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Impatience, Risk Propensity and Rationality in Timing Games
Moojan Ghafurian and David Reitter
moojan@psu.edu reitter@psu.edu

The Pennsylvania State University
University Park, 16802, USA

Abstract
Games of timing reflect dynamic decision-making under un-
certainty, as it takes place in many real-world situations, in-
cluding health care, safety and security. Rather than making
discrete decisions, participants choose one or more points in
time that determine the outcome. We study individual’s biases
and characteristics in such games of timing. We examine risk
propensity as a personal preference affecting timing decisions
and document a bias, impatience. Experiment 1 analyzes peo-
ple’s strategy in timing games in relation to a rational model.
Contrasting two cognitive models suggests that individuals ap-
ply risk propensity to the probability distributions underlying
short games and when unfamiliar with the situation, but that,
over time, impatience takes over as a linear adjustment. In Ex-
periment 2, impatient participants risk their incentive payment
in order to play early, even if they receive no advantage from
doing so.
Keywords: Decision-making under uncertainty; Rationality;
Patience; Risk propensity; Timing games

Introduction
Many real-world decisions concern the timing of one’s ac-
tions. Good examples are common security or safety sce-
narios that are subject to cost/risk tradeoffs–at which point
in time should guards patrol a dangerous area? While driv-
ing, how often we turn to look if a bicyclist has started to
move while we are waiting to enter an intersection? Decision-
makers need to judge risk under uncertainty and anticipate an
opponents actions. Unlike in much work on decision-making,
the decision when to act becomes just as important as how to
act. Games of timing generalize such scenarios and allow
us to investigate the pertinent question whether well-known
effects from classical, discrete decision-making apply.

In the study presented in this paper, we use games to ana-
lyze timing behavior and correlate it with both estimated and
survey-based measures of risk propensity (a preference for
risk-seeking over risk-avoidance). In the first version of the
game, a virtual opponent chooses the timing of a covert move.
The player is to anticipate the opponent’s move and make his
own move a shortly as possible afterward. Pre-empting the
opponent is ineffective and costly to the player.

Generally, all games we use involve stochastic, time-based
moves by an opponent, and one game features a payoff dis-
tribution that is not symmetric between early and late action.
This is a characteristic of many real-life situations (e.g., in se-
curity, safety or personal health, where acting early incurs a
small penalty, but acting late leads to large losses). This game
is representative of a wide range of situations. Some of these
situations would be calculated and encoded in policies (i.e.,
what is the best interval for checking fire safety devices in a
public place? How often and at what age should people un-
dergo medical screening for hints of a disease?) Yet, people

often fail to follow the prescribed policy, and many real-life
situations require good judgment on the spot.

Previous work has suggested that risk propensity, an in-
dividual variable, influences peoples decisions in similar
games. Risk propensity introduces a bias that leads people
to make decisions that are contrary to their interests. Yet,
the actual implementation of risk propensity is unknown. For
timing decisions, we propose a related heuristic, impatience,
which causes people to act earlier than is advisable. The
heuristic does not take expected utility into account.

Related Work
Timing decisions have seen relatively limited attention com-
pared to discrete decisions. We know that time is perceived
differently by different people. E.g., impulsive individuals
over-estimate the duration of time intervals, specially when
they are waiting for a beneficial outcome of their action
(Wittmann & Paulus, 2008). This makes timed decision-
making particularly challenging for some people.

Decision-maker’s motivations and understanding of the
risks greatly influence the outcome of timing decisions. A
case in point is health screening, where people differ greatly
in their compliance with policies that optimize risks and ben-
efits (Rakowski, Fulton, & Feldman, 1993; Sonnenberg &
Beck, 1993). Understanding human biases in such timing de-
cisions is key to successfully convince people to act rationally
in preventative care.

