many different

reporter combinations if desired. Second, we recommend considering the expected expression

and dynamics of the POI and what property of protein expression is being studied. Exam-

ples of key properties include subcellular translocation, using dynamics of expression (on/off

rates), or overall expression. Research prior Western blot, immunofluorescence, or mRNA

expression studies to confirm that tagging the gene of interest will reveal useful information.

If there is no published work, consider conducting a time course perturbation experiment

and measure the expression of the POI via Western blot or immunofluorescence. Third,

consider the optimal color of the fluorescent protein (tag) that will be fused to the POI. If
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the target cell line will have another reporter integrated, the tag should be spectrally com-

patible with the reporter. The selected fluorescent protein should be fast folding to ensure

the POI expression dynamics remain similar after knock-in. Additionally, the fluorescent

protein should have a high quantum yield to allow for a bright signal during live-cell mea-

surements. Furthermore, consider which end (C- or N-terminal) of the POI will be fused to

the tag. Some studies suggest the C-terminal fusions are more likely to mimic native local-

ization than N-terminal fusions [35]. In some cases, proteins are cleaved on the C-terminus

(e.g., Ras); therefore, N-terminal tagging will be the only option [36]. If available, check the

structure of the protein to examine the flanking residues of the POI. If these residues are

tucked within the protein, fusing a fluorescent protein to that edge may disrupt proper fold-

ing, expression, or localization. In general, C-terminal fusions will be the preferred option;

therefore, this protocol will describe a C-terminal tagging attempt. Of note, Koch et al.

report that about 25% of genes cannot be functionally tagged; therefore, consider pursuing

multiple proteins of interest when performing this protocol.

5. Gene Editing Efficiency. It is possible to increase the rate of homology-directed repair

to increase knock-in efficiency by using inhibitors of the nonhomologous end joining pathway

or activators of HDR [26, 37, 38]. Furthermore, other studies report a minor increase in

homozygous insertion using serum starvation and release during the transfection [25].

6. Most fluorescent proteins are about 27 kDa; knock-in cell lines should have protein

bands that are heavier than the non-tagged protein. Heterozygous knock-in cells are indi-

cated by two bands (at the native and shifted sizes). Homozygous insertions are indicated

by a single band at the shifted size and the absence of the native protein band. Samples

should also be probed using a primary antibody specific to the fluorescent protein. Ensure

that fluorescent protein-specific band is same size as the shifted POI band. There should

not be other bands, which would suggest off-target knock-in events. Use the negative con-

trol (non-tagged) cell lines to test for nonspecific bands from the anti-fluorescent protein
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antibody.

7. When evaluating PCR product size, heterozygous insertions are indicated by the

presence of both the native (non-tagged) size and larger (knock-in) DNA band. The larger

band should be about 700 base pairs (length of the fluorescent protein) larger than the native

band. Homozygous insertions are indicated by the absence of the native size band and the

presence of only the larger band.

8. The choice of fluorescent label(s) for secondary antibodies should be made to allow

spectral distinction from the CRISPR-tagged gene(s) and any other reporters expressed in

your cell line. Cell fixation and staining can be performed using standard immunofluorescence

staining methods.

9. Selection of Reporter Cells. Once reporter cells are generated, a decision has to be

made whether clonal or polyclonal populations are more desirable. Generating clonal pop-

ulations by limited dilution cloning can provide an easy way to generate a population of

cells that uniformly express the reporter(s) of interest. If choosing to create clonal popula-

tions, one must consider if the cell line is amenable to this process. Some cell lines do not

grow well at low densities and may require the addition of conditioned media or half-media

changes. Additionally, generating clones will reduce the level of heterogeneity within a cell

line and essentially create a derivative cell lineage with altered slightly properties. This

is especially true in some cancer cell lines which exhibit high levels of heterogeneity. Our

preferred method is flow-based sorting of reporter (+) cell lines. In taking this approach,

much of the population-level heterogeneity is preserved, and the vast majority of isolated

cells express a moderate level of reporter expression. Since translocation and FRET reporter

data is obtained in a ratiometric manner, small fluctuations in reporter expression from cell

to cell within these populations does not affect the data interpretation.

