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A CONTRACTION ANALYSIS OF THE CONVERGENCE
OF RISK-SENSITIVE FILTERS∗

BERNARD C. LEVY† AND MATTIA ZORZI‡

Abstract. A contraction analysis of risk-sensitive Riccati equations is proposed. When the
state-space model is reachable and observable, a block-update implementation of the risk-sensitive
filter is used to show that the N -fold composition of the Riccati map is strictly contractive with
respect to the Thompson’s part metric of positive definite matrices, when N is larger than the
number of states. The range of values of the risk-sensitivity parameter for which the map remains
contractive can be estimated a priori. It is also found that a second condition must be imposed
on the risk-sensitivity parameter and on the initial error variance to ensure that the solution of the
risk-sensitive Riccati equation remains positive definite at all times. The two conditions obtained
can be viewed as extending to the multivariable case an earlier analysis of Whittle for the scalar
case.
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1. Introduction. Starting with Kalman and Bucy’s paper [15], the convergence
of the Kalman filter has been examined in detail, and it soon became clear that if
the state-space model is stabilizable and detectable, the filter is asymptotically sta-
ble and the error covariance converges to the unique nonnegative definite solution of
a matching algebraic Riccati equation (ARE). However, the classical Kalman filter
convergence analysis [1, 14] is rather intricate and involves several steps, including
first showing that the error covariance is upper bounded, next proving that with a
zero initial value, it is monotone increasing, so it has a limit, and then establishing
that the corresponding filter is stable and that the limit is the same for all initial
covariances. In 1993, Bougerol [5] proposed a more direct convergence proof based on
establishing that the discrete-time Riccati iteration is a contraction for the Riemann
metric associated to the cone of positive definite matrices. Although this result at-
tracted initially little notice in the systems and control community, this approach was
adopted by several researchers [17, 18, 19, 21] to study the convergence of a number
of nonlinear matrix iterations. In [19], it has been shown that the Riccati iteration is
also a contraction for the Thompson’s part metric. The latter is more effective than
the Riemann metric for convergence analysis [7]. We will use this viewpoint here to
analyze the convergence of risk-sensitive estimation filters. Unlike the Kalman filter
which minimizes the mean square estimation error, risk-sensitive filters [22, 25] min-
imize the expected value of an exponential of quadratic error index, which ensures a
higher degree of robustness [8, 11] against modeling errors. Unfortunately, in spite
of extensive studies on risk-sensitive and related H∞ filters, results concerning their
convergence remain fragmentary [25, Chap. 9], [11, sect. 14.6], [3]. In particular,
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one question that remains unresolved is whether there exists an a priori upper bound
on the risk-sensitivity parameter ensuring the convergence of the solution of the risk-
sensitivite Riccati equation to a positive definite solution associated to a stable filter.

The contraction anaysis presented in this paper relies on a block implementation
of Kalman (risk-neutral) and risk-sensitive filters. When the system is reachable
and observable and the block length N exceeds the number of states, it is shown
that in the risk-neutral case, the Riccati equation corresponding to the block filter is
strictly contractive, which allows us to conclude that the Riccati equation of Kalman
filtering has a unique positive definite fixed point. This analysis is equivalent to
the derivation of [5] which relied on showing that the N -fold composition of the
Hamiltonian map associated to the risk-neutral Riccati operator is strictly contractive.
However, it has the advantage that it can be extended easily to the risk-sensitive case
by using the Krein-space formulation of risk-sensitive and H∞ filtering developed
in [9, 10]. With this approach, it is shown that the N -block risk-sensitive Riccati
equation remains strictly contractive as long as a corresponding observability Gramian
is positive definite. This Gramian is shown to be a monotone decreasing function of the
risk-sensitivity parameter θ with respect to the partial order of nonnegative definite
matrices. Accordingly, it is possible to identify a priori a range [0, τN ) of values
of the risk-sensitivity parameter θ for which the block Riccati equation is strictly
contractive. This result is used to show that the risk-sensitive Riccati equation has a
unique positive definite fixed point, but because the image of the cone P of positive
definite matrices under the risk-sensitive Riccati map is not entirely contained in P
a second condition must be placed on θ and the initial variance P0 of the filter to
ensure that the evolution of the risk-sensitive Riccati equation stays in P. The two
conditions obtained can be viewed as extensions to the multivariable case of those
presented in [25, Chap. 9] for scalar risk-sensitive Riccati equations.

The paper is organized as follows. The properties of the Thompson’s part metric
for positive definite matrices and of contraction mappings are reviewed in section 2.
The block-update filtering interpretation of the N -fold Riccati equation of Kalman
filtering is described in section 3 and is extended to the risk-sensitive case in section 4.
This formulation is used to estimate the range of values of the risk-sensitivity parame-
ter for which the risk-sensitive Riccati equation is contractive. A second condition on
the risk-sensitivity parameter and initial condition ensuring that the solution of the
Riccati equation remains positive is obtained in section 5. An illustrative example is
studied in section 6 and conclusions as well as a possible extension are presented in
section 7.

