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bDepartment of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, 
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cDepartment of Environmental Health Sciences, School of Public Health, University of California, 
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dCenter for Environmental Research and Children’s Health, School of Public Health, University of 
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Abstract

Phthalates, compounds commonly used in plastics and personal care products, have been 

associated with childhood obesity in cross-sectional and some longitudinal studies. Using 

advanced statistical methods, we characterized the heterogeneity in body mass development 

patterns over childhood (ages 2 to 14 years) and explored associations with maternal prenatal 

urinary concentrations of phthalates among 335 children in the Center for the Health Assessment 

of Mothers and Children of Salinas (CHAMACOS) cohort study. Height and weight were 

measured every one to two years in this cohort, which had a high prevalence of obesity and 

overweight. Building upon a previous analysis that showed a positive association between prenatal 

phthalate exposure and body mass index (BMI) in CHAMACOS children, we used three advanced 

statistical methods: generalized additive models, growth mixture models, and functional principal 

component analysis with tree-based methods to identify patterns of childhood BMI development 

and allow for non-linear relationships with the environmental exposures. Our results highlight the 

heterogeneity in childhood BMI development patterns and suggest a sex-specific non-linear 

association between prenatal monoethyl phthalate urinary concentrations and BMI level in 
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children, confirmed across a variety of statistical methods. There is also evidence to suggest 

positive associations between DEHP metabolites and BMI stabilization during puberty for girls.
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prenatal; phthalate; trajectory; body mass index; development

1. Introduction

There is increasing evidence that certain endocrine disrupting chemicals (EDCs) may act as 

“obesogens”, chemicals that influence adipocyte differentiation, shift energy balance to 

favor fat storage, and/or alter mechanisms of appetite and satiety, leading to increased body 

mass (Katsikantami et al., 2016; Thayer et al., 2012). Early life may be a particularly critical 

window of exposure for obesogenic effects. Exposure to phthalates, EDCs commonly used 

in plastics and personal care products, is widespread. Cross-sectional studies show higher 

urinary phthalate concentrations among obese children (Buser et al., 2014; Trasande et al., 

2013; Wang et al., 2013), but these findings may result from reverse causality and can be 

confounded by energy intake (Campbell et al., 2018), since diet is a significant route of 

exposure to some phthalates.

A number of prospective studies have examined prenatal phthalate exposure and subsequent 

body composition during childhood with mixed conclusions (Agay-Shay et al., 2015; Botton 

et al., 2016; Buckley et al., 2016a, 2016b; De Cock et al., 2014; Maresca et al., 2016; Shoaff 

et al., 2017; Vafeiadi et al., 2018; Valvi et al., 2015; Yang et al., 2017). In particular, we have 

previously shown that concentrations of several phthalates in maternal urine during 

pregnancy were associated with increased body mass index (BMI) of children between ages 

5 to 12 years using marginal models (Harley et al., 2017). However, these analyses focused 

on individual associations at each age point and assumed linear relationships between the 

metabolite and BMI. Recent advances in statistical methodology and software provide 

improved approaches to explore and explain the variation in change over time as a 

longitudinal pattern while allowing for non-linear relationships with metabolite 

concentrations. In this paper, we use generalized additive models, growth mixture models, 

and functional principal component analysis with tree-based methods to accomplish this 

task.

Traditional longitudinal methods, such as linear mixed-effects (Laird and Ware, 1982) and 

marginal models (Liang and Zeger, 1986), are regression-based methods for estimating the 

mean outcome while accounting for repeated measures. Interaction terms with exposure can 

be used to accommodate linear effect modification. However, there is evidence to suggest 

that EDCs have a non-linear dose response (Lagarde et al., 2015; Vandenberg et al., 2012). 

While these methods can be modified to assess non-linear exposure-response relationships, 

non-linear effect modification is not straightforward and the methods do not focus on 

developmental trajectory patterns.

Generalized additive models (GAM) (Hastie and Tibshirani, 1990) extend linear models by 

allowing non-linear, smooth relationships between predictors such as metabolite 
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concentration and cross-sectional outcomes using piecewise polynomials (i.e. splines). 

These models focus on individual associations at age points but can capture complex 

relationships between exposure and body mass at each age that may be undetected in linear 

regression models.

Growth mixture model (GMM) (Muthén and Shedden, 1999) can be used to discover 

distinct longitudinal patterns by estimating group-specific regression parameters while 

allowing non-monotonic relationships between baseline exposures and group membership. 

Like GAM’s, basis splines (De Boor, 1976, 1972) can be used as explanatory variables to 

accommodate non-linear relationships between the response and time in these models 

(Grajeda et al., 2016; Liem et al., 2013).

Functional principal component analysis (FPCA) (Ramsay and Silverman, 2005, 2002) is a 

non-parametric approach that can be used to explore the variation in childhood development 

(Zhang et al., 2017). FPCA, similar to multivariate principal component analysis, provides a 

set of functions that explain the most variation in the observed trajectories with 

corresponding subject-specific score coefficients that measure their deviation from the mean 

functional pattern. Regression models, regression trees, and random forests (Breiman, 2001; 

Breiman et al., 1984) can be used in conjunction with FPCA to assess relationships between 

estimated score coefficients and covariates.

In the present analysis, we build on our previous work of prenatal phthalate exposure and 

childhood BMI from 5 to 12 years (Harley et al., 2017) in the Center for the Health 

Assessment of Mothers and Children of Salinas (CHAMACOS), a prospective birth cohort 

of low-income primarily Mexican American children with high rates of obesity (Rosas et al., 

2011). We introduce, apply, and compare three different statistical methodologies (GAMs, 

growth mixture models, and FPCA paired with tree-based methodology) to characterize the 

heterogeneity of childhood BMI development trajectories and explore the association of 

prenatal phthalate exposure childhood BMI, extended now up to included data from age 14 

years.