10. Extracellular Matrix Choice. The primary goal in choosing a particular ECM for

plating is to try and recapitulate the host microenvironment of the cells selected. In our case,
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we have used collagen I which is abundant in breast cancer stroma or laminin-111 which is a

predominant component of normal basement membrane in breast tissue. In our experience,

choice of ECM will affect signaling dynamics. For example, we found that laminin results in

higher frequency pulsatile EKR dynamics as compared to collagen I in the HMT-3522 cells

lines. In designing experiments using this protocol, ECM choice should be made based on

considerations of native microenvironment and experimental question.

11. Plating Technique. In our experiments, we prefer to use a “spotting” method as

opposed to coating the whole well with ECM and cells. We have found several benefits

to the method: (1) The plating area can be more precisely controlled with respect to the

placement of cells in the center or the wells as opposed to whole well plating which leads

to cell clustering at the edges. (2) Precise cell distribution on the plate results in increased

experimental repeatability. This consideration should not be underestimated because it can

have a profound impact on plating density variation, formation of a uniform monolayer,

and variation from well to well and experiment to experiment and can reduce the need for

troubleshooting during data processing, particularly during segmentation steps. (3) Plating

a small number of cells relative to the quantity of media present in a well ensures adequate

nutrients are provided to the cells for the duration of the experiment. This is an important

consideration in longer experiments, such as those lasting ¿48 h, resulting in fewer media

changes.

12. Imaging Media. For optimal fluorescent imaging, it is recommended to use imaging

media that do not autofluoresence in the spectra of interest. In particular, phenol red,

riboflavin, folic acid, and serum often contribute to background fluorescence. Use media

lacking for these components to lower background intensity and improve the ability to resolve

faint expression. If any of these components are necessary for a cell line of interest, titrate it

back into the base imaging media to identify the lowest concentration at which cell behave

normally for the duration of the experiment.
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13. Baseline Signaling Identification. An important step in reporter line and assay

validation is to measure baseline activity of receiver cells. As discussed in Note 1, some

receiver cells will have baseline activity of the pathway of interest. This can occur through

several mechanisms, including (1) the presence of autocrine signaling in receiver cells resulting

from secretion of the same ligand produced by sender cells, but at a relatively low level,

and/or (2) activation of alternative pathways that converge on the signaling pathway of

interest. For example, ERK can be stimulated by multiple signaling pathways, interactions

with the ECM, and cell migration. Baseline signaling can be identified by experiments using a

pathway inhibitor. Involvement of particular receptors and ligands can be assayed if suitable

inhibitors or competing antibodies are available. When baseline signaling characteristics

have been measured, the effects of sender-receiver interactions can be better quantified by

comparison with the baseline distribution rather than a theoretical absence of all activity.

14. Regardless of the software platform used, it is advantageous to double-check the

quality of the segmentation. Nuclear masks should be consistently within the nucleus, such

that average intensities reflect only nuclear pixels. Assume that there will always be some

fraction of cells that are not segmented and some rate of poor-quality masks. In many

cases, the fraction segmented is not critical, as long as most segmentations are of acceptable

quality. However, if the intent is to perform local spatial analyses on a single-cell basis, more

complete segmentation is increasingly important, as the analysis relies on knowledge of all

nearby cells. It is therefore important to ensure that cultures are free of debris and not

overcrowded and that the segmentation marker is distinct.

