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How well will the Surface Water and Ocean Topography
(SWOT) mission observe global reservoirs?
Kurt C. Solander1, John T. Reager2, and James S. Famiglietti1,2,3

1Department of Earth System Science, University of California, Irvine, Irvine, California, USA, 2Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, California, USA, 3Department of Civil and Environmental Engineering,
University of California, Irvine, Irvine, California, USA

Abstract Accurate observations of global reservoir storage are critical to understand the availability of
managed water resources. By enabling estimates of surface water area and height for reservoir sizes
exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean
Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon
existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement
uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data
are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that
assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over
actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim
instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes
(< 10 km2) with errors less than 0.1% for larger sizes (>100 km2). Surface area and height errors were
found to be minimal (area <5%, height <15 cm) above 1 km2 unless the reservoir exhibited a strong ellip-
tical shape with high aspect ratio oriented parallel to orbit, was set in mountainous terrain, or swath cov-
erage fell below 30%. Experiments from six real reservoir test cases generally support these results. By
providing a comprehensive blueprint on the observability of reservoirs from SWOT, this study will be
have important implications for future applications of SWOT reservoir measurements in global monitoring
systems and models.

1. Introduction and Background

The widespread occurrence of reservoirs globally serves as a testament to the critical importance of reser-
voirs to water resources management. Over 50,000 global dams exist with a cumulative reservoir storage
capacity totaling 7000–8300 km3, or one-fifth of the total annual discharge to oceans [Hanasaki et al., 2006;
Syed et al., 2010]. Water from reservoirs accounts for 30–40% of global irrigation and supports 12–16% of
the world’s food production [World Commission on Dams, 2000; Lehner et al., 2011]. Recently, reservoirs have
also received increased attention for their relevance to pressing environmental issues such as sea level rise
[Chao et al., 2008], climate change [Schneider and Hook, 2010], greenhouse gas emissions [Baros et al., 2011]
and evaporative water losses during drought (S. L. Castle, et al., Remote detection of water management
impacts in the Colorado River Basin, submitted to Geophysical Research Letters, 2015). Due to the large num-
ber of significant studies involving reservoirs that have alerted people to global environmental change
issues, reservoirs along with lakes have been termed the hydrologic ‘‘canaries in the coalmine’’ [Williamson
et al., 2009].

Given the importance of these water bodies to observations of water supplies, energy resources, and
global environmental change, understanding total reservoir storage and how it varies through time is
essential. Historically, reservoir observations were conducted in situ and largely confined to industrial-
ized nations, which have more of the infrastructure in place to make such measurements. More
recently, monitoring gauges worldwide have been in decline and most developing countries still do not
have the financial resources or institutional mechanisms in place to make consistent and reliable meas-
urements [Alsdorf et al., 2007]. Even for those countries with the appropriate infrastructure and funds,
the international sharing of reservoir operations information for research use is often not a national pri-
ority [Famiglietti et al., 2015].
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Within the past four decades, alternative methods of observing reservoirs have been developed through
advancements in remote sensing, which has expanded the reservoir observation network to the global
scale [Yoon and Beighley, 2014]. Remote sensing technology most relevant to direct observations of reser-
voirs includes satellite altimeters, optical sensors onboard orbital platforms such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Landsat satellites, as well as SAR imagery such as RADARSAT,
JERS-1, and ERS. Collectively, these instruments have been used to observe changes in reservoir surface
areas and height at various temporal and spatial frequencies depending on the specifications of the instru-
ment being used [Alsdorf et al., 2007]. Combining these two measurements has allowed for remote esti-
mates of reservoir storage change in a number of studies [Zhang et al., 2006; Smith and Pavelsky, 2009; Gao
et al., 2012; Yoon and Beighley, 2014; Cr�etaux et al., 2015].

Unfortunately, the poor spatial and temporal frequency of measurements and interference from the land
surface or weather prevents the application of these techniques over a wide range of spatial and temporal
scales. In addition, use of one instrument over another often involves tradeoffs. For instance, the Landsat
satellite offers a high spatial resolution of 30m for inundation area measurements, but at a low repeat orbit
pass of over two weeks; whereas MODIS offers daily temporal coverage, but at a much more coarse spatial
resolution of 250–500 m [Gao et al., 2012]. Both instruments have difficulty penetrating through clouds or
smoke from forest fires [Eilander et al., 2014], which is particularly problematic in the low latitudes due to
the persistence of the Inter-tropical Convergence Zone (ITCZ) and the common practice of biomass burning
in these regions. Layover from topography or vegetation also interferes with signal trajectories leading to
higher noise in signal returns. Moreover, the narrow swath widths of most altimeters leads to gaps in the
spatial coverage and high wind speeds lead to larger errors in measurements by SAR imaging [Alsdorf et al.,
2007]. Even if such issues did not exist, a lack of consistency in the timing of repeat pass cycles from satel-
lites offering altimetry and surface area measurements hampers the ability to make regular or consistent
reservoir storage change estimates. As a result, calculating storage from these techniques is typically only
conducted for larger reservoirs (storage capacity> 1 km3) because the spatial and temporal sampling and
atmospheric interference issues are less of an issue for this size class [Gao et al., 2012].

Information obtained from the NASA Surface Water and Ocean Topography (SWOT) satellite mission
(expected 2020 launch) is anticipated to dramatically improve upon existing satellite estimates of reservoirs.
SWOT will produce higher spatial resolution observations of both water surface height and inundated area,
allowing for more accurate estimates of changes in reservoir storage. The 788 orbit inclination allows for a
maximum 21 day repeat orbit pass with an 11 day mean repeat orbit at low latitudes. The satellite will be
equipped with a Ka-band swath radar interferometer capable of producing two wide swaths covering
50 km each on either side with a 20 km gap at nadir for the Ku-band altimeter. The aggregate 100 km swath
width is expected to capture all lakes and reservoirs greater than 0.0625 km2. Although offering global cov-
erage, actual coverage is expected to be approximately 90% due to gaps in adjacent satellite tracks and
spacing between nadir altimeter measurements [Biancamaria et al., 2015].

