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Abstract

Theoretical Investigation of Binary Eutectic Alloy Nanoscale Phase Diagrams

by

Cosima Nausikaa Boswell-Koller

Doctor of Philosophy in Engineering - Materials Science and Engineering

University of California, Berkeley

Professor Daryl C. Chrzan, Chair

Recently, embedded binary eutectic alloy nanostructures (BEANs) have drawn some
attention. A previously calculated equilibrium structure map predicts four possible
nanocrystal alloy morphologies: phase-separated, bi-lobe, core-shell and inverse core-
shell governed by two dimensionless interface energy parameters. The shape of the
bilobe nanoparticles is obtained by finding the surface area of all interfaces that
minimizes the overall energy, while also maintaining mechanical equilibrium at the
triple point.

Two representative alloy systems displaying eutectic phase diagrams and negligi-
ble solid solubility were chosen: SnGe and AuGe. SnGe samples were prepared by
sequential implantation of Ge and Sn into SiO2. AuGe samples were prepared by
implanting Ge within Au-doped silica films. Transmission electron microscopy im-
ages revealed bi-lobe nanocrystals in both samples. Therefore, the interface energies
in both systems must be such that the dimensionless parameters lie in the region of
bi-lobe stability.

Careful analysis of the bi-lobe structure leads to the determination of two di-
mensionless length scales, which describe the bi-lobe independent of the size of the
nanoparticle. These two parameters, η1 and η2 can be used to calculate contours of
equal η1 and η2 over the entire range of bi-lobe stability. Experimental measurement
and comparison to predicted structures leads to determination of acting dimension-
less interface energies. Experimentally available wetting data is then used to calculate
the remaining interface energies in the system. γGe(s)/SiO2 was found to be between
0.82-0.99 J

m2 . γGe0.22Sn0.78(l)/SiO2 and γAu0.53Ge0.47(l)/SiO2 are determined to be 1.20 and
0.94 J

m2 , respectively.

To investigate the possibility of size effects at the nanoscale, size dependent phase
diagrams for the AuGe and SnGe system are determined. This is done by the theoret-
ical approach first outlined by Weissmueller et al., which takes into account the energy
contribution of the various morphologies listed above. Results from this calculation
are compared to those using the tangent line construction approach. The composi-
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tion dependent surface energies of binary alloy liquids required in this calculation are
determined using Butler’s equation.
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Chapter 1

Introduction

In Materials Science and Engineering and many other related sciences, phase dia-
grams have been used for decades as a convenient tool to determine the temperature
dependent equilibrium compositions of metal alloys.(22) Besides extracting simple
information such as melting temperatures or eutectic points (see Figure 1.1), the
fractional amount of any given phase within a sample can be easily predicted using
the well-known Lever Rule, and the predictions can be used to analyze experimental
data and aid in the design of material processing routes.(5) Many of these diagrams
have been established using calculations in conjunction with measurements involving
bulk materials.

While the information obtainable from these diagrams is certainly valid at the
macro-scale, the advent of nano-technology is increasingly challenging the usability
of these data for modern science. It is commonly accepted that as the size of a
system decreases, the surface properties of the system become increasingly important.
This importance is especially evident in the size-dependent melting of nanocrystals,
a concept theoretically investigated by Pawlow as early as 1909.(49) More recently
Buffat and Borel investigated the melting of Au nanocrystals.(7) Results from their
investigations show that as the size of the Au nanocrystals is decreased the melting
temperature significantly decreases as well. Astonishingly, Au nanocrystals with a
radius of 12 Å exhibited a melting point of 27 ℃, while the bulk melting point of Au
is 1063 ℃. These data indicate that the equilibrium phase of some Au nanocrystals
is liquid at room temperature, a concept that is hard to grasp when considering the
physical properties of most bulk metals. Similarly, Sn particles of approximately 50
Å radius exhibit a melting point of 153 ℃ (bulk melting point of 227 ℃), with other
common metals such as Bi, Ag and Pb and semiconductors (CdS) following similar
trends.(46; 30; 10; 51; 23) In general, the melting point suppression in nanocrystals
is inversely proportional to the radius.

These findings may be explained by studying the surface energies of the involved

1
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Figure 1.1. Schematic of the most important features of an equilibrium bulk phase
diagram. The system consists of two elements A and B

materials and their influences on the minimization of free energy. While such sur-
face effects are negligible at the macro-scale, they become increasingly important
on the nanoscale where a substantial surface energy contribution (due to the high
surface/volume ratio) represents a significant portion of the total energy. Following
similar arguments, nanocrystals of metals embedded in a matrix material (such as
SiO2) behave differently compared to their free-standing counterparts. For example,
embedded Ge nanocrystals (2.5 nm radius) behave differently from their free-standing
analogues.(70) Both superheating and supercooling of such particles can be observed
with the hysteresis loop centered approximately at the bulk melting point of 938 ℃
(hysteresis loop of 470 ℃). Melting of the Ge nanocrystals starts at 1077 ℃ and
ends at 1177 ℃, indicative of superheating of more than 220 ℃. The corresponding
re-solidification of the nanocrystals initiates at 707 ℃, is terminated at 607 ℃, and
thus exhibits supercooling of up to 330 ℃.

Considering the substantial effects of particle size on the physical properties of
a pure material, it is not terribly surprising that binary systems exhibit similar dis-
tortions from bulk-phase behavior that may even be more complicated compared to
those of pure metals. Although nano-sized materials introduce complications that can
be quite challenging to model, they also promote unrivaled opportunities for scientists
to stabilize materials of previously unknown compositions and geometries. Possible
geometries of binary nanocrystals have been calculated by Yuan et al. leading to an
equilibrium structure map as a function of dimensionless interface energy ratios.(72)
Recent studies have shown that systems involving SnGe and AuGe embedded in SiO2
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display a bilobe geometry.(60; 24) These findings indicate that the relevant interface
energies acting in these systems are located in the bilobe stability region of the equi-
librium structure map. However, the question arises if additional information can be
determined from the equilibrium geometry. If the bilobe stability region is examined
closely, it becomes evident that the equilibrium morphology changes with changing
dimensionless interface energies.

In Chapter 2, two dimensionless aspect ratios will be established using the bilobe
geometry. These aspect ratios can be experimentally measured using transmission
electron microscopy (TEM) images of binary systems displaying a bilobe geometry.
Once the aspect ratios are measured they can be compared to theoretically determined
aspect ratios and the dimensionless interface energies can be established. In Chapter
3, recent studies involving SnGe and AuGe systems will be used to further elaborate
on the previously introduced concepts, and will simultaneously provide the basis
for theoretical approaches to explain physical phenomena. The stable geometries of
Germanium-Tin (SnGe) and Gold-Germanium (AuGe) are predicted as a function
of temperature (T) and composition. Butler’s equation is discussed and used to
calculate the surface and interface energies of the AuGe and SnGe systems in Chapter
4. Finally, in Chapter 5 the nanoscale phase diagrams of the SnGe and AuGe systems
are calculated.
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Chapter 2

Analysis of the Bilobe

Nanostructure

Generally, an embedded binary alloy nanocrystal system is characterized by three
distinct phases, α, β and matrix, where the matrix phase can either be a solid
matrix such as SiO2 or the vapor phase. The α and β phases can be elemental
solids/liquids, liquid/solid alloys or phases differing in crystal structure. The systems
investigated herein always contain three acting surface/interface energies: γα/M , γβ/M
and γα/β. As demonstrated previously by Yuan et al. who defined two dimensionless
interface energies γ1 = γα/M/γα/β and γ2 = γβ/M/γα/β.(72) From these values, γ1

and γ2 may be used to calculate the optimum structure, thus effectively minimizing
the overall energy of the system. Possible geometries include two distinct core-shell
structures, phase-separated and the lobe-lobe (bilobe) morphology, which may be
used to calculate an equilibrium structure map.

An example of such an equilibrium structure map is shown in Figure 2.1 for a
binary alloy consisting of 30 volume % of the α-phase and 70 volume % of the β-
phase. This map is calculated using the procedure described by Yuan et al.(72)
Systems with interface energies that lead to doublets, {γ1, γ2}, in the region defined
by

γ2 ≥ −γ1 + 1 (2.1)

γ2 ≤ γ1 + 1 (2.2)

γ2 ≥ γ1 − 1 (2.3)

are predicted to result in bi-lobe structures. While these calculations may predict the
overall stable structure of a given binary system, the exact equilibrium shapes of the
bilobes also depend on one other parameter: the volume fraction of the β-phase.(72)
The region of bilobe stability will be the focus of the following paragraphs.
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Figure 2.1. Equilibrium structure map for a binary alloy nanoparticle consisting of
volume fraction of β-phase equal to 0.70. The regions of stability consist of phase-
separated, two distinct core-shell structures, and the bilobe nanoparticle region.
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Figure 2.2. A bilobe nanocrystal showing the triple point and relevant parameters
used to describe the conditions of mechanical equilibrium.

To calculate the equilibrium bilobe structure, one must first satisfy the conditions
of mechanical equilibrium. A schematic of a bilobe nanocrystal is shown in Figure
2.2. The arrows represent the acting interface energies between the individual phases:
γα/M , γβ/M and γα/β. Also shown are the three angles between the phases: α, β and
θ. The equations of mechanical equilibrium then become:

γβ/M · sin(β − π/2) = γα/M · sin(π/2− α) + γα/β (2.4)

γβ/M · cos(β − π/2) = γα/M · cos(π/2− α) (2.5)

α + β + θ = 2π (2.6)

A dimensionless analysis can be obtained by dividing the equations through by γα/β:

γ2 · sin(β − π/2) = γ1 · sin(π/2− α) + 1 (2.7)

γ2 · cos(β − π/2) = γ1 · cos(π/2− α) (2.8)

Equations 2.7 and 2.8 can be solved for the two unknown values, α and β, for any
set of {γ1, γ2}. Then, θ will also be known. From this, the three spherical caps, of
which the bilobes are composed, can be constructed. Within the bilobe region, the
bilobe structure is the morphology, which minimizes the overall surface energy of the
nanoparticles.

Initially, the case of equal volume fraction of α and β phase will be examined.
Forthwith, the volume fraction of β-phase will be denoted fβ. In Figure 2.3, a 3-
dimensional rendering of the exterior of the equilibrium bilobe structure of a nanocrys-
tal with parameters {fβ, γ1, γ2} = {0.5, 1.5, 2.0} is shown. Here, the α and β-phases
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αβ

Figure 2.3. 3-dimensional rendering of a bilobe nanocrystal of parameters
{fβ, γ1, γ2} = {0.5, 1.5, 2.0}.

are represented in yellow and blue, respectively. It should be noted that the bilobe
depicted in this figure is composed of equal volume fractions of α and β-phase. How-
ever, if this was not known a priori, one may assume that the internal interface is flat
and that there is a larger volume fraction of α-phase within the particle.

While a flat internal interface is possible, it is not necessarily the shape which
minimizes the overall energy of the system. As shown in Figures 2.1 and 2.2, the
internal interface often displays a curvature. Figure 2.4 shows the cross-sectional
view of the nanocrystal represented in Figure 2.3. It becomes evident through this
graphical approach that the internal interface, which is generally not visible through
standard microscopy experiments, is curved. Unfortunately, the direction and magni-
tude of this curvature is difficult to determine experimentally. Using only the above
described procedure, no further information can be obtained from an experimentally
observed bilobe structure, only that the interface energies must be such that the
equilibrium structure is a bilobe nanoparticle.

Experiments do, however, offer the possibility of measuring various length scales,
that characterize bilobes of differing dimensionless interface energies. In Figure 2.4,
three lengths are defined: dMAJ , dMIN and dINT . dMAJ , or the major axis, is the
distance from the edge of the α-phase to the edge of the β-phase. To define the minor
axis, dMIN , one chooses the larger lobe and measures the size as shown in Figure 2.4
(in this figure, the larger lobe is the α lobe; however, this is not always the case).
Finally, the distance from the β-edge to the intersection of the α and β lobes will
define dINT . While Figure 2.4 shows a perfectly oriented bilobe structure, these three
lengths can be determined for rotated bilobes as well. The effect of bilobe orientation
will be discussed in detail in the following chapter. Thus, these three lengths can be
measured from microscopy images (see below).

Using these lengths, two aspect ratios, η1 = dMIN/dMAJ and η2 = dINT/dMAJ , can
be defined. η1 can be described as a measure of the sphericality of the nanocrystals.
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As η1 approaches 1, the nanocrystal becomes increasingly spherical. This is the
case in both the α-core/β-shell and β-core/α-shell structures. In the region of phase
separated particles, η1 can be calculated using the procedure outlined in the following
paragraph.

