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ABSTRACT OF THE DISSERTATION

Information and Inference in Econometrics: Estimation, Testing and Forecasting

by

Yundong Tu

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2012

Professor Tae-Hwy Lee, Co-Chairperson
Professor Aman Ullah, Co-Chairperson

Economic and Financial phenomena convey enormous information about the underly-

ing structure of economic and policy interest. The first objective of the thesis is mainly

concerned with how to make use of information efficiently, specifically, (1) how to sep-

arate noises from useful information in the presence of large dimensional data, (2) how

to incorporate prior information (economic constraint), and (3) how to employ model

structure, to conduct more informed inference, and thus to understand the economic

structure wisely and draw sound policy conclusions.

The second dimension of information refers to the recent developments in the

information theory that measure how much information content the observed data con-

tains. The formalism of Maximum Entropy provides an information-theoretic approach

to tackle economic problems, especially those with data observed in aggregate terms.

Thus, the second objective of the thesis is to make use of this line of research and develop

a new estimation method to measure quantities of economic interest when researchers

are faced with model uncertainty.
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Chapter 1

Introduction

The thesis is consisted of 9 chapters, including this introduction chapter and a

conclusion chapter in the end. It is divided into two parts, with Part I on Forecasting and

Part II on Nonparametrics, Semiparametrics and Information Theoretic Econometrics.

Part I, Forecasting, includes Chapters 2 to 4. Chapter 2 and 3 investigate how

economic information, presented in the form of economic constraints, would be adopted

in the estimation of economic and financial structure and the forecasting of financial

variables. We consider monotonicity constraint in Chapter 2 and positivity constraint

in Chapter 3. The constraints are imposed via indicator functions in a nonparamet-

ric/semiparametric framework. We consider the smoothing of the indicator functions

via bootstrap aggregating. We apply our methods to forecast equity premium and

demonstrate the advantage of the proposed methods. Chapter 4 is on forecasting using

supervised factor models with large dimensional data. We consider various ways of su-

pervision in the computation of factors. Variable selection and factor computation are

casted in the same framework and we show its advantage over the traditional forecasting

methods.

2



Part II, Nonparametrics, Semiparametrics and Information Theoretic Econo-

metrics, includes Chapter 5 to 8. Chapter 5 studies the estimation of nonparametric

simultaneous equations models and proposes an oracle efficient estimator that makes

use of the additive error structure. Chapter 6 investigates the estimation of marginal

effect with large dimensional data. MAPLE estimators are proposed and shown to out-

perform other competitors available in the literature, in both Monte Carlo simulations

and empirical application. Chapter 7 is on testing separable additivity of error term, the

condition usually assumed, in structure models. We propose a test based on the partial

derivative of the unknown structure with respect to the error term and a bootstrap

procedure is developed to improve the performance of the test.

The abstracts of these chapters are presented as below.

Chapter 2 considers nonparametric and semiparametric regression models sub-

ject to monotonicity constraint. We use bagging as an alternative approach to Hall

and Huang (2001). Asymptotic properties of our proposed estimators and forecasts are

established. Monte Carlo simulation is conducted to show their finite sample perfor-

mance. An application to predicting equity premium is taken to illustrate the merits of

the proposed approach. We introduce a new forecasting evaluation criterion based on

the second order stochastic dominance in the size of forecast errors, which enables us

to compare the competing forecasting models over different sizes of forecast errors. We

show that imposing monotonicity constraint can mitigate the chance of making large

size forecast errors.

Economic theory frequently dictates constraints that should be met by sta-

tistical models that are used for quantitative analysis. For example, equity premium,

which measure the difference between returns on risky assets and risk free assets, should

be positive. This type of prior information could be used in equity premium modeling,
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especially for the purpose of forecasting stock returns. Chapter 3 considers imposing

such positiveness constraint in a mean model, with its extension in nonparametric kernel

framework. Our constrained estimator is defined via an indicator function. A second

step of smoothing the indicator function is carried out through bagging (Breiman, 1996).

This bagging estimator is shown to have an explanation of model averaging, with weights

determined by a transformation of the limiting random variable of the unconstrained

estimator. Asymptotic properties of our proposed estimators and forecasts produced

with these estimators are established. Monte Carlo simulations are conducted to show

their finite sample performance. An application to predicting U.S. equity premium is

taken to illustrate our proposed approach for imposing positiveness constraints.

Chapter 4 examines the theoretical and empirical properties of a supervised

factor model based on combining forecasts using principal components (CFPC), in com-

parison with two other supervised factor models (partial least squares regression, PLS,

and principal covariate regression, PCovR) and with the unsupervised principal compo-

nent regression, PCR. The supervision refers to training the factors of predictors for a

variable to forecast. We compare the performance of the three supervised factor mod-

els and the unsupervised factor model in forecasting of U.S. CPI inflation. The main

finding is that the predictive ability of the supervised factor models is much better than

the unsupervised factor model. Second, the computation of the factors can be doubly

supervised together with variable selection, which can further improves the forecasting

performance of the supervised factor models. Third, among the three supervised factor

models, the CFPC best performs and is also most stable. While PCovR also performs

well and is stable, the performance of PLS is not stable over different forecast horizons

and out-of-sample forecasting periods. Fourth, the effect of supervision gets even larger

as forecast horizon increases. Fifth, supervision helps to reduce the number of factors
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and lags needed in modeling economic structure, achieving more parsimony.

Chapter 5 defines a new procedure to efficiently estimate nonparametric simul-

taneous equations models that have been explored by Newey et al (1999) and Su and

Ullah (2008). The proposed estimation procedure exploits the additive structure and

achieves oracle efficiency without the knowledge of unobserved error terms. Further,

simulation results show that our new estimator outperforms that of Su and Ullah (2008)

in terms of Mean Squared Error.

Chapter 6 studies the estimation of the marginal effect of one economic variable

on another in the presence of large amount of other economic variables—a problem fre-

quently faced by applied researchers. The estimation is motivated via model uncertainty

so that random components should be included to describe the economy according to

the state of the world. A condition named “Conditional Mean Independence” is shown

to be sufficient to identify the partial effect parameter of interest. In the case that the

parameter of interest can be identified in more than one approximating model, we pro-

pose two estimators for such a parameter: generalized-method-of-moment-based model

averaging partial effect (gMAPLE) estimator and entropy-based model averaging partial

effect (eMAPLE) estimator. Consistency and asymptotic normality of the MAPLE es-

timators are established under a suitable set of conditions. Thorough simulation studies

reveal that MAPLE estimators outperform factor based, variable selection based and

other model averaging estimators available in the literature. An economic example is

taken to illustrate the use of MAPLE estimator to evaluate the effect of inherited control

on firms’ performance.

Chapter 7 considers testing additive error structure in nonparametric struc-

tural models, against the alternative hypothesis that the random error term enters the

nonparametric model non-additively. We propose a test statistic under a set of iden-
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tification conditions considered by Hoderlein, Su and White (2011), which require the

existence of a control variable such that the regressor is independent with the error term

given the control variable. The test statistic is motivated from the observation that, un-

der the additive error structure, the partial derivative of the nonparametric structural

function with respect to the error term is one under identification. The asymptotic

distribution of the test is established and a bootstrap version is proposed to enhance its

finite sample performance. Monte Carlo simulations show that the test has proper size

and reasonable power in finite samples.

Chapter 8 considers instability of the parametric parameter in semiparamet-

ric partial linear model proposed by Robinson (1988), through the introduction of a

threshold variable. The extended model, called partial threshold model, is estimated

via a three-step procedure. Estimator of the threshold parameter is shown to have a

nonstandard asymptotic distribution yet free of nuisance parameter, while estimators

of the slope parameters are asymptotically normally distributed. The nonparametric

component is consistently estimated and it achieves oracle efficiency, as if the threshold

parameter is known. Testing for threshold effects and slope parameters are also consid-

ered. Monte Carlo experiments are carried out to compare the finite sample performance

of the proposed method with direct nonparametric estimation and semiparametric par-

tial linear models. Moreover, the proposed model is applied to study consumer demand

and it shows the existence of a threshold in the fuel Engel curve.

Chapter 9 briefly concludes and comments on untouched issues.
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Chapter 2

Nonparametric and

Semiparametric Regressions

Subject to Monotonicity

Constraints: Estimation and

Forecasting

2.1 Introduction

Linear models are frequently used for economic predictions. They are pop-

ular for their simplicity, computational efficiency, easy interpretation, and straightfor-

wardness to impose prior known constraints. Campbell and Thompson (2008) consider

applying sign restriction to the linear forecasting model of stock returns. The sign re-

striction (monotonicity constraint) is taken to alleviate parameter uncertainty and to
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reconcile often contradicting in-sample and out-of-sample performance of predictors.

They show that once a sensible restriction on the sign of a coefficient is imposed, the

out-of-sample forecasting performance of many predictors can be improved and some-

times beat the historical average return forecast. Hillebrand et al (2009) incorporate

the bagging (bootstrap aggregating) approach of Gordon and Hall (2009) to smooth

sign restrictions in linear forecasting models and show that the bagging sign restriction

approach has more predictive power than the simple sign restriction of Campbell and

Thompson (2008).

However, possible misspecification of a linear model can undermine its fore-

casts compared to those produced via nonlinear models. In this chapter we extend this

literature by considering nonlinear models, in particular, nonparametric (NP) and semi-

parametric (SP) kernel regressions with imposing the local monotonicity constraints on

the local coefficients of a predictor and with applying bagging to the constraints. Chen

and Hong (2009) find that, in the prediction of asset returns, nonparametric kernel

regression model has a better forecasting power than the historical mean, due to the

higher signal-to-noise ratio resulted from nonparametric models. However, Chen and

Hong (2009) do not consider the monotonicity restriction as well as bagging in their

nonlinear forecasting exercise. This chapter is to consider nonlinear models subject to

local monotonicity constraint with and without bagging.

Nonparametric kernel estimation with constraints has long history that dates

back to the work of Brunk (1955). Recent work on imposing monotonicity on non-

parametric regression function includes Hall and Huang (2001), Dette et al (2006) and

Chernozhukov et al (2007), among others. Hall and Huang (2001) propose a novel

method of imposing the monotonicity constraint on a class of nonparametric kernel es-

timations. Their estimator is constructed by re-weighting the kernel for each response

8



data point so that the impact of each observation on the estimated regression function

can be controlled to satisfy a constraint. Their method is rooted in a conventional kernel

framework and is extended by Racine et al (2009) and Henderson and Parmeter (2009)

to allow for a broader class of conventional constraints and to develop tests for these

constraints.

Our contributions are as given below. First, we consider NP and SP models

to generalize the linear models considered in Goyal and Welch (2008), Campbell and

Thompson (2008) and Hillebrand et al (2009). These NP/SP regressions can capture

possibly neglected nonlinearity in linear models and could improve the predictive ability

of the predictors, as demonstrated in our Monte Carlo simulation and application to

the equity premium prediction. Second, we consider a new method of imposing the

monotonicity constraint on the NP and SP regressions. This is to make the prediction

more accurate as we employ more information than Chen and Hong (2009). Our mono-

tonicity constraint is local restriction while it is global monotonicity in Campbell and

Thompson (2008). Third, we use bagging to smooth the monotonicity constraint in NP

and SP regressions as Hillebrand et al (2009) do in linear regressions. It has been shown

in Bühlmann and Yu (2002) that bagging can reduce asymptotic mean squared error in

linear regressions. We obtain the similar results that hold locally in NP and SP regres-

sions. Fourth, we conduct simulation study to demonstrate how the asymptotic results

work in finite sample. We also conduct an empirical study in predicting equity premium

using the same data from Campbell and Thompson (2008) to demonstrate the practical

merit of the bagging monotonicity constrained NP and SP regression models. Fifth,

in our simulation and empirical application, we find that, despite its simplicity to im-

plement, our bagging constrained NP regression almost always and clearly outperforms

the constrained NP regression of Hall and Huang (2001). Sixth, we introduce a new
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forecast evaluation measure based on the second order stochastic dominance (SOSD)

of the squared forecast errors, by which we can compare forecasting models in entire

predictive distribution of squared forecast errors rather than just in mean of squared

forecast errors. The new SOSD criterion enables us to compare forecasting models over

different parts of the predictive distributions of squared forecast errors, e.g., over small

size errors vs big size errors, as demonstrated using our empirical results for the equity

premium prediction application. We show that imposing sensible constraints reduces

the chance of making the big size forecast errors and thereby improves the forecasting

ability of models.

The chapter is organized as follows. Section 2 presents the NP and SP methods

with local monotonicity constraints and with bagging. Sections 3, 4, 5 establish the

asymptotic properties of each of parametric, nonparametric, semiparametric bagging

constrained estimators and forecasts. Section 6 conducts Monte Carlo simulation to

compare our proposed bagging constrained NP and SP forecasts with forecasts from

linear models and from the constrained NP method of Hall and Huang (2001). Section

7 presents empirical results on the equity premium prediction. Section 8 concludes.

2.2 Estimation with Constraints

Many economic models try to establish a relationship between a variable of

interest yt and a scalar or vector predictor variable xt. For the maximum clarity of

presentation, we consider the case that xt is a scalar. All the results in this chapter

would follow when xt is a vector. In forecasting, the h-step ahead forecast of yn+h at

time t = n given that xn = x is defined as

mn,h(x) = E(yn+h|xn = x). (2.1)
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Sometimes a priori constraints may be suggested from economic theory, often in the

form of bounds. For example, the marginal propensity to consume is less than 1; pro-

duction technology is concave; the regression function mn,h(x) is positive, monotonic,

homogeneous, homothetic, and etc. To this end, estimators or forecasts may be subject

to constraints. In this chapter, we focus on slope constraint (i.e., monotonicity) of a

curve that relates y and x, while constraints of other type like curvature may be possible

as well within our framework.

2.2.1 Parametric Estimation with Constraints

First, consider a parametric linear model with a single regressor x:

mn,h(x) = α+ βx (2.2)

Goyal and Welch (2008) use the unconstrained ordinary least squares (OLS) estimators

α̃, β̃ in the prediction of stock returns using a predictor x. Note that α̃ and β̃ satisfy

α̃ = ȳn − β̃x̄n (2.3)

where ȳn = 1
n

∑n
t=1 yt and x̄n = 1

n

∑n
t=1 xt.

If a monotonicity constraint (positive slope) is considered as sensible, one can

estimate β through thresholding using an indicator function as done by Campbell and

Thompson (2008),

β̄ = 1{β̃>0} · β̃, (2.4)

ᾱ = 1{β̃>0} · α̃+ 1{β̃≤0} · ȳn.

Note that the relationship between ᾱ and β̄ remains as in (2.3)

ᾱ = ȳn − β̄x̄n, (2.5)
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since ᾱ = 1{β̃>0} ·α̃+1{β̃≤0} · ȳn = 1{β̃>0} ·
(
ȳn − β̃x̄n

)
+1{β̃≤0} · ȳn = ȳn−1{β̃>0} · β̃x̄n.

As the constraint is imposed using a hard-thresholding indicator function, it

can introduce significant bias and variance. Gordon and Hall (2009) propose a bagging

constrained estimator

β̂ =
1

J

J∑
j=1

β̄∗(j) ≡ E∗β̄∗, (2.6)

where β̄∗(j) = 1{β̃∗(j)>0} · β̃
∗(j) and here β̃∗(j) is the unconstrained OLS estimator from

the jth bootstrap sample (j = 1, . . . , J). We use E∗(·) to denote the bootstrap average.

It can be shown that

α̂ ≡ ȳn − β̂x̄n = E∗ᾱ∗. (2.7)

Bühlmann and Yu (2002) show that this bagging constrained estimator can have smaller

asymptotic mean squared error (AMSE), notwithstanding the larger asymptotic bias.

2.2.2 Nonparametric Estimation with Constraints

Despite its simplicity a parametric linear model like yt = α+ βxt + ut may be

subject to misspecification because it may be that E(ut|xt) 6= 0 due to possible neglected

nonlinearity. This is to be avoided via a nonparametric regression, yt = m (xt) + ut,

where m (xt) = E (yt|xt) and ut = yt − E (yt|xt). Kernel estimators of m (xt) such as

Nadaraya-Watson or local linear estimators are common practice in the nonparametric

literature. Yet, in the face of information derived from economic theory, we may wish

to impose some constraints (e.g., monotonicity, positivity) on the nonparametric kernel

regression models. Hall and Huang (2001) propose a re-weighted kernel method to

impose constraints on a general class of kernel estimators, which is followed by Racine,

Parmeter and Du (2009) and Henderson and Parmeter (2009). Alternatively, we propose

here to use bagging to impose constraints in nonparametric kernel regression models.
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2.2.2.1 Nonparametric Estimation with Constraints: Hall and Huang (2001)

Consider a general class of kernel estimator written as weighted average of y’s

m̂n,h(x) =
1

n− h

n−h∑
t=1

At(x)yt+h, (2.8)

where At (x) is the weighting function. Hall and Huang (2001) suggested an estimator

mn,h(x; p) =

n−h∑
t=1

ptAt(x)yt+h, (2.9)

where p = (p1, . . . , pn−h)′. Note that (2.8) is a special case of (2.9) with the uniform

weights p0 = ( 1
n−h , . . . ,

1
n−h)′. p is to be estimated by p̂ = arg minpD(p) subject to

some conditions such as
∑n−h

t=1 pt = 1, with a distance function D(p) between p and p0.

For example, D(p) = (p− p0)′(p− p0), or D(p) = (p1/2 − p
1/2
0 )′(p1/2 − p

1/2
0 ) if the

elements of p and p0 are on the unit interval, e.g., probability weights.

2.2.2.2 Nonparametric Estimation with Constraints: Bagging

Take the first order Taylor series expansion of m(xt) around x so that

yt = m(xt) + ut = m(x) + (xt − x)m(1)(x) + vt

= α(x) + xtβ(x) + vt = Xtδ(x) + vt (2.10)

where Xt = (1 xt) and δ(x) = [α(x) β(x)′]′ with α(x) = m(x) − xβ(x) and β(x) =

m(1)(x). The local linear least square (LLLS) estimator of δ(x) is then obtained by

minimizing
n∑
t=1

v2
tKh(xt, x) =

n∑
t=1

(yt −Xtδ(x))2Kh(xt, x), (2.11)

where Kh(xt, x) = K
(
xt−x
h

)
is a decreasing function of the distance of the regressor xt

from the evaluation point x, and h → 0 as n → ∞ is the bandwidth which determines

how rapidly the weights decrease as the distance of xt from x increases. The LLLS
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estimator is given by

δ̃(x) = (X′K(x)X)−1X′K(x)y, (2.12)

where X is an n× (k+ 1) matrix with the tth row Xt (t = 1, . . . , n), y is an n× 1 vector

with elements yt (t = 1, . . . , n), and K(x) is the n×n diagonal matrix with the diagonal

elements Kh(xt, x) (t = 1, . . . , n). Then we have LLLS estimators α̃(x) = (1 0)δ̃(x) and

β̃(x) = (0 1)δ̃(x).

Using the constrained LLLS estimator β̄(x)

β̄(x) = 1{β̃(x)>0} · β̃(x), (2.13)

we get the bagging constrained LLLS estimator β̂(x)

β̂(x) =
1

J

J∑
j=1

β̄(x)∗(j) = E∗β̄(x)∗. (2.14)

Observing (2.3) and (2.5), the unconstrained LLLS estimator is

α̃(x) = ȳ(x)− β̃(x)x̄(x), (2.15)

where

ȳ(x) =

∑n
t=1Kh(xt, x)yt∑n
t=1Kh(xt, x)

= (i′K(x)i)−1i′K(x)y, (2.16)

x̄(x) =

∑n
t=1Kh(xt, x)xt∑n
t=1Kh(xt, x)

= (i′K(x)i)−1i′K(x)x,

with i being an n× 1 vector of unit elements and x being an n× 1 vector with elements

xt (t = 1, . . . , n). Following the same steps as for β̄(x) and β̂(x), the two constrained

LLLS estimators for α(x) are obtained as

ᾱ(x) = ȳ(x)− β̄(x)x̄(x), (2.17)

α̂(x) = ȳ(x)− β̂(x)x̄(x), (2.18)

or equivalently α̂(x) = 1
J

∑J
j=1 ᾱ(x)∗(j) = E∗ᾱ(x)∗.

14



We derive explicit formula for the NP forecast from the above. Note that from

(2.10) we have the unconstrained NP forecast,

m̃ (x) = α̃(x) + xβ̃(x) = ȳ(x)− β̃(x)x̄(x) + xβ̃(x)

= ȳ(x)− β̃(x) [x̄(x)− x] . (2.19)

Similarly, we get the constrained NP forecast

m̄ (x) = ȳ(x)− β̄(x) [x̄(x)− x] , (2.20)

and the bagged constrained NP forecast

m̂ (x) = ȳ(x)− β̂(x) [x̄(x)− x] . (2.21)

2.2.3 Semiparametric Estimation with Constraints

Glad (1998) and Martins-Filho et al (2009) note that sensible parametrically

guided SP models outperform NP models in that the significant bias reduction is achieved

while maintaining the asymptotic variance. Therefore we consider the SP model

y = α+ βx+ E(u|x) + [u− E(u|x)] (2.22)

= α+ βx+ E(u|x) + v = m(x) + v

where m(x) = α + βx + E(u|x) and v = u − E(u|x). To estimate m (·), first we run

a regression of y on (1 x)′ to obtain the estimation of the linear component α̃ + β̃x.

The second step involves an LLLS estimation of E(u|x), which can be performed in

an NP regression of ũ = y − α̃ − β̃x on x. Let ξ̃ (x) be the intercept and η̃ (x) be

the slope function of this regression. Thus the LLLS estimator can be represented by

ξ̃ (x)− η̃ (x) (x̄ (x)− x). This two-step algorithm leads to an unconstrained SP estimator
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of m (·) as

m̃sp(x) = α̃+ β̃x+ ξ̃ (x)− η̃ (x) (x̄ (x)− x) (2.23)

= α̃+ ξ̃ (x)− η̃ (x) x̄ (x) +
{
β̃ + η̃ (x)

}
x,

the slope of which is estimated by

β̃ (x) ≡ β̃ + η̃ (x) . (2.24)

To impose the local monotonicity constraint, we define our constrained SP

estimator as

β̄ (x) = 1{β̃(x)>0} · β̃ (x) (2.25)

When β̃ (x) ≤ 0, the slope of the regression function is zero β̄ (x) = 0. In this case,

instead of fitting a semiparametric model, local constant kernel estimator should be

adopted. This observation leads to the following local monotonicity constrained SP

forecast

m̄sp(x) = m̃sp(x) · 1{β̃(x)>0} + m̃lc(x) · 1{β̃(x)≤0}, (2.26)

where m̃lc(x) = ȳ(x) is the local constant kernel estimator of m (x) as in (2.16).

With having m̄sp(x) obtained, similarly to (8.12), we get the bagging con-

strained SP forecast from

m̂sp(x) =
1

J

J∑
j=1

m̄∗(j)sp (x) = E∗m̄∗sp(x), (2.27)

with m̄
∗(j)
sp (x) obtained from the jth bootstrap sample.

2.3 Sampling Properties of Parametric Estimators

Sampling properties of parametric estimators, including constrained parametric

estimator and bagging constrained estimator, are presented in this section, while NP
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and SP estimators are treated in the two subsequent sections. Sampling properties of

constrained parametric estimator have been established by Judge and Yancey (1986)

under normality distribution. With general distribution condition of the unconstrained

estimator, we prove the superiority of the constrained estimator (in terms of MSE) if

the constraint is correctly specified. We also present the local asymptotic theory for the

constrained estimator and its bagging version.

2.3.1 Constrained Parametric Estimator

Theorem 1. Let the unconstrained estimator β̃ of β have a cumulative density func-

tion denoted by Fβ̃ (·). Then we have the following for the constrained estimator β̄ =

max{β̃, β1}, for some given constant β1, (1) Fβ̄ (z) = Fβ̃ (z) ·1{z≥β1}. (2) biasβ̄ ≥ biasβ̃.

(3) V ar
(
β̄
)
≤ V ar

(
β̃
)

if biasβ̃ ≥ 0 and β1 ≤ β and (4) MSE
(
β̄
)
≤ MSE

(
β̃
)

if

β1 ≤ β.

Remark 1. Theorem 1 establishes that the constrained estimator, β̄, has a condensed

density and it is biased upward, compared to its unconstrained counterpart, β̃. Part 1

depicts its CDF in terms of that of Fβ̃ (·). The indicator function compresses all the mass

for β̃ that lie below β1 to β1. Part 2 states that β̄ is biased upward compared to β̃. This

upward bias is due to the max operator in its definition. If the constraint is an upper

bound instead of a lower bound, then the min operator will incur downward bias. Part

3 shows that β̄ would have smaller variance, provided that the constraint is correctly

specified and β̃ is biased upward, while part 4 dictates the superiority of β̄ in terms of

MSE when the constraint is correct. It’s yet clear that, even if the constraint is wrongly

specified, there could still be reduction in MSE and variance for β̄. However, this will

require further conditions on Fβ̃ (·). These conditions are not informative, therefore we

do not proceed in that direction.
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Judge and Yancey (1986) consider the case in which β̃ has a normal distribu-

tion. They (p. 50) depict a figure showing that, the performance of β̄ relative to that of

β̃ depends on δ ≡ β1− β. The constrained estimator is superior for a large range values

of δ, and when δ →∞, MSE
(
β̄
)

is equal to the mean squared error of an equality con-

strained estimator, i.e. β̄ = β1. Under the normality assumption, V ar
(
β̄
)
≤ V ar

(
β̃
)

over the whole range of parameter space and the former will approach the variance of

the equality constrained estimator as δ →∞. �

Next, we consider asymptotic distribution of β̄ under suitable assumptions as

stated in the following theorem.

Theorem 2. Consider an unconstrained parametric estimator β̃ of β with

γ (n)σ−1
β

(
β̃ − β

)
d→ Z (2.28)

and Z is a random variable with CDF F (·), where σβ is the asymptotic standard

deviation of β̃ and limn→∞ γ (n) = ∞. Then the constrained estimator defined as

β̄ = max{β̃, β1}, for some given constant β1, has the following properties,

1. when β > β1, γ (n)σ−1
β

(
β̄ − β

) d→ Z .

2. when β = β1, Pr
(
γ (n)σ−1

β

(
β̄ − β

)
< z
)
→ F (z) · 1{z≥0}.

If we further assume that

γ (n)σ−1
β (β − β1) = b, (2.29)

for some constant b, and that F is standard normal CDF Φ (with its PDF ϕ) and

Zb = Z + b, then

3. limn→∞ γ (n)σ−1
β

(
β̄ − β

)
= Zb1{Zb>0} − b.
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4. limn→∞ γ (n)σ−1
β E

(
β̄ − β

)
= ϕ (b) + bΦ (b)− b.

5. limn→∞ V ar

[(
γ (n)σ−1

β

)1/2
β̄

]
= Φ (b)+bϕ (b)−ϕ2 (b)−2bϕ (b) Φ (b)+b2Φ (b) [1− Φ (b)] .

Remark 2(a). Theorem 2 stated the limiting distribution of β̄. Parts 1 and 2 present

the usual asymptotic distribution when the constraint is strict (i.e., β > β1) and when

the parameter is on the boundary (i.e., β = β1). Part 1 confirms the intuition that, as

long as the constraint is strict, it will not be violated by the unconstrained estimator

β̃ when the sample size is large enough. This leads to the conclusion that β̄ would

be asymptotically equivalent to β̃ in this case. On the other hand, when β is on the

boundary, the limiting CDF compresses all the mass of negative values at 0. Part 3

establishes the local asymptotic distribution of β̄ that depends on the drift parameter

b with asymptotic bias and variance given in parts 4 and 5. It is easy to see that, if b

is allowed to grow as n, Zb1{Zb>0} − b will collapse to Z, and result in part 3 becomes

that in part 1. Similarly, 2 is reproduced with part 3 when b = 0.

Remark 2(b). Theorem 2 only requires β̃ satisfy some limiting theorem with asymp-

totic standard deviation σβ. This is a very week condition that is met by a large class

of estimators. We do not specify the convergence rate γ (n) but simply let it explode

as n increases. This general setting accommodates both estimators with standard con-

vergence rate
√
n and estimators with nonstandard convergence rate, e.g., n1/3 or n3/2.

The condition γ (n)σ−1
β (β − β1) = b can be stated alternatively as β = β1 +γ−1 (n)σβb

for some constant b. It dictates that the true parameter β is a Pitman type drift to the

specified bound β1, with a drift parameter b. The local drift rate is the same as the

convergence rate of β̃. Extensions to higher or lower rate than this convergence rate

(γ−1 (n)) can be made by letting b = bn go to either infinity or zero as n increases. We

do not explore this issue here. �
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2.3.2 Bagged Constrained Parametric Estimator

Theorem 3. Let an unconstrained estimator β̃ of β and its bootstrap version β̃∗ have

the following asymptotics,

γ (n)σ−1
β

(
β̃ − β

)
d→ Z,

γ (n)σ−1
β

(
β̃∗ − β̃

)
d→ Z, (2.30)

with Z being a standard normal random variable, where σβ is the asymptotic stan-

dard deviation of β̃ and limn→∞ γ (n) = ∞. Further the constrained estimator is

β̄ = max
{
β̃, β1

}
, where β1 satisfies

γ (n)σ−1
β (β − β1) = b, (2.31)

for some constant b and denote Zb = Z+b. Then, for the bagged version of β̄, β̂ ≡ E∗β̄∗,

we have

1. γ (n)σ−1
β

(
β̂ − β

)
d→ Z − ZbΦ (−b− Z) + ϕ (−b− Z) .

2. limn→∞ γ (n)σ−1
β E

(
β̂ − β

)
= 2ϕ ∗ ϕ (−b)− bΦ ∗ ϕ (−b) .

3. limn→∞ V ar

[(
γ (n)σ−1

β

)1/2
β̂

]
= 1 + Φ2 ∗ϕ′′ (−b) + Φ2 ∗ϕ (−b)−2bΦ2 ∗ϕ′ (−b) +

b2Φ2∗ϕ (−b)+ϕ2∗ϕ (−b)−2Φ∗ϕ′′ (−b)−2Φ∗ϕ (−b)+2bΦ∗ϕ′ (−b)−2ϕ∗ϕ′ (−b)+

2 (Φ · ϕ) ∗ ϕ′ (−b)− 2b (Φ · ϕ) ∗ ϕ (−b)− [2ϕ ∗ ϕ (−b)− bΦ ∗ ϕ (−b)]2 .

Remark 3(a). We adopted the notation f ∗g to denote the convolution of two functions

f and g, which is defined as f ∗ g (s) =
∫
f (t)× g (s− t) ds.

Remark 3(b). It is clear from part 2 of Theorem 3 that both bias and variance of the

bagging constrained estimator depend on the parameter b, which measures how accurate

β1, the lower bound of β, is. We compare the AMSE of bagging constrained estimator
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with that without bagging, and numerical calculation reveals the superiority of bagging

when b > 0.392. Figure 1 plots the asymptotic variance, asymptotic squared bias and

asymptotic mean squared error of β̂ together with those of β̄, against values of b in

the range of [−1, 5]. It is seen that our bagging estimator enjoys a large reduction in

asymptotic mean squared error for values of b ∈ [1, 3].

Remark 3(c). (2.30) requires that bootstrap work for β̃, i.e., β̃∗ has the same asymp-

totic distribution as β̃. The necessary and sufficient conditions for this bootstrap con-

sistency can be found in Mammen (1992). We emphasize that we do not require that

bootstrap work for β̄. In fact, the bootstrap fails for β̄ as noted in Andrews (2000,

p. 401). Theorem 3 shows that the asymptotic distribution of β̂ ≡ E∗β̄∗ is different

from the asymptotic distribution of β̄ which is shown in Theorem 2. The difference is

depicted in Figure 1. It is this bootstrap failure for β̄ that leads to Theorem 3. �

Figure 1 About Here

2.4 Sampling Properties of Nonparametric Estimators

We consider sampling properties of NP estimators under constraint and its

bagging version.

2.4.1 Constrained Nonparametric Estimator

Theorem 4. Let the nonparametric estimator β̃ (x) of β (x) with

γ1 (n, h)σ−1
β (x)

(
β̃ (x)− β (x)

)
d→ Z, (2.32)

γ2 (n, h)σ−1
m (x) (m̃ (x)−m (x)−Bm (x))

d→ Z,
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where limn→∞ γi (n, h) = ∞, i = 1, 2, h is the bandwidth satisfying h = cnτ for some

c > 0, τ < 0, Z is a standard normal random variable, σβ (x) is the asymptotic stan-

dard deviation of β̃ (x), σm (x) is the asymptotic standard deviation of m̃ (x), Bm (x) =

1
2h

2m(2) (x)
∫
v2k (v) dv + op

(
h2
)

is the asymptotic bias m̃ (x). Then the following lim-

iting statements hold for the constrained estimator β̄ (x) = max{β̃ (x) , β1 (x)}, for some

given β1 (x),

1. when β (x) > β1 (x), γ1 (n, h)σ−1
β (x)

(
β̄ (x)− β (x)

) d→ Z.

2. when β (x) = β1 (x), Pr
(
γ1 (n, h)σ−1

β (x)
(
β̄ (x)− β (x)

)
< z
)
→ Φ (z) · 1{z≥0}.

3. when β (x) > β1 (x), γ2 (n, h)σ−1
m (x) [m̄(x)−m (x)−Bm (x)]

d→ Z.

If we further assume that γ1 (n, h)σ−1
β (β(x)− β1(x)) = b(x), for some real function

b(x), and denote Zb(x) = Z + b(x), then

4. limn→∞ γ1 (n, h)σ−1
β (x)

[
β̄(x)− β(x)

]
= Zb(x)1{Zb(x)>0} − b(x).

5. limn→∞ γ1 (n, h)σ−1
β (x)E

[
β̄(x)− β(x)

]
= ϕ (b(x)) + b(x)Φ (b(x))− b(x).

6. limn→∞ V ar

[(
γ1 (n, h)σ−1

β (x)
)1/2

β̄(x))

]
= Φ (b(x)) + b(x)ϕ (b(x))− ϕ2 (b(x))−

2b(x)ϕ (b(x)) Φ (b(x)) + b2(x)Φ (b(x)) [1− Φ (b(x))] .

Remark 4(a). The above theorem shows the results for NP estimators with constraints.

The implications are similar to the previous theorem on constrained parametric estima-

tors. Note that the constraint bound β1 (x) can vary for different values of x. As a

special case in which β1 (x) = β1, a constant, it is efficient to adopt the restriction if it

is correctly specified via the constrained estimator.

Remark 4(b). The constrained estimator of m (x), m̄(x), has the asymptotic prop-

erty as the unconstrained nonparametric estimator, when the constraint is strict, as
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established in part 3 of Theorem 4. The implication for bandwidth selection for the

constrained estimator m̄(x) is that the classical cross-validation approach shall apply.

The bias term Bm (x) goes to zero if γ2 (n, h)h2 tends to zero as n tends to infinity.

2.4.2 Bagged Constrained Nonparametric Estimator

Theorem 5. Let an estimator β̃ (x) of β (x) and its bootstrap version β̃∗ (x) have the

following asymptotic,

γ1 (n, h)σ−1
β (x)

(
β̃ (x)− β (x)

)
d→ Z,

γ1 (n, h)σ−1
β (x)

(
β̃∗ (x)− β̃ (x)

)
d→ Z, (2.33)

where Z is a standard normal random variable, limn→∞ γ1 (n, h) = ∞, h is the band-

width satisfying h = cnτ for some c > 0, τ < 0, σβ (x) is the asymptotic standard

deviation of β̃ (x). Define β̄ (x) = max
{
β̃ (x) , β1 (x)

}
, with some known β1 (x) < β (x)

that satisfies

γ1 (n, h)σ−1
β (x) (β (x)− β1 (x)) = b (x) , (2.34)

where b (·) is some real function and denote Zb(x) = Z + b(x). For the bagged version of

β̄ (x), β̂ (x) ≡ E∗β̄∗ (x), we have

1. γ1 (n, h)σ−1
β (x)

(
β̂ (x)− β (x)

)
d→ Z − Zb(x)Φ (−b (x)− Z) + ϕ (−b (x)− Z) .

2. limn→∞ γ1 (n, h)σ−1
β E

[
β̂ (x)− β (x)

]
= 2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x)) .

3. limn→∞ V ar

[(
γ1 (n, h)σ−1

β (x)
)1/2

β̂ (x)

]
= 1+Φ2∗ϕ′′ (−b (x))+Φ2∗ϕ (−b (x))−

2bΦ2 ∗ ϕ′ (−b (x)) + b2 (x) Φ2 ∗ ϕ (−b (x)) + ϕ2 ∗ ϕ (−b (x)) − 2Φ ∗ ϕ′′ (−b (x)) −

2Φ ∗ ϕ (−b (x)) + 2b (x) Φ ∗ ϕ′ (−b (x))− 2ϕ ∗ ϕ′ (−b (x)) + 2 (Φ · ϕ) ∗ ϕ′ (−b (x))−

2b (x) (Φ · ϕ) ∗ ϕ (−b (x))− [2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x))]2 .
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4. If γ2 (n, h)σ−1
m (x) (m̃ (x)−m (x)−Bm (x))

d→ Z,whereBm (x) = 1
2h

2m(2) (x)
∫
v2k (v) dv+

op
(
h2
)

is the asymptotic bias m̃ (x), σm (x) is the asymptotic standard deviation

of m̃ (x), and γ2 (n, h) follows similar conditions as γ1 (n, h) ,then

γ2 (n, h)σ−1
m (x) [m̂(x)−m (x)−Bm (x)]

d→ Z. (2.35)

Remark 5. When b (·) admits a constant function, the limiting distribution in part 1 is

the same as in the parametric case. That is, for all possible values of x, γ1 (n, h)σ−1
β (x)

(
β̂ (x)− β (x)

)
converges to the same random variable as γ1 (n)σ−1

β

(
β̂ − β

)
does in the parametric case.

�

2.5 Sampling Properties of Semiparametric Estimators

SP estimators and its bagging version are considered in this section. We

present, in sequence, their sampling properties in the following two theorems.

2.5.1 Constrained Semiparametric Estimator

Theorem 6. Consider an estimator β̃ (x) of β (x) with

γ1 (n, h)σ−1
β (x)

(
β̃ (x)− β (x)

)
d→ Z, (2.36)

where Z is a standard normal random variable, σβ (x) is the asymptotic standard devi-

ation of β̃ (x), limn→∞ γ1 (n, h) = ∞, h is the bandwidth satisfying h = cnτ for some

c > 0, τ < 0. Then the constrained estimators β̄ (x) and m̄sp (x) as defined earlier, for

some given constant β1 (x) satisfying β (x) ≥ β1 (x), have the following properties,

1. when β (x) > β1 (x), γ1 (n, h)σ−1
β (x)

(
β̄ (x)− β (x)

) d→ Z.

2. when β (x) = β1 (x), Pr
(
γ1 (n, h)σ−1

β (x)
(
β̄ (x)− β (x)

)
< z
)
→ Φ (z) · 1{z≥0}.
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3. when β (x) ≥ β1 (x), the semiparametric estimator has

γ2 (n, h)σ−1
m (x) [m̄sp (x)−m (x)−Bm (x)]

d→ Z, (2.37)

for some γ2 (n, h) with similar properties as that in Theorem 4 and σm (x) > 0,

where

Bm (x) =
1

2
h2m(2) (x)

∫
v2k (v) dv + op

(
h2
)
, (2.38)

the same as the asymptotic bias of m̃sp (x).

If we further assume that γ1 (n, h)σ−1
β (β(x)− β1(x)) = b(x), for some real func-

tion b(x), and denote Zb(x) = Z + b(x), then

4. limn→∞ γ1 (n, h)σ−1
β

[
β̄(x)− β(x)

]
= Zb(x)1[Zb(x)>0] − b(x).

5. limn→∞ γ1 (n, h)σ−1
β E

[
β̄(x)− β(x)

]
= ϕ (b(x)) + b(x)Φ (b(x))− b(x).

6. limn→∞ V ar

[(
γ1 (n, h)σ−1

β (x)
)1/2

β̄(x))

]
= Φ (b(x)) + b(x)ϕ (b(x))− ϕ2 (b(x))−

2b(x)ϕ (b(x)) Φ (b(x)) + b2(x)Φ (b(x)) [1− Φ (b(x))] .

Remark 6. The powerful result shows that the estimation of m (x) via the SP method

is always a consistent estimator of the true function m (x), independent of the spec-

ification of the model. While the NP estimator possesses this property as well, the

parametric estimator considered in Theorem 2 does not enjoy this nice property. Parts

1 and 2 establish the asymptotic properties of the constrained slope estimator when the

constraint is strict and when the equality constraint holds. Part 3 shows the asymptotic

equivalence between constrained SP estimator and unconstrained SP estimator. The

result for unconstrained estimator is first proved by Martins-Filho et al (2007). Part

4 considers the local asymptotics for the constrained slope estimator, with asymptotic

bias and variance given in Parts 5 and 6.
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2.5.2 Bagged Constrained Semiparametric Estimator

Theorem 7. Let an unconstrained estimator β̃ (x) of β (x) and its bootstrap version

β̃∗ (x) have the following asymptotic,

γ1 (n, h)σ−1
β (x)

(
β̃ (x)− β (x)

)
d→ Z, (2.39)

γ1 (n, h)σ−1
β (x)

(
β̃∗ (x)− β̃ (x)

)
d→ Z,

where Z is a standard normal random variable, limn→∞ γ1 (n, h) = ∞, h is the band-

width satisfying h = cnτ for some c > 0, τ < 0. Let β1 (x) satisfy

γ1 (n, h)σ−1
β (x) (β (x)− β1 (x)) = b (x) , (2.40)

where b (·) is some real function. For the bagged version of β̄ (x), β̂ (x) ≡ E∗β̄∗ (x), as

defined earlier we have

1. γ1 (n, h)σ−1
β (x)

(
β̂ (x)− β (x)

)
d→ Z [1− Φ (−b (x)− Z)] + ϕ (−b (x)− Z) .

2. limn→∞ γ1 (n, h)σ−1
β E

[
β̂ (x)− β (x)

]
= 2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x)) .

3. limn→∞ V ar

[(
γ1 (n, h)σ−1

β (x)
)1/2

β̂ (x)

]
= 1+Φ2∗ϕ′′ (−b (x))+Φ2∗ϕ (−b (x))−

2bΦ2 ∗ ϕ′ (−b (x)) + b2 (x) Φ2 ∗ ϕ (−b (x)) + ϕ2 ∗ ϕ (−b (x)) − 2Φ ∗ ϕ′′ (−b (x)) −

2Φ ∗ ϕ (−b (x)) + 2b (x) Φ ∗ ϕ′ (−b (x))− 2ϕ ∗ ϕ′ (−b (x)) + 2 (Φ · ϕ) ∗ ϕ′ (−b (x))−

2b (x) (Φ · ϕ) ∗ ϕ (−b (x))− [2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x))]2 .

4. If γ2 (n, h) σ̃−1
m (x) (m̃sp (x)−m (x)−Bm (x))

d→ Z, where

Bm (x) =
1

2
h2m(2) (x)

∫
v2k (v) dv + op

(
h2
)

(2.41)

is the asymptotic bias m̃sp (x), and γ2 (n, h) follows similar conditions as γ1 (n, h) ,

then

γ2 (n, h)σ−1
m (x) [m̂sp(x)−m (x)−Bm (x)]

d→ Z. (2.42)
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Remark 7. Theorem 7 shows that the bagging constrained semiparametric estimator

m̂sp(x) is asymptotically equivalent to its unconstrained counterpart. The dependence

of the asymptotic distribution on the drift function b (·) remains the same as those in

Theorem 5. Thus Remark 5 applies here, which we do not intend to repeat.

2.6 Simulation

We perform Monte Carlo simulation to examine the finite sample properties of

our proposed bagging NP and SP estimators. We consider the following data generating

process (DGP) that features monotonicity in the conditional mean of yt given xt

DGP : yt+1 = ax3
t + et+1, (2.43)

where et ∼ i.i.d.N (0, 1), xt ∼ i.i.d.N
(

1
2 , σ

2
x

)
, with σ2

x = 2, 3, 4, 5 and a = 0.0128. We

replicate the process for 100 times, with J = 100 bootstrap samples taken for bagging

in each replication. We take n = 200 observations for in-sample estimation. The 1000

out-of-sample forecast values of ŷ from the various forecasting models presented in the

next subsection are computed over the 1000 equidistant evaluation points on the realized

support of {xt}nt=1 generated from N
(

1
2 , σ

2
x

)
. For the NP and SP estimators, we use

cross-validation to select a bandwidth that minimizes the integrated mean squared error

and use this same bandwidth for the 100 bootstrap samples generated within each

replication.

Consider a forecasting model

Model : yt+h = m (xt) + ut+h. (2.44)

For a given evaluation predictor value x, we are interested in forming a forecast ŷn+h =

mn,h (x|In) , where In = {xn0 , ..., xn, yn0 , ..., yn} is used to estimate a model. In the
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Monte Carlo simulation of this section, h = 1 and we fix both n0 = 1 and n = 200,

and estimate various models using the R ≡ n − n0 + 1 observations. Then we take

1000 equidistant fixed evaluation points {x}1000
1 on a range of N

(
1
2 , σ

2
x

)
. The same

1000 equidistant evaluation points are used for all 100 Monte Carlo replications. In

each Monte Carlo replication i (i = 1, . . . , 100), 1000 values of
{
m̂(i)(x)

}
are computed

at each of 1000 x values, and also 1000 values of
{
û(i)(x) ≡ 0.0128x3 − m̂(i)(x)

}
are

computed in each replication i. We compute the Monte Carlo average of the squared

û(i)(x) over i for each evaluation point x, 1
100

∑100
i=1 û

(i)2(x) ≡ û2(x). Then we use the

1000 values of the squared forecast errors
{
û2(x)

}1000

1
to compute the evaluation criteria

discussed later in Section 2.6.2. The number of observations for in-sample estimation

is R ≡ n − n0 + 1 = 200, and the number of the out-of-sample evaluation points is

P = 1000.

In the empirical application of Section 2.7, h = 1, 6, 12, and we move the time

t = n at which a pseudo out-of-sample forecast is made. We use a rolling window of

fixed size R = 120 months from t = n0 (≡ n−R+ 1) to t = n for in-sample estimation

of a model. We then compute h-month ahead forecasts of the equity premium yn+h,

with n moving forward from 1960M1 to 2005M12, resulting in the total of P = (552− h)

evaluation points over the 46 years. Once ŷn+h is obtained, we define the forecast error

ûn+h ≡ yn+h − ŷn+h. We use the (552− h) squared forecast errors
{
û2
n+h

}2005M12−h
n=1960M1

to compute the evaluation measures discussed later. The number of observations for

in-sample estimation is R ≡ n − n0 + 1 = 120, and the number of the out-of-sample

evaluation points is P = 552− h.
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2.6.1 Forecasting Models

We consider the historical mean model (HM) as a benchmark

mHM
n,h (x|In) =

1

R

n∑
t=n0

yt.

and three linear regression models denoted as L, L-P, and L-P-B:

mL
n,h (x|In) = α̃+ β̃x,

mL-P
n,h (x|In) = ᾱ+ β̄x,

mL-P-B
n,h (x|In) = α̂+ β̂x,

where
(
α̃, β̃

)
is the unconstrained OLS estimators, β̄ = max

(
β̃, 0
)
, ᾱ = ȳn − β̄x̄n,

β̂ = 1
J

∑J
j=1 β̄

∗(j) with β̄∗ = max
(
β̃∗, 0

)
, and α̂ = ȳn − β̂x̄n. Nonparametric models

include LLLS forecast (NP), LLLS forecast with positive slope constraint (NP-P), the

bagged LLLS forecast with positive slope constraint (NP-P-B)

mNP
n,h (x|In) = ȳ(x)− β̃(x) [x̄(x)− x] ,

mNP-P
n,h (x|In) = ȳ(x)− β̄(x) [x̄(x)− x] ,

mNP-P-B
n,h (x|In) = ȳ(x)− β̂(x) [x̄(x)− x] ,

and the monotonicity-constrained NP model proposed by Hall and Huang (2001) (NP-

HH)

mNP-HH
n,h (x|In) =

n−h∑
t=1

p̂tAt(x)yt+h.

Semiparametric models include SP, SP-P, and SP-P-B

mSP
n,h (x|In) = m̃sp (x) as defined in (2.23),

mSP-P
n,h (x|In) = m̄sp (x) as defined in (2.26),

mSP-P-B
n,h (x|In) = m̂sp (x) as defined in (2.27).
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2.6.2 Evaluation Criteria

As discussed earlier, the Monte Carlo mean (averaged over 100 replications) of

squared errors
{
û2(x)

}P
1

for each of P evaluation points will be used to compute the

evaluation criteria. We consider two such criteria. The first criterion is based on the

mean of the squared errors (averaged over P = 1000 evaluating x points) of model M

MSEM =
1

P

∑
∀x

û2(x). (2.45)

Further we compute the percentage reduction in the MSE of a model M (MSEM) relative

to that of the historical mean model (MSEHM) by the following formula,

100R2 = 100×
(

1− MSEM

MSEHM

)
. (2.46)

This is the out-of-sample R2 (multiplied by 100) as reported in Campbell and Thompson

(2008).

The second criterion is new. It provides a better view of the whole predictive

distribution of the squared forecast errors
{
û2(x)

}P
1

. Statistical criteria such as MSE,

R2 and likelihood values are based on a summary statistic (e.g., mean) of
{
û2(x)

}P
1
.

Instead, as suggested in Granger (1999), a more desirable procedure is to associate an

economic value with
{
û2(x)

}P
1

rather than just a summary statistic. The economic

value of a model can be associated with a cost or a utility, which can then be compared

using the second order stochastic dominance (SOSD) of the predictive distributions of{
û2(x)

}P
1

for competing models. Denote the CDF of squared forecast errors
{
û2(x)

}P
1

from Model M as FM (·) . We define the SOSD criterion as

SOSDM (r) =

∫ r

0

[
FM (s)− FHM (s)

]
ds, r > 0, (2.47)

where HM is taken as the benchmark model and the CDFs are estimated by their

empirical distributions F (s) = 1
P

∑
∀x 1{û2(x)≤s}.
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We can show (not presented here for space but available from the authors) that,

if SOSDM (r) > 0 for all r > 0, then E
(
û2

M

)
< E

(
û2

HM

)
. Therefore, the second-order-

stochastic dominance implies the mean-squared-error dominance (but not vice versa).

Hence SOSD would also imply the dominance in 100R2.

Compared to 100R2 which measures the percentage gain in the mean of squared

forecast errors, SOSDM (r) delivers more information on the entire distribution of the

squared forecast errors from Model M. For example, when SOSDM (r) is positive for all

positive r, it implies that Model M produces squared forecast errors that are relatively

smaller than those of the benchmark model. The role of SOSD (r) becomes more

significant when 100R2 cannot differentiate the relative performances of the models

under comparison. Following McFadden (1989), Granger (1999), and Linton et al (2005),

we report the average (avg) and the maximum (max) of SOSD (r) over r in Table 1

and Table 2, in addition to 100R2.

