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Tutorial on Dynamic Average Consensus
The problem, its applications, and the algorithms

S. S. Kia B. Van Scoy J. Cortés R. A. Freeman K. M. Lynch S. Martı́nez

The need to agree on linear combinations of dynamically changing local parameters or signals
emerges in many applications in multi-agent systems and sensor networks. This dynamic agree-
ment problem can be cast as a dynamic average consensus problem. Simply put, the problem is
for a group of agents to cooperate in order to track the average of locally available time-varying
reference signals, where each agent is only capable of local computations and communicating with
local neighbors, see Figure 1. It is likely that the reader is familiar with the static version of this
problem, which we term here the static average consensus problem, where agents seek to agree
on a specific combination of fixed quantities [1, 2]. The objective of this article is to provide an
overview of the dynamic average consensus problem that serves as a comprehensive introduction
to the problem definition, its applications, and the distributed methods available to solve them. Our
primary intention, rather than providing a full account of all the available literature, is to introduce
the reader, in a tutorial fashion, to the main ideas behind dynamic average consensus algorithms,
the performance trade-offs considered in their design, and the requirements needed for their anal-
ysis and convergence guarantees.

Figure 1: A group of communication agents, each endowed with a time-varying reference signal.
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What is Dynamic Average Consensus?

Consider a group ofN agents where each agent is capable of (1) sending and receiving information
with other agents, (2) storing information, and (3) performing local computations. For example,
the agents may be cooperating robots or sensors in a wireless sensor network. The communication
topology among the agents is described by a fixed digraph, see “Sidebar 1: Preliminaries on Graph
Theory” for further details and the graph related notations used throughout the article. Suppose
that each agent has a local scalar reference signal, denoted ui(t) : [0,∞) → R in continuous time
and ui(k) : N→ R in discrete time. This signal may be the output of a sensor located on the agent,
or it could be the output of another algorithm that the agent is running. The dynamic average
consensus problem then consists of designing an algorithm that allows individual agents to track
the time-varying average of the reference signals, given by

CT: uavg(t) :=
1

N

∑N

i=1
ui(t)

DT: uavg(k) :=
1

N

∑N

i=1
ui(k)

in continuous time (CT) and discrete time (DT), respectively. For discrete-time signals and algo-
rithms, for any variable p sampled at time tk, we use the shorthand notation p(k) or pk to refer
to p(tk).

For reasons that we specify below, we are specifically interested in the design of distributed algo-
rithms, meaning that to obtain the average, the policy that each agent implements only depends
on its variables (represented by J i, which include its own reference signal) and those of its out-
neighbors (represented by {Ij}j∈N i

out
).

In continuous time, we seek a driving command ci(J i(t), {Ij(t)}j∈N i
out

) ∈ R for each agent i ∈
{1, . . . , N} such that, with perhaps an appropriate initialization, a local state xi(t), which we refer
to as the agreement state of agent i, converges to the average uavg(t) asymptotically. Formally, for

CT : ẋi = ci(J i(t), {Ij(t)}j∈N i
out

), i ∈ {1, . . . , N}, (1)

with proper initialization if necessary, we have xi(t)→ uavg(t) as t→∞. The driving command ci

can be a memoryless function or an output of a local internal dynamics. Note that, by using the out-
neighbors, we are making the convention that information flows in the opposite direction specified
by a directed edge (there is no loss of generality in doing it so, and the alternative convention of
using in-neighbors instead would also be equally valid).

Dynamic average consensus can also be accomplished using discrete-time dynamics, especially
when the time-varying inputs are sampled at discrete times. In such a case, we seek a driving
command for each agent i ∈ {1, . . . , N} so that

DT : xi(tk+1) = ci(J i(tk), {Ij(tk)}j∈N i
out

), i ∈ {1, . . . , N}, (2)
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under proper initialization if necessary, accomplishes xi(tk)→ uavg(k) as tk →∞.

We also consider a third class of dynamic average consensus algorithms in which the dynamics
at the agent level is in continuous time but the communication among the agents, because of the
restrictions of the wireless communication devices, takes place in discrete time,

CT-DT : ẋi(t) = ci(J i(t), {Ij(tj
kj

)}
j∈N i

out
), i ∈ {1, . . . , N}, (3)

such that xi(t)→ uavg(t) as t→∞. Here tj
kj
∈ R is the kj-th transmission time of agent j, which

is not necessarily synchronous with the transmission time of other agents in the network.

The consideration of simple dynamics of the form in (1), (2) and (3) is motivated by the fact that the
state of the agents does not necessarily correspond to some physical quantity, but instead to some
logical variable on which agents perform computation and processing. Agreement on the average
is also of relevance in scenarios where the agreement state is a physical state with more complex
dynamics, for example, position of a mobile agent in a robotic team. In such cases, one can leverage
the discussion here by, for instance, having agents compute reference signals that are to be tracked
by the states with more complex dynamics. Interested readers can consult “Sidebar 2: Further
Reading” for a list of relevant literature on dynamic average consensus problems for higher-order
dynamics.

Centralized solutions

The difficulty in the dynamic average consensus problem is that the information is distributed
across the network. An analytically straightforward solution to the dynamic average consensus
problem then is to get all of the information in a single place, do the computation (in other words,
calculate the average), and then send the solution back through the network to each agent. This is
known as a centralized solution.

Although simple, the centralized approach has numerous drawbacks: (1) the algorithm is not robust
to failures of the centralized agent (if the centralized agent fails, then the entire computation fails),
(2) the method is not scalable since the amount of communication and memory required on each
agent scales with the size of the network, (3) each agent must have a unique identifier (so that
the centralized agent counts each value only once), (4) the calculated average is delayed by an
amount which grows with the size of the network, and (5) the reference signals from each agent
are exposed over the entire network which is unacceptable in applications involving sensitive data.

The centralized solution is fragile due to existence of a single failure point in the network. This
can be overcome by having every agent act as the centralized agent. In this approach, referred to
as flooding, agents transmit the values of the reference signals across the entire network until each
agent knows each reference signal. This may be summarized as “first do all communications, then
do all computations”. While flooding fixes the issue of robustness to agent failures, it is still subject
to many of the drawbacks of the centralized solution identified above. Also, although this approach
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works reasonably well for small size networks, its communication and storage costs scale poorly
in terms of the network size, incurring in costs of orderO(N) per agent per timestep. Additionally,
flooding requires an accurate bookkeeping effort from each agent.

Desirable properties in a dynamic average consensus algorithm

Given the drawbacks of centralized solutions, here we identify a number of desirable properties
when designing algorithmic solutions to the dynamic average consensus problem. The algorithm
should be

• scalable, so that the amount of computations and resources required on each agent does not
grow with the network size,

• robust to the disturbances present in practical scenarios, such as communication delays and
packet drops, agents entering/leaving the network, noisy measurements, and

• correct, meaning that the algorithm converges to the exact average or, alternatively, a formal
guarantee can be given about how far from the exact average it will be.

Regarding the last property, to achieve agreement, network connectivity should be such that infor-
mation about the local reference input of each agent reaches other agents frequently enough. Also,
as the information of each agent takes some time to propagate through the network, we can expect
that tracking an arbitrarily fast average signal with zero error is not feasible unless agents have
some a priori information about the dynamics generating the signals. Therefore, a recurring theme
throughout the article will be how the convergence guarantees of dynamic average consensus al-
gorithms depend on the network connectivity and on the rate of change of the reference signal of
each agent.

Why do We need Specialized Algorithms for Dynamic Average Consensus?

As mentioned above, static average consensus refers to the problem when the reference signals
of the agents do not change with time. The static problem has been extensively studied in the
literature [1, 2, 3, 4], and several simple and efficient distributed algorithms exist with exact con-
vergence guarantees. Given this, a natural approach to deal with the distributed solution of the
dynamic average consensus problem is the following: zero-order sample the reference signals and
successively use a static average consensus algorithm between sampling times. If this approach
were successful, then it would mean that we do not need to worry about designing specific algo-
rithms to solve the dynamic average consensus problem and we can simply rely on the algorithmic
solutions available for static average consensus.

4



As the reader might have correctly guessed already, this is not the case. In order for this idea to
work, one would essentially need a static average consensus algorithm which is able to converge
‘infinitely’ fast. In practice, some time is required for information to flow across the network, and
hence the result of the repeated application of any static average consensus algorithm will operate
with some error, whose size depends on its speed of convergence and how fast inputs change.
To illustrate this point better, we use a simple numerical example. Consider a process described
by a fixed value plus a sine wave whose frequency and phase are changing randomly over time.
A group of 6 agents with the communication topology of directed ring monitors this process by
taking synchronous samples, each according to

ui(m) = ai (2 + sin(ω(m)t(m) + φ(m))) + bi, m ∈ Z≥0,

where ai and bi are fixed unknown error sources in the measurement of agent i ∈ {1, . . . , 6}. To
reduce the effect of measurement errors, after each sampling, every agent wants to obtain the av-
erage of the measurements across the network before the next sampling time. For our numerical
simulations, we use ω ∼ N(0, 0.25), φ ∼ N(0, (π/2)2), with N(µ, p) indicating a Gaussian distri-
bution with mean µ and variance p. We set the sampling rate at 0.5 Hertz (∆t = 2 seconds). For
the simulation under study we use a1 = 1.1, a2 = 1, a3 = 0.9, a4 = 1.05, a5 = 0.96, a6 = 1,
b1 = −0.55, b2 = 1, b3 = 0.6, b4 = −0.9, b5 = −0.6, and b6 = 0.4. To obtain the average, we
use the following two approaches (a) at every sampling time m, each agent initializes the standard
static discrete-time Laplacian average consensus algorithm

xi(k + 1) = xi(k)− δ
N∑
j=1

aij(x
i(k)− xj(k)), i ∈ {1, . . . , N},

by the current sampled reference values, xi(0) = ui(m), and implements it with an admissible
timestep δ until just before the next sampling time m+ 1; (b) at time m = 0, agents start executing
a dynamic average consensus algorithm (more specifically, the strategy (S13) which is described
in detail later). Between sampling times m and m + 1, the reference input ui(k) implemented in
the algorithm is fixed at ui(m), where here k is the communication time index. Figure 2 compares
the tracking performance of these two approaches. One can observe that the dynamic average
consensus algorithm, by keeping a memory of past actions, produces a better tracking response
than the static algorithm initialized at each sampling time with the current values. This comparison
serves as motivation for the need of specifically designed distributed algorithms that take into
account the particular features of the dynamic average consensus problem.

Applications of Dynamic Average Consensus in Network Systems

The ability to compute the average of a set of time-varying reference signals turns out to be useful
in numerous applications, and this explains why distributed algorithmic solutions have found their
way into many seemingly different problems involving the interconnection of dynamical systems.
This section provides a selected overview of problems to further motivate the reader to learn about
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(a) Static algorithm; 3 communications in t ∈ [m,m+ 1]
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(b) Static algorithm; 20 communications in t ∈ [m,m+ 1]
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(c) Dynamic algorithm; 3 communications in t ∈ [m,m+ 1]
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(d) Dynamic algorithm; 20 communications in t ∈ [m,m+ 1]

Figure 2: Comparison of performance between a static average consensus algorithm re-initialized at each
sampling time vs. a dynamic average consensus algorithm; The solid lines: red curves (resp. blue curves)
represent the time history of the agreement state of each agent generated by the Laplacian static average
consensus approach (resp. the dynamic average consensus of (S13)); ×: sampling points at m∆t; ◦: the
average at m∆t; +: the average of reference signals at k δ. The dynamic consensus algorithm tracks very
closely the average as time goes by while the static consensus does not have enough time between sampling
times to converge. This trend is preserved even if we increase the frequency of the communication between
the agents. In these simulations we used α = β = 1 in (S13).

dynamic average consensus algorithms and illustrate their range of applicability. Other applica-
tions of dynamic average consensus can be found in [5, 6, 7, 8, 9, 10, 11].

Distributed formation control

Autonomous networked mobile agents are playing an increasingly important role in coverage,
surveillance and patrolling applications in both commercial and military domains. Often the tasks
accomplished by mobile agents require dynamic motion coordination and formation among team
members. Consensus algorithms have been commonly used in the design of formation control
strategies [12, 13, 14]. Consensus algorithms are mainly used to arrive at agreement on the geo-
metric center of formation, so that the formation can be achieved by spreading the agents in the
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xi: location of agent i
bi: relative location of agent i w.r.t to 1

N

∑N
i=1 xiT (t)

Mobile agent i monitors target i to take measurement xiT (t)

Objective: xi → 1
N

∑N
i=1 xiT (t) + bi

Cyber layer computes 1
N

∑N
i=1 xiT (t)

Figure 3: A two-layer consensus-based formation for tracking a team of mobile targets: the larger robots are
the mobile agents and while the smaller robots are the mobile moving targets.

desired formation geometry about this geometric center, see [1]. However, most of the existing
results are for static formation. Dynamic average consensus algorithms can effectively be used in
dynamic formation control, where the geometric center of formation changes with time. Figure 3
depicts an example scenario in which a group of mobile agents track a team of mobile targets, with
each agent monitoring a mobile target with location xiT . The objective here is for the agents to
follow the mobile target team by spreading out in a pre-specified formation consisted of each agent
moving in bi relative location with respect to the time-varying geometric center of the target team.
A two-layer approach can be used to accomplish the formation and tracking objectives in this ex-
ample scenario: a dynamic consensus algorithm in the cyber layer that computes the geometric
center in a distributed manner, and a physical layer that tracks this average plus bi. Examples of
the use of dynamic consensus algorithms in this two-layer approach with multi-agent systems with
first-order, second-order or higher-order dynamics can be found in [15, 16, 17].

