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The safoty of the Java Virtual Machine is founded on bytecode verification. Although 
verification complexity appears to roughly correlate with program size in. the average 
case, its worst-case behavior is .quadratic. This can be exploited for denial-of-service 

·attacks using relatively short programs (applets or agents) specifically crafted to keep 
the receiving virtual machine's verifier busy for an inordinate amount of time. Instead 
of the existing, quadratic-complexity verification algorithm, which needs to decide the 
validity of any given bytecode program, we present a linear-complexity alternative that 
merely ensures that no unsafe program is ever passed on to the virtual machine. Hence, 
in certain cases, our algorithm will modify an unsafe bytecode program to make it safe, a 
process that we call 'proofing". Proofing does not change the semantics of programs that 
would have passed the original bytecode verifier. For programs that would have failed 
verification, our algorithm will, in linear time, either reject them, or transform them into 
programs (of unspecified semantics) that are guaranteed to be safe. Our method also 
solves a long-standing problem, in which for certain perfectly legal Java source programs 
the bytecodes produced by Java compilers are erroneously rejected by existing verifiers. 
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ABSTRACT 
The safety of the Java Virtual Machine is founded on bytecode 
verification. Although verification complexity appears to roughly 
correlate with program size in the average case, its worst-case be­
havior is quadratic. This can be exploited for denial-of-service 
attacks using relatively short programs (applets or agents) specif­
ically crafted to keep the receiving virtual machine's verifier busy 
for an inordinate amount of time. 

Instead of the existing, quadratic-complexity verification algorithm, 
which needs to decide the validity of any given bytecode program, 
we present a linear-complexity alternative that merely ensures that 
no unsafe program is ever passed on to the virtual machine. Hence, 
in certain cases, our algorithm will modify an unsafe bytecode 
program to make it safe, a process that we call "proofing". 

Proofing does not change· the semantics of programs that would 
have passed the original bytecode verifier. For programs that would 
have failed verification, our algorithm will, in linear time, either 
reject them, or transform them into programs (of unspecified se­
mantics) that are guaranteed to be safe. 

Our method also solves a long-standing problem, in which forcer­
tain perfectly legal Java source programs the bytecodes produced 
by Java compilers are erroneously rejected by existing verifiers. 

1. INTRODUCTION 
Mobile programs can be malicious. To protect itself, a host that 
receives such mobile programs from an untrusted party or via an 
untrusted network connection will want a guarantee that the mobile 
code is not about to cause any damage. The Java _Virtual Machine 
(NM) pioneered the concept of code verification by which a re­
ceiving host examines each arriving mobile program to rule out 
potentially malicious behavior even before starting execution. 

Unfortunately, the verification algorithm employed by the NM has 
a worst-case execution complexity that increases quadratically with 
method length. This can be exploited in a denial of service attack 

on the computer hosting the NM. It is possible to systematically 
craft bytecode programs (applets or agents) that exhibit worst-case 
verification complexity. A JVM that receives. such a program is 
effectively shut down while verification is underway. 

We have demonstrated this attack in previous work [11]. Using the 
standard NM verification algorithm, relatively short programs that 
were specifically designed for difficulty of verification but only a 
few thousand bytes in length, led to verification efforts in the order 
of hours on workstation-class machines. Therefore, it would appear 
advisable to incorporate some time-out mechanism into bytecode 
verifiers, although no current JVM verifier to our knowledge im­
plements such a scheme. 

We present an alternative to Java's verification mechanism, which 
we call bytecode proofing, that has linear, rather than quadratic 
complexity. The unique feature of bytecode proofing is that it does 
not attempt to decide whether an arbitrary bytecode program is 
actually safe. Instead, it guarantees that (a) all code forwarded to 
the virtual machine for execution is safe, and (b) the semantics of 
this code are identical with those of the original program in all cases 
in which the traditional verifier would have returned a verdict of 
"safe". In cases in which the standard verifier would have rejected 
the original bytecode, but ours does not, the semantics of the result­
ing program after transformation by our algorithm are unspecified, 
but safe with respect to the original verification criteria. 

Our approach also solves an old problem with existing bytecode 
verifiers that was first reported by Stark et al. [28]: there exists 
a class of legal Java source code programs that, when compiled 
into NML, cannot be verified using traditional verifiers and are 
erroneously rejected. Our bytecode proofing algorithm does not run 
into these problems and will accept these programs, as it spould. 

The rest of this paper is organized as follows: Section 2 briefly in­
troduces the traditional Java bytecode verification algorithm. Sec­
tion 3 explains how certain properties of this algorithm can be 
exploited, resulting in a denial of service attack. Section 4 intra-· 
duces our approach of proofing mobile code, and Section 5 shows 
how this enables efficient verification. Section 6 describes our . 
preliminary implementation of a bytecode proofer and compares 
its performance with the traditional Java verifier, while Section 7 
discusses related work. In Section 8 we draw conclusions, and 
outline future work in Section 9. 

O· 



Types ={I, A, ... , T} U Classes 
LocVar: N-+ Types, Stack= (Types U {Err})n2:0 

push : Types x Stack -+ Stack, pop : Stack -+ Stack 
State = Stack x Loe Var, ¢ : State x Ins tr -+ State 

¢ ((S, L), iconst n) = (push(I, S), L) 
¢ ((S, L), aconst_null) = (push(A, S), L) 
¢(((I, I, S), L), iadd) = (push(I, S), L) 
¢(((I, S), L), is tore n) = (S, L[n t- r]) 
¢ ((S, L), iload n) = (push(L(n), S), L), if L(n) =I 
¢ (((r, S), L), as tore n) = (S, L[n t- r]), 

if L(n) E Classes 
¢ ((S, L), aload n) = (push(L(n), S), L), 

if L(n) E Classes 
¢(((an, ... , 0:1, S), L), invokes ta tic C.m.sig) = 

(push({3, S), L) 
if sig = (3((31, ... ; f3n) and O:i is subtype of f3n 

Figure 1: Internal state and selected rules for the type-level abstract 
interpreter. 