2. Thompson’s part metric and contraction mappings. Let P denote the
cone of positive definite symmetric matrices of dimension n. If P is an element of P
with eigendecomposition

(2.1) P = UΛUT ,

where U is an orthogonal matrix formed by normalized eigenvectors of P and Λ =
diag {λ1, . . . , λn} is the diagonal eigenvalue matrix of P , the symmetric positive square
root of P is defined as

P 1/2 = UΛ1/2UT ,

where Λ1/2 is diagonal, with entries λ
1/2
i for 1 ≤ i ≤ n. Similarly, the logarithm of P

is the symmetric, not necessarily positive definite, matrix specified by

log(P ) = U log(Λ)UT ,



2156 BERNARD C. LEVY AND MATTIA ZORZI

where log(Λ) is diagonal with entries log(λi) for 1 ≤ i ≤ n. Let P and Q be two
positive definite matrices of P. Then P−1Q is similar to P−1/2QP−1/2, so they have
the same eigenvalues, and P−1/2QP−1/2 is positive definite. Let s1 ≥ s2 ≥ · · · ≥
sn > 0 denote the eigenvalues of P−1Q sorted in decreasing order. The Thompson’s
part metric [4, 12] between P and Q is defined as

d(P,Q) = ‖ log(P−1/2QP−1/2)‖2
= max(λ1(log(P−1/2QP−1/2)), λ1(log(Q−1/2PQ−1/2))) ,(2.2)

where ||.||2 denotes the spectral matrix norm. In addition to having all the traditional
properties of a distance, d has the feature that it is invariant under matrix inversion
and congruence transformations. Specifically, if M denotes an arbitrary real invertible
matrix of dimension n,

(2.3) d(P,Q) = d(P−1, Q−1) = d(MPMT ,MQMT ) .

Furthermore, the translation of P by a nonnegative definite symmetric matrix S is a
nonexpansive map. Specifically,

(2.4) d(P + S,Q+ S) ≤ α

α+ β
d(P,Q),

where α = max(λ1(P ), λ1(Q)) and β = λn(S). In these definitions, it is assumed that
the eigenvalues of P , Q, and S are sorted in decreasing order, so that λ1(P ) is the
largest eigenvalue of P , i.e., its spectral norm, and λn(S) is the smallest eigenvalue of
S. This result was originally shown by Bougerol for the Riemannian metric [5].

Recall that if f(·) is an arbitrary mapping of P, f is nonexpansive if

d(f(P ), f(Q)) ≤ d(P,Q)

and strictly contractive if

d(f(P ), f(Q)) ≤ cd(P,Q)

with 0 ≤ c < 1. The least contraction coefficient or Lipschitz constant of a nonexpan-
sive mapping f is defined as

(2.5) c(f) = sup
P,Q∈P,P 6=Q

d(f(P ), f(Q)

d(P,Q)
.

Clearly, if f and g denote two nonexpansive mappings, the contraction coefficient
c(f ◦ g) of the composition of f and g satisfies c(f ◦ g) ≤ c(f)c(g), so if at least one
of the two maps is strictly contractive, the composition is also strictly contractive.
From inequality (2.4), we deduce that if τS(P ) = P + S denotes the translation by a
positive definite matrix S, τS is nonexpansive, but the bound (2.4) does not allow us
to conclude that c(τS) < 1, since when the largest eigenvalue of either P or Q goes to
infinity, the constant α/(α+ β) tends to one.

The metric space (P, d) is complete [24]. Accordingly, if f is a strict contraction
of P for the distance d, by the Banach fixed point theorem [2, p. 244], there exists
a unique fixed point P of f in P satisfying P = f(P ). Furthermore this fixed point
can be evaluated by performing the iteration Pn+1 = f(Pn) starting from any initial
point P0 of P. Also if the N -fold composition fN of a nonexpansive map f is strictly
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contractive, then f has a unique fixed point. We will consider in particular the
Riccati-type map over P defined by

(2.6) f(P ) = M [P−1 + Ω]−1MT +W,

where P , Ω, and W are symmetric real positive definite matrices and M is a square
real, but not necessarily invertible, matrix. For this mapping the following result was
established in [19, Thm. 5.3].

Lemma 2.1. f is a strict contraction with

(2.7) c(f) ≤ λ1(Ω−1MTW−1M)

(1 +
√

1 + λ1(Ω−1MTW−1M))2
< 1 ,

where we use again the convention that the eigenvalues of positive definite matrices
are sorted in decreasing order.

Note that although the results presented in this paper use the Thompson’s part
metric over P, other metrics such as the Riemann metric can be used [19]. On the
other hand, the Thompson’s part metric is more effective than the others. Indeed,
it has been shown that f is a strict contraction under mild assumptions on Ω [7,
Cor. 5.11].

3. Block update filter. Consider a Gauss–Markov state-space model

xt+1 = Axt +But,(3.1)

yt = Cxt + vt ,(3.2)

where the state xt ∈ Rn, the process noise ut ∈ Rm, and the observation noise vt ∈ Rp.
The noises ut and vt are assumed to be independent zero-mean WGN processes with
normalized covariance matrices, so

E

[[
ut
vt

] [
uTs vTs

]]
=

[
Im 0
0 Ip

]
δt−s ,

where

δt =

{
1, t = 0
0, t 6= 0,

denotes the Kronecker delta function. The initial state vector x0 is assumed inde-
pendent of noises ut and vt and N (x̂0, P0) distributed. Since we are interested in the
asymptotic behavior of Kalman and risk-sensitive filters, the matrices A, B, and C
specifying the state-space model are assumed to be constant. Then if Yt−1 denotes
the sigma field generated by observations y(s) for 0 ≤ s ≤ t − 1, the least-squares
estimate x̂t = E[xt|Yt−1] depends linearly on the observations and can be evaluated
recursively by the predicted form of the Kalman filter specified by

(3.3) x̂t+1 = Ax̂t +Ktνt ,

where the innovations process

(3.4) νt
4
= yt − Cx̂t .