Distributed state estimation

Wireless sensors with embedded computing and communication capabilities play a vital role in
provisioning real-time monitoring and control in many applications such as environmental moni-
toring, fire detection, object tracking, and body area networks. Consider a model of the process of
interest given by

x(k + 1) = A(k) x(k) + B(k)ω(k),

where x ∈ Rn is the state, A(k) ∈ Rn×n and B(k) ∈ Rn×m are known system matrices and
ω ∈ Rm is the white Gaussian process noise with E[ω(k)ω>(k)] = Q > 0. Let the measurement
model at each sensor station i ∈ {1, . . . , N} be

zi(k + 1) = H(k + 1)x(k + 1) + νi,

where zi ∈ Rq is the measurement vector, Hi ∈ Rq×n is the measurement matrix and νi ∈ Rq is
the white Gaussian measurement noise with E[νi(k)νi(k)>] = Ri > 0. If all the measurements
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are transmitted to a fusion center, a Kalman filter can be used to obtain the minimum variance
estimate of the state of the process of interest as follows

• propagation stage:

x̂−(k + 1) = A(k)x̂−(k) (4a)

P−(k + 1) = A(k)P−(k + 1)A(k)> + B(k)Q(k)B(k)>, (4b)
Y−(k + 1) = P−(k + 1)−1, (4c)

y−(k + 1) = Y−(k + 1) x̂−(k + 1); (4d)

• update stage:

Yi(k + 1) = Hi(k + 1)>Ri(k + 1)−1Hi(k + 1),

yi(k + 1) = Hi(k + 1)>Ri(k + 1)−1zi(k + 1),

P+(k + 1) = (P−(k + 1)−
∑N

i=1
Yi(k + 1))−1,

x̂+(k + 1) = x̂−(k + 1)−
(∑N

i=1
Yi(k + 1)−

∑N

i=1
yi(k + 1) x̂−(k + 1)

)
.

Despite its optimality, this implementation is not desirable in many sensor network applications
due to existence of a single point of failure at the fusion center and the high cost of communi-
cation between the sensor stations and the fusion center. An alternative that has gained interest
in recent years [18, 19, 20, 21, 22] is to employ distributed algorithmic solutions that have each
sensor station maintain a local filter to process its local measurements and fuse them with the
estimates of its neighbors. Some works [18, 23] employ dynamic average consensus to synthe-
size distributed implementations of the Kalman filter. For instance, one of the early solutions for
distributed minimum variance estimation, has each agent maintain a local copy of the propagation
filter (4) and employ a dynamic average consensus algorithm to generate the coupling time-varying
terms 1

N

∑N
i=1 yi(k + 1) and 1

N

∑N
i=1 Yi(k + 1). If agents know the size of the network, they can

duplicate the update equation locally.

Distributed unconstrained convex optimization

The control literature has introduced in recent years a number of distributed algorithmic solu-
tions [24, 25, 26, 27, 28, 29, 30, 31] to solve unconstrained convex optimization problems over net-
worked systems. In a distributed unconstrained convex optimization problem, a group of N com-
municating agents, each with access to a local convex cost function f i : Rn → R, i ∈ {1, . . . , N},
seek to determine the minimizer of the joint global optimization problem

x? = argmin
1

N

∑N

i=1
f i(x), (5)
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by local interactions with their neighboring agents. This problem appears in networked system
applications such as multi-agent coordination, distributed state estimation over sensor networks,
or large scale machine learning problems. Some of the algorithmic solutions for this problem
are developed using agreement algorithms to compute global quantities that appear in existing
centralized algorithms. For example, a centralized solution for (5) is the Nesterov gradient descent
algorithm [32]

x(k + 1) = y(k)− η (
1

N

∑N

i=1
∇f i(y(k))), (6a)

v(k + 1) = y(k)− η

αk
(

1

N

∑N

i=1
∇f i(y(k))), (6b)

y(k + 1) = (1− αk+1) x(k + 1) + αt+1v(k + 1). (6c)

where x(0),y(0),v(0) ∈ Rn, and {αk}∞k=0 is defined by an arbitrarily chosen α0 ∈ (0, 1) and the
update equation α2

k+1 = (1−αk+1)α
2
k, where αk+1 always takes the unique solution in (0, 1). If all

f i, i ∈ {1, . . . , N}, are convex, differntiable and have L-Lipschitz gradients then every trajectory
k 7→x(k) of (6) converges to the optimal solution x? for any 0 < η < 1

L
[32, Theorem 2.2.1 and

Lemma 2.2.4]. The source of coupling in (6) is the cumulative gradient term 1
N

∑N
i=1∇f i(y(k)).

The distributed solution developed in [31] to solve the optimization problem (5) over connected
graphs uses a dynamic average consensus algorithm to compute this coupling term. Specifically, in
the distributed algorithm of [31], each agent uses a local state xi, yi and vi to evolve (6) locally and
employs the dynamic average algorithm of the form (15) below with input ui(k) = ∇f i(yi(k)) to
estimate the gradient coupling term.

Distributed resource allocation

In optimal resource allocation, a group of agents work cooperatively to meet a demand in an
efficient way. Each agent incurs a cost for the resources it provides. Let the cost function f i : R→
R of each agent i ∈ {1, . . . , N} be convex and differentiable. The objective is to meet the demand
b ∈ R so that the total cost f(x) = ΣN

i=1f
i(xi) is minimized. Each agent i ∈ {1, . . . , N} therefore

seeks to find the ith element of x? given by

x? = arg min
x∈RN

∑N

i=1
f i(xi), subject to

x1 + · · ·+ xN − b = 0,

This problem appears in many optimal decision making tasks such as optimal dispatch in power
networks [33, 34], optimal routing [35], and economic systems [36]. A centralized algorithmic
solution is given by the popular saddle-point or primal-dual dynamics [37, 38] associated to the
optimization problem,

µ̇(t) = x1(t) + · · ·+ xN(t)− b, µ(0) ∈ R, (7a)

ẋi(t) = −∇f i(xi(t))− µ(t), i ∈ {1, . . . , N}, xi(0) ∈ R, (7b)
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If the local cost functions are strictly convex, every trajectory t 7→ x(t) converges to the optimal
solution x?. The source of coupling in (7) is the demand mismatch which appears in the right
hand side of (7a). One can, however, employ dynamic average consensus to estimate this quantity
online and feed it back into the algorithm. This is the approach taken in [39, 40]. This can be
accomplished, for instance, by having agent i use the reference signal xi(t) − b/N (this assumes
every agent knows the demand and the number of agents in the network, but other reference signals
are also possible) in a dynamic consensus algorithm coupled with the execution of (7).

A look at static average consensus leading up to the design of a dynamic
average consensus algorithm

It is not surprising that the initial synthesis of dynamic average consensus algorithms emerged from
a careful look at static average consensus. In this section, we provide a brief review of standard
algorithms for the static average consensus, and then build on this discussion to introduce the first
dynamic average consensus algorithm presented in the paper.

Static average consensus algorithms

Consensus algorithms to solve the static average consensus problem have been studied at least as
far back as [41]. The commonality in their design is the idea of having agents start their agreement
state with their own reference value and adjust it based on some weighted linear feedback which
takes into account the difference between their agreement state and their neighbors’. This leads to
algorithms of the following form

CT: ẋi(t) = −
N∑
j=1

aij
(
xi(t)− xj(t)

)
, (8a)

DT: xi(k + 1) = xi(k) +
N∑
j=1

aij
(
xi(k)− xj(k)

)
, (8b)

for i ∈ {1, . . . , N}, with xi(0) = ui constant for both algorithms. Here [aij]N×N is the adjacency
matrix of the communication graph (see “Sidebar 1: Basic Notions from Graph Theory”). By
stacking the agent variables into vectors, the static average consensus algorithms can be written
compactly using the graph Laplacian as

CT: ẋ(t) = −Lx(t), (9a)
DT: x(k + 1) = (I− L) x(k), (9b)

with x(0) = u. Here, note that the Laplacian matrices in the CT and DT algorithms are not the
same, but a scaled version of each other (with the Laplacian matrix in the DT case incorporating
the discretization stepsize).
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When the communication graph is fixed, this is a linear time-invariant system and can be an-
alyzed using standard time domain and frequency-domain techniques in control. Specifically,
the frequency-domain representation of the dynamic average consensus algorithm output signal
is given by

CT: X(s) = [sI + L]−1x(0) = [sI + L]−1U(s) (10a)
DT: X(z) = [zI− (I− L)]−1U(z), (10b)

where X(s) and U(s), respectively, denote the Laplace transform of x(t) and u, while X(z) and
U(z), respectively, denote the z-transform of Xk and u. For a static signals we have U(s) = u and
U(z) = u.

1

s
IN

L

x(t)

x(0)
−

(a) Continuous time

1

z − 1
IN

L

xk

x0

−

(b) Discrete time

Figure 4: Block diagram of the static average consensus algorithms (9). The input signals are assigned to
the initial conditions, that is, x(0) = u (in continuous time) or x0 = u (in discrete time). The feedback loop
consists of the Laplacian matrix of the communication graph and an integrator (1/s in continuous time and
1/(z − 1) in discrete time).

The block diagram of these static average consensus algorithms is shown in Figure 4. The dynam-
ics of these algorithms consists of a negative feedback loop where the feedback term is composed
of the Laplacian matrix and an integrator (1/s in continuous time and 1/(z − 1) in discrete time).
For the static average consensus algorithms, the reference signal enters the system as the initial
condition of the integrator state. Under certain conditions on the communication graph, it can be
shown that the error of these algorithms converges to zero. This is summarized next.

Theorem 0.1 (Convergence guarantees of the CT and DT static average consensus algorithms (8) [1]).
Suppose that the communication graph is constant, strongly connected, and weight-balanced di-
graph, and that the reference signals ui at each agent i ∈ {1, . . . , N} is a constant scalar. Then
the following convergence results hold for the CT and DT static average consensus algorithms (8)

CT: As t → ∞ every agreement state xi(t), i ∈ {1, . . . , N} of the CT static average consensus
algorithm (8a) converges to uavg with an exponential rate no worse than λ̂2, the smallest
non-zero eigenvalue of Sym(L).

DT: As k → ∞ every agreement state xik, i ∈ {1, . . . , N} of the DT static average consensus
algorithm (8b) converges to uavg with an exponential rate no worse than ρ ∈ (0, 1), provided
that the Laplacian matrix satisfies ρ = ‖IN − L− 1N1>N/N‖2 < 1.
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A first design for dynamic average consensus

Since the reference signals enter the static average consensus algorithms (8) as initial conditions,
they cannot track time-varying signals. Looking at the frequency-domain representation in Fig-
ure 4 of the static average consensus algorithms (8), it is clear that what is needed instead is to
continuously inject the signals as inputs into the dynamical system. This allows the system to
naturally respond to changes in the signals without any need for re-initialization. This is the basic
observation made in [42], resulting in the systems shown in Figure 5.

u̇(t)
1

s
IN

L

x(t)

x(0)
−

(a) Continuous-time algorithm (11)

∆uk
1

z − 1
IN

L

xk

x0

−

(b) Discrete-time algorithm (15) where ∆uk := uk+1 −
uk

u(t)

1

s
IN L

x(t)

p(0)

−

(c) Equivalent continuous-time algorithm (12)

uk

1

z − 1
IN L

xk

p0

−

(d) Equivalent discrete-time algorithm (16)

Figure 5: Block diagram of the dynamic average consensus algorithms (11) and (16). Here, the reference
signals are applied as inputs to the system. The feedback term is the integral of the error multiplied by
the graph Laplacian. The top two systems are in the form (3) and explicitly require the derivative of the
reference signals, while the bottom two (equivalent) systems do not require differentiating the reference
signals.

More precisely, [42] argues that considering the static inputs as a dynamic step function, the algo-
rithm

ẋ(t) = −Lx(t) + u̇(t), xi(0) = ui(0), ui(t) = uih(t), i ∈ {1, . . . , N},

in which the reference value of the agents enter the dynamics as an external input, results in the
same frequency representation (10a) (here h(t) is the Heaviside step function). Therefore, conver-
gence to the average of reference values is guaranteed. Based on this observation, [42] proposes
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one of the earliest algorithms for dynamic average consensus,

ẋi(t) = −
N∑
j=1

aij(x
i(t)− xj(t)) + u̇i(t), i ∈ {1, . . . , N}, (11a)

xi(0) = ui(0). (11b)

Algorithm (11) requires the knowledge of the derivative of the reference signals. In applications
where the input signals are measured online, computing the derivative can be costly or error prone.
A simple change of variables pi = ui − xi, i ∈ {1, . . . , N}, allows to write (11) in the equivalent
form,

ṗi(t) =
N∑
j=1

aij(x
i(t)− xj(t)), pi(0) = 0, i ∈ {1, . . . , N}, (12a)

xi(t) = ui(t)− pi(t). (12b)

Doing so eliminates the need to know the derivative of the reference signals and generates the same
trajectories t 7→ xi(t) as (11). The convergence guarantees of this dynamics are as follows.