In the phase separated region, the volume fraction fβ is calculated as follows:

fβ =
4
3
πr3

β

4
3
πr3

α + 4
3
πr3

β

=
r3
β

r3
α + r3

β

, (2.9)

where rα and rβ are the radii of the α and β particles, respectively. Rearranging, rα
is calculated with

rα = rβ(
1− fβ
fβ

)1/3 (2.10)

and η1 becomes

η1 =
2 ·Max[rα, rβ]

2 · rα + 2 · rβ
=
Max[rα, rβ]

rα + rβ
, (2.11)

where Max represents the maximum absolute value. This can be simplified to

η1 =
rβ(

1−fβ
fβ

)1/3

rβ(
1−fβ
fβ

)1/3 + rβ
=

(
1−fβ
fβ

)1/3

(
1−fβ
fβ

)1/3 + 1
(2.12)

η1 =
rβ

rβ(
1−fβ
fβ

)1/3 + rβ
=

1

(
1−fβ
fβ

)1/3 + 1
, (2.13)

where the first equation represent η1 for a bilobe with a larger α-lobe and the second
one represents a bilobe with larger β-lobe. The value of η1 in the phase-separated
region also represents the minimum value that η1 can take on, as in the bilobe region
dMAJ must decrease and therefore increase η1. For the case of fβ = 0.5, the minimum
value of η1 is determined to be 0.5.

In contrast, η2 is a measure of the internalization of the β-phase by the α-phase.
As η2 approaches 1, the β-phase is barely visible and the bilobe nanocrystal ap-
proaches an β-core/α-shell structure. Consequently, as η2 approaches 0, the α-phase
becomes decreasingly visible with the bilobe nanocrystal approaching an α-core/β-
shell structure. In the phase-separated region, η2 becomes:

η2 =
2 · rβ

2 · rα + 2 · rβ
=

rβ
rα + rβ

. (2.14)

Again simplifying, Eq. 2.14 becomes

η2 =
rβ

rβ(
1−fβ
fβ

)1/3 + rβ
=

1

(
1−fβ
fβ

)1/3 + 1
. (2.15)
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dINT 

dMAJ 
dMIN 

αβ

Figure 2.4. Cross-sectional view of the bi-lobe nanocrystal presented in Figure 2.3
with parameters {fβ, γ1, γ2}={0.5, 1.5, 2.0} is shown. Here, the important geometrical
features, dMIN , dMAJ and dINT are depicted.

Thus, in the phase-separated and core-shell regions, η1 and η2 remain fixed and are
independent of the actual γ1 and γ2-values. The minimum value of η2 is again found
in the phase-separated region and takes on a value of 0.5. In the region of bilobe
stability, η1 and η2 depend on γ1 and γ2.

Therefore, employing the above described strategy, one may calculate both η1 and
η2 for each γ2 and γ2 doublet given the volume fraction of β. We calculate η1 and
η2 for the equilibrium structures in the case of fβ = 0.5. An actual calculation is
performed by varying γ1 and γ2 at an increment of 0.1 and an initial value of 0.1,
producing a very large data set and will not be shown fully. However, an excerpt of
this data is shown in Table 2.1. The first and second value in each set of brackets
represent η1 and η2, respectively.

First, η1 will be examined more closely. A table similar to the one shown in Table
2.1 consisting of η1-values is calculated. Using this data, contours of equal η1-value
can then be calculated and used to construct a contour plot of η1-values in the bilobe
region. Results of this calculation are shown in Figure 2.5. As expected, for the case
of equal volume fraction of α and β-phases, the contours are symmetric about the
γ1 = γ2 line. Furthermore, it should be noted that as the values of γ1 and γ2 increase,
the degree of sphericality increases, as expected. The limiting value for η1 occurs
when two completely phase separated spheres (region γ2 ≤ −γ1 + 1) touch at one
point. As mentioned above, for fβ = 0.5, the minimum value of η1 is 0.5.

Next, the same analysis is applied to calculated η2-values. Results of the calcu-
lation are shown graphically in Figure 2.6. Again, the symmetry about the γ1 = γ2
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dMAJ 
dMIN 

αβ

γ1

γ2

Figure 2.5. Considering a binary alloy particle of equal volume fractions of α and
β-phases, a contour plot of η1 = dMIN/dMAJ is calculated and graphically presented.
As the {γ1, γ2} doublet increases, the particles become increasingly spherical. As
expected for fβ = 0.5, the contours are symmetric about the line γ1 = γ2.
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Figure 2.6. The contour plot of η2 = dINT/dMAJ is shown for a binary alloy particle
of equal volume fractions of α and β-phases. η2 is a measure of the internalization of
the β-phase. Again, the contours are symmetric about the line γ1 = γ2.
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line should be noted. Now, the contours range from 0 to 1 across the bilobe region
and between the two, possible core-shell structures. In addition, the value of η2 is 0.5
in the phase-separated region.

Now, as an example, assume a binary alloy system exists with the following pa-
rameters: fβ = 0.5, η1 = 0.80 and η2 = 0.48. Once both contour plots of η1 and
η2 are constructed, one can superimpose the two plots over one another as demon-
strated in Figure 2.7 for the case of fβ = 0.5. Next, the contours corresponding to
η1 = 0.80 and η2 = 0.48 are highlighted. Notice, that the two contours intersect
at one point, marked by the red star in Figure 2.7. This point corresponds to a
unique set of {γ1, γ2}, determined in this example to be {1.95, 1.70}, indicating that
γα/M = 1.95× γα/β and γβ/M = 1.70× γα/β.

According to the theory elaborated above, one can measure and calculate the η1

and η2 values assuming that electron microscopy images of bilobe nanoparticles are
available and the volume fraction of β-phase is known. Then, the γ1 and γ2 values can
be determined. Even if none of the acting interface/surface energies are known, this
analysis provides insight into which interface energies are largest in a given system.
One should, however, note that in some regions of the structure map, it seems there is
the possibility of one or more solutions (see regions close to doublets {γ1, γ2} = {1, 0}
and {γ1, γ2} = {0, 1}). If the measured values predict η-values leading to a solution
in these regions, a more careful analysis is required to pinpoint the exact values of
γ1 and γ2. This can be achieved by more precise measurements and an increase in
numerical accuracy of the solutions. However, limitations in both may lead to a region
of possible solutions.

However, most systems will likely fall into the region where there is only one
obvious solution. Then, if one of the interface/surface energies is known, the above-
mentioned analysis may be used to determine the remaining two interface/surface
energies. In the following chapters, two binary alloy systems displaying the above
described bilobe structure are investigated and the preceding analysis is performed.
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Figure 2.7. Overlaid contour plots of η1 (shaded contours) and η2 (dashed lines) are
shown. The red star represents the example discussed in the text.
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Chapter 3

Application of Bilobe Analysis to

Two Experimental Systems

Previously, a geometry based approach to determine the dimensionless inter-
face energies of bilobe nanostructures was introduced. In the following paragraphs,
two cases of experimentally available embedded binary eutectic alloy nanostructures
(BEANs) will be investigated using the described theory. Both SnGe and AuGe
BEANs are fabricated using ion implantation/co-sputtering within a SiO2 matrix
and post-fabrication thermal annealing.(60; 24) Ion beam synthesis (IBS), a conve-
nient method for the production of embedded nanoclusters, is typically employed
when control over quantity, purity, and desired isotopes of the embedded species is
of special importance.(40; 70; 44; 57) Both bright field (BF) and high angle annular
dark field (HAADF) imaging are used to characterize the resulting nanostructures.
Representative TEM images of SnGe and AuGe BEANs are shown in Figures 3.1 and
3.7. The annealing step clearly results in the formation of bilobe nanostructures (for
both systems), providing adequate experimental parameters that warrant the use of
the geometry based analysis.

3.1 SnGe

Based on the implantation, the Ge:Sn ratio is estimated to be 3:1 (25 at. %
Sn).(60) Additionally, the average radius of the resulting SnGe BEANs was measured
to be 25 nm. A representative TEM image of the resulting BEANs is shown in Figure
3.1. Clearly, some of the nanocrystals are composed of two distinct lobes as evidenced
by the contrast difference in the high-angle annular dark-field (HAADF) image. The
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100 nm

Figure 3.1. Representative TEM image of SnGe bilobe nanocrystals used in determi-
nation of interface energy from the characterized bilobe geometry.

rest of the nanoparticles are assumed to be composed of pure Ge due to the non-
uniform implantation conditions. In this technique, higher atomic number elements
appear brighter than low atomic number elements. Consequently, the bright region
is assumed to be composed of Sn, while the lower contrast (with respect to the SiO2

matrix) lobe is composed of Ge. It should be noted that the brighter lobe is also the
smaller lobe of the bilobe nanocrystals, which is consistent with the estimated alloy
composition.

To perform the analysis, the α-phase will denote the Ge rich phase, while the
secondary phase (in this case the Sn rich phase) will be the β-phase. Accordingly,
the SiO2 represents the matrix, M -phase. As described in the preceding chapter, η1

and η2 are measured and calculated for each nanocrystal from the TEM images. As
a consequence of the implantation conditions, a random orientation of nanocrystals
throughout the sample, which is evidenced by a range of measured η1 and η2 values,
is expected.

To properly identify the true aspect ratios, we must take a closer look at the bilobe
nanocrystals. Consider a bilobe with one lobe of radius R centered at {x, y, z} =
{0, 0, 0} and a second lobe of radius r centered at {x, y, z} = {xc, 0, 0}, as shown in
Figure 3.2. In this case, R is greater than r. Subsequently, η1, as defined earlier, is
calculated to be η1 = 2R

R+xc+r
. Now imagine the bilobe structure is rotated by some

angle θ about the y-axis. The projection of the center of the smaller bilobe then
becomes xc · cos(θ), and thus, η1 = 2R

R+xc·cos(θ)+r . Accordingly, if xc · cos(θ) + r ≤ R,
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Figure 3.2. A bilobe nanocrystal is shown with one lobe (radius R) centered at
{x, y, z} = {0, 0, 0} and a second lobe centered at {x, y, z} = {xc, 0, 0}. To investigate
the range of possible η1-values, a rotation about the y-axis is considered. As the bilobe
undergoes rotation by θ-degrees, the projection of the center of the second bilobe onto
the x-axis becomes xc · cos(θ).

the secondary bilobe has rotated out of view, and η1 becomes 1 until the lobe has
rotated sufficiently to be seen on the left-hand side of the primary lobe.

As an example, we let R = 1, r = 0.725 and xc = 0.92. η1 is plotted graphically
in Figure 3.3 as a function of rotational angle, θ, about the y-axis. The minimum
η1-value is calculated to be 0.756144, which is also evidenced by the local minimum at
θ = 0. As expected, this minimum is also found at θ = π. Also, as described above,
there are two regions of θ-values for which η1 must equal 1. In the first region, the
smaller lobe is hidden behind the larger lobe, and thus both the minor and the major
axis are equal to 2R. In the second region, the secondary lobe is visible; however, the
minor and major axis, as defined previously, must still both equal 2R.

Consequently, when examining a collection of randomly oriented bilobe structures,
the structure with the minimum value of η1 represents the nanocrystal, that is most
closely oriented to the prefect side-on view of the bilobe. Analysis of possible η2-values
leads to a similar result. Therefore, under the assumption of uniform composition
(this assumption will be addressed by the use of error bars, see below), the bilobe

17



0 1 2 3 4 5 6
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Θ, Rotational angle

Η
1=

d M
IN

d M
A

J
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value represents an advantageously oriented bilobe.
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Figure 3.4. Contour plot corresponding to a volume fraction of fβ = 0.28. The
contours ηSnGe1 = 0.88 and ηSnGe2 = 0.67 are highlighted. The intersection of the two
contours lies at γ1 = 2.31 and γ2 = 2.43.

displaying the smallest values of η1 and η2 are chosen to represent the actual values
of η1 and η2 in a given sample.

In the SnGe-samples, the aspect ratios are determined to be ηSnGe1 = 0.88, ηSnGe2 =
0.67. The bilobe composition was estimated to be 25 at. % Sn, which corresponds to
a volume fraction of fβ = 0.28 Sn. Figure 3.4 shows the corresponding contour plot
at fβ = 0.28 with the contours ηSnGe1 = 0.88 and ηSnGe2 = 0.67 highlighted. It is clear
from the calculation that the contours corresponding to the measured aspect ratios
cross at one point: γ1 = 2.31 and γ2 = 2.43.

Although the microscopy experiments are performed at room temperature, sam-
ples undergo thermal treatment to stabilize the bilobe structure. Therefore, it is
possible that the observed structures are formed at an elevated temperature and set
by the freezing of the matrix during subsequent quenching, which would indicate
that the experimentally observed bilobe structures are not the equilibrium structure
at room temperature. It is possible that the equilibrium morphology at room tem-
perature is still a bilobe structure, but with possibly different aspect ratios.
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Figure 3.5. The equilibrium bulk phase diagram of the SnGe system is presented.
Contours represent the volume fraction of the liquid phase in the system.

To further investigate this setting theory, the equilibrium bulk SnGe phase dia-
gram is employed. As described above, samples with 25 at. % Sn are heated to 900
℃ for 1 hr. At this temperature, the bulk phase diagram (see Figure 3.5) predicts the
liquid phase for the composition under investigation. As the temperature is decreased
to T = 1130 K, the liquidus line is reached, thus indicating the onset of solidification
and a small volume solid nucleates from the binary alloy liquid. As the temperature
decreases below the liquidus temperature, the fractional amount of solid in the system
increases according to the lever rule.

