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Abstract

The gross primary production (GPP) in tropical terrestrial ecosystems plays a 
critical role in the global carbon cycle and climate change. The strong 2015–
2016 El Niño event offers a unique opportunity to investigate how GPP in the 
tropical terrestrial ecosystems responds to climatic forcing. This study uses 
two GPP products and concurrent climate data to investigate the GPP 
anomalies and their underlying causes. We find that both GPP products show
an enhanced GPP in 2015 for the tropical terrestrial ecosystem as a whole 
relative to the multiyear mean of 2001–2015, and this enhancement is the 
net result of GPP increase in tropical forests and decrease in nonforests. We 
show that the increased GPP in tropical forests during the El Nino event is 
consistent with increased photosynthesis active radiation as a result of a 
reduction in clouds, while the decreased GPP in nonforests is consistent with 
increased water stress as a result of a reduction of precipitation and an 
increase of temperature. These results reveal the strong coupling of 
ecosystem and climate that is different in forest and nonforest ecosystems 
and provide a test case for carbon cycle parameterization and carbon‐
climate feedback simulation in models.

1 Introduction

Tropical terrestrial ecosystems play a significant role in the global carbon 
cycle and climate change. The gross primary production (GPP) of these 
systems accounts for about 60% of the global land GPP (Beer et al., 2010), 
which contributes to a large fraction of fixation of atmospheric carbon 
dioxide (CO2). How GPP of the tropical terrestrial ecosystem responds to 
climate change is a subject of intense research because the magnitude of 
carbon‐climate feedback can strongly affect future climate change.

During the last several decades, tropical terrestrial ecosystems have shown 
evidential changes in response to rising atmospheric CO2 and climate change
(Baker et al., 2004; Lewis et al., 2009; Pan et al., 2011). Studies based on 
inventory plots reported an increase in old‐growth forests carbon storage 
over Amazonia and Africa during recent decades (Baker et al., 2004; Lewis et
al., 2009; Pan et al., 2011), which acts to slow down the increasing 
atmospheric CO2 concentration and associated climate warming. Model 
simulations also showed net tropical land uptake for four different future 
emission scenarios (Sitch et al., 2008). Many processes on ecosystem 
response to climate change, however, remain poorly understood because of 
the short duration of available observational data and highly uncertain 



models (Huntingford et al., 2013; Restrepo‐Coupe et al., 2013; Smith et al., 
2016).

Several studies used the observed seasonality and interannual variability in 
the land carbon cycle of tropical terrestrial ecosystems to understand the 
underlying mechanism of ecosystem response to climate change. Wang et 
al. (2013) analyzed the relationships between global average atmospheric 
CO2 and annual mean temperature and precipitation over the tropics. They 
reported the stronger and more persistent control of temperature than 
precipitation on the tropical land carbon cycle. Fang et al. (2017) examined 
the response of tropical land carbon fluxes to El Niño‐Southern Oscillation 
and concluded temperature being the key factor following El Niño years but 
precipitation being the dominant driver post La Niña years. Several studies 
showed that the increased solar radiation results in higher greenness and 
stronger photosynthetic activity of central Amazon forests during dry months
than during wet months (Guan et al., 2015; Hilker et al., 2014; Huete et al., 
2006; Saleska et al., 2016). Others showed that water supply is the key 
factor that controls the photosynthetic activity of forests along southern 
Amazonia and adjacent savannah (Guan et al., 2015; Hilker et al., 2014; 
Restrepo‐Coupe et al., 2013). According to the estimation of Zhao and 
Running (2010), large tropical vegetated land areas had decreased net 
primary production from 2000 to 2009 because of drought. Seddon et al. 
(2016) assessed the sensitivity of terrestrial ecosystems to climate variability
and found that there are significant heterogeneities in the responses of 
tropical terrestrial ecosystems to variability in air temperature, water 
availability, and solar radiation. These studies all point to the strong 
response of tropical terrestrial ecosystems to climate variability but also 
suggest that this response could be different with respect to different 
aspects of climate change and ecosystem traits.