In (3.3), the Kalman gain matrix

(3.5) Kt = APtC
T (Rνt )−1 ,
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where

(3.6) Rνt = E[νtν
T
t ] = CPtC

T + Ip

represents the variance of the innovations process, and if x̃t = xt − x̂t denotes the
state prediction error, its variance matrix Pt = E[x̃tx̃

T
t ] obeys the Riccati equation

(3.7) Pt+1 = r(Pt)
4
= A[P−1t + CTC]−1AT +BBT

with initial condition P0. This equation can also be rewritten in the equivalent form
[14, p. 325]

(3.8) Pt+1 = (A−KtC)Pt(A−KtC)T +BBT +KtK
T
t ,

which will be used later in our analysis.
The Riccati mapping r(P ) specified by (3.7) has the form (2.6). Unfortunately the

matrices CTC and BBT are not necessarily invertible, so Lemma 2.1 is not directly
applicable. Under the assumption that the pairs (A,B) and (C,A) are reachable
and observable, respectively, Bougerol [5] was able to show that the n-fold map rn is
a strict contraction. This was achieved by considering the n-fold composition of the
symplectic Hamiltonian mapping associated to r (see [18] for a study of the contraction
properties of symplectic Hamiltonian mappings). We present below an equivalent
derivation of Bougerol’s result which relies on a block update implementation of the
Kalman filter.

The starting point is the observation that since xt is Gauss–Markov, the down-
sampled process xdk = xkN with N integer is also Gauss–Markov with state-space
model

xdk+1 = ANxdk +RNuNk ,(3.9)

yNk = ONxdk + vNk +HNuNk ,(3.10)

where

uNk =
[
uTkN+N−1 uTkN+N−2 . . . uTkN

]T
,

yNk =
[
yTkN+N−1 yTkN+N−2 . . . yTkN

]T
,

vNk =
[
vTkN+N−1 vTkN+N−2 . . . vTkN

]T
.

In the model (3.9)–(3.10)

RN =
[
B AB · · · AN−1B

]
,

ON =
[

(CAN−1)T · · · (CA)T CT
]T

denote respectively the N -block reachability and observability matrices of system
(3.1)–(3.2), where the blocks forming ON are written from bottom to top instead of
the usual top to bottom convention. If the pairs (A,B) and (C,A) are reachable and
observable, RN and ON have full rank for N ≥ n. In (3.10), if

Ht =

{
CAt−1B, t ≥ 1

0, otherwise
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denotes the impulse response representing the response of output yt in (3.2) to the
process noise ut input in (3.1), HN is the Np×Nm block Toeplitz matrix defined by

HN =



0 H1 H2 · · · HN−2 HN−1
0 0 H1 H2 · · · HN−2
0 0 0 H1 · · · HN−3
...

...
...

...
...

0 0 0 · · · · · · H1

0 0 0 · · · · · · 0


.

Note, however, that the noise vectors uNk and wN
k

4
= vNk +HNuNk are correlated since

E

[[
uNk
wN
k

] [
uNT` wNT

`

]]
=

[
INm HTN
HN INp +HNHTN

]
δk−` .

This correlation can be removed by noting that the estimate of uNk given wN
k takes

the form
ûNk = GNwN

k ,

where
GN = HTN (INp +HNHTN )−1 .

Then by premultiplying the observation equation (3.10) by RNGN and subtracting it
from (3.9) we obtain the new downsampled state dynamics

(3.11) xdk+1 = αNx
d
k +RN ũNk +RNGNyNk

with

αN
4
= AN −RNGNON ,

where the zero mean white Gaussian noise ũNk = uNk − ûNk is now uncorrelated with
observation noise wN

k and has the invertible variance matrix

QN = INm −HTN [INp +HNHTN ]−1HN
= [INm +HTNHN ]−1 .

The Kalman filter corresponding to the downsampled state-space model (3.10)–
(3.11) can be interpreted as a block update filter, where the state estimate is updated
only after a block of N observations has been collected. The Riccati equation corre-
sponding to this Kalman filter is then given by

(3.12) P dk+1 = rd(P
d
k ) = αN [(P dk )−1 + ΩN ]−1αTN +WN ,

where the n× n symmetric real matrices

ΩN
4
= OTN [I +HNHTN ]−1ON ,(3.13)

WN
4
= RN [I +HTNHN ]−1RTN(3.14)

are positive definite for N ≥ n whenever the pairs (C,A) and (A,B) are observable
and reachable, respectively. In fact, ΩN and WN can be viewed as observability and
reachability Wronskians for the state-space model (3.1)–(3.2).
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From Lemma 2.1, we can therefore conclude that rd(·) is a strict contraction.
However, since P dk is the variance matrix of the one-step ahead prediction error for
state xkN , rd coincides with the N -fold composition rN of Riccati map r, which must
have therefore a unique fixed point P in P. This establishes the following classical
Kalman filter convergence result [1, 14].

Theorem 3.1. If in system (3.1)–(3.2) the pairs (A,B) and (C,A) are reachable
and observable, respectively, the ARE P = r(P ) admits a unique positive definite
solution, and as t tends to infinity, for any positive definite initial condition P0, Pt
tends to P as t tends to infinity, and the Kalman gain matrix Kt tends to

K = APCT [CPCT + Ip]
−1,

which has the property that the matrix A−KC is stable.