In the case of the SnGe system, a very Ge-rich phase is solidified leaving a liquid
phase of increasing Sn concentration. In Figure 3.5, contours represent the fractional
amount of liquid expected in the system. The solid, vertical line represents the
investigated composition. As the temperature decreases, the intersection between the
vertical line and the contour represents the fraction of liquid present. The fraction
of solid is then defined as 1 − fliquid. As discussed above, the η1 and η2 contour
plots change for differing volume fractions of the β-phase. Thus, as the temperature
is decreased, the volume fraction of the liquid phase changes (the liquid phase will
represent the β-phase), and as such contour plots differ as a function of temperature.
Therefore, the intersection of the two contours changes and the determined γ1 and
γ2 values are temperature dependent. Consequently, a contour plot according to the
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volume fraction of β-phase must be constructed and analyzed for every temperature.
The result is a table consisting of temperature, γ1 and γ2. Reconsider the definitions
of γ1 and γ2,

γ1 = γα/M/γα/β (3.1)

γ2 = γβ/M/γα/β. (3.2)

There are three interface energies involved in the system at each temperature and
according to our previous definition, γα/M is γSnxGeliq1−x/SiO2

, γβ/M is γGesol/SiO2
and

γα/β is γSnxGeliq1−x/Ge
sol . Thus, if one of the interface energies is known, the other two

interface energies can be calculated as a function of temperature.

Fortunately, Naidich and Perevertailo determined the composition dependent wet-
ting properties of SnGe-liquids on Ge-solid.(42) These analyses provide us with one
of the relevant interface energies within the system and allows us to use the analysis
described in Chapter 2 to determine the remaining interface energies. The employed
equations are as follows:

γGesol/SiO2
= γ1(T )× γSnxGeliq1−x/Ge

sol (3.3)

γSnxGeliq1−x/SiO2
= γ2(T )× γSnxGeliq1−x/Ge

sol , (3.4)

with γSnxGeliq1−x/Ge
sol determined experimentally.(42) γGesol/SiO2

and γSnxGeliq1−x/SiO2
can

now be calculated as a function of temperature. Results of this calculation are shown
in Figure 3.6, where γGesol/SiO2

and γSnxGeliq1−x/SiO2
are represented in black and blue,

respectively. It is clear from this figure that all temperatures investigated, result in
reasonable values for the interface energies.

As mentioned before, the calculations performed thus far have been under the
assumption of uniform and known composition. To adjust for the possibility that
the composition of the individual bilobes is not equal to the overall implantation
composition, error bars will be calculated. This is achieved by measuring and cal-
culating the visible portion of the two caps in the TEM images and calculating the
volume fraction of Sn, which can subsequently be converted to atomic fraction of
Sn in the particle. In the case of SnGe particles, the atomic fraction of Sn is calcu-
lated to be 0.22, while the implantation conditions predict 0.25. Thus, an error bar
of 3 at. % Sn is applied to the calculation. It should be noted that the values of
γGesol/SiO2

and γSnxGeliq1−x/SiO2
change as a function of temperature over a substantial

range (0.3-1.8 J
m2 ), and therefore no definite prediction can yet be made.

3.2 AuGe

A second system was also investigated using a similar methodology: the AuGe-
system. Samples are prepared via cosputtering method of SiO2 and Au and subse-
quent ion implantation of Ge as described by Shin et al.(60) A Au to Ge ratio of 3:17
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Figure 3.6. γGesol/SiO2
and γSnxGeliq1−x/SiO2

calculated as a function of temperature.

γGesol/SiO2
is represented by the black line, while γSnxGeliq1−x/SiO2

is shown in blue.

or 15 at.% Au is achieved, which corresponds to a volume fraction of Au of fβ = 0.12.
Similar to the SnGe-system, AuGe bilobe structures are found upon thermal anneal-
ing of samples at 900 ℃ for 1 hr (see Figure 3.7). Again, the bilobes consist of a
Ge-rich larger lobe, and a Au-rich smaller lobe. Careful measurement of the AuGe
bilobes determines ηGeAu1 = 0.94 and ηGeAu2 = 0.71. These values clearly differ from
those measured in the SnGe-system indicating that the interface energies and volume
fraction of β-phase must be different. Again, the two contour plots for fβ = 0.12 are
constructed and the intersection of contours η1 = 0.94 and η2 = 0.71 is found. The
resulting contour plot is shown in Figure 3.8. The intersection is found at γ1 = 2.95
and γ2 = 2.11.

However, as previously discussed, the bilobe structure may have been formed at
an elevated temperature during the solidification process. Consequently, as described
before, the temperature dependent γ1 and γ2 values are determined through the use
of the AuGe bulk phase diagram. Here, the acting equations are:

γGesol/SiO2
= γ1(T )× γAuxGeliq1−x/Ge

sol (3.5)

γAuxGeliq1−x/SiO2
= γ2(T )× γAuxGeliq1−x/Ge

sol . (3.6)

Again, Naidich and Perevertailo studied the wetting properties of AuGe-liquids
on Ge-solid: γAuxGeliq1−x/Ge

sol .(43) This allows us to calculate both γGesol/SiO2
and

γAuxGeliq1−x/SiO2
as a function of temperature. It should be noted that the two sys-

tems studied share a common interfacial energy: γGe(s)/SiO2 . Assuming that the set
temperature is the same for both systems, comparison of this common interface en-
ergy as a function of temperature should enable identification of the set temperature.
The temperature for which the two systems yield identical γGe(s)/SiO2 is the setting
temperature.

22



20 nm

Figure 3.7. A representative TEM image of AuGe nanoparticles is shown. Clearly,
the bilobe structure has formed.

Figure 3.8. Contour plot corresponding to a volume fraction of fβ = 0.28. The
contours ηSnGe1 = 0.94 and ηSnGe2 = 0.71 are highlighted. The intersection of the two
contours indicates acting values of γ1 = 2.31 and γ2 = 2.43.
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Figure 3.9. γGesol/SiO2
plotted as a function of temperature. The black line represents

the results calculated from the SnGe system, while the gray line is calculated from
the AuGe system.

In Figure 3.9, the interface energy γGesol/SiO2
is plotted as a function of temper-

ature calculated using both the SnGe (black line) and AuGe (gray line) systems.
Again, the error bars are calculated using the method described above.

It is clearly evident that both systems predict a Gesol/SiO2 interface energy over
a similar range. The two predictions cross at two temperatures, 415 and 660 ℃
and thus the corresponding predicted interface energies are 1.30 and 0.73 J

m2 . At all
temperatures above 415 ℃, the error bars for both systems overlap substantially. A
question the arises: is there a mechanism acting at temperatures above 415 ℃ that
would cause the theorized setting and further pinpoint the exact setting temperature.

A previous study on Ge nanocrystals embedded in silica by IBS (using the same
method as in the current experiment) showed that stress relaxation of the embedded
clusters did not significantly occur at a temperature of 600 ℃ even after long (greater
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than 24 hrs) annealing times.(58) At further elevated temperatures, stress relaxation
was in fact observed, which would indicate that the silica matrix no longer allows for
a change in shape of the nanocrystals at temperatures below ∼ 600 ℃. Additionally,
McGraw(39) and Belousov et al.(6) observed a marked increase in the elastic modulus
of industrial glasses at temperatures below ∼ 580 ℃. While in the current experiment,
the matrix material is SiO2, it is not unthinkable that the implantation or cosputtering
of Sn/Au/Ge into the matrix causes a similar elastic behavior as that observed in the
impure industrial glasses. Considering these experiments, it seems reasonable to
assume that the bilobe structure is set at ∼ 600 ℃.

Next, the systems are evaluated at T = 600 ℃. At this temperature, the bulk
SnGe phase diagram predicts a system containing Gesol and a Ge0.22Sn

liq
0.78. Also,

the volume fraction of liquid present is determined to be fβ = 0.31. Figure 3.10
shows the resulting contour plot at this volume fraction. The intersection of the
contours is emphasized by the star and is found at γ=2.05 and γ2 = 2.41. At this
composition/temperature, Naidich and Perevertailo determined γSn0.78Ge

liq
0.22/Ge

sol to

be equal to ∼ 0.5 J
m2 leading to γGesol/SiO2

= 0.99 J
m2 and γSn0.78Ge

liq
0.22/SiO2

= 1.20 J
m2 .

The AuGe system predicts Gesol and a Au0.53Ge
liq
0.47 with a volume fraction of liquid

equal to fβ = 0.33. The resulting contour plot is shown in Figure 3.11 and the contour
intersection may be found at γ1 = 3.71 and γ2 = 4.26. Combined with the value of
γAu0.53Geliq0.47/Ge

sol (∼ 0.22 J
m2 )(43), γGesol/SiO2

and γAu0.53Geliq0.47/SiO2
are calculated to be

equal to 0.82 and 0.94 J
m2 , respectively.

Both Figures 3.10 and 3.11 are shown with inserts of simulated BEANs using
the parameters determined at T = 600 ℃. It should be noted that these bilobes
show a striking similarity to the experimentally observed structures, indicating that
the determined parameters are reasonable. Furthermore, the value of γGesol/SiO2

is

determined to be ∼ 0.82− 0.99 J
m2 , which is in good agreement with prior estimates

for the Gesol-SiO2 interface energy of 0.7-0.9 J
m2 .(70; 31)

One final observation should be considered: size effect. As noted previously, the
average radius of the SnGe bi-lobe nanocrystals is 25 nm. Comparison of the two
sets of TEM images clearly shows that the resulting AuGe bilobes are considerably
smaller: 5 nm average radius. It is therefore possible that a size has been reached,
especially in the case of the AuGe nanocrystals, at which the bulk phase diagram is no
longer applicable. If size effects are relevant, the size dependent phase diagrams must
be calculated. Consequently, if the liquidus and solidus lines or the eutectic point shift
due to the small size of the binary alloy system, the temperature dependent volume
fractions of β-phase will change. This may result in a change of calculated γGesol/SiO2

values. In the following chapters, a procedure to calculate the size dependent phase
diagrams will be described.
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fβ = 31%:

α  – phase : Ge (s) 
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Figure 3.10. Contour plot for the SnGe system at T = 600 ℃ for which fβ is predicted
to be equal to 0.31.
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α  – phase: Ge (s)

β – phase: Au0.53Ge0.47 (l)
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= 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Figure 3.11. Contour plot for the AuGe system at T = 600 ℃ for which fβ is predicted
to be equal to 0.33.
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Chapter 4

Application of Butler’s Equation to

SnGe and AuGe Systems

As mentioned previously, the properties of the surfaces and interfaces of a sys-
tem become increasingly important as a result of a decreasing system size. Crystal
sizes on the order of nanometers ( 10−9 m) and below show significant size depen-
dent properties.(13; 2; 1; 54; 70; 30) Therefore, it becomes important to predict the
phase diagrams of nanoscale binary alloy systems, as a deviation from bulk behavior
is possible, if not expected.(11; 64; 69; 68; 8; 63; 36; 15; 16; 48; 67) Thus, we must
first turn our attention to the determination and evaluation of the surface/interface
energies acting in our model systems, SnGe and AuGe. To evaluate the phase dia-
grams, a priori knowledge of γAxB1−x , the surface/interface energy of a binary alloy
liquid of composition AxB1−x (A and B represent the two component elements), is
required. Often, a concentration weighted average of the surface/interface energies of
the individual elements is used.(63) Subsequently, the surface tension is calculated as
follows:

γAxB1−x = x · γA + (1− x) · γB (4.1)

This method assumes that the composition of the surface is identical to that of the
bulk and that the two atom types contribute to the surface tension similarly, whether
or not they are surrounded by atoms of the same or different type. In elemental
liquids, the surface composition is necessarily equal to the bulk composition of the
liquid; however, in alloys this is not necessarily true. Due to element specific surface
activities, the composition of the surface may vary significantly from that of the bulk.
Thus, the contribution to the surface tension of the two elements may deviate from
the linear approximation made by assuming a concentration weighted average.

To address this, Butler’s equation is often employed.(9; 4) This technique seeks
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to express the surface tension in terms of equilibrium between the chemical potential
of the bulk material (with bulk composition) and that of its’ surface layer (possi-
ble different composition).(38; 64; 65; 15; 16; 36; 18; 71) Considering a binary alloy
composed of components A and B, Butler’s equation is expressed as follows:

σL = σA
L +

RT

AA
ln(

xA
s

xAb
) +

1

AA
GA

Ex,s − 1

AA
GA

Ex,b (4.2)

σL = σB
L +

RT

AB
ln(

xB
s

xBb
) +

1

AB
GB

Ex,s − 1

AB
GB

Ex,b, (4.3)

where σL is the surface tension of the alloy, σA,B
L is the surface tension of the pure

liquid components A or B, xA,B
s,b is the mole fraction of component A or B in the

surface or bulk and AA,B is the relative surface areas of components A or B. GA
Ex,b

and GA
Ex,s are the partial molar excess Gibbs’ free energies of element A in the bulk

and surface, respectively. A B in the subscript denotes element B, whereas a b in the
superscript refers to the bulk of the system.