Based on the large quantity and distribution of reservoirs that will be monitored by SWOT and the short 3
year mission lifetime, it is essential to characterize associated measurement error prior to launch to facilitate
effective processing and use of data during the mission. Anticipated major sources of error include those
related to the instrument, satellite orbit, signal delay caused by the atmosphere, spatial or temporal sam-
pling patterns, vegetation interference, layover from heterogeneities in the land surface, and supplemental
data processing [Durand et al., 2008; Biancamaria et al., 2010]. Another issue is the effects of backscatter at
low incidence angles over darker water surfaces where the land-water contrast is low, causing such surfaces
to be incorrectly classified as terrain. More details about this problem including calibration of the backscat-
ter coefficient can be found in Fjørtoft et al. [2014]. SWOT reservoir height measurements are projected to
be accurate to within 10 cm for reservoirs above 1 km2 and 25 cm for those above 0.0625 km2 but below
1 km2 [Biancamaria et al., 2015]. The expected error of reservoir surface area measurements is less than 15%
of the total area [Rodriguez, 2015]. Even still, it is necessary to further refine these reservoir height and area
error properties specifically for reservoirs, as this estimate applies to both lakes and reservoirs and is based
on the properties of the instrument on-board SWOT rather than actual tests conducted exclusively for
reservoirs.

Several studies have analyzed different aspects of expected river, reservoir, and lake observations or appli-
cations using SWOT. Some of these studies invoked the use of the SWOTsim instrument simulator, which
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was developed to simulate expected SWOT measurements over the land surface based on realistic satellite
error and orbit characteristics [Rodriguez and Moller, 2004]. For instance, data assimilation techniques in con-
junction with simulated SWOT data produced from SWOTsim and a hydrodynamics model were used to
evaluate the feasibility of estimating SWOT discharge and its expected accuracy characteristics in the Ohio
River Basin [Andreadis et al., 2007; Durand et al., 2010; Moller et al., 2010]. Data assimilation methods were
also used to compile virtual SWOT observations of reservoir elevation into a model to improve optimal
releases for the Selingue Dam in the Niger River Basin [Munier et al., 2015]. Pavelsky et al. [2014] estimated
how much SWOT will improve global discharge observations by determining the number of SWOT-
observable river basins from an inventory of river widths developed from the Hydro1K data set. This num-
ber was then compared to in situ-observable river basins based on Global Runoff Data Centre (GRDC) and
United States Geological Survey (USGS) gauge information. Lee et al. [2010] generated virtual SWOT meas-
urements of lake storage changes for three large regions in the northern high latitudes using realistic SWOT
spatiotemporal sampling of water surface heights from lake gauges and ENVISAT altimeter measurements,
and inundated areas obtained from Landsat satellite imagery. Storage change errors of less than 5% were
found for large lakes (>1 km2) and less than 20% for small lakes (<0.01 km2). Moreover, elongated shaped
lakes were determined to have higher errors than those exhibiting a more circular geometry.

Although these studies serve as excellent prototypes for the expected accuracy of future SWOT observa-
tions in land surface hydrology and the lake error estimate studies likely bare many similarities to those for
reservoirs, a number of key differences between reservoirs and lakes indicate a more detailed analysis of
SWOT error properties for reservoirs is still warranted. For example, reservoir shapes tend to display a more
dendritic topology and are thus more elongated with mean surface areas typically an order of magnitude
higher than that of lakes, as lakes typically exhibit more rounded, symmetrical shapes. Because reservoirs
are often created to augment water supplies, provide for flood control, or generate electricity, the variability
in reservoir surface area and height is often much higher than that of lakes to accommodate abrupt
changes in human water demands. Alternatively, lakes are defined as natural systems with generally lower
water surface area and height variability linked to variations in precipitation, evaporation, and discharge.
Moreover, the close linkage of reservoirs to people lends them the distinction of more likely to be located
in regions with elevated human populations, such as in the low- to midlatitudes, whereas lakes are much
more concentrated in the higher latitudes [Cooke et al., 2005]. Combined, these topologic, hydrologic, and
spatial factors will likely lead to unique error characteristics in SWOT reservoir measurements relative to
lakes, thereby providing the motivation for a more detailed assessment of SWOT observations of reservoirs.

In this study, we evaluate the ability of SWOT to observe reservoirs using both in situ reservoir storage
records and virtual SWOT data generated from SWOTsim. First, aliasing due to the temporal resolution of
SWOT is assessed by comparing ‘‘true’’ monthly reservoir storage computed from daily in situ storage obser-
vations to ‘‘SWOT-based’’ monthly reservoir storage estimates computed from subsampled in situ daily stor-
age measurements at the expected range of SWOT repeat orbit cycles. Although we only use California
reservoirs for this portion of the study, the use of the repeat orbits allows us to extrapolate the implications
of the temporal results to all parts of the world covered by SWOT. Second, we use SWOTsim measurements
of water surface height and area to evaluate how different spatial characteristics of reservoirs will impact
the reservoir observation performance of SWOT. This information will be useful in determining the likely
error characteristics for a reservoir based on its morphology or environmental settings prior to launch.
Finally, we simulate SWOT measurements of water surface area and height for six California reservoirs cover-
ing three size classes using SWOTsim to provide a more realistic assessment of SWOT reservoir measure-
ment accuracies and validate some of the results obtained from the first two components of the study.

2. Methods

2.1. Data Sources
In situ data were obtained from the California Data Exchange Center (CDEC, www.cdec.water.ca.gov, 18
August 2014). CDEC serves as a repository for statewide hydrology data from the United States Army Corps
of Engineers (USACE), United States Bureau of Reclamation (USBR), and local county and municipal govern-
ments. Only data from 2008 to 2012 were used because it included both wet and dry years relative to his-
toric statewide annual precipitation levels so a high proportion of the variability in climate information was
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captured in these data sets [NOAA, 2014]. In addition, the use of more modern records increased the likeli-
hood that continuous in situ data were available, thereby decreasing the need to address gaps in the
record.

2.2. Temporal Analysis
For the temporal analysis portion of the study, we generate monthly ‘‘virtual SWOT’’ data from daily obser-
vations of reservoir storage to compare to monthly records of storage. Daily reservoir storage was obtained
from 63 California reservoirs (Figure 1), which were selected based on the availability of continuous data
during the targeted study period. Daily storage data from these reservoirs were subsampled at 3, 5, 10, and
20 day regular intervals to approximately match the expected SWOT repeat orbit passes over one cycle
[Biancamaria et al., 2010]. The resulting submonthly storage data were then converted to monthly values by
computing the mean out of the number of observations that fell over a given month. The computed ‘‘virtual
SWOT’’ monthly data were compared to in situ monthly data calculated from continuous daily data using
the mean percent error (e) of storage (%) shown in equation (1):

e5

Pn
i51 So tð Þ2 Ss tð Þ½ �
n�
Pn

i51 So tð Þ �100 (1)

where n is the number of monthly observations, So is the in situ monthly storage (m3) and Ss is the monthly
storage (m3) computed from subsampled daily records.