Given the fixed point P > 0, the stability of A−KC is obtained by applying the
Lyapunov stability theorem to the equation

(3.15) P = (A−KC)P (A−KC)T +BBT +KKT

(see [1, p. 80]).
One unsatisfactory aspect of the contraction approach to the derivation of Theo-

rem 3.1 is its requirement that the system should be reachable and observable, instead
of the weaker stabilizability and detectability conditions required by conventional
Kalman filter convergence proofs [1, 14]. The stronger conditions are needed to en-
sure that the Riccati evolution takes place entirely in the cone of positive definite
matrices. On the other hand, if the system is reachable and observable, the limit P
is guaranteed to be positive definite, instead of just nonnegative definite under the
usual assumptions. Finally, note that the block update implementation of the Kalman
filter which was used here to show that rd = rN is a strict contraction is equivalent
to Bougerol’s derivation in [5], but as shown below it can be extended more easily to
the risk-sensitive case.

4. Contraction property of the risk-sensitive Riccati equation. For the
state-space model (3.1)–(3.2), the risk-sensitive estimate x̂t solves the exponential
quadratic minimization problem [23, 25]

(4.1) x̂t = arg min
ξ∈Rn

1

θ
log

(
E

[
exp

(
θ

2
||D(xt − ξ)||2

)
|Yt−1

])
,

where D ∈ Rq×n with q ≤ n is assumed to have full row rank, and ||z|| = (zT z)1/2

denotes the Euclidean vector norm. The parameter θ appearing in (4.1) is called the
risk-sensitivity parameter. The resulting estimate x̂t obeys the recursion (3.3)–(3.4),
where

(4.2) Kt = A(P−1t − θDTD)−1CT (Rνt )−1

with

(4.3) Rνt = C(P−1t − θDTD)−1CT + Ip ,

and where Pt obeys the risk-sensitive Riccati equation

(4.4) Pt+1 = rθ(Pt) = A[P−1t + CTC − θDTD]−1AT +BBT .



CONVERGENCE OF RISK-SENSITIVE FILTERS 2161

Our analysis will use the fact that the risk-sensitive Riccati equation can be rewritten
as

(4.5) Pt+1 = (A−KtC)[P−1t − θDTD]−1(A−KtC)T +BBT +KtK
T
t .

The values θ = 0, θ < 0, and θ > 0 of the risk-sensitivity parameter correspond
respectively to the risk-neutral, risk-seeking, and risk-averse cases. When θ = 0, the
risk-sensitive filter reduces to the Kalman filter studied in the previous section, and
when θ < 0 the matrix CTC − θDTD is nonnegative definite and can be rewritten as
C̃T C̃, where the pair formed by

C̃
4
=

[
C

(−θ)1/2D

]
and (C̃, A) is necessarily observable if (C,A) is observable. Accordingly, the conver-
gence result of Theorem 3.1 is applicable to this problem, and in the remainder of
this paper our attention will focus on the risk-averse case with θ > 0.

An interesting feature of the risk-sensitive filter is that it can be interpreted as
solving a standard least-squares filtering problem in Krein space [9, 10]. We will use
this viewpoint here to extend the block filtering idea of the previous section to the
risk-sensitive case. The Krein-space state-space model consists of dynamics (3.1) and
observations (3.2), to which we must adjoin the risk-sensitive observations

(4.6) 0 = Dxt + vRt .

The components of noise vectors ut, vt, and vRt now belong to a Krein space and have
the inner product

(4.7)

〈 ut
vt
vRt

 ,
 us
vs
vRs

〉 =

 Im 0 0
0 Ip 0
0 0 −θ−1Iq

 δt−s.
The N -step observability matrix of the pair (D,A) is denoted as

ORN =
[

(DAN−1)T · · · (DA)T DT
]T

and if

Lt =

{
DAt−1B, t ≥ 1

0, otherwise

denotes the impulse response from input ut to the risk-sensitive observation output,
the corresponding N -block Toeplitz matrix takes the form

LN =



0 L1 L2 · · · LN−2 LN−1
0 0 L1 L2 · · · LN−2
0 0 0 L1 · · · LN−3
...

...
...

...
...

0 0 0 · · · · · · L1

0 0 0 · · · · · · 0


.

Then if
vRNk =

[
(vRkN+N−1)T (vRkN+N−2)T · · · (vRkN )T

]T
,
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the N -block risk-sensitive observation for the downsampled process xdk can be ex-
pressed as

(4.8) 0 = ORNxdk + vRNk + LNuNk .

