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Comments to Reviewers: 

 

p. 6, line 29, two independent ? 

Typo has been corrected and correction is highlighted in the manuscript. 

Figure 4, units on 1/T axis 

We have replaced the original with a corrected Figure 4, showing proper units. 

I suggest to mention the room T ionic conducitivity values explicitely on p. 10 and to 

compare them with literature data. I have the impression that the Ar sample is in line 

with several data sets found in literature and the air sample is worse than average 

literature data? 

We have added several lines on p. 10 giving the room temperature ionic conductivities of 

the two different samples, along with some extra literature references for Al-substituted 

LLZO (all highlighted).  Reported conductivities vary a great deal depending on 

processing details, with values ranging from about less than 0.1-0.5 mS/cm2. The values 

we report here for LLZO_air are similar to what we reported before for similarly made 

samples (see reference 25). 
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California, nor any of their employees, makes any warranty, express or implied, or 

assumes any legal responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 
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process, or service by its trade name, trademark, manufacturer, or otherwise, does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government or any agency thereof, or the Regents of the University of 

California. The views and opinions of authors expressed herein do not necessarily state or 

reflect those of the United States Government or any agency thereof or the Regents of the 
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Abstract 

Al-substituted Li7La3Zr2O12 samples processed under argon show enhanced Li-ion 

transport and interfacial properties in symmetrical cells with lithium electrodes, 

compared to those prepared in air. In particular, the samples prepared under argon have 

higher ionic conductivities and lower interfacial impedances in symmetrical lithium cells, 

and show better DC cycling characteristics. The electronic conductivities are also 

somewhat higher. Pellets subjected to thermal treatment under the two types of 

atmospheres have different colors but exhibit similar microstructures. X-ray diffraction 

experiments suggest that there are slight structural differences between the two types of 

samples, but few dissimilarities were observed in elemental composition, distribution of 

ions, oxidation states, or bond lengths using laser-induced breakdown spectroscopy 

(LIBS), x-ray photoelectron spectroscopy (XPS), and extended x-ray absorption fine 

structure spectroscopy (EXAFS) to analyze the materials. Additionally, there was no 

evidence that La or Zr were reduced during the processing under Ar.  Possible 

explanations for the improved electrochemical properties of the sample prepared under 

Ar compared to the one prepared in air include differences in grain boundary chemistries 

and conductivities and/or a small concentration of oxygen vacancies in the former. 

 

 

 

Keywords: Keywords: All solid state batteries; solid electrolytes; Li7La3Zr2O12; garnet   

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 4 

1. Introduction 

 Ever since initial reports of room temperature ionic conductivities greater than 10-

4 S/cm, and apparent stability against reduction by lithium [1], interest in the garnet 

structure Li7La3Zr2O12 (LLZO) and variants has intensified greatly [2]. These 

characteristics suggest that it should be possible to utilize LLZO as a solid electrolyte in 

solid state [3], [4] [5] or hybrid electrolyte batteries [6, 7] with lithium metal anodes, 

which may have safety and energy density advantages over conventional Li-ion batteries. 

Recent work on garnet conductors has been directed towards stabilizing the more 

conductive cubic polymorph [8, 9] and improving total conductivity via, for example, 

partial or multiple substitutions [10-14], and/or grain boundary engineering [15-17] [18]. 

Effort has also been directed towards understanding and improving the interfacial 

properties [19, 20] and preventing dendrite formation [5, 21] in cells with lithium 

electrodes. Novel fabrication methods [22] have been used to prepare the thin, dense 

films of LLZO needed for devices, although this material is notoriously difficult to sinter, 

and processing variables need to be carefully controlled [23-25]. One variable of interest 

is the effect of sintering atmosphere on the physical and electrochemical properties of 

LLZO electrolytes, although only a few studies have been carried out to date [26, 27].  