It is acknowledged that the actual SWOT repeat orbit will occur at irregular intervals. For instance, a 5 day
repeat orbit indicates SWOT will observe a location approximately four times over a 20 day period, but not

necessarily every 5th day. Regular sam-
pling frequencies are used here
because we are not attempting to
exactly replicate the sampling fre-
quency of SWOT observations over the
limited number of California reservoirs
that were tested. Rather, we aim to
capture the range of variability in error
resulting from the array of expected
global temporal sampling frequencies,
thereby better mimicking the sample
frequency error for global reservoirs
and not just those in California.

2.3. Spatial Analysis: Theoretical
Reservoir Experiments
The second phase of the study
involved the use of SWOTsim (v2,
downloaded 1 October 2014) to deter-
mine how reservoir size, shape, orien-
tation, neighboring topography, and
partial swath coverage will impact
the performance of SWOT. SWOTsim
involves running a series of modules
to process a set of realistic SWOT orbit
files, as well as digital elevation maps
and water elevation files supplied by
the user. Elevation and orbit infor-
mation is interpolated to the sensor
cross-track and along-track geometry
according to the specified ground
spacing input into SWOTsim. This
information is then used to create the

Figure 1. Location of reservoirs used in temporal analysis portion of study
(Groups 1 and 2, blue and green circles) and actual reservoir test cases (Group 2,
blue circles). Projected SWOT flight paths overlain for California where given
swath is color-coded according to 21 day cycle repeat orbit pass (Repeat orbit
pass data obtained from the Centre national d’etudes spatiales (CNES)).
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ground-coordinate digital elevation map, which in turn, is used in conjunction with realistic radar parame-
ters to generate the interferogram by running several additional modules [Peral et al., 2012]. The resulting
interferogram is an image of water surface elevation swaths based on instrument errors, orbit, and spatial
resolution of the satellite [Andreadis et al., 2007]. This provides the basis of which all simulated water surface
area and elevation estimates were made using SWOTsim. More information regarding user-defined SWOT-
sim parameters and settings are contained in the Appendix A (Table A1).

SWOT reservoir surface area and height data were generated for theoretical reservoirs using SWOTsim,
which includes a comprehensive set of expected global orbit swath paths over one 21 day SWOT cycle. The
coordinates of the theoretical reservoirs were adjusted to ensure that the entire reservoir was completely
within the boundaries of the orbit paths, as the theoretical experiments were designed to determine the
minimum expected error in SWOT observations for different spatial characteristics.

The accuracy in reservoir surface area and height was calculated directly from SWOTsim by comparing the
simulated to ‘‘truth’’ estimates. Errors in reservoir surface area were evaluated using the percent bias, which
is shown in equation (2):

hA5
At2

Pk
i51 gi�aið Þ
At

�100 (2)

where theta-A is the surface area bias (%), At is the true inundated surface area (m2), g is the satellite ground
resolution (m), a is the azimuth spacing (m) determined from SWOTsim, and k is the number of pixels asso-
ciated with the observed reservoir. The product of the ground resolution and azimuth spacing is equal to
the pixel area, the sum of which equals the simulated area of the given reservoir. Errors in reservoir height
were calculated using the mean height bias, shown in equation (3):

hH5

Pk
i51 Ht; i2 Hs; ið Þ

n
�100 (3)

where theta-H is the height mean bias (%), Ht is the true and Hs is the simulated water surface height (m)
given n observations. The accuracy in height observations (sigma-h) was also estimated using the root-
mean-square-error (RMSE), which is shown in equation (4):

rH5

Pk
i51 Ht; i2Hs; ið Þ2

n

" #1=2

(4)

where Ht is the mean theoretical reservoir water surface height (m) and Hs is the simulated water surface
height (m) given n observations.

Each theoretical test involved the creation of artificial reservoirs through construction of distinct water
depth and digital elevation model (DEM) files, which served as the domain inputs for SWOTsim. The water
depth and DEM files were developed to test only the influence of a single spatial characteristic (size, shape
and orientation, topography, or partial reservoir coverage) on the performance of SWOT during each series
of tests. This was achieved by holding the other spatial characteristics not actively being examined constant
and using static water levels and heights to isolate the impact on observation error to only the targeted
variable being tested. The number of different simulations conducted to adequately characterize the effect
of a given spatial property on the error depended on the expected range of that variable likely to be
observed in the real world. More details about the simulations for the different spatial tests are presented in
Table 1 and in the paragraphs that follow.

The reservoir size tests proceeded by simulating SWOTsim over reservoir sizes up to 104 km2, which spans
the global range of reservoir surface areas (Figure 2). Only circular reservoir shapes and flat surrounding
topography with static water levels were used to isolate the influence on errors to reservoir size.

The experiment for the influence of reservoir shape on SWOT observations worked similarly. For this set of
simulations, only the shape of the reservoir was altered between each test. Shapes that were tested
included ellipses with varying axis ratios ranging from 24:1 (more elliptical) to 1:1 (circle). This sequence was
selected based on the tendency of reservoirs to form dendritic patterns comprised entirely of elongated
ovals or those that more closely resemble a lake with symmetrical surface areas. For each series of aspect
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ratios that were tested, three different sizes were evaluated including 108, 101, and 102 km2, which represent
the more common reservoir sizes found globally (Figure 2). Ellipses were oriented either parallel (along-
track) or perpendicular (cross-track) to the orbit pass in SWOTsim to capture the full range of reservoir shape
and orientation effects on SWOT observations. Flat topography and static water levels were used.

The experiment for reservoir topography was conducted by changing the topographic slopes adjacent to
the reservoir while holding all other spatial factors constant for each test. Different slopes that were used
ranged from 0 to 1.7 m/m at 0.17 m/m increments. The slopes were kept uniform to a finite distance away
from the reservoir to effectively form a topographic bowl on all sides of the reservoir. Only circular shapes
were tested with a uniform size of 101 km2 and static water levels.

