
UC Irvine
ICS Technical Reports

Title
Proofing : an efficient and safe alternative to mobile-code verification

Permalink
https://escholarship.org/uc/item/05s6h9xg

Authors
Gal, Andreas
Probst, Christian W.
Franz, Michael

Publication Date
2003-11-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/05s6h9xg
https://escholarship.org
http://www.cdlib.org/

Proofing: An Efficient and Safe Alternative to ·
Mobile-Code Verification

Andreas Gal Christian W. Probst Michael Franz

Technical Report 03-24
School of Information and Computer Science

University of California, Irvine, CA 92697-3425

November 17, 2003

Abstract

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

The safoty of the Java Virtual Machine is founded on bytecode verification. Although
verification complexity appears to roughly correlate with program size in. the average
case, its worst-case behavior is .quadratic. This can be exploited for denial-of-service

·attacks using relatively short programs (applets or agents) specifically crafted to keep
the receiving virtual machine's verifier busy for an inordinate amount of time. Instead
of the existing, quadratic-complexity verification algorithm, which needs to decide the
validity of any given bytecode program, we present a linear-complexity alternative that
merely ensures that no unsafe program is ever passed on to the virtual machine. Hence,
in certain cases, our algorithm will modify an unsafe bytecode program to make it safe, a
process that we call 'proofing". Proofing does not change the semantics of programs that
would have passed the original bytecode verifier. For programs that would have failed
verification, our algorithm will, in linear time, either reject them, or transform them into
programs (of unspecified semantics) that are guaranteed to be safe. Our method also
solves a long-standing problem, in which for certain perfectly legal Java source programs
the bytecodes produced by Java compilers are erroneously rejected by existing verifiers.

Proofing: An Efficient and Safe Alternative
to Mobile-Code Verification

Andreas Gal, Christian W. Probst, and Michael Franz
Department of Computer Science

University of California, Irvine
Irvine, CA, 92697

{gal,cprobst,franz}@uci.edu

ABSTRACT
The safety of the Java Virtual Machine is founded on bytecode
verification. Although verification complexity appears to roughly
correlate with program size in the average case, its worst-case be­
havior is quadratic. This can be exploited for denial-of-service
attacks using relatively short programs (applets or agents) specif­
ically crafted to keep the receiving virtual machine's verifier busy
for an inordinate amount of time.

Instead of the existing, quadratic-complexity verification algorithm,
which needs to decide the validity of any given bytecode program,
we present a linear-complexity alternative that merely ensures that
no unsafe program is ever passed on to the virtual machine. Hence,
in certain cases, our algorithm will modify an unsafe bytecode
program to make it safe, a process that we call "proofing".

Proofing does not change· the semantics of programs that would
have passed the original bytecode verifier. For programs that would
have failed verification, our algorithm will, in linear time, either
reject them, or transform them into programs (of unspecified se­
mantics) that are guaranteed to be safe.

Our method also solves a long-standing problem, in which forcer­
tain perfectly legal Java source programs the bytecodes produced
by Java compilers are erroneously rejected by existing verifiers.

1. INTRODUCTION
Mobile programs can be malicious. To protect itself, a host that
receives such mobile programs from an untrusted party or via an
untrusted network connection will want a guarantee that the mobile
code is not about to cause any damage. The Java _Virtual Machine
(NM) pioneered the concept of code verification by which a re­
ceiving host examines each arriving mobile program to rule out
potentially malicious behavior even before starting execution.

Unfortunately, the verification algorithm employed by the NM has
a worst-case execution complexity that increases quadratically with
method length. This can be exploited in a denial of service attack

on the computer hosting the NM. It is possible to systematically
craft bytecode programs (applets or agents) that exhibit worst-case
verification complexity. A JVM that receives. such a program is
effectively shut down while verification is underway.

We have demonstrated this attack in previous work [11]. Using the
standard NM verification algorithm, relatively short programs that
were specifically designed for difficulty of verification but only a
few thousand bytes in length, led to verification efforts in the order
of hours on workstation-class machines. Therefore, it would appear
advisable to incorporate some time-out mechanism into bytecode
verifiers, although no current JVM verifier to our knowledge im­
plements such a scheme.

We present an alternative to Java's verification mechanism, which
we call bytecode proofing, that has linear, rather than quadratic
complexity. The unique feature of bytecode proofing is that it does
not attempt to decide whether an arbitrary bytecode program is
actually safe. Instead, it guarantees that (a) all code forwarded to
the virtual machine for execution is safe, and (b) the semantics of
this code are identical with those of the original program in all cases
in which the traditional verifier would have returned a verdict of
"safe". In cases in which the standard verifier would have rejected
the original bytecode, but ours does not, the semantics of the result­
ing program after transformation by our algorithm are unspecified,
but safe with respect to the original verification criteria.

Our approach also solves an old problem with existing bytecode
verifiers that was first reported by Stark et al. [28]: there exists
a class of legal Java source code programs that, when compiled
into NML, cannot be verified using traditional verifiers and are
erroneously rejected. Our bytecode proofing algorithm does not run
into these problems and will accept these programs, as it spould.

The rest of this paper is organized as follows: Section 2 briefly in­
troduces the traditional Java bytecode verification algorithm. Sec­
tion 3 explains how certain properties of this algorithm can be
exploited, resulting in a denial of service attack. Section 4 intra-·
duces our approach of proofing mobile code, and Section 5 shows
how this enables efficient verification. Section 6 describes our .
preliminary implementation of a bytecode proofer and compares
its performance with the traditional Java verifier, while Section 7
discusses related work. In Section 8 we draw conclusions, and
outline future work in Section 9.

O·

Types ={I, A, ... , T} U Classes
LocVar: N-+ Types, Stack= (Types U {Err})n2:0

push : Types x Stack -+ Stack, pop : Stack -+ Stack
State = Stack x Loe Var, ¢ : State x Ins tr -+ State

¢ ((S, L), iconst n) = (push(I, S), L)
¢ ((S, L), aconst_null) = (push(A, S), L)
¢(((I, I, S), L), iadd) = (push(I, S), L)
¢(((I, S), L), is tore n) = (S, L[n t- r])
¢ ((S, L), iload n) = (push(L(n), S), L), if L(n) =I
¢ (((r, S), L), as tore n) = (S, L[n t- r]),

if L(n) E Classes
¢ ((S, L), aload n) = (push(L(n), S), L),

if L(n) E Classes
¢(((an, ... , 0:1, S), L), invokes ta tic C.m.sig) =

(push({3, S), L)
if sig = (3((31, ... ; f3n) and O:i is subtype of f3n

Figure 1: Internal state and selected rules for the type-level abstract
interpreter.

2. JAVA VERIFICATION
Java bytecode verification has to ensure that (a) input programs are
well-formed in that the control flow is properly contained within
methods and (b) that the data-flow is well-typed. While well-formed­
ness can be decided without much effort, deciding whether a pro­
gram is type-safe is complicated by the NM architecture.

