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Abstract Alzheimer's disease (AD) involves a complex
pathological cascade thought to be initially triggered by the
accumulation of β-amyloid (Aβ) peptide aggregates or
aberrant amyloid precursor protein (APP) processing. Much
is known of the factors initiating the disease process
decades prior to the onset of cognitive deficits, but an
unclear understanding of events immediately preceding and
precipitating cognitive decline is a major factor limiting the
rapid development of adequate prevention and treatment
strategies. Multiple pathways are known to contribute to
cognitive deficits by disruption of neuronal signal trans-
duction pathways involved in memory. These pathways are
altered by aberrant signaling, inflammation, oxidative
damage, tau pathology, neuron loss, and synapse loss. We
need to develop stage-specific interventions that not only
block causal events in pathogenesis (aberrant tau phosphor-
ylation, Aβ production and accumulation, and oxidative
damage), but also address damage from these pathways that
will not be reversed by targeting prodromal pathways. This
approach would not only focus on blocking early events in
pathogenesis, but also adequately correct for loss of
synapses, substrates for neuroprotective pathways (e.g.,

docosahexaenoic acid), defects in energy metabolism, and
adverse consequences of inappropriate compensatory
responses (aberrant sprouting). Monotherapy targeting early
single steps in this complicated cascade may explain
disappointments in trials with agents inhibiting production,
clearance, or aggregation of the initiating Aβ peptide or its
aggregates. Both plaque and tangle pathogenesis have
already reached AD levels in the more vulnerable brain
regions during the “prodromal” period prior to conversion
to “mild cognitive impairment (MCI).” Furthermore, many
of the pathological events are no longer proceeding in
series, but are going on in parallel. By the MCI stage, we
stand a greater chance of success by considering pleiotropic
drugs or cocktails that can independently limit the parallel
steps of the AD cascade at all stages, but that do not
completely inhibit the constitutive normal functions of
these pathways. Based on this hypothesis, efforts in our
laboratories have focused on the pleiotropic activities of
omega-3 fatty acids and the anti-inflammatory, antioxidant,
and anti-amyloid activity of curcumin in multiple models
that cover many steps of the AD pathogenic cascade (Cole
and Frautschy, Alzheimers Dement 2:284–286, 2006).
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Genetic data from Down's syndrome and early-onset
Alzheimer's disease (AD) families argue that increased
production of a 42-amino-acid β-amyloid peptide (Aβ42)
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from birth is sufficient to cause clinical onset of AD four to
five decades later. Cross-sectional investigations of pathol-
ogy and more recent biomarker and imaging studies show
that AD pathogenesis typically begins with nascent Aβ42
aggregates and deposits and related tau accumulation in
vulnerable brain regions, for example, medial temporal
regions including entorhinal cortex and hippocampus. The
early region-specific accumulation of diffuse Aβ and tau
eventually matures to plaques and tangles. These lead to
inflammatory glial cells that emerge in many vulnerable
brain regions with distinct differences in the activation
pattern for tangles and plaques. Ultimately, after decades of
pathology buildup in a prolonged “prodromal” phase,
synaptic deficits and neuron loss appear to play a major
role in driving cognitive decline. Supporting this, cross-
sectional autopsy reports have identified individuals who
are seemingly cognitively normal but with high levels of
plaques [2] and or tangle pathology, consistent with the
notion that much of the pathology occurs preceding rather
than in parallel with cognitive decline [3, 4]. During the
clinically relevant cognitive decline stages, deficits are
associated with continued spreading of tangles, synaptic
impairments, and neuron loss. One sensitive biomarker,
uses the amyloid binding of radiolabelled Pittsburgh
compound-B (PiB) for positron emission tomography
(PET) neuroimaging has proven to be fairly sensitive to
detect amyloid or its correlates, apparently at pre-mild
cognitive impairment (MCI) stages. Alteration of some
CSF biomarkers is fairly predictive of decline, particularly
an increase in tau to Aβ42 ratios. MRI hippocampal
volumetrics have been effective in tracking regional defects
in neurodegenerative tracts and fluorodeoxyglucose (FDG)
PET in detecting region-dependent hypometabolism in
glucose metabolism. These changes support a model where
amyloid accumulation occurs in the prodromal period
preceding clinical onset, followed by a progression of tau
pathology and neurodegeneration closely related to cogni-
tive decline [5]. This conclusion is supported by earlier
cross-sectional studies showing a close correlation between
cognitive decline and synapse loss but poorer correlations
with tau or Aβ pathology [6].

Need for Refinement of the Alzheimer's Cascade Hypothesis

Amyloid plaques have been hypothesized to play a major
role in pathogenesis since their description by Alois
Alzheimer even before the Aβ peptide was sequenced in
1984 by George Glenner. The amyloid cascade hypothesis
evolved primarily from the genetic data on early-onset AD
mutations that increase Aβ42 production leading to its
aggregation combined with evidence that Aβ42 aggregates
can initiate a cascade of pathology found in AD [7].
Supporting the Aβ42 status as a cause or initiator of AD,

Aβ was shown to accumulate very early in the disease
process and reached AD levels while patients are still
cognitively intact [8]. Because there is compelling evidence
that mutations that cause elevated Aβ42 production and
accumulation are sufficient to cause AD, it was inferred that
effective targeting Aβ42 early enough should prevent the
disease. The amyloid cascade hypothesis, officially defined
by John Hardy in 1992 [9], was challenged by Robert D.
Terry and colleagues Robert Katzman and E. Masliah [6]
who noted that cognitive loss correlated well with synapse
loss, but not so well with tangles and poorly with Aβ
deposited as plaques. They also pointed out many cases of
“high plaque” cognitively normal individuals, arguing that
Aβ42 accumulation was not sufficient to cause AD. Since
some of the initial clinical trials directed at Aβ peptide have
not met expectations for robust treatment effects, the causal
role for Aβ continues to be challenged. Strong opponents
of the hypothesis now include Mark Smith and George
Perry, who have criticized the field as being too “amyloi-
docentric” [10, 11], emphasized oxidative damage and cited
data reporting amyloid precursor protein (APP) [12] or Aβ
enhancing synaptic plasticity [13]. While we and others
agree that the impact of Aβ aggregates on memory in AD
patients is not direct since the prodromal period of Aβ
aggregate accumulation is decades long, we argue that the
evidence that Aβ precipitates the disease process remains
compelling because the implicated pathways in the amyloid
cascade hypothesis, such as oxidative damage, are not
necessarily reversible by late intervention [14]. A recent
review of the hypothesis states that Aβ “causality has been
neither proved nor disproven” [15]. Further refinement of
an Alzheimer's cascade, amyloid or otherwise, may
improve trial outcomes by timing interventions to incorpo-
rate what we know about stages, lagging effects, and the
reversibility of different pathways [5].