The Krein-space inner product of observation noise vector[
wN
k

wRN
k

]
=

[
vNk
vRNk

]
+

[
HN
LN

]
uNk

with itself admits the block LDU decomposition〈[
wN
k

wRN
k

]
,

[
wN
k

wRN
k

]〉
4
= KθN

=

[
INp 0
0 −θ−1INq

]
+

[
HN
LN

] [
HTN LTN

]
=

[
INp 0

LNHTN (INp +HNHTN )−1 INq

] [
INp +HNHTN 0

0 SθN

]
×
[
INp (INp +HNHTN )−1HNLTN
0 INq

]
,(4.9)

where

(4.10) SθN
4
= −θ−1INq + LN (INm +HTNHN )−1LTN

denotes the Schur complement of the (1, 1) block inside KθN . The projection of
noise vector uNk on the Krein subspace spanned by the observation noise vector[

(wN
k )T (wRN

k )T
]T

is then given by

ûNk =
[
GθN GRθN

] [ wN
k

wNR
k

]
,

where [
GθN GRθN

]
=
[
HTN LTN

]
(KθN )−1 ,

and the residual ũNk = uNk − ûNk has for inner product

〈ũNk , ũNk 〉
4
= QθN = INm −

[
GθN GRθN

]
KθN

[
(GθN )T

(GRθN )T

]
= [INm +HTNHN − θLTNLN ]−1 .(4.11)

The matrix QθN will be positive definite if and only if

(4.12) θ < θN
4
= 1/λ1(LN (INm +HTNHN )−1LTN ) .

Note that this condition is also necessary and sufficient to ensure that the Schur
complement SθN in (4.10) is negative definite. Then by multiplying the observation
equation obtained by combining (3.10) and (4.8) byRN

[
GθN GRθN

]
and subtracting

it from (3.9), we obtain the state-space equation

(4.13) xdk+1 = αθNx
d
k +RN ũNk +RNGθNyNk



CONVERGENCE OF RISK-SENSITIVE FILTERS 2163

with

αθN
4
= AN −RN [GθNON + GRθN ORN ] ,

where the driving noise is now orthogonal to the noises wN
k and wRN

k appearing in
observation equations (3.10) and (4.8). Accordingly, the Riccati equation associated
to the downsampled model takes the form

(4.14) P dk+1 = rθd(P dk )
4
= αθN [(P dk )−1 + ΩθN ]−1(αθN )T +W θ

N ,

where

ΩθN =
[
OTN (ORN )T

]
(KθN )−1

[
ON
ORN

]
= ΩN + J TN (SθN )−1JN(4.15)

with

JN
4
= ORN − LNHTN [INp +HNHTN ]−1ON

and

(4.16) W θ
N = RNQθNRTN .

For θ = 0, the matrices ΩθN and W θ
N coincide with the risk-neutral Gramians ΩN

and WN defined in (3.13) and (3.14). These matrices are positive definite for N ≥ n
if and only if the pairs (C,A) and (A,B) are observable and reachable, respectively.
Since QθN is positive definite for 0 ≤ θ < θN , we deduce that W θ

N > 0 over this range
as long as (A,B) is reachable and N ≥ n. On the other hand, the Schur complement
matrix SθN is negative definite for 0 ≤ θ < θN , so

ΩθN < ΩN

over this range. To establish that there exists a range 0 ≤ θ < τN over which ΩθN
remains positive definite when (C,A) is observable, we use the following observation.

Lemma 4.1. Over 0 ≤ θ < θN , the Gramians ΩθN and W θ
N are monotone decreas-

ing and monotone nondecreasing, respectively, with respect to the partial order defined
on nonnegative definite matrices.

Proof. We have

d

dθ
(SθN )−1 = −(SθN )−1

(
d

dθ
SθN

)
(SθN )−1 = −(θSθN )−2 < 0

and
d

dθ
QθN = −QθN

d

dθ
(QθN )−1QθN = QθNLTNLNQθN ≥ 0 .

To understand why ΩθN and W θ
N vary in opposite directions as θ increases, note

that W θ
N can be viewed as a measure of the uncertainty introduced by the process

noise in the state-space model, whereas ΩθN is a measure of the information about the
state contained in a block observation. As the risk-sensitivity parameter θ increases,
it is natural that the uncertainty matrix W θ

N should increase and the information
matrix ΩθN should decrease.

Let τN < θN be the first value of θ for which ΩθN becomes singular. Then since
ΩθN and W θ

N are positive definite for θ ∈ [0, τN ), we conclude that over this range
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the Riccati map rθd is strictly contractive and has a unique fixed point P in P. Like
the risk-neutral case, we have rθd = (rθ)N . However, because the image rθ(P) is not
completely contained in P, to ensure that P is also the unique fixed point of rθ, we
must also require that rθ(P ) ∈ P. Note indeed that if

(4.17) P = (rθ)N (P ) ,

by applying rθ to both sides of (4.17), we obtain

rθ(P ) = (rθ)N (rθ(P ))

so rθ(P ) is a fixed point of (rθ)N . If rθ(P ) ∈ P, we must have

P = rθ(P )

since (rθ)N has a unique fixed point in P.
At this point it is worth pointing out that until now we have ignored an important

constraint [3, 11] for the risk-sensitive filter, namely, that the matrix

(4.18) Vt = (P−1t − θDTD)−1

should be positive definite for all t. If this condition is satisfied, then the fixed point
P of rθd will be in P, ensuring that it is the unique fixed point of rθ.

5. Positiveness conditions for Vt. In this section we identify conditions on the
initial covariance P0 and risk-sensitivity parameter θ which ensure that the trajectory
of iteration Pt+1 = rθ(Pt) satisfies Vt > 0 for all t. Our analysis will exploit the
monotonicity of Riccati operator rθ(P ) with respect to the partial order of positive
definite matrices.

Lemma 5.1. Let P1 and P2 be two matrices in P such that P1 ≥ P2 and P−11 −
θDTD > 0. Then

(5.1) rθ(P1) ≥ rθ(P2) .