These studies indicate that the atmospheres used during sintering have profound effects 

on the microstructures and electrochemical properties of the materials, although it is not 

entirely clear why. For this work, we carried out a comparative study on Al-substituted 

LLZO sintered under either air or 1.2 atm of Ar. An array of physical and 

electrochemical techniques were used to characterize the two materials and to determine 

the origins of the different behaviors that were observed. 
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2. Experimental 

2.1 Powder Synthesis 

Stoichiometric amounts of La(OH)3 (CAS# 14507-19-8 Alfa 99.95% REO), 

ZrO2(CAS# 1314-23-4 Aldrich 99%) and Li2CO3(CAS# 554-13-2 Aldrich >99.0%) were 

combined with 2% (w/w) Al2O3 (Alcoa) and mixed in a zirconia jar for 30 minutes using 

a Spex Sample Prep 8000M mixer/mill (targeted composition Li6.1Al0.3La3Zr2O12). The 

powder mixture was fired at 1000°C for 12 h in a covered alumina tray in static air to 

form LLZO. The as-synthesized powder was ground by hand and sieved so that particles 

smaller than 75 μm were produced. Part of the sieved fresh LLZO powder was attrition 

milled with 2 mm diameter ZrO2 media in isopropyl alcohol (IPA) at 450 RPM for 2 h, 

dried in air and used for compacting pellets. The rest of the sieved powder was used as a 

powder bed without further processing.  

2.2 Pellet Preparation 

Pellets about 1.5 mm thick were made by cold uniaxial pressing from attrition 

milled fresh powders using a 3/8 inch stainless steel die without binder. The pressed 

pellets were placed on alumina trays or a house-made high purity Ni crucible and covered 

with powder, then fired at 1100°C for 12 h in air or Ar (1.2 atm). Pellets processed in air 

are designated LLZO_air and those made under Ar are designated LLZO_Ar hereafter. 

The surfaces of the sintered pellets were dry-polished using several pieces of polishing 

paper with grit numbers progressing from 400-600. Dry polishing was employed to avoid 

water contact or contamination from liquid polishing media. An approximately 50 m 

thick layer was removed from each surface. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 6 

2.3 Characterization 

X-ray diffraction (XRD) patterns were obtained on pellets using a Bruker D2-

Phaser diffractometer with Cu K radiation (=1.54 Å). A computed reference pattern 

for cubic LLZO, using a lattice parameter of 12.972 Å, was constructed using 

CrystalDiffrac 5.2 (CrystalMaker Software, Ltd) and is used in Figure 3 for comparison 

purposes. Bulk composition analyses were performed using an inductively coupled 

plasma optical emission spectrometer (ICP-OES, Perkin-Elmer Optima 5400). 

For LIBS measurements, both Nanosecond (ns) laser and Femtosecond (fs) lasers 

were used to ablate LLZO-Air and LLZO-Ar samples in He gas environment, to avoid 

interference from the oxygen in air.  Laser energies were modified to ensure similar 

ablation depth per laser pulse. The plasma emission was detected with two independent 

emission collection and detection systems.  In both systems intensified CCDs were used 

and operated with identical optimized acquisition parameters.  Spectral lines with higher 

lower energy levels were selected in the analyte to avoid self-absorption.  Even with two 

spectra detection systems, not all elements in the samples could be detected at the same 

time.  For the analysis of La, Zr and Li, a ns laser was used for ablation. A high-

resolution spectrum detection system was used to detect the La and Zr lines to ensure 

their lines could be clearly resolved, while a low-resolution spectrum detection system 

was used to capture the Li lines.  For the analysis of O and Li, a fs laser was used for 

ablation. A high-resolution spectra detection system was used to detect the Li signal and 

a low-resolution detection one was used to record the O signal. Emissions of single laser 

shots were recorded and 12 random locations were selected for statistics.  
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 7 

 Raman spectra of the pellets were recorded on a "Labram" Raman confocal 

microscope system (ISA Groupe Horiba) in the backscattering configuration with a 488 

nm Argon ion laser (Coherent Inc. Innova 70), and 10x magnification, 0.25 numerical 

aperture and 22 mm focal length optical objective (Olympus). The laser beam intensity at 

the sample was adjusted to 0.1 mW for a beam diameter of ça. 2 µm.   