The super 2015–2016 El Niño provides natural experiments to investigate the
response of tropical terrestrial photosynthesis metabolism to climate 
variability (Liu et al., 2017). The 2015–2016 was the strongest El Niño event 
on record, with longer time and farther west than the 1997–1998 El Niño 
(Huang et al., 2016). Its influences on terrestrial carbon cycle are largely 
different from those of the 1997–1998 El Niño (Wang et al., 2018). Recently 
published studies have reported a “green‐up” of Amazon forests in response 
to the 2015–2016 El Niño event through using a variety of data sets, 
including the enhanced vegetation index (EVI), leaf area index (LAI), and the 
fraction of absorbed photosynthesis active radiation (fPAR; Li et al., 2018; 
Yang et al., 2018). Meanwhile, paradoxically, they also showed reduced 
photosynthesis of Amazon forests during the 2015–2016 El Niño from the 
analysis of solar‐induced chlorophyll fluorescence (SIF) from the Global 
Ozone Monitoring Experiment‐2.

The objective of this study is to investigate the response of the tropical 
terrestrial ecosystem to the 2015–2016 El Niño event and its underlying 
causes by using recently available GPP products. We show how GPP in the 



tropical terrestrial system as a whole responds and how forest and nonforest 
ecosystems respond differently to the El Nino event. We also analyze the 
associated dominant drivers and processes.

2 Data Sets and Methods

2.1 Climate Data Sets

We used surface temperature, precipitation, potential evapotranspiration 
(PET), and photosynthesis active radiation (PAR) as our climate data. Monthly
surface temperature and precipitation are from the Climatic Research Unit‐
National Centers for Environmental Prediction (CRU‐NCEP), downloaded from 
input data of the Community Earth System Model in National Center for 
Atmospheric Research (https://svn‐ccsm‐
inputdata.cgd.ucar.edu/trunk/inputdata). The data set spans from 1901 to 
2016 and is at 0.5° horizontal resolution. The data set has been used in 
several previous studies to investigate the responses of the tropical 
ecosystems carbon cycle to El Niño‐Southern Oscillation (Fang et al., 2017; 
Piao et al., 2014; Wang et al., 2013, 2014). The PET was obtained from CRU 
TS v4.01 (http://doi.org/10/gcmcz3; Harris & Jones, 2017). This PET also 
covers the period from 1901 to 2016, with 0.5° horizontal resolution.

We obtained PAR in synoptic top of atmosphere and surface fluxes and 
clouds (SYN) Edition 4 from the National Aeronautics and Space 
Administration (NASA) Langley Research Center, Cloud and Earth's Radiant 
Energy System (https://ceres.larc.nasa.gov; Wielicki et al., 1996). This data 
set is at 1° spatial resolution and monthly temporal resolution from March 
2000 to the present. The total PAR was calculated as the sum of surface 
direct and diffusive PAR in the all‐sky conditions (Li et al., 2018; Yang et al., 
2018).

The cloud fraction was downloaded from the NASA Earth Observation 
(https://neo.sci.gsfc.nasa.gov). This data set is from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) cloud product collected from the Terra 
platform (MOD06; Platnick et al., 2015). This data set is at 0.5° spatial 
resolution and monthly temporal resolution from February 2000 to present.

2.2 Gross Primary Production

We used two independent GPP products in this study. The first is the MODIS 
GPP product (MOD17A2H.006; Running et al., 2015; hereafter GPPMOD17), 
downloaded from NASA's Land Processes Distributed Active Archive Center 
(https://lpdaac.usgs.gov) located at the United States Geological Survey 
Earth Resources Observation and Science Center. The GPPMOD17 estimates 
GPP values based on light use efficiency theory and is widely used (Running 
et al., 2004). The GPPMOD17 is at 0.5‐km spatial and 8‐day temporal resolution 
from February 2000 to present and was interpolated into 0.5° spatial 
resolution and aggregated to monthly average in this study.



The second is a GPP product (hereafter GPPVPM) estimated by the vegetation 
photosynthesis model (VPM) with an improved light use efficiency theory 
(Zhang et al., 2016, 2017). The GPPVPM shows satisfactory performance when 
compared to site‐level validations across large different biome types (Xiao et
al., 2005). The GPPVPM provides multiple spatial and temporal resolutions over
the globe spanning from 2000 to 2016. In this study, we employed monthly 
GPPVPM at 0.5° horizontal resolution.