To clarify, the above form of Butler’s equation (Equations 4.2 and 4.3) can be
rewritten as:

RT ln(xA
s) +GA

Ex,s + AA(σA
L − σL) = RT ln(xA

b) +GA
Ex,b (4.4)

RT ln(xB
s) +GB

Ex,s + AB(σB
L − σL) = RT ln(xB

b) +GB
Ex,b, (4.5)

where R is the universal gas constant equal to 8.3144621 J
mol·K and T represents the

temperature in Kelvin. In the above equations, the left-hand side represents the
chemical potential of the surface, while the right-hand side represents the chemical
potential of the bulk. Therefore, Butler’s equations assumes equilibrium between the
bulk of some composition and the surface with a differing composition. Furthermore,
the relative surface areas of the components A and B are calculated using the their
molar liquid volumes, VA,B

L, as follows:

AA,B
L = l ·N0

1/3(VA,B
L)2/3. (4.6)

In this equation, l is a fitting parameter that recalculates the area of the liquid surface
layer assuming a close-packed structure and equal to 1.091(4; 19; 20; 59) and N0

represents Avogadro’s number equal to 6.0233×1023. The excess partial molar Gibbs
free energies of components A or B in the bulk, GA

Ex,b(T, xB
b) or GB

Ex,b(T, xB
b), can

be calculated using:

GA
Ex,b(T, xB

b) = GEx,L − xBb
∂GEx,L

∂xBb
(4.7)

GB
Ex,b(T, xB

b) = GEx,L + (1− xBb)
∂GEx,L

∂xBb
. (4.8)
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xB
b represents the molar fraction of component B in the bulk of the liquid. The partial

molar excess Gibbs free energy of components A and B in the surface is estimated
using:

GA,B
Ex,s(T, xB

s) = β ·GA,B
Ex,b(T, xB

s). (4.9)

This form assumes that the partial molar Gibbs free energy of a component at the
surface is a fractional portion of the partial molar Gibbs free energy of the same
component in the bulk. β represents the ratio of coordination number in surface to
bulk. In general for liquid alloys, β is set equal to 0.75 or 0.83, which assumes the
coordination number in the bulk is 12 and at the surface either 9 or 10.

The excess Gibbs energy of mixing of an alloy can be modeled using Redlich-Kister
expansions:(53)

GEx,L = xA
b · xBb{L0 + L1(xA

b − xBb) + L2(xA
b − xBb)2 + L3(xA

b − xBb)3

+ ... + Li(xA
b − xBb)i}. (4.10)

The interaction parameters, Li, must be found in the appropriate thermodynamic
databases for each system under investigation.

All relevant data for the calculation of surface tensions of AuGe and SnGe liquid
alloys is summarized in Tables 4.1-4.3. Table 4.1 lists values for the surface tension
of Au, Ge and Sn liquids available in the literature. When available, temperature
dependent properties are tabulated. In the case of Sn, measurements of the surface
tension at various temperatures are used to construct a linear best fit equation. This
equation is also tabulated. If multiple measurements are available in the literature (as
in the case of Au and Sn), subsequent calculations will be carried out multiple times.
Table 4.2 lists available data for the molar volumes of the elemental liquids. If tem-
perature dependent data is not available, the available data will be used and assumed
not to depend on temperature. Finally, Table 4.3 lists the interaction parameters
for both the AuGe and SnGe systems. In both cases, the interaction parameters are
listed as function of Ge concentration.

Table 4.1. σ, Surface Tension (J/m2) of Elemental Liquid

Ref.

Au 1.169− 0.25× 10−3(T − 1336.15) (27)
1.138− 1.9× 10−3(T − 1337) (26)

1.33− 1.4× 10−4T (48)
Sn (0.531− 0.151× 10−3(T − 505)) (37)

(0.5828− 0.0834× 10−3T ) (21; 50; 35)
Ge 0.587− 0.105× 10−3(T − 1211.5) (26)
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Table 4.2. Molar Volume (m3/mol) of Elemental Liquid

Ref.

Au 11.3× 10−6(1.0 + 0.000069× (T − 1336.15)) (27)
1.1345× 10−5 exp [8.0× 10−5(T − 1337)] (26)

1.02582× 10−5 + 7.797× 10−10T (48)
Sn 0.118710/7300 (38)
Ge 1.2966× 10−5 (26)

Table 4.3. {L1, L2, L3, L4}, Interaction Parameters

System Ref.

[Au,Ge] {−20050− 8.365× T,−12950− 2.015× T,−13.52× T, 0} (26)
[Sn,Ge] {2738.48− 8.365× T,−472.41, 0, 0} (17)

In the following paragraphs, the calculation of the surface tension of the binary
liquids will be discussed step-by-step. Initially, we plot the excess free energies of
both the AuGe and SnGe systems as a function of Ge content using the interaction
parameters tabulated in 4.3 using Eq. 4.10. The following data is used for means of
an example:

σSn = (0.5828− 0.0834× 10−3T ) (4.11)

σAu = 1.169− 0.25× 10−3(T − 1336.15) (4.12)

σGe = 0.587− 1.05× 10−4(T − 1211.5) (4.13)

V olSn = 0.118710/7300 + 0T (4.14)

V olAu = 11.3× 10−6(1.0 + 0.69× 10−4(T − 1336.15)) (4.15)

V olGe = 1.2966× 10−5 (4.16)

Figure 4.1 plots GEx,L for AuGe and SnGe at T = 1500K in blue and red, respec-
tively. The dotted line represents the simplest solution model, in that all interaction
parameters are identically set equal to 0, assuming zero energy of mixing. The partial
molar Gibbs’ free energies (Equations 4.7 and 4.8) are plotted in Figure 4.2. Again,
blue represents the AuGe system, while red represents the SnGe system.

The partial molar Gibbs free energies of components A and B in the bulk are
given by Eqs. 4.7 and 4.8 and are plotted in Figure 4.2. The blue line represents the
AuGe-system, while red represents the SnGe-system. In each system, GA

Ex,b(T, xB
b)

is plotted with a solid line and GB
Ex,b(T, xB

b) is represented by the dashed line. For
clarity, the ideal solution is not shown, but uniformly equal to 0.
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Figure 4.1. The excess free energy of mixing of a AuGe (blue) and SnGe (red) alloy at
T = 1500K is shown. The solid lines are calculated according to the Redlich-Kister
expansion using published interaction parameters for each system. The dashed lines
(the blue line is not visible under the red dashed line) assume no excess energy of
mixing, i.e. the interaction parameters in the Redlich-Kister expansion are identically
set equal to 0.
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Figure 4.2. The partial molar Gibbs free energies of components A and B in the
bulk are plotted as a function of xBGe. Blue represents the AuGe-system, while
red represents the SnGe-system. GA
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Subsequently, we solve for the surface composition of the binary alloy liquid as a
function of the overall composition of the binary alloy . This is done by setting Eq. 4.2
equal to Eq. 4.3 and solving for xB

s with xA
s = 1−xBs. Figure 4.3 shows the expected

composition of the surface layer, xB
s, as a function of the composition of the bulk

liquid, xB
b, shown for both the AuGe (blue) and SnGe (red)-systems calculated at

T = 1500K. The black dotted line is added to guide the eye and represents a surface
layer of composition equal to that of the bulk. Clearly, both systems are predicted
to consist of surface layers deviating in composition from the bulk. However, the two
systems also display a marked difference in behavior. While the surface of the SnGe-
systems is predicted to be slightly deficient in Ge, a significant increase in Ge-content
relative to the AuGe-bulk system is predicted. This indicates that Sn is slightly
more surface active than Ge, but that Ge is far more surface active than Au at this
temperature. Once the surface composition is predicted, σL can be calculated using
either Eq. 4.2 or 4.3. This calculation is carried out at T = 1500K and plotted in
Figure 4.4. The SnGe system (red line in Figure 4.4) shows a positive deviation from
the concentration weighted average (black, dashed line) of the liquid surface tensions
of the two elements. In contrast, the AuGe system (blue line) deviates negatively
and far more pronounced from the surface tensions predicted by the concentration
weighted average.

Using the above described analysis, the temperature and composition dependent
surface tensions of both the AuGe and SnGe-systems can be calculated. Figure 4.5
shows the calculated surface tensions of Sn1−xGex liquids at T = 573, 773, 973, 1173,
1373, and 1573K. At low temperatures, the surface tension of the pure Sn-liquid
takes on a higher value than that of the pure Ge-liquid. The surface tension of the
SnGe-alloys then show a negative deviation from the concentration weighted average.
In contrast, at higher temperatures, the surface tension of pure Sn-liquid is lower than
that of the pure Ge-liquid, indicating that Sn-liquids display a stronger temperature
dependence. Also, at lower temperatures, the alloys liquids deviate positively from
the values predicted by the concentration weighted average. This indicates that Ge
has a lower surface activity at higher temperatures than at lower temperatures.

Similarly, the composition dependent surface tensions of the Au1−xGex-liquids is
calculated for temperatures ranging between 973 and 1973K. Unlike in the SnGe sys-
tem, the surface tensions of the alloys deviate negatively from the values predicted by
the concentration weighted average at all temperatures under investigation. However,
overall, the expected temperature trend is observed: as the temperature is increased,
the surface tensions decrease.(47) This trends arises from the fact that the surface
tension in its’ simplest form is proportional to N and ∆ε, where N is the number
of atoms per unit area and ∆ε is the energy required to overcome a nearest neigh-
bor interaction/bond strength. In general, as the temperature increases the density
decreases, i.e. N decreases. Also, considering a simple Lennard-Jones potential, we
know that as the temperature increases, the energy to overcome a nearest neighbor
bond decreases. Therefore, it follows that as the temperature increases, the surface
tension must decrease. Now that the surface tensions have been calculated, we focus
our attention of the calculation of the size dependent phase diagrams.
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Figure 4.3. The concentration of Ge in the surface of a liquid alloy is calculated as a
function of Ge concentration in the bulk liquid. As before, blue represents the AuGe
system and red represents the SnGe system.
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Figure 4.4. The composition dependent surface tensions of the Au1−xGex and
Sn1−xGex liquids are plotted in blue and red, respectively. The black dotted line
represents the concentration weight average of the liquid elements at T = 1500. In
both systems, a deviation from the concentration weighted average is predicted.
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Chapter 5

Nanoscale Phase Diagrams

The melting point of an elemental substance, such as a metal or semiconductor
material, can be described as the temperature at which the substance undergoes a
change of state from solid to liquid. Similarly, the opposing change of state from
liquid to solid is described as freezing or solidification and, in general, melting and
solidification occur at the same temperature. More specifically, the melting point of
a substance occurs when the liquid and solid phase exist in equilibrium, indicating
that the total free energy of the liquid phase is equal to the total free energy of the
solid phase at the equilibrium melting temperature.

The total free energy of a system can be calculated by considering two separate
contributions: the first from the volumes of the various phases and the second from
the surfaces and interfaces existing in the system. The volumetric contribution is
determined using the volumetric Gibbs’ free energy, Gphase (J/m3), and the contri-
bution of the surface to the overall free energy is determined by the surface energy.
These parameters can be summarized in the following equation:

GTot,phase = V phase ·Gphase + Aphase · σphase, (5.1)

where V (m3) and A (m2) represent the volume and surface area of the phase, re-
spectively, and σ (J/m2) is the surface energy of the phase.

In a macroscopic system, the volumetric contribution far exceeds the contribution
of the surface to the total energy. This is easily evident when considering a spherical
system, as the volume is proportional to r3, while the surface is proportional to only
r2. Therefore, the contribution of the surface can and is often neglected. The total
free energy is then estimated by:

GTot,phase ≈ V phase ·Gphase. (5.2)

An example of the temperature dependence of the Gibbs’ free energy of an elemental
solid and liquid is shown schematically in Figure 5.1. Here, blue and red represent
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Figure 5.1. Schematic representation of the temperature dependent total Gibbs’ free
energy of a solid and a liquid system, shown in blue and red, respectively. The
temperature at which the energy of the phases is equal represents the bulk melting
point of the system.

the solid and liquid phases, respectively. Generally, both the free energy of the solid
and corresponding liquid show a negative temperature dependence with the liquid
phase displaying a stronger temperature dependence. Clearly, the Gibbs free energies
cross at TBulkM , which represents the bulk melting temperature. At temperatures
below TBulkM , the free energy of the solid phase minimizes the total free energy of the
system, and thus the solid phase is expected. At TBulkM , the two phases may coexist
in equilibrium. Then, as the temperature is increased further, the free energy of
the liquid phase becomes lower than that of the solid phase and melting is expected
to occur. Naturally, at some further elevated temperature, the vapor phase would
become the most favorable temperature, which accordingly is known as the boiling
point. However, in the case of metals and semiconductors, this temperature is usually
very high and will not be considered.

Next, consider a system similar to that described above, but much smaller in size.
As has been discussed in the preceding chapters, as the system size decreases, the
contributions of the surfaces become increasingly important. Eventually, the surface
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contribution may no longer be neglected and the total free energy of the system under
investigation must be written as shown in Equation 5.1. It should further be noted
that the surface energy, σ, can only assume positive values. Therefore, this contribu-
tion will always work to increase the overall energy of the system. Accordingly, one
must also consider what system geometry would minimize the total surface contribu-
tion to the free energy. This shape is known to be a sphere, which has the smallest
surface to volume ratio and by neglecting any surface energy anisotropy, this will be
the shape under consideration in the following.