Theorem 0.2 (Convergence of (11) over connected graphs for dynamic input signals [42]). Let G
be a connected undirected graph. Consider the LTI system described by (11). Suppose the input
signal u has a Laplace transform with all poles in the left half-plane and at most one zero pole.
Then,

lim
t→∞

∣∣∣xi(t)− uavg(t)
∣∣∣ = 0, i ∈ {1, . . . , N}.

The time-domain analysis of the algorithm (11) reveals further information about its ultimate track-
ing response. Define the tracking error of agent i by

ei(t) = xi(t)− uavg(t).

To analyze the system, the error is decomposed into the consensus direction (that is, the direction
1N ) and the disagreement directions (that is, the directions orthogonal to 1N ). To this end, define
the transformation matrix T =

[
1√
N

1N R
]

where R ∈ RN×(N−1) is such that T>T = TT> =

IN , and consider the change of variables

ē =

[
ē1

ē2:N

]
= T>e. (13)

In the new coordinates, (11) takes the form

˙̄e1 = 0, ē1(0) =
1√
N

1>N(x(0)− u(0)) = 0,

˙̄e2:N = −R> LR ē2:N + R>u̇, ē2:N(0) = R> x(0) = R> u(0).
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Using the ISS bound on the trajectories of LTI systems (see “Sidebar 3: Input-to-State Stability
of LTI Systems”) one sees that the tracking error of each agent i ∈ {1, . . . , N} while implement-
ing (11) over a strongly connected and weight-balanced digraph is

|ei(t)| ≤
√
‖ē2:N(t)‖2 + |ē1(t)|2

≤ e−λ̂2 t‖(IN −
1

N
1N1>N)u(0)‖+

sup0≤τ≤t ‖(IN − 1
N

1N1>N)u̇(τ)‖
λ̂2

, (14)

for all t ∈ R≥0, where λ̂2 is the smallest non-zero eigenvalue of Sym(L). The tracking error
bound (14) reveals the following interesting facts. First, it shows that the algorithm (11) renders
perfect asymptotic tracking not only for reference input signals with decaying rate but also for
unbounded reference signals whose uncommon parts asymptotically converge to a constant value.
This is because the ISS tracking bound due to external input depends on ‖(IN − 1

N
1N1>N)u̇(τ)‖

rather than ‖u̇(τ)‖. Note that if the reference signal of each agent i ∈ {1, . . . , N} can be written as
ui(t) = u(t) + ûi(t), where u(t) is the (possibly unbounded) common part and ûi(t) is the uncom-
mon part of the reference signal, we obtain ‖(IN − 1

N
1N1>N)u̇(τ)‖ = ‖(IN − 1

N
1N1>N)(u̇(t)1N +

˙̂u(t))‖ = ‖(IN − 1
N

1N1>N) ˙̂u(t)‖. This goes to show that the algorithm (11) properly uses the local
knowledge about the unbounded but common part of the reference dynamic signals to compensate
for the tracking error that would be induced due to the natural lag in diffusion of information across
the network for dynamic signals. Second, the tracking error bound (14) shows that as long as the
uncommon part of reference signals has bounded rate, the algorithm (11) will track the average
with some bounded error. Finally, (14) highlights the necessity for the special initialization (11b).
Without it, a fixed off-set from perfect tracking will be present regardless of the type of reference
input signals–one would expect that a proper dynamic consensus algorithm should be capable of
perfectly tracking static reference signals.

One can also propose a discrete-time counterpart of the dynamic average consensus continuous-
time algorithm (11) as

xik+1 = ∆uk − xik −
N∑
j=1

aij(x
i
k − x

j
k), xi0 ∈ R, i ∈ {1, . . . , N} (15)

with ∆uk := uk+1 − uk, or equivalently,

pik+1 = pik +
N∑
j=1

aij(x
i
k − x

j
k), pi0 ∈ R, i ∈ {1, . . . , N}, (16a)

xik = uik − pik. (16b)

The introduction of these algorithms has prepared us for a more in-depth treatment in our discus-
sion on the design of dynamic average consensus algorithms. This is what we tackle next, where
we discuss some of the shortcomings of the algorithms (11) and (16) regarding the requirement
for correct initialization (the steady-state error depends on the initial condition x(0) or x0), having
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Table 1: Arguments of the driving command in (1) for the reviewed continuous-time dynamic average
consensus algorithms together with their initialization requirements.

Algorithm (11) (17) (22) (23)

J i(t) {xi(t), u̇(t)} {xi(t), vi(t), u(t)} {xi(t), zi(t), vi(t),
u(t), u̇(t)}

{xi(t), vi(t),
u(t), u̇(t)}

{Ij(t)}j∈N i
out
{xj(t)}j∈N i

out
{xj(t), vj(t)}j∈N i

out
{zj(t), vj(t)}j∈N i

out
{vi(t)}j∈N i

out
Initialization
Requirement xi(0)=ui(0) none none

∑N
j=1 v

j(0) = 0

slow convergence, and only tracking constant reference signals with zero steady-state error (and
therefore with small steady-state error for slowly time-varying reference signals). This serves as
motivation for the synthesis of other distributed algorithms. For clarity of presentation, we review
continuous-time and discrete-time strategies separately.

Continuous-time dynamic average consensus algorithms

In the following, we introduce various continuous-time dynamic average consensus algorithms
and discuss their performance and robustness guarantees. Table 1 summarizes the arguments of
the driving command of these algorithms in (1) and their special initialization requirements. Some
of these algorithms when cast in the form of (1) require access to the derivative of the reference
signals, however, as we will show similar to the algorithm (11) this requirement can be eliminated
using alternative implementations.

Robustness to initialization

The requirement on precise initialization of the algorithm (11) makes it not robust to initialization
errors. This is of particular relevance given that the initial value is transmitted over the communi-
cation channels, which might be subject to noise and other perturbations.

It is simple to see why the condition on the initial states is necessary. Consider applying the
average signal 1>NU(z) as the input in Figure 5. Since 1>NL = 0 for balanced graphs, the output of
the Laplacian block is zero. Then 1>NX(z) = 1>NU(z) − 1>Np0. For the average of the outputs to
be the average of the reference signals, we need 1>Np0 = 0. This can also be seen directly from the
block diagram since the integrator states are directly connected to the output without first passing
through the Laplacian (see [43]).

To eliminate the special initialization requirement and to induce robustness with respect to algo-
rithm initialization, [44] proposes the following alternative dynamic average consensus algorithm
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q̇i(t) = −
N∑
j=1

bij (xi − xj), (17a)

ẋi = −α (xi − ui)−
N∑
j=1

aij (xi − xj) +
N∑
j=1

bji (q
i − qj), (17b)

qi(0), xi(0) ∈ R, i ∈ {1, . . . , N}, (17c)

where α ∈ R>0. Here, the agents are allowed to use two different adjacency matrices [aij]N×N and
[bij]N×N , so that they have an extra degree of freedom to adjust the tracking performance of the al-
gorithm. The Laplacian matrices associated with adjacency matrices [aij] and [bij] are represented
by, respectively, Lp, labeled as proportional Laplacian and LI, labeled as integral Laplacian. The
compact representation of (17) is as follows

q̇ = −LI x, (18a)

ẋ = −α (x− u)− Lp x + L>I q, (18b)

which also reads as

ẋ = −α (x− u)− Lp x− L>I

∫ t

0

LI x(τ) dτ.

The presence of the transposed integral Laplacian, L>I , in (18b) requires each agent i ∈ {1, . . . , N}
to know not only the entries in row i but also the column i of LI, and receive information from the
corresponding agents. Therefore, for directed graphs, (17) is not implementable (we come back to
this point later). However, for undirected graph topologies this requirement is satisfied trivially as
L>I = LI. The next result states the convergence properties of (17).

Theorem 0.3 (Convergence of (17) over strongly connected and weight-balanced digraphs for
dynamic input signals [44]). Let G be a strongly connected and weight-balanced digraph. Starting
from any initial condition qi(0), xi(0) ∈ R, for static inputs limt→∞ ‖e(t)‖ = 0, while, for bounded
inputs with bounded rates, ‖e(t)‖ is bounded.

Using a time-domain analysis similar to that of algorithm (11), we can obtain further information
on the ultimate tracking behavior of the algorithm (17). Consider the change of variables (13) and

w =

[
w1

w2:N

]
= T> q. (19)

This allows us to write (18) in the equivalent form

ẇ1 = 0, (20a)ẇ2:N

˙̄e1
˙̄e2:N

 =

 0 0 −R>LIR
0 −α 0

R>L>I R 0 −αI− R>LpR


︸ ︷︷ ︸

A

w2:N

ē1
ē2:N

+

 0

− 1√
N

∑N
j=1 u

j

αR>u

 . (20b)
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One can show that the matrix A in (20b) is Hurwitz. Therefore, using the ISS bound on the
trajectories of LTI systems (see “Sidebar 3: Input-to-State Stability of LTI Systems”), the tracking
error of each agent i ∈ {1, . . . , N}while implementing (17) over a strongly connected and weight-
balanced digraph is

|ei(t)| ≤κ e−λ t
∥∥∥ [w2:N(0)

ē(0)

]∥∥∥+
κ

λ
sup
0≤τ≤t

√√√√| 1√
N

N∑
j=1

uj(τ)|2 + α2‖(IN −
1

N
1N1>N)u(τ)‖2, (21)

where (κ, λ) can be computed from (S3) for matrix A in (20b). From this error bound, we observe
that for bounded dynamic signals with bounded rate the algorithm (17) is guaranteed to track the
dynamic average with an ultimately bounded error. Moreover, we can see that this algorithm does
not need any special initialization.

u(t) αIN
1

s
IN

Lp

1
s
LIL>I

x(t)

q(t)

−−−

(a) Continuous-time algorithm in (17)

u(t) αIN

u̇(t)

1

s
IN

β L

αβ
s
L

q(0)

x(t)
−−

q(t)

−

(b) Continuous-time algorithm in (23)

Figure 6: Block diagram of the dynamic average consensus algorithms (18) and (23). Here, the reference
signals are applied as inputs to the system.

Controlling the rate of convergence

A common feature of the dynamic average consensus algorithms presented above is that the rate
of convergence is the same for all agents and is dictated by network topology, as well as some
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algorithm parameters (see (14) and (21)). However, in some applications, the task is not just to
obtain the average of the dynamic inputs but rather to physically track this value, possibly with
limited control authority. To allow the network to pre-specify its desired worst rate of conver-
gence, β, [45] proposes dynamic average consensus algorithms whose design incorporates two
time scales. The 1st-Order-Input Dynamic Consensus (FOI-DC ) algorithm is described as follows

{
ε q̇i = −

∑N
j=1 aij(z

i − zj),
ε żi = −(zi + β ui + u̇i)−

∑N
j=1 aij(z

i − zj) +
∑N

j=1 aji(q
i − qj),

(22a)

ẋi = −β xi − zi, i ∈ {1, . . . , N} (22b)

The fast dynamics here is (22a), and employs a small value for ε ∈ R>0. The fast dynamics, which
builds on the PI algorithm (17), is intended to generate the average of the sum of the dynamic
input and its first derivative. The slow dynamics (22b) then uses the signal generated by the fast
dynamics to track the average of the reference signal across the network at a pre-specified smaller
rate β ∈ R>0. The novelty here is that these slow and fast dynamics are running simultaneously
and, thus, there is no need to wait for convergence of the fast dynamics and then take slow steps
towards the input average.

The technical approach used in [45] to study the convergence of (22) is based on singular perturba-
tion theory [46, Chapter 11]. Similar to the dynamic average consensus algorithm (17), (22) does
not require any specific initialization. The following result gives the convergence guarantees of
FOI-DC .

Theorem 0.4 (Convergence of FOI-DC [45]). Let G be a strongly connected and weight-balanced
digraph. Assume that in FOI-DC algorithm the first and the second derivatives of the input signal
ui at each agent i ∈ {1, . . . , N} are continuous and bounded for t ∈ R≥0. Then, there exists
ε? ∈ R>0 such that, for all ε ∈ (0, ε?], starting from any initial conditions x(0), z(0),ν(0) ∈ RN ,
the state xi, i ∈ {1, . . . , N}, of algorithm (22) converges exponentially fast with rate β to an
O(ε)-neighborhood of uavg(t),

lim
t→∞

∣∣xi(t)− uavg(t)
∣∣ ≤ ∣∣xi(0)− uavg(t)

∣∣ e−βt +O(ε), i ∈ {1, . . . , N}.