There are inherent uncertainties for both GPPMOD17 and GPPVPM (Running & 
Zhao, 2015; Zhang et al., 2017). First, both GPPMOD17 and GPPVPM are 
dependent on MODIS land cover type. A misclassification of land cover type 
can occur in areas with complex vegetation at 0.5‐km scale. Second, 
uncertainties are introduced by the assumption that biome‐specific 
physiological parameters remain constant with space or time for GPPMOD17 
and the treatment of C3/C4 plants for GPPVPM. Third, GPPMOD17 is dependent on
LAI and fPAR, and GPPVPM is dependent on EVI. All the three variables may be 
contaminated by clouds and aerosols. Fourth, climate data sets used to drive
GPPMOD17 and GPPVPM contain uncertainties because of sparse weather stations
and small‐scale convection processes.

In addition to the two GPP products, we also downloaded the shorter record 
of another GPP product from NASA's National Snow and Ice Date Center 
(https://nsidc.org). This GPP product is estimated by using a satellite data‐
based terrestrial carbon flux model informed by Soil Moisture Active Passive 
(SMAP) L‐band microwave observations, land cover and vegetation inputs 
from MODIS, Visible Infrared Imaging Radiometer Suite, and the Goddard 
Earth Observing System Model, Version 5, land model assimilation system 
(Kimball et al., 2017). This is a daily GPP product (hereafter GPPSMAP), which 
covers the period from 31 March 2015 to present at a spatial resolution 9 km
by 9 km.

2.3 Enhanced Vegetation Index

To investigate if the GPP response is based on vegetation response, we 
downloaded and analyzed the EVI data set from MODIS (MOD13C2.006; 
Didan, 2015; hereafter EVIMOD13). The EVIMOD13 has improved its sensitivity in 
regions with high biomass. The EVIMOD13 is at 0.05° spatial and monthly 
temporal resolution from February 2000 to present and was interpolated into
0.5° spatial resolution in this study.

2.4 Methods

We define tropical vegetated land in this study as areas between latitudes 
30°N and 30°S where LAI in each month exceeds 0.01 based on land surface 
data from MODIS (Lawrence & Chase, 2007). We divide the vegetated area 
into two types, forests and nonforests, because of their significant different 
traits (Figure S1).

The 2015 anomalies of climate and GPP are calculated relative to the mean 
from 2001 to 2015. Since GPPMOD17 in December of 2015 is missed, its 



anomalies are calculated based on the first 11 months. The interannual 
variation during 2001 to 2015 is used to obtain the standard deviation and to
judge the statistical significance of the 2015 anomalies.

To evaluate the uncertainties of GPPMOD17 and GPPVPM, we downloaded FLUX 
observations from FLUXNET2015 Data (http://fluxnet.fluxdata.org/). We 
chose sites GF‐Guy (DOI: 10.18140/FLX/1440165) and ZA‐Kru (DOI: 
10.18140/FLX/1440188) because they are grouped as evergreen broadleaf 
forests and savannas, respectively, and they cover longer time than other 
tropical sites. More information about the two sites is summarized in Table 
S1. We chose values of GPPMOD17 and GPPVPM in grids that are the nearest to 
the sites to compare with FLUX observations.

3 Results and Discussion

3.1 Climate Anomalies

In response to the super El Niño event in 2015, the tropical vegetated land 
experienced a severely warm and dry condition. The land‐surface air 
temperature was 1.82 times the standard deviation (SD; 0.31°) higher than 
the 15‐year mean of 2001–2015. Spatial patterns of surface air temperature 
anomalies in 2015 show warmer conditions in South America, West Africa, 
East Africa, South Africa, Southeast Asia, equatorial Asia, and western and 
eastern Australia (Figure 1a). Meanwhile, the tropical terrestrial annual mean
precipitation in 2015 was 2.1 SD (101 mm/year) less than the 15‐year mean 
precipitation. Regions with negative precipitation anomalies include large 
areas of South America, West Africa, South Africa, equatorial Asia, and 
Southeast Asia (Figure 1b).



