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1, Váleri N. VásquezID
1,5,

Richard Barnes1,5, Ciera C. MartinezID
1*

1 Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, California, United States of

America, 2 Bakar Computational Health Sciences Institute, University of California, San Francisco, San

Francisco, California, United States of America, 3 VA Boston Healthcare System, Boston, Massachusetts,

United States of America, 4 VA St. Louis Health Care System, St. Louis, Missouri, United States of America,

5 Energy and Resources Group, Rausser College of Natural Resources, University of California, Berkeley,

Berkeley, California, United States of America

* ccmartinez@berkeley.edu

Abstract

Functional, usable, and maintainable open-source software is increasingly essential to sci-

entific research, but there is a large variation in formal training for software development and

maintainability. Here, we propose 10 “rules” centered on 2 best practice components: clean

code and testing. These 2 areas are relatively straightforward and provide substantial utility

relative to the learning investment. Adopting clean code practices helps to standardize and

organize software code in order to enhance readability and reduce cognitive load for both

the initial developer and subsequent contributors; this allows developers to concentrate on

core functionality and reduce errors. Clean coding styles make software code more amena-

ble to testing, including unit tests that work best with modular and consistent software code.

Unit tests interrogate specific and isolated coding behavior to reduce coding errors and

ensure intended functionality, especially as code increases in complexity; unit tests also

implicitly provide example usages of code. Other forms of testing are geared to discover

erroneous behavior arising from unexpected inputs or emerging from the interaction of com-

plex codebases. Although conforming to coding styles and designing tests can add time to

the software development project in the short term, these foundational tools can help to

improve the correctness, quality, usability, and maintainability of open-source scientific soft-

ware code. They also advance the principal point of scientific research: producing accurate

results in a reproducible way. In addition to suggesting several tips for getting started with

clean code and testing practices, we recommend numerous tools for the popular open-

source scientific software languages Python, R, and Julia.

Introduction

Creating functional, usable, and maintainable software is increasingly essential to open-source

scientific research, especially in fields like bioinformatics [1,2]. Previous 10 simple rules papers

have focused on open software development [3], robustness [4], usability [5], documentation

[6], version control [7], and scientific programming [8]. Here, we add to this collection with
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tips on clean coding (standardized and clear writing styles) and test design (writing code to

confirm program behavior) to further encourage high-quality scientific software development

for academics building open-source scientific software packages. These suggestions are drawn

from the authors’ experiences in developing software across academia, industry, and govern-

ment laboratories and are predicated on the understanding that unit tests are fundamental to

robust code development: They facilitate accurate modifications as well as new contributions

and serve as a form of documenting intended behavior.

Clean coding, test design, and their execution are inconsistently introduced to academic

researchers outside the software development domain. This results in a large variation in for-

mal training for software development, sharing, and preservation [9]. Furthermore, the limited

uptake of these tools could cause serious errors within software code, leading to inaccurate

research results and paper retractions [10–13]. More broadly, estimated error rates in scientific

publications, although not demonstrated to be higher than commercially developed software,

have been estimated to range from approximately 3% for simple tasks to 14% for more compli-

cated tasks [14]. Alarmingly, software popularity has not shielded against software bugs (flaws

in program design that result in unwanted behavior): This is exemplified by the BLOcks SUb-

stitution Matrix (BLOSUM) matrix miscalculations, which persisted unnoticed for 15 years

(although the miscalculations, ironically, improved search performance) [15].

In an effort to help scientific software developers prevent such issues, we propose 10 “rules”

centered on 2 best practice components: clean code and testing. These 2 areas are relatively

straightforward and can provide substantial utility relative to the learning investment. Existing

institutional knowledge and growing community practice standards serve as evidence of their

efficacy. Adopting clean code practices helps to standardize and organize software code in

order to enhance readability and reduce cognitive load [16,17] for both the initial developer

and downstream contributors [18]. Increasing readability while reducing cognitive load allows

developers to concentrate on core functionality and reduce errors, while also exemplifying

clean and inviting code for community open-source contributors.

Clean coding styles can also make software code more amenable to testing, for example, via

unit tests that work best with modular and consistent software code. Modularity is a program-

ming design technique that encourages the creation of functions to serve a single purpose,

enabling interchangeability. Unit tests interrogate specific and isolated coding behavior to

reduce coding errors and ensure intended functionality, especially as code increases in com-

plexity [19]. Furthermore, unit test design provides benefits beyond checking for errors,

including encouraging modularity and documenting code with example usage.