Using time-domain analysis, we can make more precise the information about the ultimate tracking
behavior of algorithm(17). For convenience, we apply the change of variables (13), (19) along
with ez = T>(z + β 1

N

∑N
j=1 u

j1N + 1
N

∑N
j=1 u̇

j1N) to write the FOI-DC algorithm as follows

ẇ1 = 0,[
ẇ2:N

ėz

]
= ε−1

 0
[
0 −R>LIR

][
0

R>L>I R

] [
−1 0

0 −I− R>LpR

]
︸ ︷︷ ︸

A

[
w2:N

ez

]
+

[
0

T>f

]
,

ė = −β e− ez,
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where f(t) = −ε−1(IN − 1
N

1N1>N)(β u + u̇) + 1
N

1N1>N(β u̇ + ü). Using the ISS bound on the
trajectories of LTI systems, see “Sidebar 3: Input-to-State Stability of LTI Systems”, the tracking
error of each agent i ∈ {1, . . . , N} while implementing FOI-DC algorithm with an ε ∈ R>0 is as
follows, i ∈ {1, . . . , N},

|eix(t)| ≤ e−β t|eix(0)|+ κ

β
sup
0≤τ≤t

(
e−ε

−1λ t
∥∥∥ [w2:N(0)

ez(0)

] ∥∥∥+
ε

λ
sup
0≤τ≤t

‖f‖
)
,

From this error bound, we observe that for bounded dynamic signals with bounded first and sec-
ond derivative FOI-DC algorithm is guaranteed to track the dynamic average with an ultimately
bounded error. Also, using small ε ∈ R>0 results in dynamics (23a) to have a higher decay rate
and therefore, the dominant rate of convergence of FOI-DC algorithm to be determined by β.

Implementation on Directed Graphs with a Tunable Error Bound

As we have observed above, the algorithm (17) is not implementable over directed graphs, since
it requires information exchange with both in- and out-neighbors, and these sets are generally
different. Here, we introduce a design proposed in [17] that address this problem. The algorithm
also uses proportional and integral agreement feedback and its implementation does not require
the agents to know their respective columns of the Laplacian. For i ∈ {1, . . . , N}, consider

q̇i = αβ
∑N

j=1
aij(x

i − xj), (23a)

ẋi = u̇i−α(xi − ui)−β
∑N

j=1
aij(x

i − xj)−qi, (23b)

xi(0), qi(0) ∈ R s.t.
∑N

j=1
qj(0) = 0, (23c)

In compact form, this algorithm can be expressed as follows

q̇ = αβ Lx,

ẋ = u̇− α (x− u)− β Lx− q,

which can be equivalently written as

ẋ = u̇− α (x− u)− β Lx− αβ
∫ t

0

Lx(τ) dτ.

As we did for algorithm (11), we can use a change of variables pi = ui−xi, to write this algorithm
in a form whose implementation does not require the knowledge of the derivative of the reference
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signals as follows,

q̇i = αβ
∑N

j=1
aij(x

i − xj),

ṗi = pi−β
∑N

j=1
aij(x

i − xj)−qi,

xi = ui − pi,

pi(0), qi(0) ∈ R s.t.
∑N

j=1
qj(0) = 0, i ∈ {1, . . . , N}.

Note that the initialization condition
∑N

i=1 q
i(0) = 0 can be easily satisfied if each agent i ∈

{1, . . . , N} starts at qi(0) = 0. This is a mild requirement because qi is an internal state for agent i
and therefore is not affected by communication errors. This initialization condition however, limits
the use of algorithm (23) in applications where agents join the network at different points in time.
The next result states the convergence properties of (23). We refer the reader to [17] for the proof
of this statement which is established using the time domain analysis we implemented to analyze
the algorithm we reviewed so far.

Theorem 0.5 (Convergence of (23) over strongly connected and weight-balanced digraphs for
dynamic input signals [17]). Let G be a strongly connected and weight-balanced digraph. Let the
agent inputs satisfy ‖(IN − 1

N
1N1>N)u̇‖ess =γ <∞. Then, for any α, β ∈ R>0, the trajectories of

algorithm (23) satisfy

lim
t→∞

∣∣∣xi(t)− uavg(t)
∣∣∣ ≤ γ

βλ̂2
, i ∈ {1, . . . , N}. (24)

The convergence rate to the error bound is min{α, β Re(λ2)}.

The inverse relation between β and the tracking error in (24) indicates that we can use the parameter
β to control the tracking error size.

Discrete-time dynamic average consensus algorithms

In the following, we introduce various discrete-time dynamic consensus algorithms, provide his-
torical context on their design, and discuss to what extent they address the shortcomings identified
for the initial design (16). Table 2 summarizes the arguments of the driving command of these
algorithms in (2) and their special initialization requirements.

Robustness to initialization

The dynamic average consensus algorithm (16) is not robust to initial conditions, meaning that
the final consensus value depends on the initial states of the agents. In particular, the initial states

20



Table 2: Arguments of the driving command in (2) for the reviewed discrete-time dynamic average con-
sensus algorithms together with their initialization requirements. Note that some algorithms use the future
input uk+1 in the update, but can be rewritten to only require the current input uk.

Algorithm (15) (25) (30) (31) (32)
J i(t) {xik, uik, uik+1} {xik, uik, uik+1} {pik, uik} {pik, uik} {pik, qik, uik}

{Ij(t)}j∈N i
out

{xjk}j∈N i
out

{xjk}j∈N i
out
{pjk}j∈N i

out
{pjk}j∈N i

out
{xik, p

j
k}j∈N i

out
Initialization
Requirement xi0 =ui0 none none

∑N
j=1 p

j
0 close to zero none

must be initialized such that 1>Nx0 = 1>Nu0 (or, equivalently, 1>Np0 = 0) in order for the output
to converge to the correct average. Correct initialization not only requires synchronization of the
algorithm start time, but also means that a single communication fault can introduce errors which
propagate through the system and affect the steady-state consensus value. Therefore, it is desired
to have a dynamic average consensus algorithm which is robust to initial conditions, meaning
that the steady-state error is independent of the initial states. Next, we discuss several methods
of modifying the algorithm to obtain robustness to initial conditions, although each method has
drawbacks as well. Note that robustness to initial conditions can be verified using the necessary
and sufficient conditions in [47].

Move the pole away from z = 1

One method of modifying the dynamic average consensus algorithm in Figure 5 to make it robust
to initial conditions is to move the open-loop pole from z = 1 to z = γ where |γ| < 1. The
resulting estimator, whose block diagram is shown in Figure 7, is given by

xik+1 = γxik − kI
N∑
j=1

aij(x
i
k − x

j
k) + (uik+1 − γ uik), xi0 ∈ R, i ∈ {1, . . . , N}, (25)

or equivalently,

pik+1 = γ pik + kI

N∑
j=1

aij(x
i
k − x

j
k), pi0 ∈ R, i ∈ {1, . . . , N} (26a)

xik = uik − pik. (26b)

A bound on the error of the trajectories is given in Theorem 0.6.

Theorem 0.6 (Proportional estimator). Suppose that the communication graph is constant, strongly-
connected, and weight-balanced. Let R ∈ RN×(N−1) be such that

[
1√
N

1N R
]

is orthonormal.

Suppose there exists P ∈ RN×N and ρ ∈ R such that

(γIN − kIR>LR)>P(γIN − kIR>LR)− ρ2 P ≤ 0, P > 0, ρ ≥ 0. (27)
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Figure 7: Block diagram of the dynamic average consensus algorithm with the pole at z = γ. When γ = 1,
the error converges to zero (provided that the internal state is initialized such that 1>Np0 = 0). On the other
hand, the error converges to a finite value when |γ| < 1 independent of the initial state. In particular, no
value of γ provides both zero steady-state error for constant input signals and robustness to initial conditions.

Then the error of the dynamic average consensus algorithm (25) satisfies the bound

‖ek‖2 ≤
( γk√

N
‖1>N(u0 − x0)‖

)2
+
(√

cond(P) ρk ‖(IN − 1
N

1N1>N)(u0 − x0)‖
)2

+
(1− ρk

1− ρ
sup

0≤m<k
‖(IN − 1

N
1N1>N)(uk+1 − γ uk‖

)2
(28)

for all k ∈ Z≥0.

Proof. The dynamic average consensus algorithm (25) can be written compactly as

xk+1 = (γIN − kIL)xk + (uk+1 − γ uk).

Defining the error as ek := xk − 1
N

1N1>Nuk, the error dynamics are

ek+1 = (γIN − kIL)ek + (IN − 1
N

1N1>N)(uk+1 − γ uk).

Define the transformation matrix T =
[

1√
N

1N R
]

where R ∈ RN×(N−1) is such that T is or-
thonormal, and consider the change of variables

ēk =

[
ē1k

ē2:N
k

]
= T>ek. (29)

In the new coordinates, (25) takes the form

ē1k+1 = γ ē1k, ē10 =
1√
N

1>N(x0 − u0),

ē2:N
k+1 = (γIN − kIR>LR)ē2:N + R>(uk+1 − γ uk), ē2:N

0 = R>x0.

The norm of the error is then

‖ek‖2 = ‖ēk‖2 = |ē1k|2 + ‖ē2:N
k ‖2,

and the bound (28) follows from applying the ISS bound for the trajectories of discrete-time sys-
tems in “Sidebar 3: Input-to-State Stability of LTI Systems” to each of the two error terms.
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The bound (28) provides several insights into the dynamic average consensus algorithm (25). First,
the effects of the initial conditions decay exponentially to zero with rate γ in the consensus direc-
tion (as long as |γ| < 1) and with rate ρ in the disagreement directions (as long as |ρ| < 1). Second,
the algorithm achieves zero steady-state error for constant reference signals only when γ = 1, that
is, when there is an open-loop pole at z = 1. By moving the pole, the steady-state error is no
longer zero.

A slight modification of this approach, however, can achieve both robustness to initial conditions
and zero steady-state error [48]. The idea is to use time-varying dynamics to have the pole drift
towards z = 1. In particular, the pole at time k is at z = γk where γk ∈ (0, 1) and γk → 1 as
k → ∞. This approach is attractive in theory since it is robust to initial conditions and achieves
zero steady-state error, but does not work well in practice. If the dynamic average consensus
algorithm is reinitialized (for example, if the graph changes) when the pole is still far from z = 1,
then the output converges quickly. As the pole approaches z = 1, however, the dynamic average
consensus algorithm takes longer and longer to recover from initialization errors. As the pole drifts
towards z = 1, robustness to initial conditions slowly deteriorates while the steady-state error is
improved, but at any finite time there is a trade-off between the two properties.

Swap the order of the integrator and the Laplacian matrix

The dynamic average consensus algorithm can also be made robust to initial conditions with a
simple modification of the block diagram. Consider swapping the order of the integrator and the
Laplacian block as shown in Figure 8. The integrator states now pass through the Laplacian before
reaching the output and therefore have no affect in the consensus direction. The dynamic average
consensus algorithm is then

pik+1 = pik + xik, pi0 ∈ R, i ∈ {1, . . . , N} (30a)

xik = uik − kI
N∑
j=1

aij(p
i
k − p

j
k), (30b)

and the error converges exponentially to zero independent of the initial states p0.

By making the dynamic average consensus algorithm robust to initial conditions, however, another
problem has been introduced; the dynamic average consensus algorithm is no longer internally
stable. To see why this happens, consider the dynamic average consensus algorithm in steady-
state. The output of the dynamic average consensus algorithm has then converged to the average of
the reference signals, and this constant (nonzero) value is injected directly into the integrator. The
integrator states grow unbounded as ramp signals. This is undesirable when the dynamic average
consensus algorithm is used to track the reference signals over a long period of time as the internal
states will eventually cause overflow.
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Figure 8: Block diagram of the dynamic average consensus algorithm with the integrator and Laplacian
block swapped. This version is robust to initial conditions since the initial condition is not directly connected
to the output in the consensus direction. For constant reference signals, however, the algorithm is not
internally stable since the integrator state grows like a ramp as k →∞.

Use the nonlinear Laplacian operator

Yet another approach for obtaining robustness to initial conditions is to change the state space
of the dynamic average consensus algorithm using the nonlinear Laplacian operator [49]. Recall
that the problem with the dynamic dynamic average consensus algorithm in Figure 8 is that the
integrator states grow unbounded when the outputs have converged to the average of the reference
signals. To fix this, the state space on each agent can be changed from the real line to the unit circle.
Doing so introduces nonlinearities into the dynamics, and the integrator states now take values on
the compact manifold T instead of the real line, where T denotes the unit circle. The dynamics
must be modified to make this work, but the result is that the integrator states are automatically
bounded regardless of the other signals in the system.
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Figure 9: Block diagram of the nonlinear dynamic average consensus algorithm whereL(x) = BWf(B>x)
is the nonlinear Laplacian operator and I : R → T is the covering projection s 7→ I(s) = exp{s

√
−1}

for s ∈ R. There exists an open set of initial conditions from which the error converges to zero, but the set
is not the entire space. In other words, the dynamic average consensus algorithm is locally stable but not
globally stable.