For example, we now know from trial data that antagoniz-
ing amyloid or its oligomers well after their accumulation with
vaccine is not very unlikely to reverse the clinical symptoms
of disease. Agents like R-fluribiprofen (Tarenflurbil or
Flurizan, Myriad Pharmaceuticals) that lower Aβ production
[16] have shown promise in phase II [17] trials but very
clearly failed in phase III [18] trials. Several other anti-Aβ
agents have also failed in trials and, while none of these have
proven that they lowered amyloid in vivo, the active vaccine
and passive immunization trials have shown that they do,
using autopsy and PiB, but whatever the clinical benefit
achieved, the patients clearly remained demented. While not
by any means a disproof of the amyloid cascade hypothesis,
these results argue that anti-Aβ therapies are not likely to be
sufficient for the treatment of established AD after Aβ
aggregates have initiated the cascade. There are many
analogous situations. For example, cancer researchers know
very well that genetic defects or carcinogens induce
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mutations in specific oncogenes and tumor suppressor genes
to cause different cancers, but they find little or no utility in
treating established tumors with anti-carcinogens. In fact,
many cancer chemoprevention efforts with anti-carcinogens
have failed despite strong evidence for efficacy in animal
models where most interventions were able to act at the
initial mutation stages of carcinogenesis rather than the
subsequent tumor promotion phases. Obviously, this says
nothing about the validity of the well-established theory that
mutagens cause cancer.

The majority of preclinical research targeting Aβ
accumulation has been implemented using animal models
lacking the neurodegenerative phase, and therefore, the
tested interventions act prior to or during the amyloid
accumulation phase and not during the missing major
neurodegenerative phase. Models with mutant APP should
be viewed as most useful for the initial amyloid accumu-
lation segment of prodromal AD and thus most relevant for
predicting primary prevention trial results, but not for
selecting agents for clinical trials with established AD. The
interventions directed against Aβ as an initiating factor are
all predicted to work much better when and if they are used
for prevention. However, at preclinical stages, therapies
targeting only Aβ have little or no opportunity to show
clinically relevant therapeutic benefits to offset their risks of
side effects. One corollary is that the best anti-Aβ
interventions should have very strong safety records, which
raises the bar for new drugs for prevention. This reasoning
has been a major factor that has pushed our group to focus
primarily on anti-amyloid interventions with a long history
of use and favorable known safety profiles including
ibuprofen, curcumin, and the omega-3 fatty acid, docosa-
hexaenoic acid (DHA).

A second conclusion from this line of reasoning is that
interventions using models driven by Aβ that do not
progress to extensive tau pathology and neurodegeneration
are unlikely to predict success in trials where Aβ, tau
pathology, and major neuron loss are already present, e.g.,
in MCI. The rodent models of Aβ pathology also fail to
develop the same level of inflammatory response [19]. In
some models, cognitive deficits emerge prior to plaque
deposition when Aβ first forms oligomers; these oligomers
are sufficient to cause cognitive deficits in the absence of
tau/tangle pathology or chronic inflammation [20]. Aβ
oligomers cause defects in long-term potentiation (LTP)
linked to memory deficits [21]. However, an early increase
in cognitive deficits with rising Aβ aggregates is not the
situation with humans where plaques and Aβ oligomers are
formed many years and in fact decades prior to identifiable
and clinically relevant impairment. Furthermore, Aβ is not
the only factor capable of causing cognitive decline.
Inflammation and elevated inflammatory cytokines can be
sufficient to cause defects in LTP [22] and cognition [23].

Similarly, cognitive deficits associated with tau pathol-
ogy and neurodegeneration in humans with certain forms of
frontal temporal dementia, in animal models lacking Aβ
accumulation [24, 25], and even in animals lacking tangles
but with hyperphosphorylated tau suggest that tau defects in
the absence of Aβ aggregates are sufficient to cause
cognitive deficits [26]. Clearly, treatments that fail to
control inflammation or tau-mediated deficits are incom-
plete. Tau pathology, neuron loss, and dementia persist after
late removal of Aβ. Therefore, with either MCI or AD
patients, one should never have expected the same level of
clinical benefits from targeting Aβ as seen in animal
models with only limited neuroinflammation and tau
pathology and early intervention. The efficacy of reducing
one or more pools of accumulated or nascent Aβ by any of
the many anti-Aβ therapies can only be answered by
ongoing clinical trials. However, the initial results with
anti-Aβ vaccine strongly suggest only a partial efficacy
with persistent tau and vascular pathology and relatively
unabated further cognitive decline [27, 28].

In agreement with a recent commentary, it seems clear
that targeting amyloid may work at some very early stage
of AD, but is probably not sufficient to halt the pathological
cascade at later stages [29]. Because the entire cascade
proceeds at different rates in different brain regions, each
pathological stage may be occurring in at least one brain
region at the same time when interventions begin beyond
the earliest “Braak stages” of pathogenesis [30]. This means
that, while some clinical benefits are likely to be obtained at
all stages, a growing recognition provides a strong rationale
for a pleiotropic approach targeting the cascade at multiple
levels combining therapy for Aβ, inflammation, oxidative
damage, tau pathology, and neuroprotection. Originally
conceptual and theoretical, the “amyloid cascade hypothe-
sis” has now taken many forms as new details emerge.
Some of the controversies could be resolved and tested if
the cascade hypothesis was refined to deal with specific
stages. We argue that rather than one model to recapitulate
the complexity of AD, we need different animal models to
appropriately dissect out different segments of the cascade
to develop better stage-dependent therapies (Figs. 1 and 2).

Mechanisms

Aβ and Tau

Aβ aggregates, notably Aβ oligomers, can induce inflam-
mation, oxidative damage, and multiple signal transduction
events including activation of tau kinases [31]. The role of
tau pathology is progressive and profound with roles for
both gain of toxic functions from tau aggregates [32] as
well as a loss of normal tau function [33, 34]. Strategies for
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dealing with tau pathology include tau aggregation inhib-
itors [35], drugs that compensate for loss of tau function by
stabilizing microtubules, albeit with some toxicity issues
[36], and inhibitors of tau kinases such as glycogen
synthase kinase-3β (GSK3β) [37]. Unlike other tau
kinases, GSK3β has a relatively high constitutive activity
that plays an important normal function in long-term
depression and cognition. GSK3β's activity is not clearly
elevated in AD brain even though it is one mediator of
acute Aβ toxicity and this questions the potential of
GSK3β as an optimal therapeutic target [38]. As with
Aβ, the most appealing strategy is to target the abnormal
tau aggregates, but this alone may not be sufficient if loss
of tau function is caused by hyperphosphorylation which is
central to many deficits [34]. Again, a pleiotropic treatment

that mitigates both tau hyperphosphorylation and the loss of
tau function and also toxic tau aggregates is more likely to
succeed on the multiple fronts we are fighting.