15. If the different colored markers used to distinguish cell types are fundamentally

localized to the nucleus (or cytoplasm), cells of different types may be segmented in two

separate processing runs, one for each color marker. Alternatively, the color channels for

the two markers may be merged to make a joint segmentation channel. Color channels may

be joined in a variety of ways, for example, by summing intensities or using the max of
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the two channels per pixel. If the intensities of the two channels differ greatly, they should

be normalized so that the resulting joined images are more uniform. The choice of joining

function should be made based on contrast in the final image. For example, if debris tend

to autofluoresce in both channels, the sum will result in higher debris intensity, and a max

projection may be preferred.

16. For cytoplasm sampling from a perinuclear ring, common mask errors can be corrected

by avoiding pixels with high values for a nuclear marker, as well as those with background

values for a cytoplasmic marker. Depending on the arrangement of colors across two (or

more) cell types, these distinctions may or may not be available. Keep in mind that is-

sues with cells overlapping can often be avoided by carefully managing density and plating

conditions.

17. In many cases, the clarity of data can be improved via post-processing of signals

using calibrations and/or mathematical models of the reporter’s function. This is especially

true of genetically expressed reporters, as in [39].

18. If the segmentation is relatively poor, the ratio may still be estimated based on the

average intensities in the whole frame, provided that neither channel has large amounts of

autoflourescent debris. For each channel, estimate the net intensity per cell by taking the

sum of all pixels in the masks (or the average intensity per mask times that mask area) and

dividing by the number of masks. To estimate the number of each cell type in the frame,

divide the sum of the intensity over the entire frame by the intensity per cell.

19. The basic endpoint for effect of density is average signaling level (or gene expression)

as a function of the mixing ratio. This endpoint should be considered independently for

each cell type; effects on receiver cells reflect their potential to be directly by this paracrine

signaling, while effects on sender cells may reflect their reliance of para- or autocrine signaling

and how their behavior may change when diluted by different cell types.

20. To be robust to poorer segmentation, estimate local density as a weighted sum of the
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intensity of each cell type marker. A typical weighting scheme is a Gaussian function of the

distance from the target cell’s nucleus. This is equivalent to sampling a Gaussian filtered

image.

21. For a more generalized approach considering different features of the signaling re-

sponse, use a partial least squares regression (PLSR). PLSR allows for simultaneously testing

the correlation among many variables (such as the mean, max, and frequency of a signal vs.

the local density of two different cell types).

22. Wherever possible, it is recommended to use independent data to determine key

parameters (or parameter ranges) in a model. For example, the average decay rate of a

protein may be estimated by time series Western blot and that for an mRNA by qPCR.

Making these measurements independently allows the main dataset to be used to estimate

the more difficult to observe regulatory interactions.

23. Using single-cell data opens opportunities as well as new challenges. From a model-

ing perspective, we are forced to acknowledge that each individual cell may have a different

amount of each protein (receptors, kinases, etc.) and, as a result, different apparent kinetic

rates for complex reactions. Therefore, each single-cell trace potentially reflects different

parameter values in a model (how different depends on the context of the system). Each cell

may also be experiencing a different signaling environment (different amounts of a ligand at

any point in time). To make the fullest use of single-cell data, modeling studies should be

prepared to estimate different parameter values for each cell. As this can become computa-

tionally infeasible with many individual cells, a subset of representative cells may be chosen

for explicit modeling (e.g., based on observed clusters in the dataset).

169



Bibliography

[1] S. Ahmed, K. G. Grant, L. E. Edwards, A. Rahman, M. Cirit, M. B. Goshe, and J. M. Haugh. Data-

driven modeling reconciles kinetics of ERK phosphorylation, localization, and activity states. Mol.

Syst. Biol., 10:718, Jan. 2014.

[2] T. J. Aikin, A. F. Peterson, M. J. Pokrass, H. R. Clark, and S. Regot. MAPK activity dynamics

regulate non-cell autonomous effects of oncogene expression. Elife, 9, Sept. 2020.

[3] C. Albanese, J. Johnson, G. Watanabe, N. Eklund, D. Vu, A. Arnold, and R. G. Pestell. Transforming

p21ras mutants and c-ets-2 activate the cyclin D1 promoter through distinguishable regions (). J. Biol.