Corresponding to the dry conditions, the tropical terrestrial annual PAR in 
2015 increased by 1.3 SD (0.7 W/m2) relative to the 15‐year mean, with large
contributions from regions including central and eastern South America, 
South Africa, East Africa, Southeast Asia, equatorial Asia, and northern and 
eastern Australia (Figure 1c). The increased PAR is consistent with the 
reduction of cloud cover over the tropical continents (Figure 1d), which is 
related to the reduction of precipitation in these regions. These climate 
anomalies are consistent with previous studies based on other climate data 
sets (Li et al., 2018; Liu et al., 2017; Yang et al., 2018), which together 
demonstrate the severely warm and dry conditions during 2015 over the 
tropics, as well as the increased PAR.

3.2 Response of GPP

Annual total GPP anomalies in 2015 relative to the 15‐year averages are 
shown in Figure 2 for the tropical terrestrial ecosystem as a whole and for 
tropical America, Africa, and Asia. GPPMOD17 and GPPVPM for the whole tropics 



increased in 2015 by 0.10 SD (0.09 PgC/year) and 0.98 SD (1.00 PgC/year), 
respectively, relative to their 15‐year averages. Tropical Asia contributes the 
largest to the positive 2015 GPP anomalies, with 0.79 PgC/year (1.53 SD) and
0.95 PgC/year (2.06 SD) in GPPMOD17 and GPPVPM, respectively. This is followed 
by tropical America, with 0.17 PgC/year (0.37 SD) and 0.28 PgC/year (0.45 
SD), respectively. In contrast, the 2015 GPP anomalies were negative for 
tropical Africa, with amplitudes of 0.88 PgC/year (2.71 SD) and 0.23 PgC/year
(0.38 SD) in GPPMOD17 and GPPVPM, respectively. In terms of percentages in 
different regions, the 2015 anomalies represent 5.0% and 3.5% of the total 
climatological GPP in tropical Asia in GPPMOD17 and GPPVPM, respectively. The 
magnitudes of the percentages are the least in tropical America. The 
different percentage changes in different regions reflect the differences in 
the ecosystem traits and the magnitude of El Niño impact of climate.

The two GPP products showed overall opposite response of tropical forest 
and nonforest GPP in 2015 relative to the 15‐year mean (Figure 2). GPPMOD17 
and GPPVPM for forests in the whole tropics increased in 2015 by 2.00 SD 
(1.29 PgC/year) and 1.64 SD (1.24 PgC/year), respectively, relative to their 
15‐year averages. Tropical Asia contributes the largest to the enhanced 
forest GPP in 2015, with 0.94 PgC/year (2.22 SD) and 0.84 PgC/year (1.96 
SD) in GPPMOD17 and GPPVPM, respectively. In contrast, GPPMOD17 and GPPVPM for 
nonforests in the whole tropics decreased in 2015 by 1.64 SD (1.20 
PgC/year) and 0.26 SD (0.24 PgC/year), respectively, relative to their 15‐year
averages. Tropical Africa contributes the largest to the decreased nonforest 



GPP in 2015, with −0.92 PgC/year (−2.78 SD) and −0.32 PgC/year (−0.66 
SD) in GPPMOD17 and GPPVPM, respectively. These large differences between 
GPPMOD17 and GPPVPM anomalies for nonforests in tropical Africa consequently 
result in large differences in GPP anomalies between the two products for the
whole tropics (Figure 2).

The spatial pattern of annual GPP anomalies in 2015 further shows that 
regions dominated by forests were generally characterized with enhanced 
GPP, including Amazon, central Africa, equatorial Asia, and Southeast Asia, 
while regions dominated by nonforests were generally with negative GPP 
anomalies, mainly over eastern South America, West Africa, South Africa, 
and northeastern Australia (Figure 3). This feature is seen in both GPP 
products (Figures 3a and 3b). Since El Niño is generally associated with 
increased temperature, reduced precipitation, and increased PAR over the 
tropical continents as shown in Figure 1 regardless of the surface vegetation 
types, the GPP anomalies in Figures 2 and 3 strongly suggest that forests 
and nonforests have responded differently to the 2015 El Nino event.

This difference can be more clearly seen by using the monthly anomalies of 
total GPP separately for forests and nonforests (Figure 4). In both products, 
forest GPP in 2015 is larger than climatology (Figures 4a and 4b), while 
nonforest GPP is smaller than climatology (Figures 4c and 4d) except for 
January in GPPVPM. Positive and negative anomalies with magnitudes larger 
than the interannual SD are seen for forests and nonforests, especially in 
GPPMOD17. The anomalies in GPPMOD17 are larger than those in GPPVPM, and their 
seasonal variability is quite different for nonforests, which reflects the 
inherent uncertainties in the data products. Figure S2 shows that seasonal 
variability of the two GPP products for nonforests in tropical Africa is similar 



with those shown in Figures 4c and 4d, which reflects more inherent 
uncertainties in the two products in tropical Africa as shown in Figure 2.