Oxidative Damage

There is abundant evidence for oxidative damage to
proteins, lipids, and DNA in the brains of AD patients
[39–42]. There may be some causal role related to amyloid
because amyloid-induced neurotoxicity can be reduced with
vitamin E and other antioxidants [43, 44]. Vitamin E can
reduce amyloid accumulation at early but not late stages in
APP transgenic mice [45]. Similarly, in another APP
transgenic model, the antioxidant R-lipoic acid effectively
reduced oxidative damage, but did not attenuate Aβ

Stage Dependent Pathogenesis

lateral temporal, then frontal lobe

lateral temporal, then frontal lobe

Fig. 1 Stage-dependent pathogenesis: This figure illustrates the
complexity of different pathogenic events (inflammation, synaptic
loss, oxidative damage in addition to imaging, and CSF biomarkers) at
different stages, showing that there is extensive tau and Aβ pathology

prior to symptoms. Identifying plasma or CSF biomarkers specific for
targeted pathway (inflammation, neurodegeneration) is important for
the rapid development of treatments and early interventions
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pathogenesis or correct cognitive deficits [46]. Thus, even
though oxidative stress can increase Aβ production via
effects on BACE1, inhibiting oxidation (and presumably
Aβ production), targeting oxidative damage alone does not
adequately prevent Aβ accumulation and does not appear
sufficient to protect cognition. That said, one small AD trial
with α-lipoate in combination with DHA was reported
effective in preventing cognitive decline, but not sufficient-
ly powered to be compelling [47]. Oxidative stress from
aging, Aβ, or metals may also be a cause of kinase
activation related to tau hyperphosphorylation and cell
cycle reactivation as implicated in neurodegeneration and
AD [48]. Some of the oxidative damage may be linked to
inflammation and eicosanoid production [49]. Epidemio-
logical studies have also shown some support for reduced
risk with higher antioxidant intake, including vitamin E [50,
51]. However, vitamin E (α-tocopherol) has had limited
efficacy with established AD [52] or MCI [53]. Unfortu-
nately, these large trials did not monitor biomarkers to
prove that the treatments effectively reduced oxidative
damage. In particular, one outcome shows that excessive
α-tocopherol causes depletion of endogenous γ-tocopherol
and has limited antioxidant effects on nitrate radicals [54].

Ongoing analysis of a multi-site clinical trial with an
antioxidant cocktail will better address this issue. However,
based on current evidence, we conclude that monotherapy
to reduce oxidative damage may be partially neuroprotec-
tive, but since it does not reduce inflammation or other
pathogenic cascades, it is probably not sufficient to reduce
Aβ accumulation or to slow progression in late stages.

Aberrant Inflammation Impedes Clearance
and Exacerbates Pathogenesis

There is strong evidence of neuroinflammatory changes in
AD patients, and these changes are independent of tau and
Aβ pathogenesis and can cause cognitive, neurodegenera-
tive, or oxidative damage [55, 56]. One of the most well-
characterized neuroinflammatory responses in AD has been
increases in interleukin-1. For example, IL-1β can exacer-
bate Aβ pathogenesis via increasing β-secretase (BACE)
[57–60]. Even 14 days overexpression of IL-1β in the adult
mouse can impair acquisition and retention of spatial
learning [61]. IL-1β appears to mediate impairment of
memory consolidation after infection [62] and can also

Hypothetical Alzheimer Cascade: Argument for Pleiotropic Targeting

Cognitive and Neuropsychiatric deficits
(episodic memory, global cognitive deficits, agitation, depression)

Loss of
Tau Function

Dysfunction in
signal transduction

Pathways regulating

Neuron
Loss

glutamate
accumulation

excitotoxcity

A accumulation w/ aging or mutations in PS, ApoE4, APP, CR1
oligomers and plaques

Energy Defects
Impaired

glycogenolysis
microtubule
destabilization

Inflammation,
increased PLA2

and release of AA,
increased
LOX/COX
products

Failure Phagocytic
Clearance

Oxidative Damage

activation or disruption of
JNK, cdk5, ERK or GSK3

Aberrant
Sprouting

pTau
accumulation

Synaptic
Loss

synaptic
elimination

complement
activation

Tau
aggregates

Neuron
Loss

Synaptic
Loss

?

Fig. 2 Hypothetical Alzheimer cascade: Argument for pleiotropic
targeting. This schematic diagram illustrates a refinement of the
amyloid cascade, suggesting that more than one pathogenic pathway
contributes to memory loss and demonstrating how anti-Aβ or other
monotherapies would not succeed on their own. Examples of such
pathogenic pathways that need to be targeted are oxidative damage
(which depletes membrane n-3 fatty acids like DHA), aberrant
inflammation, and pTau accumulation. In agreement with the

“baptists,” Aβ accumulation is a triggering event. But in agreement
with the “taoists,” both tau aggregates and increased pTau are likely to
be major contributors to memory deficits (even though tangle
pathology is not specific to AD). Nevertheless, reducing tau
aggregation is unlikely to be sufficient since other events including
impaired energy metabolism and aberrant are contributing to memory
deficits. Compounds like curcumin or DHA or both are likely to be
effective in targeting multiple steps

396 Mol Neurobiol (2010) 41:392–409



exacerbate tau pathogenesis, probably via its impact on tau
kinases [63]. In fact, Alzheimer's patients have microglial
dystrophy that is associated with tau pathology, and this
change is not observed in AD animal models. This is
consistent for a role of microglia and inflammatory
cytokines in tau pathogenesis.

Some inflammatory responses that contribute to patho-
genesis may have opposing (beneficial) roles in reducing
the Aβ burden in some paradigms. One example is C1q, a
complement protein, which can stimulate phagocytosis and
clearance of amyloid [64]. Consistent with this idea,
inhibiting C3 activation by expressing soluble complement
receptor-related protein Y (sCrry) was shown to exacerbate
pathogenesis in the AD model [65]. Similarly, IL-1β can
reduce plaque pathogenesis in some paradigms [66], but
ultimately the responses are associated with the disease
process, suggesting that there is dysfunction signaling in
these pathways. Thus, increasing complement activation
and IL-1β would likely be poor therapeutic targets with net
adverse effects in AD, not just because it would not restore
the signaling defects, but because of the adverse effects on
complement activation cannot be modeled well in animals.