The total free energy can then be calculated per unit volume. Considering a
spherical particle, Equation 5.1 becomes:

GTot,phase/V phase = Gphase + Aphase/V phase · σphase

= Gphase + (4πr2)/(4/3πr3) · σphase

= Gphase + 3/r · σphase. (5.3)

where r is the radius of the spherical particle. Clearly, at large values of r, the
surface contribution becomes negligible. However, as r decreases sufficiently, this
contribution may no longer be neglected. With further decreasing radius, the sur-
face contribution increases accordingly, which is shown schematically in Figure 5.2.
Clearly, the addition of the surface area term leads to an upward shift of the free
energy. It is also generally true that the surface energy of the solid phase is larger
than that of the liquid phase.(47; 61; 73; 3; 41; 33; 32) Therefore, when considering
a particle of radius r, the shift of the free energy in the solid phase will be larger
in magnitude than that in the liquid phase. This leads to a decrease in the melting
point, TNanoM , proportional to the inverse of particle size, as evidenced experimentally
by many researchers.(7; 13; 12; 30; 10; 46; 51; 52)

However, when studying melting/solidification, one must also investigate the tran-
sition between the two phases. Consider, for example, a solid particle of radius r at
the onset of melting. This leads to a particle with a majority solid-phase and a small
fraction liquid-phase. As has been discussed in the preceding chapters, possible mor-
phologies that must be considered are: solid-core/liquid-shell, liquid-core/solid-shell,
phase separated, and the bilobe structure. This leads to a possible change in the
total free energy of the particle as the fraction of liquid increases, which is shown
schematically in Figure 5.3. Regardless of the morphology, phase transitions can lead
to a kinetic barrier of melting/solidification, a behavior that was demonstrated and
explained by (70) in the case of Germanium embedded in silica. Ge nanoparticles
displayed both superheating and supercooling centered approximately about the bulk
melting temperature. This phenomenon was attributed to the kinetic barrier asso-
ciated with the melting/solidification transition. Thus, it is important to consider
not only the total free energy of the solid and liquid phases, but also the transition
between the two phases.

The melting of elemental solids has been extensively studied, but as was shown
in the previous chapters, binary alloys show interesting structures when reduced in
size to the nanoscale. Recently, the effect of size on the phase diagrams of binary
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Figure 5.2. The temperature dependent total free energy per volume of particle of a
representative solid and a liquid particle is shown in blue and red, respectively. The
addition of the surface term shifts the free energy upward for both the liquid and the
solid phase. Generally, however, the shift of the solid phase is more pronounced, thus
decreasing the melting temperature.
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Figure 5.3. The free energy of a particle as it undergoes melting. As the volume frac-
tion of the liquid within the particle is increased, the energy of the particle undergoes
a maximum value, that can be seen as a kinetic barrier for melting. This leads to the
possibility of superheating and supercooling in nanoparticles due to the addition of
the surface/interface energy terms.
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alloys has been studied quite frequently.(26; 48; 15; 16; 36; 63; 28; 45; 25; 56) While
these studies take into account the addition of the surface term to the liquid and solid
phases, the tangent rule construction, generally applied to bulk phases, is employed
to determine the phase boundaries. The use and applicability of the tangent rule
construction will be more closely examined in the following paragraphs.

Initially, we will consider a macroscopic system consisting of elements A and B.
An arbitrary binary alloy may then be described by its overall composition, A1−xBx

(this is shown in Figure 5.4 as composition xc). Subsequently, at each temperature,
the Gibbs’ free energy of all phases must be calculated as a function of composition,
xc. This is shown graphically in Figure 5.4, where 3 distinct phases are under con-
sideration. The phases considered are solid-phases A (blue) and B (red), and the
liquid phase L (purple). In general, the total energy of the alloy must be minimized
to reach equilibrium, which can be achieved by use of the tangent rule construction,
while ensuring conservation of mass. Consider an alloy of composition xc at some low
temperature as shown in the left graphic of Figure 5.4. The tangent to both phases
A and B is shown as a black dashed line. Clearly, the alloy can minimize its energy
by splitting into some solid-phase A and solid-phase B rather than existing in the
liquid phase with composition xc. Furthermore, the diagram indicates that the two
solid phases are not composed of pure elements, but rather each display some low
solubility of the second element.

As the temperature increases to some intermediate temperature, as shown in the
center panel, the free energy of all phases decrease. However, the free energy of the
liquid phase decreases more rapidly that that of the solid phase. Once again, the
tangent minimizing the free energy is shown as a black, dashed line. Unlike at the
lower temperature, it is now energetically favorable for the alloy to be composed of
some solid-phase A and a liquid phase AB. In both cases, the Lever rule can be
used to determine the fractional amount of each phase in the system.(5) Finally, as
the temperature increases, the free energy of the liquid phase decreases sufficiently
to make it the most energetically favorable phase and the system melts completely
(right panel) to form a liquid of composition, xc. This procedure leads to a bulk
equilibrium phase diagram such as the one shown in Figure 1.1.

Now, consider a system containing a binary alloy nanoparticle. When studying
the melting behavior of these alloys, we must first consider each phase separately.
As in the case of the unary nanoscale system, surface contributions now may not be
neglected, leading to an overall increase in the free energies of the individual phases
(recall, surface energies are positive and thus lead to an increase in energy). The
amount of increase then is dependent on the phase under consideration and will not
be equal in all phases. Thus, if the previously described tangent rule construction
is used, a shift in transition temperatures and solubility limits is expected. Similar
procedures are employed by (64; 26) and other researchers. Their findings show
the expected melting point depressions of the elemental solids, a decrease in eutectic
temperature, a shift in eutectic composition, as well as changes in the solubility limits.

However, these works use the tangent rule construction, neglecting the contribu-
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Figure 5.4. Gibbs’ free energy of two solid phases, A (blue) and B (red), and a homo-
geneous liquid phase (purple) at three temperatures are considered. In macroscopic
alloys, the tangent rule construction (black, dashed line) is used to determine the
compositions that lead to the solidus and liquidus lines of phase diagrams. In the left
most panel, an alloy composed of two solid phases, A and B, minimizes the overall
energy of the system. Above the eutectic temperature, a solid A-liquid AB structure
minimizes the energy. Above the liquidus temperature for the composition under
consideration, the homogeneous liquid phase is stable.
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tion of the interface energy between the two coexisting phases. Consider, for example,
the binary alloy in the left most panel of Figure 5.5. The light grey, dashed line rep-
resents the tangent to the two solid phases. Clearly, this indicates that the alloy must
split into a particle containing solid A and solid B, with the fractional amounts of
each phase depending on the Lever rule. As the composition xc changes, the free
energy of the alloy particle is predicted to increase along the tangent line, while the
volume fraction of the two phases changes. However, as was demonstrated before in
the unary system, a nanoparticle consisting of solid and liquid phases does not follow
a linear relationship in fractional amount of the secondary phase, leading to a kinetic
barrier of melting in elemental systems. In a binary alloy system, various phases
may also coexist and the interface energy between them may no longer be neglected.
The total free energy of a particle of volume V consisting of two phases can then be
calculated by:

GTot = fα · V ·Gα + fβ · V ·Gβ + Aα · σA + Aβ · σB + Aα/β · σα/β

= (1− fβ) · V ·Gα + fβ · V ·Gβ + Aα · σA + Aβ · σB + Aα/β · σα/β, (5.4)

where fα and fβ represent the volume fractions of phase α and β, respectively and
fα + fβ = 1. Aα, Aβ and Aα/β represent the surface and interface areas of the various
phases, while σα, σβ and σα/β represent the corresponding surface and interface en-
ergies. If it is assumed that the particle is confined to a spherical geometry, Aα +Aβ

must equal 4πr2. However, if the previously described bilobe geometry is assumed,
the total volume of the particle will be held constant: V α + V β = 4/3πr3. Now, the
addition of surface area terms in Equation 5.4 leads to a positive deviation (black
dashed line) of free energy from that of the tangent line (grey, dashed line) shown in
Figure 5.5. Depending on the degree of positive deviation, the addition of this energy
term can cause the free energy to shift above the free energies of other phases, such
as the liquid phase in the center panel of Figure 5.5. This would indicate that the
system can decrease its free energy by existing in a purely liquid state, rather than
a bilobe of some solid and some liquid. These findings clearly reinforce the need to
investigate the nanoscale phase diagram more closely and to take into account the
contribution of the interface energy to the total free energy.

The theoretical approach is based on a procedure outlined by Weissmueller (68; 69;
8) et al., whose work focuses on idealized binary systems. The systems they consider
consist of components A and B (with equal melting temperatures) with a eutectic
composition lying at 50 at. % B. Additionally, the investigated system is assumed
to have no solid solubility and an ideal solution as the melt, thus leading to a bulk
phase diagram that is symmetric about the 50/50 at. % composition. Furthermore,
the alloy nanoparticle is assumed to be confined to a spherical cavity of radius r with
all interface energies set equal to one another. As a result, all internal dihedral angles
are equal to 90◦ for all volume fractions of β-phase. Moreover, the molar volumes of
all phases are assumed equal to one another. The free energy is then calculated as
follows:

Gtot =
4

3
πr3 ·Gvol +

∑
i=1

γi · Ai. (5.5)
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Figure 5.5. A nanoscale system composed of the same phases as in Figure 5.4 is
depicted. Unlike before, surface effects must be considered. This leads to a shift in the
overall free energies of all phases (recall surface energies are positive). Additionally,
the tangent rule construction may no longer be applied and the free energy curve
must be calculated exactly. This leads to a positive deviation from the tangent rule
construction.
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The summation in the second term can be reduced to a single additive term due to
the assumption that all interface energies are equal (the surface contribution of the
sphere is therefore equal for all compositions and phases). Thus,

Gtot =
4

3
πr3 ·Gvol + γint · Aint. (5.6)

Aint was then approximated using an analytic function. The free energy of the system
can subsequently be calculated as a function of size. At each temperature, four free
energies are calculated as a function of volume fraction of the secondary-phase: GS1S2 ,
GL, GS1L and GS2L, where S and L represent the solid and liquid phases, respectively.
The molar free energies are calculated as follows in units of the enthalpy of fusion,
which is assumed equal in all phases.

gL = 1 +
T

Tf
(−1 +

R

∆sf
[x · ln(x) + (1− x) · ln(1− x)])

GL(x, τ) = N · gL (5.7)

GS1S2 = (1− f2) ·GS1 + f2 ·GS2 + γ · A(f2, N) (5.8)

GS1L(x, τ) = (1− fL) ·GS
1 + fL ·GL + γ · A(fL) (5.9)

Here, x is the composition in at. % B. f2 and fL represent the volume fraction of
solid 2 and the liquid phase, respectively.

∆sf
R

is set equal to 1.2, typical for metals.
∆sf and ∆hf are the entropy and enthalpy of fusion, respectively. Tf is the melting
temperature. Then, for every value of τ = T

Tf
, the free energies are calculated as

a function of composition and phase fraction. The free energies are then compared
for each composition and the structure that minimizes the free energy is determined.
These energies are then compared and the size dependent phase diagram may be
constructed.

However, the above described simplifying assumptions are not applicable in real
systems such as SnGe and AuGe. For one, the melting temperatures of the elemental
solids are not equal and the eutectic compositions are generally not centered at 50 at.
% B. Besides some solid solubility contribution typically observed at temperatures
above absolute zero, the volumes of elemental solids change upon melting, thus the
assumption of equal molar volumes in all phases fails. Au and Sn experience a volume
expansion upon melting, whereas Ge contracts, leading to a difference in particle size
upon melting when the chemical content of the particles remains fixed. Additionally,
if the molar volumes of two pure components are different (whether in the solid or
the liquid phase), it is fairly obvious that the molar volumes of phases consisting of
mixed components must also vary. Furthermore, it is shown above that the equilib-
rium structure of a binary alloy depends only on γ1 and γ2. Weissmueller et al. do
not account for the possibility of energy minimization by formation of a core-shell
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or phase-separated structure; however, this oversight is not detrimental to the con-
clusions, because of the assumptions made by the authors. One of the simplifying
assumptions made was the equality of all interface energies which necessarily leads
to {γ1, γ2} = {1, 1}, (located in the region of bi-lobe phase stability in Figure 2.1).
However, the interface/surface energies may not be assumed equal to one another.
As discussed previously, composition and temperature ranges may exist in which the
core-shell or phase separated structure is the stable structure. Also, predictions and
experimental observations indicate that the equilibrium structures of both AuGe and
SnGe BEANs are not confined to a spherical external surface, but rather form cusped
bi-lobes.