2. JAVA VERIFICATION 
Java bytecode verification has to ensure that (a) input programs are 
well-formed in that the control flow is properly contained within 
methods and (b) that the data-flow is well-typed. While well-formed­
ness can be decided without much effort, deciding whether a pro­
gram is type-safe is complicated by the NM architecture. 

NM instructions can read and store intermediate values in two 
locations, the stack and virtual registers. These locations are dy­
namically typed in that the same stack location or virtual register 
can hold values of different types at different times. Verification 
~ims to ensure that these locations are used consistently and that 
mtermediate values are always read back with the same types that 
they were originally written as. 

The basic ingredient of every bytecode verifier is an abstract in­
terpreter for Java Virtual Machine Language (NML) instructions. 
Unlike NM, its stacks and virtual registers store types, rather than 
values. Thus, the interpreter translates instructions into operations 
that execute on types. 

Figure 1 shows the definitions for the internal state as well as se­
lected rules of such an interpreter. push and pop have the usual 
definition on stacks; a stack overflow or underflow generates the 
Err state. Note that exceptions do not add to the behavior of the 
abstract interpreter and are hence ignored in this step. 

The rules describe the preconditions for the stack and the register 
component of the internal state. If there is no applicable definition 
for ¢, an error occurs. It is noteworthy that the interpretation of 
method calls such as invokestatic does not actually call the 
m~thod. Instead, it assumes that the method's effect is to push an 
object of type (3 on the stack as described by the method's signature. 

The abstract interpreter described above is implemented by the Java 
verifier [18, 19, 35] through a data flow analysis. The verifier 
iterates for each .method over all reachable instructions. Before 
the first instruction of a method is analyzed, the internal state is 
set to (S,L) E Types x LocVar. Sis initialized to be empty, 
and the local variable mapping function L is set to the types of 
the parameters as described by the method's signature. Using the 

terminology in Figure I, this results in L( i) = f3i for a method 
signature sig = j3 ((31, ... , f3n). All other local variables start 
undefined, that is, they must not be used. Additionally, a changed 
bit is associated with every instruction, but initially is set only for 
the first instruction. This bit signifies that an instruction's input 
states have changed and that the instruction must be verified again 
on the algorithm's next iteration. 

Then, the verifier loops over all instructions i in syntactical or­
der. If changed( i) is trueit verifies i using the rules in Figure 1. 
This ensures, that the stack always has enough and correctly typed 
operands, that the stack will not overflow or underflow, and that 
local variables are initialized before their use and correctly typed 
for instruction i. Verification fails at this step if any of these re­
quirements is not met. 

After verifying an instruction i, the verifier identifies all instruc­
t~ons j that succeed i, either directly or as branch targets or excep­
tion handlers. For every every possible successor j, the state Outi 
?f the stack and the local variables after execution of i are merged 
mto the state lnj before j. For exception handlers, an object of the 
type of the exception is pushed onto the stack component S. 

If j has not been visited before, its incoming state lnj is set to be 
Outi and changed(j) is set. If j has been visited before, the verifier 
computes E = merge( Outi, lnj) and, if E i= lnj, sets changed(j) 
and lnj = E. Two stack states can be merged if the stack depth is 
equal for both of them. Additionally, the types of corresponding 
stack cells must either be equal, or are abstracted by the common 
supertype of the two types. In contrast, two local variable states can 
always be merged: if the types of corresponding variable .abstrac­
tions differ, then the abstraction is either the common supertype in 
the case of references, or the variable is marked as unusable that 
is, may no longer be read. ' 

After having finished one iteration, the verifier checks whether there 
exists an instruction i for which changed( i) is true. If so, it starts 
~nother iteration. Since instructions are visited ill syntactical order, 
m the case of backward jumps the algorithm will never visit the 
target instruction again in the same iteration, but only in the next 
one. 

Interestingly enough, the original verification algorithm for Sun's 
first Java Virtual Machine [19, 35] and its implementation have 
been.adopted with very few modifications by many current NMs. 
Even though the algorithm has a problematic worst-case behav­
ior, it apparently performs quite well for the normal applet- or 
agent-type programs that it was designed for. The accepted wisdom 
seems to be that verification (a) contributes only marginally to the 
startup time of NM bytecode programs and that it (b) will scale in 
some acceptable fashion for larger programs. 

As we will show below, this accepted wisdom is wrong. Rathet 
than the average-case behavior, it is the worst-case behavior that 
needs to be studied in any security-relevant context. We have suc­
cessfully exploited the worst-case behavior of the NM bytecode 
verification algorithm in what amounts to a denial-of-service attack 
on the machine hosting the NM [11]. 

3. AN EXPLOIT OF THE JVM VERIFICA­
TION ALGORITHM 

In this section we will explore the shortcomings of the traditional 
NM verifier in more detail and discuss an example program that 
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iconst 0; istore 1 

3 goto LO 

4 L3: return~ 

5 L2: ( iconst O; ifeq L3~ 
7 aconst null; astore 1 

9 gotoL2 

IO L1: ( iconst O; ifeq L2) 
12 aconst null; astore 1 

14 goto L1 

15 LO:( iconst O; ifeq L1 

17 aconst null; astore 1 

19 goto LO 

Iteration 
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Figure 2: Java bytecode program that takes n iterations to be 
verified using the standard DFA verifier approach. The entry state 
for each basic block depends on the successor basic block. To the 
right of the figure, the local variable states are displayed for each 
iteration of the DFA. The shaded boxes indicate values that have 
changed, the framed boxes indicate instructions that will be visited 
in the next iteration. 

was designed to expose the quadratic worst-case runtime behavior 
of the JVM verifier. While this program is perfectly well-typed and 
will eventually verify, it takes the JVM verifier an excessive amount 
of time to do so. 