Another important factor is that aberrant inflammatory
responses observed in AD are much more robust and
extensive [67] than can be observed in APP transgenic
animal models where inflammation is blunted and focal
[68, 69]. Thus, caution must be made in direct translation of
proinflammatory therapeutics (vaccines) using animal mod-
els, which likely underestimate the potential for adverse
inflammatory effects in AD patients who have much more
robust complement activation. Passive or active Aβ
vaccines, which can clear amyloid from the brain in
animals and humans, appear to be most beneficial for
cognition in animal models if interventions are pre- or early
pathological stage [70]. Late intervention vaccine treatment
actually failed to improve cognition in animal models [71]
and the vaccines in human trials have so far failed to yield
major improvements in cognition. Late intervention in
another animal model, aging canines, did not yield major
improvements in executive function [71], suggesting that
active vaccination may need to start before or very early in
the development of clinically significant AD-related pa-
thology. The role of neuroinflammation in AD is complex,
justifying the title of a recent review “Neuroinflammation
in Alzheimer's disease and mild cognitive impairment: a
field in its infancy” [72]. How to resolve aberrant
inflammation contributing to pathogenesis without disrupt-
ing beneficial inflammation is a key problem in developing
therapeutics. Another key problem is the failure of many
translational animal model studies to focus on late
preclinical intervention (post-pathology) studies, which
(contrary to early preclinical intervention studies) have
generally not predicted efficacy in clinical trials. The

obvious reason why many animal model studies employing
early intervention (pre-pathology) will end in clinical trial
failures is that the models are only relevant to interventions
in very early stages (age 40s, 50s, or 60s). There are also
other overlooked differences between animal models and
AD. Unlike the animal models, all components of the
complement cascade required for complement activation
and perforation of membranes are upregulated in AD [72,
73]. In fact, despite the beneficial effects of C1q in Aβ
clearance in mouse models, aggregated Aβ can directly
activate the complement cascade [74]. Since factors
associated with complement activation (C1q) can also play
a role in clearance, the precise molecular target to reduce
complement-related neuron damage (that will not impede
clearance) needs to be identified.

Another downside of chronic overexpression of IL-1
is that it interferes with the normal regulation of the
hypothalamic–pituitary–adrenal (HPA) axis, resulting in
inappropriate elevation of glucocorticoids [75]. This is
supported by the observation that many Alzheimer's
patients exhibit hypercortisolism and impaired regulation
of the HPA axis that cannot be solely explained by damage
in the hippocampus [55]. While slightly elevated gluco-
corticoids can have beneficial effects, such as in caloric
restriction, abnormally high glucocorticoids that occur
with chronic stress and in AD may contribute to energy
deficits [76] and insulin resistance [77], a risk factor for
AD [78].

Interestingly, inhibiting brain inflammation with ibu-
profen fails to correct downstream oxidative damage
[79]. This could either indicate that oxidative damage
caused by chronic inflammation is irreversible or that
factors in addition to inflammation also contribute to
oxidative damage. This is another rationale for a pleiotro-
pic drug or a cocktail that controls, at least, both
inflammation and oxidative damage. One common mis-
perception is that inhibiting inflammation with non-
steroidal anti-inflammatory drugs (NSAIDs) may impede
phagocytic clearance, leading to increased accumulation of
Aβ, but in fact inhibiting inflammation actually tends to
reduce Aβ burden. Thus, it is feasible that vaccines and
NSAIDs could even work in synergism, a yin yang
approach. Since more than one factor can cause inflam-
mation (oxidative damage, Aβ, or even tauopathy-induced
neurodegeneration) and all are in play prior to the earliest
onset of MCI, antagonizing one of the above alone is
unlikely to reverse the adverse effect of inflammation.
Finally, despite compensatory responses present in both
AD models and in AD, there is an intermediate state of
aberrant inflammation or partial microglial activation that
contributes to both impaired phagocytic clearance of Aβ
and activation of pathogenic cascades that likely contrib-
ute to the progression of disease.
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Are NSAIDs Pleiotropic and Stage-Specific in AD
Pathogenesis?

Chronic NSAID consumption has been consistently asso-
ciated with reduced risk for AD, suggesting that conven-
tional NSAIDs that target the cyclooxygenase (COX)
enzymes for AD interventions [80]. The most recent
epidemiology continues to support risk reduction for
conversion to MCI from chronic naproxen or ibuprofen
usage for at least 2 years duration [81]. However, the results
of treatment trials to date with many NSAIDs, including
COX-2 inhibitor and naproxen, suggest little efficacy with
shorter-term treatment (<2 years) or even aggravation of
symptoms with established AD [82]. Furthermore, with
initial results from a prevention trial (Alzheimer's Disease
Anti-inflammatory Prevention Trial [ADAPT]) that was
halted over safety concerns, neither naproxen nor COX-2
inhibitor was protective after 24 months [83]. Intriguingly,
after halting of the trial but continuing with follow-up, it
was discovered that some patients entering the trial had
cognitive deficits and should have been excluded, and when
these patients were excluded, and patients followed up
(after being off of naproxen for 1.5 years), there was a long-
term protective benefit in the naproxen group with an
apparently significant reduction in conversion to AD as
well as 40% reduction of CSF tau/Aβ42 in non-demented
naproxen users, a biomarker predicting decline [84].
Together with NSAID epidemiology data showing risk
reduction with early (pre-symptomatic) intake with nap-
roxen and ibuprofen [81, 85], the new ADAPT trial results
support the potential of NSAID prevention but raise caution
for aggravation of symptoms if intervention is in an early
post-symptomatic stage. We and others have found that
chronic ibuprofen treatment reduces amyloid accumulation
[59, 86, 87] and Aβ-induced tau [88], which is probably the
simplest logical mechanism explaining the impact on CSF
tau and Aβ42 in the ADAPT trial. Because the trial was
halted over safety concerns, possible disease-modifying
prevention also strongly encourages the search for alterna-
tive NSAIDs with greater safety and equal or greater
efficacy. Furthermore, if NSAIDs prove to be effective in
AD, it may be only effective in ApoE4 (e.g., a pharmaco-
genomic efficacy) as one small trial found that a subsample
of genotyped patients, ApoE epsilon4 carriers treated with
ibuprofen (n=27), were the only group without significant
cognitive decline, while in non-ApoE4 carriers, ibuprofen
had no impact [89]. Similar genotype effects have been
reported in epidemiological studies.

Traditional NSAIDs typically inhibit both COX-1 and
COX-2, enzymes that metabolize arachidonic acid (AA) after
it is freed from membrane phospholipids by phospholipases.
For example, while COX-2 is inducible and elevated in
neurons early in AD, COX-1 is constitutive but most likely the

better target for reactive microglia and inflammation [90].
Beyond the role of NSAIDs in reducing COX metabolites of
AA, there is now evidence that AA and its non-COX
metabolites are also directly relevant to AD. A recent lipidomic
study showed that cytosolic phospholipase A2 (cPLA2; GIVA
PLA2), a phospholipase that releases AA from phospholipids,
is activated in AD and AD model mice, resulting in elevations
of all of AA's different COX and lipoxygenase (LOX)
metabolites. Knockout of cPLA2 protected from cognitive
deficits in the AD transgenic mice [91].