Recently, Reitter, Grossklags, and Nochenson (2013) used
the FlipIt game of “stealth takeover” (van Dijk, Juels, Oprea,
& Rivest, 2012) to relate risk propensity to decision-making
under uncertainty in a dynamic, adversarial environment. In
this game, players have to estimate the timing of multiple
opponent moves and follow them (but not precede them) as
closely as possible. Experiment 1 of this paper is a controlled
equivalent to the very first move in FlipIt. We will consider
rational solutions to the two games as the ones that optimize
expected utility given currently available information. This
contrasts with game-theoretic predictions, where individuals
should, in repeated games, tend to choose equilibrium strate-
gies (see Teraoka, 1983, for a duel-type timing game).

Experiment 1
Experimental games allow us to observe behavior in situa-
tions comparable to those mentioned above. We generally
operationalize the timing situations as searching for an un-
known event (happening in a specific period of time) when
efforts for searching and latency in finding the event are both
costly. During a round of l seconds duration, participants play
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Figure 1: Feedback shown when the game is current and it
is at point B on the bar. The latest the player has searched is
at point A, and as a result, no information about the situation
after point A is revealed.

Figure 2: Feedback shown at the end of the game. At point
A the event has occurred, however the searching attempt has
not happened until point B.

against an opponent that triggers a covert event at one point
during the round. (The opponent plays exactly once and its
move time is drawn from a uniform distribution.)

Players start out with l ∗100 points. At any time, they can
spend 100 points to check whether the opponent has played.
The game ends after a successful check, otherwise it contin-
ues. Each second of latency in catching the opponent costs
100 points. So, for a 10-second game, with the opponent
playing at 6.0s, and the player checking twice at seconds 4.0
and 6.5, the payoff is 1000−200−50=750 points. This cre-
ates an incentive to neither check too early, nor wait too long.1

In each experiment, participants completed a survey with
four demographic questions, three basic integrity questions,
and seven risk propensity assessing questions (Meertens &
Lion, 2008). The risk propensity questionnaire includes
Likert-scale questions such as “I really dislike not knowing
what is going to happen”, or “I do not take risks with my
health.”

Method

73 volunteers recruited on Amazon Mechanical Turk (33 fe-
male and 40 male, age mean 32y, [19,64]) participated in
the experiment. Each played 25 rounds of the game. Par-
ticipants were randomly assigned to a group that determined
game length (5, 10, or 15 seconds). They were given detailed
instructions with additional worked examples (see Appendix,
Figure 6). Visual feedback of the game that was given to par-
ticipants is shown in Figures 1 and 2.

Participants played one unpaid practice round, which was
included in the results, followed by 24 paid rounds and were
incentivized with a show-up fee of $0.25, and a performance
bonus of $.004 for each 100 points they earned (no less than
0.00 per round).

1Risk-taking in discrete decisions is affected by the polarity of
incentives (Tversky & Kahneman, 1986). We study applicability of
this bias to games of timing in a forthcoming paper.

Rational Model
We consider a cognitive model for playing the game–a ra-
tional model. This strategy always maximizes the expected
utility under the known facts of the game: the opponent has
not made a move so far, and how much time remains.

Assuming a pay rate of one per time unit, the iterative so-
lution for the expected utility of a move at time t given a pre-
vious, unsuccessful move at time tp, for a game of maximum
duration d is:

U(t, tp) = −MoveCost

+
t

∑
k=tp

1
d−tp

(k−tp + d−t)

+ max[0, d−t
d−tp

max
t<m<d

U(m, t)]

This function iterates over possible opponent move times
k up to the proposed check time t, whose probability is the
inverse of the remaining time d−tp. The payoff for these con-
sists of the initial period until the opponent move, and the
time period after our own move. For the remaining proba-
bility mass (i.e., in case the opponent has not played yet),
rational future moves are assumed.

The rational strategies for games of different durations are
shown in Table 1, along with their expected utilities.