The right hand part gives the computed abstraction for virtual reg­
ister 1 (Vl) for several stages during verification. At the e,ntry 
point of the method, an integer constant is loaded into Vl and the 
control is transfered to instruction 15. The verifier will actually not 
follow the branch instruction to the target, but continue to check 
instructions in sequence. However, it sets the bit changed(l5). 
Therefore, once reaching instruction 15, it is interpreted. Since the 
first two instructions after LO constitute a conditional branch, Vl is 
unchanged and the state after instruction 3 is propagat~d. While the 
branch is actually statically predictable in this example, the verifier 
does not consider the ifeq instruction as conditional. Instead, 
changed( 10) is set, and the branch target will thus be interpreted 
in the next iteration. The aeons t._nul 1 instruction 17 loads a 
null value onto the stack, whioh is then stored in Vl. Thus, 
before instruction 19, Vl holds a value of type address (A). The 
unconditional goto at the end of this block transfers control back 
to LO, resulting in changed(l5) being set. 

During the next iteration, the verifier will inspect instructions 10 
and 15, since their input states have changed. As the verifier hits 
instruction 15 again, it invalidates the previous assumption L(l) = 
I, because it now knows that LO .has two predecessing states. The 
one at instruction 3 has L(l) = I, the one at instruction 19 has 
L(l) = A. Thus, the verifier updates L(l) to T, indicating that 
the value is not accessible at this point because its type depends on 
which path was taken to get to LO. 

This discovery also affects the L 1 basic block, which was previ­
ously assumed to be entered with L(l) =I only. Now it is known 
to be entered with L(l) = T. The verifier has thus to iterate over 
the code again to correct the wrong assumptions previously made 
for instruction 10. This process is repeated until all basic blocks 
are verified and a fixed point has been reached. 
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Figure 3: Verification time for a single method constructed to 
exhibit worst-case data-flow behavior. The x-axis indicates the the 
size of the method in bytes, which is proportional to the number of 
basic blocks n used to construct the method. 

The number of basic blocks arranged in this fashion determines 
how often the verifier has to iterate over the code. For n basic 
blocks the verifier will have to iterate at least n times over the code, 
because n is the length of the longest path along which information 
has to flow backwards. 

Figure 3 shows our measurement for the verification time of a sin­
gle method containing bytecode with increasing maximum data­
flow path length n. This time includes only the time it takes the 
verifier to prove safety.1 As can be seen, the verification time 
increases quadratically with the code size. 

To achieve the runtime necessary for a denial-of-service attack, 
several identical methods can be combined into a· single classfile, 
multiplying the time required for verification. For example, a class­
file with 100 methods (each 64kb bytecode) modeled after Figure 2 
takes well over 600 seconds to verify on a 2.54GHz Pentium 4 with 
JVM 1.4.2. While the resulting classfile is fairly large with 6.5MB, 
we have shown in [ 11] that it can be compressed very efficiently 
using the standard Java archive format. At the bytecode level, each 
method consists of repetitions of an identical bytecode pattern. A 
compressed archive of this classfile is only 16kb in size. 

4. PROOFING 
The rationale of embedding a verifier into the JVM was to ensure 
that no unsafe program is ever executed by the virtual machine. 
The verifier performs a data-flow analysis to decide whether th~ 
input program is well-typed or not. As we have explained in the 
previous section, the data-flow algorithm involved in this decision 
has quadratic worst-case performance. On closer inspection, the 
JVM verifier approach is actually over-fulfilling its charter. 

To guard the integrity of the virtual machine, the knowledge whether 
the input program was well-typed or not is actually irrelevant. All 
that matters is that no unsafe (not well-typed or not well-formed) 
program code is ever allowed to execute on the virtual machine. 
As we will show below, this can be guaranteed without actually 
deciding these properties of the input program and without paying 
the price for this decision in terms of quadratic worst-case runtime 
behavior. 

1The Benchmark was performed on a 2.54GHz Pentium 4 machine 
with Sun Microsystem's JVM 1.4.2 for Linux. Similar results can 
be observed with other JVM implementations. 



CFO, Transform into " Copy Pr~qise Type 
Recovery (4.1) 'SSA (4.3) .. : Propagation (4.4) : Checking (~.4)' : 

I I I 
I I I 

wellfonned CFG supeificially well-typed valid d~taflow operand ty~es obvious well..!.typed 

Figure 4: Proofing a Java program by first recovering the control flow graph, then proofing the data-flow based on preliminary type­
checking using a superficial type system, and then transforming into SSA. After copy propagation to eliminate any dispensable register 
move instructions, the CFG is type checked using the full Java type system. While each intermediate step fails for a small number of easily 
detectable errors in Java programs, the majority of data-flow problems that traditional have to be decided, are instead corrected. The virtual 
machine is shielded from programs that aren't well-typed, but might execute a proofed program for which the original version would have 
been rejected by a verifier; 

We propose a novel approach that we call bytecode proofing. It 
shields the virtual machine from not well-formed or well-typed 
program code without actually proving these properties for the in­
put program. Instead, through a series of transformation steps, the 
input program P is transformed into a program P' that is guar­
anteed to be both well-formed and well-typed. Figure 4 shows the 
individual steps of this transformation. First, the control flow graph 
is recovered from the flat bytecode representation and subroutines 
are inlined into their call sites. The second phase uses a superfi­
cial type system to perform a preliminary type-checking and stack 
merging. This transforms the stack-based bytecode into a register­
based intermediate representation (IR). Then, the IR is brought into 
Static Single Assignment (SSA) form to simplify successive anal­
yses. Finally, a precise type-checking is performed on the IR using 
the full Java type system. The resulting control flow graph is by 
construction well-formed and well-typed and can be transformed 
either into a format suitable for interpretation or used to generate 
native machine code (IlT compilation). For the latter, the IR is 
conveniently already in SSA form, which greatly simplifies many 
optimization techniques. In the following sections, we will describe 
each step of the bytecode proofing process in more detail. 