NM instructions can read and store intermediate values in two
locations, the stack and virtual registers. These locations are dy­
namically typed in that the same stack location or virtual register
can hold values of different types at different times. Verification
~ims to ensure that these locations are used consistently and that
mtermediate values are always read back with the same types that
they were originally written as.

The basic ingredient of every bytecode verifier is an abstract in­
terpreter for Java Virtual Machine Language (NML) instructions.
Unlike NM, its stacks and virtual registers store types, rather than
values. Thus, the interpreter translates instructions into operations
that execute on types.

Figure 1 shows the definitions for the internal state as well as se­
lected rules of such an interpreter. push and pop have the usual
definition on stacks; a stack overflow or underflow generates the
Err state. Note that exceptions do not add to the behavior of the
abstract interpreter and are hence ignored in this step.

The rules describe the preconditions for the stack and the register
component of the internal state. If there is no applicable definition
for ¢, an error occurs. It is noteworthy that the interpretation of
method calls such as invokestatic does not actually call the
m~thod. Instead, it assumes that the method's effect is to push an
object of type (3 on the stack as described by the method's signature.

The abstract interpreter described above is implemented by the Java
verifier [18, 19, 35] through a data flow analysis. The verifier
iterates for each .method over all reachable instructions. Before
the first instruction of a method is analyzed, the internal state is
set to (S,L) E Types x LocVar. Sis initialized to be empty,
and the local variable mapping function L is set to the types of
the parameters as described by the method's signature. Using the

terminology in Figure I, this results in L(i) = f3i for a method
signature sig = j3 ((31, ... , f3n). All other local variables start
undefined, that is, they must not be used. Additionally, a changed
bit is associated with every instruction, but initially is set only for
the first instruction. This bit signifies that an instruction's input
states have changed and that the instruction must be verified again
on the algorithm's next iteration.

Then, the verifier loops over all instructions i in syntactical or­
der. If changed(i) is trueit verifies i using the rules in Figure 1.
This ensures, that the stack always has enough and correctly typed
operands, that the stack will not overflow or underflow, and that
local variables are initialized before their use and correctly typed
for instruction i. Verification fails at this step if any of these re­
quirements is not met.

After verifying an instruction i, the verifier identifies all instruc­
t~ons j that succeed i, either directly or as branch targets or excep­
tion handlers. For every every possible successor j, the state Outi
?f the stack and the local variables after execution of i are merged
mto the state lnj before j. For exception handlers, an object of the
type of the exception is pushed onto the stack component S.

If j has not been visited before, its incoming state lnj is set to be
Outi and changed(j) is set. If j has been visited before, the verifier
computes E = merge(Outi, lnj) and, if E i= lnj, sets changed(j)
and lnj = E. Two stack states can be merged if the stack depth is
equal for both of them. Additionally, the types of corresponding
stack cells must either be equal, or are abstracted by the common
supertype of the two types. In contrast, two local variable states can
always be merged: if the types of corresponding variable .abstrac­
tions differ, then the abstraction is either the common supertype in
the case of references, or the variable is marked as unusable that
is, may no longer be read. '

After having finished one iteration, the verifier checks whether there
exists an instruction i for which changed(i) is true. If so, it starts
~nother iteration. Since instructions are visited ill syntactical order,
m the case of backward jumps the algorithm will never visit the
target instruction again in the same iteration, but only in the next
one.

Interestingly enough, the original verification algorithm for Sun's
first Java Virtual Machine [19, 35] and its implementation have
been.adopted with very few modifications by many current NMs.
Even though the algorithm has a problematic worst-case behav­
ior, it apparently performs quite well for the normal applet- or
agent-type programs that it was designed for. The accepted wisdom
seems to be that verification (a) contributes only marginally to the
startup time of NM bytecode programs and that it (b) will scale in
some acceptable fashion for larger programs.

As we will show below, this accepted wisdom is wrong. Rathet
than the average-case behavior, it is the worst-case behavior that
needs to be studied in any security-relevant context. We have suc­
cessfully exploited the worst-case behavior of the NM bytecode
verification algorithm in what amounts to a denial-of-service attack
on the machine hosting the NM [11].

3. AN EXPLOIT OF THE JVM VERIFICA­
TION ALGORITHM

In this section we will explore the shortcomings of the traditional
NM verifier in more detail and discuss an example program that

2

iconst 0; istore 1

3 goto LO

4 L3: return~

5 L2: (iconst O; ifeq L3~
7 aconst null; astore 1

9 gotoL2

IO L1: (iconst O; ifeq L2)
12 aconst null; astore 1

14 goto L1

15 LO:(iconst O; ifeq L1

17 aconst null; astore 1

19 goto LO

Iteration

A

A

4

A

A

T

A

A

5

I

:r
T

A

A

T

A

A

T

A

A

Figure 2: Java bytecode program that takes n iterations to be
verified using the standard DFA verifier approach. The entry state
for each basic block depends on the successor basic block. To the
right of the figure, the local variable states are displayed for each
iteration of the DFA. The shaded boxes indicate values that have
changed, the framed boxes indicate instructions that will be visited
in the next iteration.

was designed to expose the quadratic worst-case runtime behavior
of the JVM verifier. While this program is perfectly well-typed and
will eventually verify, it takes the JVM verifier an excessive amount
of time to do so.

The right hand part gives the computed abstraction for virtual reg­
ister 1 (Vl) for several stages during verification. At the e,ntry
point of the method, an integer constant is loaded into Vl and the
control is transfered to instruction 15. The verifier will actually not
follow the branch instruction to the target, but continue to check
instructions in sequence. However, it sets the bit changed(l5).
Therefore, once reaching instruction 15, it is interpreted. Since the
first two instructions after LO constitute a conditional branch, Vl is
unchanged and the state after instruction 3 is propagat~d. While the
branch is actually statically predictable in this example, the verifier
does not consider the ifeq instruction as conditional. Instead,
changed(10) is set, and the branch target will thus be interpreted
in the next iteration. The aeons t._nul 1 instruction 17 loads a
null value onto the stack, whioh is then stored in Vl. Thus,
before instruction 19, Vl holds a value of type address (A). The
unconditional goto at the end of this block transfers control back
to LO, resulting in changed(l5) being set.

During the next iteration, the verifier will inspect instructions 10
and 15, since their input states have changed. As the verifier hits
instruction 15 again, it invalidates the previous assumption L(l) =
I, because it now knows that LO .has two predecessing states. The
one at instruction 3 has L(l) = I, the one at instruction 19 has
L(l) = A. Thus, the verifier updates L(l) to T, indicating that
the value is not accessible at this point because its type depends on
which path was taken to get to LO.

This discovery also affects the L 1 basic block, which was previ­
ously assumed to be entered with L(l) =I only. Now it is known
to be entered with L(l) = T. The verifier has thus to iterate over
the code again to correct the wrong assumptions previously made
for instruction 10. This process is repeated until all basic blocks
are verified and a fixed point has been reached.