 X-ray photoelectron spectroscopy (XPS) studies of the polished LLZO pellets 

were performed using a PHI 5400 XPS system equipped with an Al X-ray source 

(incident photon energy of 1486.7 eV). XPS samples were sealed in a sample transfer 

tool under Ar environment. The aperture size was set to 1.1 mm in diameter. The binding 

energy of the obtained XPS spectra was calibrated with respect to the C 1s peak of 

adventitious carbon at 284.8 eV. XPS spectra were quantitatively analyzed by 

deconvoluting Voigt-type line-shapes, preceded by subtracting Shirley-type background 

(for Zr 3d spectra) and linear background (for Al 2p and Li 1s spectra). 

Zr and La K-edge X-ray absorption spectroscopy (XAS) experiments were 

conducted on LLZO powder samples processed in air and Ar atmospheres at beamline 

BL 4-1 at Stanford Synchrotron Radiation Lightsource (SSRL), in transmission mode 

using a Si (220) double crystal monochromator. Edge calibration was performed using Zr 

(17,988 eV) and La (38,939 eV) standards, each located in front of a reference ion-

chamber and measured simultaneously with each spectral sample. All data processing, 

including normalization was carried out using the software SIXPACK by fitting a linear 

polynomial to the pre-edge region and a quadratic polynomial to the post-edge region of 

the absorption spectrum. The energy threshold, E0 of the reference Zr and La foil was 

determined from the peak in the first derivative of the spectrum, and all spectra were 
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 8 

linearly calibrated using the difference between the obtained E0 and the tabulated 

absorption edge energy for metal K-edge. Pre-edge background subtraction and 

normalization were carried out. Background removal and edge-step normalization were 

performed using the Athena module in the Demeter program pack [28]. Ifeffit in Artemis 

module in the Demeter program pack [28] was then used to fit the EXAFS. The fitting 

was limited to a k range of 2-10 Å-1, dk = 1 Å-1 using Hanning windows, R range from 1 

to 4 Å. 

2.4 Electrochemical Characterization 

Metallic lithium was spread on both sides of the sintered LLZO pellets. These 

pellets were then placed between lithium foil disks on both sides and assembled into a 

Swagelok-type cell. Physical contacts were maintained by compression of the spring at 

controlled displacement in the Swagelok cell with an estimated pressure of 200 kPa, 

derived from considering the spring displacement and spring constant. Samples were 

assembled in the same Swagelok cell with controlled displacement so that similar 

pressures were used for each.  

AC impedance measurements of the symmetrical Li/LLZO/Li cells were carried 

out using a VMP3 multichannel potentiostat/galvanostat (Bio-Logic Science Instruments) 

equipped with a frequency response analyzer.. Impedance data were collected at 

frequencies from 1 MHz to 1 Hz. Galvanostatic experiments were carried out on 

symmetrical Li/LLZO/Li cells by passing current through cells for 2 hours and then 

switching polarity until cell failure occurred.  

The partial electronic conductivity was determined using a Hebb-Wagner cell 

configuration.[28] An Au electrode was sputtered on one side of the LLZO specimen and 
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 9 

a Li non-blocking electrode was applied on the other side. The cell was tested at a 

constant potential of 2 V and the corresponding current decay was monitored for 12 h to 

approximate equilibrium conditions.  

3. Results and Discussion 

 Figure 1 shows optical images of LLZO pellets sintered under argon and air. The 

sample sintered in air has a yellow-brown cast, while the one processed under argon is a 

grayish-white.  These color differences are also seen in the powders used to cover the 

pellets during the heat treatment; gray for the powder used for processing under Ar, and 

ivory for that used in air.  