4.1 Control Flow Graph Recovery 
The first step towards bytecode proofing is to recover the control 
flow graph (CFG) from the flat Java bytecode sequence. In Java,· 
this process is significantly complicated by the existence of sub­
routines in the Java Virtual Machine Language (NML). Subrou­
tines can be best described as small methods within a method, but 
they completely execute within the scope of the actual method and 
do not take any arguments. When a subroutine is invoked with 
j sr, the value of the program counter of the virtual machine is 
pushed onto the stack. The subroutine is responsible for popping 
this return address from the stack and placing it in a virtual register. 
To return to. the caller, is uses the re t instruction with the index 
of the virtual register holding the return address. However, it is 
also legal for a subroutine to directly return to a specific location 
in the method using conditional or unconditional branches. Sub­
routines are interlded to prevent code duplication when compiling 
finally-clauses in Java, because code inside a finally-clause 
has to be executed before each branch leaving the guarded block 
associated with that clause. To reduce overall code size, the code 
within the finally-clause is represented at the bytecode level as 
a subroutine and before each exit point from the guarded block a 
j sr instruction is used to call the subroutine. 

The algorithm we use for the recovery of the CFG consists of three 
steps: (1) discovering basic block boundaries, (2) compiling the 
method body, including exception handlers, but excluding any sub­
routines, and (3) processing all subroutines and their invocations by 
inlining the subroutine code into the method body. Our algorithm 

FIND-BRANCH-TARGETS(M, BT) 
1 for each i E M 
2 do BT[i] +- false 
3 BT[ENTRY(M)] +-true 
4 for each i E M 
5 dofor eachtEBRANCH-TARGETS(i) 
6 do BT[t] +- true 
7 for each e E EXCEPTION-HANDLERS(M) 
8 do BT[e] +-true 

Figure 5: Determine basic block boundaries for method M by 
identifying all potential branch targets, including exception handler 
entry points, and recording them in BT. The method entry point 
ENTRY(M) has to be marked separately, as it is not necessarily 
target of any instruction of the method, but still represents the 
beginning of a basic block. 

uses the following data structures during construction of the CFG: 

BT: array of booleans For each instruction, this array indicates 
whether it is the target of a branch instruction. 

MAP: array of pointers This array maps branch targets to their 
corresponding basic blocks. Not yet compiled basic blocks 
are indicated with a nil value. 

SR: stack of pointers Subroutine invocations sites (j sr instruc­
tions) are collected using this stack. 

RB: pointer This variable points to the basic block immediately 
following the j sr instruction that is associated with the sub­
routine currently being processed, or nil otherwise. 

RI: integer Index of the virtual register containing the return ad­
dress of the subroutine currently being processed, or 0 other­
wise. 

To detect basic block boundaries we use the algorithm shown in 
Figure 5. It performs a simple scan of all instructions i of a method 
!YI and records in BT any instruction that is the target of a branch 
instruction and thus represents the start of a new basic block. This 
includes instructions at the entry point of exception handlers. Be­
cause the entry point of a method M is not necessarily explicitly 
targeted by any instruction in M, but still represents the beginning 
of a basic block, it is flagged automatically. Since every instruction 
i is visited at most once, this algorithm has a worst-case runtime 
complexity of O(n), with n being the number of instructions in 
M. 

Knowing the basic block boundaries, we can start to reconstruct 
the CFO. As shown in Figure 6, the entry basic block of !YI is built 
using BUILD-BASIC-BLOCK, which in turn will recursively build 
all basic blocks of M that are reachable from the entry point. 



BUILD-CONTROL-FLOW-GRAPH(lvl) 
1 RB - NIL 
2 for each i E lvI 
3 do M AP[i] - NIL 
4 BUILD-BASIC-BLOCK(ENTRY(M)) 
5 PROCESS-SUBROUTINES(SR) 

Figure 6: Recover the control flow graph from the bytecode of 
a method M. First, BUILD-BASIC-BLOCK is invoked to recur­
sively build the CFG, including exception handlers. As a second 
step, all subroutines are inlined into their call sites by PROCESS­
S UBROUTINES. 

The actual work of translating the bytecode stream into the basic 
block format is performed in BUILD-BASIC-BLOCK. Successfully 
processed basic blocks are recorded in MAP to ensure that every 
basic block is translated at most once and thus every instruction is 
also visited at most once. This yields a complexity of 0 ( n) for 
constructing the CFG of a method body with n instructions. 

During this phase of the CFG construction, any j sr instruction 
encountered by BUILD-BASIC-BLOCK is only recorded in SR, and 
its branch target (subroutine code) is not immediately processed. 
Instead, we temporarily treat the j sr to be a simple branch in­
struction to the immediately following instruction. Array RH is 
used to indicate the target block for ret statements if a subroutine 
is compiled. Until RB is populated in a later phase with a valid 
subroutine return vector, encountering ret instructions causes the 
construction to fail (Figure 7, Line 22). Besides all code reach­
able from the entry point of lvI, all local exception handlers are 
processed as soon as an instruction is encountered that might raise 
them. Like regular basic blocks, each basic block of an exception 
handler is recorded in MAP and is thus translated at most once. 

Having visited all basic blocks of the method body, PROCESS­
SUBROUTINES (Figure 6, Line 5) is invoked to process the encoun­
tered j sr instructions collected in the worklist SR. The code of 
PROCESS-SUBROUTINES is shown in Figure 8. For simplicity, we 
expect subroutines to begin with an as tore instruction that pops 
the return address from the stack and stores it in a virtual register, as 
suggested by the Java Virtual Machine Specification. In Line 29 of 
BUILD-BASIC-BLOCK we ensure that while compiling the code of 
subroutines, the value of this virtual register is not overwritten. If 
the first instruction is not astore, it is assumed that the subroutine 
does not make use of ret to return to the subroutine invocation 
site. Currently, our algorithm cannot deal with code that tries to 
shuffle the return address back and forth on the stack or between 
virtual registers. While theoretically this is permissible, we do not 
~ee any benefit in allowing to do so and consider this more a bug 
m the NM specification than a limitation of our CFG construction 
algorithm. So far we have not encountered any compiler generated 
Java bytecode that did not fulfill this requirement. 

Each subroutine invocation recorded in SR is processed separately. 
First, the basic block immediately following this j sr instruction is 
recorded in RB. The index at which the as tore instruction at the 
beginning of the subroutine stores the return address is recorded in 
RI before BUILD-BASIC-BLOCK is invoked to process the subrou­
tine code starting with the instruction following the initial as tore. 