6

:g 5

'O
0 4
~
E

:E' 3
Cl>
>
.9 2
Cl>

,§

=::::r :: t: :J := t :_-: = ,
···················f··· .. ··············l· .. ······ .. ··· .. ··l···················i· .. ····· .. ·······

:::~J: : : :;~-- -t~_ :: :~ = ::-r:: = :::1
0

0 10000 20000 30000 40000 50000 60000

method size (bytes)

Figure 3: Verification time for a single method constructed to
exhibit worst-case data-flow behavior. The x-axis indicates the the
size of the method in bytes, which is proportional to the number of
basic blocks n used to construct the method.

The number of basic blocks arranged in this fashion determines
how often the verifier has to iterate over the code. For n basic
blocks the verifier will have to iterate at least n times over the code,
because n is the length of the longest path along which information
has to flow backwards.

Figure 3 shows our measurement for the verification time of a sin­
gle method containing bytecode with increasing maximum data­
flow path length n. This time includes only the time it takes the
verifier to prove safety.1 As can be seen, the verification time
increases quadratically with the code size.

To achieve the runtime necessary for a denial-of-service attack,
several identical methods can be combined into a· single classfile,
multiplying the time required for verification. For example, a class­
file with 100 methods (each 64kb bytecode) modeled after Figure 2
takes well over 600 seconds to verify on a 2.54GHz Pentium 4 with
JVM 1.4.2. While the resulting classfile is fairly large with 6.5MB,
we have shown in [11] that it can be compressed very efficiently
using the standard Java archive format. At the bytecode level, each
method consists of repetitions of an identical bytecode pattern. A
compressed archive of this classfile is only 16kb in size.

4. PROOFING
The rationale of embedding a verifier into the JVM was to ensure
that no unsafe program is ever executed by the virtual machine.
The verifier performs a data-flow analysis to decide whether th~
input program is well-typed or not. As we have explained in the
previous section, the data-flow algorithm involved in this decision
has quadratic worst-case performance. On closer inspection, the
JVM verifier approach is actually over-fulfilling its charter.

To guard the integrity of the virtual machine, the knowledge whether
the input program was well-typed or not is actually irrelevant. All
that matters is that no unsafe (not well-typed or not well-formed)
program code is ever allowed to execute on the virtual machine.
As we will show below, this can be guaranteed without actually
deciding these properties of the input program and without paying
the price for this decision in terms of quadratic worst-case runtime
behavior.

1The Benchmark was performed on a 2.54GHz Pentium 4 machine
with Sun Microsystem's JVM 1.4.2 for Linux. Similar results can
be observed with other JVM implementations.

CFO, Transform into " Copy Pr~qise Type
Recovery (4.1) 'SSA (4.3) .. : Propagation (4.4) : Checking (~.4)' :

I I I
I I I

wellfonned CFG supeificially well-typed valid d~taflow operand ty~es obvious well..!.typed

Figure 4: Proofing a Java program by first recovering the control flow graph, then proofing the data-flow based on preliminary type­
checking using a superficial type system, and then transforming into SSA. After copy propagation to eliminate any dispensable register
move instructions, the CFG is type checked using the full Java type system. While each intermediate step fails for a small number of easily
detectable errors in Java programs, the majority of data-flow problems that traditional have to be decided, are instead corrected. The virtual
machine is shielded from programs that aren't well-typed, but might execute a proofed program for which the original version would have
been rejected by a verifier;

We propose a novel approach that we call bytecode proofing. It
shields the virtual machine from not well-formed or well-typed
program code without actually proving these properties for the in­
put program. Instead, through a series of transformation steps, the
input program P is transformed into a program P' that is guar­
anteed to be both well-formed and well-typed. Figure 4 shows the
individual steps of this transformation. First, the control flow graph
is recovered from the flat bytecode representation and subroutines
are inlined into their call sites. The second phase uses a superfi­
cial type system to perform a preliminary type-checking and stack
merging. This transforms the stack-based bytecode into a register­
based intermediate representation (IR). Then, the IR is brought into
Static Single Assignment (SSA) form to simplify successive anal­
yses. Finally, a precise type-checking is performed on the IR using
the full Java type system. The resulting control flow graph is by
construction well-formed and well-typed and can be transformed
either into a format suitable for interpretation or used to generate
native machine code (IlT compilation). For the latter, the IR is
conveniently already in SSA form, which greatly simplifies many
optimization techniques. In the following sections, we will describe
each step of the bytecode proofing process in more detail.

4.1 Control Flow Graph Recovery
The first step towards bytecode proofing is to recover the control
flow graph (CFG) from the flat Java bytecode sequence. In Java,·
this process is significantly complicated by the existence of sub­
routines in the Java Virtual Machine Language (NML). Subrou­
tines can be best described as small methods within a method, but
they completely execute within the scope of the actual method and
do not take any arguments. When a subroutine is invoked with
j sr, the value of the program counter of the virtual machine is
pushed onto the stack. The subroutine is responsible for popping
this return address from the stack and placing it in a virtual register.
To return to. the caller, is uses the re t instruction with the index
of the virtual register holding the return address. However, it is
also legal for a subroutine to directly return to a specific location
in the method using conditional or unconditional branches. Sub­
routines are interlded to prevent code duplication when compiling
finally-clauses in Java, because code inside a finally-clause
has to be executed before each branch leaving the guarded block
associated with that clause. To reduce overall code size, the code
within the finally-clause is represented at the bytecode level as
a subroutine and before each exit point from the guarded block a
j sr instruction is used to call the subroutine.

The algorithm we use for the recovery of the CFG consists of three
steps: (1) discovering basic block boundaries, (2) compiling the
method body, including exception handlers, but excluding any sub­
routines, and (3) processing all subroutines and their invocations by
inlining the subroutine code into the method body. Our algorithm

FIND-BRANCH-TARGETS(M, BT)
1 for each i E M
2 do BT[i] +- false
3 BT[ENTRY(M)] +-true
4 for each i E M
5 dofor eachtEBRANCH-TARGETS(i)
6 do BT[t] +- true
7 for each e E EXCEPTION-HANDLERS(M)
8 do BT[e] +-true

Figure 5: Determine basic block boundaries for method M by
identifying all potential branch targets, including exception handler
entry points, and recording them in BT. The method entry point
ENTRY(M) has to be marked separately, as it is not necessarily
target of any instruction of the method, but still represents the
beginning of a basic block.

uses the following data structures during construction of the CFG:

BT: array of booleans For each instruction, this array indicates
whether it is the target of a branch instruction.

MAP: array of pointers This array maps branch targets to their
corresponding basic blocks. Not yet compiled basic blocks
are indicated with a nil value.

SR: stack of pointers Subroutine invocations sites (j sr instruc­
tions) are collected using this stack.

RB: pointer This variable points to the basic block immediately
following the j sr instruction that is associated with the sub­
routine currently being processed, or nil otherwise.

RI: integer Index of the virtual register containing the return ad­
dress of the subroutine currently being processed, or 0 other­
wise.