While we have compared the empirical distribution of squared forecast errors{
û2(x)

}P
1

, the SOSD measure will be identical if we compare the empirical distributions

of the absolute forecast errors {|û(x)|}P1 . We can also show that, if SOSDM (r) > 0 for

all r > 0, then E (|ûM|) < E (|ûHM|) . Therefore, the second-order-stochastic dominance

implies the mean-absolute-error dominance (but not vice versa). In fact, we can show

that, if SOSDM (r) > 0 for all r > 0, then E (c (ûM)) < E (c (ûHM)) for any symmetric

convex function c (·) . We will demonstrate the use of our new forecasting evaluation

criterion using “the SOSD plots” (as shown Figure 2) in the empirical application in

Section 2.7.
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2.6.3 Simulation Results

The simulation results are presented in Table 1. We summarize the findings as

follows:

First, note the varying slope of the cubic curve in the DGP in (2.43). A larger

value of σ2
x would expand the range of the evaluation points {x} to the steeper area

of the cubic curve. When σ2
x = 2 (small), the evaluation points will be mostly in the

flat area of the cubic curve. That corresponds to the area with small values of b near

zero in Figure 1c. The reduction in AMSE (hence the gain in 100R2) would be large

as shown in Figure 1c. Table 1 confirms this by showing that the gains from imposing

the monotonicity constraints and from bagging is large in this case. 100R2 is 43.7, 53.5,

55.7 for each of SP, SP-P, SP-P-B. The increase of these values is substantial. Similar

observation can be made for avgrSOSD(r) and maxr SOSD(r). When σ2
x = 5 (large),

the evaluation points will be in a wider range of the cubic curve including the areas

with steeper slope. That corresponds to the area with large values of b in Figure 1c,

where the reduction in AMSE (hence the gain in 100R2) is small. Table 1 again confirms

that by showing the small gains from imposing the monotonicity constraints and from

bagging. For example, 100R2 is 94.6, 94.7, 94.8 for each of SP, SP-P, SP-P-B. The

increase of these values is negligible. Similar observation can be made for avgrSOSD(r)

and maxr SOSD(r). The same pattern is observed for NP, NP-P, NP-P-B when they

are compared with small and large values of σ2
x.

Second, note also the varying curvature of the cubic curve in DGP, which ex-

hibits stronger nonlinearity as we move further away from the inflection point. Therefore

the nonlinearity is stronger with a larger value of σ2
x. When the range of the evalua-

tion x points expands to the stronger nonlinear part of the cubic curve, there is larger
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gains by using nonlinear models (NP and SP) over the linear model (L). When σ2
x = 5

(large), 100R2 is about 64 for L, while it is much larger, nearly 95 for NP and SP.

Similar observation can be made for avgrSOSD(r) and maxr SOSD(r). When σ2
x = 2

(small), the evaluation points will be near the flat part of the curve where nonlinearity

is weak. And there, L is even better than the nonlinear NP/SP forecasts in all three

criteria, 100R2, avgrSOSD(r) and maxr SOSD(r). Interestingly though, as remarked

in the previous paragraph, the improvement by imposing the monotonicity constraint

and by using bagging is much stronger for the nonlinear NP/SP models than for the

linear model. There is little gain from L to L-P to L-P-B, while the gains are substantial

from NP to NP-P to NP-P-B and also from SP to SP-P to SP-P-B.

Third, the constraint helps with NP and SP models, as seen that R2 gets

larger in NP-P, NP-HH and SP-P. This improvement in R2 is due to the accuracy gain

in estimation that is achieved at points where monotonicity is violated. At points where

monotonicity is met, constrained model and unconstrained model perform the same

since the constraint is not binding. The extent of the improvement from imposing the

constraint depends on (i) the frequency of points where violations of constraints occur

and (ii) the magnitude of the violations at these points. Monotonicity is satisfied in the

estimated linear models (when σ2
x is not too small) so that L and L-P perform more or

less the same.

Fourth, the simple monotonicity constrained NP-P model is generally better

than NP-HH of Hall and Huang (2001). When bagging is added, NP-P-B is always

better than NP-HH.

Fifth, bagging enhances the performance of the constrained NP/SP models

with no exception. This confirms the theory that bagging reduces variance (Figure

1a), while incurring a small bias (Figure 1b). It is also found that, with bagging, our
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constrained models, NP-P-B and SP-P-B, outperform NP-HH. Note that bagging does

not improve for the linear model as much, because the monotonicity constraint is more

likely to be met for L and because the constraint is less likely to be violated globally

than locally.

Sixth, a positive value of 100R2 for a model indicates that the benchmark HM

is dominated by the model. It is clear that all models are better than HM for all values of

σ2
x. However, this may be due to the design in our simulation. In empirical application

to predicting equity premium in the next section, it will be shown (Table 2) that HM is

indeed very hard to be beaten by a linear model even with the monotonicity constraint

and bagging. This is reflected in the paper title of Campbell and Thompson (2008), and

is a reason that HM has been taken as a benchmark in the vast literature on financial

return predictability. Nevertheless, we will see in the next section that NP and SP can

easily beat the HM, and even more easily with the monotonicity constraint and bagging.

Seventh, the nonlinear models, NP and SP, are substantially better than L

when σ2
x is not too small. This signals the serious nonlinearity in the DGP. NP and SP

are quite competing, with NP often slightly better than SP, due to the fact that the

linear guide for SP is not present in the DGP. However, it is interesting to see that,

once the monotonicity constraint is imposed, SP-P is always better than NP-P and also

SP-P-B is always better than NP-P-B. It seems the constraint and bagging help SP

more than NP.

Eighth, the role of SOSD is expected to be more significant when 100R2 can-

not distinguish the relative performance of models under comparison because the SOSD

looks at the entire predictive distribution of the squared forecast errors rather than just

their mean. However, we do not see such a case yet from using the current simula-

tion design. In Table 1, SOSD generally tends to convey the same signal about the
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forecasting models as 100R2 does. We will be able to discuss the advantage of the

distribution measure (SOSD) over the mean measure (100R2) using Figure 2 for our

empirical application in the next section.

Table 1 About Here

All of the above simulation results are consistent with the asymptotic results

of Sections 3, 4, 5. It would be interesting to examine how the theory applies in practice

in actual economic data application where the DGP is not known. In the next section,

we examine this in forecasting the U.S. equity premium.

2.7 Application: Predicting the Equity Premium

As noted by Fama and French (2002), equity premium (the difference between

the expected return on the market portfolio of common stocks and the rate of return

on risk-free assets such as short term T-bills) plays an important role in decisions of

portfolio allocation, in estimating the cost of capital, in debate of investing social security

funds in stocks, and in many other economic and financial applications. However, the

predictability of equity premium has been an unsettled issue in the financial literature

as reviewed by Campbell and Thompson (2008) and many references therein.

Goyal and Welch (2008) examine various predictors that have been suggested

as good instruments in the equity premium prediction literature but report their poor

performance in both in-sample and out-of-sample forecasts relative to the historical mean

of stock returns. Campbell and Thompson (2008) introduce a perspective of a real-world

investor who would use a prior belief on the regression slope coefficient such that it must

satisfy the expected sign. This simple but sensible sign constraint leads to a better out-
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of-sample performance of predictors that have significant in-sample forecasting power.

Chen and Hong (2009) went further to argue that such sign restriction imposed by

Campbell and Thompson (2008) is a form of nonlinearity and suggest to use NP methods

instead of linear models to form forecast of stock returns. They confirm the conclusion

of Campbell and Thompson (2008).

As an alternative to these approaches, we impose the sign restriction on the

local slope coefficients in estimation of the NP and SP forecast models. In that sense, we

combine the two ideas of Campbell and Thompson (2008) and Chen and Hong (2009),

imposing monotonicity on NP/SP models. We compare linear models of Goyal and

Welch (2008), Campbell and Thompson (2008), Hillebrand et al (2009), with our pro-

posed NP and SP models with constraints imposed and also with bagging implemented.

The out-of-sample forecasting comparison is based on 100R2 and SOSD, relative to the

historical mean return forecast. John Campbell and Sam Thompson kindly share their

data in our study. We consider using one predictor at a time and impose their sign re-

strictions on the slope parameters, but locally for the NP and SP models. For details on

data description and the sign restrictions, we refer to Campbell and Thompson (2008).

Our dependent variable y to be forecast is the annualized (compounded for 12

months) equity premium on the S&P500 returns over the short term T-Bill rate, and

the predictor variable x is one of the following four predictors: smoothed earning-price

ratio (se/p), yields on 3-Month Treasury Bill on the secondary market (t-bill), long term

yields on U.S. government bonds (lty), and default spread (ds). Both y and x series are

in monthly frequency.

As discussed earlier in Section 2.6, the in-sample estimation starts from 1950M1

and the first forecast begins in 1960M1. We keep a fixed window of in-sample size of

120 observations and roll the in-sample estimation window forward till the last available
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observation on 2005M12. To evaluate various HM/L/NP/SP models considered in this

paper, we report out-of-sample 100R2 together with avgrSOSD(r) and maxr SOSD(r)

measures defined in Section 2.6.2. In Table 2 and Figure 2, we only present the results

for h = 1 as the results for h = 6, 12 (available upon request) show the same patterns

with respect to nonlinearity and monotonicity.

2.7.1 Empirical Results

We summarize the findings from Table 2 as follows:

First, a salient feature of the results is the nonlinear predictability of the equity

premium, which confirms earlier results of Chen and Hong (2009). For all four predictors,

NP and SP models perform much better than L (and better than HM too!), with an

improvement in R2 over 10% achieved by SP-P-B. The only exception is NP-HH, which is

worse than linear models for se/p and ds. The impressive performance of parametrically

guided SP models confirms the earlier conclusion by Martins-Filho et al (2007). Except

with se/p, linear models are worse than HM, even though imposing constraint enhances

their performance.

Second, another salient feature is the monotonicity, which improves the fore-

casting ability of NP and SP models although the improvement is sometimes small.

This small improvement is due to mainly two facts: (1) the computed evaluation cri-

teria 100R2 and SOSD, are aggregated (global) measures such that some significant

local improvement may be averaged down, and (2) inherent uncertainty in the noise

component of a model dominates the parameter estimation uncertainty in the signal

component of the model in order of γ(n, h) as presented in Theorems 2-7. The first

fact is that, at many of P out-of-sample months, the monotonicity constraint is locally

met (i.e., not binding) and thus no improvement will be achieved by imposing such a
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constraint for those months. It is at these (possibly many) data points that the improve-

ment of forecasts made over other data points is offset, because our evaluation criteria

are the averages over all P points. The second fact dictates that parameter estimation

error vanishes at a rate γ(n, h) as sample size increases but innovation uncertainty will

not. The constraint and bagging can reduce the parameter estimation error and im-

prove forecasts for a finite sample size, but their contribution vanishes as the sample

size increases.

Third, bagging improves the constrained NP and SP forecasts. The improve-

ment of R2 is around 1-2%. For example, for ds, NP-P-B improves 100R2 by more than

2.1% compared to NP-P. Bagging makes all constrained SP models work better. For

one case with se/p where bagging makes little improvement, it may be due to the fact

that we are outside of the range of local drift parameter b(x) where bagging can improve

when the constraint is met, as depicted for the linear case in Figure 1c in Section 2.3.

Fourth, the average SOSD and maximum SOSD measures in Table 2 are con-

sistent with 100R2. SOSD also favors constrained models over unconstrained ones and

shows that bagging helps to improve the forecasting performance of constrained models.

Table 2 About Here

We summarize the findings from Figure 2 as follows:

Figure 2 shows plots of SOSD(r) as a function of squared forecasting errors

r, and thus will be called “the SOSD plot”. The x-axis is r for the squared forecast

error while the y-axis is SOSD(r) as defined in (2.47). The SOSD plots show where

the forecast gains are achieved for different sizes of forecast errors. The size of forecast

error is measured in square in Figure 2, while it can be measured in any norm such as

modulus.
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Figure 2 reports the SOSD plots for lty. The SOSD plots for the other three

predictors are similar in pattern and in ranking and so are not presented here. Figure

2 shows that SP-P-B produces many more moderately sized forecast errors than other

models because SOSD(r) increases steeply over the moderate values of r (between 0.05

and 0.1) and then flattened for large values of r (large size forecast errors). In other

word, the SOSD plot reveals that constrained models perform better by reducing the

magnitude of forecasting errors. Hence, the sensible constraints would help avoiding big

mistakes.

The SOSD plots in Figure 2 show that SOSD(r) > 0 for all r > 0 for all

NP and SP models. That means, for lty, these models stochastically dominate the HM

model in any symmetric convex cost (loss) functions. To the contrary, SOSD(r) < 0

for all r > 0 for all three L models even with the monotonicity constraint and bagging.

That means, for lty, the L models are stochastically dominated by HM in any symmetric

convex cost functions. Interestingly, for NP-HH, Figure 2 shows that SOSD(r) crosses

zero once from below and stay above zero for large value of r (> 0.07). This indicates

that NP-HH is worse than HM when the forecast error size can be small (likely when the

stock market is calm), but NP-HH becomes better than HM when the squared forecast

errors are large (likely when the stock market are volatile). With this in mind, looking

at the SOSD plots again for the linear models (L, L-P, L-P-B), we note that, for all sizes

of the forecast errors, whether small or large, the linear models using lty make poorer

forecasts than HM.

Figure 2 About Here

This type of forecast evaluation and comparison is not possible with the mean-

based measure like 100R2. The novelty of the SOSD plots is that we can examine the
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entire predictive distribution of the squared forecast errors, through which we are en-

abled to see how/when models are performing in forecasting over the different magnitude

of the forecast errors and over different levels of market volatility.

2.8 Conclusions

Incorporating valuable economic information in economic modeling and fore-

casting deserves more attention in both theoretical and applied research. This paper

considers nonparametric and semiparametric regression models with imposing such eco-

nomic constraints as monotonicity. Our approach is an alternative approach to Hall and

Huang (2001), Racine, Parmeter and Du (2009), and Henderson and Parmeter (2009).

It is based on bagging, as in Hillebrand et al (2009), that improves the simple con-

strained linear regression model considered in Campbell and Thompson (2008). It is

based on nonparametric models so that possible model misspecification of neglecting

nonlinearity may be avoided. It reduces the computational time by eschewing the is-

sue of solving weights to training units through the optimization problem considered

in Hall and Huang (2001). Asymptotic properties of our bagging constrained NP and

SP estimators and forecasts are established. Monte Carlo simulations are conducted to

show their finite sample performance which demonstrates the practical merits of using

our proposed methods.

We introduce a new forecasting evaluation criterion based on the second order

stochastic dominance in the size of forecast errors, which enables us to compare the

competing forecasting models over different sizes of forecast errors. The size of forecast

errors may be measured in square, in modulus, or in any norm. The new SOSD crite-

rion can compare forecasting models via the entire predictive distributions of a norm of
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the forecast errors, e.g., over small size errors, moderate size errors, or big size errors,

as demonstrated using our empirical results for the equity premium prediction appli-

cation. With the use of new forecasting evaluation criterion, it is seen that imposing

monotonicity constraints can mitigate the chance of making the large size forecast errors.

We apply the proposed approach for imposing economic constraints to predict

the U.S. equity premium and show its usefulness likely under high market volatility.

Although the predictability of equity premium has been an unsettled issue, our work

together with those of Campbell and Thompson (2008) and Hillebrand et al (2009)

reveal the value of constraints in economic modeling and forecasts.

Our results also confirm Chen and Hong (2009) that SP models usually out-

perform NP models, and thus should incite the applications of the SP models in future

economic and financial research.

Appendix

A. Proof of Main Theorems

Proof of Theorem 1. (1) By the definition of β̄, it is clear that it cannot take

values less than β1, which implies that Fβ̄ (z) = 0 if z < β1. When z = β1, we have

Fβ̄ (z) = Pr
(
β̄ < β1

)
+ Pr

(
β̄ = β1

)
= Pr

(
β̃ ≤ β1

)
= Fβ̃ (β1) = Fβ̃ (z) . When z >

β1, Fβ̄ (z) = Pr
(
β̄ ≤ z

)
= Pr

(
β̄ < β1

)
+ Pr

(
β̄ = β1

)
+ Pr

(
β1 < β̄ ≤ z

)
= Fβ̃ (β1) +

Pr
(
β1 < β̃ ≤ z

)
= Fβ̃ (z) .
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(2) Note that

Eβ̄ =

∫ ∞
−∞

zdFβ̄ (z) =

∫ β1

−∞
zdFβ̄ (z) +

∫ ∞
β1

zdFβ̄ (z)

= β1Fβ̄ (β1) +

∫ ∞
β1

zdFβ̃ (z) = β1Fβ̃ (β1) +

∫ ∞
β1

zdFβ̃ (z)

≥
∫ β1

−∞
zdFβ̃ (z) +

∫ ∞
β1

zdFβ̃ (z) = Eβ̃,

where the third equality makes use of the property of Fβ̄ (z) established in (1).

(3) Note that for
..
β = β̄ or β̃, we have V ar

( ..
β
)

= MSE
( ..
β
)
−
[
bias

( ..
β
)]2

.It

is known from (1) that bias
(
β̄
)
≥ bias

(
β̃
)
≥ 0, if Eβ̃ ≥ β. V ar

(
β̄
)
≤ V ar

(
β̃
)

will be

implied from the fact which is stated in (4).

(4) The proof is parallel to that in (2). By definition,

MSE
(
β̄
)

=

∫ ∞
−∞

(z − β)2 dFβ̄ (z) =

∫ β1

−∞
(z − β)2 dFβ̄ (z) +

∫ ∞
β1

(z − β)2 dFβ̄ (z)

= (β1 − β)2 Fβ̄ (β1) +

∫ ∞
β1

(z − β)2 dFβ̃ (z) = (β1 − β)2 Fβ̃ (β1) +

∫ ∞
β1

(z − β)2 dFβ̃ (z)

≤
∫ β1

−∞
(z − β)2 dFβ̃ (z) +

∫ ∞
β1

(z − β)2 dFβ̃ (z) = MSE
(
β̃
)
,

where the inequality follows from β ≥ β1. �

Proof of Theorem 2. For any z ∈ R,

Pr
(
γ (n)

(
β̄ − β

)
< z
)

= Pr
(
γ (n)

(
max{β̃, β1} − β

)
< z
)

= Pr
(
γ (n)

(
max{β̃, β1} − β

)
< z|β̃ < β1

)
× Pr

(
β̃ < β1

)
+ Pr

(
γ (n)

(
max{β̃, β1} − β

)
< z|β̃ ≥ β1

)
× Pr

(
β̃ ≥ β1

)
= Pr (γ (n) (β1 − β) < z)× Pr

(
β̃ < β1

)
+

Pr
(
γ (n)

(
β̃ − β

)
< z|β̃ ≥ β1

)
× Pr

(
β̃ ≥ β1

)
in which, (i) when β > β1,

Pr (γ (n) (β1 − β) < z)→ Pr (−∞ < z) = 1,
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since limn→∞ γ (n) =∞, and when β = β1,

Pr (γ (n) (β1 − β) < z) =


1, if z > 0

0, if z ≤ 0

(ii)

Pr
(
β̃ < β1

)
= Pr

(
γ (n)

(
β̃ − β

)
< γ (n) (β1 − β)

)

→


Pr (Z < −∞) = 0, if β > β1

Pr (Z < 0) = F (0) , if β = β1

(iii)

Pr
(
γ (n)

(
β̃ − β

)
< z|β̃ ≥ β1

)
=

Pr
(
γ (n)

(
β̃ − β

)
< z, γ (n)

(
β̃ − β1

)
≥ 0
)

Pr
(
γ (n)

(
β̃ − β1

)
≥ 0
)

=
Pr
(
γ (n)

(
β̃ − β

)
< z, γ (n)

(
β̃ − β

)
≥ γ (n) (β1 − β)

)
Pr
(
γ (n)

(
β̃ − β

)
≥ γ (n) (β1 − β)

)

=


F (z)−F (0)

1−F (0) , if z > 0;

0, otherwise.

and (iv)

Pr
(
β̃ ≥ β1

)
= 1− Pr

(
β̃ < β1

)
= 1− Pr

(
γ (n)

(
β̃ − β

)
< γ (n) (β1 − β)

)

→


1− Pr (Z < −∞) = 1, if β > β1

1− Pr (Z < 0) = 1− F (0) , if β = β1

Therefore, combining (i)-(iv) leads to, (1) when β > β1,

Pr
(
γ (n)

(
β̄ − β

)
< z
)
→ 1× 0 + F (z)× 1 = F (z)

and (2) when β = β1, for z > 0,

Pr
(
γ (n)

(
β̄ − β

)
< z
)
→ 1× F (0) +

F (z)− F (0)

1− F (0)
× (1− F (0)) = F (z)
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and for z = 0,

Pr
(
γ (n)

(
β̄ − β

)
< z
)
→ 1× F (0) + 0× (1− F (0)) = F (0) .

When z < 0,

Pr
(
γ (n)

(
β̄ − β

)
< z
)
→ 0.

To prove (3), note that

γ (n)
(
β̄ − β

)
= γ (n) (β1 − β) + γ (n)

(
β̃ − β1

)
1{γ(n)(β̃−β1)>0}

d→ Zb1{Zb>0} − b.

Therefore, we have (4)

E
[
Zb1{Zb>0} − b

]
= EZ1{Zb>0} + bE1{Zb>0} − b = φ (b) + bΦ (b)− b,

by Lemma 1, and (5)

V ar
[
Zb1{Zb>0} − b

]
= V ar

[
Zb1{Zb>0}

]
= E

{[
Zb1{Zb>0}

]2}− {E [Zb1{Zb>0}
]}2

.

We need to find

E
{[
Zb1{Zb>0}

]2}
= E

{[
(Z + b) 1{Zb>0}

]2}
= EZ21{Zb>0} + b2E1{Zb>0} + 2bE

[
Z1{Zb>0}

]
= Φ (b)− bφ (b) + b2Φ (b) + 2bφ (b)

= Φ (b) + bφ (b) + b2Φ (b) ,

where in the third equality we used (i) E1{Zb>0} = Φ (b) and (ii) E
[
Z1{Zb>0}

]
= φ (b)

and (iii) EZ21{Zb>0} = −bφ (b)+Φ (b) by Lemma 1. Combining the results leads to (5).

�

Proof of Theorem 3. (1) Note that we can write

β̂ = E∗β̄∗ = E∗
[
max

{
β̃∗, β1

}]
= E∗

[
β̃∗1{β̃∗≥β1} + β11{β̃∗<β1}

]
= E∗

[
β̃∗1{β̃∗≥β1}

]
+ β1E

∗
[
1{β̃∗<β1}

]
.
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(i) The first term can be decomposed as,

E∗
[
β̃∗1{β̃∗≥β1}

]
= E∗

[(
β̃∗ − β̃ + β̃

)
1{β̃∗≥β1}

]
= E∗

[(
β̃∗ − β̃

)
1{β̃∗≥β1}

]
+ β̃E∗

[
1{β̃∗≥β1}

]
Note that we have

E∗
[(
β̃∗ − β̃

)
1{β̃∗≥β1}

]
=

σ

γ (n)
E∗
[
γ (n)σ−1

(
β̃∗ − β̃

)
1{β̃∗≥β1}

]
= O

(
1

γ (n)

)
E∗
[
γ (n)σ−1

(
β̃∗ − β̃

)
1{β̃∗≥β1}

]
= O

(
1

γ (n)

)
,

since

∣∣∣E∗ [γ (n)σ−1
(
β̃∗ − β̃

)
1{β̃∗≥β1}

]∣∣∣ ≤ E∗ ∣∣∣γ (n)σ−1
(
β̃∗ − β̃

)
1{β̃∗≥β1}

∣∣∣
≤ E∗

[∣∣∣γ (n)σ−1
(
β̃∗ − β̃

)∣∣∣ ∣∣∣1{β̃∗≥β1}
∣∣∣] ≤ E∗ ∣∣∣γ (n)σ−1

(
β̃∗ − β̃

)∣∣∣ = O (1) .

And note that,

E∗
[
1{β̃∗≥β1}

]
= E∗

[
1{γ(n)(β̃∗−β̃)≥γ(n)(β1−β̃)}

]
= E∗

[
1{γ(n)σ−1(β̃∗−β̃)≥γ(n)σ−1(β1−β)+γ(n)σ−1(β−β̃)}

]
= 1− E∗

[
1{γ(n)σ−1(β̃∗−β̃)<γ(n)σ−1β1−β)+γ(n)σ−1(β−β̃)}

]
= 1− Φ (−b− Z) +O

(
1

n

)
.

That is, we have β̃E∗
[
1{β̃∗≥β1}

]
= β̃ [1− Φ (−b− Z)] +O

(
1
n

)
.

(ii) The second term,

β1E
∗
[
1{β̃∗<β1}

]
= β1

(
1− E∗

[
1{β̃∗≥β1}

])
= β1Φ (−b− Z) +O

(
1

n

)
.

Combining (i) and (ii) leads to

β̂ = E∗
[(
β̃∗ − β̃

)
1{β̃∗≥β1}

]
+ β̃E∗

[
1{β̃∗≥β1}

]
= β̃ [1− Φ (−b− Z)] + β1Φ (−b− Z) +O

(
1

n

)
+O

(
1

γ (n)

)
= β̃ +

(
β1 − β̃

)
Φ (−b− Z) +O

(
1

n

)
+O

(
1

γ (n)

)
.
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(2) Write

γ (n)σ−1
(
β̂ − β

)
= γ (n)σ−1

(
E∗
[
β̃∗1{β̃∗≥β1}

]
+ β1E

∗
[
1{β̃∗<β1}

]
− β

)
= γ (n)σ−1

(
E∗
[(
β̃∗ − β

)
1{β̃∗≥β1}

]
+ (β1 − β)E∗

[
1{β̃∗<β1}

])
.

We have (i)

γ (n)σ−1
(
E∗
[(
β̃∗ − β

)
1{β̃∗≥β1}

])
= E∗

[
γ (n)σ−1

(
β̃∗ − β̃ + β̃ − β

)
1{β̃∗≥β1}

]
= E∗

[
γ (n)σ−1

(
β̃∗ − β̃ + β̃ − β

)
1{γ(n)σ−1(β̃∗−β̃)≥γ(n)σ−1(β1−β)+γ(n)σ−1(β−β̃)}

]
d→ EW

[
W1{W≥−b}|Z

]
,

where W ∼ N (Z, 1).

EW
[
W1{W≥−b}|Z

]
= EW [W ]− EW

[
W1{W<−b}|Z

]
= Z −

∫ −b
−∞

wϕ (w − Z) dw = Z −
∫ −b−Z
−∞

(s+ Z)ϕ (s) ds

= Z − ZΦ (−b− Z)−
∫ −b−Z
−∞

sϕ (s) ds = Z − ZΦ (−b− Z) + ϕ (−b− Z) .

Similarly, we get γ (n)σ−1 (β1 − β)E∗
[
1{β̃∗<β1}

]
p→ −bΦ (−b− Z) , by Slutsky’s theo-

rem. Putting together (i) and (ii) gives the result in (2).

(3) From (1), we can derive,

Eβ̂ = E
{
β̃ [1− Φ (−b− Z)] + β1Φ (−b− Z)

}
+ o (1)

= (1− EΦ (−b− Z))Eβ̃ + β1EΦ (−b− Z) + o (1)

= (1− Φ ∗ ϕ (−b))β + β1Φ ∗ ϕ (−b) + o (1)

= β + (β1 − β) Φ ∗ ϕ (−b) + o (1)

= β +O

(
1

γ (n)

)
→ β
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which is (3a). Note that

V ar
(
β̂
)

= V ar
{
β̃ [1− Φ (−b− Z)] + β1Φ (−b− Z) + o (1)

}
= E

{
β̃ [1− Φ (−b− Z)] + β1Φ (−b− Z)

}2

−
[
E
{
β̃ [1− Φ (−b− Z)] + β1Φ (−b− Z)

}]2
+ o (1) .

The first term can be reduced as,

E
{
β̃ [1− Φ (−b− Z)] + β1Φ (−b− Z)

}2

= E
{
β̃ [1− Φ (−b− Z)]

}2
+ 2E

{
β̃ [1− Φ (−b− Z)]β1Φ (−b− Z)

}
+ β2

1E
[
Φ (−b− Z)2

]
= β2

{
1− 2Φ ∗ ϕ (−b) + Φ2 ∗ ϕ (−b)

}
+ 2β1β

{
Φ ∗ ϕ (−b)− Φ2 ∗ ϕ (−b)

}
+ β2

1Φ2 ∗ ϕ (−b)

= β2 + 2β
{

Φ ∗ ϕ (−b)− Φ2 ∗ ϕ (−b)
}

(β1 − β) +
{

Φ2 ∗ ϕ (−b)
}

(β1 + β) (β1 − β)

= β2 +O

(
1

γ (n)

)
= β2 + o (1) .

Hence, we have (3b).

(4) From (2), we get

lim
n→∞

E
[
γ (n)σ−1

(
β̂ − β

)]
= E {Z − ZbΦ (−b− Z) + ϕ (−b− Z)}

= EZ − E [ZΦ (−b− Z)]− bE [Φ (−b− Z)] + Eϕ (−b− Z)

= 0− [−ϕ ∗ ϕ (−b)]− bΦ ∗ ϕ (−b) + ϕ ∗ ϕ (−b)

= 2ϕ ∗ ϕ (−b)− bΦ ∗ ϕ (−b)

where we used Lemma 2. Thus we have 4(a).
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For 4(b), we need prove that

lim
n→∞

E
[
γ (n)σ−1

(
β̂ − β

)]2
= E [Z − ZbΦ (−b− Z) + ϕ (−b− Z)]2

= EZ2 + E
[
Z2
bΦ2 (−b− Z)

]
+ E

[
ϕ2 (−b− Z)

]
−2E [ZZbΦ (−b− Z)] + 2E [Zϕ (−b− Z)]− 2E [ZbΦ (−b− Z)ϕ (−b− Z)]

= 1 + Φ2 ∗ ϕ′′ (−b) + Φ2 ∗ ϕ (−b)− 2bΦ2 ∗ ϕ′ (−b) + b2Φ2 ∗ ϕ (−b)

+ϕ2 ∗ ϕ (−b)− 2Φ ∗ ϕ′′ (−b)− 2Φ ∗ ϕ (−b) + 2bΦ ∗ ϕ′ (−b)

−2ϕ ∗ ϕ′ (−b) + 2 (Φ · ϕ) ∗ ϕ′ (−b)− 2b (Φ · ϕ) ∗ ϕ (−b)

where we used Lemma 2. �

Proof of Theorem 4. The proofs for part (1) and (2), (4), (5) and (6) follows that in

Theorem 2. We prove part (3). Note that m̄ (x) = m̃LC (x) · 1{β̃(x)≤β1(x)} + m̃LL (x) ·

1{β̃(x)>β1(x)}.

γ2 (n, h)σ−1
m (x) [m̄(x)−m (x)−Bm (x)]

= γ2 (n, h)σ−1
m (x) [m̃LC (x)−m (x)−Bm (x)] · 1{β̃(x)≤β1(x)}

+γ2 (n, h)σ−1
m (x) [m̃LL (x)−m (x)−Bm (x)] · 1{β̃(x)>β1(x)}

≡ l1 · 1{β̃(x)≤β1(x)} + l2 · 1{β̃(x)>β1(x)},

where,

l1 = γ2 (n, h)σ−1
m (x) [m̃LC (x)−m (x)−Bm (x)] = Op (1) ,

and

l2 = γ2 (n, h)σ−1
m (x) [m̃LL (x)−m (x)−Bm (x)]

d→ Z.

Note that

1{β̃(x)≤β1(x)} = 1{γ1(n,h)σ−1
β (x)[β̃(x)−β(x)]≤γ1(n,h)σ−1

β (x)[β1(x)−β(x)]} → 1{Z≤−∞} = op (1)
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Similarly, we can show that 1{β̃(x)>β1(x)} = 1 − 1{β̃(x)≤β1(x)}
p→ 1. Combining these

results leads to γ2 (n, h)σ−1
m (x) [m̄(x)−m (x)−Bm (x)]

d→ Z. �

Proof of Theorem 5. The proofs for parts (1-2) parallel that in Theorem 3. We prove

part (3). Note that

m̂ (x) = ȳ(x)− β̂(x) [x̄(x)− x]

m̃ (x) = ȳ(x)− β̃(x) [x̄(x)− x] .

Therefore, we have

m̂ (x)− m̃ (x) =
[
β̃(x)− β̂(x)

]
× [x̄(x)− x]

=
{[
β̃(x)− β (x)] + [β (x)− β̂(x)

]}
× [x̄(x)− x]

= O

(
1

γ (n, h)h

)
×O

(
1√
nh

)
= o

(
1

γ (n, h)

)
, as
√
nh3 →∞.

Therefore, we have the equivalence of m̂ (x) and m̃ (x) asymptotically. �

Proof of Theorem 6. We only need prove part (3) of the theorem. Since

m̄sp(x) = ᾱ+ ξ̄ (x) + η̄ (x) x̄ (x) + β̄ (x)x,

m̃sp(x) = α̃+ ξ̃ (x) + η̃ (x) x̄ (x) + β̃ (x)x,

we know that

m̄sp (x)− m̃sp (x) = [ᾱ− α̃] +
[
ξ̃ (x)− ξ̄ (x)

]
+ [η̃ (x)− η̄ (x)] x̄ (x) +

[
β̃ (x)− β̄ (x)

]
= 1{β̃(x)<β1(x)} [m̃lc (x)− m̃sp (x)]

= 1{β̃(x)<β1(x)} [m̃lc (x)−m (x) +m (x)− m̃sp (x)]

= 1{β̃(x)<β1(x)}Op
(

1

γ2 (n, h)

)
= op (1)×Op

(
1

γ2 (n, h)

)
= op

(
1

γ2 (n, h)

)
.

that is, m̄sp (x) and m̃sp (x) share the same asymptotic distribution. It is implied from

Theorem 3 of Martins-Filho et al (2007) that γ2 (n, h) σ̄−1
m (x) [m̃sp (x)−m (x)−Bm (x)]

d→

Z ∼ N (0, 1) . Combining the results completes the proof. �
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Proof of Theorem 7. Part (1) follows in steps similar to part (2) of Theorem 5. We

prove part (2). Note that

m̄sp(x) = ᾱ+ ξ̄ (x) + η̄ (x) x̄ (x) + β̄ (x)x,

m̂sp(x) = α̂+ ξ̂ (x) + η̂ (x) x̄ (x) + β̂ (x)x,

Therefore, we have

m̂sp (x)− m̄sp (x) = E∗m̄∗sp (x)− m̄sp (x)

= E∗
[
m̃∗sp (x)− m̃sp (x)

]
+E∗

{
1{β̃(x)<β1(x)}

[
m̃∗lc (x)− m̃lc (x) + m̃∗sp (x)− m̃sp (x)

]}
= op

(
1

γ2 (n, h)

)
+ op (1)× op

(
1

γ2 (n, h)

)
= op

(
1

γ2 (n, h)

)

Therefore, we have the equivalence of m̂sp (x) and m̄sp (x) asymptotically, which com-

pletes the proof. �

Lemmas

We collect useful lemmas that are used in the proof of the main theorems. We

use Z to denote a standard normal random variable with CDF Φ (·) and PDF ϕ (·), b

to denote some constant, and 1{·} an indicator function. Define Zb = Z + b.

Lemma 1. (a) E1{Zb>0} = Φ (b). (b) E
[
Z1{Zb>0}

]
= ϕ (b). (c) E

[
Z21{Zb>0}

]
=

−bϕ (b)+Φ (b). (d) E
[
Zb1{Zb>0}

]
= ϕ (b)+ bΦ (b). (e) E

[
Z2
b 1{Zb>0}

]
= Φ (b)+ bϕ (b)+

b2Φ (b).

Proof of Lemma 1. (a) E1{Zb>0} = E1{Z>−b} =
∫∞
−b dΦ (z) = 1 − Φ (−b) =

Φ (b). (b) EZ1{Zb>0} =
∫∞
−b zϕ (z) dz = −

∫∞
−b ϕ

′ (z) dz = −ϕ (z) |∞−b = ϕ (b). (c)

EZ21{Zb>0} =
∫∞
−b z

2ϕ (z) dz = −
∫∞
−b zϕ

′ (z) dz = −zϕ (z) |∞−b+
∫∞
−b ϕ (z) dz = −bϕ (b) +

Φ (b). (d) E
[
Zb1{Zb>0}

]
= EZ1{Zb>0}+bE1{Zb>0} = ϕ (b)+bΦ (b). (e) E

[
Z2
b 1{Zb>0}

]
=
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E
[
(Z + b)2 1{Zb>0}

]
= EZ21{Zb>0} + b2E1{Zb>0} + 2bE

[
Z1{Zb>0}

]
= Φ (b) − bϕ (b) +

b2Φ (b) + 2bϕ (b) = Φ (b) + bϕ (b) + b2Φ (b) .

Lemma 2. (a) Eϕ (−Zb) = ϕ∗ϕ (−b). (b) Eϕ2 (−Zb) = ϕ2∗ϕ (−b). (c) E [Zϕ (−Zb)] =

−ϕ∗ϕ′ (−b). (d) E [ZΦ (−Zb)] = −ϕ∗ϕ (b). (e) E
[
Z2Φ (−Zb)

]
= Φ∗ϕ′′ (−b)+Φ∗ϕ (−b).

(f) E
[
Z2Φ2 (−Zb)

]
= Φ2∗ϕ′′ (−b)+Φ2∗ϕ (−b). (g) E [ZΦ (−Zb)ϕ (−Zb)] = − (Φ · ϕ)∗

ϕ′ (−b) .

Proof of Lemma 2.

(a) Eϕ (−Zb) = Eϕ (−b− Z) =
∫∞
−∞ ϕ (−b− z)ϕ (z) dz = ϕ ∗ ϕ (−b) .

(b) Eϕ2 (−Zb) = Eϕ2 (−b− Z) =
∫∞
−∞ ϕ

2 (−b− z)ϕ (z) dz = ϕ2 ∗ ϕ (−b) .

(c) E [Zϕ (−Zb)] = E [Zϕ (−b− Z)] =
∫∞
−∞ zϕ (−b− z)ϕ (z) dz = −

∫∞
−∞ ϕ (−b− z)ϕ′ (z) dz =

−ϕ ∗ ϕ′ (−b) .

(d) E [ZΦ (−Zb)] = E [ZΦ (−b− Z)] =
∫∞
−∞ zΦ (−b− z)ϕ (z) dz = −

∫∞
−∞Φ (−b− z)ϕ′ (z) dz

= −
{

Φ (−b− z)ϕ (z) |∞z=−∞ −
∫∞
−∞−ϕ (−b− z)ϕ (z) dz

}
= −ϕ ∗ ϕ (−b) .

(e) E
[
Z2Φ (−Zb)

]
= E

[
Z2Φ (−b− Z)

]
=
∫∞
−∞ z

2Φ (−b− z)ϕ (z) dz

=
∫∞
−∞Φ (−b− z) [ϕ (z) + ϕ′′ (z)] dz = Φ ∗ ϕ′′ (−b) + Φ ∗ ϕ (−b) .

(f) E
[
Z2Φ2 (−Zb)

]
= E

[
Z2Φ2 (−b− Z)

]
=
∫∞
−∞ z

2Φ2 (−b− z)ϕ (z) dz

=
∫∞
−∞Φ2 (−b− z) [ϕ (z) + ϕ′′ (z)] dz = Φ2 ∗ ϕ′′ (−b) + Φ2 ∗ ϕ (−b) .

(g) E [ZΦ (−Zb)ϕ (−Zb)] = E [ZΦ (−b− Z)ϕ (−b− Z)] =
∫∞
−∞ zΦ (−b− z)ϕ (−b− Z)ϕ (z) dz

= −
∫∞
−∞Φ (−b− z)ϕ (−b− Z)ϕ′ (z) dz = − (Φ · ϕ) ∗ ϕ′ (−b) .
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Chapter 3

Improving Historical Mean

Forecast of Equity Premium by

Constrained Nonparametric

Approach

3.1 Introduction

Historical Mean (HM) forecast has been used as a bench mark in the forecast of

Equity Premium in the literature to improve upon. The recent work of Goyal and Welch

(2008) extensively studied the predictability of stock return using various forecasting

specifications. The negative conclusion from their paper suggest that HM forecasts is

unbeatable. However, this finding was contrasted by that of Campbell and Thompson

(2008) that, once sensible sign restrictions are imposed on the forecasts, the out-of-

sample forecasting performance of many predictors can be improved and sometimes beat
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the historical average return forecast. Hillebrand et al (2009) incorporate the bagging

(bootstrap aggregating) approach of Gordon and Hall (2009) to smooth sign restrictions

in HM forecasting models and show that the bagging sign restriction approach has more

predictive power than the simple sign restriction of Campbell and Thompson (2008).

However, possible misspecification of a HM model can undermine its forecasts

compared to those produced via nonlinear models. In this chapter we extend this lit-

erature by considering nonlinear models, in particular, nonparametric (NP) and semi-

parametric (SP) kernel regressions with imposing the sign constraints on the forecast

and with applying bagging to the constraints. Chen and Hong (2009) find that, in the

prediction of asset returns, nonparametric kernel regression model has a better fore-

casting power than the historical mean, due to the higher signal-to-noise ratio resulted

from nonparametric models. However, Chen and Hong (2009) do not consider the sign

restriction as well as bagging in their nonlinear forecasting exercise. This chapter is to

consider nonlinear models subject to positiveness constraint with and without bagging.

The previous chapter is concerned with monotonicity constraint.

Nonparametric kernel estimation with constraints has long history that dates

back to the work of Brunk (1955). Recent work on imposing monotonicity on non-

parametric regression function includes Hall and Huang (2001), Dette et al (2006) and

Chernozhukov et al (2007), among others. Hall and Huang (2001) propose a novel

method of imposing the monotonicity constraint on a class of nonparametric kernel es-

timations. Their estimator is constructed by re-weighting the kernel for each response

data point so that the impact of each observation on the estimated regression function

can be controlled to satisfy a constraint. Their method is rooted in a conventional kernel

framework and is extended by Racine et al (2009) and Henderson and Parmeter (2009)
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to allow for a broader class of conventional constraints and to develop tests for these

constraints.

Our contributions are as given below. First, we consider NP models to gener-

alize the HM models considered in Goyal and Welch (2008), Campbell and Thompson

(2008) and Hillebrand et al (2009). These NP regressions can capture possibly neglected

nonlinearity in HM models and could improve the predictive ability of the predictors,

as demonstrated in our Monte Carlo simulation and application to the equity premium

prediction. Second, we consider a new method of imposing the positivity constraint

on the NP and regressions. This is to make the prediction more accurate as we em-

ploy more information than Chen and Hong (2009). Our positivity constraint is local

restriction while it is global positivity in Campbell and Thompson (2008). Third, we

use bagging to smooth the positivity constraint in NP regressions as Hillebrand et al

(2009) do in linear regressions. It has been shown in Bühlmann and Yu (2002) that

bagging can reduce asymptotic mean squared error in linear regressions. We obtain the

similar results that hold locally in NP regressions. Fourth, we conduct simulation study

to demonstrate how the asymptotic results work in finite sample. We also conduct an

empirical study in predicting equity premium using the same data from Campbell and

Thompson (2008) to demonstrate the practical merit of the bagging sign constrained NP

regression models. Fifth, in our simulation and empirical application, we find that, de-

spite its simplicity to implement, our bagging constrained NP regression almost always

and clearly outperforms the constrained NP regression of Hall and Huang (2001).

The rest of the chapter is organized as follows. Section 2 presents nonparamet-

ric methods under constraints to produce forecasts. Section 3 and 4 establish the finite

and asymptotic properties of the proposed estimators. Section 5 conducts Monte Carlo

simulations to compare our proposed bagging nonparametric forecasts with constraints
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with other forecasts, including linear parametric forecasts with constraints and non-

parametric forecasts with constraints, etc. We evaluate different forecasting schemes

considered in this chapter via the prediction of equity premium in Section 6 and we

conclude in Section 7 with remarks.

3.2 Estimation with Constraints

Let {Xi, yi}Ni=1 be an observed sample, where y is the variable of interest to a

forecaster and X is a p × 1 vector of predictors. We assume that the mean of y, µy,

exceeds some known lower bound, α1. That is,

µy > α1. (3.1)

This information is known as a prior to a forecastor. We’re concerned with the problem

of how to adopt this information in the forecasting practice. We will treat in sequence

parametric mean model and nonparametric local constant kernel model.

3.2.1 Constrained Parametric Forecast

We consider first the case that X only contains a constant, i.e., the mean model

yi = α+ εi,

where εi is a disturbance term such that E (εi) = 0, i = 1, ..., n. Least square estimator

of α,

α̃ =
1

N

N∑
i=1

yi, (3.2)

is the unconstrained estimator of α. Note that α̃ is a random variable which is asymp-

totically normal with mean
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To impose constraint (3.1), we may set the forecast to be α1, whenever α̃

computed via (3.2) is less than this lower bound. That is, our constrained estimator is

ᾱ = α̃1[α̃>α1] + α11[α̃≤α1]. (3.3)

The above estimator involves an indicator which is not stable in the sense of

Buhlmann and Yu (2002). Bagging (Breiman, 1996) is the device that works to smooth

this unstable estimator. To define our bagging estimator for α, we construct a bootstrap

sample {y∗i }
N
i=1 which is used to derive a bootstrap constrained estimator via (3.3) using

the plug-in principle. The bagging predictor is an expectation of this bootstrapped esti-

mator over the bootstrapped samples. To be precise, denote α̃∗(j) as the unconstrained

estimator of α computed from the j-th bootstrapped sample
{
y
∗(j)
i

}N
i=1

, j = 1, ..., J .

Then ᾱ∗(j) = α̃∗(j)1[α̃∗(j)>α1] + α11[α̃∗(j)≤α1]. Our bagging estimator is

α̂ = Eᾱ∗ =
1

J

j∑
j=1

ᾱ∗(j). (3.4)

3.2.2 Constrained Nonparametric Forecast

We consider next that X only contains one regressor, i.e., the local mean model

yi = α (x) + εi,

with

α (x) = E [y|x]

where εi is a disturbance term such that E (εi|x) = 0 by construction, i = 1, ..., n. Local

constant kernel estiamtor of α (x),

α̃ (x) =

∑N
i=1 k

(
xi−x
h

)
yi∑N

i=1 k
(
xi−x
h

) , (3.5)

where h is the bandwidth and k (·) is a kernel function. α̃ (x) is shown to be asymptot-

ically normal with mean α (x), c.f. Pagan and Ullah (1994).
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The constraint in (3.1) is now assumed to be

µy (x) > α1 (x) . (3.6)

To impose this constraint in the estimation of α (x), we define our constrained estimator

as

ᾱ (x) = α̃ (x) 1[α̃(x)>α1] + α1 (x) 1[α̃(x)≤α1(x)]. (3.7)

Following similar procedures as in parametric estimation, we define our bagging

estimator as

α̂ (x) = Eᾱ∗ (x) =
1

J

j∑
j=1

ᾱ∗(j) (x) ,

where ᾱ∗(j) (x) is the constrained estimator obtained via plug-in principle for the j-th

bootstrap sample
{
x
∗(j)
i , y

∗(j)
i

}N
i=1

, j = 1, ..., J .

3.3 Sampling Properties of Parametric Estimators

Sampling properties of constrained parametric estimator and its bagging ver-

sion are established in this section.

3.3.1 Constrained Parametric Estimator

We start with some assumptions.

Assumption A

(A.1) γ (n)σ−1 (α̃− α)
d→ Z, where limn→∞ γ (n) = ∞, σ > 0 and Z is a random

variable with CDF FZ (·) .

(A.2) α = α1 + γ−1 (n)σb for some b ∈ R.

Assumption A.1 requires α̃ satisfy some limiting theorem with asymptotic stan-

dard deviation σ. This is a very week condition that is met by a large class of estimators.
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We do not specify the convergence rate γ (n) but simply let it explode as n increases.

This general setting accommodates both estimators with standard convergence rate
√
n

and estimators with nonstandard convergence rate, e.g., n1/3 or n3/2. A.2 can be stated

alternatively as γ (n)σ−1 (α− α1) = b. It dictates that the true parameter α is a Pit-

man type drift to the specified bound α1, with a drift parameter b. The local drift rate

is the same as the convergence rate of α̃. Extension to higher or lower rate than this

convergence rate is to be made possible by letting b = bn go to either infinity or zero as

n increases.

Theorem 1. (i) Under assumption A.1,

(a) when α > α1, γ (n)σ−1 (ᾱ− α)
d→ Z .

(b) when α = α1, Pr
(
γ (n)σ−1 (ᾱ− α) < z

)
→ FZ (z) · 1{z≥0}.

(ii) If we further assume A.2, then limn→∞ γ (n)σ−1 [ᾱ− α] = Zb1[Zb>0] − b, where

Zb = Z + b.

Remark 1. Theorem 1 stated the limiting distribution of ᾱ. Part (i) presents the usual

asymptotic distribution when the constraint is strict and when the parameter is on the

boundary. The result confirm the intuition that, as long as the constraint is strict, it

will be met by the unconstrained estimator α̃ when the sample size is large enough.

This leads to the conclusion that ᾱ would be asymptotically equivalent to α̃. When α

is on the boundary, the limiting CDF compresses all the mass of negative values at 0.

Part (ii) establishes the local asymptotic distribution of ᾱ that depends on the drift

parameter b. It is easy to see that, if b is allowed to grow as n, Zb1[Zb>0]− b will collapse

to Z, and result in (ii) becomes that in (i.a). Similarly, (i.b) reproduces the result of

(2) when b = 0. �
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It is informative that when Z is a standard normal random variable, the asymp-

totic bias and vriance of ᾱ can be established as functions of the normal CDF and PDF,

together with the drift parameter b. This is stated in the Corollary 1.

Assumption Z

Z is standard normal with CDF Φ (·) and PDF ϕ (·)

Corollary 1. If, in addition to A.1-A.2, assumption Z holds, then

(a) limn→∞ γ (n)σ−1E [ᾱ− α] = ϕ (b) + bΦ (b)− b.

(b) limn→∞ V ar
[(
γ (n)σ−1

)1/2
ᾱ
]

= Φ (b)+bϕ (b)−ϕ2 (b)−2bϕ (b) Φ (b)+b2Φ (b) [1− Φ (b)] .

3.3.2 Bagged Constrained Parametric Estimator

To study the asymptotic properties of bagging constrained estimators, we start

with the following assumptions:

Assumption A

(A.3) γ (n)σ−1 (α̃∗ − α̃)
d→ Z.

Assumption A.3 requires that bootstrap work for α̃. Lower level assumptions

that lead to this condition can be refereed to, e.g., Freedman (1981), Hall (1994) and

Horowitz (2001) among others. We empahsize that we don’t require bootstrap work for

ᾱ. Since we have ᾱ on the boudary of the parameter space if α > α1 holds, bootstrap

fails for such kind of estimator (Andrews, 2000). Actually, it is the fact that bootstrap’s

failure for ᾱ leads to the following theorem.
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Theorem 2. Under Assumption A.1-A.3,

γ (n)σ−1 (α̂− α)
d→ Z − ZbFZ (−Zb) +EW

[
W1[W≤−Zb]|Z

]
,where the CDF of

W is FW (·) = FZ (·) .

The limiting random variable contains truncated expectation that involves W ,

which has the same distribution as Z. When Z is normal, we derive the following

corollary. We adopt the notation f ∗ g to denote the convolution of two functions f and

g, which is defined as f ∗ g (s) =
∫
f (t)× g (s− t) ds.