Chem., 270(40):23589–23597, Oct. 1995.

[4] J. G. Albeck, G. B. Mills, and J. S. Brugge. Frequency-modulated pulses of ERK activity transmit

quantitative proliferation signals. Mol. Cell, 49(2):249–261, Jan. 2013.

[5] J. G. Albeck, M. Pargett, and A. E. Davies. Experimental and engineering approaches to intracellular

communication. Essays Biochem., 62(4):515–524, Oct. 2018.

[6] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and P. Walter. Molecular Biology

of the Cell. Garland Science, Nov. 2014.

[7] G. Altan-Bonnet and R. N. Germain. Modeling T cell antigen discrimination based on feedback control

of digital ERK responses. PLoS Biol., 3(11):e356, Nov. 2005.

[8] A. Amaravathi, J. L. Oblinger, D. B. Welling, and others. Neurofibromatosis: molecular pathogenesis

and natural compounds as potential treatments. Frontiers in, 2021.

[9] I. Amit, A. Citri, T. Shay, Y. Lu, M. Katz, F. Zhang, G. Tarcic, D. Siwak, J. Lahad, J. Jacob-Hirsch,

N. Amariglio, N. Vaisman, E. Segal, G. Rechavi, U. Alon, G. B. Mills, E. Domany, and Y. Yarden.

170



A module of negative feedback regulators defines growth factor signaling. Nat. Genet., 39(4):503–512,

Apr. 2007.

[10] S. S. Andrews, W. J. Peria, R. C. Yu, A. Colman-Lerner, and R. Brent. Push-Pull and feedback

mechanisms can align signaling system outputs with inputs. Cell Syst, 3(5):444–455.e2, Nov. 2016.

[11] Y. E. Antebi, N. Nandagopal, and M. B. Elowitz. An operational view of intercellular signaling

pathways. Curr Opin Syst Biol, 1:16–24, Feb. 2017.

[12] K. Aoki, Y. Kondo, H. Naoki, T. Hiratsuka, R. E. Itoh, and M. Matsuda. Propagating wave of ERK

activation orients collective cell migration. Dev. Cell, 43(3):305–317.e5, Nov. 2017.

[13] K. Aoki, Y. Kumagai, A. Sakurai, N. Komatsu, Y. Fujita, C. Shionyu, and M. Matsuda. Stochastic

ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent prolif-

eration. Mol. Cell, 52(4):529–540, Nov. 2013.

[14] Y. Arkun and M. Yasemi. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability,

and oscillations. PLoS One, 13(4):e0195513, Apr. 2018.

[15] Y. Asakura, Y. Kondo, K. Aoki, and H. Naoki. Hierarchical modeling of mechano-chemical dynamics

of epithelial sheets across cells and tissue. Sci. Rep., 11(1):4069, Feb. 2021.

[16] M. Barkoulas, J. S. van Zon, J. Milloz, A. van Oudenaarden, and M.-A. Félix. Robustness and

epistasis in the c. elegans vulval signaling network revealed by pathway dosage modulation. Dev. Cell,

24(1):64–75, Jan. 2013.

[17] A. Beisaw, C. Kuenne, S. Guenther, J. Dallmann, C.-C. Wu, M. Bentsen, M. Looso, and D. Y. R.

Stainier. AP-1 contributes to chromatin accessibility to promote sarcomere disassembly and cardiomy-

ocyte protrusion during zebrafish heart regeneration. Circ. Res., 126(12):1760–1778, June 2020.
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FRET pairs and quantification approaches to detect the activation of aurora kinase a at mitosis. ACS

Sens, 4(8):2018–2027, Aug. 2019.

[20] U. S. Bhalla and R. Iyengar. Emergent properties of networks of biological signaling pathways. Science,

283(5400):381–387, Jan. 1999.