Similar to the Laplacian matrix, the Laplacian operatorL : Tn → Rn associated with an undirected
graph is defined as

L(x) = BWf(B>x)

where f : T → R is odd with f(0) = 0, B is the oriented incidence matrix of the graph, and
W is a diagonal matrix of edge weights. Here, f is interpreted as acting element-wise on vector
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arguments to produce vector values, and B> is interpreted as a Z-linear map from TN to Tm. Note
that the Laplacian matrix is given by L = BWB>. Let I : R→ T denote the covering projection
s 7→ I(s) = exp{s

√
−1} for s ∈ R. Then the nonlinear dynamic average consensus algorithm is

given by the block diagram in Figure 9, and the time-domain equations are

pik+1 = pik ⊕ I(kI xk), pi0 ∈ T, i ∈ {1, . . . , N} (31a)

xik = uik − η
N∑
j=1

aij f
(
1
η
(pik − p

j
k)
)
. (31b)

Although the nonlinear dynamic average consensus algorithm is internally stable, the nonlinearities
make it no longer globally exponentially stable. The dynamic average consensus algorithm is
locally robust to initial conditions (that is, there is an open set of initial conditions from which the
dynamic average consensus algorithm converges with zero steady-state error), but is not globally
robust to initial conditions (the set of initial conditions for which the system converges is not the
entire space).

Theorem 0.7 (Nonlinear estimator [49]). Suppose the following:

• the communication graph is constant, connected, and undirected,

• the reference signals are constant,

• the phase coupling function f : T → R is odd with f(0) = 0, and there exists b ∈ (0, π)
such that f(θ) = θ when |θ| ≤ b, and

• η is sufficiently large, and kI > 0.

Then there exists an open set of initial conditions pi0 around the origin from which the agreement
states xik of the nonlinear dynamic average consensus algorithm (31) converges exponentially to
the average uavg.

Introduce a second Laplacian block

The final approach considered achieves both robustness to initial conditions and internal stability
using linear time-invariant dynamics. To do this, a second Laplacian block is introduced in the
block diagram as shown in Figure 10. The integrator states pass through a Laplacian block before
reaching the output so the dynamic average consensus algorithm is robust to initial conditions,
and the output passes through a Laplacian block before reaching the integrator so the dynamic
average consensus algorithm is internally stable. The feedback loop contains both proportional and
integral terms, so this is referred to as the proportional-integral (PI) dynamic average consensus
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algorithm [44]. For reference, the time-domain equations describing the PI estimator are

qik+1 = γ qik + kp

N∑
j=1

aij
(
(xik − x

j
k) + (pik − p

j
k)
)
, (32a)

pik+1 = pik + kI

N∑
j=1

aij(x
i
k − x

j
k), (32b)

xik = uik − qik, pi0, q
i
0 ∈ R, i ∈ {1, . . . , N}. (32c)

The convergence properties of the PI estimator are further discussed in the following section.
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Figure 10: Block diagram of the proportional-integral dynamic average consensus algorithm (32) with pa-
rameters γ, kp, kI ∈ R. The integrator states pass through the graph Laplacian before reaching the output, so
the dynamic average consensus algorithm is robust to initial conditions. Also, the output passes through the
Laplacian before reaching the integrator, so the dynamic average consensus algorithm is internally stable.

Accelerating the convergence rate

The error of each discrete-time dynamic average consensus algorithm presented above converges
linearly to zero (sometimes requiring specific initialization). The rate of convergence depends on
the structure of the underlying communication graph as well as the algorithm parameters. How
to design dynamic average consensus algorithms to accelerate the convergence has received much
attention in the literature [43, 50, 51, 52, 53, 54, 55, 56, 57, 58]. Here, we give a simple method for
choosing the parameters in order to optimize the convergence rate. We also show how to further
accelerate the convergence by introducing extra dynamics into the dynamic average consensus
algorithm.

For simplicity of exposition, we assume that the communication graph is constant, connected, and
undirected. The Laplacian matrix is then symmetric and therefore has real eigenvalues. Since the
graph is connected, the smallest eigenvalue is λ1 = 0 and all the other eigenvalues are strictly
positive, in other words, λ2 > 0. Furthermore, we assume that the smallest and largest nonzero
eigenvalues are known (if the exact eigenvalues are unknown, it also suffices to have lower and
upper bounds, respectively, on λ2 and λN ).

First, consider the dynamic average consensus algorithm from Figure 5b. This algorithm has a
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single parameter kI . For discrete-time LTI systems, the convergence rate is given by the maximum
magnitude of the system poles. The poles are the roots of the characteristic equation, which for the
dynamic average consensus algorithm in Figure 5b is

0 = zI− (I− kIL).

If the Laplacian matrix can be diagonalized, then the system can be separated according to the
eigenvalues of L and each subsystem analyzed separately. The characteristic equation correspond-
ing to the eigenvalue λ of L is then

0 = 1 + λ
kI

z − 1
. (33)

To observe how the pole moves as a function of the Laplacian eigenvalue, root locus techniques
from LTI systems theory can be used. Figure 12a shows the root locus of (33) as a function of λ.
The dynamic average consensus algorithm poles are then the points on the root locus at gains λi for
i ∈ {1, . . . , N} where λi are the eigenvalues of the graph Laplacian. To optimize the convergence
rate, the system should be designed to minimize ρ where all poles corresponding to disagreement
directions (that is, those orthogonal to the consensus direction 1N ) are inside the circle centered at
the origin of radius ρ. Since the pole starts at z = 1 and moves left as λ increases, the convergence
rate is optimized when there is a pole at z = ρ when λ = λ2 and at z = −ρ when λ = λN , that is,

0 = 1 + λ2
kI

ρ− 1
and 0 = 1 + λN

kI
−ρ− 1

.

Solving these conditions for kI and ρ gives

kI =
2

λ2 + λN
and ρ =

λN − λ2
λN + λ2

. (34)

While the previous choice of parameters optimizes the convergence rate, even faster convergence
can be achieved by introducing extra dynamics into the dynamic average consensus algorithm.
Consider the accelerated dynamic average consensus algorithm in Figure 11a, given by

pik+1 = (1 + ρ2)pik − ρ2pik−1 + kI

N∑
j=1

aij(x
i
k − x

j
k), pi0 ∈ R, i ∈ {1, . . . , N}, (35a)

xik = uik − pik. (35b)

Instead of a simple integrator, the transfer function in the feedback loop now has two poles (one of
which is still at z = 1). To implement the dynamic average consensus algorithm, each agent must
keep track of two internal state variables (pik and pik−1). This small increase in memory, however,
can result in a significant improvement in the rate of convergence, as discussed below.

Once again, the root locus can be used to design the parameters to optimize the convergence rate.
Figure 12b shows the root locus of the accelerated dynamic average consensus algorithm (35).
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(a) Accelerated dynamic average consensus algorithm
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(b) Accelerated proportional-integral dynamic average consensus algorithm

Figure 11: Block diagram of accelerated dynamic average consensus algorithms. Extra dynamics are used to
accelerate the convergence rate. When the graph is connected and balanced, and upper and lower bounds on
the eigenvalues of the graph Laplacian are known, closed-form solutions for the parameters which optimize
the convergence rate are known.

By adding an open-loop pole at z = ρ2 and zero at z = 0, the root locus now goes around the
ρ-circle. Similar to the previous case, the convergence rate is optimized when there is a repeated
pole at z = ρ when λ = λ2 and a repeated pole at z = −ρ when λ = λN . This gives the optimal
parameter

kI =
4

(
√
λ2 +

√
λN)2

and the corresponding convergence rate

ρ =

√
λN −

√
λ2√

λN +
√
λ2
. (36)

The convergence rate of both the standard (Eq. (16)) and accelerated (Eq. (35)) versions of the
dynamic average consensus algorithm are plotted in Figure 13a as a function of the ratio λ2/λN .

Root locus techniques can also be used to optimize the convergence rate of other dynamic average
consensus algorithms. Since the dynamic average consensus algorithms (16) and (35) have only
one Laplacian block in the block diagram, the resulting root loci are linear in the Laplacian eigen-
values. For the proportional-integral dynamic average consensus algorithm, however, the block
diagram contains two Laplacian blocks resulting in a quadratic dependence on the eigenvalues.
Instead of a linear root locus, the design involves a quadratic root locus. Although this complicates
the design process, closed-form solutions for the algorithm parameters can still be found [43], even
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Figure 12: Root locus design of the integral dynamic average consensus algorithm. The dynamic average
consensus algorithm poles are the points on the root locus at gains λi for i ∈ {1, . . . , N} where λi are
the eigenvalues of the graph Laplacian. To optimize the convergence rate, the parameters are chosen to
minimize ρ such that all poles corresponding to eigenvalues λi for i ∈ {2, . . . , N} are inside the circle
centered at the origin of radius ρ. Then the dynamic average consensus algorithm converges linearly with
rate ρ.

for the accelerated version using extra dynamics, given by

qik+1 = 2ρ qik − ρ2qik−1 + kp

N∑
j=1

aij
(
(xik − x

j
k) + (pik − p

j
k)
)
, (37a)

pik+1 = (1 + ρ2)pik − ρ2pik−1 + kI

N∑
j=1

aij(x
i
k − x

j
k), (37b)

xik = uik − qik, pi0, q
i
0 ∈ R, i ∈ {1, . . . , N}, (37c)

whose block diagram is in Figure 11b. The resulting convergence rate is plotted in Figure 13b.
The convergence rate of the proportional-integral dynamic average consensus algorithm is slower
than that of the non-robust algorithm, thought the proportional-integral algorithm is robust to initial
conditions.

The following result summarizes the parameter choices which optimize the convergence rate for
several DT dynamic average consensus algorithms. The results for the first two algorithms follow
from the previous discussion, while details of the results for the last two algorithms can be found
in [43].

Theorem 0.8 (Optimal convergence rates of DT dynamic average consensus algorithms). Suppose
that the communication graph is constant, connected, and undirected, and that the reference signal
ui at each agent i ∈ {1, . . . , N} is a constant scalar. Define the ratio λr := λ2/λN .
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(b) Convergence rate of standard (Eq. (32)) and ac-
celerated (Eq. (37)) proportional-integral dynamic
average consensus algorithms which are robust to
initial conditions.

Figure 13: Convergence rate ρ as a function of λ2/λN for standard (blue) and accelerated (green) dynamic
average consensus algorithms. The accelerated dynamic average consensus algorithms in Figure 11 use
extra dynamics to enhance the convergence rate. The graph is assumed to be constant, connected, and
undirected with Laplacian eigenvalues λi for i ∈ {1, . . . , N}. In each case, the convergence rate of the
proportional-integral dynamic average consensus algorithm is slower than that of the non-robust dynamic
average consensus algorithm, although it is also robust to initial conditions. Closed-form expressions for the
rates and algorithm parameters are given in Theorem 0.8.

Then the agreement states xik, i ∈ {1, . . . , N} of the following dynamic average consensus algo-
rithms converge to uavg exponentially with rate ρ if the average of the initial integrator states is
zero (that is,

∑N
i=1 p

i
0 = 0) and the following parameters are used:

Dynamic average consensus algorithm (16)

ρ =
λN − λ2
λN + λ2

, kI =
2

λ2 + λN

Accelerated dynamic average consensus algorithm (35)

ρ =

√
λN −

√
λ2√

λN +
√
λ2
, kI =

4

(
√
λ2 +

√
λN)2

Furthermore, the agreement states xik, i ∈ {1, . . . , N} of the following dynamic average con-
sensus algorithms converge to uavg exponentially with rate ρ if the following parameters are used
(regardless of the initial states):
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Proportional-integral dynamic average consensus algorithm (32)

ρ =

{
ρ1, 0 < λr ≤ 3−

√
5

ρ2, 3−
√

5 < λr ≤ 1
kI =

1− ρ
λ2

kp =
1

λN

ρ(1− ρ)λr
ρ+ λr − 1

where

ρ1 =
8− 8λr + λ2r

8− λ2r
, ρ2 =

√
(1− λr)(4 + λ2r(5− λr))− λr(1− λr)

2(1 + λ2r)

Accelerated proportional-integral dynamic average consensus algorithm (37)

ρ =

{
ρ1, 0 < λr ≤ 2(

√
2− 1)

ρ2, 2(
√

2− 1) < λr ≤ 1
kI =

(1− ρ)2

λ2
kp = βkI

where

ρ1 =
4− β + 4(1−

√
4− β)

β
, ρ2 =

1− β − 2(1−
√
β)

1− β

and β = 2 + 2
√

1− λr − λr

Perfect tracking using a priori knowledge of the input signals

The design of the dynamic average consensus algorithms described in the discussion so far does
not require prior knowledge of the reference signals and is therefore broadly applicable. This also
comes at a cost: the convergence guarantees of these algorithms are strong only when the refer-
ence signals are constant or slowly varying. The error of such algorithms can be large, however,
when the reference signals change quickly in time. In this section, we describe dynamic average
consensus algorithms which are capable of tracking fast time-varying signals with either zero or
small steady-state error. In each case, their design assumes some specific information about the
nature of the reference signals. In particular, we consider reference signals which either (1) have a
known model, (2) are bandlimited, or (3) have bounded derivatives.

Signals with a known model (discrete time)

The discrete-time dynamic average consensus algorithms discussed previously are designed with
the idea of tracking constant reference signals with zero steady-state error. To do this, the algo-
rithms contain an integrator in the feedback loop. This concept generalizes to time-varying sig-
nals with a known model using the internal model principle. Consider reference signals whose
z-transform has the form ui(z) = ni(z)/d(z) where ni(z) and d(z) are polynomials in z for
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i ∈ {1, . . . , N}. Dynamic average consensus algorithms can be designed which have zero steady-
state error for such signals by placing the model of the input signals (that is, d(z)) in the feedback
loop. Some common examples of models are

d(z) =

{
(z − 1)m, polynomial of degree m− 1

z2 − 2z cos(ω) + 1, sinusoid with frequency ω.