In addition to the two GPP products, we also examined the shorter record of 
GPPSMAP, which has similar GPP anomalies in 2015 relative to the years 2016 
and 2017 (Figure S3). EVIMOD13 shows positive EVI anomalies in 2015 in 12 
months for tropical forests (Figure 5f) and negative EVI anomalies in 2015 in 
4 months for tropical nonforested areas (Figure 5l), relative to the multiyear 
average of 2001–2015. This indicates that the above GPP anomalies for 
forests are mainly based on vegetation response and are more reliable than 
those for nonforested areas. The uncertainties will be discussed in section 
3.4.



According to Le Quéré et al. (2018), the global land carbon sink decreased by
1.34 PgC in 2015, compared with the multiyear average of 2001–2015 
(Figure S4). This means that ecosystem respiration may have also increased 
in the 2015 El Niño event and play an important role in annual net carbon 



balance (Wang et al., 2018). Besides, Figure S4 also shows that in 2015 fossil
fuel and industry emissions, land use emissions, and tropical fire carbon 
emissions increased by 1.23, 0.22, and 0.14 PgC, respectively, relative to the
multiyear mean of 2001–2015 (Le Quéré et al., 2018). These sources 
together lead to an increase in the observed atmospheric CO2 growth rate in 
2015.

3.3 Coupling Between Climate and GPP Anomalies

We next show the corresponding climate variables separately for regions of 
forests and nonforests (Figure 5). These variables include surface 
temperature, precipitation, PET, and PAR. GPP is known to depend on PAR, 
precipitation and PET for water supply, and temperature. Large PAR favors 
great GPP due to photosynthesis, so does larger values of precipitation 
minus PET due to the great water supply. The temperature dependence of 
GPP is subtler because different vegetation types have a different optimal 
range of temperature for growth, but indirectly higher temperature leads to 
larger PET and larger water stress. Figure 5 shows that during the 2015 El 
Nino event, forests and nonforests both experienced warm anomalies in 
temperature, less than normal precipitation, larger PET, and larger PAR. The 
increased PAR should lead to more GPP, while the increased water stress as 
expressed by PET minus precipitation and increased temperature should lead
to less GPP. These effects act to offset each other, and the dominant effect 
can be different in different ecosystems.

Over forests, the positive anomaly of GPP in 2015 suggests that the 
enhanced PAR played the dominant role in the ecosystem response. For 
forests in the three tropical continents, the monthly anomalies of GPPMOD17 in 
2015 were significantly and positively correlated with the monthly PAR 
anomalies (Table S2). There are at least two reasons that can explain why 
the opposite effect of the water supply is relatively small. First, tropical 
forests have relatively high drought resistance because their deep roots can 
access seasonally redistributed subsurface water storage during the dry 
season (Giardina et al., 2018; Guan et al., 2015; Nepstad et al., 1994; 
Saleska et al., 2007). Second, as shown in Figure 5, even though 
precipitation is reduced (Figure 5b) and PET is increased (Figure 5c) in 2015, 
precipitation over tropical forests is still larger than PET (Figure 5d). 
Therefore, water stress for tropical forests was not very strong during the El 
Niño event.

Over nonforests, the negative anomaly of GPP in 2015 suggests that water 
stress and temperature played the dominant role in the ecosystem response.
For nonforests in the four regions with largely decreased GPP (Figure S5), the
monthly anomalies of GPPVPM in 2015 were negatively correlated with the 
monthly anomalies in water stress and temperature (Table S2). The 
dominance of water stress over PAR for nonforest ecosystems is likely 
because the vegetation has shallower roots and are more sensitive to water 
stress, where PET is also larger than precipitation (Figure 5j).