Subroutines can be terminated either by a ret instruction or by 
transferring the control flow back to the method body by branch­
ing to an already processed basic block as indicated by MAP. To 

BUILD-BASIC-BLOCK(i) 
1 if MAP[i] =J NIL 
2 then return MAP[i] 
3 NEW(b) 
4 MAP[i] - b 
5 while i # NIL 
6 do if BT[i] = true and JbJ =J O 
7 then n - BUILD-BASIC-BLOCK(i) 
8 ADD-'BRANCH-TARGET(b,n) 
9 return b 

10 switch 
11 case i = UnconditionalBranch : 
12 t - BUILD-Bf\SIC-BLOCK(TARGET(i)) 
13 ADD-BRANCH-TARGET(b, t) 
14 return b 
15 case i = ConditionalBranch : 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

t - BUILD-BASIC-BLOCK(TARGET(i)) 
ADD-BRANCH-TARGET(b, t) 

case i = j sr: 

PUSH( SR, i) 
case i = ret: 

if RB= NIL 
then error "retoutside a subroutine" 

if RI =J REGISTER-lNDEX(i) 
then error "Wrong register used with ret" 

ADD-BRANCH-TARGET(b,RB) 
return b 

case i = RegisterStore : 
if RB# nil andRI= REGISTER-INDEX(i) 

then error ''Attempt to modify return address" 

case default 

i - i.next 

Figure 7: Build a basic block by translating instructions until 
we reach a branch instruction. Using the information recorded 
previously by FIND-BRANCH-TARGETS, a new basic block is 
started for every instruction that is a branch target. Subroutine 
invocations are not immediately processed, but instead recorded in 
SR. 



PROCESS-SUBROUTINES(SR) 
1 MAP' f-MAP 
2 while ( i f- POP( SR)) =I= NIL 
3 do MAP f-MAP 1 

4 i f- TARGET( i) 
5 if i = ReferenceRegisterStore 
6 then RI f- REGISTER-INDEX(i) 
7 RB f- MAP[i.next] 
8 bf- BUILD-BASIC-BLOCK(i) 
9 REDIRECT-JSR( i, b) 

Figure 8: Process one by one every subroutine collected in the 
worklist SR. If the subroutine records its return address in a local 
variable, this information is retained in RI and RB, where RI 
contains the index of the virtual register containing the return 
address and RB points to the basic block immediately following the 
subroutine invocation. This information is used by BUILD-BASIC­
BLOCK to identify the target of any ret instruction it encounters· 
within the subroutine code. 

ensure that each subroutine starts out with a list of basic blocks 
belonging to the method body only, MAP is copied to MAP' after 
the method body was processed and MAP is initialized from MAP' 
for every subroutine processed. If a ret instruction is encountered, 

·its virtual register index must match RI. If this is not fulfilled, the 
CFG construction fails (Figure 7, Line 24). For correct Java code, 
this property is guaranteed as the JVM Specification does not allow 
subroutine code to "overlap". As we process each subroutine one 
by one, each ret instruction we encounter must relate to the sub.,. 
routine we are currently processing. If such a ret instruction is 
located, it is transformed into a branch back to the basi~ block RB 
immediately following the j sr that called the subroutine currently 
being process. 

It is important to remember that even while processing a subroutine, 
any additional j sr we encounter is only recorded in the work-list 
SR where it will be picked up later by PROCESS-SUBROUTINES. 

The j sr instruction, after being processed, is replaced with a branch 
instruction to the subroutine entry. In contrast to instructions in the 
method body, subroutine code is not guaranteed to be visited only 
once. Instead, subroutine code is inlined into the CFG for each 
subroutine invocation with j sr. Thus, the worst-case runtime of 
PROCESS-SUBROUTINES is O(j * m), with j being the number of 
subroutine invocations and m being the largest number of instruc­
tion in any subroutine. It is obvious that for certain (admittedly 
not very meaningful) programs, O(j * m) could exceed O(n), for 
example if a method consists mostly of subroutine invocations to a 
single subroutine with m > 1. 

While theoretically this runtime is no longer O(n), we suggest 
to view the subroutine construct of NML as a form of structural 
compression. The subroutine construct was introduced into the 
Java bytecode format to prevent code duplication that would have 
otherwise resulted from compiling the Java finally clause. If we 
consider n to be the number of instructions of a method before 
applying this form of compression, our algorithm is indeed 0 ( n). 
The inlining of subroutine code into the CFG as performed by 
our algorithm is effectively "uncompressing" the bytecode to its 
original form.2 

2For similar reasons, Sun Microsystems is considering to drop the 
subroutine construct from future versions of the NM. 

4.2 Proofing the Data Flow 
Having obtained the control flow graph, we move on to translat­
ing the the stack-based Java bytecode representation to a typed, 
register-based intermediate representation (IR) that we will use for 
further analysis. Unfortunately, this process is anything but trivial 
for Java bytecode and traditionally requires a data-flow analysis to 
infer the correct type of stack values at join points in the control 
flow. The left side of Figure 9 shows such a join point. Basic 
block (b) leaves a value of type B on the stack before branching to 
(a). Basic block (c) branches to the same basic block, but leaves 
instead a value of type C on the stack. At the entry of (a), the stack 
can thus contain a value of either type B or C, in which case we 
have to infer the nearest common supertype of B and C, which 
is A. Since. often the structure of the control flow graph is not 
obvious, basic blocks are translated with premature assumptions 
regarding the type of certain stack slots and are later iteratively re­
evaluated using additional information discovered in the analysis. 
The same kind of iterative type inference has to be performed for 
virtual machine registers, with the additional complication that reg­
isters are allowed to contain values with conflicting or not statically 
determinable types as long as the code does not attempt to read such 
a register. Traditionally, such type inference problems are solved 
with a data-flow analysis. 