The theoretical reservoir experiment involved examining the impact of partial reservoir coverage by the
swath path on SWOT reservoir height observations. Note that the impact of partial reservoir coverage on
inundation area measurements was not explored. This aspect was avoided because presumably when only
part of the reservoir is covered by the swath, ancillary SWOT data will be used to estimate the total inunda-
tion area of the given reservoir. Partial reservoir coverages that were assessed ranged from approximately 1
to 50%, as differences in height observations did not vary by as much once the reservoir was covered by at
least half of the swath. Tests were conducted separately for partial coverages in the near-range and far-
range portions of the swath, as errors are not expected to be uniform throughout the swath due to larger
and more variable pixel sizes in the near-range section [Fjørtoft et al., 2014]. Both 1:1 and 24:1 aspect ratios
oriented parallel and perpendicular to SWOT orbit were tested to capture the full range of influence from
different reservoir configurations. Only flat surrounding topography with a size of 101 km2 and static water
levels were used for this series of experiments.

2.4. Spatial Analysis: Actual Reservoir Experiments
The final phase of this study involved the use of SWOTsim to evaluate the expected performance of SWOT
for actual reservoirs. Six California reservoirs were selected based on the coverage of three size classes

(<10 km2, 10–100 km2, and
>100 km2), as well as different spatial
and climate regimes (Figure 1 and
Table 2). The use of California reser-
voirs was ideal because like California,
reservoirs at the global scale tend to
be located in low- to midlatitude
regions where expected SWOT orbit
pass frequencies and trajectories
would be similar. Only static water sur-
face height and inundation area were
investigated, as the impacts on aliasing
due to the temporal resolution of
SWOT were already investigated in the
first part of this study. Surrounding res-
ervoir topography was taken from the

Figure 2. Global reservoir surface area Cumulative Distribution Function (CDF).
Analysis incorporates data obtained from over 6000 global reservoirs [Lehner
et al., 2011].

Table 1. Summary Geospatial Statistics for Theoretical Reservoir Experiments

Spatial Test No. Simulations Area (km2) Aspect Ratio
Orientation Relative

to Orbit (8) Slope (m/m) Swath Coveragea (%)

Size 6 10212104 1:1 0 100
Shape/Orientation 18 1082102 224:1 to 1:1 0 and 90 0 100
Topography 6 102 1:1 0–1.667 100
Swath Coverage 8 101 1:1 0 N: 2 – >50
Swath Coverage 7 101 1:1 0 F: 4 – >50
Swath Coverage 7 101 224:1 90 0 N: 4 – >50
Swath Coverage 7 101 224:1 90 0 F: 6 – >50
Swath Coverage 5 101 24:1 0 0 N: 1 – >50
Swath Coverage 7 101 24:1 0 0 F: 1 – >50

aN 5 near-range coverage, F 5 far-range coverage.
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NASA ASTER GDEM v2 at 30 m resolution (http://gdex.cr.usgs.gov/gdex/) due to the large increase in com-
putation time for minimal gains in improved results at a higher spatial resolution. Reservoir inundated area
bias and reservoir height mean bias were again calculated using equations (2) and (3), respectively. Multiple
simulations were conducted for each reservoir where the domain was manually shifted by 0.028 longitude
increments prior to each simulation until the entire width of the swath was covered to account for the dif-
ferences in error properties throughout the swath. The number of simulations conducted for each of the six
reservoirs is: 3, 19, 20, 15, 23, and 17 (ordered from largest to smallest by surface area).

3. Results

3.1. Temporal Analysis
The results for the portion of the study that evaluated the error due to expected SWOT observation frequen-
cies show that smaller reservoir sizes with lower observation frequencies yield higher errors in SWOT reser-
voir observations. The mean monthly storage percent error (equation (1)) generally fell between 0.1 and 1%
for the highest sampling frequency of one observation per every 3 days and 1–5% for the lowest sampling
frequency of one observation per every 20 days. Errors between these ranges were obtained for the more
moderate sampling frequencies of one measurement per every 5 and 10 days. Comparisons of monthly
storage time series computed from daily (truth) and subsampled daily storage records (synthetic) at differ-
ent sampling frequencies for the small (<10 km2), medium (10 – 100 km2), and large (>100 km2) size classes
are shown in Figure 3. The difference between the two records for any given observation did not vary by
more than 1% at the highest sampling frequency and 10% at the lowest sampling frequency.

Comparable patterns were observed in the nRMSE, Nash-Sutcliffe efficiency (NSE), and 95% confidence
interval results. As displayed in Figure 4, the storage nRMSE generally fell below 1021 for the smaller sam-
pling frequency and was an order of magnitude lower for the higher sampling frequency. Similarly, the NSE
increased for larger reservoirs with higher sample return intervals. The NSE between true and synthetic stor-
age records was also only observed to be consistently above 0.8 for the higher sampling frequencies of one
observation per every 3, 5, and 10 days. As shown in Figure 5, the thickness of the 95% mean confidence
interval in synthetic storage estimates decreased exponentially with an increase in reservoir storage
capacity. The highest value of approximately 23% of maximum storage capacity was observed for the small-
est reservoir at the lowest sampling frequencies. Furthermore, the 95% confidence interval width was
approximately six times greater for the lowest sampling frequency relative to the highest. Mean confidence
intervals approached an asymptote in reservoirs above 10 km2 for all sampling frequencies.

3.2. Spatial Analysis: Theoretical Reservoir Experiments
Performance statistics in the theoretical reservoir size spatial experiments were also indicative of lower
accuracies for smaller reservoir surface areas. As portrayed in Figure 6, the bias in reservoir surface area
(equation (2)) decreased exponentially from a high of 21% to a low of less than 0.1% for the smallest 1021

km2 and largest 104 km2 reservoir size classes, respectively. Correspondingly, the mean bias of reservoir
height observations (equation (3)) ranged from approximately 220 cm for the smallest reservoir size to less
than 1 cm for all reservoirs larger than 101 km2.