Pellets fabricated from attrition-milled LLZO powders heated in air are typically 

92-94% dense and have microstructures consisting of very large (~150 m) and 

irregularly shaped grains [25]. Figure 2 shows scanning electron micrographs of the two 

types of pellets, as sintered. The similarities in the microstructures rule this out as a cause 

of the color differences seen in the pellets. The XRD patterns of polished pellets are 

presented in Figure 3, along with a calculated reference pattern for a cubic LLZO with a 

lattice parameter of 12.972 Å for comparison. All reflections in the experimental patterns 

can be indexed to that of a cubic garnet structure, with no obvious peaks belonging to 

common impurity phases. Peaks in the pattern of the pellet sintered under argon are 

broader than those for the pellet sintered in air, and the lattice parameter is slightly larger 

(12.987 Å for the former and 12.962 Å for the latter).  This suggests that there are likely 

some minor differences in the crystal structures of the two materials. Both the color 

change and the larger unit cell for the Ar-processed sample suggest that more oxygen 

vacancies are present than in the air-processed material [29-31]. 
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Figure 4 shows the Arrhenius plot of the total conductivities as a function of 

temperature of the two kinds of pellets. It was not possible to deconvolute bulk and grain 

boundary conductivities from the impedance data: see reference [15] for typical Nyquist 

plots of LLZO samples made in air. Total conductivities of the sample processed under 

Ar are higher than that of the sample prepared in air at every temperature that was 

measured. For example, at room temperature, 1.3x10-4 S/cm for LLZO_air, compared 

to ~4x10-4 S/cm for LLZO_Ar. The reported total conductivities of Al-substituted LLZOs 

vary somewhat depending on processing details and exact composition but typically 

range from less than 0.1 to 0.5 mS/cm at room temperature [2, 22, 23, 32-34]. The values 

obtained here for LLZO_air are close to what we have reported before for similarly made 

samples [25]. The activation energy of LLZO_Ar is approximately 0.31 eV, lower than 

that of LLZO_air, which was found to be 0.36 eV.  Hebb-Wagner measurements show 

that the leakage electronic current of the pellet prepared under Ar is more than an order of 

magnitude higher than that of the one processed in air, although these values show that 

both materials are primarily ionic, not electronic conductors. An estimation of partial 

electronic conductivity of the Ar and air processed samples, based on Hebb-Wagner cell 

measurements, are 2.2×10-9 S/cm and 1.0×10-10 S/cm, respectively. The most likely 

explanation for the higher partial electronic conductivity of the former is a higher 

concentration of un-paired electrons associated with small amounts of either charged 

vacancies or reduced atoms. Because Zr and La are relatively stable and difficult to 

reduce or move to interstitial positions under the processing conditions used here, we 

suspect that the Ar annealed samples have higher numbers of oxygen vacancies. A 

summary of the physical and electrochemical properties of the LLZO pellets is given in 
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Table 1.   

The improvement in electrochemical properties of the Ar-processed material is 

also observed in a comparison of the DC cycling behaviors of the symmetrical Li/LLZO 

cells (Figure 5). Voltage instability occurs rapidly when LLZO prepared in air is used as 

the solid electrolyte in the cell, consistent with our previously reported results on large-

grained samples similar to the ones reported here [25]. This behavior has been attributed 

to the tendency for metallic lithium to deposit in grain boundaries, leading to shorting. In 

smaller-grained samples, the larger percentage of grain boundaries dissipates the current 

distribution more effectively, leading to less current focusing and resulting in delayed 

formation of dendrites and better cycling behavior. Somewhat surprisingly, given the 

similar microstructures, the cell containing the LLZO prepared under Ar could be cycled 

for a much longer period of time before failure occurred, and the polarization was lower 

due to the overall higher conductivity. It is possible that differences in the composition 

and, consequently, the conductivities of the grain boundaries of the two samples account 

for the dissimilar behaviors, although little is known at present about their chemistries. 