Corollary 2. If, in addition to A.1-A.3, assumption Z holds, then

1. γ (n)σ−1 (α̂− α)
d→ Z − ZbΦ (−Zb) + ϕ (−Zb) .

2. (a) limn→∞ γ (n)σ−1E [α̂− α] = 2ϕ ∗ ϕ (−b)− bΦ ∗ ϕ (−b) .

(b) limn→∞ V ar
[(
γ (n)σ−1

)1/2
α̂
]

= 1 + Φ2 ∗ ϕ′′ (−b) + Φ2 ∗ ϕ (−b) − 2bΦ2 ∗

ϕ′ (−b)+b2Φ2∗ϕ (−b)+ϕ2∗ϕ (−b)−2Φ∗ϕ′′ (−b)−2Φ∗ϕ (−b)+2bΦ∗ϕ′ (−b)−

2ϕ∗ϕ′ (−b)+2 (Φ · ϕ)∗ϕ′ (−b)−2b (Φ · ϕ)∗ϕ (−b)−[2ϕ ∗ ϕ (−b)− bΦ ∗ ϕ (−b)]2 .

Remark 2. Theorem 2 stated the limiting distribution of α̂. Under the assumption that

Z is standard normal, corollary 2 shows the simple expression for the limiting random

variable, which is a transformation of standard normal random variable via standard

normal CDF and PDF. The dependence of the limiting distribution on the drift param-

eter is explicit through Zb. In order to compare the performance of bagging constrained

estimator α̂ and constrained estimator ᾱ without bagging, we plot asymptotic variance,

squared bias and MSE against the drift parameter b in figure 1. We notice from the

figure that there is a trade off using bagging, which reduce asymptotic variance while
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incurring some additional bias. Overall, it is clear that for a large range of values of b

(≥ 0.391), bagging estimator enjoys a reduction in asymptotic MSE.

Figure 1 About Here

The following theorem shows that bagging estimator is a model averaging type

estimator.

Theorem 3. Under Assumption A.1-A.3,

α̂ = α̃Φ (Zb) + α1Φ (−Zb) +Op

(
1

γ(n)

)
.

Remark 3. Theorem 3 stated that the bagging estimator is an average estimator that

assigns a weight Φ (Zb) to the unconstrained estimator α̃ and a weight Φ (−Zb) to the

lower bound α1, up to order Op

(
1

γ(n)

)
.

3.4 Sampling Properties of Nonparametric Estimators

We consider sampling properties of nonparametric estimators under constraint

and its bagging version.

3.4.1 Constrained Nonparametric Estimator

Assumption B

(B.1) (i) limn→∞ γ (n, h) =∞; (ii)h→ 0 as n→∞.

(B.2) γ (n, h)σ−1
α (x) (α̃ (x)− α (x)−Bm (x))

d→ Z, where , σα (x) > 0, Z is a standard

normal random variable and Bm (x) = 1
2h

2m(2) (x)
∫
v2k (v) dv + op

(
h2
)
.

(B.3) α (x) = α1 (x) + γ−1 (n, h)σα (x) b (x) for some real function b (·) .
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Theorem 4. (i) Under B.1-B.2, we have the following for the constrained estimator

ᾱ (x),

(a) when α (x) > α1 (x), γ1 (n, h)σ−1
α (x) (ᾱ (x)− α (x))

d→ Z.

(b) when α (x) = α1 (x), Pr
(
γ1 (n, h)σ−1

α (x) (ᾱ (x)− α (x)) < z
)
→ Φ (z) · 1{z≥0}.

(ii) If we further assume that B.3, and denote Zb(x) = Z + b(x), then

limn→∞ γ1 (n, h)σ−1
β [ᾱ(x)− α(x)] = Zb(x)1[Zb(x)>0] − b(x).

Corollary 3. Under B.1-B.3,

(a) limn→∞ γ1 (n, h)σ−1
α E [ᾱ(x)− α(x)] = ϕ (b(x)) + b(x)Φ (b(x))− b(x).

(b) limn→∞ V ar
[(
γ1 (n, h)σ−1

α (x)
)1/2

ᾱ(x))
]

= Φ (b(x)) + b(x)ϕ (b(x)) − ϕ2 (b(x)) −

2b(x)ϕ (b(x)) Φ (b(x)) + b2(x)Φ (b(x)) [1− Φ (b(x))] .

Remark 4. The above theorem shows the counterpart results for nonparametric es-

timators with constraints. The implications are similar to the previous theorem on

constrained parametric estimators. Note that the constraint bound α1 (x) can vary for

different values of x. As a special case in which α1 (x) = α1, a constant, it is effi-

cient to adopt the restriction if it is correctly specified via the constrained estimator.

The constrained estimator of α (x), ᾱ(x), have the asymptotic property as the usual

unconstrained nonparametric estimator as established in theorem 2.

3.4.2 Bagged Constrained Nonparametric Estimator

Assumption B

(B.4) γ (n, h)σ−1
α (α̃∗ (x)− α̃ (x)−Bm (x))

d→ Z.
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Theorem 5. Under B.1-B.4, we have

γ (n, h)σα (x)−1 (α̂ (x)− α (x)−Bm (x))
d→ Z [1− Φ (−b (x)− Z)]+ϕ (−b (x)− Z) .

Corollary 4. If B.1-B.4 hold, then

(a) limn→∞ γ (n, h)σ−1
β E [α̂ (x)− α (x)−Bm (x)] = 2ϕ∗ϕ (−b (x))−b (x) Φ∗ϕ (−b (x)) .

(b) limn→∞ V ar
[(
γ (n, h)σ−1

α (x)
)1/2

α̂ (x)
]

= 1 + Φ2 ∗ϕ′′ (−b (x)) + Φ2 ∗ϕ (−b (x))−

2bΦ2 ∗ ϕ′ (−b (x)) + b2 (x) Φ2 ∗ ϕ (−b (x)) + ϕ2 ∗ ϕ (−b (x)) − 2Φ ∗ ϕ′′ (−b (x)) −

2Φ ∗ ϕ (−b (x)) + 2b (x) Φ ∗ ϕ′ (−b (x))− 2ϕ ∗ ϕ′ (−b (x)) + 2 (Φ · ϕ) ∗ ϕ′ (−b (x))−

2b (x) (Φ · ϕ) ∗ ϕ (−b (x))− [2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x))]2 .

Remark 5. When b (·) admits a constant function, the limiting distribution in theorem

is the same as in parametric case. That is, for all possible values of x, γ (n, h)σα (x)−1 (α̂ (x)− α (x)−Bm (x))

converges to the same random variable as

γ (n)σ−1
α (α̂− α) does in parametric case.

Theorem 6. Under B.1-B.4, we have

α̂ (x) = α̃ (x) Φ
(
Zb(x)

)
+ α1 (x) Φ

(
−Zb(x)

)
+Op

(
1

γ(n,h)

)
.

Remark 6. Theorem 6 establish that the bagging estimator is a model averaging type

estimator with a weight Φ (Zb) assigned to the unconstrained estimator α̃ (x) and a

weight Φ
(
−Zb(x)

)
to the lower bound α1 (x), up to order Op

(
1

γ(n,h)

)
.

3.5 Simulation

In this section, we study the finite sample performance of our constrained

estimator and its bagging version. We consider the following Data Generating Process.

yi = a (4xi − 2)3 + ei,
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where xi is generated independently from a normal distribution with mean 1 and stan-

dard deviation 0.5. ei is i.i.d. standard normal disturbance. we consider a to be a value

taken from [0.001,0.05,0.01,0.05,0.1,0.5] that control the distance between m (x) and 0.

We evaluate the estimators at x = 1 and 1.5. We compute the mean of squared errors out

of 200 replications. In each replication, we experiment with sample size n = 50, 100, 200,

and bootstrap sample size 100. The relative mean squared errors are reported in Table

1 and 2.

We summarize the main findings as follows. At x = 1, the constrained esti-

mator works better than unconstrained estimator for small values of a in all sample

sizes. The gain in mean squared errors can be as big as 34%. When a gets larger, the

constraint becomes non-binding and thus constrained estimator performs the same as

the unconstrained. Bagging does not tend to work for sample size n = 50 for all values

of a considered here. When n gets larger, bagging improves upon the constrained esti-

mator when a = 0.005 and 0.01 with a maximum gain in mean squared error as large

as 2%. This is consistent with the theory that bagging estimator works better than the

constrained estimator when the sample size and the level of the funtion are of suitable

proportion. For large values of a, the relative mean squared errors that are larger than

1 are due to sampling errors incurred in the bootstrap procedure.

The results become more appealing when the estimators are evaluated at x =

1.5. Again, the role of constraint becomes less important as a gets larger, as can be seen

from Table 2 that the relative mean squared error is increasing as a increases. Bagging’s

role become more salient in this case, with a maximum gain in MSE as large as 10%

when a = 0.001 and n = 200. As Figure 1 shows, the AMSE of bagging estimator can

be over 10% smaller than constrained estimator. So the result we find is congruent with
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Table 3.1: Relative Mean Squared Error: evaluated at x = 1

n = 50 n = 100 n = 200

a NPP/NP NPPB/NP NPP/NP NPPB/NP NPP/NP NPPB/NP

0.001 0.655 0.694 0.603 0.630 0.665 0.689

0.005 0.919 0.924 0.922 0.915 0.922 0.912

0.010 0.992 0.995 0.992 0.990 0.963 0.945

0.050 1.000 1.005 1.000 1.008 1.000 1.007

0.100 1.000 1.006 1.000 1.007 1.000 1.010

0.500 1.000 1.005 1.000 1.007 1.000 1.014

the asymptotic theory.

3.6 Application: Forecasting Equity Premium

To put our proposed estimators in practice, we consider to forecast U.S. Equity

Premium. We adopt the data set used by Campbell and Thompson (2008). Equity

premium is defined as the difference between the total rate of return on the stock market

and the prevailing short-term interest rate. We consider use 11 predictors including

dividend price ratio (d/p), earning price ratio (e/p), smooth earning price ratio (se/p),

book to market ratio (b/m), return on equity (roe), treasure bill (t-bill), long term yield

(lty), term spread (ts), default spread (ds), inflation (inf ) and net equity issuance (nei).

We follow Campbell and Thompson (2008) to impose the constraint that the equity

premium should be positive. We consider the both annually and monthly forecasts

starting from 1960 and 1980 and rolling till the end of 2005. The in-sample size for
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Table 3.2: Relative Mean Squared Error: evaluated at x = 1.5

n = 50 n = 100 n = 200

a NPP/NP NPPB/NP NPP/NP NPPB/NP NPP/NP NPPB/NP

0.001 0.387 0.346 0.507 0.433 0.603 0.497

0.005 0.916 0.851 0.993 0.977 1.000 1.000

0.010 0.999 0.997 1.000 1.006 1.000 1.003

0.050 1.000 1.020 1.000 1.008 1.000 1.003

0.100 1.000 1.031 1.000 1.008 1.000 1.003

0.500 1.000 1.032 1.000 1.008 1.000 1.002

model estimation is kept fixed as 120. We report the results for Mean Squared Forecast

Errors (MSFE) relative to the historical mean (M) forecast in Table 3 and 4.

In Table 3, we first see that nonparametric forecasts generally outperform the

historical mean, except for the predictor ts starting from 1960 and inf starting from

1980. For these two predictors, however, we observe that imposing the positivity con-

straint reduces the MSFE, which is further reduced after the bagging procedure. Second,

positive constraint works for predictors including roe, t-bill, ldy, ts, ds and inf to further

reduce the MSFE of the nonparametric forecast. The maximum reduction in MSFE is

achieved by ds, which is about 6%. Third, bagging does not always work for annual

forecasts. The maximum gain that is achieved by bagging is about 2%, for the predictor

lty.

For monthly forecasts, we hardly see much gain using unconstrained nonpara-

metric methods. In Table 4, the only case that nonparametric MSFE gains, with 0.2%

reduction, is for the predictor d/p when forecasts start from 1960. However, imposing

73



Table 3.3: Relative Mean Squared Forecast Error: Annually Results

1960 1980

NP/M NPP/M NPPB/M NP/M NPP/M NPPB/M

d/p 0.690 0.714 0.721 0.624 0.648 0.655

e/p 0.860 0.859 0.865 0.833 0.821 0.820

se/p 0.885 0.886 0.898 0.771 0.771 0.773

b/m 0.751 0.772 0.770 0.945 0.947 0.949

roe 0.911 0.890 0.883 0.866 0.850 0.849

t-bill 0.934 0.903 0.895 0.916 0.915 0.908

lty 0.926 0.923 0.900 0.915 0.889 0.871

ts 1.071 1.031 1.018 0.923 0.929 0.932

ds 0.965 0.907 0.899 0.907 0.879 0.869

inf 0.990 0.975 0.979 1.044 1.013 1.013

nei 0.963 0.962 0.963 0.850 0.852 0.848

the positivity constraint always improves MSFE. This further confirms that the posi-

tivity constraint is consistent with the equity premium data. We further observe that

bagging works most of the time. Especially for the predictors d/p, e/p, b/m, roe, lty and

inf, bagging even help the nonparametric forecast to beat the “unbeatable” historical

mean. This gain is as large as 1.1% for lty, which is significant according to Campbell

and Thompson (2008).
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Table 3.4: Relative Mean Squared Forecast Error: Monthly Results

1960 1980

NP/M NPP/M NPPB/M NP/M NPP/M NPPB/M

d/p 0.998 0.996 0.995 1.024 1.010 0.995

e/p 1.011 0.998 0.996 1.013 1.010 0.994

se/p 1.050 1.004 1.003 1.149 1.081 1.054

b/m 1.001 1.000 0.995 1.036 1.033 1.029

roe 1.000 0.998 0.996 1.030 1.010 1.003

t-bill 1.144 1.048 1.038 1.067 1.019 1.012

lty 1.049 0.996 0.985 1.021 1.006 1.003

ts 1.026 1.011 1.024 1.090 1.054 1.046

ds 1.012 1.005 1.009 1.034 1.021 1.022

inf 1.011 0.999 0.997 1.034 1.025 1.023

nei 1.030 1.012 1.007 1.048 1.023 1.008

3.7 Conclusion

In this chapter, we presented the HM forecast with sign restriction. We es-

tablished the asymptotic properties of the constrained parametric and nonparametric

forecasts, and those of their bagging versions. Then we show the advantages of these

forecasts over the unconstrained counterparts in both simulation and the forecasting of

U.S. Equity Premium.
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Appendix

Proof of Main Results

Proof of Theorem 1.

We first prove (i). For any z ∈ R,

Pr
(
γ (n)σ−1 (ᾱ− α) < z

)
= Pr

(
γ (n)σ−1 (max{α̃, α1} − α) < z

)
= Pr

(
γ (n)σ−1 (max{α̃, α1} − α) < z|α̃ < α1

)
× Pr (α̃ < α1)

+ Pr
(
γ (n)σ−1 (max{α̃, α1} − α) < z|α̃ ≥ α1

)
× Pr (α̃ ≥ α1)

= Pr
(
γ (n)σ−1 (α1 − α) < z

)
× Pr (α̃ < α1) +

Pr
(
γ (n)σ−1 (α̃− α) < z|α̃ ≥ α1

)
× Pr (α̃ ≥ α1)

in which,

(1) when α > α1,

Pr
(
γ (n)σ−1 (α1 − α) < z

)
→ Pr (−∞ < z) = 1,

since limn→∞ γ (n) =∞, and when α = α1,

Pr
(
γ (n)σ−1 (α1 − α) < z

)
=


1, if z > 0

0, if z ≤ 0
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(2)

Pr (α̃ < α1)

= Pr
(
γ (n)σ−1 (α̃− α1) < 0

)
= Pr

(
γ (n)σ−1 (α̃− α+ α− α1) < 0

)
= Pr

(
γ (n)σ−1 (α̃− α) < γ (n)σ−1 (α1 − α)

)
→


Pr (Z < −∞) = 0, if α > α1

Pr (Z < 0) = F (0) , if α = α1

(3)

Pr
(
γ (n)σ−1 (α̃− α) < z|α̃ ≥ α1

)
=

Pr
(
γ (n)σ−1 (α̃− α) < z, γ (n)σ−1 (α̃− α1) ≥ 0

)
Pr (γ (n) (α̃− α1) ≥ 0)

=
Pr
(
γ (n)σ−1 (α̃− α) < z, γ (n)σ−1 (α̃− α) ≥ γ (n) (α1 − α)

)
Pr (γ (n) (α̃− α) ≥ γ (n) (α1 − α))

=


FZ(z)−FZ(0)

1−FZ(0) , if z > 0;

0, otherwise.

and (4)

Pr (α̃ ≥ α1) = 1− Pr (α̃ < α1)

= 1− Pr
(
γ (n)σ−1 (α̃− α) < γ (n) (α1 − α)

)
→


1− Pr (Z < −∞) = 1, if α > α1

1− Pr (Z < 0) = 1− F (0) , if α = α1

Therefore, combining (1)-(4) leads to, (i.a) when α > α1,

Pr
(
γ (n)σ−1 (ᾱ− α) < z

)
→ 1× 0 + FZ (z)× 1 = FZ (z)

and (i.b) when α = α1, for z > 0,

Pr
(
γ (n)σ−1 (ᾱ− α) < z

)
→ 1× FZ (0) +

FZ (z)− FZ (0)

1− FZ (0)
× (1− FZ (0)) = FZ (z)
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and for z = 0,

Pr
(
γ (n)σ−1 (ᾱ− α) < z

)
→ 1× FZ (0) + 0× (1− FZ (0)) = FZ (0) .

When z < 0,

Pr
(
γ (n)σ−1 (ᾱ− α) < z

)
→ 0.

Written compactly, we have

Pr
(
γ (n)σ−1 (ᾱ− α) < z

)
= FZ (z) 1{z>0}.

To prove (ii), note that

γ (n)σ−1 (ᾱ− α) = γ (n)σ−1 (α1 − α) + γ (n)σ−1 (α̃− α1) 1[γ(n)σ−1(α̃−α1)>0]

= γ (n)σ−1 (α1 − α) +

γ (n)σ−1 (α̃− α+ α− α1) 1[γ(n)σ−1(α̃−α+α−α1)>0]

→ dZb1[Zb>0] − b.

by Assumption A.1 and A.2.

Proof of Corollary 1.

The results are directly applications of Lemma 1,

E
[
Zb1[Zb>0] − b

]
= EZ1[Zb>0] + bE1[Zb>0] − b

= φ (b) + bΦ (b)− b,

and

V ar
[
Zb1[Zb>0] − b

]
= V ar

[
Zb1[Zb>0]

]
= E

{[
Zb1[Zb>0]

]2}− {E [Zb1[Zb>0]

]}2

= Φ (b) + bφ (b) + b2Φ (b)− [φ (b) + bΦ (b)]2 .
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Proof of Theorem 2.

Write

γ (n)σ−1 (α̂− α) = γ (n)σ−1
(
E∗
[
α̃∗1[α̃∗≥α1]

]
+ α1E

∗ [1[α̃∗<α1]

]
− α

)
= γ (n)σ−1

(
E∗
[
(α̃∗ − α) 1[α̃∗≥α1]

]
+ (α1 − α)E∗

[
1[α̃∗<α1]

])
.

Note that (1)

γ (n)σ−1
(
E∗
[
(α̃∗ − α) 1[α̃∗≥α1]

])
= E∗

[
γ (n)σ−1 (α̃∗ − α̃+ α̃− α) 1[α̃∗≥α1]

]
= E∗

[
γ (n)σ−1 (α̃∗ − α̃+ α̃− α) 1[γ(n)σ−1(α̃∗−α̃)≥γ(n)σ−1(α1−α)+γ(n)σ−1(α−α̃)]

]
d→ EW

[
W1[W≥−b]|Z

]
,

where W ∼ N (Z, 1).

Similarly, we get (2)

γ (n)σ−1 (α1 − α)E∗
[
1[α̃∗<α1]

] p→ −bFZ (−Zb) ,

by Slutsky’s theorem.

Putting together (1) and (2) gives the desired result,

γ (n)σ−1 (α̂− α)
d→ EW

[
W1[W≥−b]|Z

]
− bFZ (−Zb) .

Proof of Corollary 2.

(i) When Assumption Z holds,
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EW
[
W1[W≥−b]|Z

]
= EW [W ]− EW

[
W1[W<−b]|Z

]
= Z −

∫ −b
−∞

wϕ (w − Z) dw

= Z −
∫ −b−Z
−∞

(s+ Z)ϕ (s) ds

= Z − ZΦ (−b− Z)−
∫ −b−Z
−∞

sϕ (s) ds

= Z − ZΦ (−b− Z) + ϕ (−b− Z) ,

together with results in Theorem 2, we have

γ (n)σ−1 (α̂− α)
d→ Z − ZbΦ (−Zb) + ϕ (−Zb) .

(ii) Repeated application of Lemma 2 leads to results in (ii.a) and (ii.b).

Proof of Theorem 3.

By definition,

α̂ = E∗ᾱ∗

= E∗
[
α̃∗1[α̃∗≥α1]

]
+ E∗α1

[
1[α̃∗<α1]

]
≡ A1 +A2,

where

A2 = E∗α1

[
1[α̃∗<α1]

]
= α1E

∗1[α̃∗−α̃≥α1−α̃]

= α1EW 1{W≤−Zb} +Op

(
1

γ (n)

)
= α1Φ (−Zb) +Op

(
1

γ (n)

)
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A1 = E∗
[
α̃∗1[α̃∗≥α1]

]
= E∗

{
[α̃∗ − α̃] 1[α̃∗−α̃≥α1−α̃]

}
+ E∗α̃1[α̃∗−α̃≥α1−α̃]

≡ A11 +A12,

with

A11 = E∗
{

[α̃∗ − α̃] 1[α̃∗−α̃≥α1−α̃]

}
= E∗

{
[α̃∗ − α̃] 1[α̃∗−α̃≥α1−α+α−α̃]

}
=

1

γ (n)
E∗
{
γ (n) [α̃∗ − α̃] 1[γ(n)(α̃∗−α̃)≥γ(n)(α1−α+α−α̃)]

}
=

1

γ (n)
EW

{
W1[W≥γ(n)(α1−α+α−α̃)]

}
+ op

(
1

γ (n)

)
= Op

(
1

γ (n)

)
,

and

A12 = α̃E∗1[α̃∗−α̃≥α1−α̃]

= α̃EW 1{W>−Zb}

= α̃Φ (Zb) +Op

(
1

γ (n)

)
.

Combining the results completes the proof, i.e.,

α̂ = α̃Φ (Zb) + α1Φ (−Zb) +Op

(
1

γ (n)

)
.

Proof of Theorem 4, 5, 6, Corollary 3 and

The proofs follow similar to those for Theorem 1, 2, 3 and Corollary 1 and 2,

thus are omitted.

Lemmas

We collect useful lemmas that are used in the proof of the main theorems. We

use Z to denote a standard normal random variable with CDF Φ (·) and PDF ϕ (·), b
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to denote some constant, and 1{·} an indicator function. Define Zb = Z + b.

Lemma 1. (a) E1{Zb>0} = Φ (b). (b) E
[
Z1{Zb>0}

]
= ϕ (b). (c) E

[
Z21{Zb>0}

]
=

−bϕ (b)+Φ (b). (d) E
[
Zb1{Zb>0}

]
= ϕ (b)+ bΦ (b). (e) E

[
Z2
b 1{Zb>0}

]
= Φ (b)+ bϕ (b)+

b2Φ (b).

Proof of Lemma 1. (a) E1{Zb>0} = E1{Z>−b} =
∫∞
−b dΦ (z) = 1 − Φ (−b) =

Φ (b). (b) EZ1{Zb>0} =
∫∞
−b zϕ (z) dz = −

∫∞
−b ϕ

′ (z) dz = −ϕ (z) |∞−b = ϕ (b). (c)

EZ21{Zb>0} =
∫∞
−b z

2ϕ (z) dz = −
∫∞
−b zϕ

′ (z) dz = −zϕ (z) |∞−b+
∫∞
−b ϕ (z) dz = −bϕ (b) +

Φ (b). (d) E
[
Zb1{Zb>0}

]
= EZ1{Zb>0}+bE1{Zb>0} = ϕ (b)+bΦ (b). (e) E

[
Z2
b 1{Zb>0}

]
=

E
[
(Z + b)2 1{Zb>0}

]
= EZ21{Zb>0} + b2E1{Zb>0} + 2bE

[
Z1{Zb>0}

]
= Φ (b) − bϕ (b) +

b2Φ (b) + 2bϕ (b) = Φ (b) + bϕ (b) + b2Φ (b) .

Lemma 2. (a) Eϕ (−Zb) = ϕ ∗ ϕ (−b). (b) Eϕ2 (−Zb) = ϕ2 ∗ ϕ (−b). (c)

E [Zϕ (−Zb)] = −ϕ ∗ ϕ′ (−b). (d) E [ZΦ (−Zb)] = −ϕ ∗ ϕ (b). (e) E
[
Z2Φ (−Zb)

]
=

Φ ∗ ϕ′′ (−b) + Φ ∗ ϕ (−b). (f) E
[
Z2Φ2 (−Zb)

]
= Φ2 ∗ ϕ′′ (−b) + Φ2 ∗ ϕ (−b). (g)

E [ZΦ (−Zb)ϕ (−Zb)] = − (Φ · ϕ) ∗ ϕ′ (−b) .

Proof of Lemma 2.

(a) Eϕ (−Zb) = Eϕ (−b− Z) =
∫∞
−∞ ϕ (−b− z)ϕ (z) dz = ϕ ∗ ϕ (−b) .

(b) Eϕ2 (−Zb) = Eϕ2 (−b− Z) =
∫∞
−∞ ϕ

2 (−b− z)ϕ (z) dz = ϕ2 ∗ ϕ (−b) .

(c) E [Zϕ (−Zb)] = E [Zϕ (−b− Z)] =
∫∞
−∞ zϕ (−b− z)ϕ (z) dz = −

∫∞
−∞ ϕ (−b− z)ϕ′ (z) dz =

−ϕ ∗ ϕ′ (−b) .

(d) E [ZΦ (−Zb)] = E [ZΦ (−b− Z)] =
∫∞
−∞ zΦ (−b− z)ϕ (z) dz = −

∫∞
−∞Φ (−b− z)ϕ′ (z) dz

= −
{

Φ (−b− z)ϕ (z) |∞z=−∞ −
∫∞
−∞−ϕ (−b− z)ϕ (z) dz

}
= −ϕ ∗ ϕ (−b) .

(e) E
[
Z2Φ (−Zb)

]
= E

[
Z2Φ (−b− Z)

]
=
∫∞
−∞ z

2Φ (−b− z)ϕ (z) dz

=
∫∞
−∞Φ (−b− z) [ϕ (z) + ϕ′′ (z)] dz = Φ ∗ ϕ′′ (−b) + Φ ∗ ϕ (−b) .
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(f) E
[
Z2Φ2 (−Zb)

]
= E

[
Z2Φ2 (−b− Z)

]
=
∫∞
−∞ z

2Φ2 (−b− z)ϕ (z) dz

=
∫∞
−∞Φ2 (−b− z) [ϕ (z) + ϕ′′ (z)] dz = Φ2 ∗ ϕ′′ (−b) + Φ2 ∗ ϕ (−b) .

(g) E [ZΦ (−Zb)ϕ (−Zb)] = E [ZΦ (−b− Z)ϕ (−b− Z)] =
∫∞
−∞ zΦ (−b− z)ϕ (−b− Z)ϕ (z) dz

= −
∫∞
−∞Φ (−b− z)ϕ (−b− Z)ϕ′ (z) dz = − (Φ · ϕ) ∗ ϕ′ (−b) .
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Chapter 4

Forecasting Using Supervised

Factor Models

4.1 Introduction

High dimensional information in the presence of many predictors brings op-

portunities to improve the efficiency of a forecast by using much richer information

than conventionally used and to enhance the robustness of a forecast against structural

instability which can plague low dimensional forecasting. However, these opportunities

come with the challenges. One notable challenge is that the availability of overwhelming

information complicates the way we process it to make relevant instruments. For ex-

ample. a large number of predictors makes the ordinary least square (OLS) estimation

inadmissible.

Two directions can be marched to approach this challenge. The first direction

focuses on variable selection. Variable selection or subset selection refers to selecting

variables that are most predictive for a target variable of interest. Various variable

selection methods have been proposed such as forward and backward selection, stepwise
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regression, as presented in e.g. Miller (2002) and Hastie et al (2009). Recently the

literature is crowded by more sophisticated methods such as LASSO (Tibshirani 1996,

Zou 2006), Elastic Net (Zou and Hastie 2005, Zou and Zhang 2009), SCAD (Fan and

Li 2001), Bridge (Huang, Horowitz and Ma 2008), Least Angle Regression (Efron et

al 2004) and so on. All these methods seek to rank the variables and select a subset

of variables based on their ranks. The second direction assumes the existence of a low

dimensional latent factors in the high dimensional predictors. This approach includes

Principal Component Regression (PCR), Partial Least Square (PLS) Regression (de

Jong 1993, Garthwait 1994), Principal Covariate Regression (PCovR) (de Jong 1992),

and Combining Forecast Principal Components (CFPC) (Huang and Lee 2010).

Considering the two directions, a natural question arises. Is it worthwhile

to supervise the selection of predictors for a forecast target variable? Bai and Ng

(2008) raised this question. They reported that after variable selection (by either hard-

threshold method or soft-threshold method) PCR performs much better, reducing the

mean squared forecast error (MSFE) to a large extent.

However, the PCR accounts only for the variation of the selected predictors,

but does not directly employ the information about the forecast target. That is, no

matter which variable to forecast (whether it is output growth, unemployment, stock

returns, bond yields, housing price, interest rate, or inflation), the PCR uses the latent

factors of the predictors only. Hence, the next question arises whether we can take a

particular forecast target into the computation of latent factors. This chapter addresses

this question, by considering the three supervised factor models (PLS, PCovR, CFPC).

The question is whether the supervised factors from these supervised factor models are

more efficient and more robust in out-of-sample forecasting than the unsupervised factors

from PCR. We examine the properties of these factor models and compare their empirical
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performance with supervision on the variable section and on the factor computation.

The evidence is very clear. These supervisions do substantially improve the prediction.

The predictive ability of the three supervised factor models is much better than the

unsupervised PCR model. Interestingly, we find that the effect of supervision gets even

larger as forecast horizon increases and that the supervision helps a model achieving

more parsimonious structure. Among the three supervised factor models, the CFPC

performs best and is most stable. While PCovR is nearly as efficient and robust as

CFPC, PLS is neither as good nor stable as CFPC and PCovR. The performance of

PLS is not robust over different out-of-sample forecasting periods and over the different

forecast horizons.

The rest of the chapter is organized as follows. Section 4.2 introduces the

basic forecasting setup and preliminary material that is needed for the understanding

of factor models. Section 4.3 presents the unsupervised factor model, PCR. Section 4.4

examines the supervised factor models, PLS, PCovR and CFPC. Section 4.5 looks into

ways to supervise the factor computation together with variable selection. In Section

4.6, forecasting exercises are carried out to compare the performance of these forecasting

models for monthly CPI inflation in U.S. Section 4.7 concludes.

4.2 General Framework: Linear Factor Model

Consider the linear regression model,

y = Xβ + e, (4.1)

where y is a T × 1 vector, X is a T × N matrix of explanatory variables and β is the

true but unknown parameter. In case of N � T , or when columns of X are highly

correlated, the OLS estimation of the regression coefficient β is not feasible. Hence, for
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the purpose of forecasting, we consider the following factor model,

F = XR, (4.2)

XB = FP ′ + E, (4.3)

y = UQ′ +G. (4.4)

Here F is a T × r factor matrix. Equation (4.2) says that the factor is linear in X.

Each column of F is a factor, which is a linear combination of rows of X. The N × r

matrix R is the weight matrix attaching to X. U is the factor matrix for y, which is

usually assumed to be the same as F . However, the estimation of U varies as we take

different estimation approaches and it can be far different from F as in PLS. P and Q

are corresponding factor loading for X and y. The N×N matrix B is called “supervision

matrix”. Note that the factor structure (4.3) contains that of Stock and Watson (2002a)

and Bai (2003) as a special case, with B being the identity matrix. As it is formulated,

(4.4) is a linear factor model due to the linearity in both the construction of F in (4.2)

and the prediction equation (4.4). E and G are the error terms.

In the case that the number of factors used in (4.4) is less than or equal to

the number of observations, T , the coefficient Q can be estimated by OLS estimator Q̂,

with U being estimated by Û . The forecast is formed as

ŷ = ÛQ̂′. (4.5)

The factor models, PCR, PLS, PCovR and CFPC, that we consider in this

chapter all fall into this general framework of (4.2), (4.3) and (4.4), with different ways

of specifying R, U and B. For example, as will be seen in the next section, PCR takes

B as the identity matrix, and then forms the weight matrix R to be the matrix of

eigenvectors of X ′X, with U being F .
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The choice of the weight matrix and number of factors is the focus of factor

modelling. To choose the number of factors, the usual information criterion such as AIC

or BIC can be used. In the empirical section (Section 4.6), we will look into this aspect

in further details. We focus on the choice of weight matrix in the next two sections.

Section 4.3 will present a popular (unsupervised) factor model, PCR, which has been

extensively used in economic forecasting as well as in other social sciences. See Stock and

Watson (2002a). PCR is unsupervised and methods of supervising it will be presented

in Section 4.4.

4.3 Principal Component Regression Model

In this section we review how PCR can be used in forecasting. First we begin

by using the eigenvalue decomposition, and then in Section 4.4.1 we show PCR in an

alternative framework for the principal component analysis. The purpose of presenting

these two alternative framework is that we will use the former to introduce a supervised

factor model called CFPC in Section 4.4.3 and we will use the latter to introduce another

supervised factor model called PLS in Section 4.4.1.

Note that, PCR is when P = R,B = I and U = F in the framework in Section

4.2, namely:

F = XR,

X = FR′ + E,

y = FQ′ +G,

where R is the matrix of eigenvectors of X ′X. Stock and Watson (2002a) considered

the case when y is one variable with (X, y) admitting the factor representation of (4.3)

and (4.4). Equation (4.4) specifies the forecast equation while (4.3) gives the factor
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structure. The factor F in (4.2) is estimated using principal components and then it is

used to form the prediction from (4.4) for y.

Proposition 1. Let the N × r (r ≤ min(T,N)) matrix R1 be the first r eigenvectors,

corresponding to the largest r eigenvalues Λ1 = diag(λ1, . . . , λr) of X ′X. Then, (i) the

PCR estimator of F is

F̂ = XR1,

(ii) the OLS estimator of the factor loading for y in (4.4) is

Q′ = Λ−1
1 R′1X

′y,

and (iii) the PCR prediction of y is

ŷPCR = XR1Λ−1
1 R′1X

′y. (4.6)

�

The proof is in Appendix C, where the notation used in Proposition 1 is also

established. For example, R1 denotes a matrix containing the first r columns of R, and

similarly for Λ1. Note that XR1 is called the first r principal component of X. Hence,

the factors F is estimated by the principal components of X.

The main criticism on PCR goes as follows. In the choice of the weight matrix

R, PCR imposes only the factor structure for X. This is naive since it does not take

into account the dependent variable y. That is, no matter what y to forecast, PCR use

the same fixed combination of X to form the prediction equation. Ignoring the target

information of y in the computation of the factors leads to inefficient forecast of the

y. Therefore, a supervision on the choice of weight matrix and thus supervised factor

models will be called for to make more efficient predictions. This issue is to be addressed

in the next section.
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4.4 Supervised Factor Models

In this section we consider three supervised factor models, the partial least

square (PLS), principal covariate regression (PCovR), and the combining forecast-principal

component (CFPC). The analysis here is based on the factor framework in Section 4.2.

The three models are generalization of the PCR in different ways to supervise the factors

for the forecast target y.

4.4.1 Partial Least Square Regression

Although originally proposed by Wold (1966) in the field of econometrics, the

partial least square (PLS) regression has rarely been used in economics but rather pop-

ular in chemometrics. Empirical results in chemistry show that PLS is a good alterna-

tive to multiple linear regression and PCR methods. See Wold et al (1984), Otto and

Wegscheider (1985), and Garthwait (1994) for more details. Since PLS also supervises

the factor computation process, it raises the possibility that it can outperform PCR,

which is a reason that we include the PLS in this chapter.

There have been several algorithms designed for PLS, among which NIPALS

and SIMPLS are most notable ones. de Jong (1993) has shown that results obtained

with NIPALS and SIMPLS algorithms turn out to be the same for the univariate de-

pendent variable case. The two algorithms give slightly different results for the case of

multivariate dependent variable (due to the difference in the deflation of information

matrix). In the next subsection we review the NIPALS algorithm briefly to show PLS

in the general framework of factor models, (4.2), (4.3) and (4.4), in Section 4.2. The

purpose of the next subsection is to show that PLS can be viewed as a generalization of

PCR.
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4.4.1.1 NIPALS algorithm for PCR and PLS

Alternative to the eigenvalue decomposition used in Proposition 1 for PCR,

we can use the Nonlinear Iterative PArtial Least Square (NIPALS) algorithm developed

by Wold (1966, 1975) to perform the principal component analysis, which decomposes

matrix X of rank r as a sum of r matrices of rank 1 as

X = M1 +M2 + . . .+MN

= f1p
′
1 + f2p

′
2 + . . .+ frp

′
r + fr+1p

′
r+1 + . . .+ fNp

′
N

≡ FP ′ + Er, (4.7)

where the second line uses the fact that the rank 1 matrices Mh can be written as

outer products of two vectors, fh (score) and p′h (loading), and F = [f1, f2, . . . , fr],

P ′ = [p′1, p
′
2, . . . , p

′
r]. NIPALS does not compute all the principal components F at once.

But it calculates f1 and p′1 from X, then the outer product f1p
′
1 is subtracted from X,

and the residual E1 is calculated. This residual is used to calculate f2 and p′2, and so

on. The formal NIPALS algorithm for PCR is stated in Appendix A, where it is shown

that, on convergence, the NIPALS algorithm gives the same principal components as

derived by the eigenvalue decomposition of Proposition 1. The algorithm does converge

in practice.

Now, to see how this algorithm can be extended from PCR to PLS, let us turn

back to the regression problem (4.4). The NIPALS algorithm can work for both X and

y separately to extract factors as in (4.7). That is,

X = FP ′ + Er =

r∑
h=1

fhp
′
h + Er,

y = UQ′ +Gr =

r∑
h=1

uhq
′
h +Gr. (4.8)
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Thus we can form an inner relationship between x-score, f , and y-score, u as

uh = bhfh + εh, (4.9)

for each pair of components. OLS estimation can be used for (4.9) thus we could use

(4.8) to form a prediction with x-scores, f , extracted with newly observed x.

However, note that the decomposition process in (4.8) still does not incorpo-

rate the valuable information of y when forming the x-scores. Thus we consider the

modification of the decomposition of X and y, using NIPALS, as stated in Appendix B.

Note that in the special case of y = X, x-factors extracted by NIPALS gives exactly the

principal components of X as one might have already conjectured. Thus in this case,

NIPALS for PLS is the same as NIPALS for PCR. See Geladi and Kowalski (1986) and

Mardia et al (1980) for an excellent discussion for NIPALS algorithm and its adaptations

for PCR and PLS.

4.4.2 Principal Covariate Regression

Principal Covariate Regression (PCovR) is a novel prediction method pro-

posed by de Jong and Kiers (1992). “Covariate” was termed to stress that, apart from

PCR, the components should vary with the dependent variable y. The attractiveness of

PCovR features its combination of PCR on X and a regression on y by minimizing an

appropriately defined least square loss function as follows,

l (α1, α2, R, P,Q) ≡ α1 ‖ X −XRP ′ ‖2 +α2 ‖ y −XRQ′ ‖2 , (4.10)

where α1 and α2 are the (non-negative) weights attached to PCR on X and regression

of y, respectively. That is, the choice of the factor weight matrix R depends not only on

the PCR of X, but also on the regression equation (4.4). Then the factor is computed

from F = XR as in (4.2).
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Some special cases of PCovR needs to be pointed out here. For α1 = 0,

the (4.10) emphasizes completely on fitting y. Specifically, when dependent variable is

univariate, the first component t1, can be chosen as the component being maximally

correlated with y. And remaining components, which are irrelevant, are the principal

components of the part of X that is orthogonal to y. Another extreme is when α2 = 0.

In this case, (4.10) emphasizes completely on the principal component analysis on X or

PCR as described in Section 4.3.

Note that the minimization of (4.10) is nonlinear in nature due to the prod-

uct terms RP and RQ. An algorithm for the estimation of the unknown parameters

(R,P,Q) is given in de Jong (1993). Or see Heij, Groenen and van Dijk (2007) for an

explicit SVD based algorithm.1

Although supervision is incorporated in PCovR by allocating weight to the

regression (4.4), there is no guidance regarding the optimal choice of the weight attached.

Thus choice of α1 and α2 can only be done on rather arbitrary grounds. In practice,

one might need consider a set of specifications for α1 and α2, as did in Heij, Groenen

and van Dijk (2007).

For prediction purpose, we propose an estimation of optimal weights by a

grid searching algorithm, with the exploit of information available. Note that only the

relative weights attached matter here. We consider a normalization of the weights,

α1 = w/ ‖ X ‖2 , and α2 = (1− w) / ‖ y ‖2 .

Therefore, we need to consider a choice of w instead of choices of α1 and α2 simulta-

neously. In Section 4.6, we choose the value of w from {10−6, 10−4, 0.1, 0.5, 0.9} that

minimizes model selection criterion, such as BIC.

1We would like to thank Christiaan Heij and Dick van Dijk for kindly sharing their Matlab code for

PCovR.
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4.4.3 CFPC

This subsection discusses another form of supervision on the computation of

factors. This is a method quite different from those examined earlier in this section.

The two previous supervised models directly compute the factors, while CFPC first

computes forecasts and then computes the principal components of the forecasts as a

tool to combining forecasts.

Proposition 2. Define ŷi = bixi using xi from the i-th column of X = (x1, x2, . . . , xN ) ,

and let Ŷ = (ŷ1, ŷ2, . . . , ŷN ) ≡ XB with B = diag(b). Let L1 be the N × r eigenvectors

corresponding to the r largest eigenvalues Ω1 = diag(ω1, ω2, . . . , ωr) of Ŷ ′Ŷ = B′X ′XB.

Then (i) the CFPC estimator of the factor F of XB is

F̂ = Ŷ L1 = XBL1

i.e., R is estimated by BL1, (ii) the OLS estimator of the factor loading for y in (4.4)

is

Q̂ = Ω−1
1 L′1Ŷ

′y = Ω−1
1 L′1BX

′y,

and (iii) the CFPC prediction of y is

ŷCFPC = Ŷ L1Ω−1
1 L′1Ŷ

′y = XBL1Ω−1
1 L′1BX

′y. (4.11)

�

The proof is in Appendix C, where further notation used above in Proposition

2 is also established.

Remark 1 (Combining forecasts with many forecasts): Although Proposition 2 is

explicitly stated for Ŷ = XB, the result is useful when we observe only Ŷ but not X
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(e.g., survey of professional forecasters). The CFPC forecast, ŷCFPC = Ŷ L1Ω−1
1 L′1Ŷ

′y,

would then produce a method of combining N forecasts in Ŷ when N →∞. �

Remark 2: The biggest difference between CFPC and PCR lies in the set of variables

we use to extract the principal components. In PCR, the principal components are

computed from x’s directly, without accounting for their relationship with the forecast

target variable y. This problem with PCR leads Bai and Ng (2008) to consider first

selecting a subset of predictors (“targeted predictors”) of x’s that are informative in

forecasting y, then using the subset to extract factors. In contrast, since CFPC combines

forecasts not the predictors, the principal components in CFPC are computed from the

set of individual forecasts (ŷ1, ŷ2, . . . , ŷN ) that contain both information on x’s and on

all past values of y. This actually provides us further intuitions on why CFPC may be

more successful than PCR. �

Remark 3: Chan, Stock and Watson (1999) and Stock and Watson (2004) choose

the factor analytic structure where the set of individual forecasts permits one single

factor. The specifications for individual forecasts in CFPC, however, differ from those

in Chan, Stock and Watson (1999) and Stock and Watson (2004) in that individual

forecasting models considered here use different and non-overlapping information sets,

not a common total information set as assumed in Chan, Stock and Watson (1999) and

Stock and Watson (2004). �

Remark 4 (Comparison of PCR and CFPC when X has full column rank): Instead

of using original predictors X to form principal components, CFPC uses the predicted

matrix of y, Ŷ . This is where supervision is incorporated. It is interesting to note that

there are cases that PCR and CFPC give the same prediction. Note that in case of

N ≤ T and when X has full column rank, and each column of X is predictive for y
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(bi 6= 0 for all i = 1, . . . , N), we could exhaust all principal components of X and those

of Ŷ . Thus we have, from (4.25),

R1Λ−1
1 R′1 =

(
X ′X

)−1
. (4.12)

And also

BL1Ω−1
1 L′1B = B

(
Ŷ ′Ŷ

)−1
B = B

(
BX ′XB

)−1
B =

(
X ′X

)−1
, (4.13)

where the last equality follows from the fact that B is also a full rank diagonal matrix.

Thus, combining (4.6), (4.11), (4.12) and (4.13) gives

ŷPCR = ŷCFPC.

Therefore, PCR and CFPC are equivalent in this case when X has a full column rank.

When X does not have a full column rank, the principal components of the forecasts in

CFPC and the principal components of predictors in PCR will differ from each other,

because the linear combinations maximizing covariances of forecasts (for which the su-

pervision operates for the relationship between y and X) and the linear combinations

maximizing the covariances of predictors (for which there is no supervision) will be

different. �

Remark 5 (Regression one-at-a-time): CFPC described here employs the regression of

y on xi one-at-a-time to formulate the prediction matrix Ŷ , which will be justified in

Proposition 3 below. It is simple to implement and computationally appealing. Never-

theless, it can be generalized in various ways. For example, an information based model

averaging approach in line with Tu (2011) could be developed. �

Intuitively and computationally appealing, CFPC also enjoys some theoretical

justification as presented as follows. Note that, in the case that N ≤ T , a regression of
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y on X would give

ŷ = x1b1 + x2b2 + . . .+ xNbN ≡ XB, (4.14)

where B = diag(b) . Further from (4.11) we define a function f(·) such that

b = BL1Ω−1
1 L′1BX

′y = diag (b)L1Ω−1
1 L′1diag (b)X ′y ≡ f(b). (4.15)

We now show that the true parameter β is an asymptotic fixed point for f (·) , by

construction of B = diag(b) . We first state assumptions:

Assumption 1: (a) The process {Xt, yt} is jointly stationary and ergodic. (b) E [X ′t(yt −Xtβ)] =

0. (c) β is an interior point of parameter space Θ. (d) Assumptions A-F of Bai (2003)

are satisfied for the factor structure (4.3) with B = diag(β). (e) ||Σ−1
XBΣE || = Op (N/T ),

where Σξ denotes the variance-covariance matrix of ξ, and || · || denotes a matrix norm.

(f) N2/T → 0, as N,T →∞.

Proposition 3: Under Assumption 1, the true parameter β in (4.1) is an asymptotic

fixed point for f (·) defined in (4.15), that is,

(f (β)− β)i = Op

(
max

{
N√
T
,
N2

T

})
= op (1) for all i,

where ai denotes the i-th element of a. �

The proof is in Appendix C.

Remark 6 (fixed point): Proposition 3 justifies the construction of the supervision

matrix B = diag(b) in Proposition 2. When we start with B = diag(b) such that b is

close to β, CFPC would give an estimate of β, f (b) , which is close enough to the true

value β in the sense of Proposition 3. �
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4.5 Supervising Factor Models with Variable Selection

The previous section looks into supervised factor models from the perspective

of supervising the formation of latent factors for a given set of original predictors. Before

that step, we can consider selecting a subset of the predictor variables. Boivin and Ng

(2006) raise the concern of the quality of data when researchers are ambitious to employ

all data available from large panels. Through simulation and application examples, they

show that factors extracted from a smaller set of variables are likely to perform no worse,

and in many cases even better, in forecasting than those extracted from a lager set of

series.

To forecast using a subset of variables when there are too much information

has been a popular research topic and many methods have been developed to tackle the

issue – see Miller (2002) and Hastie et al (2009). Variable selection in forecasting in

the presence of many predictors is not as simple as in an AR model for which the lags

have a natural order. Predictors are naturally not in order. Thus we can not determine

which variables should be included and which are not unless we find ways to rank them.

The principles used to rank the predictors can be in two categories: hard-thresholding

and soft-thresholding.

4.5.1 Hard-Threshold Variable Selection

The method of hard-thresholding is to use a statistical test to determine if a

particular predictor is significant in forecasting, without considering the effect of other

predictors. Bair et al (2006) take this approach. (Although their model is termed as

supervised principal component model, their supervision is in selection of predictors but

not in computation of the principal components. Supervision there is only performed
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via variable selection, but not directly through the factor computation process.) In this

chapter, lags of yt are included as regressors with each individual xit to get the individual

t-statistic as an indicator of the marginal predictive power of xit, following Bai and Ng

(2008). It involves the following steps: For each i = 1, ..., N , run the regression of yt+h

on a constant, four lags of {yt−j}3j=0 and xit. Let ti denote the t-statistic associated

with the i-th predictor xit. Select those variables with ti larger than a threshold value at

a given significance level and apply factor models to them. As we show in the empirical

application of Section 4.6, the hard-threshold variable selection plays a critical role in

forecasting in the sense that it can substantially reduce MSFE.

4.5.2 Soft-Threshold Variable Selection

Hard-threshold variable selection is highly likely to choose variables similar to

each other (so called the “group effect”). In this sense, important information may

be lost during the selection process. In contrast to the hard-thresholding which uses a

single index to separate qualified predictors from others, soft-thresholding employs more

flexible indices to select variables. There are several variable selection methods of this

kind, see Tibshirani (1996), Efron et al (2004), and Zou and Hastie (2005) among many

others.

In this chapter, we use the least angle regression or LARS of Efron et al (2004).

LARS has gained its popularity in forecasting literature due to its comparative advan-

tages. First, it gives relative ranking of predictors unlike hard-thresholding which gives

the marginal predictive power of each predictor. Second, it avoids the group effect.

Third, it is very fast and has the same order of computation complexity as OLS.

The LARS algorithm proceeds roughly as follows. Like classical forward se-

lection we first find the predictor, say xj1 which is most correlated to the response y.
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However, instead of taking the largest step in the direction of xj1 as in forward selection,

we stop at the point where some other predictor, say xj2 , has as much correlation with

the current residual. Instead of continuing along xj1 , LARS proceeds in a direction

equiangular between the two predictors until a third variable xj3 makes its way into the

“most correlated” set. LARS then proceeds equiangularly between xj1 , xj2 and xj3 , that

is, along the “least angle direction,” until a fourth variable enters, and so on. Readers

interested in LARS are referred to Efron et al (2004) for detailed description of the

algorithm and its satisfactory properties.

In the next section, we apply the LARS algorithm to first select 30 variables,

as in Bai and Ng (2008), from the 131 predictors. Then we use the four factor methods,

PCR, PLS, PCovR, CFPC, to the 30 variables in forecasting the monthly CPI inflation

of U.S.

4.6 Empirical Applications

This section compares the methods described in the previous two sections.