To detect basic block boundaries we use the algorithm shown in
Figure 5. It performs a simple scan of all instructions i of a method
!YI and records in BT any instruction that is the target of a branch
instruction and thus represents the start of a new basic block. This
includes instructions at the entry point of exception handlers. Be­
cause the entry point of a method M is not necessarily explicitly
targeted by any instruction in M, but still represents the beginning
of a basic block, it is flagged automatically. Since every instruction
i is visited at most once, this algorithm has a worst-case runtime
complexity of O(n), with n being the number of instructions in
M.

Knowing the basic block boundaries, we can start to reconstruct
the CFO. As shown in Figure 6, the entry basic block of !YI is built
using BUILD-BASIC-BLOCK, which in turn will recursively build
all basic blocks of M that are reachable from the entry point.

BUILD-CONTROL-FLOW-GRAPH(lvl)
1 RB - NIL
2 for each i E lvI
3 do M AP[i] - NIL
4 BUILD-BASIC-BLOCK(ENTRY(M))
5 PROCESS-SUBROUTINES(SR)

Figure 6: Recover the control flow graph from the bytecode of
a method M. First, BUILD-BASIC-BLOCK is invoked to recur­
sively build the CFG, including exception handlers. As a second
step, all subroutines are inlined into their call sites by PROCESS­
S UBROUTINES.

The actual work of translating the bytecode stream into the basic
block format is performed in BUILD-BASIC-BLOCK. Successfully
processed basic blocks are recorded in MAP to ensure that every
basic block is translated at most once and thus every instruction is
also visited at most once. This yields a complexity of 0 (n) for
constructing the CFG of a method body with n instructions.

During this phase of the CFG construction, any j sr instruction
encountered by BUILD-BASIC-BLOCK is only recorded in SR, and
its branch target (subroutine code) is not immediately processed.
Instead, we temporarily treat the j sr to be a simple branch in­
struction to the immediately following instruction. Array RH is
used to indicate the target block for ret statements if a subroutine
is compiled. Until RB is populated in a later phase with a valid
subroutine return vector, encountering ret instructions causes the
construction to fail (Figure 7, Line 22). Besides all code reach­
able from the entry point of lvI, all local exception handlers are
processed as soon as an instruction is encountered that might raise
them. Like regular basic blocks, each basic block of an exception
handler is recorded in MAP and is thus translated at most once.

Having visited all basic blocks of the method body, PROCESS­
SUBROUTINES (Figure 6, Line 5) is invoked to process the encoun­
tered j sr instructions collected in the worklist SR. The code of
PROCESS-SUBROUTINES is shown in Figure 8. For simplicity, we
expect subroutines to begin with an as tore instruction that pops
the return address from the stack and stores it in a virtual register, as
suggested by the Java Virtual Machine Specification. In Line 29 of
BUILD-BASIC-BLOCK we ensure that while compiling the code of
subroutines, the value of this virtual register is not overwritten. If
the first instruction is not astore, it is assumed that the subroutine
does not make use of ret to return to the subroutine invocation
site. Currently, our algorithm cannot deal with code that tries to
shuffle the return address back and forth on the stack or between
virtual registers. While theoretically this is permissible, we do not
~ee any benefit in allowing to do so and consider this more a bug
m the NM specification than a limitation of our CFG construction
algorithm. So far we have not encountered any compiler generated
Java bytecode that did not fulfill this requirement.

Each subroutine invocation recorded in SR is processed separately.
First, the basic block immediately following this j sr instruction is
recorded in RB. The index at which the as tore instruction at the
beginning of the subroutine stores the return address is recorded in
RI before BUILD-BASIC-BLOCK is invoked to process the subrou­
tine code starting with the instruction following the initial as tore.

Subroutines can be terminated either by a ret instruction or by
transferring the control flow back to the method body by branch­
ing to an already processed basic block as indicated by MAP. To

BUILD-BASIC-BLOCK(i)
1 if MAP[i] =J NIL
2 then return MAP[i]
3 NEW(b)
4 MAP[i] - b
5 while i # NIL
6 do if BT[i] = true and JbJ =J O
7 then n - BUILD-BASIC-BLOCK(i)
8 ADD-'BRANCH-TARGET(b,n)
9 return b

10 switch
11 case i = UnconditionalBranch :
12 t - BUILD-Bf\SIC-BLOCK(TARGET(i))
13 ADD-BRANCH-TARGET(b, t)
14 return b
15 case i = ConditionalBranch :
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

t - BUILD-BASIC-BLOCK(TARGET(i))
ADD-BRANCH-TARGET(b, t)

case i = j sr:

PUSH(SR, i)
case i = ret:

if RB= NIL
then error "retoutside a subroutine"

if RI =J REGISTER-lNDEX(i)
then error "Wrong register used with ret"

ADD-BRANCH-TARGET(b,RB)
return b

case i = RegisterStore :
if RB# nil andRI= REGISTER-INDEX(i)

then error ''Attempt to modify return address"

case default

i - i.next

Figure 7: Build a basic block by translating instructions until
we reach a branch instruction. Using the information recorded
previously by FIND-BRANCH-TARGETS, a new basic block is
started for every instruction that is a branch target. Subroutine
invocations are not immediately processed, but instead recorded in
SR.

PROCESS-SUBROUTINES(SR)
1 MAP' f-MAP
2 while (i f- POP(SR)) =I= NIL
3 do MAP f-MAP 1

4 i f- TARGET(i)
5 if i = ReferenceRegisterStore
6 then RI f- REGISTER-INDEX(i)
7 RB f- MAP[i.next]
8 bf- BUILD-BASIC-BLOCK(i)
9 REDIRECT-JSR(i, b)

Figure 8: Process one by one every subroutine collected in the
worklist SR. If the subroutine records its return address in a local
variable, this information is retained in RI and RB, where RI
contains the index of the virtual register containing the return
address and RB points to the basic block immediately following the
subroutine invocation. This information is used by BUILD-BASIC­
BLOCK to identify the target of any ret instruction it encounters·
within the subroutine code.

ensure that each subroutine starts out with a list of basic blocks
belonging to the method body only, MAP is copied to MAP' after
the method body was processed and MAP is initialized from MAP'
for every subroutine processed. If a ret instruction is encountered,

·its virtual register index must match RI. If this is not fulfilled, the
CFG construction fails (Figure 7, Line 24). For correct Java code,
this property is guaranteed as the JVM Specification does not allow
subroutine code to "overlap". As we process each subroutine one
by one, each ret instruction we encounter must relate to the sub.,.
routine we are currently processing. If such a ret instruction is
located, it is transformed into a branch back to the basi~ block RB
immediately following the j sr that called the subroutine currently
being process.

It is important to remember that even while processing a subroutine,
any additional j sr we encounter is only recorded in the work-list
SR where it will be picked up later by PROCESS-SUBROUTINES.