2. Methods

2.1 Study population and data collection

Pregnant women (N=601) who were living in California’s Salinas Valley, an agricultural 

area with a large Latino population, were recruited to participate in the CHAMACOS study 

in 1999 and 2000. Eligible women were 18 years of age or older, spoke English or Spanish, 

were eligible for low income health insurance (Medicaid), were less than 20 weeks 

gestation, receiving prenatal care at partnering community clinics that served the farmworker 

population, and planning to deliver at the county hospital. During pregnancy, women 

completed interviewer-administered questionnaires and provided two urine samples for 

measurement of environmental exposures, including phthalates. At delivery, 536 women 

remained enrolled in the study, and we have conducted periodic follow-up visits with them 

and their children from infancy through adolescence.
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The current analysis uses height and weight data collected at eleven follow-up visits 

conducted between ages 2 and 14 years (y). At each of these visits, child height was 

measured in triplicate to the nearest 0.1 cm using a wall-mounted stadiometer. Between age 

2y and 7y, children were weighed using a Tanita Mother-Baby Scale (Model 1582) with 

shoes and coats removed. At ages 9y through 14y, youth were weighed standing barefoot 

(with coat removed) on a Tanita bioimpedance scale (Tanita TBF-300A Body Composition 

Analyzer). For purposes of weight calculations, clothing weights were estimated at 0.5 kg 

for ages 9y-12.75y, and at 1 kg at age 14y. We limited our analysis to 435 children with 

recorded prenatal phthalate measurements and of those, we focus on 335 children who had 

standing height and weight measurements at 4 or more visits between 2y and 14y. The 

analytical sample is not significantly different from the original cohort in terms of child sex 

and maternal characteristics such as pre-pregnancy BMI, diet and smoking status during 

pregnancy, gestational weight gain, years in the U.S., marital status, age, and education, but 

has a higher percentage of mothers that exclusively breastfed for more than 6 months (48% 

as compared to 40% in the original cohort). All study procedures were approved by the 

Office for the Protection of Human Subjects at UC Berkeley. Mothers provided written 

informed consent and parent permission pertaining to every study visit. Children provided 

formal verbal assent at each visit between 7y and 11y, and provided written assent for 12y to 

14y visits.

2.2 Urinary phthalate measurement

Urine samples were obtained from the mothers at the time of the two pregnancy interviews 

(mean (SD): 14.0 (4.8) and 26.9 (2.5) weeks gestation) and were stored at −80°C until 

shipment to the Centers for Disease Control and Prevention in Atlanta, GA for analysis. 

Concentrations of 11 metabolites of 8 parent phthalate compounds were measured using 

solid phase extraction coupled with isotope dilution high performance liquid 

chromatography-electrospray ionization-tandem mass spectrometry (Silva et al., 2007). 

Phthalate metabolites quantified were mono-ethyl phthalate (MEP), mono-n-butyl phthalate 

(MnBP), mono-isobutyl phthalate (MiBP), mono-benzyl phthalate (MBzP), 

mono(carboxyoctyl) phthalate (MCOP), mono(3-carboxypropyl) phthalate (MCPP) and four 

metabolites of diethyl-hexyl phthalate (DEHP): mono-2-ethylhexyl phthalate (MEHP), 

mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate 

(MEOHP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP). Limits of detection 

(LOD) ranged from 0.2–0.6 ng/mL. Concentrations below the limit of detection (LOD) were 

assigned an imputed value less than LOD randomly selected from the lognormal distribution 

using maximum likelihood estimation (Lubin et al., 2004). Urinary specific gravity was 

measured using a hand-held refractometer (National Instrument Company Inc., Baltimore, 

MD) and metabolite concentrations were corrected for urinary dilution using the formula: 

metabolite concentration * (mean specific gravity - 1)/(sample specific gravity – 1).

2.3 Statistical methods

Prenatal phthalate exposure was analyzed as the average of the two pregnancy phthalate 

metabolite concentrations, examined continuously as log2-transformed variables. The main 

outcomes of interest were BMI, calculated as weight/height2 (kg/m2), and BMI z-scores, 

obtained using the CDC growth charts, which are based on cross-sectional studies (U. S. 
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Centers for Disease Control and Prevention, 2000). To focus on the similarity in 

development patterns regardless of level (e.g. high BMI or low BMI), for some analyses we 

also calculated centered BMI values by subtracting the mean of a child’s BMI measurements 

from each of their BMI values.

To account for potential confounding between maternal phthalate concentrations and BMI 

over time, we adjusted our models for the time-stable maternal variables considered in a 

previous study (Harley et al., 2017): pre-pregnancy BMI, smoking status during pregnancy 

(smoking vs. no smoking), gestational weight gain (lbs), diet quality index during pregnancy 

(score of 0–80) (Bodnar and Siega-Riz, 2002), number of years living in the United States 

(US), age, marital status (not married, married/living as married), and education (≤6th grade, 

7th–12th grade, high school graduate) at the time of birth. To allow for sex-specific 

trajectories and associations, we stratified our models based on child’s sex (male/female). 

We used R for all of the analysis (R Core Team, 2018).

2.3.1 BMI trajectories—First, we graphically explored the individual trajectories for 

raw BMI, BMI z-score, and centered BMI using lowess for all children and for boys and 

girls separately (Cleveland, 1979).

We then used GMM to identify subgroups within the data with similar BMI or BMI z-score 

longitudinal patterns (Muthén and Shedden, 1999). The growth mixture model is a weighted 

sum of groups, each characterized with a regression model with their own mean time trend 

and covariance defined by random effects. We fit the models to the raw BMI, BMI z-score, 

and centered BMI data so as to detect heterogeneity in the development and the level 

(Heggeseth and Jewell, 2018). To allow for nonlinear trajectories, we used a piecewise 

quadratic B-spline with an internal knot at age 9.5 years for BMI and age four for BMI z-

scores. Both knots were chosen to minimize the mean squared error when modeling 

individual trajectories and accommodate different patterns over time. The number of 

subgroups was chosen using model selection with Bayesian Information Criteria (BIC). 

GMM’s were estimated using maximum likelihood estimation with the “hlme” function in 

the “lcmm” package in R (Proust-Lima et al., 2014, p.).

We also examined BMI trajectories with FPCA, which can be used to detect the functional 

structure that explains the most variability in individual BMI trajectories over time. We 

approximate an individual trajectory using a linear combination of individual scores and 

principal component functions. A more thorough introduction to the method can be found in 

Ramsay and Silverman (Ramsay and Silverman, 2005, 2002). To implement FPCA, we used 

the “fpca.sc” function in the refund package in R and stratified by sex (Goldsmith et al., 

2016).