We hypothesize that participants apply a personal prefer-
ence for risk-taking to the rational decision. The rational
player model is a first step for us to describe how exactly
such a personal preference would be applied consistently. In
this game, this rational player would seek to optimize the ex-
pected utility. Unlike in standard decision-making tasks de-
signed to contrast risk-averse or risk-seeking behavior, there
is only one optimal choice, and any risk-seeking or risk-
averse behavior will reduce the participants payoff.

Strategy Analysis
For each round of the game played by participants, we find
the expected utility of the sequence of moves they played
and compare them to the maximum expected utility played
by our rational model. This provides a meaningful measure
of rational play (Figure 3). We also compare the first move
of participants to the first move of the rational player (Fig-
ure 4). Playing much earlier than the rational player implies
risk-seeking. The game might be over sooner, with a higher
payoff, but the expected utility is lower. Thus, the incentive
discourages such play; we interpret any bias of early play as
risk-seeking or impatient behavior. The number of checks
gives a similar picture. As the potential gain for each second
of the game covers the cost of one check, checking more than
once per second will certainly lead to a zero payoff.

Results
Given the sequence of participants moves, the expected utility
for each round can be calculated. Figure 3 shows the distri-
bution of outcomes for 5, 10, and 15-second games.
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Figure 3: Expected utility of sequence of moves played by
participants with different risk propensities. 95% confidence
intervals (dotted lines), obtained by bootstrapping.

Table 1: Rational Strategies

Duration No. Checks Timing of Checks Expected U.
5sec 1 (2.50) 274

10sec 2 (4.00, 7.00) 670
15sec 3 (5.00, 9.00, 12.00) 1096

Risk propensity as measured by the survey predicts the par-
ticipants’ strategies. Risk propensity was reliably associated
with less rational play (lower expected utility) in games of
length 15s (β =−7.3, t =−3.63), while it did not affect peo-
ples outcome in shorter games of length 5s (β = 0.79t = .37)
and length 10s (β = −3.0, t = −1.39) . Participants reliably
make their first move earlier than the rational model in games
of all lengths (5s : β = 0.7s, t =−3.21,CI =±0.43;10s : β =
−1.0s, t = −4,CI = ±0.42;15s : β = 1.61s, t = −7.78,CI =
0.40). Overall, game duration is a reliable predictor of tim-
ing difference ∆T to the rational model (Intercept 0.206s,
β∆T =−0.09s, t =−3.01,CI =±0.059).

Once game duration is taken into account, risk propen-
sity reliably predicts timing relative to optimal timing (β =
−0.03s, t =−2.67,CI =±0.023).2

2For uniformity of analysis and presentation, all analyses are
linear mixed-effects regressions, with random intercept by subject.
Correlation between all predictors was below 0.1. Significance at
p < 0.05. All confidence intervals 95% based on t; in graphs: boot-
strapped.
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Figure 4: Time of the first move for participants with dif-
ferent risk propensities in three different periods of Experi-
ment 1. 95% confidence intervals (dotted lines), obtained by
bootstrapping.

Risk-taking or Impatience?
The implied assumption so far has been that the gameplay is
adversely influenced by risk-seeking behavior. In their play,
participants exhibit risk-seeking even in the face of lower
utility (i.e., their play becomes irrational). This strategy, if
it can be called that way, would go beyond the contrast of
risk-seeking and risk-avoiding behavior known from classi-
cal, discrete tasks (Iowa Gambling Task: Bechara, Damasio,
Damasio, & Anderson, 1994), where the game is designed to
keep expected utility constant across the strategy space.

Possibly, players use a heuristic to implement their risk-
seeking preferences. Alternatively, another bias could be at
play, such as impatience. The rationale for this bias could be
to improve one’s information basis, which has been proposed
as a rational explanation of behavior in the Wason Card Se-
lection Task (Chater & Oaksford, 1999; Wason, 1966).

In the remainder of this paper, we will contrast the two
biases using linear regression, before presenting further em-
pirical evidence to determine whether impatience is indeed a
bias that impacts rational play.