In general, the theoretical reservoir shape and orientation experiments showed greater bias in water surface
area and heights at higher aspect ratios (Figure 7). This scenario typically held true for each of the three size

Table 2. Summary Hydrology and Spatial Information for Reservoirs Used to Evaluate SWOT Performance

Reservoir
Name River

Use
Codea

Latitude (8),
Longitude (8)

Drainage
Area (km2) Elevation (m)

Storage
Capacity (km3)

Surface
Area (km2)

Shasta Sacramento IMPR 40.72, 2122.42 17,262 378 5.61 120.35
Pine Flat Kings IR 36.83, 2119.33 4,002 296 1.23 24.16
Isabella Kern IR 35.65, 2118.47 5,372 803 0.70 46.13
Black Butte Stony IR 39.81, 2122.33 1,919 157 0.18 18.45
Natoma American RP 38.65, 2121.19 4,916 40 0.11 2.19
Loon Gerle P 39.00, 2120.31 21 1,944 0.09 5.86

aI 5 Irrigation; M 5 Municipal; P 5 Hydropower; R 5 Recreation.
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classes that were tested where the greatest bias was again observed in the smallest size class. The bias in
surface area ranged between approximately 10–30% for the smallest reservoir size class of 108 km2, but was
less than 10% for all aspect ratios of the two larger size classes that were tested. Mean bias in reservoir
height exhibited greater overall variability than the surface area results, but as shown in Table 3 and similar
to the surface area results, the bias was higher for smaller reservoirs oriented parallel rather than perpendic-
ular to SWOT orbit. Moreover, the percent bias in surface area increased by a factor of over two and the
mean bias in height increased by a factor of more than 1.5 when the reservoir size decreased by an order of
magnitude.

The test on surrounding reservoir topography revealed an increase in the magnitude of the surface area
and height biases with enhancements in topographic slopes. This magnitude increase was most pro-
nounced between slopes of approximately 0.1 m/m and 0.2 m/m for the surface area bias, while changes in
the accuracy were more gradual at higher slopes (Figure 8). The mean biases in reservoir height ranged
from a minimum of 61 cm to a maximum of 215 cm. Shifts in the accuracy of height measurements with
increases in topographic slope were more variable than with the surface area results. Overall, height meas-
urements were still less accurate at higher slopes, as the mean RMSE (equation (4)) for slopes above 0.8 m/
m was 6.0 cm compared to 4.9 cm (20% decrease) below this slope threshold.

For the partial reservoir coverage tests, as expected the higher mean biases in reservoir height were associ-
ated with lower reservoir coverages for all experiments (Figure 9). The discrepancy in bias between the near
and far range tests was much higher for the series of parallel to orbit trials, while this difference in magni-
tude was much smaller for the perpendicular to orbit and circular reservoir tests. The maximum height bias
of 35 cm was observed in the near range experiments oriented parallel to orbit, while the maximum bias

Figure 3. 2008–2012 in situ truth (black) and synthetic (red) monthly reservoir storage for the three different size classes: (left) Natoma< 10 km2, (middle) Isabella 10–100 km2, and
(right) Shasta> 100 km2. Analyses shown for 3 day (top), 5 day (second from top), 10 day (second from bottom), and (bottom) 20 day repeat satellite pass.
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was less than 6 cm for all other
reservoir configurations and res-
ervoir coverages that were
tested. Once the swath cover-
age of the reservoir exceeded
30% for all experiments, the
bias in reservoir height con-
verged toward 0 cm.

3.3. Spatial Analysis: Actual
Reservoir Experiments
Results from the actual reservoir
simulations are presented in
Figure 10. The median, 25th and
75th percentile area bias values
are generally clustered close
to zero for all reservoirs. The
results from the smallest reser-
voir type represent an excep-
tion to this rule, as the median
bias approached 20% with a
15–30% range for the 25th and
75th percentile values. Other
25th and 75th percentile values
were close to the respective
median values for the reservoir
except for the fourth-largest
reservoir, which had values that
ranged from approximately
250 to 0%. Similar to the area
bias results, low variability was
observed in the mean height
bias results, as the median, 25th

and 75th percentile values were less than 15 cm for all but the fourth largest reservoir, which had a much
higher 25th to 75th percentile range and median of approximately 25 cm. Area and height outliers outside
the 25th and 75th percentiles were observed for all but the largest and fourth largest reservoirs, as well as
the smallest reservoir only for the mean height bias results.

4. Discussion

4.1. Temporal Analysis
The temporal analysis portion of the study aimed to determine how well the sampling frequency of SWOT
could be used to reconstruct monthly reservoir storage records. Such information will be useful for integrat-
ing into hydrologic models at similar timesteps, or for local or regional water supply monitoring systems.
Moreover, this information indicates how well SWOT will be able to reproduce observations over time, as
the rest of the study only evaluated error characteristics from instantaneous measurements. Based on the
results, the potential for aliasing the true hydrologic signal due to the SWOT repeat orbit pass is minimal
except for in the case where the smallest reservoir sizes expected to be visible by SWOT (<3 km2) are being
sampled at the lowest frequency of one observation every 20 days. Errors in individual observations for
these reservoirs at this sample return interval approached 10%, which could be problematic when trying to
integrate into a hydrologic model or to provide accurate information about local or regional water supplies.
Based on Figure 2, approximately 40% of global reservoirs fall within this size class. Of these, only approxi-
mately one-third (13% of total) are expected to be sampled at the lowest sampling frequency where alias-
ing may be an issue given the global repeat orbit passes for different reservoir sizes shown in Figure 11.
Nevertheless, Figure 5 indicates that above a reservoir size threshold of approximately 10 km2 the

Figure 4. Normalized root-mean-squared-error (top) and Nash-Sutcliffe efficiency (btm) by
reservoir storage capacity for 3 day (black), 5 day (red), 10 day (blue), and 20 day (green)
sampling frequencies shown for the 63 reservoirs used in temporal analysis. Slopes of
regression lines through points for different sampling frequencies are also shown. Mann-
Kendall trend test with Sen’s slope estimator indicate all nRMSE trends are statistically
decreasing and NSE trends are statistically increasing with reservoir storage capacity
(p<0.05).
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difference in temporal sampling error associated with reservoir size is negligible and large shifts are only
related to changes in the sampling frequency. Such a finding reiterates the importance of reservoir surface
area on the expected accuracy of observations.

The ability to reproduce daily or subdaily records from observations made at the range of expected SWOT
sampling frequencies was not conducted as a part of this study. This information would be more beneficial
for incorporating into models that use smaller timesteps or to provide useful information for reservoir func-

tions that are more reliant on
operational changes that occur
over shorter timescales, such as
hydroelectricity generation or
flood control. Had such an anal-
ysis been performed, higher lev-
els of aliasing would have been
expected due to the large shifts
in storage often associated
with a single storm or abrupt
snowmelt-inducing weather
event that would be difficult to
reproduce for all reservoir sizes
at even the highest sampling
frequency expected by SWOT.
This was beyond the scope of
this study, however, as here the
interest was to evaluate the
potential for aliasing at time-
scales that are more scalable to
the temporal resolution of
SWOT.