2.3.2 Associations of phthalates with BMI over time—We first explored the 

variability in the association of prenatal urinary concentrations of the phthalate metabolites 

and BMI at various ages using GAMs (Hastie and Tibshirani, 1990). We allowed a non-

linear relationship for prenatal maternal phthalate concentrations and years in the US and 

linear relationships for maternal pre-pregnancy BMI, smoking status, diet quality index in 

pregnancy, gestational weight gain, age, marital status, and education at delivery, stratifying 
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by child sex. Separate models were constructed for each phthalate metabolite. To implement 

GAM, we used the “gam” function in the mgcv package in R (Wood, 2004).

Then, returning to the trajectory approach, we included prenatal maternal phthalate 

concentrations and covariates in the GMM to explain variation in BMI trajectory group 

membership. Due to model complexity, we constructed separate models for each metabolite 

and used a stepwise process with BIC to select covariates from the a priori list of possible 

confounders.

Finally, we used the FPCA scores as a form of numerical summary of the BMI trajectories. 

We first regressed the individual FPCA scores derived from BMI trajectories on each of the 

prenatal maternal phthalate concentrations and confounding variables, fitting a separate 

model for each principal component and stratifying for sex. We then explored associations 

with all 11 phthalate metabolites simultaneously, accounting for potential copollutant 

confounding, using tree-based methods to predict the FPCA scores derived from the BMI 

trajectories. Using the CART algorithm (Breiman et al., 1984), we generated a regression 

tree for each set of FPCA scores allowing all phthalate concentration measurements and 

confounding variables to be part of the construction of the sex-specific trees. This algorithm 

iteratively splits the data into two groups based on covariate and exposure values to create 

groups that are more homogenous in FPCA scores. While this process provides an 

interpretable tree, this algorithm is sensitive to small changes to the data because it chooses 

the splitting variable that minimizes the variance at each local split rather than choosing the 

set of splits that provide a global solution. To overcome the sensitivity of a single regression 

tree, we used the tree-based random forest algorithm (Breiman, 2001) to measure the 

importance of predictors in explaining variation in the scores, thus BMI trajectories.

3. Results

3.1 Sample characteristics

Table 1 describes the analytic sample of children and their mothers at baseline. Over half of 

the mothers were overweight or obese prior to pregnancy. The population was of relatively 

low educational status, with only 22.1% of mothers having completed high school, and most 

mothers were recent immigrants (mean residence in the US at time of pregnancy was 6 

years).

MEP was the most prevalent phthalate in this analytic sample with a median prenatal 

concentration of 184 ng/mL (Q1, Q3: 81.8, 410.1 ng/mL). This was over nine times as high 

as the next highest metabolite, MnBP, with a median concentration of 20.7 ng/mL. A 

summary of the distribution of phthalate metabolite concentrations is found in Table S1.

3.2 BMI trajectories

Table 2 shows the mean age, BMI, and BMI z-scores with standard deviations for the 

children over the 11 visits. The average BMI increased with age, with the increases 

becoming steeper after age 5y. However, mean BMI z-score was fairly stable after age 2y.
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Figure 1 shows the BMI and BMI z-score trajectories for each individual child in gray with 

overall and sex-specific means over time, estimated using lowess, in black. There are no 

noticeable differences in average BMI between sexes during this age range. Consistent with 

Table 2, the overall mean BMI gradually increased between ages 2 and 14 with increased 

growth rate starting around age 5 – 6 years old. The individual BMI trajectories illustrate 

noticeable variability in development pattern with greater variability in later childhood. In 

contrast, the mean BMI z-score trajectory was relatively flat and was stable around 1.1, 

indicating that this sample had an average BMI about 1.1 standard deviation higher than the 

CDC growth charts. Looking at individual trajectories, we note that many individuals have a 

peak z-score value around age 4 before settling back to values between about −1 and 3.

Figure 2 shows the four distinct mean trajectories for boys and girls identified using the 

centered BMI variable. We similarly estimated four-group GMM’s using BMI (Figure S1) 

and BMI z-scores (Figure S2), with a random intercept and no covariates. The group means 

for the centered BMI were similar to those from a model fit to the raw BMI data but were 

more homogeneous in development pattern. We note that 70–80% of the children were 

classified into groups with a relatively stable (Class 4) or a moderately increasing pattern 

(Class 3). About 15% of the children were classified with the steep linear increase in BMI 

(Class 1). A small proportion of the children had a BMI trajectory pattern that increased 

steeply in childhood but seemed to level off (girls) or decrease (boys) around puberty (Class 

2).

In Figure 3, we use FPCA to visualize the BMI trajectory in boys and girls, which can be 

decomposed into the mean trajectory plus the principal component functions that explain 

variation in BMI, weighted by their individual scores. Individuals with a high positive score 

for the first component would have a higher than average BMI level at age 2 as well as an 

increased rate of change in BMI across childhood. This first component scores can account 

for about 95% of the variation in the observed BMI data. The next 5% of variation in BMI is 

explained by a function that decouples the BMI level from the development rate. The second 

component function allows an increase in the starting level to be associated with a slight 

decrease in the growth rate. After accounting for the first component, individuals with a 

higher score for the second component would have increased BMI levels at age 2 with a 

lower than expected growth rates during early childhood resulting in a lower BMI at age 14.

3.3 Association of phthalates and BMI trajectories

3.3.1 Generalized additive models—To measure the relationship between each 

phthalate metabolite concentration and BMI, we first fit a GAM for each age-specific visit 

stratifying by sex. Table 3 shows the results from models for MEP, the metabolite with the 

strongest association with BMI at various ages. Results for the models of the other 

metabolites are presented in Table S2. Table 3 suggests maternal pre-pregnancy BMI has a 

strong, positive linear association with a child’s BMI throughout childhood, as we also 

observed using more traditional statistical methodologies (Harley et al., 2017) although the 

association is stronger in boys than girls. The data suggest a significant sex-specific 

association (boys: negative, girls: positive) for maternal marital status at birth and BMI 

levels at ages 3.5y-9y. We observed significant positive, linear associations of prenatal 
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maternal MEP exposure with BMI for boys at several points throughout early childhood and 

a non-linear association for girls starting at age 7y. Figure 4 includes the estimated 

association between MEP exposure with BMI at ages 2, 7 and 14 years for boys and girls. 

Among girls, we note a non-monotonic relationship among girls with a slightly negative or 

absence of an association with BMI at low levels of exposure and a positive association with 

middle to high levels of exposure.

