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Abstract 

Frequency-response results, as calculated by the Stefan-Maxwell macroscopic 

impedance model, are presented for a copper rotating disk in chloride solutions. The 

working algorithm uses concentrated-solution theory and accounts for multicomponent 

diffusion, migration, and homogeneous and heterogeneous reactions, as well as a finite 

Schmidt number and interfacial velocity. The validity of the general program was 

checked by comparing the concentrated-solution model in the limit of dilute solutions, 

excess of supporting electrolyte, and infinite Schmidt number to known analytic 

solutions. Excellent agreement was obtained. Results for copper dissolution are plotted 

in various forms, enabling additional information about the given electrochemical 

system to be obtained. Specifically, the effect of the Schmidt number on the frequency-

response of the faradaic impedance has been examined. Finally, a new way of plotting 

the dimensionless convective-diffusion impedance is proposed to reduce the Schmidt 

number dependence of the frequency response nearly to one curve by stretching the 

abscissa using ( wf0.)Sc 113. 

key words: Stefan-Maxwell multicomponent transport, rotating disk, copper dissolution 
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1. Introduction 

A macroscopic impedance model,l11 requumg a numerical solution, has been 

presented. The objective of this paper is to use the developed algorithm to calculate the 

frequency response of a rotating-disk electrode. The working model utilizes the Stefan-

Maxwell multicomponent transport equations to describe diffusi<)n and migration in 

concentrated solutions with chemical and electrochemical reactions. Although the 

general model is capable of predicting the impedance behavior of many systems, only 

results for the anodic dissolution of copper in chloride solutions are presented. 

The electrodissolution of a copper rotating disk has been studied experimentally 

usmg an ac-impedance techniquel21 and has been found to be largely mass-transfer 

controlled, but a kinetic contribution could be identified at high rotation rates. For low 

current densities and Cl- concentrations less than about 1 M, copper dissolves 

anodically in acidic chloride solution to form CuC12 in the following overall reaction 

(1) 

2. Method 

The Stefan-Maxwell model is used to predict the frequency dependence of the 

faradaic and dimensionless mass-transfer impedance functions as a function of Schmidt 

number. The faradaic impedance, ZF = V /i1, is calculated by linearizing the copper 

dissolution kinetic expression 

(2) 

using a Taylor expansion around the steady-state values of ci,O and V 
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The electric driving force V used in the modified Butler-Volmer equation 2 is defined to 

be the electrode potential relative to a reference electrode of a given kind placed just 

outside the diffuse part of the double layer. 

The alternating-faradaic-current-density equation 3 can be rearranged yielding the 

faradaic impedance for a single electrode reaction 

(4) 

where the charge-transfer resistance is given by R, = ( 8i Jf av)-1. Thus, the faradaic 

impedance includes not only the effect of the faradaic charge-transfer reaction but also 

that of any concentration variations at the electrode surface that affect the rate of the 

electrochemical reaction. 

The dimensionless mass-transfer impedance function is defined as the ratio of the 

alternating concentration to its derivative 

{ 
-1 } cio 
8~(0) = ~ , (5) 

where ci,o and c~.o are calculated using the Stefan-Maxwell model. The prime denotes 

differentiation with respect to the dimensionless distance €- z (D.fv) 112 (avf3DR) 113
, 

where e properly scales the rotating-disk problem131 and DR is the diffusion coefficient of 

the CuC12 reference species. 

A goal of this paper is to check the validity of the generalized concentrated-

solution-theory program by comparing the model results for certain limiting conditions 

(low concentrations and high, but finite Sc) to the dimensionless, convective-War burg 
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impedance. The frequency dependence of the convective-War burg impedance is 

characterized by the dimensionless quantity141 -1/(/(0), where 8 is the solution to the 

frequency-dependent, convective-diffusion equation valid for infinite Schmidt number 

and dilute solutions with no migration.151 

Smyrl121 previously used an approach similar to the method just discussed to study 

the mixed kinetic- and mass-transfer-controlled copper-chloride system. The -1/rl(O) 

function was combined with a kinetic expression similar to equation 2, and with 

equation 3, a resulting equation for the faradaic impedance .enabled both the diffusion 

coefficient and the kinetic rate constants to be determined from impedance data using a 

limited frequency range. Recently, Morris and Smyrl161 have used a numerical fitting 

procedure to analyze the entire frequency spectrum for the ferricyanide-ferrocyanide 

redox system. 