Another novel mechanism of Aβ is its ability to activate
NADPH oxidase and induce the production of reactive
oxygen species (ROS) in astrocytes and neurons. In turn,
ROS, depending on cell type and the level of oxidative
damage, can induce aberrant activation of kinases such as c-
Jun N-terminal kinase, p38 MAP kinase, and the extracel-
lular signal-regulated kinase (ERK). If occurring in the
neuron, these kinases may contribute to aberrant tau
phosphorylation and, if occurring in glial cells, they can
contribute to chronic neuroinflammation. Neuroinflamma-
tory responses can lead to aberrant activation cPLA(2)α and
AA release, which contribute to the toxic milieu and
increased excitotoxicity. For example, Aβ-mediated activa-
tion of cPLA(2) α and AA release can be attenuated with
NMDA antagonists such as memantine, which is FDA
approved for the treatment of AD [92]. In addition,
phospholipase A(2) products such as lysophospholipids can
perturb membrane phospholipids [92]. Proinflammatory
cytokines transcriptionally activate secretory PLA2-IIA in
astrocytes via the NF-κB pathway. sPLA2-IIA is an
inflammatory protein, which is observed to be associated
with neurodegeneration in stroke [93]. NADPH oxidase
inhibitors, such as apocynin, and botanical antioxidants, such
as resveratrol and epigallocatechin gallate, also inhibited IL-
1β-induced sPLA2-IIA mRNA expression, ERK1/2 activa-
tion, and translocation of the NADPH oxidase subunit p67
phox from cytosol to membrane fraction [94]. Overall, one
could argue that reducing inflammation and AA metabolites
should be an important goal of an AD prevention program.

Energy Metabolism (GSK3, Pentose Phosphate Pathway,
Glycogenolysis)

Another mechanism known to occur in AD involves stage-
and region-dependent defects in energy metabolism. Hypo-
metabolism occurs in the medial temporal lobe (hippocampus,
fusiform gyrus, and amygdala) [95]. While ApoE4 patients
converting from MCI to AD stage had similar hypometab-
olism as those not carrying the ApoE4 allele, these subjects
showed additional hypometabolism in the frontal cortical
areas, such as the anterior cingulate cortex and inferior
frontal cortex, consistent with more aggressive pathogenesis
in subjects carrying the ApoE4 allele [96].
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The metabolic changes are complex, since hypometab-
olism in vulnerable areas can coexist with hypermetabolism
in the inferior temporal/entorhinal cortex as seen in Down's
patients [97]. Also, hyperactivation occurs in the prefrontal
cortex area associated with auditory–verbal short-term
memory, particularly in the left hemisphere [98–100].
Furthermore, during MCI, there are positive correlations
between neuroimaging of the amyloid binding PiB and
hypermetabolism as measured by FDG PET in the anterior
cingulate and precuneus/parietal cortex [101]. The explan-
ations for these patterns remain speculative but could be
related to hypermetabolic stages preceding hypometabo-
lism. In animal models, Aβ production appears to positive-
ly correlate with brain activity and the sleep–wake cycle
[102]. There may be stage-dependent focal loops with Aβ-
enhanced excitation increasing Aβ production prior to
neurodegeneration and hypometabolic regional stages.

After extensive Aβ deposition has been present in the
brain for at least a decade and the onset of cognitive decline
is in full swing, there is a good correlation between Aβ and
decreased metabolism in brain regions such as the parietal
and precuneus cortices. Recently, there have been attempts
to model this aspect of AD in animal models where mito-
chondrial energy defects have been found [103]. Additional
factors contributing to energy decline are likely to involve
disruption of the pentose phosphate pathway and glycogen-
olysis [104], while there is some evidence that, in contrast,
glycolysis is not affected or even enhanced [105, 106].

Because of in vitro evidence and in vivo tangle-
associated elevations in active GSK3 labeling, arguing for
its role in tau pathogenesis [107], there has been a common
misconception that GSK3 activity is generally elevated in
AD. However, total GSK3 protein is actually decreased in
AD brain, even inversely and tightly correlating with tangle
numbers which may argue against a simple direct role in
tangle formation [108]. In fact, compartmentalization is a
big issue because inhibited GSK3β, that is, GSK3ser9 (the
inactive form), is actually elevated in astrocytes in AD
brain where it correlates with glycogen accumulation, an
index of metabolic deficits (Frautschy and Hu, unpublished
observations). Although GSK3 hyperactivation can mediate
the acute effects of Aβ on neurons in vitro and in vivo, the
role of GSK3 in AD is far more complex and cell type
dependent. Our data argues against GSK3β as an easy
therapeutic target [38]. Consistent with recent reports for
GSK3β playing a role in memory consolidation and
arguing against GSK3β as a good target in AD [107, 109,
110], rats infused with highly specific GSK3 inhibitors in
the absence of Aβ showed severe deficits, tau kinase
activation (other than GSK3), and impaired memory [38].

GSK3 inhibition in rats increased deposition of glycogen in
the brain and similarly in vitro in astrocytes (Frautschy and Hu,
unpublished observations). Thus, inhibition of GSK3 in

astrocytes may aggravate energy imbalance by stimulating
glycogen accumulation. Our unpublished data also shows
glycogen accumulation and GSKser9 (inactive form) eleva-
tions in AD brain; most noticeably, we have observed
upregulation in the hippocampus, while others have found
increased GSK3ser9 in the temporal cortex of AD brain [111].
Thus, modulation of aberrant signaling pathways in AD
needs to consider possible different alterations in glia versus
neurons as well as normal physiological roles. From our
perspective, this is another argument for pleiotropic inter-
ventions that can indirectly modulate rather than directly
inhibit the aberrant activation of tau kinase pathways.

One role of active GSK3 is to normally phosphorylate
and inactivate glycogen synthase (GS through its phos-
phorylation, pGS) and thus limit glycogen synthesis in
astrocytes, so elevations in inactive GSK3 should increase
glycogen synthesis, and this is exactly what we see, a
dramatic increase pGS occurs in astrocytes in Alzheimer's
brain compared to normal brain. However, this change was
not detected in Western blotting data because immunohis-
tochemical data (of hippocampus) demonstrated that pGS
was increased in neurons but decreased in astrocytes
(unpublished data). This is consistent with the report that
glycogen accumulates in AD brain in the temporal cortex
[112]. Using specific antibodies to glycogen, we also
observed a robust accumulation of pGS in Alzheimer's brain
hippocampus compared to normal age-matched control
hippocampus (Frautschy et al., unpublished observations).