3.3.2 Growth Mixture Models—Table 4 shows the group probability ratios estimated 

from the GMM’s for raw and centered BMI that include baseline phthalate exposure and 

maternal pre-pregnancy BMI (final covariates chosen with BIC) to model group 

membership, stratified by sex. Models were fit separately for each phthalate metabolite. The 

group labels correspond to the groups in Figure 2, with Class 4 being the group with the 

most stable BMI (i.e. the lowest increase over time). The group probability ratios are 

estimates of the multiplicative change in the probability of being in Class k for k=1, 2, 3 

associated with a doubling of a metabolite concentration relative to the multiplicative change 

in probability for the reference group, Class 4. We found some evidence of associations of 

the metabolites of DEHP (i.e. MEHP, MEOHP, MECPP, and MEHHP) with different class 

membership. For raw BMI, the 95% confidence interval estimate suggests that a doubling of 

MECPP concentration was associated with between a 3% decrease and a 96% increase in 

the probability of being in Class 3 (moderately increasing BMI) relative to Class 4 (stable) 

for boys. After removing the level by centering the BMI, the intervals estimate for boys 

suggests that a doubling of MECPP concentration is associated with between a 15% 

decrease and a 71% increase in the probability of being in Class 3 relative to Class 4 

(stable). For girls, increased MECPP concentration is associated with between a 6% 

decrease and 118% increase in the chance of being in Class 2 (large increase in BMI that 

levels off at puberty) relative to Class 4. Similar relationships are observed for prenatal 

concentrations of MEHP, MEHHP, and MEOHP among girls.

3.3.3 Functional Principal Components Analysis—Table 5 provides the estimated 

slopes of metabolites from a regression model predicting FPCA scores. MEP was positively 

associated the first component for boys and girls. For each doubling of maternal MEP 

concentration, the score for first component significantly increased by about 1.17 units for 

boys and 1.32 for girls, on average, suggesting both increased BMI level and development 

rate, after accounting for maternal pre-pregnancy BMI, gestational weight gain, diet quality 

index, smoking during pregnancy, education, marital status, age, and time in the US. There 

was no evidence to suggest an association with BMI for other metabolites using this method.

To allow for co-pollutant confounding, we explored relationships between BMI FPCA 

scores and all metabolites and covariates using regression trees, stratified by sex. Figure 5 

shows two regression trees based on the scores for the first component (PC1). For both boys 

and girls, the tree-building algorithm selected maternal pre-pregnancy BMI as the first 

splitting variable as it explains the most variation in the childhood BMI trajectories. Once 

the children were split into groups with lower and higher maternal BMI, there were sex-

specific differences in the next chosen split variable. Boys with lower maternal BMI were 

split based on their exposure to MnBP to create groups more homogeneous in terms of BMI 
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level and development while MCOP reduced variability in BMI trajectory groups among 

girls with lower maternal BMI. In contrast, different levels of MECPP concentrations 

explain differences in BMI level and development among girls with mothers with higher 

BMI and MEP concentrations explain differences in BMI trajectories among boys with 

mothers with higher BMI. The tree for the second component is Figure S3. However, we 

want to be careful not to over interpret one regression tree because it cannot provide a full 

picture of all relationships. In the creation of the tree, if two variables explain about the same 

amount of variation in the scores, only one can be chosen at each split.

To overcome the limitations of a single tree, we generated a random forest to see which 

variables are playing a role in the variability in BMI level and development. Figure 6 

provides a measure of variable importance calculated from the random forest algorithm 

defined as the total decrease in group variation in BMI trajectories from splitting on the 

variable as compared to when the variable values are randomly permuted. For both boys and 

girls, the variables that can explain the most variation in the first FPCA scores are maternal 

BMI and MEP. Next few variables in the ranked list are MiBP, MCOP, and maternal age for 

boys and gestational weight gain (GWG), maternal diet quality index, and MCPP for girls, 

all with similar values of importance.

Table 6 summarizes the findings of each of these advanced statistical models in addition to a 

brief description of the method and its strengths and weaknesses.

4. Discussion

Our previous study used traditional linear models and found that prenatal urinary 

concentrations of MEP, and to a certain extent MBP and DEHP metabolites, were associated 

with increased BMI in boys and girls through 12 years of age. The present study used more 

sophisticated methods to examine longitudinal BMI trajectories between age 2 and 14 years. 

Using GAMs, we found that higher prenatal urinary concentrations of MEP metabolites 

were significantly associated with BMI levels as children get older, but that relationship may 

not be linear. For girls, we see suggestions of a non-monotonic association with negative to 

zero association for lower MEP concentrations and a positive association with BMI levels 

for middle to high MEP concentrations at age 14. For 14-year-old boys, the association was 

linear and positive for MEP concentrations. Using GMM’s, we characterized the 

heterogeneity of childhood BMI trajectories by creating data-driven groups and estimated a 

weak, positive relationship between an increasing then stabilizing BMI development pattern 

and prenatal concentrations of DEHP metabolites for girls. To allow for sex-specific 

relationships, we stratified the estimation of the models, which reduced our sample size and 

reduced our power to detect statistically significant results in these models. Using scores 

estimated with functional principal component analysis, significant relationships were 

estimated between MEP prenatal concentrations and the first principal component scores 

that can explain 95% of the variability in the BMI trajectories.

We estimate different associations with these three different statistical methods. Extending 

standard regression models, GAMs allow for the detection of possible non-linear 

associations at a particular age, but it does not directly study BMI trajectories over time. 
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Growth mixture models can detect frequent development patterns over time and then 

estimate associations with baseline exposures. While the GMM can flexibly estimate non-

linear relationships using its group structure (Heggeseth and Aleman, 2018), the complexity 

of the model reduces our power to detect weak signals. Lastly, FPCA provides summary 

measures of trajectories that optimize explained variation in BMI but those univariate 

summaries may not differentiate a particular trajectory pattern that has an association with 

prenatal phthalate exposure. Considering all of the results, there is evidence to suggest weak, 

non-linear, sex-specific relationships between BMI level and development and prenatal MEP 

concentrations for both boys and girls. However, the evidence also suggests that the DEHP 

metabolites may also have with weak sex-specific associations with more subtle BMI 

patterns, including associations with growth trajectories of intermediate BMI increases in 

boys or with BMI increases in early childhood that level off in puberty in girls. Larger scale 

studies are needed to tease out these weak signals.

To the authors’ knowledge, no other study has used these statistical methods to investigate 

the relationship between prenatal phthalate concentrations and childhood BMI trajectories. 