We should like to continue such an analysis by investigating the effects of mass 

transfer on the faradaic impedance by arbitrarily varying the Schmidt number, while 

the solution composition, the electrode potential, and the rotation rate are kept 

constant. The Stefan-Maxwell results, for a wide frequency range, will be plotted in 

various forms, enabling kinetic and mass-transfer information pertaining to a given 

electrochemical system to be obtained. The analysis is applicable to redox systems, as 

well as to the mixed kinetic and mass-transfer controlled copper dissolution process to 

be discussed in this paper. 

Before presenting the results, let us discuss the model input parameters. The rate 

constants used in equation 2 for the copper dissolution process are the same as in 

references [7] and [8] for the case of an infinite homogeneous rate constant (k 6 = oo) and 
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are summarized in table 1.t The steady-state potential relative to a saturated calomel 

reference electrode is V = -Q.205 V, and unless specified otherwise, all reported results 

are for a copper disk rotating at 2000 rpm in 0.1 N HCl with a kinetic viscosity of 

v = 8.9 X 10-3 cm2 /s at T = 298.15 K. For this system, the copper chloride complex 

(reference species), CuCl2, has a Schmidt number of 1567. 

3. Faradaic Impedance 

The computer-generated results of the Stefan-Maxwell model for the dissolution of 

a copper rotating disk are plotted in figure 1 on the complex plane. This Nyquist plot 

shows the negative of the imaginary part of the faradaic impedance, -ZF, versus the 

real part of ZF (with the frequency as a parameter) for a Schmidt number of 1567. No 

Table 1. Model input parameters for the dissolution of copper in 0.1 N HCL 

Dw = 9.31 X 10-5 cm2 /s De1- = 2.03 X 10-5 cm2 /s 

Deuel;= 0.568 X 10-5 cm2 /s (base case) 

Deuel;= vfSc where Sc = 10% and x = 2,3,4 

t In another paper,191 we develop a generalized procedure for obtaining the funda­
mental and necessary input parameters from experimental impedance data. The data 
reduction scheme is based on analytic equations for the faradaic impedance. 
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Figure 1. Nyquist plot of the faradaic impedance for the anodic dissolution of copper. 
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double-layer charging effects or electrolyte resistance are included in this figure. 

Therefore, a capacitive semicircle does not appear to the left of the mass-transfer loop. 

The dimensionless frequency K = wv(3DRfav)213 /O.DR is a parameter for the plot with 

eleven points per decade (1, 1.3, 1.6, 2, 3, 4,···9). 

Plotting the results in this form enables the effect of each component of the 

faradaic impedance, ZF = Rt + Z0 , to be studied. The charge-transfer resistance, 

Rt = lim {ZF}, is the high-frequency limit of the faradaic impedance and is a kinetic 
w-oo 

parameter independent of mass-transfer. For the fast electrode kinetics of the copper 

system, Rt is so small (1.44 O·cm2), as would be expected for a Nernst-like (reversible) 

reaction, that it is negligible in figure 1. Z0 is the mass-transfer impedance resulting 

from concentration variations at the surface due to convection and diffusion and is the 

remaining effect of the faradaic impedance after Rt is subtracted. 

The charge-transfer resistance is obtained at the high-frequency limit because the 

time scale is so short that diffusion cannot influence the current. Since the surface 

concentration does not change significantly from the mean value, the diffusion 

impedance drops out at high frequency, and charge-transfer kinetics alone dictate the 

current. 

As we move away from the high-frequency limit, along the curve toward the right, 

(as the frequency decreases) we observe a linear relation between Re { ZF} and lm 

{ ZF } characterizing a diffusion-controlled electrode process. An infinite Nernst 

diffusion-layer thickness leads to a straight line with a slope of unity, known as the 

classical Warburg impedance. However, accounting for convection at the rotating disk 

yields finite values for both the diffusion-layer thickness and the convective-War burg 
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impedance at the low-frequency limit and this gives rise to the loop .shown in figure 1. 

In the low-frequency range, the frequency dependence of the diffusion impedance 

changes. Instead of both the real and imaginary parts of the impedance being 

proportional to 1/Yw (as at high frequencies), the imaginary part is proportional to the 

frequency, whereas the real part is proportional to the square of the frequency. This 

change is due to the effect convection has on the process. 