4.2. Spatial Analysis:
Theoretical Reservoir
Experiments
Many of the errors in SWOT sur-
face water observations related
to size are linked to edge effects
of the given water body,

Figure 6. SWOTsim bias in reservoir surface area (top) and mean bias in water surface
height (btm) for different reservoir sizes.

Figure 5. 95% confidence interval thicknesses for synthetic storage estimates expressed as the percent maximum capacity of the given
reservoir and arranged by maximum storage capacity for 3 day (black), 5 day (red), 10 day (blue), and 20 day (green) sampling frequencies
shown for the 63 reservoirs used in temporal analysis.
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meaning that higher perimeter
to surface area ratios of smaller
water bodies result in a lower
degree of accuracy [Lee et al.,
2010]. Indeed, results from the
theoretical experiment for reser-
voir size impacts on SWOT
observations support this argu-
ment. Mean reservoir surface
area biases of 10% were
observed in reservoirs with
areas that were approximately
double the size threshold of
0.0625 km2, which is listed as
the minimum inundated area
expected to be visible by SWOT
[Rodriguez, 2015]. For the next
highest size class of 1 km2, the
surface area bias dropped by
one-half to less than 5% and
continued to decrease asymp-
totically toward 0% for all reser-
voir sizes above this size. Similar
trends were noted in the height
bias results, as the magnitude in
bias decreased exponentially
from a maximum of 20 cm for
the smallest 0.1 km2 reservoir to
less than 5 cm for all reservoirs
above 1 km2. Even still, given

that 80% of reservoirs found worldwide are greater than 1 km2, surface area and height error stemming
from size alone should not contribute greatly to the total error for observations made by SWOT.

The SWOTsim results from the reservoir shape and orientation experiments revealed that reservoirs ori-
ented parallel to orbit at higher degrees of ellipticity have a stronger influence on the accuracy in observa-
tions. For the perpendicular to SWOT orbit experiments, the area and height biases for all three reservoir
sizes in Figure 7 more closely resemble the results for the same reservoir sizes shown in Figure 6, indicating
the errors are predominantly due to the size of the reservoir. Alternatively, when the aspect ratio was ori-
ented parallel to orbit, the area bias increased and mean height bias was more variable and reached maxi-
mum values for all three size classes at higher aspect ratios (>20:1), suggesting reservoir shape and
orientation can have a much higher impact on the accuracy than size at extreme aspect ratios for the paral-
lel to orbit case. For example, the surface area bias for the 1 km2 reservoir size in Figure 7 is more than

350% higher than in Figure 6. In addition, as
shown in Table 3, the mean height bias
increased by an average of over 150%, 200%,
and 400% for the 1, 10 and 100 km2 reservoirs
oriented parallel relative to those configured
perpendicular to orbit. Analogous to the effects
noted in the reservoir size experiments, the
reduction in accuracy for large aspect ratios
stems from the greater perimeter to surface
area ratio and thus stronger edge effects result-
ing in a higher rate of landtype misidentifica-
tion by the satellite.

Figure 7. (top) SWOTsim bias in reservoir surface area and (bottom) mean bias in water
surface height for different reservoir aspect ratios. Negative aspect ratios indicate reser-
voirs oriented perpendicular to orbit, while positive values denote parallel to orbit. Analy-
ses conducted for reservoirs of size 102 km2 (black), 101 km2 (red), and 108 km2 (blue).

Table 3. Reservoir Shape and Orientation Test Area and Mean
Height Bias

Size (km2) Orientation
Mean Area

Bias (%)
Mean Height

Bias (cm)

102 Both 1.4 0.2
101 Both 4.3 1.0
100 Both 13.4 3.9
102 Parallel 1.8 0.4
102 Perpendicular 0.8 0.1
101 Parallel 5.9 1.3
101 Perpendicular 2.4 0.6
100 Parallel 17.7 4.7
100 Perpendicular 7.8 3.0
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The irregularities in the curves
shown in Figure 7 can be
explained by the nature of the
SWOT instrumentation. For
instance, the sensitivity of
measurements to error is pri-
marily a function of the mixed
pixels, which are more preva-
lent in water bodies oriented
parallel to satellite orbit
because of the side-scanning
arms of the interferometric Syn-
thetic Aperture Radar on-board
SWOT, which leads to an
increased surface area and
height bias for reservoirs with
aspect ratios oriented parallel
rather than perpendicular to
SWOT orbit. In addition,
changes in accuracy are
expected when swath coverage
of the reservoir switches from
dominance in the far-range to
the near-range portion of the
swath, as projected pixel range
sizes are larger and more vari-
able in the near-range due to
stronger layover from higher
signal-to-noise ratios (SNR)

[Fjørtoft et al., 2014]. The higher variability in the mean height bias and area bias above an aspect ratio of
twenty is likely the result of this phenomenon. Changing the aspect ratio of the reservoir means it will either
capture more or less of the near-range portion of the swath, leading to shifts in the accuracy relative to
adjacent aspect ratios.

During the actual mission, it is expected that utilizing results from multiple orbit passes over a single reser-
voir will help to minimize the area error emanating from dominant coverage in the near-range portion of
the swath. This is an iterative process – the greater the number of observations, the better the accuracy.
Given this, the error will improve much sooner for reservoirs located at higher altitudes where SWOT repeat
passes will be more frequent. However, the shape, size, and orientation of the reservoir will also play a role
in the number of repeat observations by different swaths, thereby compounding this problem. For this rea-
son, although potentially achievable using multiple simulations from SWOTsim, we felt it was necessary to
instead focus our efforts in determining observation accuracy of reservoirs on cases where the reservoir is
largely intersected by a single swath. Analysis of improving reservoir area observations with the use of mul-
tiple swaths is too complicated and different of a problem, making it better suited for another study.

According to the topographic results for the theoretical reservoirs, increases in surrounding topography
enhanced the bias for both reservoir surface area and height. This phenomenon is largely the result of topo-
graphic layover, which is expected to be an issue when the slope of the local terrain exceeds the incidence
angle of 0.6–3.98 [Fjørtoft et al., 2014]. Similar to the shape and orientation test results, the bias in height
measurements was more variable with changes in slope making it difficult to ascertain the influence of lay-
over. However, the height RMSE was found to be 23% higher for larger slopes above 0.8 m/m, thereby still
indicating the presence of stronger layover at higher slopes.