Other investigations have studied prenatal urinary phthalate metabolite concentrations and 

childhood weight and body mass over time (Botton et al., 2016; Buckley et al., 2016a, 

2016b; De Cock et al., 2014; Harley et al., 2017; Maresca et al., 2016; Vafeiadi et al., 2018; 

Valvi et al., 2015), but most of them did not study children through adolescence and used 

standard least squares regression, mixed-effects models, or marginal models estimated with 

generalized estimating estimations. Our findings are generally consistent with Harley et al. 

and Botton et al. (Botton et al., 2016; Harley et al., 2017), who reported a positive 

relationship between concentrations of MEP and higher BMI. In terms of development 

patterns, Botton et al. (Botton et al., 2016) found MEP concentrations to be positively 

associated with growth velocity between age 2 and 5 years old, which is similar to our 

finding of a positive relationship between MEP concentrations and BMI using the first 

functional principal component, which is a summary measure of BMI level and development 

from age 2 to 14. However, it should be noted that most other studies have failed to find 

positive associations of prenatal phthalate metabolites and childhood BMI, and several 

studies have found inverse associations with certain phthalate metabolites (Buckley et al., 

2016a, 2016b; Maresca et al., 2016; Shoaff et al., 2017; Vafeiadi et al., 2018; Valvi et al., 

2015; Yang et al., 2017), which are not consistent with our findings.

Our findings that higher concentrations of several DEHP metabolites were associated with a 

specific BMI trajectory (i.e. high early childhood weight gain that levels off in puberty) in 

girls is novel. Because other studies have looked only for associations with higher BMI 

overall, they lack the ability to detect associations with specific longitudinal BM patterns. 

Several other studies have observed interaction by sex, with suggestions of different 

associations of prenatal phthalate exposure and body mass in girls compared to boys 

(Buckley et al., 2016a; Maresca et al., 2016; Valvi et al., 2015; Yang et al., 2017).

It is plausible that phthalates may impact weight gain differently in boys versus girls due to 

the endocrine disrupting properties of these compounds (Takeuchi et al., 2005). The main 

hypothesized biological mechanism by which early life phthalate exposure might influence 

BMI development in childhood is via activation of peroxisome proliferator-activated 
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receptors (PPAR) (Desvergne et al., 2009). Several phthalates have been shown to activate 

PPAR-α and PPAR-γ receptors, which are key regulators of fatty acid oxidation, fat storage, 

and adipogenesis (Hurst and Waxman, 2003). Additionally, exposure to some phthalates has 

been associated with decreased thyroid hormone levels in rodents (Lv et al., 2016) and 

humans (Boas et al., 2010) which can impact metabolism and body weight.

As summarized in Harley et al. (Harley et al., 2017), there are many possible reasons for 

inconsistent findings across studies, including the difficulty in measuring cumulative 

phthalate exposure over the course of pregnancy, the high variability and short half-lives of 

urinary phthalate metabolites, and differences in timing of exposure and outcomes. A 

limitation of this study is that measures of phthalate exposure during childhood were not 

available. Another reason for inconsistent findings is due to the statistical methods used and 

the differences in what type of associations they can estimate.

4.1 Conclusions

As compared to previous research, we allowed for non-linear associations between prenatal 

phthalate concentrations and BMI trajectories using three different advanced statistical 

methods. Our results highlight the heterogeneity and non-linearity in childhood BMI 

development patterns, suggest a sex-specific association between prenatal DEHP exposure 

and BMI development around puberty, and support a non-linear, sex-specific association 

between prenatal MEP exposure and BMI levels, confirmed across a variety of advanced 

statistical methods.
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Highlights:

• Phthalates as possible obesogens may explain variability in childhood BMI

• Advanced statistical methods allow non-linear relationship with BMI over 

time

• Prenatal MEP positively associated with BMI level across ages

• Prenatal DEHP positively associated with increasing and then stabilizing BMI

Heggeseth et al. Page 15

Environ Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Individual BMI and BMI z-score trajectories between 2 and 14 years of age for children in 

analytic sample from the CHAMACOS study (in grey) with overlaid lowess estimates of the 

mean BMI over time (in black; solid: all, dashed: boys, dotted: girls).

Heggeseth et al. Page 16

Environ Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Sex-specific BMI mean trajectories determined by a four-group growth mixture model with 

a random intercept and no covariates, fit to centered BMI data on the analytic sample from 

the CHAMACOS study. Since the centered BMI has mean zero, we shifted the group mean 

trajectories so that the value at age two reflects the group mean BMI at age 2.
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Figure 3. 
Estimated mean BMI trajectory across age for CHAMACOS data, the first two principal 

component functions, and the distribution of the estimated scores which weight the 

functions, stratified by sex (boys: black, girls: grey).
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Figure 4. 
Estimated association between prenatal MEP concentration and BMI level from the GAM 

models for age 2 (left), 7 (middle) and 14 years of age (right), separately for boys (black) 

and girls (grey).
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Figure 5. 
Regression trees used to explain variation in the FPCA scores for the first component among 

the individual children of CHAMACOS. Terminal nodes are labels with count (n) and 

percentage of children as well as the group’s average principal component scores (higher 

values are associated with a higher starting BMI level and increased development rate). The 

first component summarizing the majority (~95%) of the variation in the BMI trajectories.
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Figure 6. 
Variable importance plots based on node impurity measures from a random forest used to 

explain the variation in the FPCA scores for the first component (PC1) among children of 

CHAMACOS. The first component summarizing the majority (~95%) of the variation in the 

BMI trajectories and larger values of PC1 are associated with a higher starting BMI level 

and increased development rate.
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Table 1.

Child and Maternal Baseline Characteristics of the Analytic Sample from the CHAMACOS Study.

Characteristic Summary
a

Maternal pre-pregnancy BMI (kg/m2) 26.4 (24.1, 30.4)

Maternal age at delivery (years) 25.0 (22.0, 29.5)

Maternal residence in USA at delivery (years) 6.0 (2.1, 11.0)

Maternal gestational weight gain (kg) 29.0 (20.0, 37.0)

Maternal diet quality index in pregnancy (0–80) 44.8(38.1, 52.2)

Maternal smoking status during pregnancy

 Non-smoker 322 (96.1)

 Smoker 13 (3.9)

Maternal Education

 6th grade or less 146 (43.6)

 7th – 12th grade 115 (34.3)

 High School Graduate 74 (22.1)

Maternal Marital Status

 Not Married 58 (17.3)

 Married/Living as Married 277 (82.7)

Child sex

 Male 162 (48.4)

 Female 173 (51.6)

a
Continuous variables are summarized with median (Q1, Q3) and categorical variables are summarized with frequency, n (%).
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Table 2.