An important quantity to be derived from such measurements is the impedance at 

zero frequency, where the imaginary part goes to zero and the real part is finite and is 

shown on the right of the figure. This low-frequency limit represents the steady-state 

polarization resistance R, = lim {ZF}. R, is the sum of the charge-transfer resistance 
w-o 

R1 and R0 = lim {Z0}, the steady-state limit of the mass-transfer impedance Z0 • 
w-o 

Figure 2 is a Nyquist plot of the faradaic impedance as function of Schmidt 

number. For purposes of comparison, Schmidt numbers of 100, 1000, and 10,000 are 

shown in addition to the base case of Sc = 1567. Its effect on the polarization resistance 

is significant, while the charge-transfer resistance is independent of Sc. All four curves 

for different Schmidt numbers in figure 2 are shown to be converging to a value of 

R, = 1.44 fl·cm 2 in the limit of high frequency. The large effect of the Schmidt number 

on R, may be explained by the relationship the polarization resistance has with the 

resistance to mass transfer. For example, for the largest Sc = 10,000 shown in figure 2, 

R, is the largest, implying the greatest resistance to mass transfer or small mass-

transfer rates. As Sc decreases, the diffusion coefficient increases (assuming constant 

viscosity), yielding smaller and smaller resistance to mass transfer. Thus, as Sc - 0, or 
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Figure 2. Nyquist plot of faradaic impedance as a function of Sc. 
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Di - oo, there would be no diffusion impedance, and the convective-diffusion loop 

would disappear completely, implying rapid mass transfer. Similar effects could be 

obtained by varying the angular rotation speed of the disk, 0. An infinite rotation rate 

would yield the same result as Sc - 0. 

The polarization resistance R
1 

is an important quantity in impedance studies since 

it can be shown to be related to the steady-state current density and thus, the 

dissolution rate of the metal. The results given in figure 2 can be used to shed more 

light on understanding the present dissolution problem. To do this, the real part of the 

faradaic impedance is plotted versus - p Im{ZF} in figure 3, where p =win 1s a 

dimensionless perturbation frequency. K is related to p by K = 3.2576pSc113. The 

entire frequency range is shown in this figure, with the important low-frequency limit at 

the left. 

Smyrli21·1 101 first demonstrated that this way of plotting the data (a Smyrl plot) 

allows the real part of the impedance to be extrapolated to zero frequency easily, 

because a straight line can be fitted to the low-frequency data in figure 3, and the 

imaginary part should be zero at zero frequency. 

The three different Schmidt-number curves in figure 3, as for figure 2, converge in 

the limit of high frequency to a value of R 1 = 1.44 O·cm2
. The Sc = 100 case 

approaches the limit the fastest because, at a given frequency, the low Sc minimizes 

mass-transfer effects. 

The low-frequency limit of the impedance is important because we are interested in 

examining the convective-diffusion impedance Z0 . Therefore, the previous plot is shown 

again in figure 4, where only the low-frequency region is shown. Over a limited 
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Figure 3. Smyrl plot of the faradaic impedance as a function of Sc. 
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frequency range, the frequency response is linear. 

It is interesting to examine the magnitude of the slopes as a function of Schmidt 

number. The real part of the faradaic impedance increases with Sc, and the magnitude 

of the slope is proportional to Sc 113. Thus, the slope can be used to extract the diffusion 

coefficient of the system being investigated.l21 Also, this procedure is a good check of 

the model results. Finally, the program enables one to investigate whether the Smyrl 

plot allows the Schmidt number to be determined correctly from figure 4 when kinetics 

is involved. This latter effect has yet to be quantified. 

4. Dimensionless, Mass-Transfer Impedance 

The frequency dependence of the dimensionless mass-transfer impedance -1/0;(o), 

given by equation 5, is shown on the complex plane in figure 5. The real and imaginary 

parts of the impedance for the three Schmidt numbers, 100, 1567, and 10,000, are given. 

The frequency at a curve maximum is the characteristic frequency (K = 3) and yields 

the mass-transfer time constant. 

An advantage of plotting the frequency dependence of the -1/0;(o) impedance 

function is that the infinite Schmidt number case, the dilute-solution convective­

Warburg impedance -1/0'(o), can be shown. When the exact solution to the frequency­

dependent convective-diffusion equation at infinite Schmidt number is compared to the 

Stefan-Maxwell model results for the dimensionless convective-diffusion impedance, 

generally good agreement is found, with the larger Schmidt-number results yielding 

obviously the best agreement. However, the effect of Sc on the low-frequency -1/0;(o) 

impedance function is shown in figure 5 to be the opposite of the Sc effect on the 
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faradaic impedance that was given in figure 2. The low-frequency limits of the finite-

Schmidt-number calculation of the dimensionless impedance function are slightly 

greater than that for infinite Sc, and these results will be discussed in the next section. 