We fit four linear regression models that each predict the
timing of play. Model A applies risk propensity in relation
to the calculated hazard rate. Model B applies impatience,
playing earlier by a consistent amount of time. Model C is a
baseline model that plays a fixed strategy as given in Table 1,
regardless of individual personality traits. Model D combines
both A and B models.

Models A and B each estimate a subject-specific variable
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that influences the prediction by playing earlier. Model B im-
plements a heuristic. It adjusts timing linearly and the ad-
justment is the same for all moves in all rounds played by a
given participant. By contrast, Model A simulates a personal-
ity trait that adjusts a probability threshold. A plays as soon as
the cumulative probability of the opponent making his move
has reached this threshold. A updates its hazard rate estimate:
during a round, the cumulative probability increases linearly
with time. The hazard rate is 1/trem, with trem indicating the
time remaining since the last unsuccessful check. (We know
that the opponent will play for sure, and we know that the
opponent has not played up until our last check.) In other
words, the player’s check adds information that allows him to
increase the hazard rate estimate and set the cumulative prob-
ability to 0 at check time. Thus, model A adjusts its situation
model as soon as new information is obtained. Individual risk
propensity is applied to the hazard rate estimate. For com-
parability, even model A estimates the subject-specific risk
propensity rather than using the risk propensity we have ob-
tained from the survey.

Model specification ∆T is the difference between a sub-
ject’s move and the previous move (or 0 for initial move). All
models predict ∆T . Models A,B, and D use a linear function
of game duration, game round, survey-assessed gender, years
of education and age. Model A also includes an interaction
of remaining game length and the subject-specific, fitted risk-
propensity variable. Model B, instead, includes the remaining
game length and the subject-specific, fitted impatience vari-
able (both as individual, linear predictors). Model D com-
bines the variables and interactions from A and B. Model C
always predicts the time to the next check according to the
rational strategy for a game of the given length (Table 1).

Modeling results Impatience and risk propensity both
make significant contributions to explaining the variance in
timing decisions, across all conditions. We see that model
D, which uses both risk propensity and impatience is the
best model. Comparing shorter and longer games, the rela-
tive importance of risk propensity and impatience reverses.
Perhaps unsurprisingly, when given more time, participant’s
impatience becomes more indicative of behavior. However,
given just five seconds they are able to consistently apply risk
propensity to their decision-making. This becomes clearer
when we consider learning over time. In early rounds (rounds
1− 8, labeled “novice”), the risk-taking model outperforms
the impatience model; this is reversed in late rounds (17−24,
labeled “expert”), where, (according to AIC) the impatience
model is e14/2 times more likely than the risk-taking one.
(Note that impatience being a better predictor for late rounds
does not imply that subjects become more or less patient.)

Experiment 2
The first experiment demonstrates that impatience outper-
forms risk propensity as behavioral predictor in a timing task.

Table 2: Model fit critera (modified Aikake Information Cri-
terion, following Burnham and Anderson (2002)). Lower
AICc values indicate a preferable model.

Model AICc ∆AICc Log-Lik
FULL DATASET
D: combined 45,970 0 -22,830
A: risk-taking 46,229 259 -23,035
B: patience 46,688 718 -23,268
C: baseline 49,341 3371 -24,668
5-SECOND GAMES
A: risk-taking 10,274 0 -5,108
B: impatience 10,390 116 -5,170
C: baseline 11,288 1,014 -5,642
15-SECOND GAMES
B: patience 20,910 0 -10,424
A: risk-taking 20,936 25 -10,433
C: baseline 22,433 1,523 -11,214
NOVICE
A: risk-taking 19,577 0 -9,704
B: impatience 19,672 96 -9,755
C: baseline 21,070 1,493 -10,532
INTERMEDIATE
A: risk-taking 12,634 0 -6,255
B: impatience 12,660 26 -6,273
C: baseline 13,572 938 -6,784
EXPERT
B: impatience 13,440 0 -6,663
A: risk-taking 13,454 14 -6,666
C: baseline 14,547 1,107 -7,272