Taken together, our unpublished data on the hippocampus
and the published data on the temporal cortex suggest that
glycogen accumulation is occurring in AD brain. This
observation demonstrates that the problem is not simply lack
of energy, but an inability to use available stored energy
because of defective glycogenolysis, an event similar to Pompe
disease in the brain. The precise mechanisms preventing
glycogenolysis are unclear since total enzyme levels of
glycogen phosphorylase, the first enzyme required for glyco-
genolysis, were increased but the levels of active glycogen
phosphorylase are unknown. Interestingly, another enzyme
involved in phosphorylation and activation of glycogen
phosphorylase is protein kinase A, which is degraded by
calpain and diminished in AD brain [113]. This may be a
crucial factor contributing to impaired glycogenolysis. Inter-
estingly, vitamin B6 (pyridoxine), which is an essential
cofactor for glycogen phosphorylase, is reduced in Alz-
heimer's serum [114] and is associated with increased white
matter hyperintensities in AD brain [115]. A reduction in
phosphatases (e.g., protein phosphatase 1) could lead to
hyperphosphorylation of glycogen (amylose) [116], which is
resistant to debranching enzymes like α-glucosidase [117]. α-
Glucosidase has been reported to be reduced in the temporal
cortex of AD brain which may also contribute to increased
glycogen and energy deficits [118].
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Another important factor limiting glycogen use is the
loss of neurotransmitters that stimulate glycogenolysis. For
example, denervation of locus coeruleus observed in AD
patients and AD models [119]. In addition to norepineph-
rine, other neurotransmitters are reduced in some brain
regions such as serotonin [120], and the combined
neurotransmitter deficiency could impede astrocyte glyco-
genolysis needed for normal brain function.

The last step in glycogenolysis is the production of
glucose-6-phosphatase by phosphoglucomutase, which then
enters the pentose phosphate pathway. However, glucose-6-
phosphate dehydrogenase (G6PD) is needed to maintain
NADH but is below 33% in AD [104]. There appears to be
no block in glycolysis in AD brain (glucose to pyruvate)
since pyruvate is over fivefold elevated in AD CSF [105,
106]. This disproportionate elevation of levels of pyruvate
compared to lactate may indicate impaired conversion of
pyruvate to lactate for energy, catalyzed by lactate dehydro-
genase. This is supported by the fact that NADPH reductase
mRNA and protein, which are needed to convert pyruvate to
lactate, are also reduced in the hippocampus and/or
neocortex of AD brain [121–123]. Defects in the pentose
phosphate pathway arising from deficiencies in G6PD will
limit NADH needed for conversion to lactate and normal
astrocyte function. Lactate is a critical fuel needed to recover
synaptic function and to spare glucose as a metabolic fuel.

Promising Pleiotropic Drugs

Docosahexaenoic Acid

DHA is a long-chain 22-carbon omega-3 polyunsaturated fatty
acid with six double bonds. This fatty acid is enriched inmarine
algae, fatty fish, and fish oil. Fish, however, may carry the risk
of toxic metal contamination such as mercury [124]. The
World Health Organization/Food and Agriculture Organiza-
tion have determined that the provisional tolerable weekly
intake of methylmercury is 80 µg/50 kg body weight per
week, while fish oil supplements can have from 9.89 to
123 ng/g oil [125], so recommended guidelines for supple-
mentation with fish oil would be within the tolerable range.
For algae DHA, one would receive negligible methylmercury.

DHA is associated with reduced AD risk [126, 127].
Depleting dietary DHA exacerbated AD pathogenesis in a
transgenic mouse model, while repleting dietary DHA
attenuated AD pathogenesis [128, 129]. Drebrin loss is an
early marker of synaptic deficits in MCI, and DHA could
remarkably protect against drebrin loss in our ADmodel mice
[128]. Two small trials now show that high-dose fish oil
supplements appear to slow progression from very early stage
AD [130] or “MCI” [131]. As reported at the International
Conference on AD (Vienna, 2009), three larger trials (first

the Memory Improvement with DHA Study (MIDAS),
funded by Martek, second the Souvenir Trial with the
medical food Souvenaid, containing vitamins, uridine, fish
oil and choline, funded by Nutricia, Danone [132], and third,
the Alzheimer Disease Cooperative Study (ADCS), with
DHA, funded by National Institute of Aging) also suggest
some efficacy of DHA or fish oil in people, although possibly
only beneficial in subjects lacking the ApoE4 allele (see
review [133]). DHA appears protective in the epidemiology of
dementia and AD, at least in subjects lacking ApoE4, and at
least 14 neuroprotective or anti-AD effects of DHA have been
reported in preclinical models [134]. Neuroprotective activity
found in animals may be relevant to humans where
supplementing parental feeding of severe head injury patients
with fish oil has improved survival and recovery [135].
DHA's neuroprotective effects in preclinical models include:

1. Anti-inflammatory activity. Unlike conventional NSAIDs
that inhibit COX, DHA can competitively reduce CNS
levels of AA and, therefore, reduce enzymatic metabo-
lites via COX and LOXs (prostaglandins (PGs) and the
leukotrienes like hydroxyeicosatetraenoic acids (HETES),
respectively) that are increased by elevated cPLA2.
Reduced AA and n-6/n-3 ratios were measured in brains
of DHA-fed AD model mice; the n-6/n-3 ratio was down
from 0.96 to 0.51 (p<0.001) [136–138]. Fish oil was
shown to reduce AA and cardiovascular risk in arthritis
patients consuming NSAIDs, and AA reduction is a well-
knownNSAID-sparing activity of fish oil in the periphery
[139]. This AA metabolite reduction extends also to the
brain [140]. Omega-3 is known to reduce NSAID require-
ments in inflammatory conditions [141], but unlike
NSAIDs which may increase cardiovascular risk, omega-
3 reduces cardiovascular risk, even in NSAID users [139].

2. Insulin/trophic factor induction of neuroprotective Akt
activity is elevated by DHA via increases in
phosphatidylserine-regulated membrane docking and
Akt activation [142].

3. DHA increases brain-derived neurotrophic factor
(BDNF) synthesis [143]. Since BDNF is reduced in
AD and is strongly neuroprotective in AD models,
this effect may be quite protective. Furthermore, this
effect can be enhanced by another safe protective
factor, exercise [144]. We have an active research
project exploring DHA plus exercise in AD models.

4. Antioxidant. DHA may have direct antioxidant effects
in membrane [145] and indirect activity by increasing
antioxidant enzymes such as catalase and GSH
peroxidase [146].

5. Neuroprotective enzymatic metabolites. DHA metabo-
lites are reported to have anti-apoptotic/anti-inflammatory
and other neuroprotective effects, notably from neuro-
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protectin D1, which is a LOX DHA metabolite that has
been reported to exert multiple anti-apoptotic and other
anti-AD activities [147].