171



[21] Y. Blum, R. D. Fritz, H. Ryu, and O. Pertz. Measuring ERK activity dynamics in single living cells

using FRET biosensors. Methods Mol. Biol., 1487:203–221, 2017.

[22] G. Bollag, P. Hirth, J. Tsai, J. Zhang, P. N. Ibrahim, H. Cho, W. Spevak, C. Zhang, Y. Zhang,

G. Habets, E. A. Burton, B. Wong, G. Tsang, B. L. West, B. Powell, R. Shellooe, A. Marimuthu,

H. Nguyen, K. Y. J. Zhang, D. R. Artis, J. Schlessinger, F. Su, B. Higgins, R. Iyer, K. D’Andrea,

A. Koehler, M. Stumm, P. S. Lin, R. J. Lee, J. Grippo, I. Puzanov, K. B. Kim, A. Ribas, G. A.

McArthur, J. A. Sosman, P. B. Chapman, K. T. Flaherty, X. Xu, K. L. Nathanson, and K. Nolop.

Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature,

467(7315):596–599, Sept. 2010.

[23] D. Boocock, N. Hino, N. Ruzickova, T. Hirashima, and E. Hannezo. Theory of mechanochemical

patterning and optimal migration in cell monolayers. Nat. Phys., 17(2):267–274, Sept. 2020.
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[64] C. Dessauges, J. Mikelson, M. Dobrzyński, M.-A. Jacques, A. Frismantiene, P. A. Gagliardi, M. Kham-

mash, and O. Pertz. Optogenetic actuator - ERK biosensor circuits identify MAPK network nodes

that shape ERK dynamics. Mol. Syst. Biol., 18(6):e10670, June 2022.

[65] C. Dessauges and O. Pertz. Developmental ERK signaling goes digital. Dev. Cell, 42(5):443–444, Sept.

2017.

[66] A. DeWitt, T. Iida, H.-Y. Lam, V. Hill, H. S. Wiley, and D. A. Lauffenburger. Affinity regulates

spatial range of EGF receptor autocrine ligand binding. Dev. Biol., 250(2):305–316, Oct. 2002.

[67] A. S. Dhillon and E. Tulchinsky. FRA-1 as a driver of tumour heterogeneity: a nexus between oncogenes

and embryonic signalling pathways in cancer. Oncogene, 34(34):4421–4428, Aug. 2015.

[68] Y. Ding, J. Li, J. R. Enterina, Y. Shen, I. Zhang, P. H. Tewson, G. C. H. Mo, J. Zhang, A. M. Quinn,

T. E. Hughes, D. Maysinger, S. C. Alford, Y. Zhang, and R. E. Campbell. Ratiometric biosensors

based on dimerization-dependent fluorescent protein exchange. Nat. Methods, 12(3):195–198, Mar.

2015.

[69] R. E. Dolmetsch, R. S. Lewis, C. C. Goodnow, and J. I. Healy. Differential activation of transcription

factors induced by ca2+ response amplitude and duration. Nature, 386(6627):855–858, Apr. 1997.

[70] M. K. Dougherty, J. Müller, D. A. Ritt, M. Zhou, X. Z. Zhou, T. D. Copeland, T. P. Conrads, T. D.

Veenstra, K. P. Lu, and D. K. Morrison. Regulation of raf-1 by direct feedback phosphorylation. Mol.

Cell, 17(2):215–224, Jan. 2005.

176



[71] M. Ebisuya, K. Kondoh, and E. Nishida. The duration, magnitude and compartmentalization of ERK

MAP kinase activity: mechanisms for providing signaling specificity. J. Cell Sci., 118(Pt 14):2997–

3002, July 2005.

[72] R. Eferl and E. F. Wagner. AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer, 3(11):859–

868, Nov. 2003.

[73] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain. Stochastic gene expression in a single cell.

Science, 297(5584):1183–1186, Aug. 2002.
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