Since we aim to provide an efficient alternative to data-flow anal­
ysis for bytecode verification, we cannot rely on a DFA based al­
gorithm as part of our proofing approach. Instead, we construct a 
preliminary intermediate representation based on a superficial type 
system that distinguishes only between scalar types and a generic 
reference type ( that represents all object types defined in Java. The 
mapping function r translates Java types into this superficial type 
system: 

r(T) = { T: T E {byte, short, char, int, long, float, double} 
( : else 

As shown on the right hand of Figure 9, this reduced type system 
eliminates the need to perform type inference at join points in the 
control flow to merge stack states: Both A and B are mapped 
to (. This greatly simplifies the merging of stack states. Either 
the superficial type of each .stack location is identical for all stack 
states being merged, or the stacks are incompatible and the proofing 
process is aborted. For each stack location s of type Ta we can cal­
culate I'(Ta) in a single scan over the bytecode, while determining 
Ta itself would require to perform a DFA. However, while ensuring 
simple and efficient construction, using the superficial type system 
does not prevent incompatible reference types from being merged. 
This problem will be addressed in a later phase of our algorithm 
and we will revisit this issue shortly. 

Like the types for stack locations, the types of virtual registers 
must be tracked throughout the code. In Java, virtual registers are 
addressed by an index only. Every time a value is written to a 
virtual register, the virtual register assumes the type of that value. 
It is the verifier's responsibility to ensure that values are read back 
from registers with the proper type. For every join pol.nt in the 
control flow, type maps for virtual registers have to be reconciled. 
If the same virtual register holds values of incompatible type along 
incoming control flow edges, its type is set to T to indicate that this 
register must not be read back until it is overwritten with a value of 
known type (left side of Figure 10). 



(1) (2) 

Figure 9: (1) A join point in the control flow is shown that requires 
type inference to determine the correct type of the value on top 
of the stack when using the full Java type system. (2)·The same 
operation is performed using a superficial type system obtained 
by applying the mapping function r to each type. The need for 
iterative type inference is eliminated, as all Java object types are 
replaced by a single type (. 
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Figure 10: Proofing overlapping live ranges of values with different 
types in the same virtual register Vl. The right side of the figure 
shows how we use separate register planes per superficial type to 
eliminate any potential live range collisions. 

Verifying proper handling of virtual registers requires the under­
standing of the live ranges of values stored in them. This infor­
mation can easily be calculated during the DFA traditionally per­
formed for verification. However, this option is not available to 
us for obvious reasons. Instead, we opt to guarantee safety by 
proofing any potentially incorrect handling of virtual registers. In­
correct handling of registers can occur in two different ways: (1) 
code can attempt to read a value from a register with an incorrec­
t/incompatible type and (2) code can try to read a register that is 
not yet initialized. (1) can be prevented easily by reinterpreting 
how register read/write· instructions address registers. Instead of 
identifying registers by an index number, we introduce separate 
register planes for each type in the superficial type system. Thus, 
an iload n instruction will never be able to read· anything but an 
integer from a register because its index n refers to the nth integer 
register. For correct code, this reinterpretation of the instruction set 
is semantically equivalent as it affects only code that (illegally) tries 
to overlap the live ranges of values with different types in the same 
register. As shown on the right side of Figure 10, we can correct 
such overlapping live ranges. The istore 1 and astore 1 in­
structions store their values in completely independent registers on 
different register planes even though they both use the same register 
index 1. Both load instructions in the join node are thus valid. 
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Figure 11: Transforming stack-based bytecode into a register­
based intermediate representation. Ii and h correspond to virtual 
registers while I~, 14, and I~ are additional temporary registers 
newly allocated to hold values previously stored on the stack. 

4.3 Transforming the CFG into SSA 
Ensuring that no register is read before a value has been assigned to 
it requires the calculation of intraprocedural DEF-USE chains [1] 
for the CFO. We do this by transforming the CFO intq the Static 
Single Assignment (SSA) form [29, 2, 8]. As the construction of 
a SSA representation is significantly more complicated for a stack­
based representation, we eliminate the stack and transform the code 
to a register-based IR. Starting at the entry point and with an empty 
stack, we visit each instruction and allocate a new virtual register 
every time an instruction calculates a new intermediate result. We 
also maintain an abstract stack to track which virtual register has to 
be substituted when instructions expect to get their argument from 
the stack (Figure 11). 

Each basic block is visited exactly once, thus this step again can be 
completed in linear time. Join nodes that are reached with a non­
empty stack expect the value to reside in a particular register. move 
instructions are added to predecessor basic blocks to ensure that the 
value is copied to the appropriate register before branching to the 
join node. The resulting register-based IR is transformed into SSA 
using the DJ-Graph algorithm [30, 31]. In [31], the authors have 
shown that it is possible to transform into SSA [6] and to place 
</>-instruction in linear time (per variable). Transforming into SSA 
also implicitly checks that all registers are defined before their use 
and any program containing undefined uses of registers is rejected. 

4.4 Precise Type Checking 
Up to this point, we have only considered the superficial types 
of values. This allowed us to shortcut the iterative DFA usually 
required for this step, and we were able to transform the bytecode . 
into a register-based CFO in SSA form. However, to ensure that 
the code is indeed well-typed, we have to re-evaluate the code 
based on the original Java type system. For this, we first perform a 
copy propagation sweep over the CFO, which is trivial in SSA: For 
all registers defined by a move instruction, we record the source 
register in a table. In a second iteration over the code, all uses 
of such registers are replaced with their definition and all move 
instructions are deleted. 

As shown in Figure 12, pruning all move instructions from the 
CFO directly connects all uses of registers with their definition 
site. This automatically removes all ambiguities introduced by 
the dynamically typed virtual registers. While the traditional Java 
verification algorithm has to calculate the precise type of a value 
that is stored in a virtual register and has to make sure it is read 
back with the proper type, we have effectively skipped this step by 
propagating the real definition to the use site. This dramatically 
simplifies type checking. We simply have to ensure that each use 
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Figure 12: Precise type checking: The stack-based bytecode (1) 
is transformed to a register-based representation (2). Both push 
instructions store their return value in a temporary register ((' 2 

and (' 3). The temporary registers are then assigned to (1, which 
corresponds to the NM register 1 addressed by the astore 
instructions. (3) The IR is transformed into SSA and copy 
propagation is performed. The temporary register (' 4 defined by 
the ¢-instruction has the type A, which is the common ancestor of 
the operand types of the ¢-node. 

refers to a definition with a compatible type. As registers are al­
ways defined exactly once in SSA, this is again simple and can be 
performed in a single linear scan over the code. 