Proof. The monotonicity of rθ is due to the fact that the inversion of positive
definite matrices reverses their partial order. In addition, congruence transformations
and translation by symmetric matrices preserve the partial order. Since the operator
rθ(P ) in (4.4) can be expressed in terms of two nested inversions of positive definite
matrices, two matrix translations and a congruence transformation, it is monotone
in P .

Next, observe that for any n×p observer gain matrix G, the risk-sensitive Riccati
equation (4.5) can be rewritten as

Pt+1 = (A−GC)(P−1t − θDTD)−1(A−GC)T +GGT +BBT

− [(A−GC)(P−1t − θDTD)−1CT −G](Rνt )−1

× [(A−GC)(P−1t − θDTD)−1CT −G]T .(5.2)

This expression can be obtained by writing A = (A−GC)+GC in (4.5) and performing
simple algebraic manipulations. While it may appear surprising that a free matrix gain
G can be introduced in the equation, the above modification has actually a simple
explanation. Consider the state-space model (3.1)–(3.2). We can always design a
preliminary suboptimal observer

(5.3) x̂St+1 = Ax̂St +G(yt − Cx̂St ) .
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Then the residual x̃St = xt − x̂St admits the state-space model

x̃St+1 = (A−GC)x̃St +But −Gvt,
yt − Cx̂St = Cx̃St + vt ,(5.4)

for which the only difference with respect to the original model (3.1)–(3.2) is that
the process noise But −Gvt and measurement noise ut are now correlated. The risk-
neutral and risk-sensitive problems associated to the original model (3.1)–(3.2) and
modified model (5.4) are exactly the same since observations yt and

(5.5) ySt
4
= yt − Cx̂St

can be obtained causally from each other. In particular, the variance matrices Pt
of the error are the same for both models. Thus it should not be a surprise that
the solution Pt of Riccati equation (4.5) should also solve the risk-sensitive Riccati
equation (5.2) corresponding to modified model (5.4).

One important advantage of introducing the free matrix gain G is that when the
pair (C,A) is observable, the characteristic polynomial of the closed-loop observer
matrix A−GC can be assigned arbitrarily [13]. In particular, it is possible to ensure
that the matrix A − GC is stable, i.e., all its eigenvalues are strictly inside the unit
circle. In this case, let

r
4
= max

1≤i≤n
|λi(A−GC)|

denote its spectral radius. For ρ < 1/r, the matrix ρ(A−GC) will also be stable, and
when (A,B) is reachable, the algebraic Lyapunov equation (ALE)

(5.6) Σρ = ρ2(A−GC)Σρ(A−GC)T +BBT +GGT

admits a unique positive definite solution

(5.7) Σρ =

∞∑
k=0

ρ2k(A−GC)k(BBT +GGT )((A−GC)k)T .

Note that Σρ is positive definite if and only if the pair A−GC,
[
B G

]
is reachable.

But if this pair is not reachable, by the Popov–Belevich–Hautus (PBH) test [13,
p. 366], there must be a left eigenvector zT of A − GC which is orthogonal to the
column space of

[
B G

]
, so

zT (A−GC) = λzT , zTB = zTG = 0 .

This implies zTA = λzT , so zT is a left eigenvector of A perpendicular to the column
space of B, which implies that (A,B) is not reachable, a contradiction.

If we select 1 < ρ < 1/r, the matrix Σρ is positive definite and the matrix

(5.8) M
4
= (1− ρ−2)Σ−1ρ − θDTD

will be nonnegative definite if and only if the matrix

M̃
4
= In − θ

ρ2

ρ2 − 1
Σ1/2
ρ DTDΣ1/2

ρ
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is nonnegative definite. But because the matrices Σ
1/2
ρ DTDΣ

1/2
ρ and DΣρD

T have

the same nonzero eigenvalues, M̃ is nonnegative definite if and only if

(5.9) θ
ρ2

ρ2 − 1
DΣρD

T ≤ Iq

or equivalently

(5.10) 0 ≤ θ ≤ βρ
4
=

ρ2 − 1

ρ2λ1(DΣρDT )
,

where λ1(DΣρD
T ) is the largest eigenvalue of DΣρD

T . It is strictly positive since Σρ
is positive definite and D has full row rank.

Lemma 5.2. If the initial variance P0 for the risk-sensitive Riccati equation (4.4)
(or equivalently (5.2)) satisfies 0 < P0 ≤ Σρ and 0 ≤ θ ≤ βρ, the entire trajectory
of the recursion Pt+1 = rθ(Pt) satisfies 0 < Pt ≤ Σρ, so Vt > 0. Furthermore, for
P0 = Σρ, the sequence Pt is monotone decreasing.

Proof. Suppose first that P0 = Σρ. Then the nonnegative definiteness of the
matrix M in (5.8) implies V0 > 0. By subtracting (5.2) for t = 0 from ALE (5.6), we
obtain

Σρ − P1 =(A−GC)(ρ2Σρ − (Σ−1ρ − θDTD)−1)(A−GC)T

+ [(A−GC)(Σ−1ρ − θDTD)−1CT −G]

× (Rν0)−1[(A−GC)(Σ−1ρ − θDTD)−1CT −G]T .(5.11)

But when M is nonnegative definite, the matrix

ρ2Σρ − (Σ−1ρ − θDTD)−1

appearing in the first term of the right-hand side of (5.11) is nonnegative definite,
which implies

(5.12) P1 = rθ(Σρ) ≤ P0 = Σρ .