The results at the low frequencies may be further explained by plotting the real 

part of -1/0~(0) versus p times the negative of the imaginary part of -1/0~(0) as shown 

in figure 6. This allows us to examine the Schmidt number dependence of the 

dimensionless convective-diffusion impedance function -1/0~(0) in the same way that 

the faradaic impedance was plotted in figure 4. Plotting the data in this fashion allows 

the dimensionless steady-state resistance due to convective diffusion 

Rd = lim {-1/0~(0)} to be determined as a function of Schmidt number. Rd can then 
w-o 

be related to the steady-state dimensionlesS mass-transfer rate, which will provide a 

check of the validity of the Stefan-Maxwell model. These results, calculated using 

Newman•sl 111 steady-state mass-transfer rates to a rotating disk for Sc of 100 and 

10,000, are hardly visible on the intercept of the ordinate. These steady-state results 

could be plotted versus Sc-113; however, this has not been done. Instead, the 

calculations will be presented in tabular form and will be discussed in the next section. 

Lastly, a plot of Re {-1/0;(o)} versus -pSc1131m {-1/0;(o)}, as shown in figure 7, 

reduces the Schmidt number dependence of the curves. Interestingly, plotting the data 

in this form over the entire frequency range yields just one curve, any deviations are in 

the low-frequency range and are shown in more detail in figure 6. This latter effect can 

be explained by the thicker boundary layer at lower frequencies. Hence, the convective 

effect, or Sc correction, is most significant at steady state, where the multiple term 

velocity series is needed. 
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5. Discussion or Results 

First, let us discuss the validity of the numerical model. For purposes of 

comparing the Stefan-Maxwell-program results to the dilute-solution, convective-

Warburg-impedance results,14•51 the case of low electrolyte concentration (0.1 N HCl) 

and a low anodic overpotential ( V = ~.205 V) has been investigated, similar to 

reference [12]. This is the simplest case to model accurately and to predict the current 

density; dilute-solution theory may be used since there are no strong interactions among 

species which require concentrated-solution theory. Also, the low potential means little 

dissolution of copper will occur, resulting in the copper chloride species concentration 

being very small compared to the electrolyte. This implies that the effect of migration 

will be small due to small amount of CuCl2 relative to the supporting electrolyte. 

· The original goal of comparing the low-frequency limits of the Stefan-Maxwell 

impedance results to previous steady-state, mass-transfer work can be done by using the 

following relationship 

lim -=..!.. = ~ - 1- =A.§.£__ -A __§_£__ sc-213 
{ } [ ]

1/3 1/3 [ l 
w- o e;(o) 3Dj a;(o) a;(o) - a;(o) · (6) 

The low-frequency limit of the dimensionless impedance function -1/0;(o) is related to 

the dimensionless steady-state mass-transfer rate to a rotating disk, a;(o)jSc, where ai 

is defined as ai = ( ci - ci,o)/( ci,oo - ci,o) and A = 0.55405. The prime used in the 

mass-transfer rate denotes differentiation with respect to s- = z(o. 1 v) 112 as opposed to e. 
which is used in the dimensionless impedance function. 

Values of the steady-state limit of the dimensionless impedance, calculated using 

concentrated-solution theory as a function of Sc, can be compared to the mass-transfer 
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resistance A Sc113 je;(o), calculated using the steady-state, dilute-solution mass-transfer 

rates, accounting for the Sc correction,1111 but with no migrational effects. These 

comparisons were illustrated graphically in figure 6 for p = 0 (the ordinate values on the 

' Smyrl plot of the dimensionless impedance function) and are given in table 2. Excellent 

agreement between the Stefan-Maxwell-model results and the steady-state, dilute-

solution rates of mass-transfer is seen. The small differences can be attributed to either 

the effect of migration, the interaction of species in solution with each other, or in part 

to finite-differences error. The Be-correction effect at low frequency results -in a 

difference of up to 7% between Schmidt numbers of 100 and infinity.1111 This yields the 

maximum error due to Sc differences, since the de result is most sensitive to the 

Schmidt number correction. For the ac case at higher frequencies, the Sc correction is 

Table 2. Comparison of the Stefan-Maxwell model's low-frequency limit of 
the dimensionless, mass-transfer impedance (161 and 321 mesh points) with the results 
using the steady-state dilute-solution mass-transfer rate. 

Sc 
Scl/3 

r {-I} Error(%) A-- 1m --
a;(o) w- o o;(o) 

mesh points mesh points 
(161) (321) (161) {321) 

100 0.95694 0.95625 0.95625 4l.07 4l.07 

1000 0.92096 0.92206 0.92211 0.12 0.12 

1567 0.91717 0.91802 0.91809 0.09 0.10 

10,000 0.90529 0.90645 0.90681 0.13 0.17 

00 0.89298 0.89404 0.89411 0.12 0.13 
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less important because the diffusion boundary layer is smaller due to the short time 

frame. Hence, the extra terms in the velocity profile become less important. 