In the following paragraphs, the size dependent nanoscale phase diagrams for the
AuGe and SnGe systems will be calculated using the above described theoretical ap-
proach. Herein, available experimental and theoretical data for surface and interface
energies, and free energies will be used to first calculate the phase diagram of free-
standing particles. Finally, an attempt will be made to extend the theory to available
data for embedded nanoparticles. By necessity, some simplifying assumptions will be
made. First, we will assume negligible solid solubility, which is in large part due to
the fact that surface and interface energies are available only for the pure solid phase.
Also, in the systems under investigation, AuGe and SnGe, the macroscopic solid sol-
ubility is relatively low. Furthermore, we choose to investigate only the solid phases
found in the bulk phase diagram. Namely, Ge in the diamond-phase, Au in the face-
centered cubic (FCC)-phase, and Sn in the body-centered tetragonal (BCT)-phase,
minimizing the number of phases under investigation.

5.1 Free energy curve of a Solid-Solid particle

In subsequent sections, a nanosized system of radius r will be considered such
that the volume of all possible morphologies and phases will be equal to 4/3πr3.
Calculations demonstrating the theory will be performed at r = 25 × 10−9 m. In
the following, we will consider the AuGe system, where xGe will represent the atomic
fraction of Ge found in the system. The same analysis can be applied by substituting
the values of Sn for the Au values.

Consider a particle that is composed of, for example, xGe = 0.4. How much of the
volume of the particle will be consumed by the Ge-solid? Due to the differences in
molar volume of the two elements, the particle will not be 40 volume % Ge-phase. A
concentration weighted average of the two molar volumes will be used.(62) If the two
elements are Au and Ge, the volume fraction of Ge-solid in the particle will be closer
to 47% (at a representative temperature of 900 K), which can be calculated by:

fGe(sol)(T, xGe) =
xGe · vGeSol(T )

xGe · vGeSol(T ) + (1− xGe) · vAuSol(T )
, (5.10)

where fGe(sol)(T, xGe) is the volume fraction of the Ge-solid. v represents the molar
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volume and is dependent on temperature. Figure 5.6 shows the volume fraction of
Ge-solid in a AuGe and a SnGe solid-solid particle at T = 300 K as a function of
composition, xGe (blue line). The dashed, black line is added to guide the eye. The
AuGe system displays a positive deviation from linearity due to the larger molar
volume of Ge. In contrast, SnGe deviates negatively.

Next, we consider the free energy of a solid-solid particle, GAu(sol)Ge(sol). As dis-
cussed before, we must consider a volumetric and surface contribution (assuming
isotropic interface energies):

GAu(sol)Ge(sol) = V Au(sol) ·GAu(sol) + V Ge(sol) ·GGe(sol)

+AAu(sol) · σAu(sol) + AGe(sol) · σGe(sol) + AAu(sol)Ge(sol) · σAu(sol)Ge(sol)

= (1− fGe(sol)(T, xGe))V ·GAu(sol) + fGe(sol)(T, xGe)V ·GGe(sol)

+AAu(sol) · σAu(sol) + AGe(sol) · σGe(sol)

+AAu(sol)Ge(sol) · σAu(sol)Ge(sol). (5.11)

As is seen in Table 5.1, the Gibbs’ free energies are given in reference to the solid
phase. Thus, the volumetric contribution of the solid phase is equal to 0. The surface
contribution, however, must be calculated.

GAu(sol)Ge(sol)(xGe) = AAu(sol) · σAu(sol) + AGe(sol) · σGe(sol)

+AAu(sol)Ge(sol) · σAu(sol)Ge(sol). (5.12)

As was discussed in preceding chapters, we must take into account all possible mor-
phologies. The equilibrium morphology depends on the surface and interface energies.
The surface energies are known as a function of temperature; however the interface
energies between Ge-solid to Au-solid and Ge-solid to Sn-solid are unknown. Ge
and Au and Ge and Sn are highly mismatched due to the large differences in lat-
tice parameter. Consequently, it stands to reason that this interface energy is fairly
high. For example, the interface energy of solid Au on solid sapphire is 2.18 ± 0.06
J/m2.(55) Therefore, we choose a value for the interface energy, which ensures the
bilobe geometry as the energy minimization for all temperatures under investigation,
with a chosen value of 2.6 J/m2.

At every temperature, the three applicable interface energies are used to determine
γ1 and γ2. These values can be used to calculate the energy contribution of the
surfaces as a function of volume fraction. For the AuGe system at T = 300 K,
{γ1, γ2} = {0.699231, 0.320272}. Figure 5.7 shows results of the surface contribution
of the possible morphologies. While the curves for the phase separated structure and
the bilobe structure are very close, the bilobe structure minimizes the overall energy
of the surfaces. A closer examination of the energy of solid-solid bilobe structure is
depicted in Figure 5.8. This plot is calculated as a function of the molar concentration
of Ge in the particle using Equation 5.10. Clearly, unlike the prediction from the
tangent rule, the actual energy of a solid-solid particle can deviate from linearity.
The energy deviates positively from the tangent rule model and assumes a concave
down shape during the transition from one solid to the other (similar to the kinetic
barrier of melting described above).
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Figure 5.6. Volume fraction of Ge-solid in a solid-solid particle is calculated as a
function of Ge content. AuGe (blue) shows a positive deviation from linearity due
to the larger molar volume of Ge-solid over Au-solid. The opposite is true for the
SnGe-system shown in red.
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Figure 5.7. The four possible binary alloy nanoparticle morphologies are calculated
as a function of Ge-concentration (which in turn can be used to calculate the volume
fraction Ge-solid). At a temperature of 300K the surface and interface energies of
Au- and Ge-solid phases predict {γ1, γ2} = {0.699231, 0.320272}. This indicates that
the bilobe geometry is stable, which is verified as the magenta line representing the
energy of the bilobe structure minimizes the surface contribution to the free energy
for all compositions. The blue line representing the phase separated morphology is
very close to the bilobe prediction and thus not visible.
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Figure 5.8. The surface contribution to the free energy of the bilobe structure as seen
in Figure5.7 is plotted separately. The expected positive curvature is seen. Therefore,
the tangent rule construction is not applicable in this type of nanoscale system.
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5.2 Free energy curve of a Liquid particle

The volumetric contribution to the free energy of a liquid particle can be calculated
from:

∆GL
V ol = [(1− xGe)∆GAu

S→L + xGe∆G
Ge
S→L +RT ((1− xGe) log (1− xGe)

+xGe log (xGe)) +GEx,L] · (xGevGeLiq(T ) + (1− xGe)vAuLiq(T ))−1. (5.13)

∆GS→L = GL − GS is the difference in volumetric free energy between the solid
and the liquid phase and is tabulated in Table 5.1.(14) If Equation 5.13 is re-
duced to only the first term, (1 − xGe)∆G

Au
S→L + xGe∆G

Ge
S→L, the solution is con-

sidered a mechanical mixture, i.e. there is no chemical mixing.(22) The second term,
RT ((1−xGe) log (1− xGe)+xGe log (xGe)), is attributed to the configuration entropy.
If Equation 5.13 is reduced to the first two terms, the solution is ideal. However, most
systems deviate from the ideal solution model. This deviation is taken into account
in the regular solution model through the addition of GEx,L, the excess energy of
mixing, which is calculated as discussed in Chapter 4.

The liquid particle is assumed to be spherical in shape. The contribution of the
surface is then 4πr2 · σL, which is calculated using the surface energies determined in
Chapter 4. The total free energy of the liquid particle then becomes:

GL(T, xGe) =
4

3
πr3 ·∆GL

V ol + 4πr2 · σL. (5.14)

Results of this calculation are shown in Figure 5.9 (thick, blue line) for a AuGe-
liquid at T = 1400 K. As a reference, the volumetric contribution is shown as a
black, dashed line. Again, the surface contributes positively to the total free energy
of the alloy particle.

5.3 Free energy curve of a Particle consisting of

Ge-solid and AuGe-Liquid

Consider a particle with overall composition xGe that is composed of part Ge-solid
and part AuGe-liquid with composition xL. Mass conservation requires that xGe is
larger than xL. The volume fraction of solid in the particle can be calculated from
the following:

fβ(T, xGe, xL) =
(xGe−xL

1−xL
)vGeSol(T )

(1−xGe
1−xL

)(xL · vGeLiq(T ) + (1− xL) · vAuLiq(T )) + (xGe−xL
1−xL

)vGeSol(T )
.(5.15)

fβ(T, xGe, xL) is calculated for T = 300 K and xL = 0.4 at. % Ge and shown in Figure

5.10. While vLiqAu1−xGex
is calculated using a concentration weighted average(21), due

to the differences in molar volumes, the volume fraction deviates from linearity.

54



Figure 5.9. The free energy curve of a AuGe-liquid alloy is calculated as a function of
composition. The black dotted line represents the volumetric contribution. The thick,
blue line represents the total energy of the liquid alloy after the surface contribution
has been taken into account. This leads to an increase in the overall free energy when
normalized by the total surface area.
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Figure 5.10. Volume fraction of Ge-solid in a particle consisting of Ge-solid and a
AuGe-liquid of composition xL = 40 at. % Ge as a function of alloy composition,
xGe.
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The surface contribution is calculated using the three applicable surface/interface
energies: σSGe, σ

L and σGe(sol)L, which are all dependent on temperature, and the
latter two are dependent on the composition of the liquid, xL. These energies dictate
which structure minimizes the total energy. As an example, Figure 5.11 shows the
contribution of the surface/interface energies at a temperature of T = 1300 K and
liquid composition of xL = 0.40. Clearly, the bilobe structure minimizes the energy,
and thus the overall energy of the particle becomes:

GGe(sol)L(T, xGe, xL) = (1− fβ(T, xGe, xL)) · 4

3
πr3 ·∆GL

V ol

+AGe(sol) · σGe(sol) + AL · σL + AGe(sol)L · σGe(sol)L.(5.16)

Results of a representative calculation are shown in Figures 5.12 and 5.13 for a particle
size of r = 25× 10−9m and r = 5× 10−9m, respectively. First consider Figure 5.12.
Plotted are the total free energy of the solid-solid particle (blue), GAu(sol)Ge(sol), the
pure liquid particle (red), GL, and various curves for particles consisting of Ge-solid
and AuGe-liquids (purple), GGe(sol)L(T, xGe, xL). GGe(sol)L(T, xGe, xL) is calculated
for compositions of liquids xL =0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.51, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99. We point out that
the purple curves appear very linear, which is attributed to the rather large size of
the nanoparticle under consideration, i.e. the volumetric component still outweighs
the surface contribution. Since equilibrium is achieved when the overall energy of the
system is minimized, all compositions, xGe, indicate a solid-solid particle to be stable.
These findings are consistent with the bulk phase diagram of AuGe at a temperature
of 300K. However, once the particle size is decreased to, for example, r = 5 × 10−9

m, this is no longer the case.

Consider now Figure 5.13, which plots the same information as Figure 5.12 (just at
a much smaller particle size of r = 5×10−9 m). First, we notice that the GAu(sol)Ge(sol)

line shows no change, since it is normalized by 4πr2 in both cases. However, GL, in-
dicated by the red line, shows a marked decrease due to the particle size. To clarify
this, and for ease of viewing, a magnified view of these results is shown in Figure
5.14. It is immediately clear that the stable phases predicted are now different than
those of the larger particle. Subsequently, we must examine each composition, xGe
individually, and determine which phase, solid-solid, liquid, or solid-liquid, minimizes
the total energy of the particle. From the image, compositions below approximately
xGe ≈ 0.35 should exist as the solid-solid phase, as this phase assumes the lowest
energy. However, at compositions greater than xGe ≈ 0.35 a solid-liquid phase is
predicted. This is unlike the bulk phase diagram, as the liquid phase is greater than
the solid-solid phase over the entire composition phase, yet the energy can be mini-
mized by splitting into a liquid-solid particle. These findings are directly attributed
to the particle size and the resulting curvature of the solid-solid curve, as well as
the decrease in energy of the liquid-line. Furthermore, the apparent discontinuity in
the solid-liquid curves at xL = 0.01 and xL = 0.05 should be mentioned. At low
Ge-concentrations, the surface energy of the AuGe-liquid is sufficiently high in com-
parison to the Ge-solid surface energy and the interface energy that the nanoparticle
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Figure 5.11. The four possible binary alloy nanoparticle morphologies are calculated
as a function of Ge-concentration at a temperature of 1300K and xL = 0.40. The
contribution of the surfaces/interfaces to the total energy is minimized by the bilobe
geometry.
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Figure 5.12. GAu(sol)Ge(sol)(xGe) (blue), GL(T, xGe) (red) and GGe(sol)L(T, xGe, xL)
(purple) are calculated for a particle of size r = 25 × 10−9m. Liquids of compo-
sition xL =0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.51, 0.55, 0.60,
0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99 are considered for GGe(sol)L(T, xGe, xL).
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Figure 5.13. GAu(sol)Ge(sol)(xGe) (blue), GL(T, xGe) (red) and GGe(sol)L(T, xGe, xL)
(purple) are calculated for a particle of size r = 5 × 10−9m. Liquids of composi-
tion xL =0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.51, 0.55, 0.60, 0.65,
0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99 are considered for GGe(sol)L(T, xGe, xL).
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assumes a liquid-core/solid-shell structure to minimize its energy. This change leads
to a sudden drop in total energy as soon as the volume fraction of solid Ge exceeds
fGe(sol) = 0. Furthermore, we should note that the solid-liquid lines also display a
positive deviation from linearity. Therefore, it is not guaranteed that all compositions
above xGe ≈ 0.35 are minimized by a liquid-solid particle of the same liquid compo-
sition. Thus, every composition requires a separate investigation and the minimizing
structure must be ascertained.