3.4 Data Uncertainties and Perspective

A recent study, based on SIF from the Greenhouse gases Observing SATellite
(GOSAT), reported a decreased tropical terrestrial GPP in 2015 relative to 
2011 (Liu et al., 2017). Reduced Amazon forests photosynthesis has also 
been reported based on SIF data sets from Global Ozone Monitoring 
Experiment‐2 during the 2015–2016 El Niño event (Li et al., 2018; Yang et 
al., 2018), although the decreased SIF signal may be caused by the artifacts 
of the data sets because of instruments degradation (Zhang et al., 2018a). 
These reports are contradictory to the results presented here.

To address the uncertainties of the two GPP products, we compare them with
FLUXNET2015 data (GPPFLUX) at sites GF‐Guy (evergreen broadleaf forests) 
and ZA‐Kru (savannas), which represent forests and nonforests, respectively.
Figure 6 shows their seasonal variations.

At site GF‐Guy (Figure 6a), GPPFLUX is the largest in July, while GPPMOD17 and 
GPPVPM are the largest in August and September, respectively. Besides, the 
seasonal amplitudes of GPPMOD17 and GPPVPM are larger than that of GPPFLUX. 
These differences reflect uncertainties of the two GPP products in their 
sensitivity to climate variability for forests, and these uncertainties can result
from many sources as shown in section 2. Generally, GPPFLUX increases from 
January to July (Figure 6a), corresponding to an increase in solar radiation 
(Figure 7a), while GPPFLUX decreases after July because of drought and high 
temperature. The lagged responses of the two GPP products indicate that 



they may have a relatively high resistance to drought and high temperature 
for tropical forests. This characteristic results in uncertainties in amplitudes 
of the GPP anomalies for tropical forests shown above.

At site ZA‐Kru, relative to GPPFLUX, GPPMOD17 shows smaller seasonal 
amplitude, while GPPVPM shows larger seasonal amplitude (Figure 6b). As 
above results show, with respect to other two tropical continents, tropical 
Africa also had the largest differences between GPPMOD17 and GPPVPM for 
nonforests, including the amplitude (Figure 2) and seasonal variability 
(Figure S2). Figure S6 shows that C3/C4 plants grow over a large area of 
tropical Africa, and their photosynthetic processes are quite different. 
Therefore, the uncertainties of the two GPP products in the treatment of 
C3/C4 plants may result in uncertainties in the GPP anomalies for tropical 
nonforests shown above.

Despite these uncertainties, this work provides a valuable test case for 
understanding the response of tropical terrestrial ecosystems to climate 
variability. First, the results show strong coupling between tropical terrestrial
ecosystems and climate that is largely different in tropical forest and 
nonforest ecosystems. Second, the inherent uncertainties in the two 
products reveal that more improvements are needed for the 
parameterization of land carbon cycle. The changes in the key driver of land 
carbon cycle in different seasons should be carefully considered. Third, more 
long‐term simultaneous observations over the tropics are needed to provide 
more reliable information and to help us to understand the land carbon cycle
for different ecosystems. Overall, our results point to the need to make more
effort to investigate the coupling of tropical terrestrial ecosystems and 
climate, which is essential for accurately predicting the carbon‐climate 
feedback under future climate change.



4 Summary

This study investigated the response of tropical terrestrial GPP to the warm 
and dry conditions in the super El Niño year 2015 and examined the 
associated dominant drivers and processes. Two independent GPP products, 
VPM and MODIS, both showed positive GPP anomalies over the tropics as a 
whole in 2015 relative to the 15‐year mean from 2001 to 2015. We have also
shown that GPP is enhanced over tropical forests but decreased in tropical 
nonforests in the 2015 El Niño event under the same climate anomalies of 
warmer temperature, less precipitation, larger PET, and larger PAR. We 
argued that the enhancement of GPP over forests is an indication of the 
dominant role of increased PAR in the 2015 El Niño event, while reduced GPP
over nonforests is an indication of the dominant impact of high temperature 
and water stress as a result of reduced precipitation and increased PET. The 
difference in the response of GPP between forests and nonforests can be 
explained by the different water storage and stress of the two types of 
ecosystems.

The differences between tropical forests and nonforests reveal the complicity
of climate‐carbon relationship and indicate possible different risks that 
tropical vegetation may face climate change in different regions. Our results 
provide a case study to understand the underlying mechanisms about 
interactions between climate and tropical terrestrial ecosystems and to 
evaluate GPP parameterization as well as carbon‐climate feedback in 
models.
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