In that task, participants had to understand the payoff distri-
bution and the fact that the opponent will make a move for
sure. This is crucial for our analysis. Because the opponent
will play before the end of the game, the duration until the
end of the game influences the probability density (i.e., prob-
ability that the opponent will play in the next second). As
a consequence of constant individual risk propensity, partici-
pants should adjust their moves. Because the payoff dropped
off linearly after the opponent’s move, participants were, to
some extent, incentivized to make early moves. This ecologi-
cally valid element of the game leaves us with a question–did
participants play too early because of their interpretation of
the rules of the game?

Experiment 2 is designed to measure impatience in timing
games more directly. In this task, we describe a similar situa-
tion in which participants are to intercept an external, stochas-
tic opponent. However, they are either to ensure that they play
after the opponent (“late” condition) or that they play before
the opponent (“early”). Participants and opponents play only
once. They are not incentivized to play as close as possible to
the opponent, which makes the rational solution of the game
trivial–play either very late, or very early, in order to reap the
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full bonus. An impatient participant will always tend to play
earlier rather than later. Thus, an impatient participant tends
do better in the “early” condition compared to the “late” con-
dition. Participants were given the same set of survey ques-
tions as in Experiment 1.

Method
123 volunteers recruited on Amazon Mechanical Turk (43 fe-
male, 79 male, 1 unknown; mean age 31y, [18;67]) partici-
pated in the experiment for payment. Each played 10 rounds
of the game. Participants were randomly assigned to a group
that determined game length (5 or 15 seconds). In a between-
subjects design, participants were assigned either the “early”
or “late” condition. Visual feedback of the game was similar
to that in Experiment 1. The procedure was the same as the
previous experiment, except for the number of rounds and not
having a practice round.

Unlike in Experiment 1, participants only play once per
round, at which point any previous opponent move is re-
vealed. Participants then see an animated progress bar until
the end of the round; any future opponent move is revealed at
its scheduled time. (Time is money, particularly on Mechani-
cal Turk, and we did not want to incentivize playing early.)

Participants were paid a show-up fee and a bonus. The
bonus was either the full amount for a win, or nothing other-
wise. A win required them to play before the opponent in the
early game, or after the opponent in the late game. The actual
bonus payoff depended on the length of the game (100 points
per second). (See Figure 7 for the scenario.)

Results
We contrast the time delay between beginning of the game
and play in the early condition, and the delay between play
and end of the game in the late condition, ∆T . Rounds in
which participants did not play at all were excluded. Partici-
pants were better at minimizing the initial delay in the early
condition than they were at minimizing the final gap in the
late condition. This means, they showed a consistent prefer-
ence to play early. Figure 5 illustrates this difference over the
10 rounds of the game, in relation to the length of each game
(5 or 15 seconds). The difference was reliable for rounds 1
through 6 (Wilcox, W ≥ 1999, p < 0.01).

Discussion
It is possible that a risk mitigation strategy supported the ob-
served effect. Participants could play as soon as the game
started in the early condition, but they had to avoid missing
the end of the game in the late condition in order to score
points. However, we point out that 1) participants could the-
oretically play too early (before the game started) and would
not receive visual confirmation, and that 2) the performance
gap between the two conditions is too large to be explained
by such a strategy.

Is impatience a heuristic for risk-seeking? Based on the
model comparisons for Experiment 1, we can state that both
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Figure 5: In both conditions, early and late, participants
showed a learning effect, and a persistent tendency to play
too early rather than to late. 95% confidence intervals ob-
tained by bootstrapping.

impatience and risk propensity make significant contributions
to explaining the variable in the decisions made. However,
are there commonalities? As a second test, we would hy-
pothesize that risk propensity, as measured by the standard
survey, would predict timing in Experiment 2, our impatience
task. This is not the case–overall correlation of risk propen-
sity and ∆T is very low (ρ = −0.02). Split by condition and
game duration, the associations are also low (|ρ|< 0.076).