The j sr instruction, after being processed, is replaced with a branch
instruction to the subroutine entry. In contrast to instructions in the
method body, subroutine code is not guaranteed to be visited only
once. Instead, subroutine code is inlined into the CFG for each
subroutine invocation with j sr. Thus, the worst-case runtime of
PROCESS-SUBROUTINES is O(j * m), with j being the number of
subroutine invocations and m being the largest number of instruc­
tion in any subroutine. It is obvious that for certain (admittedly
not very meaningful) programs, O(j * m) could exceed O(n), for
example if a method consists mostly of subroutine invocations to a
single subroutine with m > 1.

While theoretically this runtime is no longer O(n), we suggest
to view the subroutine construct of NML as a form of structural
compression. The subroutine construct was introduced into the
Java bytecode format to prevent code duplication that would have
otherwise resulted from compiling the Java finally clause. If we
consider n to be the number of instructions of a method before
applying this form of compression, our algorithm is indeed 0 (n).
The inlining of subroutine code into the CFG as performed by
our algorithm is effectively "uncompressing" the bytecode to its
original form.2

2For similar reasons, Sun Microsystems is considering to drop the
subroutine construct from future versions of the NM.

4.2 Proofing the Data Flow
Having obtained the control flow graph, we move on to translat­
ing the the stack-based Java bytecode representation to a typed,
register-based intermediate representation (IR) that we will use for
further analysis. Unfortunately, this process is anything but trivial
for Java bytecode and traditionally requires a data-flow analysis to
infer the correct type of stack values at join points in the control
flow. The left side of Figure 9 shows such a join point. Basic
block (b) leaves a value of type B on the stack before branching to
(a). Basic block (c) branches to the same basic block, but leaves
instead a value of type C on the stack. At the entry of (a), the stack
can thus contain a value of either type B or C, in which case we
have to infer the nearest common supertype of B and C, which
is A. Since. often the structure of the control flow graph is not
obvious, basic blocks are translated with premature assumptions
regarding the type of certain stack slots and are later iteratively re­
evaluated using additional information discovered in the analysis.
The same kind of iterative type inference has to be performed for
virtual machine registers, with the additional complication that reg­
isters are allowed to contain values with conflicting or not statically
determinable types as long as the code does not attempt to read such
a register. Traditionally, such type inference problems are solved
with a data-flow analysis.

Since we aim to provide an efficient alternative to data-flow anal­
ysis for bytecode verification, we cannot rely on a DFA based al­
gorithm as part of our proofing approach. Instead, we construct a
preliminary intermediate representation based on a superficial type
system that distinguishes only between scalar types and a generic
reference type (that represents all object types defined in Java. The
mapping function r translates Java types into this superficial type
system:

r(T) = { T: T E {byte, short, char, int, long, float, double}
(: else

As shown on the right hand of Figure 9, this reduced type system
eliminates the need to perform type inference at join points in the
control flow to merge stack states: Both A and B are mapped
to (. This greatly simplifies the merging of stack states. Either
the superficial type of each .stack location is identical for all stack
states being merged, or the stacks are incompatible and the proofing
process is aborted. For each stack location s of type Ta we can cal­
culate I'(Ta) in a single scan over the bytecode, while determining
Ta itself would require to perform a DFA. However, while ensuring
simple and efficient construction, using the superficial type system
does not prevent incompatible reference types from being merged.
This problem will be addressed in a later phase of our algorithm
and we will revisit this issue shortly.

Like the types for stack locations, the types of virtual registers
must be tracked throughout the code. In Java, virtual registers are
addressed by an index only. Every time a value is written to a
virtual register, the virtual register assumes the type of that value.
It is the verifier's responsibility to ensure that values are read back
from registers with the proper type. For every join pol.nt in the
control flow, type maps for virtual registers have to be reconciled.
If the same virtual register holds values of incompatible type along
incoming control flow edges, its type is set to T to indicate that this
register must not be read back until it is overwritten with a value of
known type (left side of Figure 10).

(1) (2)

Figure 9: (1) A join point in the control flow is shown that requires
type inference to determine the correct type of the value on top
of the stack when using the full Java type system. (2)·The same
operation is performed using a superficial type system obtained
by applying the mapping function r to each type. The need for
iterative type inference is eliminated, as all Java object types are
replaced by a single type (.

clfil~
\'··········-···-··

\
'•,

.................

(2)

Figure 10: Proofing overlapping live ranges of values with different
types in the same virtual register Vl. The right side of the figure
shows how we use separate register planes per superficial type to
eliminate any potential live range collisions.

Verifying proper handling of virtual registers requires the under­
standing of the live ranges of values stored in them. This infor­
mation can easily be calculated during the DFA traditionally per­
formed for verification. However, this option is not available to
us for obvious reasons. Instead, we opt to guarantee safety by
proofing any potentially incorrect handling of virtual registers. In­
correct handling of registers can occur in two different ways: (1)
code can attempt to read a value from a register with an incorrec­
t/incompatible type and (2) code can try to read a register that is
not yet initialized. (1) can be prevented easily by reinterpreting
how register read/write· instructions address registers. Instead of
identifying registers by an index number, we introduce separate
register planes for each type in the superficial type system. Thus,
an iload n instruction will never be able to read· anything but an
integer from a register because its index n refers to the nth integer
register. For correct code, this reinterpretation of the instruction set
is semantically equivalent as it affects only code that (illegally) tries
to overlap the live ranges of values with different types in the same
register. As shown on the right side of Figure 10, we can correct
such overlapping live ranges. The istore 1 and astore 1 in­
structions store their values in completely independent registers on
different register planes even though they both use the same register
index 1. Both load instructions in the join node are thus valid.

bytecode

''ifoiid,1;,

·. iloacl2 <·
.... ·· i~dd

istore 1

intermediate
representation stack state

I I
I C I

-- fI'l I I l:iJ 1e1

-------- [ill
t-""'-~~ ___ ,-, 0J

I C I

',',,~
I I
I C I

Figure 11: Transforming stack-based bytecode into a register­
based intermediate representation. Ii and h correspond to virtual
registers while I~, 14, and I~ are additional temporary registers
newly allocated to hold values previously stored on the stack.

4.3 Transforming the CFG into SSA
Ensuring that no register is read before a value has been assigned to
it requires the calculation of intraprocedural DEF-USE chains [1]
for the CFO. We do this by transforming the CFO intq the Static
Single Assignment (SSA) form [29, 2, 8]. As the construction of
a SSA representation is significantly more complicated for a stack­
based representation, we eliminate the stack and transform the code
to a register-based IR. Starting at the entry point and with an empty
stack, we visit each instruction and allocate a new virtual register
every time an instruction calculates a new intermediate result. We
also maintain an abstract stack to track which virtual register has to
be substituted when instructions expect to get their argument from
the stack (Figure 11).