Let us now discuss the different Schmidt-number dependence of the impedance that 

was illustrated in the previous figures. For example on figure 6, r( 4/3) is the lower limit 

on the ordinate axis. The correction for finite Sc increases the real _part of the de limit 

of -1/0~(0). Thus, the low-frequency limit of the dimensionless convective diffusion 

impedance increases slightly with decreasing Sc. In figure 4, just the opposite behavior 

is found; the low-frequency limit of the faradaic impedance, RP, or of the dimensional 

diffusion impedance, R 0 , increases with Sc. This behavior should be compared to the Sc 

dependence of the mass-transfer rate. 

Levichl131 showed that the large-Schmidt-number asymptote for the mass-transfer 

rate e;;sc is proportional to Sc-213. In other words, the mass-transfer rate decreases 

with increasing Schmidt number, since a large Sc implies a small diffusion coefficient, 

and thus small mass-transfer rates. Therefore, the faradaic impedance results shown in 

figures 2, 3, and 4 can be justified physically since an impedance or resistance to mass 

transfer should· decrease with decreasing Sc. 

6. Conclusions 

The Stefan-Maxwell macroscopic-transport model has been used to calculate the 

faradaic impedance as a function of frequency for the anodic electrodissolution of a 

copper rotating disk in hydrochloric acid solutions. 

First, the validity of the developed program was checked by companng the 

concentrated-solution model to analytic solutions m the limit of dilute solutions and 

.. 

?' 
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infinite Schmidt number. The need for such checks cannot be overemphasized when 

using and developing complex computer programs of this nature. Excellent agreement 

was obtained for the copper system, confirming the validity of the model. 

Secondly, the mathematical model was used to study the effect of the Schmidt 

number on the frequency response of the mass-transfer controlled process. A new way 

of plotting the dimensionless convective-diffusion impedance was proposed that reduces 

the Schmidt number dependence of the frequency response nearly to one curve by 

stretching the abscissa using (w/O.)Sc113. Finally, a theoretical study of the 

electrochemical impedance method is extremely important because it allows one to 

discover new ways of analyzing impedance measurements. 
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List of Symbols 

0.51023 

(a /3)113 = 0.55405 

concentration of species i at the electrode surface, mol/cm3 

steady-state concentration of species i, mol/cm3 

dilute-solution diffusion coefficient of species i, cm2 /s 

symbol for the electron 

frequency, Hz 

Faraday's constant, 96,487 Cfequiv 

steady-state current density, A/cm2 

faradaic current density, A/cm2 

alternating faradaic current density, A/cm2 

anodic and cathodic rate constant for a charge-transfer 
reaction 

backward rate constant for the homogeneous reaction, 

dimensionless frequency 

w/0, dimensionless frequency 

universal gas constant, 8.3143 J /mol-K 

electron-transfer resistance, ohm·cm2 

polarization resistance, ohm ·cm2 

22 
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Sc 

T 

v 

Zw 

Greek symbols: 

r{4/3) 

-1/0;(o) 

-1/B'(o) 

e. 
I 

v 

low-frequency limit of the mass-transfer impedance Z0 , 

ohm·cm2 

low-frequency limit of the dimensionless, mass-transfer 
impedance 

Schmidt number 

absolute temperature, K 

alternating kinetic driving force (electrode potential relative 
to given reference electrode placed just outside double 
layer), V 

steady-state part of kinetic potential driving force, V 

complex faradaic impedance, ohm-cm2 

complex mass-transfer part of faradaic impedance, ohm­
cm2 

complex convective-Warburg impedance, ohm-cm2 

symmetry factor 

0.89298, the gamma function of 4/3 

complex, dimensionless, mass-transfer impedance function 
for species i 

complex, dimensionless, convective-War burg impedance 
function for species i 

dimensionless concentration of species i 

dimensionless steady-state mass-transfer rate of species i 

kinematic viscosity, cm2/s 

23 
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n 

subscripts: 

a 

b 

c 

0 

00 

superscripts: 

perturbation frequency, rad/s 

angular rotation speed of disk, rad/s 

anodic 

back reaction 

cathodic 

just outside the diffuse part of the double layer 

in the bulk electrolyte, where. there are no concentration 
variations 

time-average or steady-state part 

complex, time-independent part 

24 
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