Variable of interest to forecast is the logarithm of PUNEW, i.e., CPI all items, using

some or all of the 132 monthly time series predictors. Data used are available on Mark

Watson’s website: http//www.princeton.edu/mwatson. The data range from 1960:1 to

2003:12, with 528 monthly observations in total. These data are transformed by taking

logs, first or second differences as suggested in Stock and Watson (2004). Following

Stock and Watson (2002b), define

yht+h =
1200

h
· (yt+h − yt)− 1200 · (yt − yt−1), (4.16)

and

zt = 1200 · (yt − yt−1)− 1200 · (yt−1 − yt−2).
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For h = 1, 3, 6, 12, 18, 24, 30 and 36, we form the factor-augmented forecast as, given

information at time t,

ŷt+h|t = α̂0 + α̂′1(L)zt + β̂′1(L)f̂t,

Here, zt is the set of lagged variables and f̂t latent factors. The number of lags of zt

and f̂t are determined by the BIC with the maximum number of lags set to six when

the sample size permits, and is reduced to four otherwise. Although we are forecasting

the change in inflation, we will continue to refer to the forecasts as inflation forecasts.

As parameter instability is salient in economic time series, we employ two

ways to tackle this difficulty in evaluating different forecasting schemes. First, note

that for each time period t, the predictors are selected and the forecasting equation is

re-estimated after new factors are estimated. We do not restrict the optimal predictors

to be the same for every time period. Second, we consider 9 forecast subsamples:

1970:1-1979:12, 1980:1-1989:12, 1990:1-1999:12, 1970:1-1989:12, 1980:1-1999:12, 1970:1-

1999:12, 1970:1-2003:12, 1980:1-2003:12, 1990:1-2003:12. For example, for subsample

1970:1-1979:12, the first h-step forecast of 1970:1 is based on estimation up to 1960:3-

1970:1-h. The last forecast is for 1979:12, and it employs parameters estimated for

the sample 1960:3-1979:12-h. That is, recursive scheme is used here, as in Bai and Ng

(2008).

MSFE are used to examine the performance of different forecasting procedures.

We denote RMSFE as the ratio of the MSFE for a given method relative to the MSFE

of PCR model. Therefore, RMSFE less than one means that the specified method

outperforms the PCR model in the forecasting practice considered.

Tables 1-8 About Here
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Tables 1-8 report RMSFE for each of forecast horizons h = 1, 3, 6, 12, 18, 24, 30, 36.

Column 1 lists the 9 out-of-sample forecasting subsamples. We report three panels of

the RMSFE results depending on whether or how we conduct the variable selection prior

to applying the factor models. The first panel of the results reported in Columns 2-5

is for factor models without variable selection, where we use the all 131 predictors to

estimate the latent factors for PCR, CFPC, PLS, PCovR. Columns 6-9 and Columns

10-13 present RMSFE for the factor models after selecting the predictors. The second

panel reported in Columns 6-9 uses the hard-threshold variable selection at 5% level

with the critical value 1.65 for t statistics. To keep in line with Bai and Ng (2008), the

third panel of the results reported in Columns 10-13 uses the soft-thresholding variable

selection via the LARS algorithm to select 30 variables. Note that PCR without variable

selection is used as a benchmark (in each row) in computing the relative MSFEs and

thus the values for PCR in Column 2 is 1.000 for all cases.

4.6.1 Supervision on Computation of Factors

One of the main objectives of this chapter is to examine the effect of supervision

on the computation of latent factors. The main conclusion over this topic is summarized

as below.

1. Although not reported in the table, the performance of AR(4) is generally as good

as AR model with number of lags selected by BIC. However, the predictability

of the univariate AR model decreases as forecasting horizon increases, reporting

larger MSFE as horizon getting larger. This finding reasserts the need to use more

information than just the target variable in economic time series forecasting.

2. CFPC is better than PCR, no matter variable selection is performed or not. Look-
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ing at Column 3 for CFPC from Tables 1-8, for 62 out of 72 cases without variable

selection, CFPC reports a RMSFE less than 1. In the case of hard threshold vari-

able selection, 63 out of 72 cases favor CFPC (Column 7 for CFPC from Tables

1-8). Also, the LARS variable selection reports 64 out of 72 cases that are in favor

of CFPC over PCR (Column 11 for CFPC from Tables 1-8).

3. PLS is not doing as well as one might expected. From Table 1, we can see that

supervision on factor computation does not make PLS much better than PCR. And

it is seen in Tables 1 and 2 that PLS could be very bad and unstable, reporting

RMSFE larger than 2. However, as horizon increases, as in Table 6-8, PLS indeed

improves over PCR a lot, reducing RMSFE even below 70%. Variable selection

also improves the performance of PLS over PCR, as can be seen in the last two

panels of Tables 1-8.

4. PCovR performs better than PCR most of the cases, with 64 out of 72 cases

reporting RMSFE lower than 1 without variable selection. Its better predictability

is also revealed after variable selection. For example, for h = 36, the subsample

90:1-99:12 reports RMSFE of PCovR as 0.187 while that of PCR is 0.834, with

hard-thresholding variable selection.

By comparing the RMSFEs in each of the three panels from the tables, we con-

clude that, the supervision on the computation of factors does improve the predictability

of the naive principal component. This improvement is quite substantial as noted above.

4.6.2 Supervision on Predictors

Next, let us take a look at the effects of variable selection on the predictability

of factor models.
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1. One notable observation from Tables 1-8 is that, variable selection does not make

much difference for PCR, with RMSFE closely around 1 most of the cases. This

finding is consistent with that reported in Stock and Watson (2002b).

2. Hard threshold variable selection can make CFPC even better. Most of the cases,

hard threshold variable selection reports RMSFE smaller than that without vari-

able selection. To the contrary, more than often, the soft-thresholding LARS

variable selection worsens the predictive ability of CFPC.

3. PLS generally reports lower MSFE when variable selection is carried out in the

first step. Hard threshold even makes PLS the best method for several cases. See

Table 8 for the second and fourth subsamples for example.

4. For PCovR, the LARS variable selection makes it the best for several subsample

when h = 1. For all other cases, hard threshold works better as a variable selection

procedure to improve the performance of PCovR.

4.6.3 Effects of “Double” Supervision

It would be interesting to see that the above two parts on supervision leads to

the essence of this chapter. The RMSFE reported for factor models after supervision

on the computation of factors and also the selection of variable are generally lower than

1, as can be seen in the last two panels of Tables 1-8. Exception to this conclusion is

for PLS with short forecasting horizons. In most of the cases, the reduction of MSFE

relative to PCR is clearly noticeable. After variable selection, CFPC reports RMSFE

as low as 40% in a lot of cases. PCovR can reduce RMSFE to be as low as 18.7%. The

findings affirm the conjecture raised in Section 1 that the double supervision in selection

of predictors and formation of latent factors should be carried out in forecasting practice.
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4.6.4 Supervision and Forecasting Horizon

The effect of supervision over forecasting horizons h is very clear, which can be

seen by comparing the results across the eight tables. That can be visually presented by

reporting the RMSFE numbers as a function of h. Figures 1-3 plot RMSFE over the eight

values of forecast horizons h = 1, 3, 6, 12, 18, 24, 30 and 36. Figure 1 presents the RMS-

FEs without variable selections for each of nine out-of-sample forecasting subsamples.

Figures 2-3 do the same with hard-thresholding variable selection and soft-thresholding

variable selection, respectively. One salient feature of these figures is that the lines

connecting the RMSFEs over h are generally downward sloped for the three supervised

factor models. That is, the superiority of supervised factor models is getting more and

more significant as the forecasting horizon increases. On the other hand, the unsuper-

vised factor model, PCR, has RMSFEs in Figures 2-3 moving up and down over the

horizons with no slope pattern over forecasting horizon h.

Figures 1-3 About Here

Note that the forecast target variable yht+h defined in (4.16) is the average

monthly changes over the h months, and it may be easier to forecast when forecasting

horizon h is longer as it becomes smoother. The three supervised factor models are able

to capture this feature in yht+h while PCR fails to do so. We also observe (although

not reported for space) that neither AR(4) or AR models with number of lags selected

by BIC capture this feature. This is seen from the RMSFE values for these univariate

models, which are generally increasing over the forecasting horizons. Hence, it seems

that richer information from multivariate environment benefits the factor models even
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more especially for longer forecast horizons when they are supervised on the selection

of the variables and on the computation of their latent factors.

4.6.5 Supervision and Number of Factors

Another important finding of this chapter (not reported) is that, for supervised

factor models, the number of factors selected by BIC is less than that of PCR. This

finding also favors the previous result that, with supervision, factor models tend to form

better latent variables and thus need less indices to describe “the state of the economy”,

as termed in Heij, Groenen and van Dijk (2007). They report the result for PCovR and

this chapter validates their conclusion for PLS and CFPC.

4.7 Conclusions

In exploiting high dimensional information from large number of predictors we

wish to improve efficiency of a forecast and to enhance the robustness of a forecast.

This chapter compares the forecasting performance of factor models in such data-rich

environment. Our findings suggest that one can profit from supervising the computation

of factors. Computation of latent factors may be doubly supervised via variable selection.

Variable selection is generally useful for the supervised factor models. Interestingly, the

effect of supervision gets even larger as forecast horizon increases and the supervision

also helps a factor model achieving more parsimonious factor structure. Among the

supervised factor models compared in this chapter, CFPC stands out for its superiority

in predictive ability and its stability in performance. In general, the CFPC model

generates most efficient and robust forecasts.
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Appendix A: NIPALS Algorithm for PCR

The intuition behind the working of the nonlinear iterative algorithm for PCR

goes as follows. Formally,

E1 = X − f1p
′
1, E2 = E1 − f2p

′
2, . . .

Eh = Eh−1 − fhp′h, . . . Er = Er−1 − frp′r. (4.17)

The NIPALS follows the steps for the computation of fh:

1. take a vector xJ from X and call it fh:

2. normalize fh: f ′h = f ′h/ ‖ f ′h ‖

3. calculate p′h:

p′h = f ′hX (4.18)

4. normalize p′h : p′h = p′h/ ‖ p′h ‖

5. calculate fh:

fh = Xph (4.19)

6. compare fh in step 2 with that obtained in step 5. If they are the same, stop.

Otherwise go to step 2.

Note that the evolution of p′h and fh are described by (4.18) and (4.19). Sub-

stitute (4.19) into (4.18), we have

cp′h = (Xph)′X, (4.20)

where c is a constant that accounts for the normalization in step 4. This is equivalent

to

0 =
(
X ′X − cIr

)
ph. (4.21)
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This is exactly the eigenvalue/eigenvector equation for X ′X in PCR. Hence, the NIPALS

algorithm gives the same principal components as derived by eigenvalue decomposition.
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Appendix B: NIPALS Algorithm for PLS

For the X block: (1) take ustart = some yJ (instead of some xJ); (2) normalize

u: u = u/ ‖ u ‖; (3) p′ = u′X; (4) normalize p′: p′ = p′/ ‖ p′ ‖; (5) f = Xp.

For the y block: (6) q = f (instead of some yS); (7) normalize q: q = q/ ‖ q ‖;

(8) u′ = y′q; (9) normalize u′: u′ = u′/ ‖ u′ ‖; (10) compare f in step 5 with that in the

preceding iteration step. If they are equal (up to a tolerance level) then stop; otherwise

go to step 2.

By exchanging scores in step 1 and 6, the above algorithm supervises the

computation of the x-score thus should improve the predictability of PLS over PCR.

For the purpose of prediction, we can rewrite (4.8) as

Eh = Eh−1 − fhp′h; X = E0,

Gh = Gh−1 − uhq′h; y = G0,

and a mixed relation is available as

Gh = Gh−1 − bhfhq′h,

where bh = u′hfh/ (f ′hfh). Therefore,

ŷ =
∑

ûhq
′
h =

∑
bhfhq

′
h = FB0Q

′, (4.22)

where B0 = diag(b1, . . . , br).

Note that the x-score extracted in the hth iteration, fh, is a linear combination

of Eh−1, instead of as a direct function of original data matrix X. de Jong (1993)

gives a direct relationship as F = XR ≡ XW (P ′W )−1, where P = [p1, . . . , ph] and

W = [E0u1, . . . , Eh−1uh]. Thus, (4.22) can be used for prediction as

ŷPLS = XRB0Q
′. (4.23)
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That is, we have R = W (P ′W )−1 , U = FB0 for the linear factor model framework,

while β in (4.1) is estimated by b = RBQ′.
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Appendix C: Proofs of Propositions

For matrix decomposition used later for proof, we adopt the following con-

vention: for a T ×N matrix C, it is decomposed in to two blocks C1 and C2, with C1

containing its first r columns c1, . . . , cr and C2 containing the rest. That is, C ≡ [C1, C2] ,

where C1 = [c1, . . . , cr] and C2 = [cr+1, . . . , cN ] .

Proof of Proposition 1: The eigenvalue decomposition of X ′X is

X ′X = RΛR′ = R1Λ1R
′
1 +R2Λ2R

′
2, (4.24)

where Λ = diag(Λ1,Λ2) is the eigenvalue matrix and R = [R1, R2] is the eigenvector

matrix corresponding to Λ. As R is orthonormal with R′R = I,

R′1X
′XR1 = Λ1. (4.25)

Stock and Watson (2002ab) has shown that the true factors can be consistently estimated

by the first r principal components of X. Therefore, we adopt that F̂ = XR1. With

Û = F̂ , the OLS estimator of the coefficient Q, r × 1 vector, is given as

Q̂ =
(
F̂ ′F̂

)−1
F̂ ′y

=
(
R′1X

′XR1

)−1
R′1X

′y (4.26)

= Λ−1
1 R′1X

′y.

Therefore, PCR forecast is formed as

ŷPCR = F̂ Q̂ = XR1Λ−1
1 R′1X

′y.

�

Proof of Proposition 2: Consider a linear regression model for each i = 1, 2, . . . , N ,

y = xibi + ui, (4.27)
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where bi is estimated by

bi =
(
x′ixi

)−1
x′iy. (4.28)

Thus the prediction could be formed as

ŷi ≡ xibi. (4.29)

To write (4.29) in compact form,

Ŷ = [ŷ1, ŷ2, . . . , ŷN ] = [x1b1, x2b2, . . . , xNbN ] ≡ XB, (4.30)

where B = diag(b) = diag(b1 . . . bN ) is the diagonal matrix with b1, b2, . . . , bN sitting on

the diagonal. Parallel to (4.24), we also have its eigenvalue decomposition of Ŷ ′Ŷ as

follows,

Ŷ ′Ŷ = LΩL′ = L′1Ω1L1 + L2Ω2L
′
2.

The principal component estimator of F which is the first r principal components of Ŷ ,

is therefore given as F̂ = Ŷ L1 = XBL1. Then consider the following regression,

y = F̂Q+ ε = Ŷ L1Q+ ε. (4.31)

The OLS estimation of the coefficient Q, r × 1 vector, in (4.31) is given as

Q̂ =
(
F̂ ′F̂

)−1
F̂ ′y =

(
L′1BX

′XBL1

)−1
L′1BX

′y = Ω−1
1 L′1BX

′y. (4.32)

Therefore, a forecast can be formed as

ŷCFPC = Ŷ L1Q̂ = XBL1Ω−1
1 L′1BX

′y. (4.33)

�

Proof of Proposition 3: Rewrite (4.3) as

XB = C + E, (4.34)
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where C = FP ′, is the common component of XB. Note that C is estimated using

principal component method as

C̃ = F̂ P̂ ′

= XBL1(L′1BX
′XBL1)−1L′1BX

′XB

= XBL1Ω−1
1 L′1BX

′XB.

Therefore, we have

C̃ ′C̃ = BX ′XBL1Ω−1
1 L′1BX

′XBL1Ω−1
1 L′1BX

′XB

= BX ′XBL1Ω−1
1 L′1BX

′XB,

which leads to

J ≡ B
(
X ′X/T

)
BL1Ω−1

1 L′1BX
′XB − (BΣXB − ΣE) (4.35)

= B
(
X ′X/T

)
BL1Ω−1

1 L′1BX
′XB − (ΣXB − ΣE)

= B
(
X ′X/T

)
BL1Ω−1

1 L′1BX
′XB − ΣC

=
(
C̃ ′C̃/T

)
− ΣC

=
1

T

(
C̃ ′C̃ − C̃ ′C + C̃ ′C − C ′C

)
+

(
1

T
C ′C − ΣC

)
=

1

T
C̃ ′
(
C̃ − C

)
+

1

T

(
C̃ − C

)′
C +

(
1

T
C ′C − ΣC

)
≡ ψ1 + ψ2 + ψ3.

Note that

ψ1
ij =

1

T

T∑
t=1

C̃ti

(
C̃tj − Ctj

)
= Op

(
1√
NT

)
. (4.36)

which follows from Theorem 3 of Bai (2003) that C̃it − Cit = Op

(
1/
√
N
)

under As-

sumption 1.d. Similarly, we have

ψ2
ij = Op

(
1√
NT

)
. (4.37)
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By assumption 1.a, we have

ψ3
ij = Op

(
1√
T

)
. (4.38)

(4.36), (4.37) and (4.38) lead to

Jij = Op

(
1√
NT

)
+Op

(
1√
NT

)
+Op

(
1√
T

)
= Op

(
1√
T

)
.

Note that (4.35) is equivalent to

J = BΣX [BL1Ω−1
1 L′1BX

′X − IN − (4.39)

(ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1]B + op (1)

≡ BΣXHB + op (1)

where

H =
(
BL1Ω−1

1 L′1BX
′X − IN − (ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1

)
where εNT , ζNT are sequences of small positive numbers such that εNT , ζNT → 0 as

N,T →∞. εNT and ζNT are introduced to guarantee the matrix inverse exists. To see
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(4.39), note that the last term in the bracket of the right hand

BΣX(ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1B

= B(ΣX + εNT IN )(ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1B

−BεNT (ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1B

= B(B + ζNT IN )−1ΣE(B + ζNT IN )−1B + op (1)

= (B + ζNT IN )(B + ζNT IN )−1ΣE(B + ζNT IN )−1B

−ζNT (B + ζNT IN )−1ΣE(B + ζNT IN )−1B + op (1)

= ΣE(B + ζNT IN )−1B + op (1)

= ΣE(B + ζNT IN )−1(B + ζNT IN )

−ΣE(B + ζNT IN )−1ζNT IN + op (1)

= ΣE + op (1) as εNT = op (1) as N,T →∞.

Note that (4.39) is true for all values of β. Therefore, it must be the case that

Hij = O (Jij) = Op

(
1√
T

)
.

Define

K = BL1Ω−1
1 L′1BX

′X − IN .

We have

K = H + (ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1

= H + Σ−1
XBΣE + op (1) ,

i.e.,

Kij = Hij +Op (N/T ) (by Assumption 1.e) (4.40)

= Op

(
max

{
1√
T
,
N

T

})
.
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By definition of f(β),

f(β)− β = diag (β)L1Ω−1
1 L′1diag (β)X ′y − β

= BL1Ω−1
1 L′1BX

′y − β

= BL1Ω−1
1 L′1BX

′ (Xβ + e)− β

=
(
BL1Ω−1

1 L′1BX
′X − IN

)
β + op (1) (by Assumption 1.b)

= Kβ + op (1) ,

and it follows from (4.40) that

(f(β)− β)i = Op

(
max

{
N√
T
,
N2

T

})
. (4.41)

�
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Chapter 5

Efficient Estimation of

Nonparametric Simultaneous

Equations Models

5.1 Introduction

Nonparametric structural models draw a lot of attention in recent years. How-

ever, simultaneous equations models considered so far impose different dependence struc-

tural relationship between the error terms and the instruments. One line of research,

which can estimate the unknown structural up to a constant term, starts from Newey,

Powell and Vella (1999). Recently, Su and Ullah (2008) proposed a three-step estimator

that is more efficient than those of Pinkse (2000) and Newey and Powell (2003).

The chapters cited earlier all share the additive structure of the simultaneous

equation models. Additive models are widely used in both theoretical economics and

in econometric data analysis. See Linton (1997, 2000) and references there. Within the
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framework of the single parameter linear exponential family, Linton (2000) exploits the

additive structure of the nonparametric model and derive an estimator that can achieve

oracle efficiency.

In this chapter, we exploit the procedure proposed in Su and Ullah (2008) one

step further by exhausting the information contained in the additive structure of the

simultaneous equation models. We follow a similar argument as in Linton (2000) to take

the advantage of the additive structure. Thus we improve the estimator in Su and Ullah

(2008) by first consistently estimating the nonparametric error term and then applying

a local polynomial regression to consistently, and more importantly, efficiently estimate

the nonparametric structure and its derivatives. The derived estimator achieves oracle

efficiency as that in Linton (2000). Monte Carlo results show that our estimator is

efficient compared to that in Su and Ullah (2008).

The organization of this chapter is as follows. Section 2 introduces our local

polynomial estimator and proves its asymptotic properties. In section 3, we report

Monte Carlo simulation results. Section 4 concludes.

5.2 Local Polynomial Estimator

We consider the regression model of Newey, Powell and Vella (1999) and Su

and Ullah (2008):
Y = g(X,Z1) + ε, Z = (Z ′1, Z

′
2)′,

X = h(Z) + U, E(U |Z) = 0, E[ε|Z,U ] = E[ε|U ],

(5.1)

where Y is an observable scalar random variable, g denotes the true, unknown structural

function of interest, X is dx×1 vector of explanatory variables, Z1 and Z2 are d1×1 and

d2×1 vectors of instrumental variables, h ≡ (h1, . . . , hdx)′ is a dx×1 vector of functions
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of the instruments Z, and U and ε are disturbances. We are interested in estimating g

and its derivatives consistently.

Newey, Powell and Vella (1999) employed series approximations that exploit

the additive structure of the model and propose a two-stage estimator of g, which is

identified up to an additive constant if there is no functional relationship between (X,Z1)

and U . They also derive consistency and asymptotic normality results for functional of

their estimator. Su and Ullah (2008) develop a three-step kernel estimation procedure

that can consistently estimate g based on local polynomial regression and marginal

integration techniques. They also establish the asymptotic distribution of their estimator

under weak data dependence conditions. In addition, they provide simulation evidence

which suggests the superior performance of their estimator compared to that proposed

by Newey et al (1999).

Following Su and Ullah (2008), our estimation procedure is based on the fol-

lowing observation:

E[Y |X,Z,U ] = g(X,Z1) + E[ε|U ]. (5.2)

Employing the law of iterated expectation gives,

m(X,Z1, U) ≡ E[Y |X,Z1, U ] = g(X,Z1) + E[ε|U ]. (5.3)

Since U is not observable, Su and Ullah (2008) used the estimated residual from the

nonparametric regression of X on Z and estimated g(x, z1) up to a constant by first

estimating m(X,Z1, U) and then integrating it over U .
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Denote mu(U) = E[ε|U ] and note that the structure of (/refmxzu)implies that

g(X,Z1) = E[Y |X,Z1, U ]− E[ε|U ]

= E[Y − E[ε|U ]|X,Z1, U ]

= E[Y −mu(U)|X,Z1, U ]

= E[Y −mu(U)|X,Z1],

if U is observable and the functional form mu(·) is known. Nevertheless, with their

consistent estimators Û and m̂u (·), we derive an estimator of g (·, ·) that can achieve

the efficiency of the oracle estimator which requires the knowledge of both U and mu(·),

following Linton (2000).

We state our estimation procedure as follows:

1. Proceed as in Su and Ullah (2008) procedure to get the estimators ĥ(Zt), Ût,

m̂(x, z1, u) and ĝQ(x, z1).

2. Average m̂(x, z1, u) over (x, z1) by a deterministic weight function Q1(x, z1) to get

an estimator of mu(u), m̂u(u), with
∫
Rdx+d1 dQ1(x, z1) = 1. We require that Q1 has a

bounded density on its support with respect to either Lebesgue measure or a counting

measure in Rdx+d1 .

3. Obtain an estimator of g(x, z1) by a p-th order smoothing of Yt − m̂u(Ût) on Xt, Z1t

with kernel K and bandwidth sequence b = b(n). Denote the estimator as ĝ∗(x, z1).

Let V ≡ (X,Z1)′ and d ≡ dx+d1. For the data set {Xt, Zt}nt=1, the p-th order

local polynomial regression of Yt − m̂u(Ût) on Vt can be obtained from the multivariate

weighted least squared criterion:

nb−d
n∑
t=1

K(
V t − v
b

)

Yt − m̂u(Ût)−
∑

0≤|j|≤p

θj(v) (V t − v)j

2

, (5.4)
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where K is a nonnegative kernel function on Rd and b = b(n) is a scalar bandwidth

sequence. For other notations, we follow Masry (1996) and Su and Ullah (2008), j =

(j1, . . . , jd)
′, j! = Πd

i=1ji!, |j| =
∑d

i=1 ji, z
j = Πd

i=1z
ji
i ,
∑

0≤|j|≤p =
∑p

k=0

∑k
j1=0 · · ·

∑k
jd=0,

bj(v) = 1
j!D

jg(y)|y=v, D
jg(y) =

∂jg(y)

∂y
j1
1 ···∂y

jd
d

. Minimizing (5.4) with respect to each θj(v)

gives an estimate θ̂j(v). Note that j!θ̂j(v) estimates Djg(v), that is, Dĵg(v) ≡ j!θ̂j(v).

Therefore, θ̂0(v) is the estimator of g(x, z1) of interest. Arrange the distinct values of the

d-tuple b|j|θ̂j as a sequence in a lexicographical order in β̂
n,i

, where i = |j|. Then collect

β̂
n,i
, 0 ≤ i ≤ p, as a column vector in the form β̂

n
=
[
β̂
n,0
, β̂

n,1
, . . . , β̂

n,p

]′
.Similarly, de-

fine β as the true value that corresponds to β̂
n

and denote σ2(v) = var [Yt −mu(Ut)|V t = v] .

Before presenting our theorem, we introduce the following notations. Following

Masry (1996), let Nl =

 l + d+ 1

d− 1

 be the number of distinct d-tuples j with |j| = l.

Arrange these Nl d-tuples as a sequence in a lexicographical order (with highest priority

to last position so that (0, . . . , 0, i) is the first element in the sequence and (i, 0, . . . , 0)

is the last element) and let φ−1
i denote this one-to-one map. Denote N =

∑p
l=0Nl(d).

For each j with 0 ≤ j ≤ 2p, let µj(Ki) =
∫
Rdi

wjK(w)dw. For each j with 0 ≤ |j| ≤ p,

let γj(Ki) =
∫
Rd u

jK2(u)du. Define the N ×N dimensional matrices M and Γ, and the

N ×Np+1 matrix B by

M =



M0,0 M0,1 · · · M0,p

M1,0 M i
1,1 · · · M1,p

...
...

. . .
...

Mp,0 Mp,1 · · · Mpi,p


, Γ =



Γ0,0 Γ0,1 · · · Γ0,p

Γ1,0 Γ1,1 · · · Γ1,p

...
...

. . .
...

Γp,0 Γp,1 · · · Γp,p


, B =



M0,p+1

M1,p+1

...

Mp,p+1


,

where Ml,m and Γl,m are Nl × Nm dimensional matrices whole (q, r) elements are, re-

spectively, µφl(q)+φm(r) and γφl(q)+φm(r). Note that the matrices M and Γ are essentially

140



multivariate moments of the kernels and higher order products of the kernels. In addi-

tion, mp+1 (v) collects 1
k!

(
Dkg

)
(v) in a lexicographical order.

We state the following asymptotic normality result for β̂
n
.

Theorem Under Assumptions of Su and Ullah (2008) and b = O(n−1/(d+2p+2), we have

(
nbd
)1/2 (

β̂
n
− β − bp+1M−1Bmp+1(v)

)
d→ N

(
0, σ2(v)M−1ΓM−1/f(v)

)
at continuity points v of

{
σ2, f

}
whenever f(v) > 0, where f(v) is the density function

of v = (x, z1).

Proof: See appendix.

Remark: Note that the term σ2(v) = var [Yt −mu(Ut)|V t = v] in the asymptotic vari-

ance depends on the knowledge of the unobserved error term mu(Ut). And note that

the variance of an estimator that minimizes (5.4) with knowledge of Ut has the same

variance as our proposed estimator β̂
n
. Thus, our estimator is oracle efficient in the

sense of Linton (2000).

5.3 Monte Carlo Simulation

In this section, we perform Monte Carlo simulation to examine the properties

of the estimator we proposed. We assume E(ε) = 0 and compare it with the estimators

in Su and Ullah (2008), with data generating processes (DGPs) similar to theirs:

DGP1 :


Yt = 2Φ (Xt) + εt,

Xt = Zt − 0.2Z2
t + Ut.

DGP2 :


Yt = log (Xt) + εt,

Xt = 10 + exp (0.1Zt) + Ut.

where Φ (·) is the cumulative distribution function of standard normal random variable.

The error terms εt and Ut, and the instrument Zt are generated according to

εt = θwt + 0.3vYt , Ut = 0.5wt + 0.2vXt , Zt = 1 + 0.5Zt−1 + 0.5vZt , (5.5)
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Table 5.1: Relative Root Mean Squared Errors

DGP Mean Median Mean Median Mean Median

N=100 θ = 0.2 θ = 0.5 θ = 0.8

1 0.3844 0.5150 0.2306 0.4330 0.4170 0.4064

2 0.2596 0.3908 0.3705 0.5133 0.4589 0.5756

N=400 θ = 0.2 θ = 0.5 θ = 0.8

1 0.1361 0.3327 0.2152 0.3310 0.2398 0.3181

2 0.2848 0.4433 0.3253 0.5011 0.3595 0.5672

in which vYt , vXt , vZt , wt are i.i.d. sum of 48 independent random variables each uni-

formly distributed on [−0.25, 0.25]. Note that vYt , vXt , vZt , wt have bounded support

[−12, 12] and central limit theorem implies that these variables are nearly normally

distributed. As seen in (5.5), correlation between εt and Xt is characterized by the

parameter θ, and we consider the following specification values: θ = 0.2, 0.5, 0.8.The

correlation between εt and Xt increases as θ increases and the problem of simultaneity

is further magnified.

For each DGP and estimator, we consider two sample size: n = 100 and 400,

with 200 repetitions for each n. We compute the mean of the root mean squared errors

(RMSEs) of our estimator of g (x) by averaging across the realized values of X and the

200 repetitions. These mean of RMSEs relative to those of Su and Ullah (2008) are

reported in Table 1. Also, we report the median of the RMSEs of the two estimators

obtained by averaging across the realized values of X only. It is clear from the results

that the new estimation procedure gives more efficient estimator, the relative mean of

RMSEs being all smaller than 1.
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5.4 Conclusion

We propose a new estimator based on local polynomial regression and marginal

integration techniques in this chapter. It is oracle efficient and it exhausts the informa-

tion contained in the additive structure of the model. Our simulation results show that

it is more efficient than the estimator in Su and Ullah (2008) in the sense that the MSE

is much smaller.

Appendix

Proof of Theorem. Denote sn,j = 1
n

∑n
t=1

(
V t−v
b

)|j|
Kb (V t − v) .Arrange

the possible values of sn,j+k by a matrix Sn,|j|,|k| in a lexicographical order with the

(l,m) element of Sn,|j|,|k| given by

(
Sn,|j|,|k|

)
l,m

= sn,φj(l)+φk(m).

The matrix
(
Sn,|j|,|k|

)
is of dimension N|j| ×N|k|. Now define the N ×N matrix Sn by

Sn =



Sn,0,0 Sn,0,1 · · · Sn,0,p

Sn,1,0 Sn,1,1 · · · Sn,1,p

...
...

. . .
...

Sn,p,0 Sn,p,1 · · · Sn,p,p


.

From the F.O.C. of the minimization criterion (5.4), we can derive

β̂
n
− β

n
= S−1

n τ̂∗n + bp+1S−1
n Bnmp+1 (v) + op

(
bp+1

)
,

where τ̂∗n = τ∗n + J̄1 + J̄2 is a compact form of
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t̂∗n,j =
1

n

n∑
t=1

[
Yt − m̂u(Ût)− g(V t)

](V t − v
b3

)j
K3b3(V t − v)

=
1

n

n∑
t=1

[Yt −mu(Ut)− g(V t)]

(
V t − v
b3

)j
K3b3(V t − v)

+
1

n

n∑
t=1

[
mu(Ut)−mu(Ût)

](V t − v
b3

)j
K3b3(V t − v)

+
1

n

n∑
t=1

[
mu(Ût)− m̂u(Ût)

](V t − v
b3

)j
K3b3(V t − v)

≡ t∗n,j + J1,j + J2,j

It follows from Masry (1996) that as n → ∞, Sn
M.S.→ Mf (v), Bn

M.S.→ Bf (v)

and (
nbd
)
τ∗n

L→ N
(
0, σ2 (v) f (v) Γ

)
.

Thus, the asymptotic normality of β̂
n

depends properties of J1,j and J2,j . First, it is

easy to show that
(
nbd
)1/2

J1,j = op (1), using Taylor series expansion similar to Su and

Ullah (2008). Second,
(
nbd
)1/2

J2,j = op (1). To see this, note that it is straightforward

to show that,

mu

(
Ût

)
− m̂u(Ût) =

1

n

n∑
s=1

[ĝ(Xs, Z1s)− g(Xs, Z1s)] +

1

n

n∑
s=1

[
m
(
Xs, Z1s, Ût

)
− m̂

(
Xs, Zst, Ût

)]
.

It follows from Su and Ullah (2008) that

ĝ(Xs, Z1s)− g(Xs, Z1s) = op (1) .

and from Masry (1996) that

[
m
(
Xs, Z1s, Ût

)
− m̂

(
Xs, Zst, Ût

)]
= op (1) .

Combining these results, we have
(
nbd
)1/2

J2,j = op (1) following a similar argument as
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in Su and Ullah (2008). Therefore,
(
nbd
)
τ̂∗n

L→ N
(
0, σ2 (v) f (v) Γ

)
, which completes

the proof of the theorem.�
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Chapter 6

Model Averaging PartiaL Effect

(MAPLE) Estimation with Large

Dimensional Data

6.1 Introduction

We live in a world full of valuable information recorded by thousands of eco-

nomic and financial variables. Economic researchers, policy makers and financial an-

alysts are faced with these overwhelming economic signals. In theoretical macroeco-

nomics, agents are forced to process all available quantities when they form expecta-

tions for future. In program evaluation, experts incorporate individual features such

as gender, education, marriage status, family size, health status, etc. to analyze the

treatment effect. In labor economics, newly available sources of data are called forth to

advance theory and inform policy. In finance, equity premium is studied with thousands

of financial variables, indices and macro policy variables.
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This chapter, to our knowledge, serves as the first work to study the marginal

effect of one variable on another in the large dimensional data setting, with the use

of model averaging. This problem is typical in any field of economics, since artistic

economic theory would suggest plenty of variables that would be potentially related

to the variable of interest (Sala-i-Martin et al 2006). When it comes to estimation

of such partial effect, the omission of other variables from the model would lead to

biased estimate, fallible inference and result in misleading policy recommendation. In

the following subsections, we first make clear the problem of estimation in the presence

of large dimensional data, then review the related literature and finally spell out the

contributions of the chapter.

6.1.1 Large Dimensional Data v.s. Small Models

With the advancement of computer technology, economic and financial data

are more easily collected, shared and utilized in studies. Resources for Economists on

the Internet1 provides a wide range of economic topics with links to many different

data sources. National Bureau of Economic Research2 provides links to various data

sources including macro data, industrial data, hospital data, demographic and vital

statistics, patent and scientific papers data, and so forth. Penn World Table3 provides

purchasing power parity and national income accounts converted to international prices

for 188 countries for years 1950-2004. In finance and business, Datastream by Thompson

Financial4 and Wharton research Data Services5 provide researchers worldwide with

1 http://rfe.org/

2 http://www.nber.org/data/

3 http://pwt.econ.upenn.edu/

4 http://www.thomsonone.com/

5 http://wrds-web.wharton.upenn.edu/wrds/
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instant access to financial and marketing series. Yahoo6 and the Federal Reserve Bank

of St Louis maintain free data access to a wide variety of financial time series.

Economic models are introduced and estimated to analyze the linkage among

economic variables and characterize the relationship of interest. With the principle of

parsimony, researchers usually start with small models that focus on salient features

of economic phenomena. For example, Keynes (1936) hypothesized that the major

influence on individual consumption is personal income; Phillips (1958) and numerous

work afterwards described an inverse relationship between money wage changes and

unemployment in British economy; Mincer (1976) studied the direction of labor mobility

resulting from minimum-wage imposition; Ashenfelter (1978) attribute current earning

to past earnings and job training.

While these models are argued to explain economic phenomena, economists

usually implicitly or explicitly require the environment under investigation hold ceteris

paribus. This superiority is appreciated together with Occam’s Razor in all scientific

exploration. However, such a parsimony principle is better interpreted as a heuristic

rather than an irrefutable principle of logic (Gernert, 2007). It has been maintained

in economic modeling for mainly two reasons: First, analyzing the full model with

all available economic variables would result in difficulties in parameter identification,

estimation and model evaluation, driving us astray from the economic analysis originally

designated.7 The second reason that leads to simple models is that economics is more

complex than it appears. Modeling methods available in mainstream science aim to

6 http://finance.yahoo.com/

7With advancement in fuzzy analysis, set identification and inference has achieved significant

progress. In economic applications, see Manski (1995, 2003, 2007), Imbens and Manski (2004), Santos

(2011), Romano and Shaikh (2008, 2010), to name a few. Inference with large dimensional data is still

left open.

148



separate important linkage from abounded noisy signals. This intrinsic feature limits

inference in the presence of large data sets.

6.1.2 Related Literature

Dimensionality reduction techniques have been proposed and frequently used in

forecasting literature when large dimensional data are present.The first line of research

assumes that the data is generated by some underlying factors of smaller dimension

and approaches the estimation of the common factors in a way fitting the problem at

hand.8 For recent work in this direction, see Bai and Ng (2010) and references therein.

Another direction to achieve dimensionality reduction is variable selection. Selection

is conducted by minimizing some objective loss functions, such as Akaike information

criterion (AIC) or Bayesian information criterion (BIC). Early examples are forward

variable selection, backward selection and stepwise selection etc. (Miller 2002). More

recently the literature is overwhelmed by more sophisticated methods.9 See Fan and Lv

(2010) for a review.

Though popular in forecasting literature, dimensionality reduction methods

have their own limitations when applying to partial effect estimation. In factor analysis,

partial effect parameters are not estimated and factor loadings are hard to interpret. On

the other side, variable selection is mostly concerned only with the explanation of the

dependent variable by choosing a subset of regressors, but not with the estimation of the

8Popular examples are Principal Component Analysis (PCA) invented by Pearson (1901), factor

analysis pioneered by Spearman (1904), Partial Least Square (PLS) developed by Wold (1966), Principal

Covariate Regression (PCovR) proposed by De Jong and Kiers (1992), Supervised Factor Model (SFM)

introduced by Tu and Lee (2011), and so forth.
9Examples include LASSO (Tibishirani 1996), SCAD (Fan and Li 2001), Elastic Net (Zou and Hastie

2005), group LASSO (Zou 2006), bridge estimator (Huang, Horowitz and Ma 2008) and so on.
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partial effect. The key variable whose effect is of interest may be excluded from a vari-

able selection procedure. Even though oracle properties of variable selection procedures

(e.g. Huang, Horowitz and Ma 2008) have been established, these oracle properties do

not provide a satisfactory answer in finite sample. First, when the variable of interest

is not selected, oracle selection procedure such as bridge estimator would estimate the

partial effect as zero. In this case, there is no way to do further inference such as con-

structing confidence interval or testing for the partial effect. That is, variable selection

procedures would be over confident that the partial effect is zero when it is actually not.

Second, even when the variable of interest is kept after the model selection procedure,

the asymptotic distribution of the partial effect estimator depends on the true value of

the partial effect and thus hard to provide valid inference in finite sample. See Leeb

and Pötscher (2005, 2006, 2008abc, 2009), Pötscher (2009) and Pötscher and Schneider

(2009, 2010) for problems that involve inferences with model selection procedures. The-

oretical investigation of partial effect estimation with dimensionality reduction methods

demands more effort before they become the working force.

Statisticians have long noticed that “all models are wrong but some are useful”

(Box, 1979). This famous quote vividly describes a dilemma with which theoretical

researchers are forced to face: models are misspecified. Taken as granted, we’re in a

position to estimate parameters of interest in misspecified models. For example, program

evaluation researchers are evaluating the effects of the treatment with their misspecified

model. The partial effect thus computed potentially suffers from model misspecification

bias. Macro policy makers are predicting the effects of a counterfactual policy on the

performance of economy, using a misspecified model. The prediction is as accurate as the

model itself. Luckily for researchers that are concerned with partial effect parameters,

potentially of low dimension, they are free of this misspecification problem, as to be
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pointed out by this chapter. We specify a condition under which researchers who are

interested in learning the partial effect parameters can well proceed with a misspecified

model. Nevertheless, the parameter of interest should be correctly identified within

the model. This is a big step, following White and Lu (2010), towards the estimation

of economic sensible parameters rather than some statistical projection coefficients. It

is important to point out that the identified partial effect parameters have the causal

effect interpretation but the regression coefficients do not (e.g., White and Chalak 2006,

White and Lu 2010). In a word, classical modeling and estimation approaches are

contaminated with bias and new estimation techniques are called upon to derive more

efficient estimators. This chapter suggests the use of model averaging to achieve this

aim.

Model averaging, advocated by Bates and Granger (1969), works as an alter-

native to the factor approach or variable selection in the forecasting paradigm. Simple

model averaging gains a lot of popularity in financial market forecasts, for example, Ra-

pach et al (2010). Recently, Hansen (2007, 2008, 2009, 2010) proposed model averaging

with Mallow’s criterion to select the combining weights, while Hansen and Racine (2011)

proposed Jackknife model averaging. Model averaging is shown to be promising in fore-

casting exercises due to at least three facts: First, averaging reduces variances while

incurring small bias. Whenever the bias is relatively small compared to the variance re-

duction, model averaging performs better than individual models in Mean Squared Error

(MSE) sense. Secondly, individual models are likely to be misspecified and exclude in-

formation that is incorporated in averaging models. This loss of information potentially

degrades the power of a single model. Thirdly, model uncertainty is somehow reduced

in averaging model attributing to the observation that it incorporates individual models
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as special cases by properly assigning the weights, spanning a larger model space and

reducing the chance of misspecification.

However, the power of model averaging for parameter estimation has not been

fully explored. Hansen (2009) applied model averaging for parameter estimation in a

structural break setting. The idea of averaging estimator dates back to Breiman (1996),

where a bootstrap method is implemented together with model aggregating (bagging,

hereafter).10 There is a large literature on Bayesian Model Averaging (BMA).11 BMA

takes a different perspective that the parameter of interest is random rather than have

a true value. A prior on the parameter is required and a computing algorithm (e.g.

MCMC) is needed to derive the BMA estimator. The dependence of the results on

the prior and the algorithm adopted usually weaken the conclusions therefore arrived.

More than often, convergence of the computing algorithms available (e.g. Metropolis-

Hastings, Gibbs sampler, or MC3, etc.) is hard to check in practice. See Hoeting et al

(1999) for more details about these challenges faced by Bayesian researchers.

6.1.3 Contributions

This chapter contributes to the literature in the following regards: First, we

lay out the conditions that help to identify the partial effect parameter of interest in

a large dimensional model. We show that Conditional Mean Independence (CMI) is

sufficient for this purpose. This is a weaker condition than conditional independence

10Breiman (1996) shows that bagging estimator has a smaller MSE in the i.i.d. case for the the

purpose of prediction. Bulman and Yu (2002) establish the theoretical properties of bagging estimators,

followed by Lee, Tu and Ullah (2011ab) and Tu (2011a) that adopt bagging for constrained parameter

estimation in nonparametric setting.
11In economics, recent work on BMA includes Sala-i-martin et al (2004), Eicher et al (2009) and so

on.
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used in White and Lu (2010). When CMI does not hold, we state a weaker condition,

Weak Conditional Mean Independence, that identifies the partial effect parameter when

the number of observation is large. CMI conditions can be either implied by conditional

independence (White and Chalak 2010, Su and White 2011) or easily checked using the

nonparametric tests proposed by Li and Wang (1998) or Hsiao, Li and Racine (2007).

An information-based approach that is easy to implement is also suitable to test CMI.12

We emphasize that such estimated coefficients would have economic interpretation like

causal effects only under identification. However, this identification issue is often ignored

by empirical researchers, especially those who experiment with including and excluding

explanatory variables till they get coefficient estimates agree with initial intuition.

Second, we consider the situation in which the parameter of interest can be

identified in more than one model. This is often the case when we have large dimen-

sional data. We propose two model averaging partial effect (MAPLE) estimators in

this setting. One of the estimators is generalized-method-of-moment based MAPLE

(gMAPLE) and the other is entropy-based MAPLE (eMAPLE). The estimators are

constructed from model averaging point of view, utilizing more than one model (poten-

tially misspecified) to quantify such partial effect. They utilize more information than

partial effect estimator derived from each individual model. Averaging in this way helps

to wipe out the large bias lying in individual estimator and reduces variances, especially

in small sample.

The gMAPLE estimator is constructed through combining all the moment con-

ditions specified by individual models. A GMM-like objective function is used to derive

the gMAPLE estimator. This estimator is different from the classical GMM estimator

proposed by Hansen (1982) in the sense that each model has its own unique parameters

12See Tu (2011b) for more details.
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other than the common partial effect parameter. This estimator looks similar to but

differs from the GMM estimator of Seemingly Unrelated Regression models because of

the common partial effect parameter in each model. gMAPLE estimator is the first

attempt, as far as we know in the literature, to use moment conditions of more than one

model to conduction inference on parameters of interest, while treating other parameters

as pseudo ones.

The eMAPLE estimator is motivated from the Maximum Entropy point of

view, i.e., to maximize the uncertainty of the model and data that is consistent with the

moment conditions that identify the partial effect parameter. The main intuition is that

the same set of data would occur with different probability if they are generated from

different models. We introduce the concept of entropy of a model class in line with the

classical notion of entropy of a random variable. We similarly define the conditional and

joint entropy between a model class and random variables generated from that model

class. Our eMAPLE estimator is constructed such that the conditional entropy of the

model class given the observations is maximized. That is, the uncertainty of the model

class is maximized given that the data is observed. Model averaging with entropy-based

weights opens a new area of Maximum Entropic Econometrics (MEE). Other than esti-

mating the probability of each observation in classical MEE, model averaging raises the

question of probability of each individual model, instead of assigning equal probabilities.

eMAPLE estimation is a novel statistical inference approach in that it introduces model

uncertainty and model averaging into the entropy paradigm for parameter estimation.

The inference based on the objective function (joint entropy) to construct confidence

intervals or testing restrictions for the parameters of interest is easy to carry out and

often better resembles the asymptotic results in finite sample than competing methods.
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The third contribution of the chapter is the theoretical study of the two

MAPLE estimators. We set up conditions under which our MAPLE estimators are

consistent and asymptotically normal. The conditions for gMAPLE estimator are sim-

ilar to those in the GMM literature. The conditions for eMAPLE estimator resemble

those used in the Generalized Empirical Likelihood (GEL) literature.13 Testing of non-

linear restrictions on the parameters is also considered. We show that the Wald, Rao’s

Score and Likelihood-ratio type tests based on our MAPLE estimators are asymptoti-

cally chi-squared distributed.

The fourth contribution is the thorough simulation study conducted to compare

various partial effect estimators, including MMA, JMA, FOGLeSs etc.. Our gMAPLE

and eMAPLE estimator are shown to have appealing finite sample properties in various

Data Generating Processes, including factor model, large dimensional models, models

with large number of irrelevant regressors and models with heterogeneous errors etc..

Evaluation measures including Mean Squared Errors, Mean Absolute Errors, Bias, Vari-

ance, Inter Quantile Range are used to compare the competing estimators. Our MAPLE

estimators clearly stand out, especially in small samples, and even achieve the oracle

efficiency lower bound in MSE in some designs (true design is small dimensional without

heterogeneity, but with a large dimensional covariates). We also conduct simulations

to examine the performance of the MAPLE based test statistics. Generally, these tests

enjoy sizes closer to theoretical ones than other testing procedures including, e.g., FOG-

LeSs based tests.

Finally, we illustrate the use of MAPLE estimator in an economic application

to evaluate the effect of inherited control on firm performance. We find that our MAPLE

estimates confirm earlier findings by Pérez-González (2006) and White and Lu (2010)

13See Kitamura (2006) for a review.
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that there is a negative effect, i.e., firms with family related CEOs tend to underperform

those with family unrelated CEOs. However, confidence intervals constructed based on

MAPLE estimators are much narrower than those based on FOGLeSs estimator, which

indicates the superority the proposed approach.

Structure of the rest of this chapter is planned as follows: Section 2 presents

the model and discusses the identification issues. Section 3 proposes the gMAPLE esti-

mator, introduces the concept of entropy of models in the presence of model uncertainty

and proposes the eMAPLE estimator. Section 4 presents the theoretical properties of the

proposed MAPLE estimators. Section 5 studies the finite sample properties, via simula-

tion experiments, of our estimator together with other competitors. Section 6 provides

an illustration of our estimation approach with the dataset of Pérez-González(2006) in

the study of the impact of inherited control on firm performance. Section 7 concludes

and comments on future studies. All the technical proofs are collected in the Appendix.

6.2 The Model and Identification Condition

In this section, we introduce the model with large dimensional data and il-

lustrate with six economic examples. We discuss the identification of the partial effect

parameter of interest and present the key condition, Conditional Mean Independence

(CMI), that serves for identification purpose. Other approaches for identification are

also discussed in a concise way. In the end, We point out other related issues.

6.2.1 The Model

We present the model after introducing notations. Let y denote the n × 1

dependent variable, x the n× 1 exogenous independent variable whose partial effect on

156



y is of major interest, and z the large dimensional independent variables.

Assumption A.1 (linearity):

yi = xτi β + zτi γ + εi , (i = 1, 2, · · · , n) (6.1)

where β is the partial effect vector of interest, γ is a large-dimensional coefficient vector

and εi is the disturbance term.

Assumption A.2 (α-mixing stationarity): The large dimensional vector stochas-

tic process {di}ni=1 ≡ {yi,xi, zi,wi}ni=1 is a stationary α-mixing process with mixing

coefficients α (j) satisfying
∑∞

j=1 j
2αε/(ε+2) (j) < ∞ for 0 < ε ≤ 1, where wi is some

instrumental vector.

Assumption A.3 (moment restriction): All the instruments are orthogonal to the

contemporaneous error term: E (wik · εi) = 0, for all i and k (= 1, 2, · · · , dim(wi)).

Assumption RC (rank condition): E[wi ( xτi , zτi )] is finite with full column rank.

We comment on the strength of Assumption A and RC before presenting some

economic examples.

Remark A: Assumption A.1 assumes that the relationship between y and the covariates

is linear. As we see later on, we require that y be linear in unknown parameters.

This assumption is not restrictive and can be extended in various ways. However, we

will maintain this assumption only to clarify the presentation of our identification and

estimation approach. In addition, the model as specified does not contain an intercept

term. This is not restrictive either since a demean of the data would remove the intercept.