In this section, we will focus on dynamic average consensus algorithms which track degree m− 1
polynomial reference signals with zero steady-state error.
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(a) Dynamic average consensus algorithm (38) in [59] where ∆(m) = (1 − z−1)m is the mth divided
difference (see also [60] for a step size analysis). The performance does not degrade when the graph is time-
varying, but the estimate is delayed by m iterations. Furthermore, the algorithm is numerically unstable
when m is large and eventually diverges from tracking the average when implemented using finite precision
arithmetic.
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(b) Dynamic average consensus algorithm (39), which is the algorithm in [44] cascaded in series m times.
The estimate of the average is not delayed and the algorithm is numerically stable, but the tracking perfor-
mance degrades when the communication graph is time-varying.

Figure 14: Block diagram of dynamic average consensus algorithms which track polynomial signals of
degree m − 1 with zero steady-state error when initialized correctly (neither algorithm is robust to initial
conditions). The indicated section is repeated in series m times.

Consider the dynamic average consensus algorithms in Figure 14. The transfer function of each
algorithm has m − 1 zeros at z = 1, so the algorithms track degree m − 1 polynomial references
signals with zero steady-state error. The time-domain equations for the dynamic average consensus
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algorithm in Figure 14a are

xi1,k+1 = xi1,k −
N∑
j=1

aij(x
i
1,k − x

j
1,k) + ∆(m)uk (38a)

xi2,k+1 = xi2,k −
N∑
j=1

aij(x
i
2,k − x

j
2,k) + xi1,k (38b)

...

xim,k+1 = xim,k −
N∑
j=1

aij(x
i
m,k − x

j
m,k) + xim−1,k (38c)

xik = xim,k, xi`,0 ∈ R, ` ∈ {1, . . . ,m}, i ∈ {1, . . . , N} (38d)

where the mth divided difference is defined recursively as ∆(m)uik = ∆(m−1)uik −∆(m−1)uik−1 for
m ≥ 2 with ∆(1)uik = uik − uik−1. The estimate of the average, however, is delayed by m iterations
due to the transfer function having a factor of z−m between the input and output. This problem is
fixed by the dynamic average consensus algorithm in Figure 14b, given by

pi1,k+1 = pi1,k +
N∑
j=1

aij
(
(uik − ujk)− (pi1,k − p

j
1,k)
)

(39a)

pi2,k+1 = pi2,k +
N∑
j=1

aij
(
(uik − ujk)− (pi1,k − p

j
1,k)− (pi2,k − p

j
2,k)
)

(39b)

...

pim,k+1 = pim,k +
N∑
j=1

aij

(
(uik − ujk)−

m∑
`=1

(pi`,k − p
j
`,k)
)

(39c)

xik = uik −
m∑
`=1

pi`,k, pi`,0 ∈ R, ` ∈ {1, . . . ,m}, i ∈ {1, . . . , N}, (39d)

which tracks degree m−1 polynomial reference signals with zero steady-state error without delay.
It should be noted, however, that we are assuming the communication graph is constant in order
to use frequency domain arguments; while the output of the dynamic average consensus algorithm
in Figure 14a is delayed, it also has nice tracking properties when the communication graph is
time-varying whereas the dynamic average consensus algorithm in Figure 14b does not.

To track degree m − 1 polynomial reference signals, each dynamic average consensus algorithm
in Figure 14 cascades m dynamic average consensus algorithms, each with a pole at z = 1 in
the feedback loop. The dynamic average consensus algorithm (15) is cascaded in Figure 14b, but
any of the dynamic average consensus algorithms from the previous section could also be used.
For example, the proportional-integral dynamic average consensus algorithm could be cascaded m
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Figure 15: Feedforward dynamic average consensus algorithm for tracking the average of bandlimited ref-
erence signals. The prefilter h(z) is applied to the reference signals before passing through the graph Lapla-
cian. For an appropriately designed prefilter, the dynamic average consensus algorithm can track bandlim-
ited reference signals with arbitrarily small steady-state error when using exact arithmetic (and small error
for finite precision) [63].

times to track degree m− 1 polynomial reference signals with zero steady-state error independent
of the initial conditions.

In general, reference signals with model d(z) can be tracked with zero steady-state error by cas-
cading simple dynamic average consensus algorithms, each of which tracks a factor of d(z). In
particular, suppose d(z) = d1(z) d2(z) . . . dm(z). Then m dynamic average consensus algorithms
can be cascaded where the ith component contains the model di(z) for i = 1, . . . ,m. Alternatively,
a single dynamic average consensus algorithm can be designed which contains the entire model
d(z). This approach using an internal model version of the proportional-integral dynamic average
consensus algorithm is designed in [61] in both continuous and discrete time.

In many practical applications, the exact model of the reference signals is unknown. However, it is
shown in [62] that a frequency estimator can be used in conjunction with an internal model dynamic
average consensus algorithm to still achieve zero steady-state error. In particular, the frequency of
the reference signals is estimated such that the estimate converges to the actual frequency. This
time-varying estimate of the frequency is then used [62] in place of the true frequency to design
the feedback dynamic average consensus algorithm.

Bandlimited signals (discrete time)

In order to use algorithms designed using the model of the reference signals, the signals must be
composed of a finite number of known frequencies. When either the frequencies are unknown or
there are infinitely many frequencies, dynamic average consensus algorithms can still be designed
if the reference signals are bandlimited. In this case, feedforward dynamic average consensus
algorithm designs can be used to achieve arbitrarily small steady-state error.

For our discussion here, we assume that the reference signals are bandlimited with known cutoff
frequency. In particular, let Ui(z) be the z-transform of the ith reference signal {uik}. Then Ui(z)
is bandlimited with cutoff frequency θc if |Ui(exp(jθ))| = 0 for all θ ∈ (θc, π].
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Consider the dynamic average consensus algorithm in Figure 15. The reference signals are passed
through a prefilter h(z) and then multiplied m times by the consensus matrix I − L with a delay
between each (to allow time for communication). The transfer function from the input U(z) to the
output X(z) is

H(z,L) = h(z)
1

zm
(I− L)m.

In order for the tracking error to be small, h(z) should approximate zm for all θ ∈ [0, θc] where
z = exp(jθ) and θc is the cutoff frequency. In this case the transfer function in the passband is
approximately

H(z,L) ≈ (I− L)m,

so the error can be made small by making m large enough (so long as L is scaled such that ‖I −
L− 11>/N‖2 < 1).

In particular, the prefilter should be designed such that h(z) is proper and h(z) ≈ zm for z =
exp(jθ) for all θ ∈ [0, θc] (note that h(z) = zm cannot be used since this is not causal). An
m-step filter can be obtained by cascading a one-step filter m times in series. In other words, let
h(z) = [zf(z)]m where f(z) is strictly proper and approximates unity in the passband. Since f(z)
must approximate unity in both magnitude and phase, a standard lowpass filter cannot be used.
Instead, set

f(z) = 1− g(z)/ lim
z→∞

g(z)

where g(z) is a proper highpass filter with cutoff frequency θc. Then f(z) is strictly proper (due to
the normalizing constant in the denominator) and approximates unity in the band [0, θc] (since g(z)
is highpass). Therefore, a prefilter h(z) which approximates zm in the passband can be designed
using a standard highpass filter g(z).

Using such a prefilter, [63] makes the error of the dynamic average consensus algorithm in Fig-
ure 15 arbitrarily small if (1) the graph is connected and balanced at each time step (in particular,
it need not be constant), (2) L is scaled such that ‖I− L− 11>/N‖2 < 1, (3) the number of stages
m is made large enough, (4) the prefilter can approximate zm arbitrarily closely in the passband,
and (5) exact arithmetic is used. Note that exact arithmetic is required for arbitrarily small error
since rounding errors cause high frequency components in the reference signals.

Signals with bounded derivatives (continuous time)

Stronger tracking results can be obtained using algorithms implemented in continuous time. Here,
we present a continuous-time dynamic average consensus algorithm which is capable of tracking
time-varying reference signals whose derivatives are bounded with zero error in finite time. For
simplicity, we assume that the communication graph is constant, connected, and undirected. Also,
the reference signals are assumed to be differentiable with bounded derivatives.
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(a) Dynamic average consensus algorithm (40) which achieves perfect tracking in finite time and uses one-
hop communication, but is not robust to initial conditions (that is, the steady-state error is zero only if
1>x(0) = 1>u(0)). Furthermore, the derivative of the reference signals is required; see [64].
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(b) Dynamic average consensus algorithm (41) which is equivalent to the algorithm in (a), although this
form does not require the derivative of the reference signals. In this case, the requirement on the initial
conditions is 1>p(0) = 0.
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(c) Dynamic average consensus algorithm (42) which converges to zero error in finite time and is robust to
initial conditions, but requires two-hop communication (in other words, two rounds of communication are
performed at each time instant); see [65].
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(d) Dynamic average consensus algorithm (43) which is robust to initial conditions and uses one-hop com-
munication, but converges to zero error exponentially instead of in finite time; see [65].
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(e) Dynamic average consensus algorithm (44) that is robust to initial conditions and uses one-hop commu-
nication, although the error converges to zero exponentially instead of in finite time; see [66].

Figure 16: Block diagram of discontinuous dynamic average consensus algorithms in continuous time. In
each case, the communication graph is assumed to be constant, connected, and balanced with Laplacian
matrix L = BB>. Furthermore, the reference signals are assumed to have bounded derivatives.

In discrete time, zero steady-state error is obtained by placing the internal model of the reference
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signals in the feedback loop. This provides infinite loop gain at the frequencies contained in the ref-
erence signals. In continuous time, however, the discontinuous signum function sgn can be used in
the feedback loop to provide ‘infinite’ loop gain over all frequencies, so no model of the reference
signals is required. Furthermore, such continuous-time dynamic average consensus algorithms are
capable of achieving zero error tracking in finite time as opposed to the exponential convergence
achieved by discrete-time dynamic average consensus algorithms. One such algorithm is proposed
in [64] as

ẋi = u̇i − kp
∑
j∈N i

out

sgn(xi(t)− xj(t)), i ∈ {1, . . . , N}, (40a)

∑N

i=1
xi(0) =

∑N

i=1
ui(0). (40b)

The block diagram representation in Figure 16a indicates that this algorithm applies sgn in the
feedback loop. Under the given assumptions, using a sliding mode argument, one can select the
feedback gain kp to guarantee zero error tracking in finite time provided that an upper bound γ
of the form ‖u̇‖ess = γ < ∞ is known [64]. The dynamic consensus algorithm (40) can also be
implemented without derivative information of the reference signals in an equivalent way as

ṗi = kp
∑
j∈N i

out

sgn(xi − xj),
∑N

j=1
pj(0) = 0, (41a)

xi = ui − pi, i ∈ {1, . . . , N}. (41b)

The corresponding block diagram is shown in Figure 16b.

It is simple to see from the block diagram of Figure 16a why (40) is not robust to initial conditions;
the integrator state is directly connected to the output and therefore affects the steady-state output
in the consensus direction. This issue is fixed by the dynamic average consensus algorithm in
Figure 16c, given by

ṗi = kp sgn
( ∑
j∈N i

out

(xi − xj)
)
, pi(0) ∈ R, (42a)

xi = ui −
∑
j∈N i

out

(pi − pj), i ∈ {1, . . . , N}, (42b)

which moves the integrator before the Laplacian in the feedback loop. However, this dynamic aver-
age consensus algorithm has two Laplacian blocks directly connected which means that it requires
two-hop communication to implement. In other words, two sequential rounds of communication
are required at each time instant. In the time-domain, each agent must do the following (in order)
at each time t: (1) communicate pi(t), (2) calculate xi(t), (3) communicate xi(t), and (4) update
pi(t) using the derivative ṗi(t). To only require one-hop communication, the dynamic average
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consensus algorithm in Figure 16d, given by

q̇i = −α qi + xi (43a)

ṗi = kp sgn
( ∑
j∈N i

out

(qi − qj)
)
, (43b)

xi = ui −
∑
j∈N i

out

(pi − pj), pi(0), qi(0) ∈ R, i ∈ {1, . . . , N}, (43c)

places a strictly proper transfer function in the path between the Laplacian blocks. The extra
dynamics, however, cause the output to converge exponentially instead of in finite time [65].

Alternatively, under the given assumptions, a sliding mode-based dynamic consensus algorithm
with zero error tracking which can be arbitrarily initialized is also proposed in [66] as

ẋi = u̇i − (xi − ui)− kp
∑
j∈N i

out

sgn(xi − xj), xi(0) ∈ R, i ∈ {1, . . . , N},

or equivalently,

ṗi = −pi + kp
∑
j∈N i

out

sgn(xi − xj), pi(0) ∈ R, (44a)

xi = ui − pi, i ∈ {1, . . . , N}. (44b)

However, this algorithm requires both the reference signals and their derivatives to be bounded
with know values γ1 and γ2: ‖u‖ess = γ1 <∞ and ‖u̇‖ess = γ2 <∞. These values are required to
design the proper sliding mode gain kp.