5.4 Free energy curve of a Particle consisting of

Au-solid and AuGe-Liquid

Finally, we consider a particle with overall composition xGe that is composed of
part Au-solid and part AuGe-liquid with composition xL. The volume fraction of
liquid, fβ, can the be calculated by:

fβ(T, xGe, xL) =
(xGe
xL

)vGeSol(T )

(xL−xGe
xL

)(xL · vGeLiq(T ) + (1− xL) · vAuLiq(T )) + (xGe
xL

)vGeSol(T )
. (5.17)

Unlike before, mass conservation requires xGe ≤ xL to allow for a solid-liquid particle.
Figure 5.15 shows the volume fraction of AuGe-liquid, fβ(T, xGe, xL), for T = 300 K
and xL = 0.4 at. % Ge. Again, due to the differences in molar volumes, the volume
fraction deviates from linearity.

Now, the surface contribution must be calculated using three new surface/interface
energies: σSAu, σ

L and σAu(sol)L, which are all dependent on temperature, and the
latter two are dependent on the composition of the liquid, xL. These energies dictate
which structure minimizes the total energy. σSAu and σL are known or have been
calculated as discussed in the preceding chapters. While σAu(sol)L is not known,
σAu(sol)Au(liq) has been estimated to be 0.187 J/m2.(29) Therefore, we will assume
that the composition dependence of σAu(sol)L is equal to that of σGe(sol)L (measured
by Naidich and Perevertailo(43)), but shifted such that σAu(sol)Au(liq) = 0.187 J/m2

(added term of 0.054 J/m2). The total energy of the particle then becomes:

GGe(sol)L(T, xGe, xL) = fβ(T, xGe, xL) · 4

3
πr3 ·∆GL

V ol

+AAu(sol) · σAu(sol) + AL · σL + AAu(sol)L · σAu(sol)L.(5.18)

The energies of the four structures are calculated at a temperature of 1300 K and
liquid composition of xL = 0.40 and shown in Figure 5.16. Clearly, the Au(sol)-
core/AuGe(liq)-shell structure is the preferred morphology in this case (TAuM = 1336
K).

As was the case in the Ge(sol)-liquid particle discussed above, GAu(sol)Ge(sol),
GL, and all curves for particles consisting of Au-solid and AuGe-liquids (purple),
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Figure 5.14. Magnified view of Figure 5.13. Clearly, the solid-liquid phase minimizes
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Figure 5.16. The four possible binary alloy nanoparticle morphologies are calcu-
lated as a function of Ge-concentration at a temperature of 1300K and xL = 0.40.
The Au(sol)-core/AuGe(liq)-shell structure minimizes the contribution of the sur-
faces/interfaces to the total energy. At these temperatures and compositions, the
bilobe structure cannot be realized.

64



GAu(sol)L(T, xGe, xL), must be considered at each temperature. Results of this calcu-
lation, and the calculations discussed above, are shown in Figure 5.17 for a particle
of size, r = 5 × 10−9 m at T = 300 K. The assumed interface energy, σAu(sol)L,
in conjunction with the values of σSAu and σL determine the solid-core/liquid-shell
structure to minimize the overall energy of the system. Consequently, a sharp de-
crease in energy is observed as the composition moves just slightly away from pure
Au. Therefore, all calculations will also be performed at values of σAu(sol)L, which
guarantee a stable bilobe structure. This can be achieved by shifting the values of
σGe(sol)L up by 2 J/m2: σAu(sol)L = σGe(sol)L + 2. These results are shown in Figure
5.18. Interestingly, in the first case (see Figure 5.17), all compositions predict either
a Au(sol)-liquid or Ge(sol)-liquid structure even at temperatures as low as 300 K.
Alternatively, when σAu(sol)L = σGe(sol)L + 2, all Au(sol)-liquid curves lie at higher
energies than the Au(sol)-Ge(sol) curve, which leads to a composition range that is
stable in the solid-solid phase (xGe ≤≈ 0.30), while compositions with greater Ge
content split into Ge(sol) and AuGe(liq).

5.5 Nanoscale Phase Diagram of Free-standing

AuGe particles

In the following section, nanoscale phase diagrams of the AuGe system will be
determined as discussed above. The results will be compared to the “bulk” phase
diagram (calculated using the tangent rule and assuming no solid-solubility and no
surface contribution), the “standard nanoscale” phase diagram (calculated using the
tangent rule construction and assuming no solid-solubility; however, taking into ac-
count the surface contributions of both the solid and liquid phases), and qualitatively
to the phase diagrams calculated by Weissmueller et al.

Figure 5.19 shows the phase diagrams of a theoretical system for particle sizes
r = 25×10−9, 10×10−9 and 5×10−9 m in the top, center and bottom panels, respec-
tively. These phase diagrams are calculated using the theoretical approach outlined
by Weissmueller et al.(68; 8; 69) Two important and prominent features should be
noted: the spreading of the eutectic point indicating a region of discontinuous melting
and the variance of the eutectic temperature as a function of composition. These two
features become increasingly pronounced as the particle size is decreased.

First, a relatively large AuGe particle of size r = 25 × 10−9 m is considered. As
discussed above, σAu(sol)L will first be assumed to be equal to σGe(sol)L + 0.054 (see
above) and then σGe(sol)L + 2. Results of these calculations are shown in the top left
and top right plots of Figure 5.20, respectively.

In each figure, the black, dotted line represents the “bulk” phase diagram, while
the black, solid line represents the “standard nanoscale” phase diagram. The colored
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Figure 5.17. GAu(sol)Ge(sol)(xGe) (blue), GL(T, xGe) (red), GGe(sol)L(T, xGe, xL) and
GAu(sol)L(T, xGe, xL) (both shown in purple) are calculated for a particle of size r =
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Figure 5.18. GAu(sol)Ge(sol)(xGe) (blue), GL(T, xGe) (red), GGe(sol)L(T, xGe, xL) and
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Au(sol)L = σGe(sol)L + 2
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Figure 5.20. The size dependent phase diagrams of the AuGe system are calculated.
Three particle sizes are considered: r = 25×10−9, 10×10−9 and 5×10−9 m, which are
shown in the top, center and bottom panels, respectively. The left column considers
assumed values of σAu(sol)L = σGe(sol)L + 0.054, while the right column considers
σAu(sol)L = σGe(sol)L + 2. The black, dotted and black, solid lines represent the “bulk”
and “standard nanoscale” phase diagrams, respectively. Phases under consideration
are: Au-solid/Ge-solid (dark blue), homogenous liquid (red), Au-solid/liquid (light
blue) and Ge-solid/liquid (yellow).
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regions are indicative of the results of the calculations performed in this work. Dark
blue represents the Au-solid/Ge-solid phase, while red represents the homogenous
liquid phase. The light blue and yellow regions indicate the Au-solid/liquid and
Ge-solid/liquid phases, respectively.

Clearly, in both cases (σGe(sol)L + 0.054 and σGe(sol)L + 2), there are marked dif-
ferences between the phase diagrams calculated herein and the “bulk” and “stan-
dard nanoscale” phase diagrams. However, the overall expected trends are in fact
observed. As expected, the melting temperatures of the elemental solids decrease,
therefore causing a decrease in the liquidus lines.

In the case of σGe(sol)L + 0.054, both liquidus lines are very similar to those cal-
culated by the “standard nanoscale” phase diagram. The most prominent difference
however is found in the regions of very low and very high Ge concentration. In both
regions, the respective solid/liquid phases (Au-solid/liquid and Ge-solid/liquid) are
energetically favorable when all surface and interface energies are taken into account.
This behavior is not predicted in the “standard nanoscale” phase diagrams. Fur-
thermore, the eutectic point broadens to a range of compositions, indicating a region
(24-29 at. % Ge) of discontinuous melting, which is consistent with the predictions
made by Weissmueller et al. (see Figure 5.19)

Next, consider the case of σGe(sol)L + 2 shown in the top, right corner of Figure
5.20. Again, the eutectic point has spread to a eutectic region ranging from ≈ 17−29
at. % Ge, indicating that a particle in this composition range is predicted to melt
discontinuously. Now, consider the Ge-rich portion of the phase diagram. As the
composition approaches xGe = 1, the eutectic line, which is invariant in the “bulk” and
“standard nanoscale” phase diagrams, curves downward toward lower temperatures
(just as in the case of σGe(sol)L+0.054). These findings signify that a Ge-rich nanoscale
system can lower its’ total energy by existing in a Ge-solid/liquid phase, rather than
a Ge-solid/Au-solid phase, even at temperatures significantly below the “bulk” and
“standard nanoscale” eutectic temperature.

Now, consider the Au-rich region of the phase diagram. As predicted by Weiss-
mueller, the eutectic line is no longer invariant with composition, but instead curves
to higher temperatures as the concentration of Ge approaches 0, indicating that at
low Ge concentration, the solid-solid particle has the lowest total energy. This is at-
tributed to the higher degree of curvature predicted by the bilobe morphology for the
solid-liquid particle than the solid-solid particle. However, once the Ge concentration
is increased sufficiently, the total energy of the solid-liquid particle is minimal.

Next, consider a system of particle size r = 10 × 10−9 m. Again, the cases of
σGe(sol)L + 0.054 and then σGe(sol)L + 2 are considered and shown in the left and
right center panels of Figure 5.20, respectively. While the liquidus lines of the Ge-
rich portion of the phase diagram are similar to those predicted by the “standard
nanoscale” phase diagrams, the eutectic lines deviate significantly. In both cases
(+0.054 and +2), the spreading of the eutectic point is observed, but to a greater
extent than was discussed above. This is directly attributed to the decrease in particle
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size. Also, particles with Ge concentration above 87 at. % are predicted to display
Ge-solid/liquid behavior at temperatures below even 200 K.

Again, as the composition approaches 0 at. % Ge, the eutectic line differs signifi-
cantly from that predicted in the “standard nanoscale” phase diagram. As described
above, the eutectic line loses its’ invariance. It decreases drastically for the case of
σGe(sol)L + 0.054, while a increase is observed for the case of σGe(sol)L + 2. Again,
this second result is consistent with the predictions of Weissmueller.(68; 8; 69) Fur-
thermore, the Au-rich liquidus line shows a significant depression from that of the
“bulk” and “standard nanoscale” phase diagrams, which is also consistent with Weiss-
muellers’ predictions.

When the particle size is decreased further, the above described characteristics
become more pronounced. Results are shown in the bottom left and right panels
of Figure 5.20 for a particle of size r = 5 × 10−9 m. In the left plot(+0.054), the
solid/solid region has almost disappeared at the temperatures under investigation.
The eutectic point has spread to a region between 18 − 26 at. % Ge. In the right
panel of Figure 5.20, the results of the calculation for σGe(sol)L + 2 is shown. Again,
the eutectic point has broadened to an eutectic region. However, the region of Au-
solid/liquid phase has now shrunk significantly in size.

5.6 Nanoscale Phase Diagram of Free-standing

SnGe particles

Following the previously established model calculations, the SnGe system is inves-
tigated using a similar approach. The interface energies of SnGe-liquids and Ge-solid
will be used as measured by Naidich and Perevertailo.(42) As before, due to the lack
of information regarding the wetting characteristics of SnGe-liquids on Sn-solid, the
trend of the measured values of SnGe-liquids on Ge-solid will be assumed. However,
the values will be shifted such that the value of σSn(sol)Sn(liq) is 0.077 J/m2.(66)

Again, particle sizes of r = 25 × 10−9, 10 × 10−9 and 5 × 10−9 m are considered
and the size dependent phase diagrams are calculated as described in the preceding
sections. Results are shown in Figure 5.21. As described previously, the “bulk” and
“standard nanoscale” phase diagrams are shown as well (black, dotted and black,
solid lines, respectively). The dark blue region represents the Sn-solid/Ge-solid phase,
while the red represents the homogeneous SnGe-liquid phase. The Ge-solid/liquid and
Sn-solid/liquid phases are represented by yellow and light blue, respectively.

At a relatively large particle size (r = 25×10−9 m), the liquidus line of the “bulk”
and “standard nanoscale” phase diagrams do not differ significantly. However, the
eutectic temperature has decreased by approximately 25 K. Furthermore, the Ge-
rich liquidus line calculated herein is in close agreement to those of the “bulk” and
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“standard nanoscale” phase diagrams, with only a slight depression at compositions
greater than xGe = 0.5. The major differences between the results calculated herein
and the “standard nanoscale” phase diagram are similar to those described in the
AuGe system above. Most notably, the eutectic line loses its’ invariance and shifts
to lower temperatures, which is especially evident at high Ge concentrations, where
the Ge-solid/liquid phase is predicted to be stable at temperatures far below the bulk
eutectic temperature. Also, while barely visible, at very low Ge concentrations the
Sn-solid/liquid phase is predicted to be stable at temperatures below the eutectic
temperature predicted by the “standard nanoscale” phase diagram.