Join points in the control flow that cause so much work for the 
Java verifier are represented by ¢-nodes in our CFG. For each ¢­
node, we only have to check that all operands are compatible. Type 
inference can be done in a single step as all incoming types are 
known at once. A register defined by a ¢-node has exactly the same 
type as all the operands of the ¢-node-or a common ancestor if the 
¢-node has operands with different (but compatible) types. If a¢­
node contains any operands for which no common ancestor can be 
found (incompatible), the program is not well-typed and is rejected. 

5. VERIFICATION BY PROOFING 
After all steps described in the previous section, the intermediate 
representation is guaranteed to contain a (1) well-formed and (2) 
well-typed program. (1) results from the internal representation 
as a control flow graph, and (2) results from the SSA form and 
the additional type checking we performed for all uses of register 
values, and in particular ¢-node operands. As we have mentioned 
earlier, being able to construct a well-formed, well-typed IR for a 
Java program using the algorithm described in this paper does not 
necessarily mean that the input program was well-typed according 
to the Java specification. As we have seen in the previous section, 
only a small number of obvious syntactical and semantical errors 
are rejected; in particular, those that can be decided in linear time. 
More complex data-flow related potential type errors are instead 
corrected by reinterpreting the Java bytecode representation and 
using typed register planes. 

Moreover, our approach has another subtle advantage over tradi­
tional DFA-based bytecode verification. Resulting from certain 
features in the Java source code language [12] and some restric­
tions in the specification of the Java bytecode verifier, a number 
of legal Java source code programs exist that cannot be verified 
using traditional verifiers. Two examples for such programs were 
published by Stiirk et al. in [28] and are shown in Figure 13. 

The first ex.ample (Testl) contains a conditional return statement 
encapsulated in a try block. If b is true, the method terrni-

1: class Testl { 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: } 

int ml(boolean b) { 
int i; 

} 

try { 
if (b) 

return 1; 
i=2; 

} finally { 
if (b) i=3; 

} 
return i; 

1: class Test2 { 
2: int m2(boolean b) 
3: inti; 
4: L: { try { 
5: if (b) return 1; 
6: i=2; 
7: if (b) break L; 
8: } finally { 
9: if (b) i=3; } 

10: 
11: 
12: 
13: } 
14: } 

i=4; 
} 
return i; 

Figure 13: Two Java source code programs that can be compiled 
by a Java compiler, but are not verifiable using the standard DFA­
based verifier. Bytecode proofing, in contrast, allows the programs 
to execute. 

nates in line 6 with the return value 1. However, before returning 
to the caller, the finally-clause still has to be executed. The 
finally-clause sets i to 3 if bis true, which is actually moot in 
this case as the return value was determined to be 1. On the other 
hand, if bis false, i will be set to 2 in line 7, the try block ends, 
which means that the finally-clause has to be invoked. As b 
is false now, i remains unchanged (line 9) and 2 is returned in 
line 11. 

At the bytecode level, a finally-clause is represented by a sub­
routine, which is called every time the finally-clause has to be 
invoked. Unfortunately, from the verifier's perspective, this partic­
ular subroutine is not verifiable, because the Java verifier specifica­
tion [19] requires each subroutine to have a uniq~e stack and virtual 
register state for each of its instructions. This is, however, no~ the 
case in this example. If the subroutine representing the finally­
clause is triggered in line 6 by the return statement, the register 
holding the local variable i is not initialized. On the other hand, 
if the subroutine is called after completing the guarded block, i 
(and the register holding it) is initialized and contains a valid value. 
As the local variable holding i is not defined along all paths, it is 
assumed to be not usable when the return statement is reached in 
line 11, which in turn does not verify because i is not defined-or 
at least the verifier cannot prove that it is defined. 

In contrast, our bytecode proofing algorithm is not fooled by the 
ambiguity of the data-flow through the subroutine. Since we inline 
the subroutine code into each call site, the data-flow through the 
subroutine is reconsidered separately for each call site.3 Thus, the 
algorithm is able to see the definition of i in line 7 and the return 
statement in line 11 is recognized to be valid. 

The second example (Test2, Figure 13) is again not verifiable 
using traditional means, because the verifier is not able to see the 
definition of i at line 6 as the data flow is obfuscated by the sub­
routine invocation. As in the previous example, this definition of i 
becomes obvious if for each subroutine the data-flow is considered 
separately. 

To ensure that all valid Java source code programs can pass the 
verifier in bytecode form, Stiirk et al. proposed in [28] a number of 
additional restrictions for the Java source code language. Using our 
bytecode proofing approach, however, these additional restrictions 

3Considering the data-flow separately for eac~ subroutine in~oca­
tion is the reason why our CFG recovery algonthm has only lmear 
complexity w.r.t. the "uncompressed" size of the bytecode with all 
subroutines inlined into their respective invocation sites. 
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Figure 14: Comparing the performance of the traditional verifier 
with the performance of bytecode proofing for a difficult-to-verify 
method. 

are no longer necessary. 

6. IMPLEMENTATION 
We have implemented the bytecode proofing algorithm described 
in this paper as part of our network-centric mobile code frame­
work (24]. The choice of Java itself as our implementation lan­
guage was sub-optimal in retrospect, as far as performance is con­
cerned, in particular when trying to evaluate linear time algorithms. 
For a more thorough quantitative analysis and comparison to exist­
ing verifiers we will have to port our implementation to C or C++, 
which are more commonly used in this domain. 

Even though our impleinentation is an early prototype, we expect it 
to be free of any major vulnerabilities, because the code handed to 
the virtual machine is in a format that guarantees, by construction, 
that the code is well-formed and well-typed. It is, .however, much 
more difficult and time consuming to ensure that the implementa­
tion is correct in terms of producing a semantically equivalent CFG 
for the input program and thus would produce the expected result 
when interpreted or compiled to native code. Since no established 
metric exists for verifier and compilation correctness, we will limit 
ourselves here to a performance comparison of the traditional ver­
ifier algorithm and bytecode proofing. Figure 14 shows how the 
two algorithms perform in case of the worst-case data-flow scenario 
described in Section 3. The time shown for bytecode proofing does 
not include the time to transform the CFG into SSA, because we 
are currently using the standard SSA transformation component 
available in our mobile code framework, which is based on (8) and 
does not have linear time complexity. We plan to replace the SSA 
transformation with the more efficient DJ-graph algorithm in the 
near future. 