Conclusions

This paper has provided an overview of the state of the art on the available distributed algorithmic
solutions to tackle the dynamic average consensus problem. We hope that the article has served
the reader get an overview on the progress and intricacies of this topic, and helped appreciate
the design trade-offs faced when balancing desirable properties such as convergence rate, steady-
state error, robustness to initial conditions, internal stability, amount of memory required on each
agent, and amount of communication between neighboring agents. Given the importance for a
network system that the ability to track the average of time-varying reference signals using only
local communication has, we expect the number and breadth of applications for dynamic average
consensus algorithms to continue increasing. In particular, the recent emergence of interconnected
scenarios where the reference signals come from another coordination algorithm, which in turn
makes use itself of the variables obtained by the dynamic average consensus algorithm, is a fertile
area where further research and applications might be developed in the coming years.
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Sidebar 1: Basic Notions from Graph Theory
The communication network of a multiagent cooperative system can be modeled by a directed
graph or simply a digraph. Here, we briefly review some basic concepts from graph theory fol-
lowing [S1]. A digraph is a pair G = (V , E), where V = {1, . . . , N} is the node set and E ⊆ V×V
is the edge set. An edge from i to j, denoted by (i, j), means that agent j can send information to
agent i. For an edge (i, j) ∈ E , i is called an in-neighbor of j, and j is called an out-neighbor of
i. We denote the set of out-neighbors of each agent i by N i

out. A graph is undirected if (i, j) ∈ E
anytime (j, i) ∈ E .

1
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(a) Strongly connected, weight-balanced digraph:

A =

[
0 0 1 0
1 0 0 1
0 1 0 0
0 0 1 0

]
, L =

[ 1 0 −1 0
−1 2 0 −1
0 −1 1 0
0 0 −1 1

]
.

1

2

3

4

(b) Connected graph with unit edge weights:

A =

[
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

]
, L =

[ 2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

]
.

Figure 17: Examples of directed and undirected graphs.

A weighted digraph is a triplet G = (V , E ,A), where (V , E) is a digraph and A ∈ RN×N is a
weighted adjacency matrix with the property that aij > 0 if (i, j) ∈ E and aij = 0, otherwise.
A weighted digraph is undirected if aij = aji for all i, j ∈ V . The weighted out-degree and
weighted in-degree of a node i, are respectively, dout(i) =

∑N
j=1 aji and din(i) =

∑N
j=1 aij . We let

dout
max = max

i∈{1,...,N}
dout(i) denote the maximum weighted out-degree. A digraph is weight-balanced if

at each node i ∈ V , the weighted out-degree and weighted in-degree coincide (although they might
be different across different nodes). The out-degree matrix Dout is the diagonal matrix with entries
Dout
ii = dout(i), for all i ∈ V . The (out-) Laplacian matrix is L = Dout − A. Note that L1N = 0.

A weighted digraph G is weight-balanced if and only if 1TNL = 0. Based on the structure of L,
at least one of the eigenvalues of L is zero and the rest of them have nonnegative real parts. We
denote the eigenvalues of L by λi, i ∈ {1, . . . , N}, where λ1 = 0 and <(λi) ≤ <(λj), for i < j.
For strongly connected digraphs, one has rank(L) = N − 1. For strongly connected and weight-
balanced digraphs, we denote the eigenvalues of Sym(L) = (L + L>)/2 by λ̂1, . . . , λ̂N , where
λ̂1 = 0 and λ̂i ≤ λ̂j , for i < j. For strongly connected and weight-balanced digraphs, we have

0 < λ̂2I ≤ R> Sym(L)R ≤ λ̂NI, (S1)

where R ∈ RN×(N−1) satisfies [ 1
N

1N R][ 1
N

1N R]> = [ 1
N

1N R]>[ 1
N

1N R] = IN . Notice that for
connected graphs, Sym(L) = L, and consequently λi = λ̂i, for all i ∈ V .
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Sidebar 2: Further Reading

There are many additional topics related to the dynamic average consensus problem that this article
does not explore in detail; here we provide several interesting pointers for such topics for the
interested reader.

A number of works have studied the robustness of dynamic average consensus algorithms against a
variety of disturbances and sources of error present in practical scenarios. These include fixed com-
munication delays [S2], additive input disturbances [S7], time-varying communication graphs [S17],
and driving command saturation [17]. Variations of the dynamic average consensus problems ex-
plore scenarios where the algorithm design depends on the specific agent dynamics [66, S4, S3]
or incorporates different agent roles, such as in leader-follower networks of mobile agents [S5, S6,
S8].

When dealing with directed agent interactions, a common assumption in solving the average con-
sensus problem is that the communication graph is weight-balanced, which is equivalent to the
graph consensus matrix W := I − L being doubly stochastic. In [S9], it is shown in fact that
calculating an average over a network requires either explicit or implicit use of either (1) the out-
degree of each agent, (2) global node identifiers, (3) randomization, or (4) asynchronous updates
with specific properties. In particular, the balanced assumption is necessary for scalable, deter-
ministic, synchronous algorithms. In general, agents may not have access to their out-degree (for
example, agents which use local broadcast communication). If each agent knows its out-degree,
however, then distributed algorithms may be used to generate weight-balanced and doubly stochas-
tic digraphs [S10, S11]. Another approach is to explicitly use the out-degree in the algorithm by
having agents share their out-weights and use them to adjust for the imbalances in the graph; this
is referred to as the push-sum protocol and has been successfully applied to the static average con-
sensus problem (see [S13, S14, S15, S16]). Both of these approaches of dealing with unbalanced
graphs require each agent to know its out-degree.

Furthermore, when communication links are time-varying, these approaches only work if the
time-varying graph remains weight-balanced, see [17, S28]. If communication failures caused
by limited communication ranges or external events such as obstacle blocking destroy the weight-
balanced character of the graph, it is still possible to solve the dynamic average consensus problem
if the expected graph is balanced [S17]. Another set of works have explored the question of how to
optimize the graph topology to endow consensus algorithms with better properties. These include
designing the network topology in the presence of random link failures [S18] and optimizing the
edge weights for fast consensus [5, S19].

45

http://www.coordinationbook.info


References

[S2] H. Moradian and S. S. Kia, “Dynamic average consensus in the presence of communication delay over
directed graph topologies,” in American Control Conference, pp. 4663–4668, 2017.

[S3] S. Ghapania and W. Ren and F. Chen and Y. Song, “Distributed average tracking for double-integrator
multi-agent systems with reduced requirement on velocity measurements,” Automatica, vol. 81, no. 7,
pp. 1–7, 2017.

[S4] F. Chen and G. Feng and L. Liu and W. Ren, “Distributed Average Tracking of Networked Euler-
Lagrange Systems,” in IEEE Transactions on Automatic Control, vol. 60, no. 2, pp. 547–552, 2015.

[S5] W. Ren, “Multi-vehicle consensus with a time-varying reference state,” Systems and Control Letters,
vol. 52, no. 2, pp. 474–483, 2007.

[S6] G. Shi and Y. Hong and K. H. Johansson, “Connectivity and set tracking of multi-agent systems guided
by multiple moving leaders,” IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 663–676,
2012.

[S7] G. Shi and K. H. Johansson, “Robust consensus for continuous-time multi-agent dynamics,” SIAM
Journal on Control and Optimization, vol. 51, no. 5, pp. 3673–3691, 2013.

[S8] Z. Meng, D. V. Dimarogonas and K. H. Johansson, “Leader-follower coordinated tracking of multiple
heterogeneous Lagrange systems using continuous control,” IEEE Transactions on Robotics, vol. 30,
no. 3, pp. 739–745, 2014.

[S9] J. M. Hendrickx and J. N. Tsitsiklis, “Fundamental limitations for anonymous distributed systems with
broadcast communications,” in Allerton Conference on Communication, Control, and Computing, pp.
9–16, 2015.

[S10] B. Gharesifard and J. Cortés, “Distributed strategies for generating weight-balanced and doubly
stochastic digraphs,” European Journal of Control, vol. 18, no. 6, pp. 539–557, 2012.

[S11] A. Rikos, T. Charalambous and C. N. Hadjicostis, “Distributed weight balancing over digraphs,”
IEEE Transactions on Control of Network Systems, vol. 1, no. 2, pp. 190–201, 2014.

[S12] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,” in IEEE
Symposium on Foundations of Computer Science, (Washington, DC), pp. 482-491, 2003.
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Sidebar 3: Input-to-State Stability of LTI Systems
For a linear time-invariant system

ẋ = Ax + Bu, x ∈ Rn, u ∈ Rm, (S1)

we can write the solution for t ∈ R≥0 as

x(t) = eA t x(0) +

∫ t

0

eA(t−τ) B u(τ)dτ. (S2)

For a Hurwitz matrix A, by using the bound

‖eA t‖ ≤ κ e−λ t, t ∈ R≥0, (S3)

for some κ, λ ∈ R>0, we can establish an upper bound on the norm of the trajectories of (S2) as
follows

‖x(t)‖ ≤ κ e−λ t ‖x(0)‖+

∫ t

0

κ e−λ (t−τ)‖B‖ ‖u(τ)‖dτ,

≤ κ e−λ t ‖x(0)‖+
κ ‖B‖
λ

sup
0≤τ≤t

‖u(τ)‖, ∀t ∈ R≥0. (S4)

The bound here shows that the zero-input response decays to zero exponentially fast, while the
zero-state response is bounded for every bounded input, indicating an input-to-state stability (ISS)
behavior. It is worth noticing that the ultimate bound on the system state is proportional to the
bound on the input.

Next, we comment on how to compute the parameters κ, λ ∈ R>0 in (S3). Recall that [S20, Fact
11.15.5] for any matrix A ∈ Rn×n, we can write

‖eA t‖ ≤ eλmax(Sym(A)) t. ∀ t ∈ R≥0 (S5)
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where Sym(A) = 1
2
(A + A>). Therefore, for a Hurwtiz matrix A the exponential bound parame-

ters can be set to

λ = −λmax(Sym(A)), κ = 1. (S6)

A tighter exponential bound of

λ = λ?, κ =
√
σmax(P

?)/σmin(P?), (S7)

can also be obtained, according to [S21, Proposition 5.5.33], from the convex linear matrix in-
equality optimization problem

(λ?,P?) = argminλ s.t. (S8a)

PA + A>P ≤ −2λP, P > 0, λ > 0. (S8b)

Similarly, the state of the discrete-time linear time-invariant system

xk+1 = Axk + Buk, xk ∈ Rn, uk ∈ Rm (S9)

with initial condition x0 ∈ Rn satisfies the bound

‖xk‖ ≤

√
σmax(P)

σmin(P)

(
ρk‖x0‖+

1− ρk

1− ρ
‖B‖ sup

0≤m<k
‖um‖

)
(S10)

where P ∈ Rn×n and ρ ∈ R satisfy

A>PA− ρ2 P ≤ 0, P > 0, ρ ≥ 0. (S11)

References

[S20] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear System
Theory. Springer-Verlag Berlin Heidelberg, 2005.

[S21] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I: Modeling, State Space Analysis,
Stability and Robustness. Princeton University Press, 2005.

Sidebar 4: Euler Discretizations of Continuous-Time Dynamic Average Consensus Algo-
rithms

The continuous-time algorithms described in the paper can also give rise to discrete-time strategies.
Here we describe how to discretize them so that they are implementable over wireless communi-
cation channels. This can be done by using the (forward) Euler discretization of the derivatives,

ẋ(t) ≈ x(k + 1)− x(k)

δ
,
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where δ ∈ R>0 is the stepsize. To illustrate the discussion, we develop this approach for the
algorithm (23) over a connected graph topology. The discussion below can also be extended to
include iterative forms of the other continuous-time algorithms studied in the paper. Using the
Euler discretization in the algorithm (23) leads to

vi(k + 1) = vi(k) + δαβ
∑N

j=1
aij(x

i(k)−xj(k)), (S12a)

xi(k + 1) = xi(k) + ∆ui(k)− δα(xi(k)− ui(k))− δβ
∑N

j=1
aij(x

i(k)− xj(k))− δvi(k),

(S12b)

where ∆ui(k) = ui(k+ 1)− ui(k). To implement this iterative form at each timestep k we need to
have access to the future value of the reference input at timestep k + 1. Such a requirement is not
practical when the reference input is sampled from a physical process or is a result of an another on-
line algorithm. One could circumvent this requirement using a backward Euler discretization but
the resulting algorithm will track the reference dynamic average with one step delay. A practical
solution which avoids requiring the future values of the reference input is obtained by introducing
an intermediate variable zi(k) = xi(k) − ui(k) and representing the iterative algorithm (S12) in
the form

vi(k + 1) = vi(k) + δαβ
∑N

j=1
aij(x

i(k)−xj(k)), (S13a)

zi(k + 1) = zi(k)− δαzi(k)− δβ
∑N

j=1
aij(x

i(k)− xj(k))− δvi(k), (S13b)

xi(k) = zi(k) + ui(k), (S13c)

for i ∈ {1, . . . , N}. Algorithm (S13) is then the form that should be implement.