Mean and Standard Deviation of Age, Body Mass Index (BMI), and BMI Z-scores of Analytic Sample at 

Visits in the CHAMACOS Study.

Boys Girls

Visit Age (years) BMI (kg/m2) BMI Z-score BMI (kg/m2) BMI Z-score

2 year
(n = 308) 2.05 (0.09) 17.45 (1.95) 0.44 (1.17) 17.31 (2.03) 0.5 (1.19)

3.5 years
(n = 297) 3.61 (0.18) 17.69 (2.56) 1.23 (1.38) 17.55 (2.51) 1.12 (1.08)

5 years
(n = 305) 5.04 (0.17) 17.81 (2.97) 1.21 (1.27) 17.92 (3.16) 1.17 (0.98)

7 years
(n = 322) 7.11 (0.23) 18.85 (3.81) 1.13 (1.04) 18.99 (3.74) 1.10 (1.00)

9 years
(n = 321) 9.14 (0.22) 20.80 (4.38) 1.21 (0.98) 20.72 (4.80) 1.01 (1.12)

9.75 years
(n = 265) 9.84 (0.14) 21.5 6(4.71) 1.24 (0.95) 21.68 (5.25) 1.07 (1.07)

10.5 years
(n = 305) 10.6 (0.17) 22.35 (5.04) 1.23 (0.96) 22.21 (5.57) 1.01 (1.09)

11.25 years
(n = 289) 11.33 (0.13) 22.66 (4.93) 1.20 (0.90) 23.37 (5.94) 1.09 (1.07)

12 years
(n = 321) 11.98 (0.18) 23.53 (5.26) 1.23 (0.92) 23.91 (6.09) 1.08 (1.08)

12.75 years
(n = 291) 12.78 (0.16) 24.21 (5.57) 1.22 (0.91) 24.66 (6.46) 1.07 (1.06)

14 years
(n = 315) 14.17 (0.27) 24.98 (6.20) 1.09 (1.06) 25.30 (6.43) 1.00 (1.04)
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Table 3.

Results from Sex and Age-Stratified Generalized Additive Models Predicting Child BMI with MEP for 

Analytic Sample of CHAMACOS Study.

Boys Girls

Child Age Variables Coefficient P-value Coefficient P-value

2 years Maternal BMI 0.18 <0.001
b 0.088 0.010

Maternal Age −0.039 0.249 −0.041 0.215

Married −0.854 0.045 0.618 0.173

7–12th Grade −0.003 0.993 −0.663 0.074

> HS Grad 0.373 0.408 0.165 0.720

Gestational Weight Gain 0.014 0.326 0.025 0.070

Diet Quality Index −0.027 0.132 0.009 0.586

Smoker 0.743 0.415 −0.002 0.998

s(MEP)
a NA 0.233

c NA 0.585

s(Years US) NA 0.331 NA 0.657

3.5 years Maternal BMI 0.254 O.001 0.133 0.001

Maternal Age −0.059 0.195 −0.042 0.266

Married −1.352 0.014 1.362 0.011

7–12th Grade 0.740 0.112 −0.934 0.029

> HS Grad −0.060 0.920 −0.532 0.322

Gestational Weight Gain 0.003 0.895 0.039 0.016

Diet Quality Index −0.019 0.396 0.005 0.806

Smoker −0.968 0.446 1.74 0.084

s(MEP) NA 0.065 NA 0.161

s(Years US) NA 0.091 NA 0.747

5 years Maternal BMI 0.288 O.001 0.183 O.001

Maternal Age −0.007 0.887 −0.056 0.244

Married −1.264 0.048 1.568 0.020

7–12th Grade 0.461 0.395 −0.76 0.165

> HS Grad 0.272 0.691 −0.194 0.775

Gestational Weight Gain 0.016 0.439 0.056 0.005

Diet Quality Index −0.027 0.301 0.009 0.713

Smoker 0.455 0.734 1.223 0.343

s(MEP) NA 0.035 NA 0.163

s(Years US) NA 0.029 NA 0.980

7 years Maternal BMI 0.321 O.001 0.296 O.001

Maternal Age 0.041 0.497 −0.069 0.205

Married −1.404 0.076 1.570 0.044

7–12th Grade 0.804 0.241 −0.985 0.114

> HS Grad −0.007 0.993 −0.430 0.573

Gestational Weight Gain 0.016 0.520 0.063 0.007
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Boys Girls

Child Age Variables Coefficient P-value Coefficient P-value

Diet Quality Index −0.024 0.450 0.007 0.783

Smoker 1.843 0.241 −0.371 0.819

s(MEP) NA 0.039 NA 0.035

s(Years US) NA 0.024 NA 0.808

9 years Maternal BMI 0.433 O.001 0.464 <0.001

Maternal Age 0.038 0.575 −0.073 0.272

Married −1.932 0.029 1.899 0.048

7–12th Grade 0.593 0.443 −1.073 0.156

> HS Grad 0.209 0.831 −0.573 0.548

Gestational Weight Gain 0.029 0.318 0.07 0.012

Diet Quality Index −0.02 0.604 0.018 0.577

Smoker 4.381 0.023 1.787 0.371

s(MEP) NA 0.070 NA 0.076

s(Years US) NA 0.022 NA 0.695

11.25 years Maternal BMI 0.448 O.001 0.58 <0.001

Maternal Age 0.137 0.106 −0.14 0.113

Married −2.12 0.055 2.234 0.068

7–12th Grade 0.862 0.353 −0.836 0.391

> HS Grad 0.182 0.879 −0.976 0.45

Gestational Weight Gain 0.047 0.179 0.096 0.008

Diet Quality Index −0.002 0.959 0.023 0.595

Smoker 5.119 0.042 1.568 0.511

s(MEP) NA 0.225 NA 0.026

s(Years US) NA 0.048 NA 0.427

14 years Maternal BMI 0.427 0.001 0.678 <0.001

Maternal Age 0.091 0.387 −0.161 0.073

Married −2.062 0.151 1.271 0.308

7–12th Grade 1.621 0.170 −0.786 0.421

> HS Grad −0.755 0.621 −1.161 0.356

Gestational Weight Gain 0.035 0.431 0.104 0.005

Diet Quality Index 0.008 0.885 0.007 0.864

Smoker 5.925 0.063 2.191 0.376

s(MEP) NA 0.276 NA 0.059

s(Years US) NA 0.209 NA 0.441

a
The s() indicates penalized regression splines to allow for non-linear relationships. The non-linear relationship cannot be summarized in one 

coefficient (NA = not available).

b
P-value for individual variables is for a Wald test on the parametric effects of each variable on the outcome (H0: coefficient is zero).

c
P-value for non-linear smooth functions is for a Wald-type test for whether there is any relationship with the outcome (H0: no relationship with 

outcome).
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Table 4.