At this point, questions naturally arise as to the origins of the different behavior 

observed between these two types of samples, given the similarities in structure and 

microstructure. To answer these questions, extensive physical characterization was 

carried out to probe for possible chemical, structural, and local environmental 

differences. LIBS was used to determine the chemical compositions of the two LLZO 

specimens as a function of sample depth (Figure 6). In both cases, some variation in 

elemental distribution as a function of depth is observed; in particular there is a slight 

enrichment of lithium and oxygen content near the surfaces, which may be due to the 
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presence of Li2CO3.[19] The lithium enrichment near the surface is less obvious for the 

specimen prepared under Ar, although there is slightly higher Li content deeper inside 

this pellet overall. The average compositions from ICP-OES are Li5.4Al0.3La3Zr1.95O11.55 

for the sample made in air and Li5.6Al0.3La3Zr1.92O11.59 for the one made under Ar where 

elements are normalized to La contents. Note that O content is estimated from charge 

compensation considerations. The overall compositions of the two materials were not 

substantially different, within error, although these results suggest that sintering under Ar 

may have aided in preventing loss of Li during sintering. 

Raman spectroscopy was used to obtain further information about the structure of 

LLZO (Figure 7). For both specimens, Raman spectrum confirmed the cubic structure as 

Raman peaks at ~260, 360, 410, 515 and 650 cm-1 could be assigned to the LLZO cubic 

phase. Specifically, the peak at 650 cm-1 can be tentatively assigned to the Zr-O 

stretching vibration mode according to Tietz et al. [35]. In an isotope study, Orera et al. 

[36] suggested that the peak shifts in the 330-600 cm-1 region are sensitive to isotope 

effects in the tetragonal phase LLZO, although shifts for the cubic polymorph are not as 

sensitive due to the lower Li content in the cubic phase. In this region, we did not observe 

apparent shifts of the Raman peaks but the relative intensities changed, particularly for 

the 650 cm-1 peak vs. the ~360 cm-1 peak. We speculate that the relative intensity change 

could possibly be due to the sensitivity and concentration of Li at sites and Zr at the 

octahedral sites of the cubic phases. The results are consistent with the Ar-annealed 

LLZO having higher lithium content, assuming that Zr located in octahedral sites 

remained the same under these sintering conditions, a reasonable assumption.   

Figure 8 shows La 4d and Zr 3d XPS spectra. This technique probes sample 
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surfaces, and positions of the peaks in these spectra are sensitive to oxidation states and 

speciation. In some cases, color changes of the material are associated with chemical 

valence changes, e.g, reduction of metallic elements. During sintering, the LLZO pellets 

were exposed to either air or Ar atmospheres. The microstructure evolved dynamically 

when densification occurred during the sintering process. The interiors of the pellets were 

likely less affected by the environment than the surfaces. Thus, any chemical changes are 

more likely to be observable on surfaces rather than in the bulk. Comparing surface 

sensitive XPS and bulk sensitive hard XAS data (Figure 9) is therefore instructive.  The 

XPS data are consistent with what has been reported previously for LLZO materials. La 

4d and Zr 3d doublets due to spin-orbital coupling appear around binding energies of 98 

- 108 eV and 180-180 eV, respectively as expected for La3+ and Zr4+ ions, for both 

samples.  Thus, neither Zr nor La were reduced during sintering in Ar at 1100C, at least 

to a depth of about 3-5 nm. In the XAS experiment the Zr K-edge appears at ~18 keV and 

the La K-edge at ~38 keV for both samples, with no noticeable shifting for the sample 

prepared under Ar.  