By induction, suppose that Pt ≤ Pt−1. The motonicity of rθ implies

Pt+1 = rθ(Pt) ≤ rθ(Pt−1) = Pt,

so Pt is monotone decreasing.
Next, consider the case of an initial condition P0 ≤ Σρ. The monotonicity of rθ

implies

P1 = rθ(P0) ≤ rθ(Σρ) ≤ Σρ,

where the last inequality uses (5.12). Proceeding by induction, we deduce that Pt ≤
Σρ for all t. This implies

P−1t ≥ Σ−1ρ > θDTD

so Vt > 0 for all t.
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Remarks.
(1) For the risk-neutral case (θ = 0), the solution Σρ of the ALE (5.6) is

similar to an upper bound proposed for the positive definite solution of the ARE
in [6] (see also [16]), which was also shown to yield a monotone decreasing sequence of
iterates. However, the construction of the upper bound given in [6] is purely algebraic,
whereas for ρ = 1 the covariance matrix Σρ can be interpreted as the steady-state
error variance of the suboptimal filter (5.3).

(2) Since the bound βρ for the risk-sensitivity parameter depends on both G
and ρ, it is of interest to determine if a choice of G and ρ makes the bound as large as
possible. Note in this respect that there exists a trade-off between making βρ as large
as possible and enlarging the set 0 ≤ P0 ≤ Σρ of allowable initial conditions, since
from (5.9) in order to increase the range of θ values, Σρ must be as small as possible,
which shrinks the domain of allowable P0s. A clue on how to select G is provided by
the scalar case analysis presented in [25, Chap. 9]. With n = m = p = q = 1, if we
select the gain G = A/C, A−GC = 0 so ρ can be selected arbitrarily large, and

Σρ =
A2

C2
+B2

for all ρ. Letting ρ → ∞ in (5.10), the bound βρ then coincides with the scalar case
bound derived on p. 116 of [25]. This suggests that selecting a gain G that moves
all the eigenvalues of the closed-loop observer A − GC to zero is likely to yield a
satisfactory upper bound βρ. Note that in the multivariable case, A−GC cannot in
general be set to zero by selecting the gain matrix G, but the characteristic polynomial
and some additional parameters (when p > 1) can be assigned arbitrarily [13, Chap.
7]. Unfortunately, as will be demonstrated in an example in the next section, the
gain G which assigns all the eigenvalues of A−GC to zero does not necessarily yield
the largest possible value of βρ and a comprehensive search over G and ρ is usually
required to make βρ as large as possible.

By assembling the preliminary results of the current and previous sections, we
obtain the following convergence theorem for risk-sensitive filters.

Theorem 5.3. Assume that in system (3.1)–(3.2), the pairs (A,B) and (C,A)
are reachable and observable. Then if 0 ≤ θ < τN and θ ≤ βρ with N ≥ n, the
risk-sensitive Riccati map rθ has a unique positive definite fixed point P such that
P−1 − θDTD > 0. Furthermore, if the initial condition P0 of the Riccati equation
satisfies 0 < P0 ≤ Σρ, the entire trajectory of iteration Pt+1 = rθ(Pt) stays in P,
satisfies Vt > 0, and tends to P . In this case the limit K of filtering gain Kt as
t→∞ has the property that A−KC is stable.

Proof. Since the trajectory Pt stays in P and satisfies Vt > 0, and the N -fold
operator rθd = (rθ)N has a unique fixed point P in P, the sequence Pt must tend to
P , and P must be such that P−1 − θDTD > 0. Then the stability of A−KC can be
established by applying Lyapunov stability theory to the risk-sensitive ARE,

P = (A−KC)(P−1 − θDTD)−1(A−KC)T +BBT +KKT .

This theorem answers in the affirmative the question posed in [3] whether it is
possible to specify a priori a range of risk-sensitivity parameters θ and initial condi-
tions such that the risk-sensitive Riccati equation admits a unique solution. In the
case that the risk-sensitivity parameter is larger than τN we cannot conclude whether
the risk-sensitive Riccati equation admits a solution. In particular, there may be sev-
eral positive definite solutions and the smallest one should stabilize the risk-sensitive
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filter. Finally, Theorem 5.3 leaves open the computation of the maximum value of
θ (its breakdown value in the terminology of [25]) for which a solution exists, which
corresponds to the optimal H∞ filter.

6. Example. To illustrate our results, we consider a system with

A =

[
0.1 1
0 1.2

]
, C =

[
1 −1

]
,

B = I2, and D = 1. Note that A is unstable, (A,B) is reachable, but the pair (C,A)
is barely observable, since the eigenvector

p =

[
1

1.1

]
corresponding to the eigenvalue λ = 1.2 is at a 92.72 degree angle with respect to C.
In this case, for N = 2, the largest eigenvalue of matrix L2(I4 +HT2H2)−1L2 equals
1, so θ2 = 2. To evaluate the value τ2 for which Ωθ2 becomes singular, the smallest
eigenvalue of Gramian Ωθ2 is plotted in Figure 1 as a function of θ for 0 ≤ θ ≤ 2×10−3.
For this example, it decreases linearly and becomes negative at τ2 = 0.715 × 10−3.
For completeness, the smallest eigenvalue of reachability Gramian W θ

2 is plotted in
Figure 2 over the same range of θ. It is monotone increasing, as expected, but the
rate of increase is very small, since λ2(W θ

2 ) varies from 1.002828 to 1.02831. Note
that although we have selected N = 2 here, larger values of N can be considered,
and in fact as N increases, τN increases and θN decreases, and for this example both
values tend to 1.33× 10−3 for large N .