Each basic block is visited exactly once, thus this step again can be
completed in linear time. Join nodes that are reached with a non­
empty stack expect the value to reside in a particular register. move
instructions are added to predecessor basic blocks to ensure that the
value is copied to the appropriate register before branching to the
join node. The resulting register-based IR is transformed into SSA
using the DJ-Graph algorithm [30, 31]. In [31], the authors have
shown that it is possible to transform into SSA [6] and to place
</>-instruction in linear time (per variable). Transforming into SSA
also implicitly checks that all registers are defined before their use
and any program containing undefined uses of registers is rejected.

4.4 Precise Type Checking
Up to this point, we have only considered the superficial types
of values. This allowed us to shortcut the iterative DFA usually
required for this step, and we were able to transform the bytecode .
into a register-based CFO in SSA form. However, to ensure that
the code is indeed well-typed, we have to re-evaluate the code
based on the original Java type system. For this, we first perform a
copy propagation sweep over the CFO, which is trivial in SSA: For
all registers defined by a move instruction, we record the source
register in a table. In a second iteration over the code, all uses
of such registers are replaced with their definition and all move
instructions are deleted.

As shown in Figure 12, pruning all move instructions from the
CFO directly connects all uses of registers with their definition
site. This automatically removes all ambiguities introduced by
the dynamically typed virtual registers. While the traditional Java
verification algorithm has to calculate the precise type of a value
that is stored in a virtual register and has to make sure it is read
back with the proper type, we have effectively skipped this step by
propagating the real definition to the use site. This dramatically
simplifies type checking. We simply have to ensure that each use

(1)

(2) (3)

'(~+;,,; .PC(~,.{&)

Figure 12: Precise type checking: The stack-based bytecode (1)
is transformed to a register-based representation (2). Both push
instructions store their return value in a temporary register ((' 2

and (' 3). The temporary registers are then assigned to (1, which
corresponds to the NM register 1 addressed by the astore
instructions. (3) The IR is transformed into SSA and copy
propagation is performed. The temporary register (' 4 defined by
the ¢-instruction has the type A, which is the common ancestor of
the operand types of the ¢-node.

refers to a definition with a compatible type. As registers are al­
ways defined exactly once in SSA, this is again simple and can be
performed in a single linear scan over the code.

Join points in the control flow that cause so much work for the
Java verifier are represented by ¢-nodes in our CFG. For each ¢­
node, we only have to check that all operands are compatible. Type
inference can be done in a single step as all incoming types are
known at once. A register defined by a ¢-node has exactly the same
type as all the operands of the ¢-node-or a common ancestor if the
¢-node has operands with different (but compatible) types. If a¢­
node contains any operands for which no common ancestor can be
found (incompatible), the program is not well-typed and is rejected.

5. VERIFICATION BY PROOFING
After all steps described in the previous section, the intermediate
representation is guaranteed to contain a (1) well-formed and (2)
well-typed program. (1) results from the internal representation
as a control flow graph, and (2) results from the SSA form and
the additional type checking we performed for all uses of register
values, and in particular ¢-node operands. As we have mentioned
earlier, being able to construct a well-formed, well-typed IR for a
Java program using the algorithm described in this paper does not
necessarily mean that the input program was well-typed according
to the Java specification. As we have seen in the previous section,
only a small number of obvious syntactical and semantical errors
are rejected; in particular, those that can be decided in linear time.
More complex data-flow related potential type errors are instead
corrected by reinterpreting the Java bytecode representation and
using typed register planes.

Moreover, our approach has another subtle advantage over tradi­
tional DFA-based bytecode verification. Resulting from certain
features in the Java source code language [12] and some restric­
tions in the specification of the Java bytecode verifier, a number
of legal Java source code programs exist that cannot be verified
using traditional verifiers. Two examples for such programs were
published by Stiirk et al. in [28] and are shown in Figure 13.

The first ex.ample (Testl) contains a conditional return statement
encapsulated in a try block. If b is true, the method terrni-

1: class Testl {
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13: }

int ml(boolean b) {
int i;

}

try {
if (b)

return 1;
i=2;

} finally {
if (b) i=3;

}
return i;

1: class Test2 {
2: int m2(boolean b)
3: inti;
4: L: { try {
5: if (b) return 1;
6: i=2;
7: if (b) break L;
8: } finally {
9: if (b) i=3; }

10:
11:
12:
13: }
14: }

i=4;
}
return i;

Figure 13: Two Java source code programs that can be compiled
by a Java compiler, but are not verifiable using the standard DFA­
based verifier. Bytecode proofing, in contrast, allows the programs
to execute.

nates in line 6 with the return value 1. However, before returning
to the caller, the finally-clause still has to be executed. The
finally-clause sets i to 3 if bis true, which is actually moot in
this case as the return value was determined to be 1. On the other
hand, if bis false, i will be set to 2 in line 7, the try block ends,
which means that the finally-clause has to be invoked. As b
is false now, i remains unchanged (line 9) and 2 is returned in
line 11.

At the bytecode level, a finally-clause is represented by a sub­
routine, which is called every time the finally-clause has to be
invoked. Unfortunately, from the verifier's perspective, this partic­
ular subroutine is not verifiable, because the Java verifier specifica­
tion [19] requires each subroutine to have a uniq~e stack and virtual
register state for each of its instructions. This is, however, no~ the
case in this example. If the subroutine representing the finally­
clause is triggered in line 6 by the return statement, the register
holding the local variable i is not initialized. On the other hand,
if the subroutine is called after completing the guarded block, i
(and the register holding it) is initialized and contains a valid value.
As the local variable holding i is not defined along all paths, it is
assumed to be not usable when the return statement is reached in
line 11, which in turn does not verify because i is not defined-or
at least the verifier cannot prove that it is defined.

In contrast, our bytecode proofing algorithm is not fooled by the
ambiguity of the data-flow through the subroutine. Since we inline
the subroutine code into each call site, the data-flow through the
subroutine is reconsidered separately for each call site.3 Thus, the
algorithm is able to see the definition of i in line 7 and the return
statement in line 11 is recognized to be valid.

The second example (Test2, Figure 13) is again not verifiable
using traditional means, because the verifier is not able to see the
definition of i at line 6 as the data flow is obfuscated by the sub­
routine invocation. As in the previous example, this definition of i
becomes obvious if for each subroutine the data-flow is considered
separately.

To ensure that all valid Java source code programs can pass the
verifier in bytecode form, Stiirk et al. proposed in [28] a number of
additional restrictions for the Java source code language. Using our
bytecode proofing approach, however, these additional restrictions

3Considering the data-flow separately for eac~ subroutine in~oca­
tion is the reason why our CFG recovery algonthm has only lmear
complexity w.r.t. the "uncompressed" size of the bytecode with all
subroutines inlined into their respective invocation sites.

6

5
~
-0
0 4
~
E
:E' 3
g?
.s 2
Q)

E
:;:::

0

i J i X verification XX

: ~~:~I::~~~:!:: ~~~:t~ ~l~~;~~~~=l~::
I ! k~x +J.+++++t++++1++

~=~~~p:·~·~·~·~5€~**¥r---··~+-······r ... · .. ··········r·················r······
0 10000 20000 30000 40000 50000 60000

method size (bytes)

Figure 14: Comparing the performance of the traditional verifier
with the performance of bytecode proofing for a difficult-to-verify
method.

are no longer necessary.