Group Probability Ratios (95% confidence intervals) for Doubling of In-utero Phthalate Exposure for Raw and 

Centered BMI Trajectory Groups Generated from Metabolite and Sex-Stratified Four-Group Growth Mixture 

Models fit to Analytic Sample of CHAMACOS Study.

Boy Girl

Metabolite Group
Ratio

a

(Raw BMI)
Ratio

(Centered BMI)
Ratio

(Raw BMI)
Ratio

(Centered BMI)

MnBP Class 1 NA
b 1.31 (0.90, 1.90) NA 1.06 (0.65, 1.72)

Class 2 NA 1.21 (0.72, 2.03) NA 1.13 (0.77, 1.66)

Class 3 NA 1.07 (0.80, 1.43) NA 0.93(0.62, 1.40)

Class 4 NA 1 NA 1

MEP Class 1 1.13 (0.86, 1.50) 1.00 (0.76, 1.30) 1.37 (0.92, 2.04) 1.12 (0.81, 1.57)

Class 2 1.28 (0.90, 1.82) 0.95 (0.65, 1.39) 1.23 (0.92, 1.63) 1.19 (0.91, 1.55)

Class 3 1.20 (0.94, 1.52) 1.03 (0.82, 1.28) 1.09 (0.85, 1.39) 0.91 (0.71, 1.17)

Class 4
c 1 1 1 1

MiBP Class 1 0.99 (0.70, 1.42) 1.06 (0.80, 1.41) 1.05 (0.586, 1.88) NA

Class 2 0.82 (0.51, 1.30) 0.85 (0.52, 1.41) 0.99 (0.70, 1.39) NA

Class 3 1.09 (0.84, 1.42) 1.06 (0.83, 1.35) 1.00 (0.76, 1.31) NA

Class 4 1 1 1 NA

MBzP Class 1 0.89 (0.63, 1.27) 1.03 (0.73, 1.46) 1.22 (0.69, 2.16) 1.10 (0.70, 1.73)

Class 2 1.03 (0.65, 1.62) 0.88 (0.56, 1.40) 1.20 (0.83, 1.74) 1.07 (0.75, 1.54)

Class 3 1.17 (0.88, 1.56) 1.02 (0.78, 1.34) 0.96 (0.71, 1.29) 0.90 (0.65, 1.25)

Class 4 1 1 1 1

MCNP Class 1 0.85 (0.51, 1.42) 0.98 (0.58, 1.66) 0.68 (0.35, 1.33) 0.69 (0.37, 1.30)

Class 2 0.70 (0.36, 1.35) 0.56 (0.27, 1.14) 1.07 (0.71, 1.62) 1.14 (0.75, 1.73)

Class 3 1.18 (0.76, 1.81) 0.95 (0.62, 1.44) 0.73
‡
 (0.51, 1.04) 0.72

‡
 (0.50, 1.04)

Class 4 1 1 1 1

MCOP Class 1 NA 1.01 (0.66, 1.56) 0.73 (0.35, 1.52) 0.87 (0.50, 1.52)

Class 2 NA 1.17 (0.62, 2.22) 1.03 (0.68, 1.56) 0.97 (0.67, 1.42)

Class 3 NA 1.00 (0.82, 1.22) 0.70
‡
 (0.49, 1.02) 0.67

‡
 (0.42, 1.07)

Class 4 NA 1 1 1

MCPP Class 1 NA 0.79 (0.54, 1.16) 0.92 (0.53, 1.60) 0.88 (0.53, 1.47)

Class 2 NA 1.16 (0.66, 2.03) 0.75 (0.52, 1.07) 0.78 (0.55, 1.10)

Class 3 NA 1.21 (0.87, 1.68) 0.99 (0.70, 1.42) 0.91 (0.64, 1.28)

Class 4 NA 1 1 1

MEHP Class 1 NA NA 1.04 (0.66, 1.66) 1.06 (0.68, 1.65)

Class 2 NA NA 1.45
‡
 (0.99, 2.12) 1.38

‡
 (0.96, 1.99)

Class 3 NA NA 0.98 (0.63, 1.52) 0.91 (0.66, 1.25)

Class 4 NA NA 1 1

MEHHP Class 1 NA 0.84 (0.56, 1.24) 1.12 (0.66, 1.89) 1.17 (0.72, 1.93)

Environ Res. Author manuscript; available in PMC 2020 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heggeseth et al. Page 27

Boy Girl

Metabolite Group
Ratio

a

(Raw BMI)
Ratio

(Centered BMI)
Ratio

(Raw BMI)
Ratio

(Centered BMI)

Class 2 NA 0.90 (0.54, 1.51) 1.42
‡
 (0.96, 2.10) 1.37 (0.93, 2.02)

Class 3 NA 1.16 (0.85, 1.58) 0.88 (0.59, 1.29) 0.81 (0.57, 1.17)

Class 4 NA 1 1 1

MECPP Class 1 1.00 (0.84, 1.20) 0.94 (0.59, 1.51) 1.17 (0.68, 2.01) 1.14 (0.66, 1.96)

Class 2 1.06 (0.60, 1.88) 0.89 (0.47, 1.68) 1.51
‡
 (0.98, 2.34) 1.43

‡
 (0.94, 2.18)

Class 3 1.38
‡
 (0.97, 1.96) 1.20 (0.85, 1.71) 0.95 (0.63, 1.43) 0.87 (0.58, 1.32)

Class 4 1 1 1 1

MEOHP Class 1 NA 0.82 (0.55, 1.22) 1.13 (0.67, 1.90) 1.14 (0.69, 1.88)

Class 2 NA 0.90 (0.53, 1.51) 1.42
‡
 (0.95, 2.10) 1.36 (0.93, 2.00)

Class 3 NA 1.14 (0.83, 1.55) 0.91 (0.63, 1.31) 0.82 (0.57, 1.18)

Class 4 NA 1 1 1

a
Models adjusted for maternal pre-pregnancy BMI (confounding variables chosen using BIC).

b
NA values indicate failure of estimation convergence within 500 iterations.

c
Class 4 is the reference group for every metabolite.