This behavior becomes more pronounced as the particle size is reduced to r =
10×10−9 m (see the center panel of Figure 5.21). At this particle size, the liquidus line
also shows significant depression from those predicted by the “bulk” and “standard
nanoscale” phase diagrams. Furthermore, the eutectic line has lost its’ invariance
over the entire composition range. The region of Sn-solid/Ge-solid stability has been
reduced in composition and temperature range significantly. Also, the region of Sn-
solid/liquid phase stability is more pronounced. Once the particle size is decreased to
r = 5 × 10−9, the region of Sn-solid/Ge-solid phase stability is barely present in the
investigated temperature range (200 ≤ T ≤ 1250). The maximum concentration of a
stable Sn-solid/liquid particle is found at approximately 7 at. % Ge and a temperature
of T ≈ 290 K. As before, the Ge-rich liquidus line is significantly depressed from
those of the “bulk” and “standard nanoscale” phase diagrams.

5.7 Nanoscale Phase Diagram of AuGe particle

embedded in SiO2

Finally, we consider a AuGe particle of size r = 5× 10−9 m embedded in SiO2. In
such a system, rather than using surface energies, the interface energies of the solids
and liquids to SiO2 must be used. As not all of the relevant interface energies are
known, necessary assumptions must be made.

The interface energy γGe(s)/SiO2 and γGe(l)/SiO2 have been estimated to lie between
0.7 and 0.9 J/m2.(58) Therefore, we set the interface energy of Ge liquid (assumed at
its’ melting point) and SiO2 equal to 0.7 J/m2. It has been estimated that the surface
energy of a solid is approximately proportional to 1.25 times the surface energy of the
liquid. Accordingly, we will assume that a similar relationship exists for the interface
energy: γGe(s)/SiO2 = 1.25γGe(l)/SiO2 .(3; 41; 32) Also, the temperature dependence of
the respective liquid surface energy will be adopted. Hence,

γGe(l)/SiO2 = 0.7− 2.6× (T − 1211.5) (5.19)

γGe(s)/SiO2 = 0.875− 3.25× (T − 1211.5). (5.20)

Similarly for Au, we consider the available wetting data. Using the values of the
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Figure 5.21. Three SnGe particle sizes are considered, r = 25 × 10−9, 10 × 10−9

and 5 × 10−9 m, and the size dependent phase diagrams are calculated. Resulting
phase diagrams are shown in the top, center and bottom panels, respectively. The
black, dotted lines represent the “bulk” phase diagram, while the black, solid lines
represent the size dependent “standard nanoscale” phase diagrams. The dark blue,
red and yellow regions represent the Sn-solid/Ge-solid phase, homogenous liquid, and
Ge-solid/liquid phases, respectively.
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interface energies of Au-liquid/SiO2 measured by Kwon et al.(34), a linear fit to the
temperature dependent interface energies can be calculated:

γAu(l)/SiO2 = 1.714− 4× 10−4T. (5.21)

As before, the solid interface energy is assumed to be proportional to the liquid:

γAu(s)/SiO2 = 2.143− 5× 10−4T. (5.22)

The interface energies of the composition dependent AuGe liquids are calculated
using Butler’s equation as discussed in Chapter 4, but using the new endpoint values.
Results of this calculation are shown in Figure 5.22. Under these assumptions, the
composition dependent interface energies follow the same trends as those of the surface
energies described in Chapter 4.

Using these values, the above described procedure may be employed to calculate
the size dependent phase diagram of the AuGe nanoparticle embedded in SiO2. Re-
sults of this calculation are shown in Figure 5.23. Again, the size dependent phase
diagram calculated herein clearly deviates from the “bulk” phase diagram. The melt-
ing points of the elemental solids are lowered, and the liquidus and eutectic lines are
clearly depressed from those predicted macroscopically. Additionally, the eutectic
point has broadened to a eutectic region similar to that described above. However,
it should also be noted that the phase diagram for the embedded nanoparticle differs
from that of the free-standing nanoparticle described above. Clearly, when inter-
face energies are used in place of the surface energies, the respective energies of the
phases change, thus changing the regions in which the phases are stable. In general,
the interface energies are larger in magnitude than the surface energies, leading to a
even larger contribution of the surfaces to the total energy. Moreover, the assumed
interface energies between the solids (Au(s) or Ge(s)) and the AuGe liquids remain
unchanged. Thus, the values of γ1 and γ2 increase in magnitude in comparison to the
free-standing nanoparticles, leading to a change in shape of the GSolid−Liquid curves,
and further depression of the liquidus lines.

Finally, using the Ge-rich liquidus line evaluated for the embedded AuGe particle,
γGesol/SiO2

can once again be calculated as a function of temperature as discussed in
Chapter 3.Results of this calculation (considering the possible size effects) are shown
in Figure 5.24. Again, the black line represents the SnGe system, while the gray
line represents the AuGe nanoscale system. Clearly, the shift in the liquidus line
results in an overall decrease of the γGesol/SiO2

-values. While the calculated curves
no longer intersect, the AuGe results clearly have shifted to lower interface energies.
Considering the values at T = 600 ℃, the overlap of the error bars indicates an
interface energy in the range of γGesol/SiO2

= 0.75 − 0.85 J/m2, which is in good
agreement with prior predictions of 0.7− 0.9 J/m2.

74



Figure 5.22. The composition dependent interface energies of Au1−xGex-liquids are
calculated as a function of Ge concentration for various temperatures using Butler’s
equation.
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Figure 5.23. A AuGe particle of size r = 5 × 10−9 m is considered to be embedded
in a SiO2 matrix and the size dependent phase diagram is considered. The blue
region represents the solid-solid phase, while red represents the homogeneous liquid
phase. Light blue and yellow represent the Au-solid/liquid and Ge-solid/liquid phases,
respectively. The dotted line represents the “bulk” phase diagram as a point of
comparison.
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Figure 5.24. γGesol/SiO2
is plotted as a function of temperature after taking into

account the possibility of size effects in the AuGe system. The black line represents
the results calculated from the SnGe system, while the gray line is calculated from
the AuGe system at r = 5× 10−9 m.
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5.8 Discussion

Finally, we will consider the phase diagram depicted in Figure 5.23 more closely.
Clearly, the phase diagram is strongly dependent on particle size and the regions of
two-phase equilibrium have shifted significantly. Consider now the Ge-solid/liquid
region represented by the yellow region of the phase diagram in Figure 5.23. In this
region, we plot the compositions of the liquid phases that minimizes the total free
energy of the Ge-solid/AuGe-liquid particle, shown in Figure 5.25. In the investigated
temperature range, the embedded binary alloy nanoparticles are predicted to consist
of Ge-solid and a AuGe-liquid. However, the composition of the AuGe liquid deviates
from the behavior expected from standard bulk phase diagrams. We notice that at
temperatures below approximately 450 K, the particles are expected to be composed
of Ge-solid and a very Au-rich liquid phase. This is indicated by the dark blue region.
These liquids are composed of less than 10 at. % Ge.

However, at temperatures above approximately 450 K, the composition of the
liquids vary between approximately 30 and 100 at. % Ge. To investigate this, contours
of equal liquid composition are plotted for liquids of compositions equal to 45,65 and
85 at. % Ge. These contours are shown in Figure 5.25 as blue, green and red lines.
Unlike the bulk phase diagram, these lines are not invariant to temperature, once
again indicating that the lever rule is no longer applicable in nanoscale systems.
Again, these results are consistent with the findings of Weissmueller et al.(68; 8; 69)

These results indicate that there is some kind of transition at a temperature of
approximately 450 K. To further investigate this, we determine which morphology is
stable at all temperatures and compositions of the two-phase region. This is shown in
Figure 5.26, where blue represents the liquid-core/solid-shell structure, red the bilobe
structure and yell the solid-core/liquid-shell structure. Clearly at temperatures below
approximately 450 K, the most stable morphology is the Ge(sol)-core/AuGe(liq)-shell
structure. As the temperature increases, the interface energies dictate that the bilobe
structure minimizes the total free energy. At high temperatures around 1100 K, there
also exists a small region in which the AuGe(liq)-core/Ge(sol) shell structure is stable.
These regions are expected to shift as a function of particle size.

These results indicate that one may use particle size, composition and temperature
to switch between various particle morphologies. For example, Figure 5.26 indicates
that if a 5 nm AuGe particle embedded in a SiO2 matrix is fabricated, temperature
may be used to switch the particle between a bilobe and a core-shell nanocrystal
nanocystal. At this particle size, the transition temperature lies around approximately
450 K. Furthermore, increasing or decreasing the particle size will shift the transition
temperature.
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Figure 5.25. In the two-phase regions of the phase diagram, the composition of the
respective liquid phases is plotted. The legend shows that liquids composed of 0 at.
% Ge is represented by blue, while a liquid of 100 at. % Ge is represented by red.
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Figure 5.26. The Ge(sol)/AuGe(liq) region of the phase diagram is considered. Here,
we determine which morphology is the structure that minimizes the total free en-
ergy of the particle. Blue and yellow represent the AuGe(liq)-core/Ge(sol)-shell and
Ge(sol)-core/AuGe(liq)-shell structures, respectively. Red represents the bilobe struc-
ture. There is no region which is stabilized by the phase separated morphology.
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Chapter 6

Conclusions

The SnGe and AuGe systems were investigated at the nanoscale. Both systems
displayed limited solid solubility and a eutectic type phase diagram. The first ob-
servation made by transmission electron microscopy was that both systems display a
lobe-lobe or bilobe morphology when embedded and annealed in SiO2.(60; 24) Evi-
denced by a previously calculated equilibrium structure map(72), interface energies in
both systems fell in the region of bilobe stability, as this structure minimized the over-
all system energy. However, the region of bilobe stability contained an infinite number
of possible γ-doublets, {γ1, γ2}, where γ1 = γα/M/γα/β and γ2 = γβ/M/γα/β(72) and
further investigation was required to pinpoint the acting interface energies.

Therefore, two dimensionless length scales, η1 and η2, were identified to further
characterize the bilobes. These length scales described the bilobe particles indepen-
dent of particle size; however, the volume fraction of the secondary phase, fβ, had to
be known. Fortunately, the SnGe and AuGe phase diagrams and lever rule could be
used to determine the volume fraction of liquid phase present as a function of tem-
perature during cooling after the annealing step. Contour plots of η1 and η2 over the
entire range of bi-lobe stability were then calculated for each value of fβ. Resulting
contour plots were overlaid and the intersection of the contours indicated the values
of γ1 and γ2 predicted at the respective temperature.

Available experimental wetting data of SnGe- and AuGe-liquids on Ge-solid could
then be used to calculate γGe(s)/SiO2 as a function of temperature for each system. The
intersection of the two predictions should indicate the temperature of bilobe setting.
Although the predictions intersected twice in addition to a large region of error bar
overlap, the bilobe setting temperature was estimated to lie at T = 600 ℃. At this
temperature, γGe(s)/SiO2 was found to be between 0.82-0.99 J

m2 . The respective values
of γGe0.22Sn0.78(l)/SiO2 and γAu0.53Ge0.47(l)/SiO2 were determined to be 1.20 and 0.94 J

m2 .

Although the effects of size with regard to melting temperature of elemental solids
is generally well understood and accepted, the respective influence on binary alloy
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phase diagrams is still largely unexplored. Previous investigations of phase diagrams
were focused on the effects of surface energy contributions of the solid and liquid
phases, causing a shift in the endpoints of the free energy curves. Application of the
classical tangent rule resulted in the observation of an additional shift of the liquidus
and eutectic lines. However, in the case of a nanoscale binary alloy, the free energy of,
for example, a solid-liquid particle is not equal to the values predicted by the tangent
rule, which is due to the existence of an internal interface, which also contributes to
the total energy of the particle. Therefore, all possible phases must be considered at
each composition and temperature, and the phase which truly minimizes the total
energy of the system must be determined.

Butler’s equation was initially used to calculate the composition dependent sur-
face energies of the binary liquids in an attempt to determine the nanoscale phase
diagrams. Subsequently, an approach first outlined by Weissmueller et al. was applied
to determine the free energies of all phases as a function of size. Unsurprisingly, the
nanoscale phase diagrams predicted herein differed significantly from those calculated
using the classical approach. While the standard melting point depression of the el-
emental solids was observed, the liquidus lines showed further depression. Also, the
eutectic line lost its invariance and became curved upward or downward depending
on the values of the interface/surface energies. These results are in close agreement
with predictions by Weissmueller et al. involving an imaginary binary alloy system.

Furthermore, the same procedure was applied to a AuGe particle of size r =
5×10−9 m consistent with the particles observed experimentally. However, now rather
than using the surface energies, the interface energies to SiO2 were used. This allowed
us to recalculate the composition dependent interface energies using Butler’s equation
and subsequently calculate the phase diagram of an embedded AuGe nanoparticle.
While the general characteristics of this phase diagram were similar to that of the
free-standing particles, the location of the liquidus line differs, which allowed the
recalculation of the temperature dependent values of γGe(s)/SiO2 . When considering
the effects of limited size, the determined values became: 0.75− 0.85 J/m2, which is
in good agreement with previous estimates of 0.7− 0.9 J/m2.
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