6. IMPLEMENTATION
We have implemented the bytecode proofing algorithm described
in this paper as part of our network-centric mobile code frame­
work (24]. The choice of Java itself as our implementation lan­
guage was sub-optimal in retrospect, as far as performance is con­
cerned, in particular when trying to evaluate linear time algorithms.
For a more thorough quantitative analysis and comparison to exist­
ing verifiers we will have to port our implementation to C or C++,
which are more commonly used in this domain.

Even though our impleinentation is an early prototype, we expect it
to be free of any major vulnerabilities, because the code handed to
the virtual machine is in a format that guarantees, by construction,
that the code is well-formed and well-typed. It is, .however, much
more difficult and time consuming to ensure that the implementa­
tion is correct in terms of producing a semantically equivalent CFG
for the input program and thus would produce the expected result
when interpreted or compiled to native code. Since no established
metric exists for verifier and compilation correctness, we will limit
ourselves here to a performance comparison of the traditional ver­
ifier algorithm and bytecode proofing. Figure 14 shows how the
two algorithms perform in case of the worst-case data-flow scenario
described in Section 3. The time shown for bytecode proofing does
not include the time to transform the CFG into SSA, because we
are currently using the standard SSA transformation component
available in our mobile code framework, which is based on (8) and
does not have linear time complexity. We plan to replace the SSA
transformation with the more efficient DJ-graph algorithm in the
near future.

7. RELATED WORK
Java bytecode verification has been explored quite extensively in
the past (18, 32). In addition to the informal description of the
JVM (19), a number of formal specifications of the JVML and its
verifier have been proposed (9, 10), and proven to be sound (25, 14,
15, 16, 33, 5). Resulting from the formalization of the verification
process, improvements for the original specification have been pro­
posed [7, 28). In this context, subroutines are of particular interest
and several type systems have been proposed for them (34, 23, 26,
17). All these approaches have in common that they rely on some
form of iterative data-flow analysis (18, 27) to decide type-safety
and thus have a quadratic worst-case runtime complexity.

Proof-carrying code (PCC) (21, 20] addresses this problem by re­
lieving the code consumer of the burden to verify the code. Instead,
the code producer computes a verification condition based on a
public safety policy and proves it to be true for the program. This
proof is shipped to the code consumer along with the code. Upon
receipt, the code consumer only has to recompute the verification
condition and can then check whether the attached proof indeed
establishes the verification condition as claimed by the code pro­
ducer.

The bytecode proofing approach presented in this paper was in
many ways inspired by the work on PCC. Just as with PCC, we
try to avoid having to prove type safety on the code consumer side
by not deciding through analysis whether mobile code is safe or
not, but by merely guaranteeing that the virtual machine is shielded
from code that is not well-typed. While both approaches, PCC and
bytecode proofing, require only a linear effort on the code con­
sumer side, in practice a proof checker for PCC is much less com­
plex and easier to implement than the proofing process described
in this paper. However, this systematic advantage for PCC does not
come entirely for free as additional information has to be shipped to
the code consumer, which inflates the size of mobile code compo­
nents. In this regard, bytecode proofing has the advantage that it can
operate on the standard Java classfile format [19) and does not rely
on any additional annotations. While more recent improvements
over the original PCC idea have significantly reduced the sizes of
the proofs and the verifier [22, 4), we still believe that our approach
is a meaningful alternative to PCC in certain domains, in particular
if backward compatibility to existing, un-annotated, Java code is
desired.

Inherently safe mobile code representation formats such as Safe­
TSA [3] eliminate the need for verification as mobile code is stored
in a self-consistent format that cannot represent anything but well­
formed and well-typed programs. Just like PCC, such formats have
a systematic advantage over bytecode proofing, but require aban­
doning the existing Java classfile format, which is not always ac-
ceptable. ,

8. CONCLUSIONS
Guarding the virtual machine from malicious code has tradition­
ally been accomplished by deciding the type safety of the input
program. This decision can require quadratic runtime behavior
in certain cases, allowing malicious programs to stall the verifier
(and thus the entire virtual machine) for a prolonged time in what
can. amount to a denial-of-service attack. Bytecode verification
through iterative data-flow analysis is not only expensive, but also
not strictly required if the only goal is to protect the virtual machine
from malicious code.

We have presented bytecode proofing as an alternative approach
to verification. It guarantees through a series of transformations
that malicious programs are either rejected or transformed into a
well-formed and well-typed program that no longer threatens the
integrity of the virtual machine. By avoiding the unnecessary over­
head of proving safety, and merely proofing the input program to
guarantee that the code received by the virtual machine is safe, we
are able to complete this transformation in linear time, which is
a significant improvement over the quadratic worst case runtime
complexity of bytecode verification.

The key contribution of this work is the introduction of a superfi­
cial type system to efficiently construct a preliminary register-based

intermediate representation from Java bytecode. This preliminary
IR allows us to reason about the data-flow before type-safety is
established through precise type-checking using the full Java type
system. Thus, we can transform the intermediate representation
into SSA form and perform copy propagation before knowing that
the program is actually type-safe. This allows us to perform the
actual precise-type checking using SSA form and in linear time.

As we have shown in Section 5, our bytecode proofing approach
has not only a better worst-case performance than traditional byte­
code verification, but also allows us to execute a certain class of
legal Java programs that are not verifiable by existing JVMs~ As
an additional benefit, our bytecode proofing algorithm provides a
well-formed and type-checked control flow graph in SSA to the
virtual machine, eliminating the need to separately transform the
bytecode into SSA for just in time compilation.

9. FUTURE WORK
Evaluating a new verifier algorithm requires an extensive set of test
cases. While our prototype implementations accepts a large test
set of publicly available Java programs and libraries, and rejects
(or proofs) a number of hand constructed not well-typed programs,
this can hardly be seen as a general proof of correctness. It would
be desirable to test our implementation more rigorously using an
established test set. An extensive set of test cases is available from
Sun Microsystems as part of the Java Compatibility Kit (JCK).
However, the JCK is available to commercial JVM implementors
only. A free alternative to JCK is the Mauve Project [13], but it
offers only very limited coverage of many critical areas of the JVM.
We are currently working on adding missing parts to the test cases
provided by the Mauve Project, to have a more complete testing
~nvironment for our prototype implementation.

Another area for improvement is the handling of subroutines. The
algorithm described in this paper does not currently allow a subrou­
tine to use ret with anything but the virtual register that the initial
as tore stored the return address in. In particular, return addresses
cannot be moved to other virtual registers and nested subroutine
calls cannot return to the calling site of outer subroutines. While
this kind of code is not actually generated by any compiler we
know of, from a more academic perspective this is still a restriction
we would prefer to eliminate. We are exploring how to properly
track return addresses in registers without giving up the linear time
complexity of the algorithm.