Although conforming to coding styles and designing tests can add time to the software devel-

opment project in the short term, these foundational tools can contribute to improving the qual-

ity, usability, and maintainability of scientific software code for long-term research goals. This, in

turn, can reduce the amount of time spent on a project later in its life cycle. Here, we suggest sev-

eral tips for getting started and recommend tools for the popular open-source scientific software

languages Python, R, and Julia (links included in Table 1 below) as scientific software developers

tend to work in open-source over commercial software [9]. Creating a clean and standardized

codebase is especially important in open-source software as there are often more diverse contribu-

tions (e.g., many different styles or levels of coding abilities) compared to commercial software.

That said, we note that all of these rules can be applied to software development generally.

Rule 1: Choose a style guide—And stick with it

Each programming language has its own coding conventions, resulting in several acceptable

ways to write code. When programs are written using a mixture of styles or employ no consistent
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style at all, the code can be difficult to read and absorb as a user or developer, even as an original

developer who is returning to old code. To ensure standardization and maximize readability

[16], adopt a style guide: a set of previously specified conventions on how to write code.

There are many style guides to choose from, but above all, consistency is key. When you

choose one of many possible coding styles, apply that style throughout your code to ensure

standardization. Google, for example, offers detailed style guides for several languages, includ-

ing for Python and R. For Python documentation specifically, consider the numpy docstring

guide. The tidyverse style guide is a good option for R users. Julia users can refer to the Julia

style guide explicitly developed by that community.

In addition to passive style guide references, tools known as linters are available to check

your adherence to a coding style automatically, highlighting any deviations from a chosen

style. For Python, automated style checkers include pylint and pycodestyle, while tools such as

black and autopep8 check and also reformat code to meet prespecified guidelines. For R,

styler, formatR, or lintr can be used to automatically check coding style. For Julia, automated

versions of style formatters exist in packages such as Lint.jl or are contained within extensions

to integrated development environments (IDEs; see Rule 2) such as VSCode.

Rule 2: Consider using an integrated development environment

Many of the tools referenced in Rule 1, as well as the testing frameworks discussed below (see

Rule 6), are incorporated into IDEs such as VSCode or RStudio, to name a few. An IDE is a

Table 1. Tools and resources in Python, R, and Julia for relevant clean and tested code rules.

Rule Language Purpose Recommendation(s) Alternative(s)

1 Python Style guide Google Python Style Guide and numpydoc

Style checker pycodestyle and pylint

Style formatter black autopep8

R Style guide tidyverse style guide Google R Style Guide

Style checker lintr formatR and styler

Julia Style guide Julia style guide

Style checker Julia linter in VSCode extension Lint.jl and JuliaFormatter

3 Any Parameter reduction Parameter objects

4 Any Refactoring Catalog of refactoring

Python Refactoring VSCode Python Refactoring extension

5 Python IDE� VSCode spyder and Gnome Builder

R IDE� RStudio VSCode and RKWard

Julia IDE� VSCode Juno

6 Python Property-based testing hypothesis

R Property-based testing hedgehog

Julia Property-based testing Checkers.jl and Test module

8 Python Test coverage coverage

R Test coverage testCoverage

Julia Test coverage Coverage.jl

9 Python Test suite snapshottest

R Test suite testthat

Julia Test suite testset

10 Any Automation git hooks

Any Automation GitHub Actions GitLab CI/CD

� IDE, integrated development environment.

https://doi.org/10.1371/journal.pcbi.1009481.t001
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tool that generally makes it easier to develop software and usually consists of a source code edi-

tor, build automation tools, and a debugger with the potential to install additional extensions

that further enhance functionality. Using an IDE makes it easy to write code, check style

adherence, and run tests simultaneously.

In addition to providing a text editor, using an IDE will allow you to integrate many of the

previously mentioned tools into one platform, making it even easier to follow style guidelines

and clean coding practices. Some IDEs offer additional benefits including syntax highlighting,

function suggestions, code outlines, automated refactoring, and easy file system access and

editing via remote connections. Examples of IDEs that support multiple languages are VSCode

and its open-source version VSCodium or language-specific IDEs like Spyder for Python,

RStudio for R, and Juno for Julia.

Rule 3: Reduce complexity when possible

In general, the more complex and less modular a piece of code is, the harder it will be to

debug, understand, and adequately test. Modular design is based around the concept that each

function or piece of code should have one purpose allowing the reuse in many areas of a script.