*
P≤0.01.

†
P≤0.05.

‡
P≤0.10.
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Table 5.

Estimated Coefficients (95% Confidence Intervals) from a Metabolite and Sex-Stratified Linear Regression 

Model Predicting Functional Principal Component Scores, PC1 and PC2, Derived from BMI Trajectories of 

Analytic Sample from CHAMACOS Study.

Boy Girl

Metabolite PCI Score
a PC2 Score PCI Score PC2 Score

MnBP 1.18 (−0.63, 3.00) 0.14 (−0.27, 0.55) 0.57 (−1.38, 2.52) −0.10 (−0.47, 0.27)

MEP 1.17
‡
 (−0.24, 2.58) 0.26

‡
 (−0.06, 0.58) 1.32

†
 (0.06, 2.58) 0.13 (−0.12, 0.37)

MiBP 0.04 (−1.57, 1.65) −0.12 (−0.48, 0.24) 0.22 (−1.45, 1.90) −0.05 (−0.36, 0.27)

MBzP 0.72 (−1.12, 2.57) −0.11 (−0.52, 0.31) 0.72 (−0.98, 2.43) −0.09 (−0.41, 0.23)

MCNP 1.12 (−1.64, 3.87) 0.39 (−0.23, 1.01) 0.48 (−1.43, 2.4) 0.17 (−0.19, 0.53)

MCOP 0.40 (−1.97, 2.76) −0.23 (−0.76, 0.30) −0.05 (−1.97, 1.86) −0.18 (−0.55, 0.18)

MCPP 0.11 (−1.88, 2.10) 0.07 (−0.37, 0.52) −1.14 (−2.94, 0.66) −0.15 (−0.49, 0.19)

MEHP 0.09 (−1.77, 1.95) 0.14 (−0.28, 0.55) 0.75 (−0.97, 2.46) −0.01 (−0.34, 0.31)

MEHHP 0.03 (−1.99, 2.05) 0.01 (−0.45, 0.46) 0.98 (−0.91, 2.88) 0.00 (−0.36, 0.36)

MECPP 0.2 (−2.18, 2.58) −0.16 (−0.69, 0.38) 1.46 (−0.63, 3.56) −0.01 (−0.41, 0.39)

MEOHP −0.13 (−2.17, 1.92) −0.02 (−0.48, 0.45) 1.1 (−0.82, 3.01) 0.01 (−0.36, 0.37)

a
Models adjusted for maternal pre-pregnancy BMI, gestational weight gain, diet quality index during pregnancy, smoking during pregnancy, 

education, marital status, age, and number of years in the US.

*
P≤0.01.

†
P≤0.05.

‡
P≤0.10.
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Table 6.

Summary of Advanced Statistical Methods and Findings based on Analytic Sample from CHAMACOS Study.

Model Description Strengths Weaknesses Our Findings

Generalized Additive 
Models (GAM)

The average outcome is a linear 
combination of linear and 
nonlinear functions of exposures 
and covariates

Extends standard 
cross-sectional 
regression to allow for 
non-linear 
relationships between 
exposures and 
outcomes at individual 
ages

Cannot study 
longitudinal 
trajectories

MEP exposure is positively 
associated with child BMI for 
boys throughout childhood and 
in a nonmonotonic way for 
girls starting in late childhood. 
No consistently strong 
relationships detected for other 
metabolites.

Growth Mixture Models Heterogeneity in outcome can 
be approximated with 
subpopulations with distinct 
average trajectories; group 
probabilities are modeled as a 
function of exposures and 
covariates

Allows for nonlinear 
relationships over time 
within groups and 
nonlinear relationships 
between exposures and 
outcome through group 
membership 
probabilities

High model 
complexity and 
thus reduced 
power to detect 
associations

Higher MECPP exposure 
associated with moderately 
increasing BMI trajectory for 
boys. DEHP metabolites 
associated with initial high 
increase in BMI that levels of 
at puberty in girls.

Functional Principal 
Component Analysis 
(FPCA)

Outcome trajectory over time 
can be decomposed as mean 
plus a linear combination of 
component functions that 
explain the most outcome 
variation.

Characterizes the 
variation in 
longitudinal outcome 
with component 
functions.

Component 
functions are not 
chosen to 
maximize 
association with 
exposure.

95% of variation in BMI can 
be explained by understanding 
that higher starting levels are 
positively associated with 
higher growth rates.

Regression Trees Extends standard cross-sectional 
regression to allow for non-
linear relationships and potential 
interactions.

Data-driven variable 
selection in the process 
of creating the tree and 
easy interpretation.

One single tree is 
sensitive to small 
changes in the 
data.

MCOP and MECPP can 
explain variation in BMI 
trajectories among girls; MEP 
and MnBP can explain 
variation in BMI trajectories 
among boys.

Random Forest Overcomes issues of one 
regression tree by creating many 
trees, each fit to a perturbed 
bootstrap sample of the original 
data with restriction of splitting 
variables to a random subset.

Robust variable 
importance measured 
as the change in 
average prediction 
error after randomly 
permuting variable 
values.

Not as 
interpretable as a 
single tree.

MEP can explain variation in 
BMI trajectories among boys 
and girls; GWG, maternal diet, 
and MCPP (girls) and MiBP, 
MCOP, and maternal age 
(boys) can next explain the 
most variation in the BMI 
trajectories.

Environ Res. Author manuscript; available in PMC 2020 August 01.


	Abstract
	Introduction
	Methods
	Study population and data collection
	Urinary phthalate measurement
	Statistical methods
	BMI trajectories
	Associations of phthalates with BMI over time


	Results
	Sample characteristics
	BMI trajectories
	Association of phthalates and BMI trajectories
	Generalized additive models
	Growth Mixture Models
	Functional Principal Components Analysis


	Discussion
	Conclusions

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.