We emphasize that the model is structural in the sense that the parameters, e.g., β

carry causal effect interpretation. More than often, a low dimensional parameter such

as β has economic policy implication but not others contained in γ. Our inference
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is mainly concerned with β. Assumption A.2 is classical since that certain type of

nonstationary process can be made stationary via transformations such as differencing

or detrending. Dependence across observations is allowed by the α-mixing condition.

Assumption A.3 would meet since we include all possible explanatory variables in the

regression. Anything else that is not explained in the dependent variable should be due

to the pure random error term.

Remark RC: The rank condition is needed to identify all the unknown parameters,

but often fails when zi is of large dimension. This is especially the case for economic

models, contrasted to statistical models, since all economic variables are closely inter-

twined. In the case that a few economic variables are linearly dependent RC fails to

hold. However, as argued earlier, economists more than often are concerned with only

the partial effect parameter, β, but not the other coefficient vector γ. This observation

is momentum since its implication is that we only need focus on identification and in-

ference on β. This alleviates the need for Assumption RC and allows us to proceed with

weaker condition such as Conditional Mean Independence. We will introduce CMI for

identification after presenting some economic examples that highlight the importance of

partial effect estimation in large dimensional data.

6.2.2 Examples

We briefly discuss some examples from macroeconomics, program evaluation and labor

economics.

Example 1 (Phillips Curve) The famous historical inverse relationship between the

rate of unemployment and the rate of inflation in the economy, usually termed as Phillips

Curve (Fisher 1926; Phillips 1958), has been the focus of macro economy since its birth.
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Yet this is short run phenomena. A cursory analysis of U.S. inflation and unemployment

data 1953-92 reveals that there is no single curve that fits the data. However, this

argument ignore the fact that the macro economy has been evolving over time and factors

such as technological developments, institutional factors including macro policy are also

affecting the curve. These factors might prove to be important, but do not change the

relationship between unemployment rate and inflation rate. Therefore, the estimation of

the Phillips Curve should incorporate other macro variables.

Example 2 (Consumption Hypothesis) Keynes (1936) developed his theory of con-

sumption and detailed the relationship between consumption and income in his famous

book “The General Theory of Employment, Interest and Money” (Keynes, 1936). A

function that relates consumption and income is usually estimated and Keynes’ con-

sumption theory is tested. The marginal propensity to consume (MPC), i.e., the rate

at which consumption changes as income is changing, is the slope of the consumption

function. According to Keynes, MPC should be in between 0 and 1. However, a con-

sumption function that only has income as an explanatory cause suffers from potential

misspecification bias. It bases consumption only on current income, but neglects other

factors that also have important effects. One such factor is future income, which leads

to Friedman’s (1957) Permanent Income Hypothesis.

Example 3 (Treatment Effect) Ashenfelter (1978) studied effect of training programs

on earnings where individual characteristics such as gender, race, past earnings together

with training variable.

Example 4 (Wage Equation) Kruger (1993) examined the role of computers on the

wage structure. A long list of variables such as gender, education, race, age, occupation,

union status, hours, marriage status, experience and region are considered as important
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factors when studying the effect of computers on wage.

Example 5 (Inherited Control) Pérez-González (2006) used a large data set from

355 management transitions of publicly traded U.S. corporations to examine whether

firms with family related incoming chief executive officers (CEOs) underperform in terms

of operating profitability relatives to firms with unrelated incoming CEOs. 34 covariates

are used including firm size, firm’s past performance, board’s R&D expenditure, de-

parting CEO’s separation conditions and incoming CEO’s ownership, incoming CEO’s

characteristics, together with 17 year dummies. We will provide more analysis with this

example in the empirical exercise in Section 6.

Example 6 (Economic Growth) Sala-i-Martin et al (2004) studied the determinants

of economic growth with 67 variables that correlate with economic growth with only 80

observations. This job would be in vain since we have a large number of unknowns

compared to the number of observations. However, growth economists are interested to

know whether a particular variable, e.g., human capital, is a determinant of economic

growth, in the presence of large number of other covariates.

6.2.3 Identification and Conditional Mean Independence

In this subsection, we look into the identification issue of the partial effect pa-

rameter β. We distinguish the identification problem for two cases: (i) when Assumption

RC holds; and (ii) when Assumption RC fails. It is to be shown that Assumption RC,

together with Assumption A.1, A.2 and A.3, are sufficient for β to be identified. When

Assumption RC fails, a further condition called conditional mean independence (CMI)

is introduced to identify β. Tests to verify CMI and lower level conditions that imply

CMI are reviewed.
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Note that under Assumption RC, E [wi ( xτi , zτi )] is of full column rank. The

moment restriction Assumption A.3 implies that,

E [wi (yi − xτi β − zτi γ)] = 0,

which is equivalent to

E [wi ( xτi , zτi )]

 β

γ

 = E (wiyi) . (6.2)

There is a unique solution to the above equation. This completes the identification of

β.

6.2.3.1 Conditional Mean Independence

If, on the other hand, Assumption RC fails, then E [wi ( xτi , zτi )] is singular.

This leads to multiple solutions of β in equation (6.2). Consequently, β is underidentified.

We find the following condition is needed for β to be identified.

Assumption CMI (conditional mean independence):

E
(
z2
i |xi, z1

i

)
= E

(
z2
i |z1

i

)
(6.3)

where z1
i and z2

i forms a partition of zi, i.e., zτi =
[
z1τ
i , z

2τ
i

]
,for i = 1, 2, · · · , n.

CMI condition is quite commonly adopted in the literature of parameter identi-

fication. A similar form of CMI is used in Stock and Watson (2010, pp.232) to distinguish

the role of variables of interest and control variables. Under CMI, the coefficient of the

variable of interest is argued to have an interpretation of causal effect. In the case that

z2
i is univariate, tests of Li and Wang (1998) and Hsiao, Li and Racine (2007) can be

easily adjusted to verify CMI condition. When z2
i is multivariate, element-wise tests

would apply.
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Conditions stronger than CMI are, for example, conditional exogeneity and

conditional independence. They have been imposed by Hahn (1998, 2004), White and

Lu (2010) and White, Chalak and Lu (2010), to name a few, as major tools to study

identification, treatment effect and Granger-Causality. Su and White (2007ab) suggest

tests of conditional independence that are based on Hellinger metrics and empirical

likelihood. White and Chalak (2010) provided tests for conditional exogeneity. See

White and Chalak (2010), Su and White (2008) and references therein for details.

Lemma 7 β is identified under Assumption 1, 2, 3, and CMI.

The proof of Lemma 1 is given in Appendix A. More than often in economic

modeling, we will assume the existence of a partition of z such that Assumption CMI is

satisfied. As a result of Lemma 1, the partial effect parameter β is identified.

When the set of z contains a large dimensional data, it is possible that more

than one decomposition can be found such that (6.3) is satisfied. This is the case if z

are linearly dependent. In this circumstance, we have competing models that all can

identify β according to Lemma 1. However, each model will produce a different estimate

of β, for a given sample of observations. In practice, it is hard to tell which estimate

is closer to the true value. An average estimate that aggregate these estimated values

can be constructed, with weights inversely proportional to each individual variance. See

White and Lu (2010) for example. However, the construction of this estimate requires

the knowledge of variance of individual estimators. Estimates of the variance can be

used in practice. Nevertheless, this estimation procedure is deemed to be inefficient

since the estimation of β takes into account different model specifications one-at-a-time

and that the variance estimates are usually not accurate in finite sample. In the next
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section, we propose a model averaging estimator that could potentially circumvent such

difficulties and result in a more efficient estimator.

Next we investigate the more interesting situation when there is no such parti-

tion of z such that CMI holds. The direct consequence is that β is not identifiable. We

consider two cases (i) weak identification and (ii) no identification.

6.2.3.2 Weak Conditional Mean Independence

Assumption WCMI (weak conditional mean independence):

E
(
z2
i |xi, z1

i

)
= E

(
z2
i |z1

i

)
+ ηxi (6.4)

where z1
i and z2

i forms a partition of zi, i.e., zτi =
[
z1τ
i , z

2τ
i

]
,for i = 1, 2, · · · , n, and η is

a matrix of the same dimension as z2
i , with Euclidean norm

||η|| = o
(
n−1/2

)
Under Assumption WCMI, β is weakly identified. As sample size increase, the

dependence of z2
i on xi becomes weaker and weaker. In the limit, condition WCMI

becomes condition CMI. Therefore, β is identified in the limit. This type of condition

has been used in Belloni, et al (2011) to approximate the factor estimation.

Lemma 8 β is weakly identified (identified in the limit) under Assumption 1, 2, 3, and

WCMI.

When WCMI condition fails, β cannot be identified in any approximating mod-

els. This is a more interesting case, since the true model cannot be approximated arbi-

trarily well as we intend to. Our proposed estimator based on model averaging, tends

to perform well for this difficult case, as shown in our simulation results in Section 5.
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Before we proceed, a few things should be noted in sequence. First, when β

is not identified, estimators for β using methods such as OLS are not targeting the

correct partial effect. Inevitably, estimators are biased and their properties are hard to

evaluate. In this circumstance, hardly any effort can be made towards the estimation

of partial effect. Second, partial identification approaches advocated by Manski (2003)

could be employed when WCMI fails, which is beyond the focus of this chapter. Third,

the estimation of β can be put into a general framework in which conditional moment

restrictions summarize the model information. These restrictions take the form

E [g (yi,xi, zi;β, γ)] = 0, (6.5)

where g (yi,xi, zi;β, γ) has a known functional form, β is the partial effect parameter of

interest and γ is a vector of pseudo parameters. Note that first, g(·) may be derived from

a nonlinear model, thus it is not restricted to the model specified in (6.1). γ can also be

an infinite dimensional parameter such as a nonparametric function. Identifications of

this type have been studied by Chen, et al (2011). A separate paper is written to study

estimation in this semiparametric framework and leaves us to focus on the case when γ

is the coefficient of Z.

6.3 Model Averaging PartiaL Effect Estimation

6.3.1 Model Uncertainty and Moment Uncertainty

We motivate the estimation of partial effect from the point of view of model

uncertainty. Model (6.1) can be viewed as aggregated models from M with certain

probabilities. For example, in state s, the dependent variable is generated through the

following equation,

yi = xτi β + zτi,sγs + εi,s (i = 1, 2, · · · , n) (6.6)
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where zi,s is a subset of zi and γs denotes corresponding coefficient vector. Denote the

above model as Ms and denote a collection of such models as M. We emphasize that

in (6.6), β is identified via the CMI condition.

Ideally, if the observed data can be classified according to the state from which

they are generated, we can estimate the coefficients β and γ within each state via LS

whenever it applies. A second averaging procedure may be implemented after β̂s is com-

puted in state s (= 1, 2, · · · , S) to derive a more efficient estimator β̂ using an auxiliary

regression. See White and Lu (2010) for such a construction via a pseudo regression of

β̂s on β. Nevertheless, classification of data into states is neither practical nor neces-

sary. First, classification requires further information and renders the estimation even

more complex. Inference after data classification or model selection raises challenging

issues such as those in data snooping (White, 2000). See Berk et al (2009) and Berk

et al (2011) for recent studies on this issue. Second, entropy-based inference is already

suitable for this type of so-called ill-posed “inverse” problems. Partial effect estimation

of β amounts to estimating the model probability distribution p and model coefficients

β and γ. We present procedures that circumvent the classification difficulty as notified

and achieves the estimation objective.

To put the analysis in a general framework, we present the estimation of β

from the model information characterized by moment constraints in the form of (6.5).

To facilitate the presentation, we simplify our notations. Note that first, model (6.6) in

state s can be summarized by corresponding moment condition

E [gs (d; θ0)] = 0, (6.7)

where expectation is taken over random vector d = (y,x, z), with gs (·; ·) denoting the

moment restriction in Ms, and θ0 = (β, γ1, . . . γS) collecting all the unknown parameters
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in S models. We emphasize that β is the partial effect parameter of interest that is

identified in each model, but not the projection coefficient vectors γs, s = 1, . . . S.

6.3.2 gMAPLE

Facing parameter estimation problems identified by moment conditions via

(6.7), it is natural to adopt the Generalized Method of Moment (GMM) approach pro-

posed by Hansen (1982). We present the GMM estimator in the current setting. Denote

ḡs (d, θ) = 1
n

n∑
i=1

gs (di, θ) and ḡ (d, θ) = [ḡτ1 (d, θ) , . . . , ḡτS (d, θ)]τ . The one-step GMM

estimator with a weighting matrix W is defined as

θ̂gMAPLE = arg min
θ
ḡτ (d, θ)Wḡ (d, θ) . (6.8)

The solution to this convex minimization problem can be easily found through numerical

methods.

We need some notation to proceed. Define ∇θgs (d, θ) = ∂gτs (d, θ) /∂θ, where

∂gτs (d, θ) /∂θ is the transpose of ∂gs (d, θ) /∂θ. Denote G (s, θ) = E [∇θgs (d, θ)] and

V (s, θ) = E [gs (d, θ) gτs (d, θ)]. Define G (θ) = (Gτ (1, θ) , . . . , Gτ (S, θ) , )τ , V (θ) =

diag (V (1, θ) , . . . , V (S, θ)) and use short notation G = G (θ0), V = V (θ0), Ω =

E [g (d, θ0) gτ (d, θ0)]. Following the GMM literature (see, e.g., Newey and McFadden,

1994), it is easy to establish the following theorem, under suitable set of additional

assumptions on the moment conditions (6.7).

Theorem 9 The GMM estimator defined in (6.8) has the following properties:

(a) θ̂gMAPLE
p→ θ0.

(b)
√
n
(
θ̂gMAPLE − θ0

)
d→ N

(
0, (GτWG)−1GτWΩWG (GτWG)−1

)
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An efficient two-step GMM estimator can be derived based on a first step

estimator θ̂gMAPLE1 that solves (6.8) by settingW = I, the identity matrix. The optimal

weight matrix can be shown to be Wopt = Ω−1 that can be consistently estimated by

Ŵopt =

[
1

n

n∑
i=1

g
(
di, θ̂gMAPLE1

)
gτ
(
di, θ̂gMAPLE1

)]−1

. (6.9)

Theorem 10 The GMM estimator defined in (6.8) with W = Ŵopt have the following

properties:

(a) θ̂gMAPLE
p→ θ0.

(b)
√
n
(
θ̂gMAPLE − θ0

)
d→ N

(
0, I−1 (θ0)

)
, with I (θ0) = GτΩ−1G.

Note that (6.9) is a very large dimensional matrix in the current setting. Earlier

results (e.g., Altonji and Segal 1994) show that GMM estimator with estimated optimal

weighting matrix does not perform well in finite sample. The two-step optimal GMM

can be even beaten by the one-step GMM that uses the naive identity weighting matrix.

In practice, iterative GMM estimator and continuously updating GMM estimators can

be used, see Hansen et al (1996).

6.3.3 eMAPLE

This section introduce entropy-based model averaging. We start by defining

the entropy for model uncertainty of a given class of models. We then extend this

concept and account for model uncertainty in the presence of random variables that

are generated from the models. Similar concepts, such as entropy, joint entropy and

conditional entropy, exist in the entropy literature, for example, as in Cover and Thomas

(2006) or Golan et al (1996). However, to our knowledge, it is the first time to define

these concepts for random models.
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6.3.3.1 Entropy

Imagine a world that is comprised of a finite number of states s = 1, 2, · · · , S.

In each state, the data generating process is described by a mechanism, called model.

We denoteM as a collection of such models, i.e.,M = {Ms : s = 1, 2, · · · , S}, where Ms

describes the world in state s. Each state of the world, s, is associated with a probability

qs. We denote the probability space by the simplex4S =

{
q ∈ RS : qs ≥ 0,

S∑
s=1

qs = 1

}
.

Definition 11 Consider a class of modelsM = {Ms : s = 1, 2, · · · , S}, from which data

are generated with probability distribution q (M) = (q1, q2, · · · , qS) . The entropy that

characterizes the information uncertainty associated with M is defined as

H (q) = −
S∑
s=1

qs log qs,

where the convention 0 · log 0 = 0 is taken.

Here q (M) = (q1, q2, · · · , qS) is the the probability mass function of models

M1, M2,· · · , MS that are contained inM. It is abbreviated as q whenever no confusion

occurs. As defined, H (q) is a measure of the amount of uncertainty in the probability

mass q (M) that describes the states of the world. It reaches a maximum when qs = 1/S,

for all s = 1, 2, · · · , S, i.e., when the probability is uniform. This definition is consistent

with entropy of a discrete random variable. See, for example, Cover and Thomas (2006)

or Golan et al (1996) for more details.

Next, we extend the measure of uncertainty when there is an additional set of

observations from the potential class of models M. The following definition parallels

that of joint entropy of two random variables. Let a random vector D be defined on D.
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Definition 12 The joint entropy H (M, D) of the model class M and the random

vector D with a joint distribution p (M,D) is defined as

H (M, D) = −
∑
M∈M

∑
d∈D

p (M,d) log p (M,d) (6.10)

= −E log p (M, D) .

We further define the conditional entropy of a model class given a random

vector as the expected value of the entropies of the conditional distributions averaged

over the conditioning random vector.

Definition 13 The conditional entropy H (M|D) of the model class M given the

random vector D with a joint distribution p (M,d) is defined as

H (M|D) =
∑
d∈D

p (d)H (M|D = d) (6.11)

= −
∑
d∈D

p (d)
∑
M∈M

p (M |d) log p (M |D = d)

= −
∑
M∈M

∑
d∈D

p (M,d) log p (M |d)

= −E log p (M|D) .

Similarly, we can define the conditional entropy H (D|M) of the random vector

D given the model class M.

Definition 14 The conditional entropy H (D|M) of the random vector D given the

model class M with a joint distribution p (M,d) is defined as

H (D|M) =
∑
M∈M

p (M)H (D|M = M) (6.12)

= −
∑
M∈M

p (M)
∑
M∈M

p (d|M) log p (d|M = M)

= −
∑
d∈D

∑
M∈M

p (M,d) log p (d|M)

= −E log p (D|M) .
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The following theorem shows that the difference between the joint entropy

defined in (6.10) and conditional entropy defined in (6.11) is the entropy of the con-

ditioning random vector D. Similar result holds if we switch the model class and the

random vector.

Theorem 15 (Chain rule)

H (M, D) = H (M|D) +H (D)

= H (D|M) +H (M) .

Proof: The proof follows closely from that of Theorem 2.2.1 in Cover and

Thomas (2006, p.17).

6.3.3.2 eMAPLE estimator

Instead of approximating the expectation in (6.7) with a simple sample average

as in GMM, we adopt
n∑
i=1

pisgs (di, θ0) = 0

where pis is defined as probability of observing di given that the model is Ms. That is,

pis = p (di|Ms), s = 1, . . . , S. Requirement of probability states that

pis ≥ 0 and

n∑
i=1

pis = 1, i = 1, . . . , n, s = 1, . . . , S.

For each parameter vector θ ∈ Θ, define the set of probability measures:

P (θ) ≡

{
p = (pτ1 , . . . , p

τ
S)τ :

n∑
i=1

pisgs (di; θ) = 0,
n∑
i=1

pis = 1, pτs = (pis) ≥ 0, s = 1, . . . , S.

}
.

(6.13)

and

Q (θ) ≡

{
q = (q1, . . . , qS)τ :

S∑
s=1

qs = 1

}
,
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where qs = p (Ms), s = 1, . . . S. To estimate the probabilities, it is natural to consider

the following maximization problem,

max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (M|D) , (6.14)

for each θ ∈ Θ. That is, we simultaneously select the conditional probabilities, pis, the

probability of observing di given model Ms, and the marginal probability of model Ms,

qs, to maximize the missing information between the class of modelM and the observed

data. This is the essential philosophy of maximum entropy econometrics.

To analyze directly the objective function in (6.14), ones needs to know the

conditional entropy of a model class for a given data set. This is a conceptual challenge,

since we need begin with the probability distribution of the model class for a given data

set. This is exactly the difficulty researchers facing when model uncertainty presents, for

example, in the Bayesian model averaging methods. However, we will circumvent this

difficulty in entropy-based approach. We make use of the following theorem to rewrite

the objective function.

Theorem 16 The solution in (6.14) solves

max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

−
S∑
s=1

n∑
i=1

qspis log pis −
S∑
s=1

qs log qs.

Proof. Note first that the joint entropy

H (M, D) = H (D|M) +H (M)

= −
S∑
s=1

n∑
i=1

qspis log pis −
S∑
s=1

qs log qs
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Therefore, we have

[p̂τ , q̂τ ]τ = arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (M|D)

= arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (M|D) +H (D)

= arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (D,M)

= arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (D|M) +H (M)

= arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

−
S∑
s=1

n∑
i=1

qspis log pis −
S∑
s=1

qs log qs.

This completes the proof.

Lagrange multipliers can be used to solve (6.14). The Lagrangian is

L = −
S∑
s=1

n∑
i=1

qspis log pis −
S∑
s=1

qs log qs − µ

[
n∑
i=1

pis − 1

]

−
S∑
s=1

ητs

n∑
i=1

gs (di; θ) pis − ξ

[
S∑
s=1

qs − 1

]
, (6.15)

where µ, ητs and ξ are Lagrange multipliers.

In the appendix, we show that the solution to (6.14) are

q̂s =
1

S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

) exp

(
−

n∑
i=1

p̂is log p̂is

)
, (6.16)

and

p̂is=
1

Υs (λs,θ)
exp [−λτsgs (di; θ)] (6.17)

where

Υs (λs,θ) =
n∑
i=1

exp [−λτsgs (di; θ)] , (6.18)

with λτs = ητs /q̂s, λ = (λτ1 , . . . , λ
τ
S)τ . In addition, each θ ∈ Θ, λ̂τs solves

n∑
i=1

gs (di; θ) exp
[
−λ̂τsgs (di; θ)

]
= 0, (6.19)

for all s = 1, . . . , S.
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We define the profile joint entropy (JE) at θ as

JE (θ) = −
S∑
s=1

n∑
i=1

q̂sp̂is log p̂is −
S∑
s=1

q̂s log q̂s

= log Υ (λ,θ) , (6.20)

where the last equality is show in the Appendix, with

Υ (λ,θ) =
S∑
s=1

Υs (λs,θ) =
S∑
s=1

n∑
i=1

exp [−λτsgs (di; θ)] ,

and λ = (λτ1 , . . . , λ
τ
S)τ .

Our entropy-based model averaging partial effect (eMAPLE) estimator of θ

is thus defined as

θ̂eMAPLE = arg max
θ∈Θ

JE (θ) (6.21)

= arg max
θ∈Θ

1

nS
exp {JE (θ)}

= arg max
θ∈Θ

1

nS
Υ (λ,θ)

= arg max
θ∈Θ

JEn (θ) ,

where

JEn (θ) =
1

nS
Υ (λ,θ) =

1

nS

S∑
s=1

n∑
i=1

exp [−λτsgs (di; θ)]

To implement our estimator, it’s easily seen that the λτs solving (6.19) can be alterna-

tively found as

λτs = arg max
ς∈Rdim(gs(x,θ))

Υs (ς,θ) ,

Note that this is a well-defined finite dimensional unconstrained convex maximization

problem that has a unique solution. Algorithms such as Newton-Raphson method can

be easily applied. Once λτs is solved as a function of θ, it can be substituted to (6.17)

and (6.16), and consequently, (6.21) can be solved easily through numerical methods.
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6.3.4 Alternative methods

An alternative is to optimally combine the estimators of parameters common to

all models via an artificial regression (White and Lu, 2010). Denote the GLS estimator

of β0 (parameter of interest) from model s as β̃s (we suppress the dependence on sample

size n) and that of θ0 as θ̃s. Denote β̃n =
[
β̃τ1 , . . . , β̃

τ
S

]τ
, θ̃n =

[
θ̃τ1 , . . . , θ̃

τ
S

]τ
and Λ a

selection matrix such that β̃n = Λθ̃n. A combined estimator of β0 can be formulated

through the following regression,

√
nβ̃n =

√
nIβ0 + e, (6.22)

where the S dim (β0) × S dim (β0) matrix of artificial regressor I ≡ ι ⊗ Idim(β0), with ι

being the S×1 vector of ones and Idim(β0) being the identity matrix of the same dimension

as β0, e ∼ N (0,Σ∗) is the artificial regression error with Σ∗ =
(
(ΛG)τ Ω−1ΛG

)−1
. The

Feasible Optimally combined GLS (FOGLeSs) estimator of White and Lu (2010) is

defined as the FGLS estimator of (6.22):

β̃∗n =
(
Iτ Σ̂∗−1I

)−1
Iτ Σ̂∗−1β̃n, (6.23)

where Σ̂∗ is a consistent estimator of Σ∗ and satisfies

√
n
(
β̃∗n − β0

)
d→ N

(
0,
(
IτΣ∗−1I

)−1
)
.

Note that
(
IτΣ∗−1I

)−1
=
(
Iτ
(
(ΛG)τ Ω−1ΛG

)
I
)−1 ≥ Λ

(
GτΩ−1G

)−1
Λτ . FOGLeSs

estimator is not as efficient as optimal GMM estimator. We emphasize that, to imple-

ment FOGLeSs, Σ̂∗ is needed to compute β̃∗n in (6.23).

However, it is important to explore our proposed entropy-based estimation

approach for the following reasons. First, the above two-step estimation procedures

require the first step consistent estimator of θ0, which will be used for the estimation
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of the optimal weighting matrix. Inevitably, this would introduce finite sample bias for

the second stage estimation. Second, the weighing matrix (either is of large dimension

whose accuracy is more than often a concern when available data sample size is small.

6.4 Theoretical Properties

In this section, we present the theoretical properties of the eMAPLE estimator.

6.4.1 Consistency

We introduce some notations before stating the needed assumptions. Define

∇θgs (d, θ) = ∂gτs (d, θ) /∂θ, where ∂gτs (d, θ) /∂θ is the transpose of ∂gs (d, θ) /∂θ. De-

note G (s, θ) = E [∇θgs (d, θ)] and V (s, θ) = E [gs (d, θ) gτs (d, θ)].

Assumption B.1 For each θ 6= θ0 there exists a sub class Mθ ⊆ M such that

Pr(Ms ∈Mθ) > 0, and E {gs (d, θ)} 6= 0 for each Ms ∈Mθ.

Assumption B.2 E {supθ∈Θ ||gs (d, θ) ||m} <∞ for some m ≥ 8, for all s = 1, . . . , S.

Assumption B.3 For all s = 1, . . . , S,

(i) θm → θ ∈ Θ =⇒ gs (d, θm)→ gs (d, θ) for almost every d;

(ii) E [supθ∈Θ ‖ ∂gs (d, θ) /∂θ′ ‖] <∞, for all s = 1, . . . , S.

(iii) supθ∈B

∣∣∣∂g(i)
s (d, θ) /∂θ(j)

∣∣∣ ≤ r (d) , supθ∈B

∣∣∣∂2g
(i)
s (d, θ) /∂θ(j)∂θ(k)

∣∣∣ ≤ t (d) , w.p.1

for some real valued functions r (d) and t (d) such that Edυ < ∞ for some υ ≥ 4

and Et (d) <∞.

Assumption B.4 There is a closed ball around θ0, B, such that for all s = 1, . . . , S

(i) G (s, ·) and V (s, ·) are continuous w.p.1. on B.
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(ii) inf(ς,s,θ) ς
′V (s, θ) ς > 0 and sup(ς,d,θ) ς

′V (s, θ) ς <∞ with θ ∈ B.

Assumption B.5 λs ∈
{
γ : ‖γ‖ ≤ an−1/m

}
for some a > 0 and m as in Assumption

B.2.

Remark: Similar assumptions to the above ones are adopted in the EL lit-

erature (e.g., Kitamura, Tripathi and Ahn (2004)). Assumptions B.1 states that θ0 is

identified jointly in all S models. Assumption B.2 is needed to prove a Lemma C.1

in line with Lemma 3 of Owen (1990) or Lemma D.2 of Kitamura, Tripathi and Ahn

(2004). Assumption B.3 impose regularity conditions on the moment function. As-

sumption B.4 imposes conditions on the first derivative of the moment condition and

the variance-covariance matrix. Assumption B.5 is a technical assumption that leads to

the asymptotic normality of e-MAPLE estimator.

Theorem 17 (consistency) Under Assumption A.1-3, B.1-4, e-MAPLE estimator is

consistent, i.e., θ̂eMAPLE →p θ0.

Proof : See the Appendix.

Remark: Theorem 4.1 shows that e-MAPLE estimator is consistent. The consistency

comes as a result of the moment conditions that identify θ0 (that includes β). We

emphasize that γs in θ0 is pseudo projection coefficient vector in model s and does not

carry any economic interpretation.
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6.4.2 Asymptotic Normality

Theorem 18 (asymptotic normality) Under additional Assumption B.5,

√
n
[
θ̂eMAPLE − θ0

]
d→ N

(
0, J−1 (θ0) I (θ0) J−1 (θ0)

)
,

where J (θ0) = GτV −1G, I (θ0) = GτV −1ΩV −1G.

Proof : See the Appendix.

Remark: The theorem shows that, when there is no correlation among models in

different states, i.e., Ω = V , our e-MAPLE estimator θ̂eMAPLE is asymptotically efficient

and it achieves the asymptotic variance lower bound, GτΩ−1G, which is the expectation

of the inverse of Fisher information matrix averaged across states of the world. Note

that this lower bound agrees the variance of optimally weighted GMM estimator, where

the optimal weight is used for each individual model. When Ω 6= V , i.e., there is

correlation among models in different states, the e-MAPLE estimator agrees with the

GMM estimator that adopts weighting matrix W = V . This is suboptimal in the sense

that it efficiently uses information of in each model only. As pointed out earlier, e-

MAPLE estimator avoids the estimation of the large dimensional variance-covariance

matrix, which makes it appealing in finite sample.

6.4.3 Hypothesis Testing

To construct tests of the possible nonlinear restrictions as follows:

H0 : R (θ0) = r, (6.24)

where r is a k ≤ m dimensional vector of constants and R (·) is a known parametric

function. Impose this restriction in the optimization of (6.21). Denote the constrained
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solution by θ̂c and the Jacobian matrix of R evaluated at θ0 as A, which is assumed

to be of full row rank. We have the following theorem for the Wald, Rao’s Score, and

Likelihood Ratio-like test statistics.

Theorem 19 Test statistics of the restrictions (6.24),

Waldn = n
[
R
(
θ̂
)
− r
]′ [

AÎ−1 (θ0)A
]−1 [

R
(
θ̂
)
− r
]
,

LMn = ng
(
d, θ̂c

)
V̂ −1ĜÎ−1 (θ0) Ĝ′V̂ −1g

(
d, θ̂c

)
,

LRn = 2
[
JEn

(
θ̂
)
− JEn

(
θ̂c
)]

are asymptotically χ2
k, where V̂ , Ĝ, Î−1 (θ0) , Â, are consistent estimates of

V,G, I (θ0) and A.

Proof : The results follows from Theorem 3 and Amemiya (1985).

Remark: Tests based on g-MAPLE estimators can be similarly constructed, without

any difficulty. However, in practice, we recommend the LRn test based on e-MAPLE

estimator due to its easy implementation and nice finite sample properties as to be

shown in the next section.

6.5 Finite Sample Investigations

In this section, we conduct simulation studies to examine the finite sample

properties of e-MAPLE estimator, with a comparison to other estimators available in

the literature. We include the ordinary least square estimator, Generalized Least Square

(GLS) estimator with perfect knowledge of heterogeneity function, Feasible GLS with

knowledge of heterogeneity functional form,1-step GMM (GMM1) estimator, 2-step opti-

mal GMM (GMM2) estimator, the FOGLeSs estimator of White and Lu (2010), LASSO
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estimator of Tibshirani (1996), the factor based estimator of Galbraith etc (2010) and

the Mallows model averaging (MMA) estimator of Hansen (2007).

We perform sequentially five experiments for the investigation. We briefly de-

scribe our experiments before presenting the details. The first experiment is to study

the performance in a factor model setting. The second experiment is look into the clas-

sical regression model with a large number of covariates. The third experiment is to

amplify the role of efficient estimation in the presence of heterogeneous errors. The next

experiment is to investigate the effects of the irrelevant covariates with homogeneous

disturbance, which is replaced by heterogeneity in the last experiment. For all exper-

iments considered, we consider sample size n = 50, 100, 150, 200, 250 and replicate the

process 1,000 times. The covariates are kept fixed for each replication. The estimator of

the parameter of interest, β, is the partial effect of x on y. We report different criteria to

evaluate estimators under investigation, including the Mean Squared Error (MSE), the

Mean Absolute Error (MAE), Squared Bias (Bias2), Variance (Var) and Inter Quantile

Range (IQR) over 1,000 replications.

6.5.1 Experiment 1: factor model

We first consider a factor model, in which all the observed covariates are gen-

erated from some underlying factors fi, according to the following DGP.

DGP1 :



yi = xτi β + z′iγ + e1i,

Zi = f τi ξz + e2i,

xi = f τi ξx + e3i,

i = 1, ..., n. We consider nf = dim (fi) = 3 and generate fi from a multivariate normal

distribution with random mean vector and random covariance matrix. p = dim (zi) =
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0.8n− 2, ξz is generated in a similar way as fi but is normalized to a unit vector. ξx is

generated from uniform U [0, 3]. We set β = [2, 3]′, and γ is generated from U [0, 0.3].

eji, j = 1, 2, 3, is independent standard normal error.

6.5.2 Experiment 2: regression model, case 1

We next consider the classical regression model that has a large dimensional

observed covariates.

DGP2 : yi = xτi β + z′iγ + ei,

where xi and zi are generated from independent standard normal distribution. xi and

zi of the same dimension as those in DGP 1, and so are the values of β and γ. ei is the

independent standard normal error.

6.5.3 Experiment 3: regression model, case 2

While heterogeneity is more often the case than exception in economic data,

we incorporate such a feature into DGP3.

DGP3 : yi = xτi β + z′iγ + vmi · ei,

We generate xi, zi, β, γ and ei in the same way as in DGP2. We consider heterogeneity

function vmi for three different forms

v1
i =

√
x2

1i + x2
1i

v2
i =

√
x2

1i + 2x2
1i

v3
i = exp

(
−x2

1i

)
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6.5.4 Experiment 4: regression model, case 3

Note that in earlier experiments, the large dimensional covariate vector (xi, zi)

are causal in generating the dependent variable y. We next consider the case in which

a large dimensional irrelevant covariates are available.

DGP4 : yi = xτi β + z′1iγ + ei,

where Z1i is a subset of Zi. xi, Zi, β, γ and ei are generated in the same way as in

DGP2.

6.5.5 Experiment 5: regression model, case 4

We further consider effects of heterogeneity in error term.

DGP5 : yi = xτi β + z′1iγ + umi · ei,

where we consider three different form of heterogeneity,

u1
i =

√
x2

1i + 2x2
1i,

u2
i =

√
x2

1i + 5x2
1i,

u3
i =

√
x2

1i + 5x2
1i + 2 cos (x1ix2i).

Table 4-21 present the simulation results for experiment 1-5. To save space, we

only report the squared bias and MSE for the estimators considered, with sample size

50 and 200. Other simulation results resemble and are available from the author upon

requests. The findings are summarized as follows.

1. In experiment 1, factor estimator and MMA estimator suffer from huge bias. This

leads to its bad performance in MSE. FOGLeSs, GMM and eMAPLE estimator
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incur a small bias but enjoy a big reduction in variance, as shown as their MSE

are much smaller than GLS estimator. Our proposed estimators are generally

better than FOGLeSs estimator. Lasso is very attractive in small sample, due to

the correlation in the factors and the regressors. However, it is much worse than

MAPLE estimators when n = 200.

2. In experiment 2, MMA, JMA and LASSO estimators perform pretty well and even

beat the oracle GLS estimator. The advantage of MAPLE estimator becomes clear

when sample size is n = 200. MAPLE outperforms FOGLeSs estimator in all cases.

3. In experiment 3, when heterogeneity presents, the performance of the estimators

considered is quite mixed. A smaller MSE of one parameter estimator is usually

glued with a larger MSE of the other parameter estimator. However, in the third

heterogeneity case, MAPLE estimators outperform others in small sample.

4. In experiment 4, we see the clear dominance of MAPLE estimators over other

competing ones. Especially, eMAPLE estimator is performing as if it is the oracle

GLS estimator in terms of MSE. All competitors perform quite close to GLS.

LASSO becomes the worst among all methods.

5. In experiment 5, the dominance of MAPLE estimator remains when heterogeneity

exists. Although they are not as good as the oracle GLS, but they are quite

competing with the FGLS. LASSO remains the worst among all competitor, but

perform slightly better than the naive OLS estimator.

6.5.6 Experiment 6: rejection probability

We consider to evaluate the size of the tests based on different estimators.

We include GLS, FOGLeSs, GMM and our eMAPLE estimators. For tests based on
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eMAPLE estimator, we only include the LR type test that is appealing in its computa-

tion. Other tests are based on the usual t-test statistic. We consider the following data

generating process.

DGP6-1 : yi = 2xi + z′1iγ + ei,

where z1i is generated in the same way as that in experiment 4. We report the results

based on 1000 replications for sample size n=50 and 200.

Table 6.1: Rejection Probability: Homogeneous Case

n = 50 n = 200

α 0.01 0.05 0.10 0.01 0.05 0.10

OLS 0.259 0.389 0.468 0.246 0.374 0.456

GLS 0.023 0.076 0.133 0.012 0.061 0.115

FOGLeSs 0.081 0.179 0.252 0.015 0.077 0.148

gMAPLE1 0.034 0.079 0.152 0.013 0.055 0.116

gMAPLE2 0.049 0.100 0.176 0.014 0.061 0.119

eMAPLE 0.027 0.075 0.132 0.013 0.053 0.115

We consider to evaluate the size of the tests. Table 1 presents the rejection

probability when there is no heterogeneity. Test based on eMAPLE estimator tends

to outperform all other competitors, including that based on oracle GLS estimator.

Its rejection probabilities are very close to their nominal levels for both sample sizes.

FOGLeSs estimator suffers from big size distortion.
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To incorporate heterogeneity, we consider the following design,

DGP6-2 : yi = xτi β + z′1iγ + ui · ei,

with

ui = log
(
3x2

i

)
.

Table 6.2: Rejection Probability: Heterogeneous Case

n = 50 n = 200

α 0.01 0.05 0.10 0.01 0.05 0.10

OLS 0.240 0.366 0.455 0.249 0.386 0.463

GLS 0.017 0.068 0.126 0.013 0.040 0.086

FOGLeSs 0.124 0.235 0.306 0.030 0.090 0.153

gMAPLE1 0.034 0.103 0.166 0.013 0.057 0.111

gMAPLE2 0.044 0.125 0.194 0.015 0.052 0.114

eMAPLE 0.021 0.094 0.159 0.012 0.053 0.114

The performance of eMAPLE estimator remains satisfactory in the presence

of heterogeneity. Although there is a distortion when sample size is 50, it beats GLS

estimator when sample size becomes 200. FOGLeSs perform slightly better with het-

erogeneity, but still have serious size distortion.

6.6 Empirical Illustration

We illustrate the use of MAPLE estimator in the study of the impact of in-

herited control on firm performance. We adopt the data set that is originally analyzed
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by Pérez-González(2006) and subsequently examined by White and Lu (2010). Pérez-

Gonzálezuses data from 335 management transitions of publicly traded U.S. corporations

to examine whether firms with family related incoming chief executive officers (CEOs)

underperform in terms of operating profitability relative to firms with unrelated incom-

ing CEOs. In this application, x equals to 1 if the incoming CEO is related to the

departing CEO, to the founder, or to a large shareholder by blood or marriage and

otherwise it equals to 0. Operating return on assets (OROA) is used as a measure of

firm performance. y is the difference in OROA calculated as the three-year average

after succession minus the three-year average before succession. We direct detailed data

description to White and Lu (2010).

Following White and Lu (2010), we classify the covariates into firm size, firm’s

past performance, board characteristics, firm’s R&D expenditure, departing CEO’s sep-

aration conditions and incoming CEO’s ownership, and incoming CEO’s characteristics.

We follow White and Lu (2010) to consider 5 model specifications that correspond to 5

states of the world. We report the estimated weights and e-MAPLE estimate in TABLE

7, together with associated the t-statistic. In TABLE 3, we include the estimator of

White and Lu (2010) for comparison.

Table 6.3: Empirical results: Inherited control

FOGLeSs gMPL 1 gMPL2 eMPL

Estimate -0.0246 -0.0283 -0.0283 -0.0221

95% C.I. (-0.04409,-0.00510) (-0.04805,-0.00862) (-0.04606,-0.01057) (-0.03300,-0.01200)

95% C.I. length 0.03899 0.03943 0.03550 0.02100

eMAPLE model probability

0.1996 0.2001 0.2001 0.2003 0.1999
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We find that all the estimates are negative and all 95% confidence intervals

are to the left of zero. The implication is that the effect of inherited control on firm

performance is significant. This agree with the findings of White and Lu (2010) and

Pérez-González(2006). A second finding from Table 3 is that confidence interval based on

our eMAPLE estimator is much narrower than those based on FOGLeSs and gMAPLE

estimators. Combined with findings in our simulation results, the eMAPLE estimator

provides more accurate inference analysis.

6.7 Conclusion and Future Work

This chapter studies the estimation of marginal effect of one economic variable

on another, in the presence of large amount of other economic variables. The chapter

first points out that only small dimensional partial effect parameters have economic pol-

icy implication and therefore are economically sensible. Then we set up conditions to

identify partial effect parameter of interest in high dimensional structural model. Based

on identification of the parameter of interest, we consider the case that the partial effect

parameter may be identified in more than one model. I propose two new model aver-

aging estimator to estimate the partial effect estimator based on a GMM-like objective

function and an entropy objective function. The two estimators are termed as gMAPLE

and eMAPLE estimators. Asymptotic properties of MAPLE estimators are established

under a suitable set of conditions. Simulation results show that the MAPLE estimator

outperform other competitors in finite sample. An application of the MAPLE estimator

to study the effect of inherited control on firm’s performance is carried out to illustrate

its use. We found that a negative effect does exist which is consistent with earlier find-
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ings in the literature. The gain in using MAPLE estimator compared to FOGLeSs is

revealed through the shorter confidence interval length.

This chapter opens directions for future studies in model averaging in numerous

ways. It emphasizes the estimation of parameter of interest in large dimensional model

via identification conditions and model averaging techniques. An information based test

of the key identification condition, conditional mean independence, is under investigation

by the author. A second direction is to apply MAPLE to study the determinants of

economic growth following the work of Sala-i-Martin et al (2004). MAPLE can also

be extended to the nonparametric and semiparametric models. the only challenge is

the identification condition. As an alternative to entropy based approach, empirical

likelihood (Owen 1988, 1990, 1991) based approach can be used for MAPLE as well.

Moreover, information based variable selection and estimation is another direction to

extend the current chapter.

187



Appendix

Proof of Lemmas

Proof of Lemma 7. Partition the coefficient of zi as γτi =[γτ1i, γ
τ
2i] corresponding to the

partition of zτi =
[
z1τ
i , z

2τ
i

]
.Under Assumption CMI,

E [yi|xi, z1i] = α+ xiβ + zτ1iγ1i + E [zτ2iγ2i|xi, z1i] + E [εi|xi, z1i]

= α+ xiβ + zτ1iγ1i + E [zτ2i|z1i] γ2i (6.25)

where E [εi|xi, z1i] = 0 due to strict exogeneity of the regressors. Note that (6.25)

implies that β is identified in the regression of yi on xi and z1i, with conditions as

specified in Robinson (1988).

Proof of Lemma 8. Similar to the proof of Lemma 1, under Assumption WCMI, we

can derive that

E [yi|xi, z1i] = α+ xi (β + η) + zτ1iγ1i + E [zτ2i|z1i] γ2i.

Thus (β + η) would be identified in the regression of yi on xi and z1i, with conditions

as specified in Robinson (1988). Since ||η|| = o
(
n−1/2

)
, with sample size gets large,

Robinson’s (1988) estimator of (β + η) will converge to β.

Derivation of Some Equations

This Appendix provides derivation of equation (6.16), (6.17), (6.19), (6.20).

The FOCs of the Lagrangian in (6.15) are:
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∂L

∂pis
= −q̂s log p̂is − q̂s − µ̂s − η̂τs gs (di, θ) = 0, (6.26)

∂L

∂qs
= −

n∑
i=1

p̂is log p̂is − 1− log q̂s − ξ̂ = 0, (6.27)

∂L

∂µs
=

n∑
i=1

p̂is − 1 = 0, (6.28)

∂L

∂ηs
=

n∑
i=1

p̂isgs

(
di; θ̂

)
= 0, (6.29)

∂L

∂ξ
=

S∑
s=1

q̂s − 1 = 0, (6.30)

∂L

∂θ
=

S∑
s=1

η̂τs

n∑
i=1

p̂is∇θgs
(
di, θ̂

)
= 0. (6.31)

(i) Derivation of (6.16). From (6.27), we get

q̂s = exp

(
−

n∑
i=1

p̂is log p̂is − 1− ξ̂

)
.

Combined this equation with (6.30), it gives (6.16).

(ii) Derivation of (6.17). Using (6.26), It’s straightforward to show that

p̂is = exp

(
− q̂s − µ̂s − η̂

τ
s gs (di, θ)

q̂s

)
,

With normalization in (6.28), we have

p̂is =
exp

(
−q̂s−µ̂s−η̂τs gs(di,θ)

q̂s

)
∑n

i=1 exp
(
−q̂s−µ̂s−η̂τs gs(di,θ)

q̂s

)
=

exp
(
−η̂τs gs(di,θ)

q̂s

)
∑n

i=1 exp
(
−−η̂

τ
s gs(di,θ)
q̂s

)
=

1

Υs (λs,θ)
exp [−λτsgs (di; θ)] ,

with λτs = η̂τs /q̂s, and Υs (λs,θ) =
∑n

i=1 exp [−λτsgs (di; θ)]. This proves (6.17).

(iii) Derivation of (6.19). Plugging (6.17) into (6.29) results

n∑
i=1

gs (di; θ)

Υs (λs,θ)
exp [−λτsgs (di; θ)] = 0.
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Since Υs (λs,θ) > 0, this leads to (6.19).

(iv) Derivation of (6.20). We show this results in two steps. (a) Note that

−
S∑
s=1

q̂s log q̂s = −
S∑
s=1

q̂s log


exp

(
−

n∑
i=1

p̂is log p̂is

)
S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)


=

n∑
i=1

q̂s

n∑
i=1

p̂is log p̂is

+
S∑
s=1

q̂s log
S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)

=
n∑
i=1

q̂s

n∑
i=1

p̂is log p̂is + log
S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)
.

Thus

JE (θ) = −
S∑
s=1

n∑
i=1

q̂sp̂is log p̂is −
S∑
s=1

q̂s log q̂s

= −
S∑
s=1

n∑
i=1

q̂sp̂is log p̂is +

n∑
i=1

q̂s

n∑
i=1

p̂is log p̂is + log

S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)

= log
S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)
.

(b) Next,

−
n∑
i=1

p̂is log p̂is

= −
n∑
i=1

p̂is log
exp [−λτsgs (di; θ)]

Υs (λs,θ)

= λτs

n∑
i=1

p̂isgs (di; θ) +

n∑
i=1

p̂is log Υs (λs,θ)

= log Υs (λs,θ) ,

where we have used (6.29).

Putting (a) and (b) together leads to

JE (θ) = log
S∑
s=1

Υs (λs,θ) = log Υ (λ,θ) ,

which proves (6.20).
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Proof of Auxiliary Lemmas

Lemma C.1 Under Assumption B.1-5, supθ∈Θ,s=1,...,S,di |λ
τ
sgs (di; θ)| = op (1).

Proof. It follows from Lemma 3 of Owen (1990) or Lemma D.2 of Kitamura,

Tripathi and Ahn (2004).

Lemma C.2 Under Assumption B.1-5, supθ∈Θ ||λτs (θ)−V −1 (s, θ)Egs (d, θ) || = op (‖λs‖) .

Proof. By (6.19), λτs solves

n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)] = 0.

By Taylor’s Theorem, there exists λ̄s lying between 0 and λs such that

0 =
n∑
i=1

gs (di; θ)

{
1− λτsgs (di; θ) +

(
λ̄τsgs (di; θ)

)2
2

}
.

Rearranging terms leads to

λs =

[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1 n∑
i=1

gs (di; θ) /n

+

[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]
n∑
i=1

gs (di; θ)

(
λ̄τsgs (di; θ)

)2
2n

≡ l1 + l2,

where

l1 = V −1 (s, θ)Egs (d, θ) +
[
V̂ −1 (s, θ)− V −1 (s, θ)

]
Egs (d, θ)

+V̂ −1 (s, θ)

[
n∑
i=1

gs (di; θ) /n− Egs (d, θ)

]
= V −1 (s, θ)Egs (d, θ) + op (1) ,

191



by Assumption B.2 and B.4, and

‖l2‖ =

∥∥∥∥∥∥
[

1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1
∥∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gs (di; θ)

(
λ̄τsgs (di; θ)

)2
2n

∥∥∥∥∥
≤

∥∥∥V̂ −1 (s, θ)
∥∥∥∥∥∥∥∥

n∑
i=1

g2
s (di; θ)

∥∥∥∥∥
1/2 ∥∥∥∥∥

n∑
i=1

[
λ̄τsgs (di; θ)

]4∥∥∥∥∥
1/2

/n

≤
∥∥∥V̂ −1 (s, θ)

∥∥∥∥∥∥∥∥
n∑
i=1

g2
s (di; θ)

∥∥∥∥∥
1/2

sup
∥∥∥[λ̄τsgs (di; θ)

]4∥∥∥
≤

∥∥∥V̂ −1 (s, θ)
∥∥∥∥∥∥∥∥

n∑
i=1

g2
s (di; θ)

∥∥∥∥∥
1/2

sup
∥∥λ̄τs∥∥4 ‖gs (di; θ)‖4

≤
∥∥∥V̂ −1 (s, θ)

∥∥∥∥∥∥∥∥
n∑
i=1

g2
s (di; θ)

∥∥∥∥∥
1/2

(sup ‖λs‖ ‖gs (di; θ)‖)4

= o (1) ,

by Cauchy-Schwartz’s inequality, Assumption B.2 and Lemma C.1.

Lemma C.3 Under Assumption B.1-5, supθ∈Θ ||∇θλτs (θ)−V −1 (s, θ)D (s, θ) || = op (1) .

Proof. By (6.19), λτs solves

n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)] = 0.

Differentiating both sides with respect to θ gives

0 =
n∑
i=1

∇θgs (di; θ) exp [−λτsgs (di; θ)]

−
n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)]∇θλτs (θ) gs (di; θ)

−
n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)]λ
τ
s (θ)∇θgs (di; θ)

≡ l1 − l2∇θλτs (θ) + l3.

The proof is completed after showing that (i) supθ∈Θ ||l1/n−D (s, θ) || = op (1) ; (ii) supθ∈Θ ||l2/n−

V (s, θ) || = op (1) ;(iii) supθ∈Θ ||l3/n|| = op (1) and an application of triangular inequal-

ity.
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We show (i) first. Note that

l1/n =
1

n

n∑
i=1

∇θgs (di; θ) exp [−λτsgs (di; θ)]

=
1

n

n∑
i=1

∇θgs (di; θ) + op (1)

= D (s, θ) + op (1) ,

by Lemma C.1 and a Law of Large Numbers.