For example, if a function does 2 things, try to split it into 2 functions. More concise and mod-

ular programming can make software easier to understand and debug by collaborators; code

is, after all, read far more than it is written. Some formatting guidelines, like limiting line

length, can help to make your code more readable [16] but need not be reduced to dogmatism.

Other recommendations, like limiting the number of function arguments to a reasonable

number (e.g., 5), can make your code easier for you or new members of your development

team to absorb, modify, and troubleshoot. Parameter objects, a single argument object for

commonly co-occurring groups of parameters, can help to limit the number of arguments per

function while maintaining necessary inputs and functionality. Parameter objects can also

improve the logical organization of multiple parameter inputs. Furthermore, limiting function

length (e.g., 40 lines or less) can also help to reduce complexity and facilitate testing, usage,

and expansion. Some of these limits on code length and complexity are automatically checked

by linters mentioned in Rule 1, such as pylint in Python or lintr in R. JuliaFormatter integrates

with previously referenced editors such as VSCode to enable this functionality in Julia.

Rule 4: Refactor as needed

Refactoring is the process of restructuring your code without changing its interface—that is,

rewriting the internals of functions without changing their inputs or outputs—often to

improve its adherence to a set of best practices. Performing code refactoring frequently ensures

that your software will be easier to understand, maintain, and expand while reducing the risk

of introducing new errors.

Refactoring is often necessary for simple housekeeping over the course of development, for

example, removing commented-out code or unused functions (e.g., dead code). Removing

dead code reduces clutter and confusion in your program, making it easier to absorb. Refactor-

ing may also be necessary to provide more substantial changes to the internal structure of a

program to ensure that new features can be easily added. Modifying the internal structure can

include changes like extracting a function to modularize a behavior and to avoid repeating

code in several places. Another common refactoring involves grouping related functions into a

single class. Automated analyses, such as tools (e.g., lintr) that highlight areas of high cyclo-

matic complexity, a metric measuring the number of separate pathways through your pro-

gram’s logic, can help to highlight specific areas of your program that could benefit from

refactoring.
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When refactoring, do so incrementally, and always construct and run tests before imple-

menting changes. Rerunning these tests after refactoring will ensure that functionality has

been maintained. Moving in small increments will allow the changes to be rolled back easily if

errors are introduced. While the amount and type of refactoring will depend on your program

and application, an inspirational list of refactorings are available as a catalog. Following the

measure of quality that “the true test of good code is how easy it is to change it,” quality refac-

toring should, above all, make your code easier to modify [20]. In addition to the catalog, sev-

eral IDE extensions automate a subset of simple refactorings.

Rule 5: Program defensively

All code may contain bugs, even for intended use cases, and additional issues may arise when

the software is used in a way that the developers did not anticipate. Even the cleanest, most

straightforward code can be used incorrectly. And as the codebase evolves, the definition of

“correct” with respect to inputs, outputs, and use cases may well change. Therefore, to the

extent possible, the developer should anticipate potential issues arising from different use cases

and user error. This is called defensive programming or defensive design: proactively account-

ing for unexpected user interactions with the code [21]. Defensive programming principles

allow your program to respond predictably in the face of unforeseen inputs.

Preconditions ensure that inputs to a function or code block have the expected data type,

value ranges, or other qualities. These programmatic checks protect against unexpected user

input. Similarly, postconditions ensure that the output of a given code block or function

matches the value range and data type required for downstream analysis. There are multiple

advantages to implementing these conditions and other defensive practices, such as excep-

tions, which enable users to self-correct by providing explanatory warning or error messages

when an exception is encountered. Such checks furnish internal testing abilities and explicitly

define expectations for input and output from commonly used functions.

Rule 6: Follow established patterns for writing unit tests

Any good experiment should have checkpoints, validations, and controls. In order to deter-

mine if the code currently works as expected (and will continue to do so with future modifica-

tions), programmers use tests that are situated adjacent to the main codebase to automate the

verification and validation of a program’s behavior. Unit tests check to verify the accuracy of

specific pieces of code and are central to the growth of a production codebase and as such were

expected to meet high-quality standards. Today, it is generally agreed that the primary purpose

of unit tests is to protect against regressions or bugs that occur due to software modifications.

Unit tests should be designed to satisfy 3 major principles. First, each unit test should evaluate

only one behavior, focusing on the result of a code segment rather than details of implementa-

tion. Second, that behavior should be testable in isolation from other dependencies. Third,

unit tests should be implemented such that their checks can be run with frequency for the sake

of quick iteration, but without incurring substantial computational overhead [19].