7. RELATED WORK 
Java bytecode verification has been explored quite extensively in 
the past (18, 32). In addition to the informal description of the 
JVM (19), a number of formal specifications of the JVML and its 
verifier have been proposed (9, 10), and proven to be sound (25, 14, 
15, 16, 33, 5). Resulting from the formalization of the verification 
process, improvements for the original specification have been pro­
posed [7, 28). In this context, subroutines are of particular interest 
and several type systems have been proposed for them (34, 23, 26, 
17). All these approaches have in common that they rely on some 
form of iterative data-flow analysis (18, 27) to decide type-safety 
and thus have a quadratic worst-case runtime complexity. 

Proof-carrying code (PCC) (21, 20] addresses this problem by re­
lieving the code consumer of the burden to verify the code. Instead, 
the code producer computes a verification condition based on a 
public safety policy and proves it to be true for the program. This 
proof is shipped to the code consumer along with the code. Upon 
receipt, the code consumer only has to recompute the verification 
condition and can then check whether the attached proof indeed 
establishes the verification condition as claimed by the code pro­
ducer. 

The bytecode proofing approach presented in this paper was in 
many ways inspired by the work on PCC. Just as with PCC, we 
try to avoid having to prove type safety on the code consumer side 
by not deciding through analysis whether mobile code is safe or 
not, but by merely guaranteeing that the virtual machine is shielded 
from code that is not well-typed. While both approaches, PCC and 
bytecode proofing, require only a linear effort on the code con­
sumer side, in practice a proof checker for PCC is much less com­
plex and easier to implement than the proofing process described 
in this paper. However, this systematic advantage for PCC does not 
come entirely for free as additional information has to be shipped to 
the code consumer, which inflates the size of mobile code compo­
nents. In this regard, bytecode proofing has the advantage that it can 
operate on the standard Java classfile format [19) and does not rely 
on any additional annotations. While more recent improvements 
over the original PCC idea have significantly reduced the sizes of 
the proofs and the verifier [22, 4), we still believe that our approach 
is a meaningful alternative to PCC in certain domains, in particular 
if backward compatibility to existing, un-annotated, Java code is 
desired. 

Inherently safe mobile code representation formats such as Safe­
TSA [3] eliminate the need for verification as mobile code is stored 
in a self-consistent format that cannot represent anything but well­
formed and well-typed programs. Just like PCC, such formats have 
a systematic advantage over bytecode proofing, but require aban­
doning the existing Java classfile format, which is not always ac-
ceptable. , 

8. CONCLUSIONS 
Guarding the virtual machine from malicious code has tradition­
ally been accomplished by deciding the type safety of the input 
program. This decision can require quadratic runtime behavior 
in certain cases, allowing malicious programs to stall the verifier 
(and thus the entire virtual machine) for a prolonged time in what 
can. amount to a denial-of-service attack. Bytecode verification 
through iterative data-flow analysis is not only expensive, but also 
not strictly required if the only goal is to protect the virtual machine 
from malicious code. 

We have presented bytecode proofing as an alternative approach 
to verification. It guarantees through a series of transformations 
that malicious programs are either rejected or transformed into a 
well-formed and well-typed program that no longer threatens the 
integrity of the virtual machine. By avoiding the unnecessary over­
head of proving safety, and merely proofing the input program to 
guarantee that the code received by the virtual machine is safe, we 
are able to complete this transformation in linear time, which is 
a significant improvement over the quadratic worst case runtime 
complexity of bytecode verification. 

The key contribution of this work is the introduction of a superfi­
cial type system to efficiently construct a preliminary register-based 



intermediate representation from Java bytecode. This preliminary 
IR allows us to reason about the data-flow before type-safety is 
established through precise type-checking using the full Java type 
system. Thus, we can transform the intermediate representation 
into SSA form and perform copy propagation before knowing that 
the program is actually type-safe. This allows us to perform the 
actual precise-type checking using SSA form and in linear time. 

As we have shown in Section 5, our bytecode proofing approach 
has not only a better worst-case performance than traditional byte­
code verification, but also allows us to execute a certain class of 
legal Java programs that are not verifiable by existing JVMs~ As 
an additional benefit, our bytecode proofing algorithm provides a 
well-formed and type-checked control flow graph in SSA to the 
virtual machine, eliminating the need to separately transform the 
bytecode into SSA for just in time compilation. 

9. FUTURE WORK 
Evaluating a new verifier algorithm requires an extensive set of test 
cases. While our prototype implementations accepts a large test 
set of publicly available Java programs and libraries, and rejects 
(or proofs) a number of hand constructed not well-typed programs, 
this can hardly be seen as a general proof of correctness. It would 
be desirable to test our implementation more rigorously using an 
established test set. An extensive set of test cases is available from 
Sun Microsystems as part of the Java Compatibility Kit (JCK). 
However, the JCK is available to commercial JVM implementors 
only. A free alternative to JCK is the Mauve Project [13], but it 
offers only very limited coverage of many critical areas of the JVM. 
We are currently working on adding missing parts to the test cases 
provided by the Mauve Project, to have a more complete testing 
~nvironment for our prototype implementation. 

Another area for improvement is the handling of subroutines. The 
algorithm described in this paper does not currently allow a subrou­
tine to use ret with anything but the virtual register that the initial 
as tore stored the return address in. In particular, return addresses 
cannot be moved to other virtual registers and nested subroutine 
calls cannot return to the calling site of outer subroutines. While 
this kind of code is not actually generated by any compiler we 
know of, from a more academic perspective this is still a restriction 
we would prefer to eliminate. We are exploring how to properly 
track return addresses in registers without giving up the linear time 
complexity of the algorithm. 
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