The same phenomenon involved with the irregularities observed in the theoretical reservoir results for
shape and orientation was explored further with the experiments involving the effects of partial reservoir
coverage. With the exception of the parallel to orbit series of tests, the magnitude in height bias for the

Figure 8. (top) SWOTsim bias in reservoir surface area and (bottom) mean bias in water
surface height for different adjacent topographic slopes. Reservoir size held constant at
101 km2 for each test.
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near and far range experiments
was similar given the same per-
cent reservoir area coverage.
The larger discrepancies
observed in parallel to orbit
tests is likely due to higher lay-
over in the near range from
larger SNR, as observed in the
shape and orientation experi-
ments. The reduction in bias to
near-zero for all simulations
above 30% reservoir coverage
represents an important finding
for the reliability of reservoir
height estimates that are not
completely covered by the
swath, as partial swath coverage
observations of water bodies
are expected to be common
occurrences during the actual
mission.

4.3. Spatial Analysis: Actual
Reservoir Experiments
Results from the SWOTsim sim-
ulations involving actual reser-
voirs in California corroborated
the findings from the theoreti-
cal reservoir experiments. The
smallest reservoir again had the
largest median in area bias val-
ues. The median height bias
results were not as strongly
linked to reservoir size, which
was due to the higher variability
in height accuracies stemming
from reservoir shape and orien-
tation or topographic layover
effects that were demonstrated
in the theoretical experiments.
The median height bias values
were still within the range of
anticipated values shown in the

theoretical experiments, as all were less than 15 cm with the exception of the fourth largest reservoir
(18.45 km2). As expected from the reservoir shape and orientation experiments, a much larger range in the
25th to 75th percentile biases and median height bias occurred for the fourth largest reservoir due to its
strong parallel-to-orbit orientation. Also as anticipated from previous results, outliers and higher biases for
the fourth largest reservoir occurred when swath coverage of the reservoir was predominantly in the near-
range, which led to higher layover from increased SNR. In spite of these high biases observed in individual
results, the large number of simulations conducted for each reservoir largely cancelled out the effects of
the outliers on the median, and the 25th to 75th percentile range for most of the reservoirs.

Testing the influence of reservoir shape on observation accuracy with the true reservoir simulations was
avoided because in reality reservoirs come in too many different shapes to adequately quantify this when
only six reservoirs were used. The impact of reservoir shapes on observation error was still tested with the

Figure 9. Mean bias in water surface height for partial swath coverage of reservoirs with
(top) 1:1 aspect ratio and 24:1 aspect ratios oriented (middle) perpendicular to orbit and
(bottom) parallel to orbit, as determined by SWOTsim. Analyses conducted for reservoir
sizes of approximately 101 km2.
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theoretical reservoirs because
within this more experimental
setting, the expected error
range could be captured by
testing reservoirs with extreme
shapes, such as very high aspect
ratios oriented both parallel and
perpendicular to orbit. In doing
so, the maximum amount of
error resulting from the shape
of the reservoir was effectively
constrained, which was our
intent. The number of real reser-
voirs that could be tested was
restricted due to the computa-
tional limitations of SWOTsim,
so much of the discussion of
the true reservoir simulation
results focuses on verification of
the theoretical reservoir simula-
tion results.

Ideally, SWOTsim would have
been run over every reservoir
across the globe. However, run-
ning SWOTsim over a global
DEM (or even California) at the
necessary spatial scale is too
computationally intensive to
generate results in a reasonable

amount of time. As such, the theoretical reservoir experiments were devised to represent the expected
range of global error stemming from each spatial error source more simply and verified these results with
the six California reservoir simulations. In this way, one can still get a general quantitative sense of how

much spatial error will occur for
any given global reservoir by
matching its spatial characteristics
to the spatial error properties we
find here. We go through this pro-
cedure with one of the reservoirs
that was tested in Figure 12.

Results from the analysis in Figure
12 show a total error of 0.88–
1.40 km2, representing 2.35–
3.74% of the aggregate total area
of the eight ellipses used to make
this calculation. The total percent
bias is reasonably close to the
median error value of 0.72% pre-
sented in Figure 10 for the Black
Butte Reservoir, thereby verifying
that this method can be used to
estimate area errors for any global
reservoir. Only eight ellipses were
used here as a means of

Figure 10. Box plots of (top) area and (bottom) height bias for six California reservoirs.
Multiple simulations represented by each plot. Median represented by red line and boxes
indicate the 25th and 75th percentiles. Outliers denoted by red crosses and whiskers
extend to range of values not considered a statistical outlier. Lower range of 25th to 75th
(2900 cm) and whisker (22300 cm) not shown to focus on distribution of median values
relative to 0 cm.

Figure 11. Expected SWOT repeat orbit pass frequencies for global reservoirs colored
according to reservoir size: 0–0.1 km2 (dark blue), 0.1–1 km2 (blue), 1–10 km2 (light
blue), 10–100 km2 (yellow), 100–1000 km2 (orange), 1000–10,000 km2 (dark red). Esti-
mates derived from the number of repeat orbit passes intersecting a reservoir over a
given SWOT cycle, which includes only partial swath coverage based on the expected
ability to use ancillary data to reproduce accurate inundated areas and derivation of
accurate height measurements demonstrated in this study (Data used to make plots
obtained from the Centre National d’�Etudes Spatiales (CNES) and global reservoir data
set from Lehner et al. [2011].
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demonstrating this method, but we acknowledge disaggregating the reservoir shape into different num-
bers of ellipses may be used, depending on the desired level of accuracy when applying this technique. Fur-
thermore, we point out that errors due to reservoir topography were not accounted for in this calculation,
as topography biases were shown to contribute less than 0.3% for a reservoir of approximately the same
size as Black Butte (Figure 8). Although small, we note here that these errors might increase for smaller res-
ervoirs where the error due to topographic interference would represent a greater portion of the total reser-
voir surface area.

4.4. Study Limitations and Caveats
We chose not to go through a similar procedure to determine height errors for the Black Butte Reservoir
due to the much higher variability in height biases from the changes in shape and orientation shown in Fig-
ure 7. These errors are potentially further compounded by the large height biases associated with layover
from surrounding topography, which would also apply had we taken this additional step. Instead, we point
out here that with the exception of reservoirs displaying more extreme spatial configurations and/or those
situated adjacent to highly variable topography, the height bias results we present here are largely in agree-
ment with the specifications reported in Rodriguez [2015]. As such, when attempting to apply the results
from this study to estimate reservoir height biases for SWOT observations, we encourage the use of 1/-
10 cm as the maximum water surface height bias for reservoirs above 1 km2 and 1/- 25 cm bias for those
between 0.0625 km2 and 1 km2 except when the reservoir exists in more extreme geospatial conditions,
such as is the case for the fourth smallest actual reservoir that was tested in this study.