The question then is to characterize the adequate stepsizes that guarantee that the convergence
properties of the continuous-time algorithm are retained by its discrete implementation. Intuitively,
the smaller the stepsize, the better for this purpose. However, this also requires more communica-
tion. To ascertain this issue, the following result is particularly useful.

Lemma 0.1 (Admissible stepsize for Euler discretized form of LTI systems and a bound on their
trajectories). Consider

ẋ = Ax + Bu, t ∈ R≥0,

and its Euler discretized iterative form

x(k + 1) = (I + δA) x(k) + δB u(k), k ∈ Z≥0, (S14)

where x ∈ Rn and u ∈ Rm are, respectively, state and input vectors, and δ ∈ R>0 is the de-
scretizetion stepsize. Let the system matrix A = [aij] ∈ Rn×n be a Hurwitz matrix with eigen-
values {mui}ni=1, and the difference of input signal be bounded, ‖∆u‖ < ρ < ∞. Then, for any
δ ∈ (0, d̄) where

d̄ = min
{
− 2

Re(µi)

|µi|2
}n
i=1

(S15)
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the eigenvalues of (I + δA) are all located inside the until circle in complex plane. Moreover,
starting from any x(0) ∈ Rn, the trajectories of (S14) satisfy

lim
k→∞
‖x(k + 1)‖ ≤ κ ρ ‖B‖

1− ω
, (S16)

where ω ∈ (0, 1), and κ ∈ R > 0 such that ‖I + δA‖k ≤ κωk.

The bounds ω ∈ (0, 1) and κ ∈ R>0 in ‖I + δA‖k ≤ κωk when all the eigenvalues of I + δA are
located in the unit circle of the complex plane can be obtained from the following LMI optimization
problem (see [S22, Theorem 23.3] for details)

(ω, κ,Q) = argminω2, subject to (S17)
1

κ
I ≤ Q ≤ I, 0 < ω2 < 1, κ > 1,

(I + δA)>Q (I + δA)−Q ≤ −(1− ω2) I.

Building on Lemma 0.1, the next result characterizes the admissible discretization stepsize for the
algorithm (S13) and its ultimate tracking behavior.

Theorem 0.9 (Convergence of (S13) over connected graphs [17]). Let G be a connected graph.
Assume that the differences of the inputs of the network satisfy ‖(I− 1

N
1N1>N) ∆u(k)‖ = γ <∞.

Then, for any α, β > 0, the algorithm (S13) over G initialized at zi(0) ∈ R and vi(0) ∈ R such
that

∑N
i=1 v

i(0) = 0 has bounded trajectories that satisfy

lim
k→∞

∣∣xi(k)− uavg(k)
∣∣ ≤ δ κ γ

1− ω
, i ∈ {1, . . . , N} (S18)

provided δ ∈ (0,min{α−1, 2 β−1(λN)−1}). Here, λN is the largest eigenvalue of the Laplacian,
and ω ∈ (0, 1) and κ̄ ∈ R>0 satisfy ‖I− δ β R>LR‖k ≤ κ̄ ω̄k, k ∈ Z≥0.

Note that the characterization of the stepsize requires on knowledge of the largest eigenvalue
λN of the Laplacian. Since this is not readily available to the network unless dedicated dis-
tributed algorithms are introduced to compute it, [17] provides the sufficient characterization δ ∈
(0,min{α−1, β−1(dmax

out )−1}) along with the ultimate tracking bound

lim
k→∞

∣∣xi(k)− uavg(k)
∣∣ ≤ δγ

β λ2
, i ∈ {1, . . . , N}.
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Sidebar 5: Dynamic Average Consensus Algorithms with Continuous-Time Evolution and
Discrete-Time Communication

We discuss here an alternative to the discretization route explained in “Sidebar 3: Euler discretiza-
tions of continuous-time dynamic average consensus algorithms” to produce implementable strate-
gies from the continuous-time algorithms described in the paper. This approach is based on the
observation that, when implementing the algorithms over digital platforms, computation can still
be reasonably approximated by continuous-time evolution (given the every growing computing
capabilities of modern embedded processors and computers) whereas communication is a process
that still requires proper acknowledgment of its discrete-time nature. Our basic idea is to oppor-
tunistically trigger, based on the network state, the times when information sharing among agents
should take place and allow individual agents to determine these autonomously. This has the po-
tential to result in more efficient algorithm implementations as performing communication usually
requires more energy than computation [S23]. In addition, the use of fixed communication step-
sizes can lead to a wasteful use of the network resources because of the need to select it taking
into account worst-case scenarios. These observations are aligned with the ongoing research activ-
ity [S24, S25] on event-triggered control and aperiodic sampling for controlled dynamical systems
that seeks to trade computation and decision making for less communication, sensing or actuator
effort while still guaranteeing a desired level of performance. The recent surveys [S26, S27] de-
scribe how these ideas can be employed to design event-triggered communication laws for static
average consensus.

Motivated by these observations, [S28] investigates a discrete-time communication implementa-
tion of the continuous-time algorithm (23) for dynamic average consensus. Under this strategy the
algorithm becomes

v̇i = αβ
∑N

j=1
aij(x̂

i − x̂j), (S19a)

ẋi = u̇i−α(xi − ui)−β
∑N

j=1
aij(x̂

i−x̂j)−vi, (S19b)

for each i ∈ {1, . . . , N}, where x̂i(t) = xi(tik) for t ∈ [tik, t
i
k+1), with {tik} ⊂ R≥0 denoting the

sequence of times at which agent i communicates with its in-neighbors. The basic idea is that
agents share their information with neighbors when the uncertainty in the outdated information is
such that the monotonic convergent behavior of the overall network can no longer be guaranteed.
The design of such triggers is challenging because of the following requirements: (a) triggers need
to be distributed, so that agents can check them with the information available to them from their
out-neighbors, (b) they must guarantee the absence of Zeno behavior (the undesirable situation
where an infinite number of communication rounds are triggered in a finite amount of time), and (c)
they have to ensure the network achieves dynamic average consensus even though agents operate
with outdated information while inputs are changing with time.
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Consider the following event-triggered communication law [S28]: each agent is to communicate
with its in-neighbors at times {tik}k∈N ⊂ R≥0, starting at ti1 = 0, determined by

tik+1 =argmax{t ∈ [tik,∞) | |xi(tik)− xi(t)| ≤ εi}. (S20)

Here, εi ∈ R>0 is a constant value which each agent chooses locally to control its inter-event times
and avoid Zeno behavior. Specifically, one can show that the inter-execution times of each agent
i ∈ {1, . . . , N} employing (S20) are lower bounded by

τ i =
1

α
ln
(

1 +
αεi
ci

)
, (S21)

where ci and η are positive real numbers that depend on the initial conditions and network param-
eters (we omit here for simplicity their specific form, but the interested reader is referred to [S28]
for explicit expressions). The lower bound (S21) shows that for a positive non-zero εi, the inter-
execution times are bounded away from zero and we have the guarantees that for networks with
finite number of agents the implementation of the algorithm (S19) with the communication trigger
law (S20) is Zeno free. The following result formally describes the convergence behavior of the
algorithm (S19) under (S20) When the interaction topology is modeled by a strongly connected
and weight-balanced digraph.

Theorem 0.10 (Convergence of (S19) over strongly connected and weight-balanced digraph with
asynchronous distributed event-triggered communication [S28]). Assume the reference signals sat-
isfy |u̇i|ess = κi < ∞, for i ∈ {1, . . . , N}, and ‖ΠN u̇‖ess = γ < ∞. Let the communication
topology be a weight-balanced and strongly connected digraph G. For any α, β ∈ R>0, the al-
gorithm (S19) over G starting from xi(0) ∈ R and vi(0) ∈ R with

∑N
i=1 v

i(0) = 0, where each
agent i ∈ {1, . . . , N} communicates with its neighbors at times {tik}k∈N ⊂ R≥0, starting at ti1 = 0,
determined by (S20) with ε ∈ RN

>0, satisfies

lim sup
t→∞

∣∣∣xi(t)−uavg(t)
∣∣∣≤ γ+β‖L‖ ‖ε‖

βλ̂2
, (S22)

for i ∈ {1, . . . , N} with an exponential rate of convergence of min{α, βλ̂2}. Furthermore, the
inter-execution times of agent i ∈ {1, . . . , N} are lower bounded by (S21).

The expected trade-off between the desire for longer inter-event time and the adverse effect on sys-
tems convergence and performance is captured in (S21) and (S22). The lower bound τ i in (S21)
on the inter-event times allows a designer to compute bounds on the maximum number of com-
munication rounds (and associated energy spent) by each agent i ∈ {1, . . . , N} (and hence the
network) during any given time interval. It is interesting to analyze how this lower bound depends
on the various problem ingredients: τ i is an increasing function of εi and a decreasing function of
α and ci. Through the latter variable, the bound also depends on the graph topology and the de-
sign parameter β. Given the definition of ci, one can deduce that the faster an input of an agent is
changing (larger κi) or the farther the agent initially starts from the average of the inputs, the more
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often that agent would need to trigger communication. The connection between the network per-
formance and the communication overhead can also be observed here. Increasing β or decreasing
εi to improve the ultimate tracking error bound (S22) results in smaller inter-event times. Given
that the rate of convergence of (S19) under (S20) is min{α, βλ̂2}, decreasing α to increase the
inter-event times slows down the convergence.

When the interaction topology is a connected graph, the properties of the Laplacian allow us to
identify an alternative event-triggered communication law which, compared to (S20), has a longer
inter-event time but similar dynamic average tracking performance. Now, according to [S28], the
communication times {tik}k∈N are determined by

tik+1 = argmax{t ∈ [tik,∞) | |x̂i(t)− xi(t)|2 ≤ (S23)

1

4diout

N∑
j=1

aij(t)|x̂i(t)− x̂j(t)|2 +
1

4diout
ε2i },

Compared to (S20), the extra term 1
4diout

∑N
j=1 aij(t)|x̂i(t)−x̂j(t)|2 in the communication law (S23)

allows agents to have longer inter-event times. Formally, one can show that the inter-execution
times of agent i ∈ {1, . . . , N} implementing (S23) are lower bounded by

τ i =
1

α
ln
(

1 +
αεi

2c̄i
√

diout

)
, (S24)

for positive constants c̄i, see [S28] for explicit expressions. Numerical examples in [S28] show that
the implementation of (S23) for connected graphs results in inter-event times longer than the ones
of the event-triggered law (S20). Figure 18 shows one of those examples. The following result
formally describes the convergence behavior of the algorithm (S19) under (S23) over connected
graphs.

Theorem 0.11 (Convergence of (S19) over connected graphs with asynchronous distributed even-
t-triggered communication [S28]). Assume the reference signals satisfy |u̇i|ess = κi < ∞, for
i ∈ {1, . . . , N}, and ‖ΠN u̇‖ess = γ < ∞. Let the communication topology be a connected
graph G. For any α, β ∈ R>0, the algorithm (S19) over G starting from xi(0) ∈ R and vi(0) ∈ R
with

∑N
i=1 v

i(0) = 0, where agent i ∈ {1, . . . , N} communicates with its neighbors at times
{tik}k∈N ⊂ R≥0, starting at ti1 = 0, determined by (S23) with ε ∈ R>0, satisfies

lim sup
t→∞

∣∣∣xi(t)− uavg(t)
∣∣∣ ≤ γ

βλ2
+

√( γ

βλ2

)2
+
‖ε‖2
2λ2

,

for i ∈ {1, . . . , N}. Furthermore, the inter-execution times of agent i ∈ {1, . . . , N} are lower
bounded by (S24).

The results reported here can also be extended for time-varying, jointly connected graphs, see [S28]
for a complete exposition.
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Figure 18: Comparison between the event-triggered algorithm (S19) employing the event-triggered commu-
nication law (S23) and the Euler discretized implementation of algorithm (23) as described in (S13) with
fixed stepsize [S28]. Both of these algorithms use α = 1 and β = 4. The network is a weight-balanced di-
graph of 5 agents with unit weights. The inputs are r1(t)=0.5 sin(0.8t), r2(t)=0.5 sin(0.7t)+0.5 cos(0.6t),
r3(t) = sin(0.2t)+1, r4(t) = atan(0.5t), r5(t) = 0.1 cos(2t). In plot (a), the black (resp. gray) lines cor-
respond to the tracking error of the event-triggered algorithm (S19) employing event-triggered law (S23)
with εi/(2

√
diout) = 0.1 (resp. the Euler discretized algorithm (S13) with fixed stepsize δ = 0.12). Recall

from “Sidebar 4:Euler Discretizations of Continuous-Time Dynamic Average Consensus Algorithms” that
convergence for algorithm (S13) is guaranteed if δ ∈ (0,min{α−1, β−1(dout

max)−1}), which for this example
results in δ ∈ (0, 0.125). The horizontal blue lines show the±0.05 error bound for reference. Plot (b) shows
the communication times of each agent using the event-triggered strategy. As seen in plot (a), both these
algorithms exibit comparable tracking performance. The number of times that agents {1, 2, 3, 4, 5} com-
municate in the time interval [0, 20] is (39, 40, 42, 40, 39), respectively, when implementing event-triggered
communication (S23). This is significantly less than the communication used by each agent in the Euler
discretized algorithm (S13) (20/0.12 ' 166 rounds).
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