The Fourier-transformed (FT) EXAFS spectra (k2 weighted in k-space without 

phase-corrected FT, resulting in shorter apparent bond lengths in the plots than the real 

values) at Zr K edges are shown in Figure 10. The first peak at approximately 1.9 Å in is 

assigned to the scattering path from Zr (16a) to the nearest neighboring oxygen atoms, 

essentially Zr-O bonds in the octahedral unit.  The second peak at about 3.3 A is assigned 

to Zr next to the nearest metal atoms (La, 24c). The X-ray cross-sections of Li located at 

interstitial sites are too small to be detected in this experiment. The third peak at ~5.2 A, 

representing the third shell of nearest atoms, may include multiple scattering paths 
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involving O and other metal atoms. The Zr-O bond lengths and Zr-La atomic distances 

and the relative intensities of the first two peaks are not substantially different for the two 

samples, indicating the degree of ordering in both materials were similar. Likewise, the 

amplitudes and positions of the third peak were also similar in both cases.  

These results indicate that there are only very small differences in the bulk and 

surface compositions and structures of the two types of samples. The most significant one 

is a slight compositional variation, which indicates that the bulk of Ar-processed LLZO is 

slightly more Li-rich and possibly contains more oxygen vacancies than the material 

processed in air. Differences in grain boundary compositions and conductivities may also 

be responsible for the observed variations in electrochemical behavior. 

 

4. Conclusions 

This study was designed to understand the impact of sintering atmosphere on the 

structural, chemical, and electrical properties of LLZO solid electrolytes. The electrical 

properties were improved when LLZO was sintered under Ar compared to when it was 

sintered in air; namely total conductivity was higher and the cycling behavior was 

improved. An increase in electronic conductivity was also observed, but both materials 

are still predominantly ionic conductors.  There was no evidence of reduction of Zr or La 

either in the bulk or on surfaces. The microstructure was not affected by the change in 

processing atmosphere, but a small expansion of the lattice parameter was observed, 

consistent with increased numbers of oxygen vacancies. Differences in the grain 

boundary chemistries and conductivities are also likely and could also account for the 

dissimilar electrochemical behaviors of the two samples. Our future work is directed 
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towards a fuller understanding the differences caused by different annealing conditions at 

atomic scale.  
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Tables 

Table 1. Properties of LLZO pellets. 

Sample  Sintering 

conditions 

Color Lattice 

parameter, Å 
RT, ionic,  

S/cm 

RT, electronic, 

S/cm 

LLZO_air Air, 1100ºC 

Ar, 1100ºC 

Ivory/brown 12.962(7) 1.0×10-4  1.0×10-10 S/cm 

LLZO_Ar White/gray 12.987(9) 3.0×10-4  2.2×10-9 S/cm 
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Figure Captions 

Figure 1. Photographic images of LLZO pellets processed under Ar (top left) and in air 

(top right), and mother powders used to cover the pellets during thermal processing under 

Ar (bottom left) and air (bottom right). 

Figure 2. SEM images of pellets processed under argon (a) and in air (b). 

Figure 3. XRD patterns of LLZO pellets sintered under argon and in air. A reference 

pattern for cubic LLZO is provided at the bottom. 

Figure 4. Arrhenius plot of total conductivities as a function of temperature for LLZO 

processed in air, and under Ar. 

Figure 5. Galvanostatic (DC) cycling of Li/LLZO/Li cells. 

Figure 6. Compositions of LLZO_air and LLZO_Ar specimens as a function of sample 

depth, as determined by LIBS. 

Figure 7. Raman spectra of LLZO_air and LLZO_Ar samples. Arrows mark areas of 

major spectral shifts.      

Figure 8. XPS data for LLZO_air and LLZO_Ar samples. 

Figure 9. Zr and La K-edge XAS data.  

Figure 10. Radial distances (Å) determined from EXAFS data obtained on LLZO_air 

and LLZO_Ar samples. 
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Figure 4. 
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Figure 5 
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Figure 6. 
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Figure 7 
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Figure 8 
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Figure 9. 
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Figure 10. 
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