6. Promotion of neurogenesis and neurite extension.
DHA promotes neurite outgrowth in vitro and neuro-
genesis and improved cognition in vivo [148].
Furthermore, selectively increasing DHA from fat-1
transgene expression has provided additional evidence
of these DHA neuroprotective effects in adult mice
[149]. DHA stimulation of stem cell neuronal differ-
entiation has been observed in other systems via
modulation of cell cycle and basic helix–loop–helix
transcription factors [150].

7. While glucose utilization is reduced in AD, DHA
increased the expression of a major brain endothelial
cell glucose transporter [151].

8. DHA improves the age-impaired coupling of blood flow
to glucose utilization in aged monkeys [152]. This may
be a factor in both AD and vascular dementia.

9. Neuronal and synaptic membrane fluidity and lipid
raft function are believed to decline with aging, while
DHA improves synaptic membrane fluidity when it is
esterified to membrane phospholipids [153]. Imaging
data suggest that this effect can be seen in humans
[154]. DHA also enhances lipid raft function [155].

10. DHA increases G protein coupling. While this effect
has been established in the retina [156], it may also be
important in neuroprotection [157].

11. DHA can activate both peroxisome proliferator-acti-
vated receptor (PPAR) and nuclear retinoid X receptor
alpha (RXRalpha), involved in the regulation of lipid
biosynthesis [158, 159]. This may explain some
metabolic and anti-inflammatory effects but the
required doses may be slightly supra-physiological
and whether RXR activation occurs with physiologi-
cal DHA dosing remains unclear [160].

12. DHA can protect against oligomer-induced synaptic
marker loss in primary neurons [161]. One candidate
mechanism involves blocking Aβ-induced phosphor-
ylation of insulin receptor substrate (IRS) by tau
kinases. Elevated phospho-IRS is found in AD and
AD animal models. This is an important finding
because it represents an uncoupling of both insulin
and neurotrophic factor signaling to the critical
neuroprotective PI3-K/Akt pathway [161].

13. DHA modestly suppressed Aβ production and amyloid
accumulation in vitro and in animal models in eight of
nine reports [134]. The one study that did not find a
reduction in Aβ also reported that dietary DHA failed
to increase DHA or reduce AA levels but reduced
vascular Aβ [162, 163]. DHA's reduction of Aβ
appears to be due to several mechanisms, including
altering APP and secretase mobility, reducing the

expression of presenilin 1 and gamma secretase activity
[137], and induction of increased expression of a late-
onset, AD-depleted, anti-amyloidogenic chaperone,
SorLa/LR11 [164]. Fish oil has also been reported to
increase the expression of transthyretin, which is an
Aβ-clearing transport protein [165]. DHA may also
increase levels of insulin-degrading enzyme and Aβ
clearance by upregulating Akt pathway activity [166].

14. DHA can suppress JNK and GSK3, two important tau
kinases that promote tau pathology and neurofibrillary
tangles [137, 161].

Taken together, these pleiotropic activities provide
multiple pathways for combating AD pathogenesis, first
by reducing amyloid (Aβ) production and accumulation,
but also multiple ways for suppressing downstream tau
kinases and tau pathology, reducing inflammation and
oxidative damage, enhancing neuroprotective and neuro-
genic pathways, and increasing glucose utilization and
neuron and synapse function. What is most remarkable is
that all of these beneficial activities occur within a range of
dosing with proven safety. The one caveat is that DHA is
highly susceptible to lipid peroxidation, and a marker for
this, F4 isoprostane, is elevated in AD [167, 168]. This
implies that AD brain has insufficient antioxidant protec-
tion for DHA and provides a strong rationale for combining
DHA with protective antioxidants, for example, α-lipoic
acid, flavonoids, or vitamin E. There is already limited
evidence from one small 12-month clinical trial that
combining omega-3 with α-lipoic acid may slow progres-
sion in AD [47]. This needs to be confirmed with a larger
trial. We have suggested DHA be combined with curcumin,
a polyphenolic antioxidant which also has other potent anti-
aging, anti-amyloid, and AD protective activities [169].
Combination of curcumin and fish oil in triple transgenic
mouse model expressing mutant human APP, PS1, and tau
has shown promising results [161].

Curcumin

Curcumin, the yellow pigment found in turmeric root, has
been used in medicinal extracts in both Indian traditional
Ayurvedic medicine and traditional Chinese and Southeast
Asian medicines. Curcumin has pleiotropic effects with
antioxidant, anti-inflammatory, anti-carcinogenic [170], and
neuroprotective properties [171]. As a medication, curcu-
min has been used as an anti-inflammatory agent and to
promote wound healing in many tissues and disease
circumstances. In our recent review, we discuss evidence
from many laboratories for several different activities
relevant to neuroprotection and AD that include antioxi-
dant, anti-inflammatory, and anti-amyloid activities as well
as promoting neurogenesis, heat shock protein synthesis,
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and limiting the tau and IRS kinase, JNK [171]. These
pleiotropic activities of curcumin that are relevant to AD
are listed here:

1. Aβ-binding properties: Our group found that curcumin
has direct anti-amyloid and anti-Aβ oligomer activity
in vitro and in vivo [172–174]. This concept was
elegantly demonstrated by Garcia-Alloza et al. [175]
who used multi-photon and in vivo imaging to show
that animals receiving tail vein injection of curcumin
for 1 week had a marked amyloid clearance effect with
30% plaque size reduction in addition to suppression of
dystrophic and aberrant neurites [175]. The binding
affinity of curcumin for Aβ aggregates is as high as or
higher than successful molecular imaging probes such
as PiB in FDG PET, with a Ki of 0.07 nM for F18-
labeled curcumin binding for fibrillar Aβ [176]. In
principle, curcumin could also bind other β-pleated
sheet structures including prion aggregates [177] as
well as synuclein and tau aggregates, but more work
needs to be done.

2. Tau-binding properties. Curcumin and related polyphe-
nols have been positive as tau aggregation inhibitors in
NIH-funded high-throughput screens [178], but have
failed in similar assays where curcumin pyrazole and
other derivatives were found to inhibit tau aggregation
[179]. These contradictory results may relate to slight
differences in methodology, modifying outcome, such as
details of tau aggregation kinetics and curcumin solubil-
ity, fluorescence, and stability in different systems.

3. Stimulation of phagocytic Aβ clearance: Similar to the
amyloid vaccine, curcumin appeared to increase the
association of phagocytic cells with plaque structures in
a rat AD model [180] and Tg2576 model as well as
with plaques in human sections exposed to primary
rodent microglia [56]. These effects may derive from
modulation of the state of microglial activation through
effects on AA metabolites.