There are additional broad guidelines for designing useful unit tests, but, to some degree,

appropriate unit tests demand both creativity and subject matter knowledge on the part of the

programmer. Basic prescriptions that apply to any codebase include straightforward test nam-

ing conventions that reduce coders’ cognitive load [17] and the use of specialized environ-

ments, called fixtures, to standardize test inputs and isolate targeted behavior from other

dependencies [19]. As with coding style, consistency in unit test design is paramount. Certain

language-specific tools, like pytest, inherently address both of these recommendations by

requiring each testing function to begin with a standard naming prefix (e.g.,
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“test_functionname”) and including functionalities for reusable unit tests. For example, using

fixtures to specify predefined sample data to test functions each time your code is run enables

consistency and simplicity.

Property-based testing can be used in conjunction with unit tests [22]. A property-based

test passes a randomized input to a function and determines whether the output has expected

properties. For instance, no matter what input you pass to a standard cosine function, the output

should be bound to the range from −1 to 1. Since the input is randomized, property-based testing

can find many problematic corner cases that a handcrafted unit test would miss. Some tools for

property-based testing include Python’s hypothesis, R’s hedgehog, and Julia’s Checkers.jl.

Rule 7: Create tests throughout the development cycle

Don’t wait until software completion to write tests! Waiting to write tests until the day after

you develop a piece of code—or worse yet, when your program is at or near completion—will

only provide time for you to forget the intended purpose of the code. It will also allow for an

accumulation of unanticipated behavior, which may be difficult to disentangle. Writing clean

code according to a consistent coding style can make it easier to write tests for your code

throughout development. Testing from the beginning of the development cycle will allow for a

strong foundation on which to expand your codebase and provide checks for base cases,

boundary conditions, changes in functionality, and expansions of behavior as the code devel-

ops. This mindset also allows for (more) seamless continuous integration, the practice of fre-

quently merging copies of code contributed by multiple developers to a single project.

Designing software with testing in mind will also help reinforce a modular coding style, in line

with many best practices, in order to ensure that software behavior is amenable to testing. In

the extreme, test-driven development proposes writing tests before writing the target program

code [23]. But at a minimum, writing tests when you encounter bugs will help to validate a fix

and prevent such issues from reoccurring unexpectedly in the future. Finally, designing tests

for each module throughout the development cycle provides documentation for code behavior

and usage for future reference as the package increases in complexity.

Rule 8: Ensure adequate testing coverage

How do you know when you have enough tests? Test coverage is a metric used to assess how

much of your codebase is being tested by constructed unit tests. Ensuring that a line of code is

covered in the context of a test helps guarantee that the code not only executes but will also

execute with anticipated behavior. Calculating test coverage is one quantitative way to assess

the sufficiency of your testing framework. You can calculate testing coverage, or the scope of

your code that has been tested, in several ways, including the raw test coverage percentage,

meaning the total lines of code in a piece of software executed by your unit tests divided by the

total number of lines of code in your codebase. In general, the code coverage percentage may

be easier to calculate, but branch coverage, the fraction of logical branches in your codebase

that are executed by your tests, will give you a better sense of the tested logic. Optimal coverage

estimates depend on the application and context of the codebase, but as a general rule of

thumb, try to aim for at least 60% coverage [16].

That being said, it is important to remember that writing tests for scientific code can be dif-

ficult for several reasons, especially because of the intrinsic nondeterministic nature of explor-

ing research questions [24]. Also, remember that tests also require maintenance, so ensure that

tests are of high quality and adequate utility to merit inclusion. Tools for automatically calcu-

lating test coverage are available in many programming languages, such as the coverage pack-

age in Python, testCoverage package in R, and Coverage.jl in Julia.
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Rule 9: Set up end-to-end and regression testing

Unit testing and property testing (see Rule 6) help ensure that functions or simple composi-

tions of functions work as intended. However, a full software program forms a complex system

whose behavior may be difficult to predict, control, or test. Deep neural networks are a quin-

tessential example: The mathematical operations that compose such a network (e.g., matrix

multiplication and dot products) are easily tested, but the network’s aggregate behavior is not.