General Discussion
Our standard to compare to is rationality. Participants must
time their moves in Experiment 1 according to the cumula-
tive probability of the opponent’s move. While participants
seem to approximate this model, we have begun ruling out
simpler heuristics– impatience in our study– that might ac-
count for the observed variance. Future work will distinguish
the rational model from other shortcuts. Another prediction
of the rational model would be that participants will behave
differently depending on whether the game has a known end
point and the opponent will actually move. With an infinite
game, or the possibility that the opponent will not move at
all, a shorter remaining time span would not warrant shorter
move intervals. If the Gambler’s Fallacy (Tversky & Kah-
neman, 1974) applies to timing decisions, we would expect
participants to not change their behavior. Risk propensity, in
this case, would still consistently act on the assumed, wrong
probability density of the opponent’s move.

We see impatience as a personal bias that does not de-
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pend on underlying probabilities, but may be influenced by
the payoff and framing. While we set out to show that impa-
tience is a heuristic that implements risk-taking in the kinds
of situations reflected in timing games, our results led us to
the opposite conclusion. Risk-taking and impatience affect
decision-making independently.

The contributions of risk-taking and impatience to explain-
ing the timing behavior change and depend on the length of
the game and participants’ progress in the game. Depletion
of self-control (Baumeister, Vohs, & Tice, 2007) might play a
role in making impatience a better predictor in later rounds of
the game, assuming it applies to very short games like ours.
However, as participants are performing better in the latter
rounds (figure 5), we find that unlikely.

Conclusion
Timing decisions are of critical importance in many domains
of decision-making; they are under-studied and pose a new
avenue for understanding personality characteristics and gen-
eral biases. Two related examples of these properties were
studied using timing games. Risk propensity is an individ-
ual variable that can be estimated or obtained via a standard
survey instrument: in both cases it predicts a willingness to
take one’s chances. People appear to make rational decisions
over a broad range of risk propensity levels found in the pop-
ulation. Given enough time, the most risk propense people
appear to optimistically bet on a positive outcome, resulting
in less rational choices.

Most irrationality in the timing decisions we study appears
to stem from a second characteristic: impatience. Acting as a
bias regardless of the underlying probability distribution of
winning, impatient subjects were willing to forego certain
winings in exchange for seeing the outcome of the game ear-
lier, or simply for locking in their decision.

A precise picture of how personal traits and common biases
influence timing decisions will be of use in designing train-
ing problems for a range of people whose successful, rational
decision-making can make a difference in domains such as
personal health, national security, or public safety.
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Materials

You have invited cookie monster over. Unfortunately,
you have a good number of cookies in your living room,
where he is waiting while you cook dinner in the kitchen.
Cookie monster will start eating the cookies at one point,
so you need to check on him every now and then. The
sooner you catch him, the more cookies you save, how-
ever, anytime you check on him and your friend has not
started eating, hell get more and more annoyed with you.
You will need to give him a pack of 100 cookies every
time you check on him.

Figure 6: Exp. 1, Cover Story (abbreviated)

Imagine you are Cookie Monster! You really love cook-
ies. Your friendly neighbor knows that well, so she has
promised to bring you some cookies. The problem is that
she hasn’t told you when she will bring the cookies. It’s
a very cold day, and you can only open your door once
and check very quickly if the cookies are there. Your job
is to figure out when to check in front of your door. Re-
member: Your neighbor will definitely put the cookies
for you there within the promised period, the question is:
when? ... If you don’t find the cookies, you won’t get
them at all. If you check before your neighbor brings the
cookies, you have lost your chance to get them.

Figure 7: Exp. 2, Cover Story (“late” condition, abbreviated)
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