4. Anti-inflammatory: Curcumin limits AA substrates and
aberrant inflammatory cytokine production. Unlike
classical NSAIDs, curcumin does not appear to directly
inhibit COX except at high doses (COX-1 [50 µM] or
COX-2 [100 µM]) [181]. But like DHA, it has
profound effects on limiting multiple AA metabolites.
For example, curcumin can reduce COX-2 induction,
inhibit 5-LOX (IC50∼0.7 µM), and limit the release of
AA by suppressing the phosphorylation and activation
of cPLA2 [182]. Dietary curcumin at 2,000 ppm, a dose
with proven long-term safety by the National Toxicol-
ogy Program [183], was shown to reduce cPLA2
activity in cancer models in vivo [184]. Curcumin's
impact on AA metabolism is to counteract AA release
and elevation of AA metabolites from COX and LOX

[182] that are elevated in AD brain and AD models. 5-
LOX and its metabolites are elevated in AD brain
[185], and knocking out 5-LOX protects AD Tg models
[186], while curcumin inhibits 5-LOX, even at low
doses [182]. Unlike COX-2 which is regulated by
expression levels, COX-1 activity is primarily regulated
by the availability of its substrate AA and curcumin can
limit COX-2 expression but more specifically correct
the cPLA2 hyperphosphorylation/activation defect
leading to elevated AA substrate availability found in
AD brain. Curcumin reduces elevations in the cytokine
interleukin-1β and TNF-α in the Tg2576 AD mouse
model [172]. Aberrant inflammation can increase the
expression of Aβ production by increasing BACE [57–
60].

5. Anti-ERK and JNK: The mechanism of curcumin's
ability to reduce cPLA2 has been investigated in vitro
and demonstrated to involve reducing phosphorylation
at the same MAPK-sensitive site (ser 505) [182] that is
elevated in AD, AD model mice, and Aβ42-stimulated
neurons [91]. Consistent with a likely impact on
MAPK in brain, low-dose curcumin limits MAPK
activation including ERK and MEKK1-JNK in non-
neuronal [187] and neuronal PC12 cells in vitro [188].

6. Antioxidant: Unlike ibuprofen, curcumin could effec-
tively protect against oxidative damage in an Alzheimer
model [79]. We showed that attenuating inflammation
did not attenuate oxidative damage and attenuating
oxidative damage with vitamin E did not necessarily
reduce inflammation (Frautschy and Hu, unpublished
results) or plaque pathogenesis [56]. Similarly, others
have reported that indomethacin, the mixed COX-1/
COX-2 inhibitor, also failed to suppress oxidative
damage by itself, but synergized with the antioxidant
vitamin E to reduce both amyloid and oxidative
damage [189]. Because of its antioxidant activity,
curcumin is typically used as a food preservative and
can protect polyunsaturated fatty acids from lipid
peroxidation, so it would be predicted to protect and
synergize with the highly unsaturated omega-3 fatty
acids. Our ongoing studies (unpublished) show that a
cocktail containing both DHA and bioavailable curcu-
min can limit cognitive deficits and tau pathology in
human tau mice beginning treatment at 14 months
which is well after tau pathology and cognitive deficits
had developed [190, 191]. In addition, oxidative
damage and increased expression of Aβ production
can both be increasing β-secretase BACE [192].

7. Metal chelation. One likely important mechanism of
action of curcumin is metal chelation, which requires
the dienone bond [193]. Without this bond, for
example, when curcumin is reduced to tetrahydrocur-
cumin, it loses its impact on reducing plaque patho-
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genesis, but retains its ability to reduce Aβ oligomers
[194].

8. Neurogenesis: Curcumin is reported to enhance neuro-
genesis in two publications [195, 196].

In summary, curcumin is truly pleiotropic and can be
used to treat aberrant and chronic inflammation, oxidative
damage, amyloid pathology, and tau pathology models.

Curcumin Safety Issues

Curcumin does not share the gastrointestinal bleeds and
other toxicity issues of conventional NSAIDs like naproxen
and indomethacin and other NSAIDs that limit their use.
One explanation for curcumin safety is that curcumin has a
dual impact on COX and LOX because dual COX/LOX
inhibitors lack the gastrointestinal and cardiovascular safety
issues of other NSAIDs that limit their use [197]. Beyond
the specific issues of curcumin, pleiotropic interventions
may achieve efficacy without side effects by not relying on
targeting a single pathway. Like many other age-related
chronic diseases, AD does not involve a foreign pathogen
but dysregulation of pathways with normal functions.
Potential targets include oxygen radicals, COX and AA
metabolites, tau, tau kinases, APP, secretases, and even Aβ;
all have normal functions and, potently inhibited, these
targets can be accepted to result in side effects. Specificity
is widely believed to promote safety, which is true when the
targets are purely pathogenic, but it does not imply safety
when the targets have normal functions and are simply
dysregulated in some locations but not others. In contrast,
by partially inhibiting multiple branches of the cascade, one
may hope to achieve adequate efficacy with fewer side
effects.

Bioavailability

Poor bioavailability of curcumin has limited its utility in the
clinic [170, 198, 199]. However, we have developed a solid
lipid formulation that may help to resolve this problem
[194, 200]. The major hurdle for the successful use of
curcumin (and related polyphenolics) in human trials has
been its poor bioavailability, which stems from poor water
solubility, rapid intestinal and first-pass glucuronidation,
and instability at cellular pH. For example, no free
curcumin was detected in plasma from patients in a clinical
trial with 2 or 4 g/day curcumin in AD patients [198].
Similarly, very low levels of unconjugated curcumin were
observed in an as yet unpublished University of California,
Los Angeles pilot trial in which CSF biomarkers and
cognitive endpoints failed to show evidence of efficacy.
However, we believe that these obstacles to curcumin use in
the clinic can be overcome with new alternative lipidated

formulations [194]. In animal model studies, we analyzed
plasma and brain levels required for some of the neuro-
protective activities and demonstrated that they are achiev-
able with 0.1–0.2 µM plasma levels and associated 1–2 µM
brain levels [194]. Lipidated formulations appear to be able
to achieve this level and are already in clinical trials for
cancer [200] as well as Alzheimer's and other neurodegen-
erative diseases of aging.

Concluding Remarks

AD is a complicated syndrome of aging with a decades-
long prodromal period with accumulation of Aβ and tau
pathology accompanied by oxidative damage and inflam-
mation, which develops before an insidious clinical onset.
All of these factors can act independently or together to
cause neuronal damage and cognitive deficits. By the time
clinical deficits emerge, pathology is already proceeding
simultaneously at all stages in different brain regions.
Interventions need to be as early as possible but targeting
single components of the cascade like Aβ should ideally
begin early in pathogenesis which is not likely to be
feasible with a decades-long prodromal period. Early
intervention with safe and inexpensive pleiotropic agents
including DHA and curcumin have a strong rationale and in
a cocktail may even be effective at later stages due to
pleiotropic activities. Problems with energy crisis have not
been well addressed clinically, and should be, as they are
proximal to cognitive decline.
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