SWOTsim was used to evaluate the observation accuracy of exclusively reservoir surface area and elevation.
It is noted that other types information will be gathered from observations of these two fields that we did
not explore here. For example, reservoir area-elevation relationships can be used to better understand the
bathymetry to improve estimates of storage. Furthermore, the product of these two terms can be used to
determine changes in storage, which can also be used to estimate storage if the initial volume is known.

Figure 12. Estimation of area error for Black Butte Reservoir using results from theoretical reservoir experiments presented in Figure 7.
Elliptical areas calculated using formula: a3b3p where a is the major axis and b is the minor axis. Image from Google Earth [2013].
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However, we chose to focus the evaluation from this study on the accuracy of primary observations of water
surface area and elevation that will be made by SWOT, as well as any error resulting from the expected fre-
quency of observations. Although important, exploration of how well SWOT will be able to reproduce area-
elevation relationships and storage changes is outside the scope of the work in this study.

It is further acknowledged that the six reservoirs used in the actual reservoir test cases fall short of the total
number of reservoirs found worldwide. Using a small subset of reservoirs for this study component was con-
ducted for two reasons. First, running the simulator for every reservoir was impractical due to the intense
computation time required to complete such an endeavor. Second, SWOTsim is constantly being updated
and improved. Later SWOTsim releases are expected to be more representative of actual SWOT measure-
ments and may facilitate application over much larger areas as alogrithms used to process the data evolve
and computation times decrease. Newer versions of the simulator are expected to have additional modules
to improve the water surface location and land classification errors relative to the version that was used in
this study. Furthermore, as SWOTsim is only a model, results should be considered as mere representations
of reality based on the current state-of-the-art physical understanding of what the satellite will observe.
True accuracy in observations will only be realized during the actual mission. The results shown in this
study, although improving upon the understanding of expected error characteristics of reservoirs from
SWOT, should thus be used as a benchmark to guide future work with SWOT reservoir observations rather
than accepted as the absolute truth.

It is also important to note that the largest surface area of the six reservoirs that were tested was less than
120 km2 even though the largest reservoir surface area found worldwide exceeds 66,000 km2 [Lehner et al.,
2011]. Excluding this size class from the study was justified, however, because the bias in reservoir surface
area diminished to less than 1% of the total surface area and mean bias in height was representative of
others in both the reservoir test cases and theoretical experiments. Moreover, as demonstrated in the theo-
retical experiments, the area and height biases were smallest for the largest theoretical reservoir that was
tested of 10,000 km2, which is much closer to the high end of the range of global surface areas. Thus, omit-
ting the larger size classes from the analysis was not believed to result in the loss of much additional
information.

5. Conclusions

This study characterized the temporal and spatial errors of SWOT reservoir observations using a combina-
tion of in situ reservoir records and model results. It represents the first study known to the authors to inves-
tigate the SWOT observation accuracy exclusively for man-made reservoirs and not just natural lakes. In
addition, this was accomplished using SWOTsim, which integrates error properties of the instrument and
satellite orbit, thereby making the results more comparable to what is expected from the actual mission
than what has previously been accomplished for lakes or reservoirs at this level of spatial and temporal
resolution.

Despite the previously noted limitations, several important temporal and spatial performance thresholds
were highlighted throughout the course of the study. The temporal analysis showed that converting SWOT
observations to monthly values does not result in severe aliasing except for with the smaller reservoir sizes
(<3 km2) at the lowest expected satellite orbit return interval where errors of up to 10% were observed for
a single observation. Based on the cumulative distribution function (CDF) for reservoir surface areas shown
in Figure 2, less than 13% of reservoirs worldwide considered to be observable by SWOT are expected to
fall under this size class as well as sampled at low enough frequencies to where temporal aliasing might
pose an issue.

The theoretical and test case reservoir simulations revealed that reservoir size has the largest influence on
the accuracy of SWOT surface area and height measurements. Reservoirs larger than 1 km2, which account
for approximately 80% of those observed globally, are expected to have surface area and height biases of
less than 5% and 25 cm, respectively. Errors for reservoir sizes below the 1 km2 threshold increased expo-
nentially up to an area bias of 21% and height bias of 220 cm. In certain situations, specific geospatial char-
acteristics of the reservoir played a larger role in SWOT water surface area and height observation errors.
For instance, higher elliptical aspect ratios and orientation of the reservoir parallel to orbit were observed to
increase errors by up to factors of three and six for surface area and height estimates, respectively, in the
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three more common reservoir sizes that were tested. Increases in surface area errors due to rises in topo-
graphic slope were most dramatic around a slope of 0.17 m/m and the height RMSE was 23% higher for
slopes above 0.8 m/m relative to slopes below this magnitude. The partial reservoir coverage tests revealed
that above 30% coverage of the reservoir for all spatial configurations and orientations, height estimates
were reliable and showed a near-zero bias. Swath coverage that was dominated in the near range also
resulted in much higher error estimates for both area and height measurements. Evidence from the actual
reservoir simulations agrees with these findings, as larger reservoirs (>2 km2) result in smaller area and
height biases, except in the instance where the reservoir had a more extreme elliptical geometry oriented
parallel to orbit or swath coverage is concentrated in the near-range.

The findings presented herein provide more in-depth insight into future SWOT reservoir observations. As
the development of SWOTsim improves, additional simulations of reservoirs and other surface water fea-
tures will only continue to be more representative of expected SWOT global surface water observations.
Even still, the results presented here represent the first, more realistic attempt at reproducing global reser-
voir behavior as seen by SWOT. This information will be useful for determining SWOT error characteristics of
a given specific reservoir a priori to mission launch and should serve as a blueprint for subsequent studies
that incorporate SWOT reservoir observations into global monitoring systems or hydrologic models.

Appendix A

Appendix A1 lists the user-specified SWOTsim instrument simulator settings that were used for all analyses
requiring SWOTsim (e.g. Figures 6–9 and Tables 1 and 2). The settings and parameters listed are related to
the satellite resolution geometry, radar parameters, and beam. parameters.
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