We then show (ii). It is easily seen that

l2/n =
1

n

n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)] gs (di; θ)

=
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ) + op (1)

= V (s, θ) + op (1) ,

by Lemma C.1 and a Law of Large Numbers.

Finally, we show (iii).

‖l3/n‖ =

∥∥∥∥∥ 1

n

n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)]λ
τ
s (θ)∇θgs (di; θ)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

n

n∑
i=1

gs (di; θ)λ
τ
s (θ)∇θgs (di; θ)

∥∥∥∥∥+ op (1)

≤

∥∥∥∥∥ 1

n

n∑
i=1

gs (di; θ)

∥∥∥∥∥ sup
θ∈Θ
‖λτs (θ)‖

∥∥∥∥∥ 1

n

n∑
i=1

∇θgs (di; θ)

∥∥∥∥∥+ op (1)

= op (1)

by Lemma C.1, Assumption B.3, B.4 and a Law of large numbers.

Proof of Main Theorems

Proof of Theorem 4.1.

Define JE0 (θ) = − 1
S

∑S
s=1Eg

τ
s (di; θ)V (s, θ)Egs (di; θ) ≡ − 1

S

∑S
s=1 hs (s, θ).

By Theorem 4.1.1 of Amemiya (1985), to prove θ̂ →p θ0, we need only show that (i)
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JE0 (θ) is uniquely maximized at θ = θ0 and (ii) supθ∈Θ |JEn (θ)− JE0 (θ)| →p 0.

We first prove (i). By Assumption B.1 and B.4, hs (s, θ) > 0 for any θ ∈

Θ\ {θ0}. However, hs (s, θ0) = Egτs (di; θ0)V (s, θ0)Egs (di; θ0) = 0 by (6.7). Thus

JE0 (θ) ≥ 0 with the unique minimizer θ = θ0.

Next we show (ii). Applying Lemma C.2, write

n∑
i=1

λτs (θ) gs (di; θ) =
n∑
i=1

Egτs (di; θ)V
−1 (s, θ) gs (di; θ) + op (1) .

This leads to

|JEn (θ)− JE0 (θ)|

=
1

S

∣∣∣∣∣
S∑
s=1

Egτs (di; θ)V (s, θ)Egs (di; θ)−
S∑
s=1

Egτs (di; θ)V
−1 (s, θ)

1

n

n∑
i=1

gs (di; θ) + op (1)

∣∣∣∣∣
=

1

S

∣∣∣∣∣
S∑
s=1

Egτs (di; θ)V (s, θ)

[
Egs (di; θ)−

1

n

n∑
i=1

gs (di; θ)

]
+ op (1)

∣∣∣∣∣
≤ 1

S

S∑
s=1

|Egτs (di; θ)V (s, θ) op (1) + op (1)| = op (1) ,

where we have used Assumption B.2, B.4 and a Law of Large numbers.

Proof of Theorem 4.2. Note that FOC of (6.21) is

∇θJEn

(
θ̂
)

= 0.

By Taylor’s Theorem, there exisit θ̄ lying between θ̂ and θ0, s.t.,

0 = ∇θJEn

(
θ̂
)

= ∇θJEn (θ0) +∇θθJEn
(
θ̄
) (
θ̂ − θ0

)
.

This leads to

√
n
(
θ̂ − θ0

)
= −

[
∇θθJEn

(
θ̄
)]−1 [√

n∇θJEn (θ0)
]
.

We complete the proof by showing that (i)
√
n∇θJEn (θ0) → N

(
0, 1

S2 I (θ0)
)

and (ii)

−∇θθJEn
(
θ̄
)
→p

1
SJ (θ0) and an application of Slutsky’s Theorem.

194



(1) We first prove
√
n∇θJEn (θ0)→ N

(
0, 1

S2 I
−1 (θ0)

)
. Note first that by (6.19),

λτs solves
n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)] = 0.

Thus, we have

∇θJEn (θ0) =
1

nS

S∑
s=1

n∑
i=1

∇θλτs (θ) gs (di; θ) exp [−λτsgs (di; θ)]

+
1

nS

S∑
s=1

n∑
i=1

λτs (θ)∇θgs (di; θ) exp [−λτsgs (di; θ)]

=
1

nS

S∑
s=1

n∑
i=1

λτs (θ)∇θgs (di; θ) exp [−λτsgs (di; θ)]

=
1

nS

S∑
s=1

n∑
i=1

(
1

n

n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1

∇θgs (di; θ)

× exp [−λτsgs (di; θ)] + op (1)

≡ Û + op (1)

We need to show that n1/2Û → N
(
0, 1

S2 I (θ0)
)
.

Since exp [−λτsgs (di; θ)] = 1−λτsgs (di; θ)+op (1) by Assumption B.5. We have

n1/2Û = n−1/2 1

S

S∑
s=1

n∑
i=1

(
1

n

n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1

∇θgs (di; θ)

−n−1/2 1

S

S∑
s=1

n∑
i=1

(
1

n

n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1

∇θgs (di; θ)λ
τ
sgs (di; θ)

= n−1/2 1

S

S∑
s=1

n∑
i=1

(
1

n

n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1

∇θgs (di; θ) + op (1)

= n−1/2Û1 + op (1) .
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Furthermore,

n−1/2Û1 =
1√
n

1

S

S∑
s=1

n∑
i=1

(
n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1

∇θgs (di; θ) /n

=
1√
n

1

S

n∑
i=1


S∑
s=1

gτs (di; θ)

[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1(
1

n

n∑
i=1

∇θgs (di; θ)

)
=

1√
n

1

S

n∑
i=1

{
S∑
s=1

gτs (di; θ)V
−1 (s, θ)G (s, θ)

}
+ op (1)

≡ 1√
n

n∑
i=1

ζi

where

ζi =
1

S

S∑
s=1

gτs (di; θ)V
−1 (s, θ)G (s, θ) .

It is easily seen that ζi is an m.d.s. with variance

E [ζiζ
τ
i ] = E

{
S∑
s=1

gτs (di; θ)V
−1 (s, θ)G (s, θ)

}2

.

=
1

S2

S∑
s,t=1

Gτ (s, θ)V −1 (s, θ)E [gs (di; θ) g
τ
t (di; θ)]V

−1 (t, θ)G (t, θ)

=
1

S2
GτV −1ΩV −1G

(
=

1

S2
GτV −1G

)
≡ 1

S2
I (θ0) .

By a CLT for vector ergodic stationary m.d.s. (see, for example, Billingsley, 1961), we

have

n1/2Û1 →d N

(
0,

1

S2
I (θ0)

)
.

(2) We then show that −∇θθJEn
(
θ̄
)
→p J (θ0). First,

−nS∇θθJEn (θ0) =

S∑
s=1

n∑
i=1

∇θλτs (θ) gs (di; θ) exp [−λτsgs (di; θ)]∇θ [λτs (θ) gs (di; θ)]

+
S∑
s=1

n∑
i=1

∇θλτs (θ)∇θgs (di; θ) exp [−λτsgs (di; θ)]

+

S∑
s=1

n∑
i=1

λτs (θ)∇θθgs (di; θ) exp [−λτsgs (di; θ)]

≡ u1 + u2 + u3.
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We show that (i) ‖u1/n‖ = op (1), (ii) ‖u2/ (nS)− J (θ0)‖ = op (1), and (iii) ‖u3/n‖ =

op (1).

We first show (i) ‖u1/n‖ = op (1).

‖u1/n‖ =

∥∥∥∥∥ 1

nS

S∑
s=1

n∑
i=1

∇θλτs (θ) gs (di; θ) exp [−λτsgs (di; θ)]∇θ [λτs (θ) gs (di; θ)]

∥∥∥∥∥
≤ 1

S

S∑
s=1

∥∥∥∥∥ 1

n

n∑
i=1

∇θλτs (θ) gs (di; θ)∇θ [λτs (θ) gs (di; θ)]

∥∥∥∥∥+ op (1)

≤ 1

S

S∑
s=1

∥∥∥∥∥ 1

n

n∑
i=1

∇θλτs (θ)

∥∥∥∥∥
∥∥∥∥∥ 1

n

n∑
i=1

gs (di; θ)

∥∥∥∥∥
×

{∥∥∥∥∥ 1

n

n∑
i=1

[∇θλτs (θ)] gs (di; θ)

∥∥∥∥∥+

∥∥∥∥∥ 1

n

n∑
i=1

λτs (θ)∇θgs (di; θ)

∥∥∥∥∥
}

+ op (1)

≤ op (1) ,

by Assumption B.3, B.4 and Lemma C.1, C.2.

We next show (ii) ‖u2/ (nS)− J (θ0)‖ = op (1). Note that by Lemma C.3, we

have

u2/ (nS) =
1

nS

S∑
s=1

n∑
i=1

∇θλτs (θ)∇θgs (di; θ) exp [−λτsgs (di; θ)]

=
1

nS

S∑
s=1

n∑
i=1

∇θλτs (θ)∇θgs (di; θ) + op (1)

=
1

nS

S∑
s=1

n∑
i=1

Gτ (s, θ)V −1 (s, θ)∇θgs (di; θ) + op (1)

=
1

S

S∑
s=1

Gτ (s, θ)V −1 (s, θ)

(
1

n

n∑
i=1

∇θgs (di; θ)

)
+ op (1)

=
1

S

S∑
s=1

Gτ (s, θ)V −1 (s, θ)G (s, θ) + op (1) ,

=
1

S
GτV −1G+ op (1) =

1

S
J (θ0) + op (1) .

by Assumption B.4 and a Law of Large Numbers.
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Finally we show (iii) ‖u3/n‖ = op (1).

‖u3/n‖ =

∥∥∥∥∥ 1

n

S∑
s=1

n∑
i=1

λτs (θ)∇θθgs (di; θ) exp [−λτsgs (di; θ)]

∥∥∥∥∥
≤

S∑
s=1

∥∥∥∥∥ 1

n

n∑
i=1

λτs (θ)∇θθgs (di; θ)

∥∥∥∥∥+ op (1)

≤
S∑
s=1

∥∥∥∥∥ 1

n

n∑
i=1

λτs (θ)

∥∥∥∥∥
∥∥∥∥ 1

n
∇θθgs (di; θ)

∥∥∥∥+ op (1)

≤ op (1) ,

by Assumption B.4 and Lemma C.2.
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Table 6.4: Squared Bias (×100): DGP 1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.01 0.01 580.45 2650.07 5672.03 7.25 2.69 10.66 10.66 11.01

θ2 0.00 0.00 0.00 1744.79 1353.36 2344.46 0.00 0.39 3.41 3.41 2.93

n= 200 θ1 0.00 0.00 0.00 5445.91 6859.52 7348.23 6.11 3.95 0.04 0.04 0.00

θ2 0.00 0.00 0.00 2910.09 7132.12 7690.01 6.04 10.69 2.22 2.22 1.69

Table 6.5: Mean Squared Error (×100): DGP 1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 4.12 4.12 4.12 581.03 2653.12 5672.88 7.57 3.07 10.70 10.70 11.06

θ2 0.91 0.91 0.91 1744.84 1354.10 2344.68 0.09 0.51 3.42 3.42 2.94

n= 200 θ1 0.56 0.56 0.56 5445.99 6859.71 7348.34 6.17 4.03 0.04 0.04 0.01

θ2 0.81 0.81 0.81 2910.28 7132.44 7690.17 6.10 10.77 2.23 2.23 1.70
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Table 6.6: Squared Bias (×100): DGP 2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.00 0.00 0.00 2.68 1.83 1.99 0.11 6.57 5.31 5.88 5.24

θ2 0.02 0.02 0.02 5.30 1.24 2.44 0.00 3.80 3.18 4.34 3.24

n= 200 θ1 0.00 0.00 0.00 0.09 0.04 0.13 0.04 0.00 0.17 0.22 0.17

θ2 0.01 0.01 0.01 2.98 0.76 0.78 0.02 0.13 0.19 0.07 0.18

Table 6.7: Mean Squared Error (×100): DGP 2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 7.64 7.64 7.64 5.11 5.83 5.25 6.75 10.01 7.75 8.57 7.68

θ2 7.05 7.05 7.05 7.24 4.71 4.95 4.06 6.94 5.14 6.44 5.20

n= 200 θ1 2.84 2.84 2.84 0.56 2.05 1.40 1.61 0.73 0.63 0.69 0.63

θ2 3.90 3.90 3.90 3.52 3.44 2.40 1.93 0.87 0.72 0.61 0.71

Table 6.8: Squared Bias (×100): DGP 3-1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.02 0.03 10.83 5.26 8.19 0.79 9.20 11.18 12.13 11.22

θ2 0.01 0.00 0.00 0.83 5.46 9.23 1.30 16.25 17.73 18.64 17.76

n= 200 θ1 0.00 0.01 0.01 0.60 0.00 0.04 0.07 0.17 0.58 0.70 0.59

θ2 0.00 0.00 0.00 1.84 1.17 1.97 0.34 0.86 0.34 0.36 0.34
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Table 6.9: Mean Squared Error (×100): DGP 3-1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 20.01 15.26 15.49 18.33 15.17 16.66 20.09 17.81 18.38 19.36 18.43

θ2 24.85 22.58 23.26 9.18 16.99 18.32 18.16 25.21 24.49 25.22 24.53

n= 200 θ1 4.43 3.79 3.80 2.45 2.76 2.20 3.10 2.22 2.43 2.59 2.43

θ2 5.48 4.99 5.04 3.63 4.78 4.71 4.27 3.00 2.29 2.40 2.28

Table 6.10: Squared Bias (×100): DGP 3-2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.05 0.00 0.01 11.84 11.74 15.00 0.81 0.75 0.15 0.09 0.14

θ2 0.06 0.02 0.00 0.02 0.01 0.01 0.00 1.66 2.99 3.97 3.06

n= 200 θ1 0.00 0.00 0.00 17.70 2.58 5.97 0.99 13.76 15.75 15.57 15.72

θ2 0.00 0.00 0.00 1.49 0.24 0.39 0.07 1.81 1.95 2.17 1.95

Table 6.11: Mean Squared Error (×100): DGP 3-2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 29.75 20.48 21.57 19.99 22.91 24.33 29.58 12.74 8.88 9.12 8.86

θ2 19.72 17.79 18.88 13.68 13.66 13.50 18.22 17.42 15.91 16.92 15.98

n= 200 θ1 8.22 6.85 6.91 20.19 6.60 9.03 5.94 16.60 18.22 18.06 18.20

θ2 7.70 6.31 6.37 4.76 5.26 4.56 5.83 5.66 5.24 5.49 5.24
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Table 6.12: Squared Bias (×100): DGP 3-3

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.00 0.00 400.00 0.00 3.15 1.33 0.16 0.18 0.06 0.19 0.09

θ2 0.00 0.01 900.00 13.22 13.36 12.29 0.08 0.08 0.10 0.01 0.09

n= 200 θ1 0.00 0.00 400.00 1.97 0.07 0.36 0.34 4.06 3.16 3.45 3.16

θ2 0.00 0.00 900.00 0.09 0.02 0.00 0.20 0.54 0.25 0.28 0.25

Table 6.13: Mean Squared Error (×100): DGP 3-3

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 3.32 2.47 400.00 0.10 4.62 1.84 1.79 0.56 0.17 0.35 0.20

θ2 1.88 1.26 900.00 13.59 13.95 12.61 1.18 0.86 0.47 0.50 0.48

n= 200 θ1 0.38 0.26 400.00 1.99 0.40 0.61 0.57 4.19 3.18 3.47 3.18

θ2 0.71 0.56 900.00 0.30 0.62 0.48 0.62 0.82 0.45 0.49 0.45

Table 6.14: Squared Bias (×100): DGP 4

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.00 0.00 0.05 0.01 0.01 0.16 0.25 0.14 0.11 0.14

θ2 0.00 0.00 0.00 0.04 0.08 0.08 0.26 0.27 0.16 0.12 0.16

n= 200 θ1 0.00 0.00 0.00 0.02 0.07 0.08 0.07 0.02 0.00 0.01 0.00

θ2 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.01 0.01 0.01
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Table 6.15: Mean Squared Error (×100): DGP 4

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 6.79 1.88 1.88 1.82 2.27 1.97 4.88 2.43 1.89 1.94 1.88

θ2 8.88 2.36 2.36 2.33 3.19 2.73 6.28 3.03 2.37 2.46 2.37

n= 200 θ1 2.30 0.53 0.53 0.56 0.62 0.61 1.15 0.60 0.53 0.54 0.53

θ2 2.21 0.60 0.60 0.58 0.64 0.61 1.11 0.71 0.59 0.60 0.59

Table 6.16: Squared Bias (×100): DGP 5-1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.00 0.01 9.18 4.12 5.22 0.25 2.41 0.81 0.38 0.72

θ2 0.02 0.00 0.02 2.67 0.70 1.23 0.15 1.66 0.86 0.22 0.74

n= 200 θ1 0.00 0.00 0.00 0.04 0.08 0.12 0.09 0.04 0.01 0.02 0.01

θ2 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.06 0.01 0.00 0.01

Table 6.17: Mean Squared Error (×100): DGP 5-1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 42.30 4.91 6.55 17.77 16.16 15.94 31.91 12.26 9.72 9.24 9.57

θ2 23.13 6.41 8.38 16.16 13.98 14.53 21.18 15.10 13.43 12.59 13.23

n= 200 θ1 8.22 1.24 1.28 2.53 2.66 2.67 4.48 2.73 2.48 2.49 2.48

θ2 7.70 1.64 1.65 3.27 3.48 3.47 5.54 3.41 3.30 3.30 3.30
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Table 6.18: Squared Bias (×100): DGP 5-2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.01 0.02 0.06 0.16 0.54 0.12 0.01 0.01 0.01 0.01

θ2 0.00 0.01 0.04 6.99 11.86 20.58 0.18 0.09 0.20 0.25 0.19

n= 200 θ1 0.03 0.00 0.00 0.16 0.10 0.02 0.01 0.02 0.04 0.02 0.04

θ2 0.00 0.00 0.00 0.01 0.00 0.08 0.11 0.00 0.01 0.00 0.01

Table 6.19: Mean Squared Error (×100): DGP 5-2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 106.66 9.44 21.20 26.45 29.91 27.52 78.98 24.91 25.06 20.46 24.38

θ2 140.79 14.21 21.09 67.04 68.65 88.93 143.22 40.32 50.58 43.07 50.53

n= 200 θ1 9.97 1.54 1.80 3.85 3.88 3.71 7.40 3.88 3.76 3.59 3.75

θ2 16.38 3.73 4.07 7.56 7.66 7.85 11.80 8.46 7.71 7.41 7.71

Table 6.20: Squared Bias (×100): DGP 5-3

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.00 0.04 0.06 0.26 0.16 0.04 0.22 0.27 0.05 0.00 0.05

θ2 0.26 0.01 0.00 0.14 1.29 3.39 0.67 0.05 0.04 0.00 0.04

n= 200 θ1 0.02 0.01 0.01 0.09 0.06 0.01 0.01 0.03 0.04 0.09 0.04

θ2 0.06 0.00 0.00 0.02 0.04 0.14 0.01 0.00 0.01 0.00 0.01
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Table 6.21: Mean Squared Error (×100): DGP 5-3

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 71.76 19.48 25.39 22.83 27.98 25.91 66.38 29.01 24.19 25.02 24.21

θ2 108.90 22.82 27.67 27.68 35.08 35.65 84.66 33.65 28.85 30.36 28.88

n= 200 θ1 17.61 3.02 3.28 4.76 5.03 4.90 10.57 5.06 4.77 4.82 4.78

θ2 29.56 5.57 6.01 8.49 9.05 9.12 19.83 8.53 8.41 8.43 8.41
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Chapter 7

Testing Additive Separability of

Error Term in Nonparametric

Structural Models

7.1 Introduction

Economic models that incorporate stochastic features usually proceed by spec-

ifying the relationship between an observed dependent variable (or variable of interest),

a set of observed independent variables (or explanatory variables), and some unobserv-

able random term represented by error (or shock). This chapter examines how to deal

with this unobserved error in the econometric modeling process and whether it enters

the econometric model as a separable additive component or as a nonseparable element.

Although economic theory dictates that some economic variables are important

for the causal effects of others, rarely does it state exactly how the interaction takes

place or how unobserved factors affect the variable of interest. For example, labor
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economists tend to adopt years of education, years on a current job, experience in

labor force, age, etc., as main sources to explain the variation in workers’ earnings.

Early literature adopts a simple linear regression model, or a log-linear equation, which

incorporates the unobserved effects as an additive component. This simple model is later

generalized to nonlinear regression models and more recently nonparametric models.

Again all these models, parametric or nonparametric, share the same feature that the

unobserved random term enters the model in an additive manner. While this is a

conventional assumption undertaken in regression literature, it could be highly unlikely

that many economic structures do fall into this group. In other words, the error term

could be nonseparable from the main economic structure.

When the error term is nonadditive, the conventional identification and es-

timation approaches for additive nonparametric models are not applicable anymore.

Therefore, new approaches to identification and estimation are called upon for non-

separable nonparametric models. A great deal of efforts has been made towards this

direction in the past two decades or so. Roehrig (1988) provides a general condition

for the identification of nonparametric equation systems. Brown and Matzkin (1998)

present an extremum estimator for the nonparametric simultaneous equations studied in

Roehrig (1988), with a generalized identification condition formulated. Matzkin (1999)

proposes a maximum rank correlation estimator for a nonparametric model in which

the dependent variable is monotone in an unobservable random error term. The invest-

ment function considered in Olley and Pakes (1996) is also nonseparable but strictly

monotone in the unobservable productivity variable, which is then used to get rid of

the unobservable by expressing it as a function of the observed variables. Heckman and

Vytlacil (1999, 2001) consider models in which potential outcomes are nonseparable in

unobservable terms. Blundell and Powell (2003) estimate the average structural function
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in nonparametric nonseparable models in the presence of endogeneity. Matzkin (2003)

presents estimators for nonparametric nonadditive models and shows their asymptotic

characteristics under a set of assumptions that may be implied by economic theory. Al-

tonji and Matzkin (2005) adopt a conditional independence assumption to estimate the

average derivative of a nonparametric function and the distribution of the unobservable

random term, when the unobservable is nonadditive and the regressors are endogenous.

Briesch, Chintagunta and Matzkin (2007) provide a method to estimate discrete choice

models with unobserved heterogeneity that enters the subutility function nonadditively.

Heckman, Matzkin and Nesheim (2010) establish nonparametric identification of struc-

tural functions and distributions in general nonparametric nonadditive hedonic models

by relaxing the assumptions of additive marginal utility and additive marginal product

function adopted in Ekeland, Heckman and Nesheim (2004). Altonji, Ichimura and Otsu

(2011) present a simple method to estimate the marginal effects of observable variables

on a limited dependent variable, when the dependent variable is a nonseparable function

of observables and unobservables.

Albeit the literature is flooded with approaches that are capable of tackling

both separable and nonseparable nonparametric models, there is no valid method avail-

able to distinguish which model is more appropriate for the problem confronted by the

researchers. We believe that there are at least four reasons that amplify the urgent

need for some convincing testing procedures to detect the way through which the un-

observable random term enters the economic structure. They are: (1) The economic

meaning of an unobservable random term varies from case to case; (2) The identifica-

tion and statistical properties of the estimated underlying economic structure depend

on whether additive separability holds; (3) The identification and estimation of other

economic structures also relies on the separability properties; and (4) There is a lack
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of consistent testing procedures to detect additive separability of unobservables in the

literature. These are described below.

Economic meaning of an unobservable. An additive unobservable takes

on the traditional explanation as measurement error of the variable of interest, or a

level shift of the dependent variable due to some random shocks to the economy, or

some minor factors other than the included regressors that may affect the dependent

variable. A nonadditive unobservable random term, on the other hand, may adopt

explanations such as a heterogeneity parameter in a utility function, the productivity

shock or utility value for some unobserved attributes, etc. See, for example, Heckman

(1974), Heckman and Willis (1977), McFadden (1974), and Lancaster (1979), among

others. A clarification of the additivity property of the unknown economic structure

helps to identify the economic meaning of an unobservable, which facilitates further

evaluation of sources of heterogeneity, improvement of productivity for firms and better

economic policy proposals.

Identification and statistical properties of the estimators. Classical

additive nonparametric models can be identified under standard conditional moment

restrictions, and estimated, for example, by conventional nonparametric kernel or sieve

methods. The consistency and asymptotic normality of these nonparametric estimators

have been well understood. In contrast, methods to identify and estimate nonadditive

nonparametric functions are relatively new in the literature and have not yet been fully

explored. Matzkin (2003) presents an estimator of the nonseparable nonparametric ran-

dom function, and shows that it is consistent and asymptotically normal under certain

identification conditions. She argued that her identification conditions are not very

strong since they may be implied by some economic theory and are rather straightfor-

ward to derive if certain parametric functional forms are tolerated. Yet, one concern
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regarding these identification conditions is that the underlying economic theory itself

is subject to valid tests, not to mention its implications or the parametric functional

forms that are implicitly needed to facilitate the formulation of identification conditions.

Therefore, there is a potentially high cost of applying these conditions for identification

purposes. Although direct comparisons of the asymptotic properties of estimators in

additive and nonadditive models are not available, simulations in Matzkin (2003) show

that estimators under the correct additive restriction have much smaller variance and

mean squared errors than those without imposing additive restriction. For this reason,

it seems prudent to develop a test for additive separability in nonparametric models

before embarking on estimation and inference.

Estimation of other economic structure. Quite often it is also of in-

terest to estimate other sensible economic structure. Examples are available in the

policy evaluation literature. Heckman and Vytlacil (2005) construct models with het-

erogeneity in response to treatment among otherwise observationally identical people.

The nonparametric selection model proposed with testable restrictions can be used to

“unify the treatment literature, identify different treatment effects, link the literature on

treatment effects to the literature in structural econometrics, and interpret the implicit

economic assumptions underlying instrumental variables and matching models.” How-

ever, they point out that the results of the chapter and even the entire recent literature

on instrumental variable estimators with heterogeneous responses “relies critically on

the assumption that the treatment choice equation has a representation in the additive

separable form.” Although the marginal treatment effect (MTE) can be extended in the

nonseparable case and it is policy invariant, the linear instrumental variable (LIV) does

not identify MTE. Heckman and Vytlacil (2001) show that, even after some transfor-

mation, the defined MTE is still not identified through LIV, and MTE defined in this
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way precludes getting treatment parameters via integration. Furthermore, Heckman

and Vytlacil (2005) also notice that nonseparability will lead to failure of the index suf-

ficiency. In other words, additive structure simplifies the estimation of other economic

structure. Yet, there is no convincing testing procedure to provide such evidence that

the economic structure under investigation is indeed additive.

Lack of specification tests for separability. Since Hausman (1978) a large

literature on testing for the correct specification of functional forms has developed; see

Bierens (1982, 1990), Ruud (1984), Newey (1985), Tauchen (1985), White (1987), Robin-

son (1989), Wooldridge (1992), Yatchew (1992), Härdle and Mammen (1993), Hong and

White (1995), Zheng (1996), Andrews (1997), Bierens and Ploberger (1997), Li and

Wang (1998), Stinchcombe and White (1998), and Hsiao, Li and Racine (2007), among

others. Some of these tests are only consistent against some specific alternatives while

others are consistent against all global alternatives. Although much progress has been

made towards econometric model specification, almost all the literature has been con-

fined to functional forms that only accommodate additive random errors. A few excep-

tions include Hoderlein, Su and White (2011, HSW hereafter) and Lu and White (2011,

LW hereafter). The former paper proposes a nonparametric test for monotonicity in

unobservables in nonparametric nonseparable structural models whereas the latter con-

siders a nonparametric test for additive separability in structural models based on a test

for conditional independence. As LW argue, many important identification results in

the econometrics literature depend on the separability of structural equations, and when

correctly imposed, separability helps achieve estimation efficiency in various scenarios.

Thus it is desirable to consider tests for separability.

In this chapter we propose a consistent testing procedure that is able to dif-

ferentiate an additively separable model from a nonadditive one. Like LW, we consider
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testing the null hypothesis of additive separability in a nonparametric structural model

(see eq. (7.1) below) under a conditional exogeneity condition (see Assumption I.3 be-

low). Unlike LW, we follow HSW and also assume a monotonicity condition to identify

the structural equation without imposing additive separability because our testing strat-

egy requires the identification and estimation of the nonparametric structural function

under both the null and the alternative. Note that the monotonicity condition is natu-

rally guaranteed under the null but it may not be ensured under the alternative. LW

do not need to impose such a condition under the alternative because they transform

their test of additive separability to a test of conditional independence, which is implied

by but in general does not imply the null. So they avoid the identification and esti-

mation of the nonparametric structural model under the alternative. The cost is that

their test is not consistent against all global alternatives because of the gap between

the implied hypothesis and the original null hypothesis.1 In contrast, our test is based

on the estimate of the partial derivative of the structural function with respect to the

unobservable which is identically one under the null and not otherwise. We shall study

the asymptotic distributions of our test under the null hypothesis and a sequence of

Pitman local alternatives and establish the consistency of our test.

The rest of the chapter is structured as follows. Section 7.2 states our testing

problem and presents the test statistic. Section 7.3 provides asymptotic properties of

our proposed test. We perform a small set of Monte Carlo experiments in Section 8.6

to investigate the finite sample size and power behavior of our test. In Section 8.8, we

conclude and remark on future research. All proofs are relegated to the appendix.

1Interestingly, LW show that by imposing monotonicity in unobservables for the nonparametric

structural function, they can establish the equivalence between the conditional independence and addi-

tive separability hypotheses. In this case, their test is also consistent.
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7.2 Testing Additive Separability

The model of interest can be formulated as

Y = m(X, ε) (7.1)

where Y and X are observables, ε is an unobserved random shock, m (·, ·) is an unknown

but smooth function defined on X × E , where X⊂ RdX and E⊂ R. m(·, ·) is termed as

“nonadditive random function” by Matzkin (2003). We are interested in testing whether

the random error ε enters the model as an additive term.

7.2.1 Identification

The model specified in (7.1) is generally not identified without further restric-

tion. For testing purpose, we only consider the situation in which m (·, ·) is identified.

Matzkin (2003, 2007) studies the identification issue extensively. HSW revisit the iden-

tification issue and give a set of identification conditions that are analogous to Specifica-

tion I in Matzkin (2003) but much easier to use. The identification conditions in HSW

require the existence of a control variable Z such that X is independent of ε given Z, or

in short, X ⊥ ε | Z. We shall use Z to denote the support of Z, and G (·|x, z) to denote

the conditional cumulative distribution function (CDF) of Y given (X,Z) = (x, z) .

Following HSW, we make the following identification assumptions.

Assumption I.1 For all x ∈ X , m(x, ·) is strictly increasing.

Assumption I.2 There exists x̄ ∈ X such that m(x̄, e) = e for all e ∈ E .

Assumption I.3 X ⊥ ε | Z, where Z is not measurable−σ(X).

Assumption I.4 For each (x, z) ∈ X × Z, G (·|x, z) is invertible.
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Remark 1. I.1-I.4 parallels Assumptions A.2, A.3, B.1, B.2, respectively, in

HSW. I.1 and I.3 are also analogous to Assumptions I.2 and I.3 in Matzkin (2003) and

I.2 corresponds to their Specification I discussed in their Section 3.1 where an assumption

similar to I.4 is also implicitly made.

Remark 2. As HSW remark, given I.1 and the structural functional rela-

tionship in (7.1), for any x̄ ∈ X there exists a function, say m̄, for which I.1 and I.2

hold. This implies that under I.1, any point in X can play the role of x̄ in I.2. Given

this x̄, we can replace m with m̄, such that m̄ (x, ·) is strictly increasing for all x ∈ X ,

and m̄(x̄, ε) = ε a.s. With this normalization in mind, we can drop the reference to m̄

and simply work with m, as what is stated in I.2. In what follows, we simply choose

a particular value x̄, such as the vector of medians of X, and adopt the normalization

rule m (x̄, e) = e.

The following lemma summarizes some of the identification results in HSW.

Lemma 20 Suppose (7.1) and Assumptions I.1-I.4 hold. Then

m(x, e) = G−1(G(e|x̄, z) | x, z) ∀(e, x, z) ∈ E × X × Z, and

ε = G−1(G(Y |X, z) | x̄, z) ∀z ∈ Z.

The above identification result lays down the foundation for our test of additive

separability. It says that under I.1-I.4, the structural response function m (·, ·) and the

unobserved error term ε can be identified. In addition, the first result in the above

lemma implies that

Dem (x, e) ≡ ∂m(x, e)

∂e
=

g(e | x̄, z)
g (m(x, e) | x, z)

(7.2)

where Dem (·, ·) denotes the partial derivative of m (·, ·) with respect to its second ar-

gument, and g (·|, x, z) is the conditional probability density function (PDF) of Y given
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(X,Z) = (x, z) . Note that the partial derivative Dem(x, e) is also identified provided g

is well defined. Note also that z appears only on the right hand side of (7.2).

7.2.2 Hypotheses

Given the model specified in (7.1) we are interested in testing whether m (·, ·)

is additively separable, that is, whether there exist some measurable functions m1 (·)

and m2 (·) such that m(X, ε) = m1 (X) +m2 (ε) almost surely (a.s.). Therefore the null

hypotheses is

H0 : m(X, ε) = m1 (X) +m2 (ε) a.s. (7.3)

for some measurable functions m1 (·) and m2 (·) , and the alternative hypothesis is the

negation of H0 :

H1 : P [m(X, ε) = m1 (X) +m2 (ε)] < 1 (7.4)

for all measurable functions m1 (·) defined on X and m2 (·) on E .

The simulation experiment in Matzkin (2003) shows that the nonparametric

estimate of an additive model without imposing the additive restriction is significantly

worse than that with the additive restriction correctly imposed. This highlights the

importance of testing the additivity structure of the unknown relationship between the

observables and unobservables.

Under I.1, m2 (·) is strictly increasing in (7.3). Given I.2 and H0 in (7.3), we

have

m(x̄, ε) = m1 (x̄) +m2 (ε) = ε a.s.,

implying that m2 (ε)− ε is a constant with probability one. Therefore we observe that

under H0 and I.1-I.2,

Dem (X, ε) ≡ ∂m (X, ε)

∂e
= 1 a.s. (7.5)
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This observation is very important because it motivates us to propose a test based on the

derivative of m (·, ·) with respect to its second argument. In particular, we will consider

a test for H0 based on the following weighted L2-distance measure between Dem(x, e)

and 1:

J =

∫
[Dem (x, e)− 1]2 a0 (x, e) dP (x, e) (7.6)

where P (·) is the joint CDF of X and ε and a0 (·, ·) is a nonnegative weight function

defined on X0 × E0, where X0 and E0 are a compact subset of X and E , respectively. 2

7.2.3 Estimation and test statistic

Let {(Yi, Xi, Zi) , i = 1, ..., n} denote a random sample for (Y,X,Z) that has

support Y ×X ×Z. Let Ui ≡ (X ′i, Z
′
i)
′ . Let u ≡ (x′, z′)′ be a d× 1 vector, d ≡ dX + dZ ,

where x is dX × 1 and z is dZ × 1. Let Wi ≡ (Yi, U
′
i)
′ and w ≡ (y, u′)′.

To propose a feasible test statistic, we need to estimateG (·|u) , G−1 (·|u) , g (·|u) ,

and εi. Throughout, we rely on local constant estimates.3 First, we estimate G (y|u) by

Ĝb (y|u) ≡ 1

n

n∑
i=1

Kb (Ui − u) 1 {Yi ≤ y} /ĝb (u)

where ĝb (u) ≡ 1
n

∑n
i=1Kb (Ui − u) , Kb (·) ≡ K (·/b) /b, K (·) a kernel function defined

on Rd, b ≡ b (n) is a bandwidth parameter, and 1 {·} is the usual indicator function.

Then we estimate G−1 (·|u) by inverting Ĝb (·|u) to obtain

Ĝ−1
b (· |u) = inf

{
y ∈ R : Ĝb (y|u) ≥ ·

}
,

2Here and below we restrict (x, z, e) to X0 × Z0 × E0 because we need to estimate G(e|x, z) and its

inverse G−1(· | x, z) which can not be estimated sufficiently well if G(e|x, z) is close to either 0 or 1, say,

when (x, z, e) lies at the boundary of its support X ×Z × E .
3Alternatively one can follow HSW and apply the local polynomial method to obtain all necessary

estimates. But we find that the local constant method is less computational expensive than the latter.

226



which is well defined if K is always nonnegative such that Ĝb (y|u) is always between zero

and one and monotone in y. Nevertheless, to reduce the bias of these kernel estimates,

we permit the use of a higher order kernel for K when d is large (e.g., d ≥ 4). In this

case, we may only consider the estimates Ĝb and Ĝ−1
b on a subset of the observations

for which Ĝb lies on a compact subset of (0, 1) for large n, which is also required in our

asymptotic analysis.

Similarly, we estimate the conditional PDF g (y|u) of Yi given Ui = u by

ĝc(y|u) =

n∑
i=1

Lc (Wi − w) /

n∑
i=1

Lc (Ui − u)

where Lc (·) ≡ L (·/c) /c, L (·) a kernel function defined on Rd or Rd+1, and c ≡ c (n) is

a bandwidth parameter.4

With Ĝb, and Ĝ−1
b on hand, Lemma 20 motivates us to estimate m(x, e) =

G−1(G(e|x̄, z) | x, z) by

m̂b(x, e) =

∫
Ĝ−1
b (Ĝb(e|x̄, z)|x, z) dH(z) (7.7)

and εi = G−1(G(Yi|Xi, z) | x̄, z) by

ε̂i =

∫
Ĝ−1
b (Ĝb(Yi|Xi, z) | x̄, z)dH(z), (7.8)

where H(·) is a CDF that has a PDF h (·) with compact support Z0 ⊂ Z. Note that

here we suppress the dependence of m̂b and ε̂i on H and that of ε̂i on b. Like HSW, the

use of H helps to eliminate the variability of estimators of m(x, e) and εi based on an

arbitrary choice of z. In view of the fact that the left hand side of (7.2) does not depend

4We abuse the notation a little bit. The multivariate kernel function L can be defined either on Rd

for Ui or Rd+1 for Wi, which is self evident from its argument.
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on z, we propose to estimate Dem(x, e) by5

D̂em(x, e) =

∫
ĝc(e|x̄, z)

ĝc(m̂b(x, e) | x, z)
dH(z). (7.9)

Based on (7.6), we can consider either

J̃n = n−1
n∑
i=1

[
D̂em(Xi, ε̂i)− 1

]2
a0 (Xi, ε̂i)

= n−1
n∑
i=1

[∫
ĝc(ε̂i|x̄, z)

ĝc(m̂b(Xi, ε̂i)|Xi, z)
dH(z)− 1

]2

a0 (Xi, ε̂i) , (7.10)

or

J̆n = n−1
n∑
i=1

[∫
ĝc(ε̂i|x̄, z)
ĝc(Yi|Xi, z)

dH(z)− 1

]2

a0 (Xi, ε̂i) . (7.11)

Both J̃n and J̆n can be regarded as a sample analogue of J defined in (7.6). The only

difference between J̃n and J̆n is that the former relies on the estimate m̂b(Xi, ε̂i) of

m (Xi, εi) whereas the latter utilizes the fact that m (Xi, εi) = Yi regardless of whether

H0 holds or not. It turns out the analysis of J̆n is significantly less complicated than

that of J̃n.

To simplify the analysis further, in view of εi = m−1 (Xi, Yi) where m−1 (x, ·)

denotes the inverse of m (x, ·) ∀x ∈ X , we define a (Xi, Yi) = a0

(
Xi,m

−1 (Xi, Yi)
)

and

consider the following simpler test statistic

Ĵn = n−1
n∑
i=1

[∫
ĝc(ε̂i|x̄, z)
ĝc(Yi|Xi, z)

dH(z)− 1

]2

a (Xi, Yi) . (7.12)

Apparently, the support of a0 and that of a are closely related to each other, and

the nonnegativity of a is inherited from that of a0. We will make assumptions on the

support of a directly so that Ĵn is well defined. Let Z0 denote the compact support

5When G and G−1 are estimated by the local polynomial regressions, the asymptotic distributions

of m̂b(x, e), ε̂i, and D̂em(x, e) are quite complicated and studied in HSW.
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of h (·) ≡ ∂H (·) /∂z that is a proper subset of Z. Let X0 × Y0 denote the compact

support of a (·, ·) where X0 and Y0 are a proper subset X and Y, respectively. Let E0

denote the support of εi =
∫
G−1(G(Yi|Xi, z) | x̄, z)dH(z) when (Xi, Yi) is constrained

to lie on X0 × Y0. Ĝb(y|x, z) will be bounded away below from 0 and above from 1 for

all (y, x, z) ∈ Y0 ×X0 ×Z0 for sufficiently large sample size n by the consistency of Ĝb.

This will ensure ε̂i =
∫
Ĝ−1
b (Ĝb(Yi|Xi, z) | x̄, z)dH(z) to be well defined for observations

with nonzero value of a (Xi, Yi) .

We study the asymptotic distribution of Ĵn in the next section.

7.3 Asymptotic Distribution

In this section we first present assumptions that are used in deriving the asymp-

totic distribution of our test statistic Ĵn. Then we study its asymptotic distribution

under the null hypothesis and a sequence of Pitman local alternatives. We also prove

the consistency of the test and propose a bootstrap method to obtain the bootstrap

p-value.

7.3.1 Assumptions

Let j ≡ (j1, ..., jd) be a d-vector of non-negative integers and |j| ≡
∑d

i=1 ji. To

study asymptotic distribution of our test statistic, we use the following assumptions.

Assumption A.1 Let Wi ≡ (Yi, X
′
i, Z
′
i)
′ , i = 1, 2, ..., n, be IID random variables with

Wi distributed identically to (Y,X ′, Z ′).

Let g (w) , g (u) , and g (y|u) denote the PDF of Wi, that of Ui, and the con-

ditional PDF of Yi given Ui = u, respectively. Let U ≡ X × Z and U0 ≡ X0 × Z0. Let

Y0 ≡ [y, ȳ] denote a proper subset of Y.
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Assumption A.2 (i) g (u) is continuous in u ∈ U , and g (y|u) is continuously differen-

tiable in y ∈ Y for all u ∈ U .

(ii) There exist C1, C2 ∈ (0,∞) such that C1 ≤ infu∈U0 g (u) ≤ supu∈U0
g (u) ≤

C2 and C1 ≤ inf(y,u)∈Y0×U0
g (y|u) ≤ sup(y,u)∈Y0×U0

g (y|u) ≤ C2.

Assumption A.3 (i) There exist τ , τ̄ ∈ (0, 1) such that τ ≤ infu∈U0 G
(
y|u
)
≤ supu∈U0

G (ȳ|u) ≤

τ̄ and τ ≤ infz∈Z0 G
(
y|x̄, z

)
≤ supz∈Z0

G (ȳ|x̄, z) ≤ τ̄ .

(ii) G (·|u) admits the PDF g (·|u) and is equicontinuous: ∀ε > 0, ∃δ > 0 :

|y − ỹ| < δ ⇒ supu∈U0
|G(y|u) −G(ỹ|u)| < ε. For each y ∈ Y0, G(y | ·) has all partial

derivatives up to order r1 where r1 ≥ 2 is an even integer.

(iii) Let DjG (y|u) ≡ ∂|j|G (y|u) /∂j1u1...∂
jdud where u = (u1, ..., ud)

′ . For each

y ∈ Y0, D
jG (y | ·) with |j| = r1 is uniformly bounded and Lipschitz continuous on U0 :

for all u, ũ ∈ U0, |DjG (y | u)−DjG (y | ũ) | ≤ C3||u− ũ|| for some C3 ∈ (0,∞) where

‖·‖ is the Euclidean norm.

(iv) For each u ∈ U0 and for all y, ỹ ∈ Y0, |DjG (y | u) − DjG (ỹ | u) | ≤ C4

|y − ỹ| for some C4 ∈ (0,∞) where |j| = r1.

Assumption A.4 The joint PDF g (w) of Wi has all r2th partial derivatives that are

uniformly continuous on Y0 × U0 where r2 ≥ 2 is an even integer.

Assumption A.5 (i) The distribution function H (z) admits a PDF h (z) that is con-

tinuous on Z0.

(ii) The weight function a (·, ·) is a nonnegative function that is uniformly

bounded on its compact support X0 × Y0.

Assumption A.6 (i) For some even integer r1 ≥ 2, the kernel K is a product kernel

of the bounded symmetric kernel k : R → R satisfying
∫
R v

ik(v)dv = δi0 (i = 0, 1, ...,

r1 − 1),
∫
R v

r1k(v)dv < ∞, and k(v) = O
(
(1 + |v|r1+1+ε)−1

)
for some ε > 0, where δij
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is Kronecker’s delta.

(ii) For some even integer r2 ≥ 2, the kernel L is a product kernel of the

bounded symmetric kernel l : R → R satisfying
∫
R v

il(v)dv = δi0 (i = 0, 1, ..., r2 − 1),∫
R v

r2 l(v)dv <∞, and l(v) = O
(
(1 + |v|r2+1+ε)−1

)
for some ε > 0.

Assumption A.7 As n→∞, b→ 0, c→ 0, and the following conditions are satisfied:

(i) ncdX+1/ log n→∞, nc2r2+dX+ 1
2 → 0, nb2r1cdX+ 1

2 → 0,

(ii) nbdX c/(log n)2 →∞, nb2(dX+dZ)c−dX−
1
2 /(log n)2 →∞,

(iii) c
1
2 (c/b)dX

[
1 + c2r2 log n

]
→ 0, and b2r1c−

1
2 log n→ 0.

A.1-A.3 parallel Assumptions C.1-C.3 in HSW. As in HSW, the IID require-

ment in A.1 is standard in cross-section studies but can be relaxed to allow for weakly

dependent time series observations. A.2-A.4 and A.6 are standard for nonparametric

local constant estimation of conditional CDF and PDF when a higher order kernel may

be called upon. Note that we permit the use of higher order kernel for either K and L

but neither is necessary if d = dX + dZ is small, see the discussions below. A.5 specifies

the weak conditions on the probability weight H and the weight function a (·, ·) . In

the simulations we simply choose H to be a scaled beta distribution that has a com-

pact support Z0 and specify a as an indicator function with compact support X0 × Y0.

A.7 appropriately restricts the choices of bandwidth sequences and the orders of kernel

functions.

Note that if we choose b = c ∝ n−1/α for some α > 0, then A.7(iii) is automat-

ically satisfied and A.7(i)-(ii) would require nbdX+1/ (log n)2 → ∞, nb2r2+dX+ 1
2 → 0,

nb2r1+dX+ 1
2 → 0, and nbdX+2dZ− 1

2 /(log n)2 → ∞. The last set of conditions are met

provided

dX + 2dZ −
1

2
< α < dX +

1

2
+ 2 min (r1, r2) . (7.13)
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Apparently, (7.13) requires min (r1, r2) > dZ − 1
2 . In the case where dZ = 1 or 2, we can

choose r1 = r2 = 2 and α ∈ (dX + 2dZ − 1
2 , dX + 9

2) such that (7.13) is satisfied. In this

case, there is no need to use higher order kernels for either K or L.

More generally, we can consider choosing b ∝ n−1/α and c ∝ n−κ/α. Then A.7

would require

max

{
(dX + 1)κ, dX + κ, 2 (dX + dZ)− (dX +

1

2
)κ

}
< α < min

{
dX +

1

2
+ 2r2, (dX +

1

2
)κ+ 2r1

}

where dX/
(
dX + 1

2

)
< κ < 4r1. Due to the “curse of dimensionality” in nonparametric

estimation, we expect that typical values of dX and dZ are 1, 2, or 3 such that dX+dZ ≤ 4

for realistic applications, in which case we can verify that the above conditions can be

satisfied for a variety of combinations for α, κ, r1 and r2. In particular, to ensure the

conditional CDF estimate Ĝb (y|x, z) to lie between zero and 1 and to be monotone in

y, it is always possible to restrict our attention to the use of a second order kernel for

K (i.e., r1 = 2) for properly chosen α, κ and r2. In particular, if dZ ≤ 2, we recommend

using the same second order kernel for K and L (implying that r1 = r2 = 2) and setting

b = c ∝ n−1/α. So one only needs to choose a sequence of bandwidth.

7.3.2 Asymptotic null distribution

In this section, we study the asymptotic behavior of the test statistic in (7.12).

To state the next result, we write w̃ ≡ (ỹ, x̃′, z̃′)′ and introduce the following notation:

ζ0 (Wi,Wj) ≡
∫
g(Yi|Xi, z)

−1
[
g (x̄, z)−1 L̄cj,(εi,x̄,z) − g (Xi, z)

−1 L̄cj,(Yi,Xi,z)

]
dH(z)

(7.14)

and

ϕ (w, w̃) ≡ E [ζ0 (Wi, w) ζ0 (Wi, w̃) a (Xi, Yi)] , (7.15)
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where L̄ci,w = Lci,w − E(Lci,w), and Lci,w = Lc (Wi − w) .6 We define the asymptotic

bias and variance respectively by

Bn ≡ n−1cdX+ 1
2

n∑
i=1

ϕ (Wi,Wi) and σ2
n = 2c2dX+1E[ϕ (W1,W2)2].

The following theorem establishes the asymptotic null distribution of the Ĵn

test statistic.

Theorem 21 Suppose Assumptions I.1-I.4 and A.1-A.7 hold. Then under H0, we have

ncdX+ 1
2 Ĵn − Bn

d→ N
(
0, σ2

0

)
, where σ2

0 ≡ limn→∞ σ
2
n.

The proof of the above theorem is extremely involved. After a long and arduous

effort, we can demonstrate that the key building block in obtaining the asymptotic bias

and variance of the test statistic Ĵn is ζ0(Wi,Wj). The first term, g(Yi|Xi, z)
−1g (x̄, z)−1 L̄cj,(εi,x̄,z),

in the definition of ζ0 reflects the influence of the numerator estimator ĝc(εi|x̄, z) in the

definition of Ĵn in (7.12), whereas the second term g(Yi|Xi, z)
−1g (Xi, z)

−1 L̄cj,(Yi,Xi,z)

embodies the effect of the denominator estimator ĝc(Yi|Xi, z). Like the test statistic in

HSW, these two terms contribute to the asymptotic bias of Ĵn symmetrically but to the

asymptotic variance asymmetrically due to different roles played by x̄ (the normaliza-

tion point) and Xi (data). A careful analysis of Bn indicates that both terms contribute

to the asymptotic bias of Ĵn to the order of O
(
c−1/2

)
. On the other hand, a detailed

study of σ2
n shows that they contribute asymmetrically to the asymptotic variance: the

asymptotic variance of Ĵn is mainly determined by the numerator estimator, whereas

the role played by the denominator estimator is asymptotically negligible. See HSW

for further discussion of similar phenomena in a different context. They also explain

6Even though Xi, Zi, Yi, and εi all enter the definition of ζ0, we can still use Wi = (Yi, X
′
i, Z
′
i)
′

to summarize these variables because εi = m−1 (Xi, Yi) is measurable under Assumption I.1 and the

continuity of m (·, ·).
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why we need cdX+ 1
2 instead of the usual term c(dX+1)/2 as the normalization constant

in the front of Ĵn, which unavoidably reduces the size of the class of local alternatives

that this test has power to detect.