End-to-end tests address this problem. In the case of the neural network example, a simple

end-to-end test might ask if metrics of the network’s performance (e.g., RMSE and AUC)

meet expectations during initial tests or stay within a tolerance interval of previous perfor-

mance when updates are made to any of the software layers that support a program—for

example, an upgrade of the operating system or updates to base libraries. In particular, end-to-

end tests can be coupled with property testing: If a model or simulation is not expected to be

sensitive to variation in an input, this can be formally tested by running the model a number

of times while varying that input.

End-to-end testing can also be accomplished by recording the outputs of a program and

ensuring that they are constant over time. For instance, in particularly difficult testing situa-

tions relevant to app development, a screenshot of the app can be taken for each of its views.

An end-to-end test can then compare the app’s user interface after a change and confirm that

the views match. Similar techniques can be applied to the numerical outputs of programs.

Packages for this include Python’s snapshottest and R’s testthat. Julia incorporates end-to-end

testing into its base capacities by enabling the creation of custom testsets.

Finally, end-to-end tests are often slower to run than static analysis or unit tests. They also

may require more complex testing frameworks and provide less useful feedback when they fail

(as opposed to a unit test, which can pinpoint exactly which function input pair is problem-

atic). For this reason, end-to-end testing may be brought into play later in the development

cycle once the software is clean and well commented with a comprehensive test suite. How-

ever, since scientific software is often complex, end-to-end tests can provide a valuable verifi-

cation that results have not unexpectedly changed while modifying the program.

Rule 10: Automate your software testing workflow

By following all the previous rules, you will have a robust software package. Your code will be

readable, consistent, and well covered by high-quality tests. However, coding styles and tests

must be checked often; writing clean code and developing tests are habits that should start at

the beginning of the software development cycle and continue throughout the process.

To ensure that your software will not be difficult to read or prone to break when you add

new functionality or fix a bug, you need to run your test suite whenever you change part of

your code. As mentioned in previous rules, tools are available to check coding style adherence

(e.g., pylint, black, and JuliaFormatter) and run a suite of tests efficiently (e.g., pytest for

Python, testthat for R, and testset for Julia). Initially, you may run these tools on an ad hoc

basis, but automating linting and testing can add convenience and guarantee that these checks

are consistently run.

When using online repositories such as GitHub [7], you can integrate these automated

tools into continuous integration scripts that execute the tools upon a trigger event, like a code

push, instead of running automated tools manually. This can be done using Git Hooks, a series

of scripts that will run when an event occurs in your repository. For example, you can set your

test suite to run when you commit new code, avoiding the necessity of running tests manually

every time you modify your software. When using services such as GitHub or GitLab, these

automated pipelines can be further integrated within the software workflow by using tools like

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009481 November 11, 2021 7 / 9

https://github.com/syrusakbary/snapshottest
https://testthat.r-lib.org/articles/snapshotting.html
https://pylint.org/
https://github.com/psf/black
https://github.com/domluna/JuliaFormatter.jl
https://docs.pytest.org/en/stable/
https://testthat.r-lib.org/index.html
https://www.atlassian.com/git/tutorials/git-hooks
https://doi.org/10.1371/journal.pcbi.1009481


GitHub Actions or GitLab CI/CD, in which testing and style checking can be additionally

automated to run at specified times (e.g., daily at midnight). For an example of how to use

GitHub Actions, please check GitHub’s documentation. There are also many online resources

specific to Python, R, and Julia (including a community repository of prebuilt actions).

Conclusions

Although adhering to consistent coding styles and developing tests may seem to divert atten-

tion from the main research goal, in fact, these practices help to advance the principal point of

scientific undertakings: producing accurate results in a reproducible way. These rules are espe-

cially important in open-source software development: Clean code encourages a diversity of

skill levels to contribute as maintainers; it also promotes more straightforward community

code review protocols and assessment of code quality. Of course, community code review is a

cornerstone of modern software development, whether the code in question is open source or

proprietary [25–27]. Overall, these 10 simple rules will help to increase the clarity and robust-

ness of your developed software.

The research environment’s increasing reliance on software tools reveals what can go

wrong with small, and very human, mistakes. That being said, the conversation on software

development for scientific research has shifted from “best” practices [28] to “good enough”

practices [29]. Open-source scientific software is a collaborative endeavor requiring unique

demands on researchers, and, therefore, standards should be adopted according to their

appropriateness for your research community [30]. An individual or team of researchers

should not strive to follow all best practices of software development, but rather strive to

improve over time. The practices described here can become a natural part of your technical

tool kit and rapidly add value in terms of quality and reproducibility in the scientific open-

source software you produce.
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