Next, to evaluate βρ, we observe that with the gain matrix

(6.1) G =

[
−13.1
−14.4

]
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Fig. 1. Smallest eigenvalue of observability Gramian Ωθ2 for 0 ≤ θ ≤ 2 × 10−3.
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Fig. 2. Smallest eigenvalue of reachability Gramian W θ
2 for 0 ≤ θ ≤ 2 × 10−3.

the closed-lood matrix

A−GC =

[
13.2 −12.1
14.4 −13.2

]
is nilpotent, i.e., its eigenvalues are zero. Note, however, that G is rather large, which
reflects the weak observability of the system. In this case, if we select ρ = 2, the
solution Σ2 of the Lyapunov equation (5.6) is

Σ2 = 103
[

1.4622 1.5954
1.5954 1.7431

]
.

Its largest eigenvalue is λ1(Σ2) = 3.2042 × 103 and from (5.10) we obtain β2 =
2.3407 × 10−4. This bound is significantly smaller than τ2. To illustrate Lemma
5.2, the risk-sensitive Riccati iteration Pt+1 = rθ(Pt) is simulated with θ = β2 and
initial condition P0 = Σ2. The two eigenvalues of Pt and Vt are plotted as a function
of t for 0 ≤ t ≤ 10 in Figures 3 and 4, respectively. As expected, the eigenvalues
remain positive and are monotone decreasing. The monotone decreasing property of
the eigenvalues is due to the fact that if two n × n positive definite matrices P and
Q are such that P ≥ Q and if the eigenvalues of P and Q are sorted in decreasing
order, then λi(P ) ≥ λi(Q) for 1 ≤ i ≤ n. In other words, the eigenvalues follow
the partial order of positive definite matrices. Since according to Lemma 5.2, the
sequence Pt is monotone decreasing, so are its eigenvalues. The figures indicate that
the risk-sensitive Riccati equation converges very quickly, after four or five iterations.
Note that if P denotes the limit of Pt, its smallest eigenvalue is 1.003, but the other
eigenvalue is much larger and equals 332.4. This reflects our earlier observation that
one of the modes of the system is barely observable. The eigenvalues of the matrix
A−KC for the estimation error dynamics are 0.034 and 0.776, so the filter is stable,
as expected.

Finally, to illustrate the onset of breakdown as θ increases, the two eigenvalues
of the fixed point solution P θ of rθ and of the corresponding matrix V θ = ((P θ)−1 −
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Fig. 3. Eigenvalues of Riccati solution Pt for 0 ≤ t ≤ 11 with θ = β2 and initial condition
P0 = Σ2.
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Fig. 4. Eigenvalues of Vt for 0 ≤ t ≤ 11 with θ = β2 and initial condition P0 = Σ2.

θI2)−1 are plotted as a function of θ in Figures 5 and 6, respectively, for 0 ≤ θ ≤
0.95 × 10−3. It is known [11, p. 379] that P θ is a monotone increasing function of
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Fig. 5. Eigenvalues of Riccati fixed point P θ in function of θ for 0 ≤ θ ≤ 0.95 × 10−3.

θ, and as expected the eigenvalues of P θ are monotone increasing. However, while
the change in the smaller eigenvalue is barely noticeable, the eigenvalue representing
the weakly observable mode increases rapidly with θ. As θ increases, the eigenvalues
of V θ start diverging, and the breakdown value of θ for this example is just above
0.95×10−3. This value is significantly higher than the bound β2 obtained by applying
Lemma 5.2 with the gain (6.1), suggesting that the bound can be improved. In fact,
an exhaustive search over G and ρ showed that βρ is maximized by selecting

G =

[
−7.2196
−7.9753

]
and ρ = 1.2849, in which case βρ = 0.4824× 10−3.

7. Conclusions. A convergence analysis of risk-sensitive filters has been pre-
sented. It relies on extending Bougerol’s contraction analysis of risk-neutral Riccati
equations to the risk-sensitive case using the Thompson’s part metric. This was ac-
complished by considering a block-filtering implementation of the N -fold Riccati map
and showing that this map is strictly contractive as long as an observability Wron-
skian depending on the risk-sensitivity parameter remains positive definite. A second
condition was derived for the risk-sensitivity parameter and initial error variance to
ensure that the trajectory of the risk-sensitive Riccati iteration stays positive definite
at all times. The two conditions obtained can be viewed as multivariable versions of
conditions obtained earlier by Whittle [25, Chap. 9] for the scalar case.

Although the results we have presented concern filters with a constant risk-
sensitivity parameter θ, a closely related class of robust filters was derived recently [20]
by assigning a fixed relative entropy [26, 27] tolerance to increments of the state-space
model. In this case, the risk-sensitivity parameter is time-varying, but the tolerance
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Fig. 6. Eigenvalues of V θ in function of θ for 0 ≤ θ ≤ 0.95 × 10−3.

is fixed, and based on computer simulations, it appears that the risk-sensitivity pa-
rameter and associated filter always converge as long as the relative entropy tolerance
remains small. Since Bougerol’s analysis [5] is applicable to systems with random
fluctuations, it is reasonable to wonder if the analysis presented here can be extended
to establish the convergence of the filters discussed in [20].
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