To implement, we need consistent estimates of the asymptotic bias and vari-

ance. Let

ζ̂0 (Wi,Wk) ≡
∫
ĝc(Yi|Xi, z)

−1
[
ĝc (x̄, z)−1 L̂cj,(ε̂i,x̄,z) − ĝc (Xi, z)

−1 L̂cj,(Yi,Xi,z)

]
dH (z)

where L̂cj,w = Lcj,w− 1
n

∑n
k=1 Lck,w, and ĝc (x, z) is a kernel estimator of the PDF g (x, z)

by using kernel L and bandwidth c. We propose estimating the asymptotic bias Bn by

B̂n = n−2cdX+ 1
2

n∑
i=1

n∑
j=1

[
ζ̂0 (Wi,Wj)

]2
a (Xi, Yi)

and the asymptotic variance σ2
n by

σ̂2
n =

2c2dX+1

n2

n∑
i=1

n∑
j=1

[
1

n

n∑
l=1

ζ̂0 (Wl,Wi) ζ̂0 (Wl,Wj) a (Xl, Yl)

]2

.

It is tedious but straightforward to show B̂n − Bn = oP (1) and σ̂2
n − σ2

n = oP (1) . Then

the following feasible test statistic

Tn ≡
(
ncdX+ 1

2 Ĵn − B̂n
)
/
√
σ̂2
n (7.16)

is asymptotically distributed as N (0, 1) and we reject the null for large value of Tn.

7.3.3 Local power property and consistency

To study the local power of the Tn test, consider the sequence of Pitman local

alternatives:

H1 (γn) : Dem (x, e) = 1 + γnδn (x, e) , (7.17)

where γn → 0 as n → ∞, and δn is a non-constant measurable function with µ0 ≡

limn→∞E[δn (X1, ε1)2 a (X1, Y1)] <∞.
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Theorem 22 Suppose Assumptions I.1-I.4 and A.1-A.7 hold. Then under H1 (γn) with

γn = n−1/2c−dX/2−1/4, Tn
d→ N (µ0/σ0, 1) . That is, the asymptotic local power function

of Tn is given by P (Tn > z|H1 (γn)) = 1−Φ (z − µ0/σ0) , where Φ is the standard normal

CDF.

Theorem 22 implies that the Tn test has non-trivial power against Pitman local

alternatives that converge to zero at rate n−1/2c−dX/2−1/4, provided 0 < µ0 <∞. As re-

marked above, this rate is different from the usual nonparametric rate n−1/2c−(dX+1)/4 or

n−1/2c−(dX+dZ+1)/4 when (dX + 1) or (dX + dZ + 1) dimensional nonparametric objects

need to be estimated.

The following theorem shows that the test is consistent.

Theorem 23 Suppose Assumptions I.1-I.4 and A.1-A.7 hold. Suppose that µA ≡

E{[Dem (Xi, εi) − 1]2a (Xi, Yi)} > 0. Then P (Tn > λn) → 1 as n → ∞ for any non-

stochastic sequence λn = o(ncdX+1/2).

7.3.4 A bootstrap version of the test

It is well known that nonparametric tests based on their asymptotic normal

null distributions may perform poorly in finite samples. As an alternative, we can rely

on bootstrap to obtain a bootstrap p-value.

To obtain the bootstrap replicates of Wi = (Yi, X
′
i, Z
′
i)
′ , we need to impose

various restrictions. First, we need to impose the identification conditions given in

Assumption I.1 and I.3. Fortunately, these can be well handled by following the local

smooth bootstrap procedure of HSW (see also Su and White (2008)). Second, we need

to impose the null of additive separability. In view of the discussion in Section 2.2, under
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H0 and Assumption I.2, we have

m (x, e) = m̄1 (x) + e

for some measurable function m̄1 whose exact structure depend on the choice of the

normalization point x̄. This motivates us to estimate m̄1 (x) by

m̂1,b (x) =

∫
m̂b(x, e)dQ (e)

where Q (·) is a proper CDF on R. Then m̂1,b (x) is consistent for m̄1 (x) +
∫
edQ (e)

provided m̂b(x, e) is consistent for m (x, e) . The last claim can be established as in

HSW and the term
∫
edQ (e) is constant, which does not affect the asymptotic distri-

bution of our bootstrap test statistic if we generate the bootstrap data Y ∗i through this

relationship. See Step 3 below.

Let Wn ≡ {Wi}ni=1. Following Su and White (2008) and HSW, we draw boot-

strap resamples {X∗i , Y ∗i , Z∗i }ni=1 based on the following smoothed local bootstrap pro-

cedure:

1. For i = 1, ..., n, obtain a preliminary estimate of εi as ε̂i =
∫
Ĝ−1
b (Ĝb(Yi|Xi, z) |

x̄, z)dH(z).

2. Draw a bootstrap sample {Z∗i }
n
i=1 from the smoothed kernel density f̃Z (z) =

n−1
∑n

i=1 Φαz (Zi − z), where Φα (z) = α−dZΦ (z/α) where Φ (·) is a product

kernel formed from the standard normal PDF φ (·), and αz > 0 is a bandwidth

parameter.

3. For i = 1, ..., n, given Z∗i , draw X∗i and ε∗i independently from the smoothed condi-

tional density f̃X|Z (x|Z∗i ) =
∑n

j=1 Φax (Xj − x) Φαz (Zj − Z∗i ) /
∑n

l=1 Φαz (Zl − Z∗i )
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and f̃ε|Z (e|Z∗i ) =
∑n

j=1 Φαe(ε̂j −e)Φαz (Zj − Z∗i ) /
∑n

l=1 Φαz (Zl − Z∗i ) , respec-

tively, where αz, αx, and αe are given bandwidths.7

4. For i = 1, ..., n, generate the bootstrap analogue of Yi as Y ∗i = m̂1,b (X∗i ) + ε∗i .

5. Compute a bootstrap statistic T ∗n in the same way as Tn with {(Y ∗i , X∗i , Z∗i )}ni=1

replacing Wn.

6. Repeat Steps 2-5 B times to obtain bootstrap test statistics
{
T ∗nj

}B
j=1

. Calculate

the bootstrap p-values p∗ ≡ B−1
∑B

j=1 1
(
T ∗nj ≥ Tn

)
and reject the null hypothesis

if p∗ is smaller than the prescribed nominal level of significance.

7.4 Monte Carlo Simulations

In this section, we conduct a small set of Monte Carlo simulations to examine

the finite sample performance of our test. We first consider the following two data

generating processes (DGPs) for the level study:

DGP 1: Yi = Xi + εi,

DGP 2: Yi = Φ (Xi)− 1
2 + εi,

where i = 1, . . . , n, Φ (·) is the standard normal CDF, Xi = 0.25 + Zi − 0.25Z2
i + υ1i,

εi = 0.5Zi+ υ2i and Zi, υ1i and υ2i are IID N (0, 1) and mutually independent. Clearly,

the error terms in DGPs 1-2 are additively separable and we use the above two DGPs

to evaluate the finite sample level behavior of our test. Note that

m (x, e) =


x+ e in DGP 1,

Φ (x)− 1
2 + e in DGP 2.

7We abuse the notation Φ a little bit here: Φα (z) = α−dZΦ (z/α) and Φα (x) = α−dX Φ (z/α) .

So the argument of Φ can be of dimension dX or dZ . The bandwidths here are all set according to the

Silverman’s rule of thumb in our simulations below.
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In both designs, m (x, ·) is strictly monotone for each x and m (x̄, e) = e for x̄ = 0. The

other two identification conditions used throughout the chapter are easily verified.

To study the finite sample power behavior of our test, we consider the following

four DGPs:

DGP 3: Yi = (0.5 + 0.1X2
i )εi,

DGP 4: Yi = Φ ((Xi + 1) εi/4) (Xi + 1) ,

DGP 5: Yi = Xi + εi −
δX2

i
0.1+exp(εi)

,

DGP 6: Yi = Φ (Xi)− 1
2 + εi − δ(sinXi)

2

0.1+ε3i
,

DGP 7: Yi = Xi + εi + δXi
0.1+exp(εi)

,

DGP 8: Yi = Φ (Xi)− 1
2 + εi + δ sinXi

0.1+ε2i
,

where i = 1, . . . , n, Xi, εi and the instrument Zi are generated as in DGPs 1-2, and δ is

a parameter that adapts the corresponding DGP for different simulation purposes.

DGPs 3 and 4 are used by HSW to test for the monotonicity in the unob-

servable (εi here). It is easy to verify that the identification conditions specified in

Assumptions I.1-I.4 are all satisfied for DGPs 3-4. But these two DGPs do not satisfy

the additive separability condition.

When δ = 0, DGPs 5 and 7 (resp. DGPs 6 and 8) reduce to DGP 1 (resp.

DGP 2). For other values of δ, the structural function m (x, e) implied by DGPs 5-

8 is not additively separable in error terms. In addition, DGPs 5 and 6 satisfy all

the identification conditions specified in Assumptions I.1-I.4; DGPs 7 and 8 violate

Assumption I.1 and but satisfies the other identification conditions (e.g., m (0, e) = e

regardless of the value of δ in DGPs 7-8). In this case, we can investigate the robustness

of the finite sample power behavior of our test against non-monotonicity under the

alternative.
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To construct our standardized test statistic Tn in (7.16), we need to com-

pute sequentially Ĵn, B̂n and σ̂n. We first obtain local constant estimates Ĝb (y|u),

Ĝ−1
b (τ |u), ĝc(y|u) and ε̂i =

∫
Ĝ−1
b (Ĝb(Yi|Xi, z) | x̄, z)dH(z) by using standard nor-

mal kernel function and Silverman’s rule of thumb for bandwidth choice, i.e., b =

c =
(
1.06SXn

−1/5, 1.06SZn
−1/5

)
with SX and SZ being the sample standard devia-

tion of {Xi} and {Zi}, respectively. We choose H (z) to be a scaled beta(3,3) distri-

bution on [ζκ, ζ1−κ], where ζκ denotes the κ-th sample quantile of {Zi} and κ = 0.05.

N = 30 evenly-spaced points are chosen for numerical integration. We set a (Xi, Yi) =

1 {ζλ,X ≤ Xi ≤ ζ1−λ,X} × 1 {ζλ,Y ≤ Yi ≤ ζ1−λ,Y } , where, e.g., ζλ,X is the λ-th sample

quantile of {Xi} and λ = 0.0125. For the computation of B̂n and σ̂n, we need to further

compute ĝc (x, z) with a standard normal kernel function and bandwidth c chosen as

before. The same trimming function a (Xi, Yi) and weight function H (z) are utilized

everywhere.

To obtain the bootstrap p-values, we follow the procedure stated in Section

3.4 to compute the rejecting probabilities. We consider two sample sizes (n = 100

and 200) with 250 replications. Due to the high computational burden, we only use

B = 100 bootstrap resamples in each replication. Before conducting the bootstrap

with B = 100, we study the sensitivity of the test to the bandwidth b as suggested by

Giacomini, Politis and White (2007), using the warp-speed bootstrap procedure based

on a single bootstrap resample. We find that the our test is not very sensitive to the

choice of b =
(
c1SXn

−1/5, c1SZn
−1/5

)
as long as c1 is between 1 and 2. We report the

results for c1 = 1.06. In addition, we consider δ = 1 in DGPs 5-8.

Table 1 reports the empirical level of our bootstrapped test for DGPs 1-2

where the nominal levels are 1%, 5% and 10%. We see that the level of our test is
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Table 7.1: Empirical level for DGPs 1-2

DGP n 1% 5% 10%

1 100 0.008 0.044 0.116
200 0.012 0.048 0.112

2 100 0.004 0.040 0.088
200 0.008 0.052 0.108

Table 7.2: Empirical power for DGPs 3-8

DGP n 1% 5% 10%

3 100 0.908 0.992 0.996
200 0.980 0.996 1

4 100 0.996 1 1
200 1 1 1

5 100 0.896 0.912 0.984
200 0.924 0.952 0.992

6 100 0.872 0.904 0.952
200 0.916 0.936 0.988

7 100 0.440 0.468 0.492
200 0.484 0.524 0.572

8 100 0.476 0.544 0.648
200 0.504 0.584 0.692

fairly well behaved and it gets closer to the nominal level as the sample size increases.

Table 2 presents the empirical power of our bootstrapped test at various nominal levels.

Surprisingly our test has fantastic power to reject additive separability for DGPs 3-

4. The power is also reasonably good and increases as the sample size doubles in

DGPs 5-8. Comparing the results for DGPs 7-8 with DGPs 5-6, we observe that the

power performance of our test is adversely affected by the violation of the monotonicity

assumption.

7.5 Concluding Remarks

The prevalent additivity error structure has been an important assumption in

many economic and econometric models. This chapter develops a simple consistent test

to detect whether this critical assumption holds in the presence of economic data. The
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test is motivated from the simple observation that the partial derivative of the unknown

structural function with respect to the unobserved error term is one under the null

hypothesis of additive separability and certain identification conditions. We derive the

asymptotic distributions of our test statistic under the null and a sequence of Pitman

local alternatives and prove its consistency. We also propose a bootstrap version of the

test. Monte Carlo simulations are conducted to examine the finite sample performance

of the bootstrapped test. The test enjoys proper size and reasonable power in finite

samples.

There are some interesting topics for further research. First, under the same

set of identification conditions considered in this chapter, one can develop other tests

for additive separability. For example, one may consider a test based on the observation

that the cross derivatives with respect to the regressor and the error term is zero under

additivity. But this would need consistent estimate of cross derivatives and thus is

expected to be less powerful. For another example, we can consider the estimation of

the structural function under both the null and the alternative, and base a test on the

weighted L2 distance between these estimates. To this goal, one needs to develop an

estimate of the structural function under the additive separability condition. Under

Assumption I.3 and the null: m(X, ε) = m̄1 (X) + ε, E (Y |X,Z) = m̄1 (X) + E (ε|Z) .

This motivates us to obtain a consistent estimate m̃1 (x) of m̄1 (x) by using either the

marginal integration or backfitting technique. Then we can compare this estimate with

m̂1,b (x) used in Section 3.4. The theoretical study of this test is left for future research.

Second, one may consider relaxing some of the identification conditions used

to identify and estimate the nonparametric structural function under the alternative.

For example, one may follow LW and relax the monotonicity assumption. The problem

is that without monotonicity, one cannot identify m (x, e) or its partial derivative with
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respect to e under the alternative without further assumptions. It is interesting to know

whether it is possible to develop a consistent test in this case. Alternatively, one may

consider relaxing the conditional exogeneity condition: X ⊥ ε | Z. Again, without this

assumption, one cannot identify m (x, e) or its partial derivative as in this chapter. Some

other assumptions have to be in place.
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Appendix

Proof of Some Technical Lemmas

In this appendix, we prove some technical lemmas that are used in the estab-

lishment of the main results in Section 3.

Recall that U0 ≡ X0 × Z0, Ui ≡ (X ′i, Z
′
i)
′ , u ≡ (x′, z′)′ , Wi ≡ (Yi, U

′
i)
′ and

w ≡ (y, u′)′ . Let 1i ≡ 1{Xi ∈ X0, Yi ∈ Y0}. Define

Vn,b (y;u) ≡ 1

n

n∑
i=1

Kb (Ui − u) [1 {Yi ≤ y} −G (y|Ui)] =
1

n

n∑
i=1

Kbi,u1̄i (y) ,

Vn,c (y;u) ≡ 1

n

n∑
i=1

{Lc (Wi − w)− E [Lc (Wi − w)]} =
1

n

n∑
i=1

L̄ci,w,

where Kbi,u ≡ Kb (Ui − u) , Lci,w = Lc (Wi − w) , L̄ci,w = Lci,w − E(Lci,w), and 1̄i (y) =

1 {Yi ≤ y} −G (y|Ui) . Let

ν1b ≡ n−1/2b−dX/2
√

log n, ν2b ≡ n−1/2b−(dX+dZ)/2
√

log n, and ν3b ≡ n−1/2b−(dX+dZ+1)/2
√

log n.

ν1c, ν2c, and ν3c are similarly defined.

Lemma 24 Suppose that Assumptions A.1-A.3, A.6(i) and A.7 hold. Let T0 = [τ , τ̄ ]

denote a compact subset of (0, 1) . Then

(a) Ĝb (y|u)−G (y|u) = g (u)−1 Vn,b (y;u) +OP (ν2
2b+ br1) uniformly in (y, u) ∈

R× U0,

(b) Ĝ−1
b (τ |u)−G−1(τ |u) = OP (ν2b + br1) uniformly in (τ, u) ∈ T0 × U0,

(c) Ĝ−1
b (τ |u) −G−1(τ |u) = −Vn,b(G

−1(τ |u);u){1+o(1)}
g(G−1(τ |u)|u)g(u)

+ OP (ν2
2b + br1) uniformly

in (τ, u) ∈ T0 × U0.

Proof. For (a), we make the following bias-variance decomposition:

Ĝb (y|u)−G (y|u) = ĝb (u)−1 1

n

n∑
i=1

Kb (Ui − u) [G (y|Ui)−G (y|u)] + ĝb (u)−1 Vn,b (y;u)

By Assumptions A.1-A.3 and A.6(i) and the standard arguments in kernel estimation

(e.g., Masry (1996a, 1996b), Hansen (2008)), supu∈U0
|ĝb (u) −g (u) | = OP (ν2b + br1) ,
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supu∈U0
| 1n
∑n

i=1Kb (Ui − u) [G (y|Ui)−G (y|u)] | = OP (br1) , and supu∈U0
|Vn,b (y;u)| =

OP (ν2b) . It follows that uniformly in u ∈ U0,

Ĝb (y|u)−G (y|u) = g (u)−1 Vn,b (y;u) +OP
(
br1 + ν2

2b

)
.

By the same argument as used in the proof of Theorem 4.1 of Boente and Fraiman (1991),

we can show that the last result also holds uniformly in y ∈ R under Assumption A.3.

For (b), noting that Ĝb

(
Ĝ−1
b (τ |u)|u

)
= τ = G

(
G−1(τ |u)|u

)
, we have

∣∣∣G(Ĝ−1
b (τ |u)|u

)
−G

(
G−1(τ |u)|u

)∣∣∣ =
∣∣∣G(Ĝ−1

b (τ |u)|u
)
− Ĝb

(
Ĝ−1
b (τ |u)|u

)∣∣∣ ≤ sup
y∈R

∣∣∣G (y|u)− Ĝb (y|u)
∣∣∣ .

So the pointwise consistency of Ĝ−1
b (τ |u) follows from that of Ĝb (y|u) and the continuity

of G (·|u) . By Assumption A.3(ii) and the first order Taylor expansion,

G
(
Ĝ−1
b (τ |u)|u

)
−G

(
G−1(τ |u)|u

)
=
[
Ĝ−1
b (τ |u)−G−1(τ |u)

]
g
(
G̃−1(τ |u)|u

)
where G̃−1(τ |u) lies between Ĝ−1

b (τ |u) and G−1(τ |u). Therefore by (a) and Assumption

A.2(ii)

sup
(τ,u)∈T0×U0

∣∣∣Ĝ−1
b (τ |u)−G−1(τ |u)

∣∣∣ ≤ sup(τ,u)∈T0×U0

∣∣∣G(Ĝ−1
b (τ |u)|u

)
−G

(
G−1(τ |u)|u

)∣∣∣
inf(τ,u)∈T0×U0

g
(
G̃−1(τ |u)|u

)
≤

supu∈U0
supy∈R

∣∣∣G (y|u)− Ĝb (y|u)
∣∣∣

inf(τ,u)∈T0×U0
g
(
G̃−1(τ |u)|u

) = OP (ν2b + br1).

To obtain the uniform Bahadur representation for Ĝ−1
b (τ |u), we apply the

Hadamard differentiability of the (conditional) quantile operator (see e.g., Doss and Gill

(1992, Theorem 1)) to obtain

Ĝ−1
b (τ |u)−G−1(τ |u) =

Ĝb(G
−1(τ |u)|u)− τ

g (G−1(τ |u)|u)
{1 + o (1)} .

This together with (a) implies that Ĝ−1
b (τ |u) − G−1(τ |u) = −Vn,b(G

−1(τ |u);u){1+o(1)}
g(G−1(τ |u)|u)g(u)

+

OP (ν2
2b + br1).
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If G (y|x, z) ∈ T0 = [τ , τ̄ ] ⊂ (0, 1) for (y, x, z) ∈ Y0 × X0 × Z0, by Lemma

24(a) Ĝb(y|x, z) ∈ T ε0 with probability approaching 1 (wpa.1) as n → ∞, where T ε0 ≡

[τ − ε, τ̄ + ε] ⊂ (0, 1) for some ε > 0. Note that the result in Lemma 24(c) also holds

uniformly in (τ, u) ∈ T ε0 × U0 wpa.1.

Lemma 25 Suppose that Assumptions A.1-A.4, A.6 and A.7 hold. Then

(a) supỹ,y∈Y0,|ỹ−y|≤M(v2b+b
r1 ) supu∈U0

√
ncdX+1/2 ‖Vn,b (ỹ;u)− Vn,b (y;u)‖ = oP (1);

(b) supỹ,y∈Y0,|ỹ−y|≤M(v2b+b
r1 ) supu∈U0

√
ncdX+1/2 ‖Vn,c (ỹ;u)−Vn,c (y;u)‖ = oP (1) .

Proof. The proof is analogous to that of Lemma A.3 in HSW and thus

omitted.

Lemma 26 Suppose that Assumptions A.1-A.4, A.6 and A.7 hold. Then for any δn =

O(ν2b + br1), we have

(a) Ĝb(a + δn|u) − Ĝb(a|u) = g(a|u)δn + oP
(
n−1/2c−dX/2−1/4

)
uniformly in

u ∈ U0,

(b) Ĝ−1
b (a + δn|u) − Ĝ−1

b (a|u) = g(G−1(a|u)|u)−1δn + oP
(
n−1/2c−dX/2−1/4

)
uniformly in u ∈ U0,

Proof. By Lemma 24, Ĝb(a + δn|u) − Ĝb(a|u) = [G(a+ δn|u)−G(a|u)] +

g (u)−1 [Vn,b (a+ δn;u) −Vn,b (a;u)] +OP (ν2
b + br1). By Assumption A.4 and Taylor ex-

pansions, the first term on the right hand side of the last expression is g(a|u)δn+O(δ2
n).

By Lemma 25, Vn,b (a+ δn;u)− Vn,b (a;u) = oP (n−1/2c−dX/4−1/4) uniformly in u ∈ U0.

Thus (a) follows by Assumption A.7. The proof of (b) is analogous and thus omitted.

Lemma 27 Suppose Assumptions A.1-A.4, A.6 and A.7 hold. Then uniformly in

(y, u) ∈ Y0 × U0,

(a) ĝc(y|u)− g(y|u) = g (u)−1 Vn,c (y;u) +OP (cr2 + ν2
3c),

(b) Vn,c (y;u) = OP (ν3c),

(c) ĝc(y + δn|u) − ĝc(y|u) = Dyg(y|u)δn + oP
(
n−1/2c−dX/2−1/4

)
for any δn =

O(ν2b + br1),

where Dyg (y|u) ≡ ∂(g (y|u))/∂y.
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Proof. Recall Wi ≡ (Yi, U
′
i)
′ and w ≡ (y, u′)′ . We make the following bias-

variance decomposition:

ĝc(y|u)− g(y|u) = ĝc (u)−1 1

n

n∑
i=1

{g (y, u)− E [Lc (Wi − w)]}+ ĝc (u)−1 Vn,c (y;u)

By Assumptions A.1, A.4 and A.6(ii) and the standard arguments in kernel estimation,

supu∈U0
|ĝc (u)− g (u) | = OP (ν2c + cr2) , supw∈W0

| 1n
∑n

i=1E [Lc (Wi − w)]−g (y, u) | =

OP (cr2) , and supw∈W0
|Vn,c (y;u) | = OP (ν3c) . Thus (a) and (b) follow. Furthermore,

ĝc(y + δn|u)− ĝc(y|u) = [g(y + δn|u)− g(y|u)] + g (u)−1 [Vn,c (y + δn;u) −Vn,c (y;u)] +

OP (cr2 + ν2
3c). Then (c) follows from Taylor expansions and Lemma 25.

Lemma 28 Suppose that Assumptions A.1-A.4, A.6 and A.7 hold. Then uniformly in

i,

(a) (ε̂i − εi) 1i = sεn,i1i {1 + o (1)}+ oP (n−1/2c−dX/2−1/4),

(b) (ε̂i − εi) 1i = OP (v1b + br1),

where sεn,i =
∫

1
g(G−1(τiz |x̄,z)|x̄,z) [−Vn,b(G−1(τiz |x̄,z);x̄,z)

g(x̄,z) +
Vn,b(Yi;Xi,z)
g(Xi,z)

]dH(z) and τiz ≡
G(Yi|Xi, z).

Proof. Let τ̂iz ≡ Ĝb(Yi|Xi, z). Then (ε̂i − εi) 1i = ε1i + ε2i, where

ε1i ≡
[∫

Ĝ−1
b (τ̂iz|x̄, z)dH(z)−

∫
G−1(τ̂iz|x̄, z)dH(z)

]
1i, and

ε2i ≡
[∫

G−1(τ̂iz|x̄, z)dH(z)−
∫
G−1(τiz|x̄, z)dH(z)

]
1i.

By Lemmas 24 and 25,

ε1i = −
∫
Vn,b

(
G−1(τ̂iz|x̄, z); x̄, z

)
{1 + o (1)}

g (G−1(τ̂iz|x̄, z)|x̄, z) g (x̄, z)
dH(z)1i +OP (ν2

2b + br1)

= −
∫
Vn,b

(
G−1(τiz|x̄, z); x̄, z

)
{1 + o (1)}

g (G−1(τiz|x̄, z)|x̄, z) g (x̄, z)
dH(z)1i + oP (n−1/2c−dX/2−1/4),

and

ε2i =

∫
g(G−1(τiz|x̄, z)|x̄, z)−1 (τ̂iz − τiz) dH(z)1i +Op

(
b2r1 + v4

2b

)
=

∫
g(G−1(τiz|x̄, z)|x̄, z)−1g (Xi, z)

−1 Vn,b (Yi;Xi, z) dH(z)1i + oP (n−1/2c−dX/2−1/4).
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Combining these results yields (a). (b) follows from (a) and the standard arguments as

used in showing supu∈U0
|Vn,b (y;u)| = OP (ν2b) .

Lemma 29 Suppose that Assumptions A.1-A.4, A.6 and A.7 hold. Then

(a) α1 (x, e) ≡
∫ [ ĝc(e|x̄,z)

ĝc(y|x,z) −
g(e|x̄,z)
g(y|x,z)

]
dH(z) = s1n (x, e)+OP (cr2+n−1c−(dX+1) log n)

uniformly in (e, x) ∈ E0 ×X0,

(b) α2i ≡
∫ ĝc(ε̂i|x̄,z)−ĝc(εi|x̄,z)

ĝc(Yi|Xi,z) dH(z)1i = s2i1i + oP (n−1/2c−dX/2−1/4) uniformly

in i,

where y = m (x, e) , s1n (x, e) =
∫

1
g(y|x,z)

[
Vn,c(e;x̄,z)
g(x̄,z) −Dem (x, e)

Vn,c(y;x,z)
g(x,z)

]
dH(z), and

s2n,i =
∫ Dyg(εi|x̄,z)

g(Yi|Xi,z) dH(z)sεn,i.

Proof. First, observe that α1 (x, e) = α11 (x, e) +α12 (x, e) , where α11 (x, e) =∫
ĝc(y|x, z)−1[ĝc(e|x̄, z)−g(e|x̄, z)]dH(z), and α12 (x, e) =

∫
g(e|x̄, z)[ĝc(y|x, z)−1−g(y|x, z)−1]dH(z).

By Lemma 27(i), we can show that

∫
[ĝc(y|x, z)− g(y|x, z)]2 dH(z) =

∫
g (x, z)−2 Vn,c (y;x, z)2 dH(z) +OP (c2r2 + ν4

3c)

= OP (v2
1cc
−1 + c2r2) uniformly in (y, x) ∈ Y0 ×X0.(7.18)

By Lemma 27, (7.18) and the Cauchy-Schwarz inequality, we have that uniformly in

(e, x) ∈ E0 ×X0

α11 (x, e) =

∫
g(y|x, z)−1 [ĝc(e|x̄, z)− g(e|x̄, z)] dH(z)

−
∫
ĝc(y|x, z)−1g(y|x, z) [ĝc(y|x, z)− g(y|x, z)] [ĝc(e|x̄, z)− g(e|x̄, z)] dH(z)

=

∫
g(y|x, z)−1 [ĝc(e|x̄, z)− g(e|x̄, z)] dH(z) +OP (n−1c−(dX+1) log n+ c2r2)

=

∫
g(y|x, z)−1g (x̄, z)−1 Vn,c (e; x̄, z) dH(z) +OP (cr2 + ν2

3c),

and

α12 (x, e) = −
∫
g(e|x̄, z)ĝc(y|x, z)−1g(y|x, z)−1[ĝc(y|x, z)− g(y|x, z)]dH(z)

= −
∫
g(e|x̄, z)g(y|x, z)−2[ĝc(y|x, z)− g(y|x, z)]dH(z) +OP (n−1c−(dX+1) log n+ c2r2)

= −
∫
g(e|x̄, z)g(y|x, z)−2g (x, z)−1 Vn,c (y;x, z) dH(z) +OP (n−1c−(dX+1) log n+ cr2).
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Then by (7.2) we have that uniformly in (e, x) ∈ E0 ×X0

α1 (x, e) =

∫
1

g(y|x, z)

[
Vn,c (e; x̄, z)

g (x̄, z)
−Dem (x, e)

Vn,c (y;x, z)

g (x, z)

]
dH(z)

+OP (cr2 + n−1c−(dX+1) log n)

= s1n (x, e) +OP (cr2 + n−1c−(dX+1) log n).

For (b), note that α2i = α21i−α22i, where α21i =
∫ ĝc(ε̂i|x̄,z)−ĝc(εi|x̄,z)

g(Yi|Xi,z) dH(z) 1i,

and α22i =∫ [ĝc(Yi|Xi,z)−g(Yi|Xi,z)][ĝc(ε̂i|x̄,z)−ĝc(εi|x̄,z)]
ĝc(Yi|Xi,z)g(Yi|Xi,z) dH(z) 1i. By Lemmas 27 and 28(i),

α21i =

∫
Dyg(εi|x̄, z)
g(Yi|Xi, z)

dH(z) (ε̂i − εi) 1i+oP (n−1/2c−dX/2−1/4) = s2n,i1i+oP (n−1/2c−dX/2−1/4),

where oP (n−1/2c−dX/2−1/4) holds uniformly in i. By Assumption A.2, Lemmas 27 and

28(ii), and (7.18), we have that uniformly in i

α22i =

∫
[ĝc(Yi|Xi, z)− g(Yi|Xi, z)] [ĝc(ε̂i|x̄, z)− ĝc(εi|x̄, z)]

g(Yi|Xi, z)g(Yi|Xi, z)
dH(z) 1i {1 + o (1)}

=

∫
|ĝc(Yi|Xi, z)− g(Yi|Xi, z)| dH(z)OP (v1b + br1)

=

[∫
{[ĝc(Yi|Xi, z)− g(Yi|Xi, z)]}2 dH(z)

]1/2

1iOP (v1b + br1)

= OP (n−1/2c−(dX+1)/2
√

log n+ cr2)OP (v1b + br1) = oP (n−1/2c−dX/2−1/4).

It follows that α2i = s2n,i1i + oP (n−1/2c−dX/2−1/4) uniformly in i.
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Proof of the Main Results

Proofs of Theorem 21 and 22

We only prove Theorem 22 as the proof of Theorem 21 is a special case. To

conserve space, let ai ≡ a (Xi, Yi) . We first make the following decomposition:

ncdX+ 1
2 Ĵn = cdX+ 1

2

n∑
i=1

{∫
ĝc(ε̂i|x̄, z)− ĝc(εi|x̄, z)

ĝc(Yi|Xi, z)
dH(z) +

∫ [
ĝc(εi|x̄, z)
ĝc(Yi|Xi, z)

− 1

]
dH(z)

}2

ai

= cdX+ 1
2

n∑
i=1

{∫ [
ĝc(εi|x̄, z)
ĝc(Yi|Xi, z)

− 1

]
dH(z)

}2

ai

+cdX+ 1
2

n∑
i=1

[∫
ĝc(ε̂i|x̄, z)− ĝc(εi|x̄, z)

ĝc(Yi|Xi, z)
dH(z)

]2

ai

+2cdX+ 1
2

n∑
i=1

∫
ĝc(ε̂i|x̄, z)− ĝc(εi|x̄, z)

ĝc(Yi|Xi, z)
dH(z)

∫ [
ĝc(εi|x̄, z)
ĝc(Yi|Xi, z)

− 1

]
dH(z)ai

≡ Ĵn1 + Ĵn2 + 2Ĵn3, say.

Propositions 30, 31 and 32 study Ĵn1, Ĵn2 and Ĵn3, respectively. Combining the results in

these propositions yields ncdX+ 1
2 Ĵn = Jn + µ0 + oP (1) , where Jn = cdX+ 1

2
∑n

i=1 s
2
n,iai,

sn,i =

∫
g−1

1iz

[
Vn,c (εi; x̄, z)

g (x̄, z)
− Vn,c (Yi;Xi, z)

g (Xi, z)

]
dH(z) = n−1

n∑
j=1

ζ0 (Wi,Wj) , (7.19)

g1iz = g(Yi|Xi, z), and ζ0 (Wi,Wj) =
∫
g−1

1iz

[
g (x̄, z)−1 L̄cj,(εi,x̄,z) − g (Xi, z)

−1 L̄cj,(Yi,Xi,z)

]
dH(z)

is as defined in (7.14). The rest of the proof follows that of HSW closely.

First, using ζ0, we can write Jn as a third order V -statistic:

Jn = cdX+ 1
2

n∑
i=1

n−1
n∑
j=1

ζ0 (Wi,Wj)

2

ai = n−2cdX+ 1
2

n∑
i1=1

n∑
i2=1

n∑
i3=1

ζ (Wi1 ,Wi2 ,Wi3) ,

where ζ (Wi1 ,Wi2 ,Wi3) ≡ ζ0 (Wi1 ,Wi2) ζ0 (Wi1 ,Wi3) ai1 . To study the asymptotic dis-

tribution of Jn, we need to use the U -statistic theory (e.g., Lee (1990)). Let ϕ (wi1 , wi2)

≡ E [ζ (W1, wi1 , wi2)] , and ζ̄(wi1 , wi2 , wi3) ≡ ζ (wi1 , wi2 , wi3)−ϕ (wi2 , wi3) . Then we can

decompose Jn as follows

Jn = n−1cdX+ 1
2

n∑
i1=1

n∑
i2=1

ϕ (Wi1 ,Wi2) + n−2cdX+ 1
2

n∑
i1=1

n∑
i2=1

n∑
i3=1

ζ̄ (Wi1 ,Wi2 ,Wi3)

≡ J1n + J2n, say.
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Consider J2n first. Write E(J2
n2) = n−4c2dX+1

∑n
i1,...,i6=1E

[
ζ̄ (Wi1 ,Wi2 ,Wi3) ζ̄ (Wi4 ,Wi5 ,Wi6)

]
.

Observing that E
[
ζ̄ (Wi1 , wi2 , wi3)

]
= E

[
ζ̄ (wi1 ,Wi2 , wi3)

]
= E[ζ̄(wi1 , wi2 ,Wi3)] = 0,

E[ζ̄(Wi1 ,Wi2 , Wi3)ζ̄(Wi4 , Wi5 ,Wi6)] = 0 if there are more than three distinct elements

in {i1, . . . , i6} . In view of this, we can show that

E(J2
2n) = O(n−1c−dX−1 + n−2c−2dX−1 + n−3c−2dX−2) = o (1) .

Then J2n = oP (1) by the Chebyshev inequality.

For J1n, let ϕ (Wi,Wj) =
∫
ζ0 (w̃,Wi) ζ0 (w̃,Wj) a

(
x̃,m−1(x̃, ỹ)

)
dG (w̃) , where

G (·) is the CDF of Wi.Then J1n = Bn + Vn, where Bn = n−1cdX
∑n

i=1 ϕ (Wi,Wi) and

Vn = 2n−1cdX+ 1
2
∑

1≤i<j≤n ϕ (Wi,Wj) contribute to the asymptotic bias and variance

of our test statistic, respectively. Observing that Vn is a second-order degenerate U -

statistic, we can easily verify that all the conditions of Theorem 1 of Hall (1984) are sat-

isfied and a central limit theorem applies to it: Vn
d→ N

(
0, σ2

)
, where σ2 = limn→∞ σ

2
n

and σ2
n = 2c2dX+1E [ϕ (W1,W2)]2.8 �

Proposition 30 Ĵn1 = cdX+ 1
2
∑n

i=1 s
2
n,iai + µ0 + oP (1) under H1 (γn) .

Proof. To begin with, we decompose Ĵn1 as follows:

Ĵn1 = cdX+ 1
2

n∑
i=1

{∫ [
ĝc(εi|x̄, z)
ĝc(Yi|Xi, z)

− g(εi|x̄, z)
g(Yi|Xi, z)

]
dH(z)

}2

ai

+cdX+ 1
2

n∑
i=1

{∫ [
g(εi|x̄, z)
g(Yi|Xi, z)

− 1

]
dH(z)

}2

ai

+2cdX+ 1
2

n∑
i=1

∫ [
ĝc(εi|x̄, z)
ĝc(Yi|Xi, z)

− g(εi|x̄, z)
g(Yi|Xi, z)

]
dH(z)

∫ [
g(εi|x̄, z)
g(Yi|Xi, z)

− 1

]
dH(z)ai

= Jn11 + Jn12 + 2Jn13.

Using Lemma 29 and the fact that Dem (x, e) = 1 + γnδn (x, e) under H1 (γn), we can

8Write ζ0 (Wi,Wj) =
∫
g−1

1izg (x̄, z)−1 L̄cj,(εi,x̄,z)dH(z)−
∫
g−1

1izg (Xi, z)
−1 L̄cj,(Yi,Xi,z)dH(z) ≡ ζ1ij −

ζ2ij , say. A careful calculation suggests that both ζ1ij and ζ2ij contributes to the asymptotic bias of

J1na but only ζ1ij contributes to the asymptotic variance of J1na.
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show that

Jn11 = cdX+ 1
2

n∑
i=1

s2
1n,iai + ncdX+ 1

2OP ((cr2 + n−1c−(dX+1) log n)2)

= cdX+ 1
2

n∑
i=1

s2
n,iai + oP (1)

where s1n,i = s1n (Xi, εi) and sn,i is defined in (7.19). By (7.2), (7.17), and the weak

law of large numbers (WLLN), we have

Jn12 = cdX+ 1
2

n∑
i=1

[Dem(Xi, εi)− 1]2 ai = cdX+ 1
2

n∑
i=1

γ2
nδn(Xi, εi)

2ai + oP (1)

= n−1
n∑
i=1

δn(Xi, εi)
2ai + oP (1)

P→ lim
n→∞

E
[
δn(Xi, εi)

2a (Xi, Yi)
]
≡ µ0.

For Jn13, by Lemma 29 and (7.17), we have

Jn13 = cdX+ 1
2

n∑
i=1

∫ [
ĝc(εi|x̄, z)
ĝc(Yi|Xi, z)

− g(εi|x̄, z)
g(Yi|Xi, z)

]
dH(z)γnδn(Xi, εi)ai

= γnc
dX+ 1

2

n∑
i=1

ais1n,iδn(Xi, εi) + nγnc
dX+ 1

2OP (cr2 + n−1c−(dX+1) log n)

= J̄n13 + oP (1) ,

where J̄n13 ≡ γnc
dX+ 1

2
∑n

i=1 aisn,iδn(Xi, εi). Note that J̄n13 = J̄n131 + J̄n132, where

J̄n13s = n−1γnc
dX+ 1

2
∑n

i=1

∑n
j=1 aiζsijδn(Xi, εi) for s = 1, 2, where ζ1ij and ζ2ij are

defined in footnote 7.5. We further write J̄n131 = n−1γnc
dX+ 1

2
∑n

i=1 aiζ1iiδ(Xi, εi)

+n−1γnc
dX+ 1

2
∑n

i=1

∑n
j 6=i aiζ1ijδn(Xi, εi). It is easy to show that the first term isOP (γnc

dX+ 1
2 )

and the second term is OP (c1/4) by moment calculations. It follows that J̄n131 =

oP (1) . Similarly, J̄n132 = n−1γnc
dX+ 1

2
∑n

i=1 aiζ2iiδn(Xi, εi) +n−1γnc
dX+ 1

2
∑n

i=1

∑n
j 6=i ai

ζ2ijδn(Xi, εi) = OP (γnc
− 1

2 ) + OP (n−
1
2 c−

1
4 +c

1
2
dX+ 1

4 ) = oP (1) . It follows that Jn13 =

oP (1) .

Combining the above results yields the desired result: Ĵn1 = cdX+ 1
2
∑n

i=1 s
2
n,iai+

µ0 + oP (1) .
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Proposition 31 Ĵn2 = oP (1) under H1 (γn) .

Proof. By Lemma 29(ii) and the Cauchy-Schwarz inequality, we have

Ĵn2 ≤ 2cdX+ 1
2

n∑
i=1

ais
2
2n,i + 2ncdX+ 1

2 oP ((n−1/2c−dX/2−1/4)2) = 2Jn2 + oP (1) ,

where Jn2 ≡ cdX+ 1
2
∑n

i=1 aiβ
2
i s

2
εn,i and βi ≡

∫ Dyg(εi|x̄,z)
g(Yi|Xi,z) dH(z). Let g2iz ≡ g(G−1(τiz|x̄, z)|x̄, z)

where recall τiz = G(Yi|Xi, z). Then

Jn2 = cdX+ 1
2

n∑
i=1

aiβ
2
i

 1

n

n∑
j=1

(−η1ij + η2ij)

2

= n−2cdX+ 1
2

n∑
i=1

n∑
j=1

n∑
k=1

aiβ
2
i (η1ijη1ik + η2ijη2ik − 2η1ijη2ik)

= Jn21 + Jn22 + Jn23, say,

where η1ij ≡
∫
g−1

2izg (x̄, z)−1Kbj,(x̄,z)1̄j
(
G−1(τiz|x̄, z)

)
dH(z), η2ij ≡

∫
g−1

2izg (Xi, z)
−1Kbj,(Xi,z)1̄j (Yi)

dH(z), and e.g., Jn211 ≡ n−2cdX+ 1
2
∑n

i=1

∑n
j=1

∑n
k=1 aiβ

2
i η1ijη1ik. For Jn21, we decom-

pose it as follows:

Jn21 = n−2cdX+ 1
2

n∑
i=1

n∑
j=1,j 6=i

n∑
k=1,k 6=i,j

aiβ
2
i η1ijη1ik + n−2cdX+ 1

2

n∑
i=1

n∑
j=1,j 6=i

aiβ
2
i η

2
1ij

+2n−2cdX+ 1
2

n∑
i=1

n∑
j=1,j 6=i

aiβ
2
i η1iiη1ij + n−2cdX+ 1

2

n∑
i=1

aiβ
2
i η

2
1ii

≡ Jn211 + Jn212 + Jn213 + Jn214, say.

In view of E (Jn211a) = 0, E
(
J2
n211

)
= O

(
c2dX+1b−2dX

)
, E|Jn212| = E (Jn212) =

O(cdX+ 1
2 b−dX ), E|Jn213| = O(cdX+ 1

2 b−dX ), and E|Jn214| = O(n−1cdX+ 1
2 b−2dX ), we have

Jn21 = OP (cdX+ 1
2 b−dX + n−1cdX+ 1

2 b−2dX ) = oP (1) by the Chebyshev and Markov in-

equalities. By the same token, we can show that Jn22 = oP (1) . Then Jn23 = oP (1) by

the Cauchy-Schwarz inequality. Consequently, we have shown that Jn2 = oP (1) .
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Proposition 32 Ĵn3 = oP (1) under H1 (γn) .

Proof. Following the proof of Propositions 30 and 31, we can show that

Ĵn3 = cdX+ 1
2

n∑
i=1

s2n,i [s1n,i + γnδ(Xi, εi)] ai + oP (1)

= cdX+ 1
2

n∑
i=1

s2n,is1n,iai + γnc
dX+ 1

2

n∑
i=1

s2n,iδ(Xi, εi)ai + oP (1)

≡ Jn31 + Jn32 + oP (1) , say.

We prove the lemma by demonstrating that Jn31 = oP (1) and Jn32 = oP (1) . Recall

ζ1ij ≡
∫
g−1

1izg (x̄, z)−1 L̄cj,(εi,x̄,z)dH (z) and ζ2ij ≡
∫
g−1

1izg (Xi, z)
−1 L̄cj,(Yi,Xi,z)dH (z) .

Let ζ̄2ij = Dem (Xi, εi) ζ2ij . Then

Jn31 = cdX+ 1
2

n∑
i=1

ai
1

n

n∑
j=1

βi (−η1ij + η2ij)
1

n

n∑
k=1

(
ζ1ik − ζ̄2ik

)
= n−2n−2cdX+ 1

2

n∑
i=1

n∑
j=1

n∑
k=1

aiβi
(
−η1ijζ1ik + η1ij ζ̄2ik + η2ijζ1ik − η2ij ζ̄2ik

)
≡ −Jn311 + Jn312 + Jn313 − Jn314, say.

As in the analysis of Jn211, we can readily demonstrate that Jn31s = oP (1) by straightfor-

ward moment calculations and the Chebyshev/Markov inequalities. Thus Jn31 = oP (1) .

Note that Jn32 = Jn321 +Jn322, where Jn32s = n−1γnc
dX+ 1

2
∑n

i=1

∑n
j=1 aiβiηsijδn(Xi, εi)

for s = 1, 2. We further write Jn321 = n−1γnc
dX+ 1

2
∑n

i=1 aiβiη1iiδn(Xi, εi) +

n−1γnc
dX+ 1

2
∑n

i=1

∑n
j 6=i aiβiη1ijδn(Xi, εi). It is easy to show that the first term isOP (γnc

dX+ 1
2 )

and the second term is OP ((c/b)dX/2c1/4) by moment calculations. It follows that

Jn321 = oP (1) . Similarly, Jn321 = oP (1) . Thus we have shown that Jn32 = oP (1) .
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Proof of Theorem 23

The proof is simpler than that of Theorem 22. Under H1, we can readily apply

Lemmas 29, 28, and the WLLN to obtain

Ĵn = n−1
n∑
i=1

{∫ [
ĝc(εi|x̄, z)
ĝc(Yi|Xi, z)

− 1

]
dH(z)

}2

ai + oP (1)

= n−1
n∑
i=1

{∫ [
g(εi|x̄, z)
g(Yi|Xi, z)

− 1

]
dH(z)

}2

ai + oP (1)

= n−1
n∑
i=1

[Dem (Xi, εi)− 1]2 ai + oP (1)
P→ E

{
[Dem (Xi, εi)− 1]2 ai

}
.

The result follows by noticing that σ̂2
n = OP (1) and B̂n = oP

(
ncdX+1/2

)
under H1. �
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Chapter 8

Inference in Semiparametric

Partial Threshold Models

8.1 Introduction

Since the seminal work of Robinson (1988), partially linear model, one of the

simplest semiparametric models, starts to gain its popularity in economic applications.

It has been used to model hedonic price fluctuations (Anglin and Gencay, 1996), to esti-

mate Engel curves (Blundell, Duncan and Pendakur, 1998), to estimate the relationship

between weather and electricity sales (Engle, Granger, Rice and Weiss, 1986), to predict

the mean effect of a change in the distribution of some policy-related variables (Stock,

1989), to study the production frontier of the U.S. banking industry (Adams, Berger and

Sickles, 1999), and estimate price and income elasticities in the presence of endogeneity

(Yatchew and No, 2001). Besides progress in applied work, theoretical effort has also

been made. The simple i.i.d. model was extended by Li (1996), Fan and Li (1999) into

time series setting, and by Li and Stengos (1996) into panel data framework. Hardle,

Liang and Gao (2000) have a thorough treatment for partially linear models.

Yet, the stability of the parameter of the linear component does not receive

enough attention. One direct approach to evaluate the stability is to estimate the par-
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tially linear model for appropriately selected different subsamples and then compare the

estimators. However, this approach is not statistically well developed. Another approach

to tackle this problem is to consider a nonlinear generalization of the semiparametric

partially linear model by incorporating a threshold component which is usually called

sample splitting. Caner (2002), Caner and Hansen (2004), and Hansen (1996, 1999,

2000, 2004) investigate the theoretical properties of the threshold models. Gonzalo and

Pitarakis (2002) consider issues of estimation, model selection in threshold models and

estimating the number of thresholds. Hansen (2000) develops the theory of estimation

of threshold model with exogenous regressors, derives the asymptotic properties of the

threshold parameter estimator, constructs the confidence interval and deals with test-

ing issues. The asymptotic distribution of derived estimator is nonstandard yet free of

nuisance parameters under the specified assumptions, parallel to the results in change

point theory by Picard (1985) and Bai (1997).

The primary purpose of this chapter is to develop the estimation of the semi-

parametric partially threshold models and derive the testing statistics. The contribution

of this chapter is seven folds. First, we propose an estimation procedure to consistently

estimate the threshold parameters, the slope parameters and the nonparametric com-

ponent. In the presence of the nonparametric component compared to threshold model

considered in Hansen (2000), our model needs special treatment of the nonparamet-

ric component in order to make the estimation feasible. We adopt Robinson’s (1988)

approach to eliminate the nonparametric component and estimate the conditional ex-

pectations showing up in the reduced form using kernel based approach.

Second, we prove the asymptotic properties of the threshold parameter estima-

tor, which has a convergence rate relying on a parameter regarding the threshold effect.

Its asymptotic distribution is nonstandard, yet has a similar form to that of the thresh-

261



old model. Third, a likelihood ratio statistic that can be used to test the threshold effect

is developed and it is shown to have an asymptotic chi-squared distribution. Confidence

interval estimators are also constructed based on the likelihood ratio statistic.

Fourth, we show that the slope parameters are asymptotically normally dis-

tributed and testing issues are also considered. Fifth, we prove that the nonparametric

component estimator is asymptotically normally distributed and achieves oracle effi-

ciency as if the threshold parameter is known.

Sixth, we examine the finite sample properties of our estimator and compare

them with those of partially linear models and nonparametric models. The simulation

results shows the necessity of adopting the semiparametric threshold model when there

is such effect, in case of large samples. Seventh, we apply our model to study consumer

demand as did in Blundell et al (1998). Also, we test the existence of the threshold

effect and we find a threshold effect in domestic fuel Engel curve.

The rest of the chapter is organized as follows. In section 8.2, we lay out our

model, present notations and comment the relationship of our models with other popular

ones in the literature. Section 8.3 describes the proposed estimation procedure. Section

8.4 presents asymptotic distribution theory for the proposed estimators. Section 8.5

discusses the testing of a threshold effect. Monte Carlo experiments are performed in

section 8.6 to examine the finite sample properties of our estimators and in the following

section, we conduct an application to study consumer demand. Section 8.8 concludes

and comments on future research. All technical proofs are collected in Appendix.
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8.2 Model

The model of interest is

yi = θ′1Xi + g (Zi) + ei, if qi ≤ γ

yi = θ′2Xi + g (Zi) + ei, if qi > γ

or in compact form

yi = θ′1Xi1 (qi ≤ γ) + θ′2Xi1 (qi > γ) + g (Zi) + ei, (8.1)

with {Xi, Zi, qi, yi, }ni=1 being the observed sample, ei as the disturbance term and others

as model parameters, 1 (·) being the indicator function. Xi is m× 1 vector of exogenous

regressors and Zi is p×1 vector of exogenous regressors. qi is a real-valued and continuous

threshold variable that is independent of Zi, and yi is the real-valued dependent variable.