10. ACKNOWLEDGMENT
This research effort was sponsored by the Office of Na val Research
(ONR) under agreement N00014-01-l-0854. The U.S. Govern­
ment is authorized to reproduce and distribute reprints for Govern­
mental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of ONR or
any other agency of the U.S. Government.

We are indebted to Christian H. Stork and Vasanth Venkatachalam
for valuable comments on earlier versions of this paper.

11. REFERENCES
[l] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
Reading, MA, 1986.

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting
Equality of Values in Programs. In Proceedings of the 15th
ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 1-11, San Diego, California,
January 1988.

[3] W. Amme, N. Dalton, J. von Ronne, and M. Franz. SafeTSA:
A Type Safe and Referentially Secure Mobile-Code
Representation Based on Static Single Assignment Form. In
Proceedings of the ACM SIGPLAN 'OJ Conference on
Programming Language Design and Implementation, pages
137-147, June 20-22, 2001. SIGPLAN Notices, 36(5), May
2001.

[4] A. Appel. Foundational Proof-Carrying Code. In
Proceedings of the 16th Annual IEEE Symposium on Logic
in Computer Science (LICS), pages 247-256. IEEE
Computer Society Press, 2001.

[5] D. Basin, S. Friedrich, J. Posegga, and H. Vogt. Java Byte
Code Verification by Model Checking. In 11th International
Conference on Computer-Aided Verification (CAV'99),
number 1633 in Lecture Notes in Computer Science, pages
491-494, Trento, Italy, July 1999. Springer-Verlag.

[6] G. Bilardi and K. Pingali. Algorithms for Computing the
Static Single AssigrnnentForm. Journal of the ACM (JACM),
50:375-425, may 2003.

[7] A. Coglio. Improving the Official Specification of Java
Bytecode Verification. In Proceedings of 3rd ECOOP
Workshop on Formal Techniques for Java Programs, June
2001.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman; and
F. K. Zadeck. Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph. ACM
Transactions on Programming Languages and Systems,
13(4):451-490, October 1991.

[9] S. N. Freund and J. C. Mitchell. A Formal Specfication of the
Java Bytecode Language and Bytecode Verifier. In
Proceeings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA '99), volume 34.10 of ACM Sigplan
Notices, pages 147-166, N. Y., 1-5 1999. ACM Press.

[10] S. N. Freund and J.C. Mitchell. The Type S,ystem for Object
Initialization in the Java Bytecode Language. ACM
Transactions on Programming Languages and Systems,
21(6):1196-1250, 1999.

· [11] A. Gal, C. W. Probst, and M. Franz. A Denial of Service
Attack on the Java Bytecode Verifier. Technical Report
03-23, University of California, Irvine, School of
Information and Computer Science, 2003.

[12] J. Gosling; B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[13] A. Green. The Mauve Project Home.Page, November 2003.
http://sources.redhat.com/mauve/.

(14] G. Klein. Verified Java Bytecode Verification. PhD thesis,
Institut fiir Informatik, Technische Universitat Miinchen,
2003.

[15] G. Klein and T. Nipkow. Verified bytecode verifiers.
Theoretical Computer Science, 298(3):583-626, April 2003.

[16] G. Klein and M. Strecker. Verified Bytecode Verification and
type-certifying Compilation. Journal of Logic and Algebraic
Programming, 2003. To appear.

[17] G. Klein and M. Wildmoser. Verified By'tecode Subroutines.
Journal of Automated Reasoning, 30(3-4):363-398, 2003.

[18] X. Leroy. Java Bytecode Verification: Algorithms and
Formalizations. Journal of Automated Reasoning,
30(3/4):235-269, 2003.

[19] T. Lindholm and F. Yellin~ The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[20] G. C. Necula. Proof-carrying code. In Proceedings of the
24th ACM SIG PLAN Symposium on Principles of
Programming Languages (POPL), Paris, France, January
1997.

[21] G. C. Necula and P. Lee. Safe Kernel Extensions Without
Run-Time Checking. In USENIX, editor, 2nd Symposium on
Operating Systems Design and Implementation (OSDI '96),
pages 229-243, Berkeley, CA, USA, 1996. USENIX.

[22] G. C. Necula and S. P. Rahul. Oracle-based Checking of
Untrusted Software. ACM SIGPLAN Notices,
36(3):142-154, 2001.

[23] R. O'Callahan. A Simple, Comprehensive Type System for
Java Bytecode Subroutines. In Proceedings of the 26th ACM
SIG PLAN Symposium on Principles of Programming
Languages (POPL), pages 70-78, San Antonio, Texas, 1999.

[24] C. W. Probst, A. Gal, and M. Franz. Code Generating
Routers: A Network-Centric Approach to Mobile Code. In
Proceedings of the IEEE Computer Communications
Workshop (CCW 2003), Laguna Niguel, CA, 2003.

[25] C. Pusch. Proving the Soundness of a Java Bytecode Verifier
Specification in Isabelle/HOL. Lecture Notes in Computer
Science, 1579:89-103, 1999.

[26] Z. Qian. A Formal Specification of Java Virtual Machine
Instructions for Objects, Methods and Subrountines. In
Formal Syntax and Semantics of Java, pages 271-312, 1999.

[27] Z. Qian. Standard Fixpoint Iteration for Java Bytecode
Verification. ACM Transactions on Programming Languages
and Systems, 22(4):638-672, 2000.

[28] R. Stark and J. Schmid. Java Bytecode Verification is not
possible (Extended Abstract). In R. Moreno-Dfaz and
A. Quesada-Arencibia, editors, Formal Methods and Tools
for Computer Science (Proceedings of Eurocast 2001), pages
232-234, Canary Islands, Spain, February 2001. Universidad
de Las Palmas de Gran Canaria.

[29] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value
Numbering and Redundant Computations. In Proceedings of
the 15th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL), pages 12-17, San Diego,
California,January 1988.

[30] V. Sreedhar, G. Gao, and Y. Lee.DJ-Graphs and their
Applications to Flowgraph Analyses. Technical Report
ACAPS Memo 70, McGill University, May 1994.

[31] V. C. Sreedhar and G. R. Gao. A Linear Time Algorithm for
Placing ¢>-nodes. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 62-73, San
Francisco, California, 1995.

[32] R. Stark, J. Schmid, and E. Borger. Java and the Java Virtual
Machine: Definition, Verification, Validation.
Springer-Verlag, 2001.

[33] R. F. Stark and J. Schmid. Completeness of a Bytecode
Verifier and a Certifying Java-to-JVM Compiler. Journal of
Automated Reasoning, 30(3-4):323-361, 2003.

[34] R. Stata and M. Abadi. A Type System for Java Bytecode
Subroutines. ACM Transactions on Programming Languages
and Systems, 21(1):90-137, 1999.

[35] F. Yell,in. Low level security in Java. In O'Reilly and
Associates and Web Consortium (W3C), editors, World Wide
Web Journal: The Fourth International WWW Conference
Proceedings, pages 369-380. O'Reilly & Associates, Inc.,
1995.