γ ∈
[
γ, γ̄

]
, is the threshold parameter assumed to be unknown. θ1 and θ2 are slope

parameters which are of dimension m×1. g (·) is a real-valued unknown function defined

on Rp. Further, we assume that E (ei | Xi, Zi) = 0. Note that since the model has both

a threshold component and a nonparametric component, we call it “semiparametric

partial threshold model,” parallel to the semiparametric partial linear model.

Remark 1: Note that qi may be part of Xi but is assumed to be independent of Zi.

When qi is a time index, the model is a semiparametric generalization of the models

considered in change point theory, see Picard (1985) and Bai (1997). When qi is a

discrete variable such as gender, there is no need to estimate the threshold parameter.

Therefore, it is interesting to assume that qi is a continuous variable. The case in which

qi and Zi are dependent is a more complicated situation that is beyond this paper.�

Remark 2: The threshold parameter γ is assumed to be unknown. Otherwise, with the

knowledge of γ, the model is simply the partially linear model considered in Robinson
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(1988). The estimation can be done by splitting the sample based on qi first and then

applying Robinson’s approach. However, the split of the sample will lead to the loss of

efficiency in the estimation of the nonparametric component. Even if γ is known, our

proposed estimation approach will trivially apply. �

Remark 3 (identification): Note that Xi cannot contain a constant and that Xi and

Zi cannot have common component for the identification of θ1 and θ2.

First, suppose that Xi contains a constant, that is, θ1 and θ2 include intercepts,

α1 and α2, respectively. Then α1 and α2 will not be identified separately from the

unknown function g (·). To see this, for any non-zero constant c, note that

α11 (qi ≤ γ) + α21 (qi > γ) + g (Zi)

= (α1 + c) 1 (qi ≤ γ) + (α2 + c) 1 (qi > γ) + [g (Zi)− c]

≡ α̃11 (qi ≤ γ) + α̃21 (qi > γ) + g̃ (Zi) .

That is, the sum of the new intercepts and the new g (·) are observationally equivalent

to the sum of the old ones. Therefore, the unknown function g (·) creates the problem

of unidentification of the intercepts.

Second issue related to identification of the slope parameter arises from the esti-

mation procedure that we propose to approach the model. As will be seen in the next sec-

tion, the identification of θ1 and θ2 will require that Φ ≡ E
{

[X − E (X | Z)] [X − E (X | Z)]′
}

be positive definite. Hence X cannot contain a constant and components of X cannot be

a deterministic function of Z. Otherwise, Φ becomes singular since X −E (X | Z) = 0.

See Robinson (1988) and Matzkin (2007) for more discussion on identification issue. �
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8.3 Estimation

8.3.1 Estimation of model parameters

8.3.1.1 Infeasible estimation procedure

In this subsection, we introduce an infeasible procedure to estimate the model

parameters of (8.1) based on the observation that E (ei | Zi) = E (E (ei | Xi, Zi) | Zi) =

0, by law of iterated expectation. Therefore, taking expectation of (8.1) conditional on

Zi gives,

E (yi | Zi) = θ′1E (Xi | Zi) 1 (qi ≤ γ) + θ′2E (Xi | Zi) 1 (qi > γ) + g (Zi) . (8.2)

Subtracting (8.2) from (8.1) leads to

yi − E (yi | Zi) = θ′1 [Xi − E (Xi | Zi)] 1 (qi ≤ γ) + θ′2 [Xi − E (Xi | Zi)] 1 (qi > γ) + ei.

Let ỹi = yi − E (yi | Zi) , X̃i = Xi − E (Xi | Zi) , X̃i (γ) = X̃i1 (qi ≤ γ) , δn = θ2 − θ1,

θ = θ2, then we have

ỹi = θ′1X̃i1 (qi ≤ γ) + θ′2X̃i1 (qi > γ) + ei (8.3)

= θ′X̃i + δnX̃i (γ) + ei.

We can write the model (8.3) in compact form, by defining ỹ = [ỹ1, ỹ2, ..., ỹn]′ ,

X̃ =
[
X̃ ′1, X̃

′
2, ..., X̃

′
n

]′
, X̃γ = X̃ (γ) =

[
X̃1 (γ)′ , X̃2 (γ)′ , ..., X̃n (γ)′

]′
, and e = [e1, e2, ..., en]′,

as

ỹ = X̃θ + X̃γδn + e. (8.4)

Therefore, the parameters of the model are (θ, δn, γ), which can be estimated by least

squares (LS), jointly minimizing the sum of squared residuals (SSE) as

S̃n (θ, δn, γ) =
(
ỹ − X̃θ + X̃γδn

)′ (
ỹ − X̃θ + X̃γδn

)
. (8.5)
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Note that for given γ, (8.4) is linear in (θ′, δ′n). Therefore, the estimation of the

slope parameters can be easily done via conditional OLS by concentrating out γ. That

is, the OLS estimators of the slope parameters, β ≡ (θ′, δ′n)′, are derived by regressing

ỹ on X∗ ≡
[
X̃, X̃γ

]
as, for given γ,

 θ̃ (γ)

δ̃n (γ)

 =

 X̃ ′X̃ X̃ ′X̃γ

X̃ ′γX̃ X̃ ′γX̃γ


−1 X̃ ′

X̃γ
′

 ỹ,

i.e.,

β̃ (γ) =

 θ̃ (γ)

δ̃n (γ)

 =
(
X∗′X∗

)−1
X∗′ỹ (8.6)

Conditional on γ, the concentrated SSE is

S̃n (γ) = S̃n (θ (γ) , δn (γ) , γ) =
(
ỹ − X̃θ (γ) + X̃γδn (γ)

)′ (
ỹ − X̃θ (γ) + X̃γδn (γ)

)
.

Hence, γ can be estimated by

γ̃ = arg min
γ∈Γn

S̃n (γ) (8.7)

with Γn = Γ ∩ {q1, q2, ..., qn} . Note that the minimization is well-defined since Sn (γ) is

to be evaluated for at most n different values of γ.

With estimated γ̃ given by (8.7), the OLS estimators of the slopes can be

formulated by substituting γ̃ for γ in (8.6). Therefore, the estimator of β is

β̃ = β̃ (γ̃) . (8.8)

Note that idea of the approach taken here to estimate the slope parameters

goes as follows. First, we eliminate the nonparametric component to simplify the model

to be of the form of Hansen (2000). Then we adopt Hansen’s LS method estimator to

estimate the threshold and slopes. However, in the process of getting rid of g (·), we

introduce the unknown conditional expectation terms E (Xi | Zi) and E (yi | Zi) into
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the transformed model (8.3), which makes the estimation procedure infeasible. The

estimation of these conditional expectations are discussed in the following subsection.

8.3.1.2 Feasible estimation procedure

This subsection presents the feasible estimation procedure for the model pa-

rameters. Since X̃i = Xi − E (Xi | Zi) and ỹi = yi − E (yi | Zi) are unknown, we can

replace them by consistent nonparametric kernel counterparts, Xi− X̂i and yi− ŷi, with

X̂i ≡ Ê (Xi | Zi) = n−1
n∑
j=1

XjKh (Zi, Zj) /f̂ (Zi) ,

ŷi ≡ Ê (yi | Zi) = n−1
n∑
j=1

yjKh (Zi, Zj) /f̂ (Zi) ,

and

f̂ (Zi) = n−1
n∑
j=1

Kh (Zi, Zj)

where

Kh (Zi, Zj) = Πp
s=1h

−1
s k

(
Zis − Zjs

hs

)
with k (·) being the univariate kernel function and h = (h1, h2, ..., hp) the bandwidth.

Note that the random denominator f̂ (Zi) can cause technical difficulties in

the derivation of the asymptotic distribution of the feasible estimator of β. Robinson

(1988) apply a function to “trim out” the observations with small denominator values,

f̂ (Zi). Concern with the trim out approach is that not all information is to be used

since it leaves out some sample observations. Another approach to tackle the small

value problem of f̂ (Zi) is to weight the regression equation (8.3) by the density itself.

Following Li (1996), multiply (8.3) by f̂i = f̂ (Zi),

ỹif̂i = θ′1X̃if̂i1 (qi ≤ γ) + θ′2X̃if̂i1 (qi > γ) + eif̂i (8.9)

= θ′X̃if̂i + δnX̃i (γ) f̂i + eif̂i.
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Denote ȳi = ỹif̂i, X̄i = X̃if̂i, X̄i (γ) = X̃i (γ) f̂i, and denote ȳ = [ȳ1, ȳ2, ..., ȳn] , X̄ =[
X̄1, X̄2, ..., X̄n

]
, X̄γ =

[
X̄1 (γ) , X̄2 (γ) , ..., X̄n (γ)

]
and X̄∗ =

[
X̄, X̄γ

]
. The LS estima-

tor of β ≡ (θ′, δ′n)′ is given by, for given γ,

β̂ (γ) =
(
X̄∗′X̄∗

)−1
X̄∗′ȳ. (8.10)

And we estimate γ as by minimizing the SSE

S̄n (γ) = S̄n (θ (γ) , δn (γ) , γ)

=
(
ȳ − X̄θ (γ) + X̄γδn (γ)

)′ (
ȳ − X̄θ (γ) + X̄γδn (γ)

)
=

(
ȳ − X̄∗β̂ (γ)

)′ (
ȳ − X̄∗β̂ (γ)

)
,

that is,

γ̂ = arg min
γ∈Γn

S̄n (γ) . (8.11)

Substituting γ̂ into the slope estimator β̂ (γ) in (8.10) gives the feasible estimator of β

as

β̂ = β̂ (γ̂) (8.12)

To solve the minimization problem, see Hansen (1999) for details of computation issues.

8.3.2 Estimation of the nonparametric component

To estimate the nonparametric function, note that (8.2) implies that

g (Zi) = E
(
yi − θ′1Xi1 (qi ≤ γ)− θ′2Xi1 (qi > γ) | Zi

)
= E

(
yi − θ′Xi − δ′nXi (γ) | Zi

)
.

Therefore, with a consistent estimator of β, β̂ =
(
θ̂′, δ̂′n

)′
, g (z) is consistently estimated

as

ĝ (z) =

∑n
j=1

(
yj − θ̂′Xj − δ̂′nXj (γ̂)

)
Kh (z, Zj)∑n

j=1Kh (z, Zj)
, (8.13)
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the asymptotic distribution of which is shown, under conditions in Theorem 4 below,

to be same as the following infeasible estimator that makes use of the true value of the

threshold and slope parameters,

g̃ (z) =

∑n
j=1 (yj − θ′Xj − δ′nXj (γ))Kh (z, Zj)∑n

j=1Kh (z, Zj)
. (8.14)

8.4 Distribution theory

8.4.1 Assumption

We state our assumptions after the definition of a class of functions and some

moments notations to be used later.

Definition 1: For α > 0, and integer v ≥ 2, define Gαv as the class of smooth functions

such that if g ∈ Gαv , then g is v times differentiable; g and its partial derivatives all

satisfy the Lipschitz-type conditions such as ‖g (z1)− g (z2)‖ ≤ Hg (z) ‖z1 − z2‖ , for a

continuous function Hg (z) with finite αth moment. �

Let ϕ (·) and f (·) be the density function of qi and Zi, respectively. Denote

ϕi = ϕ (qi) , ϕ = ϕ (γ0) and fi = f (zi).

Definition 2: Define the moment functionals (following Hansen, 2000)

M1 (γ) = E
[
X̃iX̃

′
i1 (qi ≤ γ)

]
, M̄1 (γ) = E

[
X̃iX̃

′
if

2
i 1 (qi ≤ γ)

]
M2 (γ) = E

[
X̃iX̃

′
i1 (qi > γ)

]
, M̄2 (γ) = E

[
X̃iX̃

′
if

2
i 1 (qi > γ)

]
D (γ) = E

[
X̃iX̃

′
i | qi = γ

]
, D̄ (γ) = E

[
X̃iX̃

′
if

2
i | qi = γ

]
V (γ) = E

[
X̃iX̃

′
ie

2
i | qi = γ

]
, V̄ (γ) = E

[
X̃iX̃

′
ie

2
i f

4
i | qi = γ

]
Ω1 (γ) = E

[
X̃iX̃

′
ie

2
i | qi ≤ γ

]
, Ω̄1 (γ) = E

[
X̃iX̃

′
ie

2
i f

4
i | qi ≤ γ

]
Ω2 (γ) = E

[
X̃iX̃

′
ie

2
i | qi > γ

]
, Ω̄2 (γ) = E

[
X̃iX̃

′
ie

2
i f

4
i | qi > γ

]
and denote M = E

[
X̃iX̃

′
i

]
, M̄ = E

[
X̃iX̃

′
if

2
i

]
, D = D (γ0), V = V (γ0), D̄ = D̄ (γ0),
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V̄ = V̄ (γ0), Ω1 = Ω1 (γ0), Ω2 = Ω2 (γ0), Ω̄1 = Ω̄1 (γ0), Ω̄2 = Ω̄2 (γ0) where γ0 denote

the true value of γ. �

Assumption 1.

1.1 {Xi, Zi, qi, yi, }ni=1 is strictly stationary, ergodic and ρ-mixing, with ρ (τ) =

O
(
τ1+ε

)
for some small ε > 0.

1.2 PDF of Zi, f (·) ∈ G∞v+1, has three-times bounded continuous derivatives,

g (·) ∈ G4
v , and E (X | z) ∈ G4

v for integer v ≥ 2.

1.3 E (ei | Ii−1) = 0, where Ii−1 denotes the information set available up to i.

1.4 E | X̃i |4<∞ and E | X̃iei |4<∞.

1.5 For all γ ∈ Γ, E
[
| X̃i |4 e4

i | qi = γ
]
≤ C, and E

[
| X̃i |4| qi = γ

]
≤ C for

some C <∞, and ϕ (γ) ≤ ϕ̄ <∞.

1.6 ϕ (·), D (·), and V (·) are continuous at γ0.

1.7 δn = cn−λ, with c 6= 0 and 0 < λ < 1
2 .

1.8 c′Dc > 0, c′V c > 0, and ϕ > 0.

1.9 M > M (γ) > 0 for all γ ∈ Γ.

Remark 4. The above assumptions are quite similar to those in Hansen (2000, 2004),

which are needed to prove the asymptotic properties of the (infeasible) estimators of β

and γ.

Assumption 1.1 is trivially satisfied for i.i.d. observations and accommodates

weakly dependent time series process. Stationarity excludes trends and unit root process.

Assumption 1.2 places restrictions on smoothness and moment of, the density of Zi,

the unknown nonparametric component g (·), and the conditional expectation of X

given Z = z. Assumption 1.3 states that ei is a martigale difference sequence with

respect to available information set. Assumption 1.4 and 1.5 impose the boundedness

of moments. Assumption 1.6 requires the continuity of the density function of the
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threshold variable at γ0. Assumption 1.7 dictates that the difference between regression

slopes is getting smaller as sample size gets larger, which indicates that the asymptotic

approximation holds when δn is small. The magnitude of δn is modeled through the

pre-specified parameter λ, the smaller a value of which makes the model less restrictive.

The introduction of δn is for the purpose of achieving an asymptotic distribution free

of nuisance parameters, as did in Hansen (1996, 2000), and Chan (1993) in the change

point theory. Assumption 1.8 and 1.9 are full rank conditions for the defined moments,

to exclude degenerate asymptotic distributions and multicollinearity. �

Assumption 2.

2.1 K (·) is a product kernel, the univariate kernel k (·) is a bounded vth order

kernel, and k (s) = O
(

1/ [1+ | s |]v+1
)

.

2.2 E(e2
i |z) = σ2 (z) belongs to G2

1 .

2.3 As n→∞, n (h1...hp)
2 →∞, and n

∑p
s=1 h

4v
s → 0.

Remark 5: This set of assumptions, together with Assumption 1, are for the purpose

of deriving the asymptotic property of the feasible estimators and the nonparametric

component. Assumption 2.1 states that the multivariate kernel function is the product

of univariate kernels that satisfying certain regularity conditions. It controls the order

of the bias term in the density estimation. Assumption 2.2 and 2.3 play similar roles as

those in Fan and Li (1999) to prove the
√
n-consistency of the slope estimator of partial

linear models. �

8.4.2 Asymptotic distribution theory

This subsection states the asymptotic properties of the estimators described in

the previous section.
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8.4.2.1 Threshold estimate

We need the following definition to present our asymptotic distribution.

Definition 3: A two-sided Brownian motion B (r) : R→ [0,∞) is defined as

B (r) =



B1 (−r) , if r < 0,

0, if r = 0,

B2 (r) , if r < 0,

with B1 (r) and B2 (r) being independent standard Brownian motions on [0,∞). �

Proposition 1: Suppose that Assumption 1 holds, we have

n1−2λ (γ̃ − γ0)→d ηξ,

where

η =
c′V c

(c′Dc)2 ϕ

and

ξ = arg max
r∈R

[
−1

2
| r | +B (r)

]
.

�

The likelihood ratio statistic defined as

LR1 (γ) = n
S̃n (γ)− S̃n (γ̃)

S̃n (γ̃)
,

can be used to test the null hypothesis H0 : γ = γ0. We have the following theorem that

establishes the asymptotic distribution of the statistic.

Proposition 2: Suppose that Assumption 1 holds and that ei is i.i.d. N
(
0, σ2

)
, we

have

LR1 (γ0)→d τς,

where

τ =
c′V c

σ2 (c′Dc)
,
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and

ς = max
r∈R

[− | r | +2B (r)] ,

with distribution function P (ς ≤ x) =
(
1− e−x/2

)2
. �

Remark 6: The above propositions establish the asymptotic distribution of the thresh-

old estimator and that of the likelihood ratio test for hypothesis on γ, which is nonstan-

dard yet free of nuisance parameter under conditional homoskedasticity E (ei | qi) = σ2,

in the same line as Hansen (2000). The closed form distribution function P (·) can easily

generate the p-values for observed test statistics. See TABLE I of Hansen (2000) for

critical values of the statistic. �

The proof of Proposition 1 and Proposition 2 goes through by verifying that

Assumption 1 in Hansen (2000) holds. Therefore, the two propositions follow and they

will be used to show the properties for our feasible estimators in the following theorems.

Theorem 1: Suppose that Assumption 1 and 2 hold, we have

n1−2λ (γ̂ − γ0)→d η̄ξ,

with

η̄ =
c′V̄ c(

c′D̄c
)2
ϕ

and ξ being defined as in Proposition 1. �

Theorem 2: Suppose that Assumption 1 and 2 hold, and that ei is i.i.d. N
(
0, σ2

)
, we

have

LR2 (γ0)→d τς,

with

τ̄ =
c′V̄ c

σ2
(
c′D̄c

) ,
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, ς being defined in Proposition 2 and

LR2 (γ) = n
S̄n (γ)− S̄n (γ̂)

S̄n (γ̂)
.

�

Remark 7: The above two theorems establish the asymptotic distributions of the fea-

sible threshold estimator and the likelihood ratio statistic. The asymptotic distributions

are similar to those of Theorem 1 and 2, respectively. Thus, our feasible estimator γ̂,

of γ0, achieves the oracle efficiency that can only be achieved with known conditional

expectations E (Xi | Zi) and E (yi | Zi). So does the likelihood ratio test statistic. �

Remark 8: The nuisance parameter τ̄ in the asymptotic distribution in Theorem 2 can

be consistently estimated through either a polynomial regression or a kernel regression.

Denote l1i = (δ′nxi)
2 (e2

i f
2
i /σ (x, z)

)
and l2i = (δ′nxi)

2 f2
i . We have

τ̄ =
E (l1i|qi = γ0)

E (l2i|qi = γ0)
. (8.15)

Replace with the unobserved variables by their sample counterparts, we have l̂1i =(
δ̂′nxi

)2 (
ê2
i f̂

2
i /σ̂ (x, z)

)
and l2i =

(
δ̂′nxi

)2
f̂2
i . Therefore, (8.15) can be estimated by a

quadratic regression as

τ̄ =
κ̂10 + κ̂11γ̂ + κ̂12γ̂

2

κ̂20 + κ̂21γ̂ + κ̂22γ̂2

where l̂ji = κ̂10 + κ̂11qi + κ̂12q
2
i + ε̂ji is the OLS fit, for j = 1 and 2, or by Nadaraya-

Watson kernel estimator as

τ̄ =

∑n
i=1Kh (γ̂ − qi) l̂1i∑n
i=1Kh (γ̂ − qi) l̂2i

,

where Kh (s) = 1
hK

(
u
h

)
with h being the bandwidth and K (s) being kernel function

such as normal kernel or Epanechnikov. For details about kernel estimation, see Pagan

and Ullah (1999) or Li and Racine (2007), for example.
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8.4.2.2 Slope parameters

This subsection presents the asymptotic distribution of the estimators of the

slope parameters.

Proposition 3: Suppose that Assumption 1 and 2 hold,

n1/2
(
β̃ − β

)
→d W̃ ∼ N (0, V1)

with V1 being the standard asymptotic covariance matrix if γ = γ0 were fixed.

Or

n1/2
(
θ̃1 − θ1

)
→ dN

(
0, Ṽ1

)
n1/2

(
θ̃2 − θ2

)
→ dN

(
0, Ṽ2

)
where

Ṽ1 =
(
M ′1Ω1M1

)−1
,

Ṽ2 =
(
M ′2Ω2M2

)−1
.

�

Proposition 3 follows from Lemma A.12 of Hansen (2000), the proof of which

is therefore omitted. With this result, we are ready to establish the following theorem:

Theorem 3: Suppose that Assumption 1 and 2 hold,

n1/2
(
β̂ − β

)
→d W ∼ N (0, V2)

with V2 being the standard asymptotic covariance matrix if γ = γ0 were fixed.

Or

n1/2
(
θ̂1 − θ1

)
→ dN

(
0, V̄1

)
n1/2

(
θ̂2 − θ2

)
→ dN

(
0, V̄2

)
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where

V̄1 =
(
M̄ ′1Ω̄1M̄1

)−1
,

V̄2 =
(
M̄ ′2Ω̄2M̄2

)−1
.

�

Remark 9: The above theorem establishes the asymptotic distributions of the feasible

slope estimator. The asymptotic normality and the covariance matrix indicate that

we can approximate the distribution of θ1 and θ2 by traditional normal distribution,

treating γ as known. Therefore, the first stage estimation of γ does not contribute to

the loss of efficiency of the slope estimator. With the asymptotic distribution, we are

ready to construct confidence intervals for both slope parameters, which is omitted here.

�

8.4.2.3 Nonparametric component

This subsection presents the asymptotic distribution of the estimator of the

nonparametric component. First, we state the result for the infeasible estimator given

in (8.14) as in the following proposition.

Proposition 4: Under Assumption 1 and 2,

(nh1...hp)
1/2

(
g̃ (z)− g (z)−

p∑
s=1

h2
sBs (z)

)
→d N (0, V (z))

with

Bs (z) =
1

2
k2 [f (z) gss (z) + 2fs (z) gs (z)] ,

V (z) = kpσ2 (z) /f (z) .

�
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Proof of proposition 4 follows from Theorem 18.4 of Li and Racine (2007).

With Proposition 4, we can derive the following theorem for the feasible nonparametric

component estimator.

Theorem 4: Under Assumption 1, 2 and the conditions, β̂ − β = O
(
n−1/2

)
and

γ̂ − γ0 = O
(
n2λ−1

)
= o (1),

(nh1...hp)
1/2

(
ĝ (z)− g (z)−

p∑
s=1

h2
sBs (z)

)
→d N (0, V (z))

with

Bs (z) =
1

2
k2 [f (z) gss (z) + 2fs (z) gs (z)] ,

V (z) = kpσ2 (z) /f (z) .

�

Remark 10: The asymptotic property of the nonparametric component estimator coin-

cides that of partial linear model considered in Fan and Li (1996). The bias and variance

term keep the same order therefore the introduction of the threshold parameter and its

estimation do not lead any loss of efficiency for the estimation of the nonparametric

component.

8.5 Testing for a threshold

It is very important to test whether the threshold effect conjectured is statis-

tically significant or not. We consider the test for hypothesis of no threshold,

H0 : θ1 = θ2.

The null is equivalent to H ′0 : δn = 0. Under the null, the threshold γ is not identified,

which leads to the collapse of the standard distribution of classical test statistics. We

consider the likelihood ratio statistic for such a test. This typically called ‘Davies’

277



problem (Davies, 1977, 1987) has been investigated by Andrew and Ploberger (1994)

and Hansen (1996). We follow the suggestion of Hansen (1996) to adopt a bootstrap

procedure to simulate the asymptotic distribution of the likelihood ratio test. See Hansen

(1996, 1999) for more details.

8.6 Monte Carlo

In this section, we conduct Monte Carlo simulations to examine the finite

sample performance of our proposed model, with comparison to nonparametric models

and semiparametric partial linear models of Robinson (1988). We compute the coverage

probability for nominal 90% confidence intervals of the threshold estimator. We compute

the out-of-sample Mean Squared Errors of these models to examine their predictability.

8.6.1 DGP

We consider the following Data Generating Process (DGP), for i = 1, ..., n,

yi = θxi + δnxi1{qi≤γ} + exp {−zi}+ εi

xi ∼ N (2, 1) ,

zi ∼ U [0, 1] , εi ∼ N (0, 1) .

with θ = 1, γ = 2, δn = {0.25, 0.50, 1.00, 2.00} and n = {50, 100, 200, 400}. qi is assumed

to be N (2, 1), independent of xi. For nonparametric model, it is estimated via local

constant kernel estimator,

m̂ (x, z) =

∑n
i=1 kh (xi, zi;x, z) yi∑n
i=1 kh (xi, zi;x, z)

,

where kh (xi, zi;x, z) = k
(
xi−x
hx

)
×k
(
zi−z
hz

)
, and k (·) is chosen as second order Epanech-

nikov kernel, hx and hz are chosen to minimize the integrated mean squared error

through cross-validation. For partial linear model, we first estimate β as proposed in
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Robinson (1988) and then estimate the nonparametric function using local constant

kernel estimator.

8.6.2 Monte Carlo results

We report results of two kinds. First, we compute the coverage probability for

the threshold confidence interval, i.e., the fraction of simulations in which the estimated

confidence intervals covers the true value of the threshold. The coverage probability at

90% nominal level is reported in TABLE 1.

Second, we compare the out-of-sample performance of the proposed model with

nonparametric model and partial linear model. We evaluate the estimated model at 400

grid data points formed by x and z, in which x takes values from 1 to 3 with equal

increments, and z takes values from 0.2 to 0.8 with equal increments. We compute the

relative Mean Squared Errors using following formula,

RMSEbase =

(
MSEpt
MSEbase

− 1

)
× 100,

where “pt” refers to partial threshold model, and “base” refers to either nonparametric

model or partially linear model. The computed RMSE is the percentage improvement

achieved by partial threshold model in terms of Mean Squared Error. Negative val-

ues of RMSE indicates that partial threshold model outperforms the base model with

the absolute value measuring the percentage improvement. Relative MSE for our pro-

posed model based on partially linear model is shown in TABLE 2 and that based on

nonparametric model is shown in TABLE 3.

Several findings are in sequence. It is conclusive from TABLE 2 and TABLE 3

that the semiparametric partial threshold model with the proposed estimation approach

beats both nonparametric model and partially linear model, when δn is large and/or

when n is large. This confirms assumption 1.7 that the difference in the slope param-
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eter should shrink as sample size diverges. First, for small δn and small n, partially

linear model outperforms the proposed model. This reveals that uncertainty induced

by the first stage estimation of the threshold parameter deteriorates the model when

the threshold effect is very small. As the accuracy of the estimate of the threshold

value critically depends on the sample (size), it is no wonder that ignoring the thresh-

old effect in small sample improves over the partial threshold model, in out-of-sample

performance. Second, for small n and moderate values of δn, nonparametric exhibits

better out-of-sample predictive power. This again shows the big effect of first stage

estimation of threshold parameter on the subsequent nonparametric estimation. When

sample size gets larger or the threshold effect gets larger, specification of the correct

model by bringing in threshold effect and additive structure becomes valuable.

TABLE 1 shows that the coverage probabilities are generally above but close to

the nominal 90% level. This implies that the confidence intervals are generally conser-

vative. The proposed estimation procedure is able to estimate the threshold parameter

value but the accuracy is subject to large uncertainty. This, together with the above

finding, shows that the imperfect performance of the proposed model is largely due to

the first stage estimation of the threshold parameter, which is very sensitive to sample

size.

[Insert TABLE 1, 2, 3 here]

8.7 Application

In this section, we apply our model to study consumer demand where semi-

parametric methods find a lot of applications. We extend the partially linear model of

Blundell et al (1998) by considering the threshold effects in the linear component. As
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argued in Blundell et al (1998), it is important to recover an accurate specification of

Engel curve relationship and they have shown the importance of the restriction placed

on the shape of Engel curve. Nevertheless, we conjecture that there might be threshold

effect in the linear component of the model which might jeopardize the shape of the

estimated Engel curve.

We consider the following specification,

wij = θ′1Xi + g (Zi) + eij , (8.16)

where wij is the budget share of the jth good for individual i, Xi is the log of total

expenditure for individual i. We adopt the data set investigated in Blundell et al (1998),

drawn from 1980-1982 British Family Expenditure Surveys1. We consider Engel curve

relationship for six broad categories: Food, Fuel, Clothing, Alcohol, Transport and Other

good. From the available data, we take Age as the variable Zi that enters the Engel

curve nonparametrically. We conjecture that the total income would have an influence

on the Engel coefficient, therefore it is taken as threshold variable in our model. See

Table I of Blundell et al (1998) for data description statistics of the 1519 observations.

We modify the Lagrangian Multiplier (LM) test developed in Hansen (1996),

to test the existence of threshold effect. Since γ is not identified under the null hypoth-

esis of no threshold effect, we perform the bootstrap analog to compute the p-values,

with estimated residual êij . We generating the bootstrap dependent variable from the

distribution N
(

0, ê2
ij

)
and keeping the regressors on the right-hand side of (8.16) fixed.

Figure 1 depicts, for Food Engel curve, the normalized likelihood ratio statistic

sequence LR∗n (γ) as a function of the threshold, which shows that there is no evidence

for the existence of threshold. The generated p-value is 0.537, which favors the null

1The data set is available at http://qed.econ.queensu.ca/jae/1998-v13.5/blundell-duncan-pendakur/
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of no threshold. Figure 2 presents the case for Fuel Engel curve where a threshold

exist. The bootstrapped p-value is 0 and the estimated threshold value is γ̂ = 350.0

as shown in Figure 3. However the estimated confidence interval for the estimate is

[20.0, 1110.0], which is rather broad, suggesting considerable uncertainty about the value

of the threshold. The estimation result is presented in TABLE 4. Figures 4-7 display

the normalized likelihood ratio statistic sequence against the threshold for Engel curve

in other good classes, where there is no threshold. To save space, we do not report

estimation results for these cases.

[Insert TABLE 4 here]

We conclude that there is a threshold in Engel curve for domestic fuel con-

sumption and there is significant uncertainty regarding its value. Although the Engel

coefficients are not significantly different from each other, this difference might lead to

wrong policy recommendation. Therefore, it is necessary for us to build up a general

model as in (8.16), although we did not find any threshold effect in Engel curves in other

classes of consumption, which favors the popular semiparametric partial linear model.

[Insert Figure 1-7 here]

8.8 Concluding remarks

This chapter considers the estimation of semiparametric partial threshold model

which is a combination of the popular model considered in Robinson (1988) and that in

Hansen (2000). We develop a two-step approach to estimate the threshold parameter

and the slope parameter, as well as the nonparametric component. We prove the con-

sistency of these estimators and derive their asymptotic distributions. The estimators

preserve the same asymptotic distributions as their counterparts in Robinson (1988)
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and Hansen (2000). We examine finite sample properties of our distribution theory with

Monte Carlo simulations, followed by an application of the proposed model to study

consumer demand. Our results show the necessity of taking into account of both the

threshold effect and nonlinear relationship signaling through the nonparametric compo-

nent.

There are several directions towards future research regarding the proposed

semiparametric partial threshold models. First, the explanatory variables considered

in this chapter are assumed to be exogenous, while this is rarely the case in practice.

Therefore, instrumental variable approach to the proposed model calls for attention and

it is under investigation by the author. Second, extension to panel data setting is also

of great interest, see Hansen (1999) and Fan and Stengos (1996) for valuable reference.

Third, the model can be modified by applying a smooth weighting function instead of

an indicator function as having been done in Seo and Linton (2007). Effort towards this

direction has been made in the estimation of the threshold model, while it is interesting

to see similar methodology progress in our proposed models.

Semiparametric partial threshold models do not receive much attention yet,

partly due to its complex model structure. However, when we realized the instability

of the estimate of the slope parameter of the partial linear model, the literature will be

directed towards research on this edge. Hopefully, this work will attract more research

into this area.
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Appendix A: Proof of Theorem

In Appendix A, we first prove some lemmas that will be used in the proof of

the theorems, in which we will apply some useful lemmas presented in Appendix B.

Lemma A.1: γ̂ →p γ0.

Proof: Parallel to the proof of lemma 5 of Hansen (2000), we can apply Lemma B.1,

Lemma B.12, Assumption 1.7 to show that γ̂ minimizes S̄n (γ), which is uniquely mini-

mized at γ0. Therefore, applying Theorem 2.1 of Newey and Mcfadden (1994), we have

γ̂ →p γ0.�

Lemma A.2: nλ
(
θ̂ − θ

)
= op (1) and nλ

(
δ̂ − δn

)
= op (1) .

Proof: Parallel to the proof of lemma 6 of Hansen (2000), we can apply Lemma A.1,

Lemma B.1, Lemma B.12, Assumption 1.9 to prove the results.�

Lemma A.3: n1−2λ (γ̂ − γ0) = Op (1) .

Proof: Parallel to the proof of lemma 9 of Hansen (2000), applying Lemma A.1, Lemma

B.1, Lemma B.12, Assumption 1.9, we can prove the results.�

Lemma A.4:
√
n
(
θ̂ − θ̂ (γ0)

)
→p 0, and

√
n
(
θ̂ (γ0)− θ̂

)
→d W ∼ N (0, Vθ), with

W =

 M̄ M̄ (γ0)

M̄ (γ0) M̄ (γ0)


−1 J

J (γ0)


Proof: The proof follows through the steps in proving lemma A.12 of Hansen (2000),

with the adaption in the definition of Jn = n−1/2X̄ ′ē and Jn (γ), applying Lemma B.5

and Lemma B.8, Lemma B.9 and Lemma B.12.�

Define Qn (v) = Sn

(
θ̂, δ̂, γ0

)
− Sn

(
θ̂, δ̂, γ0 + v/an

)

http://www.ssc.wisc.edu/˜bhansen/progs/ecnmt 00.html
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Lemma A.5: On any compact set Ψ, Qn (v)⇒ Q (v) = −c′D̄cϕ | v | +2
√
c′V̄ cϕB (v)

Proof: Similar to the proof of Lemma A.13, we can show that

Qn (v) = −G∗n (v) + 2c′Rn (v) + Ln (v) ,

where G∗n (·) and Rn (·) are defined as in Lemma B.9 and Lemma B.10, and Ln (v)⇒ 0

by Lemma B.9, Lemma B.10, Lemma B.12 and Lemma A.4. Applying Lemma B.9

and Lemma B.10 again gives that Qn (v) ⇒ −c′D̄cϕ | v | +2c′B̄ (v) = −c′D̄cϕ | v |

+2
√
c′V̄ cϕB (v). �

Proof of Theorem 1: Note that the proof of Lemma A.3 implies that n1−2λ (γ̂ − γ0) =

arg maxv Qn (v) = Op (1). Since Q (v) is continuous, has a unique maximum, and

lim|v|→∞Q (v) = −∞ almost surely. Theorem 2.7 of Kim and Pollard (1990) and Lemma

A.5 imply that

n1−2λ (γ̂ − γ0) → d arg max
v
Q (v)

= arg max
v

[
−c′D̄cϕ | v | +2

√
c′V̄ cϕB (v)

]
=

c′V̄ c(
c′D̄c

)2
ϕ

arg max
r

[
− c
′V̄ cϕ

c′D̄cϕ
| r | +2

√
c′V̄ cϕB

(
c′V̄ cϕ(
c′D̄c

)2
ϕ
r

)]

=
c′V̄ c(

c′D̄c
)2
ϕ

arg max
r

[
− c
′V̄ cϕ

c′D̄cϕ
| r | +2

c′V̄ cϕ

c′D̄cϕ
B (r)

]
=

c′V̄ c(
c′D̄c

)2
ϕ

arg max
r

[
−1

2
| r | +B (r)

]
= η̄ξ,

where in line 3, we have made change-of-variable v =

(
c′V̄ cϕ

(c′D̄c)
2
ϕ
r

)
. �
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Proof of Theorem 2: Note that

σ̂2 (x, z)LR2 (γ0)−Qn (v̂) =
[
S̄n

(
θ̂ (γ0) , γ0

)
− S̄n

(
θ̂, γ̂
)]
−
[
Sn

(
θ̂, γ0

)
− S̄n

(
θ̂, γ̂
)]

= S̄n

(
θ̂ (γ0) , γ0

)
− Sn

(
θ̂, γ0

)
=

(
θ̂ (γ0)− θ̂

)′
X̄∗′γ X̄

∗
γ

(
θ̂ (γ0)− θ̂

)
→ 0

by Assumption 1.9, Lemma B.1 and Lemma A.4.

Therefore, Lemma A.5 and continuous mapping imply that

LR2 (γ0) =
Qn (v̂)

σ̂2 (x, z)
+ op (1)

→ d
supQ (v)

σ2 (x, z)

=
1

σ2 (x, z)
sup
r∈R

[
−c′D̄cϕ | v | +2

√
c′V̄ cϕB (v)

]
=

c′V̄ c

σ2
(
c′D̄c

) sup
r∈R

[
− c
′V̄ cϕ

c′D̄cϕ
| r | +2

√
c′V̄ cϕB

(
c′V̄ cϕ(
c′D̄c

)2
ϕ
r

)]

=
c′V̄ c

σ2
(
c′D̄c

) sup
r∈R

[− | r | +2B (r)]

= τ̄ ς.

The distribution function P (ς ≤ x) =
(
1− e−x/2

)2
follows from Proposition 2. �

Proof of Theorem 3: The proof follows from Lemma A.4. �

Proof of Theorem 4: With Proposition 4, we only need show that

ĝ (z)− g̃ (z) = Op

(
n−1/2

)
= op

(
(nh1...hp)

−1/2 +

p∑
s=1

h2
s

)
.
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Note that from (8.13) and (8.14), we have

ĝ (z)− g̃ (z) =

∑n
j=1

(
yj − θ̂′Xj − δ̂′nXj (γ̂)

)
Kh (z, Zj)∑n

j=1Kh (z, Zj)

−
∑n

j=1 (yj − θ′Xj − δ′nXj (γ))Kh (z, Zj)∑n
j=1Kh (z, Zj)

=

∑n
j=1

[(
θ − θ̂

)′
Xj +

(
δ′nXj (γ)− δ̂′nXj (γ̂)

)]
Kh (z, Zj)∑n

j=1Kh (z, Zj)

=

∑n
j=1

(
θ − θ̂

)′
XjKh (z, Zj)∑n

j=1Kh (z, Zj)
+

∑n
j=1

(
δ′nXj (γ)− δ̂′nXj (γ̂)

)
Kh (z, Zj)∑n

j=1Kh (z, Zj)

≡ m̂1 (z) + m̂2 (z) ,

which indicates that m̂1 (z) and m̂2 (z) are the local constant kernel estimators of m1 (z)

and m2 (z), where (
θ − θ̂

)′
Xj = m1 (zj) + uj

and

δ′nXj (γ)− δ̂′nXj (γ̂) = m2 (zj) + vj .

Therefore, we have, from Li and Racine (2007),

m̂1 (z) = m1 (z) +Op

(
(nh1...hp)

−1/2 +

p∑
s=1

h2
s

)

= E

[(
θ − θ̂

)′
Xj |z

]
+Op

(
(nh1...hp)

−1/2 +

p∑
s=1

h2
s

)

= O
(
n−1/2

)
+Op

(
(nh1...hp)

−1/2 +

p∑
s=1

h2
s

)
= Op

(
n−1/2

)
and

m̂2 (z) = m2 (z) +Op

(
(nh1...hp)

−1/2 +

p∑
s=1

h2
s

)

= E
[
δ′nXj (γ)− δ̂′nXj (γ̂) |z

]
+Op

(
(nh1...hp)

−1/2 +

p∑
s=1

h2
s

)

= O
(
n−min{λ,1−2λ}

)
+Op

(
(nh1...hp)

−1/2 +

p∑
s=1

h2
s

)
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where we have used the result of the following,

δ′nXj (γ)− δ̂′nXj (γ̂) = δ′nXj (γ)− δ′nXj (γ̂) + δ′nXj (γ̂)− δ̂′nXj (γ̂)

= δ′n (Xj (γ)−Xj (γ̂)) +
(
δ′n − δ̂′n

)
Xj (γ̂)

= O
(
n−λ

)
+Op

(
n2λ−1

)
= Op

(
n−min{λ,1−2λ}

)
Thus we have proved

ĝ (z)− g̃ (z) = m̂1 (z) + m̂2 (z)

= Op

(
n−1/2

)
+O

(
n−min{λ,1−2λ}

)
+Op

(
(nh1...hp)

−1/2 +

p∑
s=1

h2
s

)
= Op

(
n−1/2

)
,

which completes the proof. �

Appendix B: Some Useful Lemma

Lemma B.1: If {wi} is strictly stationary and ergodic, E | φ (wi) |<∞, and wi has a

continuous distribution, then

sup | 1

n

n∑
i=1

φ (wi) 1 (wi ≤ γ)− E [φ (wi) 1 (wi ≤ γ)] |→a.s. 0

Proof: This is lemma 1 in Hansen (1996).�

Define hi (γ1, γ2) =| xieif2
i || 1 (qi ≤ γ1)− 1 (qi ≤ γ2) | and ki (γ1, γ2) =| xifi ||

1 (qi ≤ γ1)− 1 (qi ≤ γ2) | .

Lemma B.2: There is a C1 <∞ such that for γ ≤ γ1 ≤ γ2 ≤ γ̄, and r ≤ 4,

Ehri (γ1, γ2) ≤ C1 | γ2 − γ1 |,

Ekri (γ1, γ2) ≤ C1 | γ2 − γ1 | .

Proof: The proof follows through the steps in proving lemma A.1 of Hansen (2000), by

applying the assumption that fi is bounded.�
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Lemma B.3: There is a C2 <∞ such that for γ ≤ γ1 ≤ γ2 ≤ γ̄,

E | 1√
n

n∑
i=1

[
h2
i (γ1, γ2)− Eh2

i (γ1, γ2)
]
|2≤ C2 | γ2 − γ1 |,

E | 1√
n

n∑
i=1

[
k2
i (γ1, γ2)− Eh2

i (γ1, γ2)
]
|2≤ C2 | γ2 − γ1 | .

Proof: The proof follows through the steps in proving lemma A.2 of Hansen (2000), by

applying the assumption that fi is bounded.�

Define

Jn (γ) =
1√
n

n∑
i=1

xieif
2
i 1 (qi ≤ γ) .

Lemma B.4: There are K1, K2 < ∞ such that for all γ1, ε > 0, ϑ > 0, and % ≥ 1
n , if

√
n ≥ K2/ϑ, then

P

(
sup

γ1≤γ≤γ1+%
| Jn (γ)− Jn (γ1) |> ϑ

)
≤ K1

ϑ4
.

Proof: The proof follows through the steps in proving lemma A.3 of Hansen (2000), by

applying the assumption that fi is bounded.�

Lemma B.5: Jn (γ)⇒ J (γ), a mean-zero Gaussian process with almost surely contin-

uous sample paths, where “⇒” denotes weak convergence with respect to the uniform

metric.

Proof: This is lemma A.4 of Hansen (2000), with the adaption in the definition of

Jn (γ).�

Lemma B.6: Let g ∈ Gvα and f ∈ Gvα, where v ≥ 2 is an integer. Suppose that k is the

v-th order kernel, then

(i) | EK

(
Z − z
h

)
− hpf (z) |≤ hp+vGf (z) , uniformly in z;

(ii) | E [g (Z)− g (z)]K

(
Z − z
h

)
|≤ hp+vGg (z) , uniformly in z,

where Gf (·) and Gg (·) have α-th finite moments.
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Proof: This is lemma B.4 of Fan and Li (1999).�

Define Gn (γ) = 1
n

∑n
i=1

(
c′xif

2
i

)2 | 1 (qi ≤ γ) − 1 (qi ≤ γ0) | and Kn (γ) =

1
n

∑n
i=1 ki (γ0, γ). Let an = n1−2λ.

Lemma B.7: There exists constants B > 0, 0 < d <∞, and 0 < k <∞, such that for

all ϑ > 0, and ε > 0, there exists a v̄ <∞ satisfying, for all n,

P

(
inf

v̄
an
≤|γ−γ0|≤B

Gn (γ)

| γ − γ0 |
< (1− ϑ) d

)
≤ ε

and

P

 sup
v̄
an
≤|γ−γ0|≤B

Kn (γ)

| γ − γ0 |
< (1 + ϑ) d

 ≤ ε.
Proof: The proof follows through the steps in proving lemma A.7 of Hansen (2000),

with the adaption in the definition of Gn (γ) and Kn (γ).�

Lemma B.8: For ϑ > 0 and ε > 0, there exists some v̄ <∞ such that for any constants

B <∞,

P

 sup
v̄
an
≤|γ−γ0|≤B

| Jn (γ)− Jn (γ0) |
| γ − γ0 |

> ϑ

 ≤ ε.
Proof: The proof follows through the steps in proving lemma A.8 of Hansen (2000),

with the adaption in the definition of Jn (γ).�

Define G∗n (v) = anGn (γ0 + v/an) and K∗n (v) = anKn (γ0 + v/an)

Lemma B.9: Uniformly on compact sets Ψ,

G∗n (v)→p c
′D̄cϕ

and

K∗n (v)→p| D̄ϕv |

Proof: The proof follows through the steps in proving lemma A.10 of Hansen (2000),

with the adaption in the definition of G∗n (v) and K∗n (v), applying Lemma B.3 and (the

proof of) Lemma B.7.�
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Define Rn (v) =
√
an (Jn (γ0 + v/an)− Jn (γ0))

Lemma B.10: On any compact sets Ψ,

Rn (v)⇒ B̄ (v)

where B̄ (v) is a vector Brownian motion with covariance matrix E
(
B̄ (1) B̄ (1)′

)
= V̄ ϕ

Proof: The proof follows through the steps in proving lemma A.11 of Hansen (2000),

with the adaption in the definition of Rn (v), applying Lemma B.4, Lemma B.5, Theorem

24.3 of Davidson (CLT for Martingale Difference Sequence), Markov’s inequality and

Theorem 16.1 of Billingsley (1968).�

Lemma B.11: Assuming that {Zi} satisfies Assumption 1.1, the density function f (·)

satisfies Assumption 1.2, the univariate kernel function, k (·) satisfies Assumption 2.1

and bandwidth hs satisfies Assumption 2.2, we have

E

{[
f̂ (z)− f (z)

]2
}

= O

( p∑
s=1

h2
s

)2

+ (nh1...hp)
−1


Proof: This is Theorem 18.1 of Li and Racine (2007).�

Lemma B.12: f̂ (z)− f (z) = op (1)

Proof: The proof follows directly from applying Theorem A.7 of Li and Racine (2007)

and Lemma B.11.�
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Table 8.1: Coverage Probability for nominal 90% confidence interval for threshold pa-
rameter

δn n=50 n=100 n=200 n=400

0.25 0.93 0.96 0.92 0.94

0.50 0.93 0.97 0.92 0.96

1.00 0.90 0.92 0.96 0.95

2.00 0.93 0.94 0.96 0.98

Table 8.2: RMSE: Partial Linear Model

δn n=50 n=100 n=200 n=400

0.25 176.4 91.7 31.5 -18.7

0.50 63.7 -5.9 -43.5 -69.2

1.00 -19.2 -48.9 -77.8 -89.3

2.00 -44.7 -67.1 -85.0 -95.0

Table 8.3: RMSE: Nonparametric Model

δn n=50 n=100 n=200 n=400

0.25 76.1 11.9 2.5 -16.7

0.50 68.5 23.1 -13.9 -46.9

1.00 24.3 -23.4 -67.2 -83.7

2.00 -17.7 -52.7 -79.6 -93.3
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Table 8.4: Threshold Estimation: Fuel Engel Curve

Regime 1: Tot Inc≤350.0 Regime 2: Tot Inc>350.0

Obs 1508 11

DoF 1507 10

SSE 0.005239 0.000072

Res Var 0.000003 0.000007

R-squared 0.148232 0.023394

Table 8.5: Slope Parameter Estimates for Regime 1

Variable Estimate St Error

Log Totexp -0.050514 0.003983

Table 8.6: Slope Parameter Estimates for Regime 2

Variable Estimate St Error

Log Totexp -0.005386 0.027016

Figure 8.1: F test for threshold: Food Engel Curve
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Figure 8.2: F test for threshold: Fuel Engel Curve
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Figure 8.3: Threshold estimate: Fuel Engel Curve
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Figure 8.4: F test for threshold: Clothing Engel Curve
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Figure 8.5: F test for threshold: Alcohol Engel Curve
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Figure 8.6: F test for threshold: Transport Engel Curve
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Figure 8.7: F test for threshold: Other Good Engel Curve
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Chapter 9

Conclusions and Future Work

In this thesis, we investigated how information should be analyzed in economic

studies. In particular, we studied how to incorporate economic constraints (monotonic-

ity, positivity) into structure estimation and forecasting. And we studied the properties

of supervised factor models that help to separate noises from useful information content

contained in large dimensional data. We proposed estimators that efficiently use the

additive structure in the simultaneous equation models and tests for the validity of such

kind additive separable error structure. We extended the semiparametric partial linear

model into semiparametric partial threshold model.

In addition, we made use of the entropy literature and extended the related

concepts to account for model uncertainty. We proposed the entropy-based model aver-

aging estimators to evaluate the partial effect parameters that is of economic importance,

in large dimensional data set.

There are various directions that the above work could be extended and further

developed.

First, nonparametric estimation under restrictions with the use of bagging can

be extended for other type of constraints, including concavity/convexity, homogeneity,

unimodality, symmetry, etc.
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Second, bagging as a way to smooth indicator functions can be applied to other

shrinkage type of estimators, including Stein-rule estimator, LASSO type estimator,

ridge estimator, etc. The theoretical properties are more challenging to investigate.

The extension of bagging in time series and panel data framework is also of theoretical

and practical importance.

Third, entropy as a measure of information content can be more widely used in

economics research. The proposed entropy-based model averaging can be extended to

nonparametric models and semiparametric models. Also, it can used for shrinkage-type

estimation for partial effects of interest.

Fourth, entropy-based variable selection and estimation is not developed and

deserves our attention. A unified framework that can simultaneously perform variable

selection and parameter estimation is attractive to investigate.
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