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Africa and the East Atlantic Using Different
Data Assimilation Methods
Yonghan Choi1,2, Shu‐Hua Chen1 , Chu‐Chun Huang1, Kenneth Earl1, Chih‐Ying Chen3,
Craig S. Schwartz4, and Toshihisa Matsui5

1Department of Land, Air, and Water Resources, University of California, Davis, CA, USA, 2Korea Polar Research
Institute, Incheon, South Korea, 3Research Center of Environmental Changes, Academia Sinica, Taipei, Taiwan,
4National Center for Atmospheric Research, Boulder, CO, USA, 5NASA Goddard Space Flight Center, Greenbelt,
MD, USA

Abstract This study evaluates the impact of assimilatingmoderate resolution imaging spectroradiometer
(MODIS) aerosol optical depth (AOD) data using different data assimilation (DA) methods on dust
analyses and forecasts over North Africa and tropical North Atlantic. To do so, seven experiments are
conducted using the Weather Research and Forecasting dust model and the Gridpoint Statistical
Interpolation analysis system. Six of these experiments differ in whether or not AOD observations are
assimilated and the DA method used, the latter of which includes the three‐dimensional variational
(3D‐Var), ensemble square root filter (EnSRF), and hybrid methods. The seventh experiment, which allows
us to assess the impact of assimilating deep blue AOD data, assimilates only dark target AOD data using the
hybrid method. The assimilation of MODIS AOD data clearly improves AOD analyses and forecasts up to
48 hr in length. Results also show that assimilating deep blue data has a primarily positive effect on AOD
analyses and forecasts over and downstream of themajor North African source regions.Without assimilating
deep blue data (assimilating dark target only), AODassimilation only improves AOD forecasts for up to 30 hr.
Of the three DA methods examined, the hybrid and EnSRF methods produce better AOD analyses and
forecasts than the 3D‐Var method does. Despite the clear benefit of AOD assimilation for AOD analyses and
forecasts, the lack of information regarding the vertical distribution of aerosols in AOD datameans that AOD
assimilation has very little positive effect on analyzed or forecasted vertical profiles of backscatter.

1. Introduction

Aerosols have received considerable attention globally due to their detrimental effects on air quality and
public health (García‐Pando et al., 2014;Mallone et al., 2011;Morman& Plumlee, 2013; Pandolfi et al., 2014).
Additionally, aerosols can influence socioeconomic activities (Prata & Tupper, 2009; Wilkinson et al., 2012),
ecosystems (Jickells et al., 2005; Wang et al., 2015; Yu et al., 2015), the Earth's energy budget (Bond
et al., 2013), and weather and climate (Boucher et al., 2013; Knippertz & Stuut, 2014; Lerach et al., 2008).
Although important research on aerosols has advanced our understanding of their characteristics and
impacts on weather and climate, a great deal of uncertainty still exists in aerosol modeling due to an
incomplete understanding of emission processes (Astitha et al., 2012; Spada et al., 2013; Textor et al., 2007),
aerosol‐radiation‐cloud interactions (Kinne et al., 2006; Mann et al., 2014; Wang et al., 2014), and aerosol
aging processes (Abdelkader et al., 2017; Lee et al., 2016; Lund et al., 2017; Textor et al., 2006), as well as
errors in initial and boundary conditions. This study contributes to efforts that reduce aerosol forecast
uncertainty through the assimilation of aerosol observations.

Aerosol observations (e.g., aerosol optical depth [AOD]) have been assimilated, along with meteorological
observations (e.g., temperature and wind) from ground‐based, airborne, and spaceborne instruments, to
improve the initial conditions for aerosol forecasts using a variety of data assimilation (DA) techniques,
including the three‐dimensional variational (3D‐Var) method (D. Chen et al., 2017; Jiang et al., 2013; Li
et al., 2013; Saide et al., 2013), ensemble‐based method (Di Tomaso et al., 2017; Pagowski & Grell, 2012;
Peng et al., 2017; Rubin et al., 2016, 2017; Schutgens et al., 2010a, 2010b; Sekiyama et al., 2010), and
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hybrid method (Lee et al., 2017; Schwartz et al., 2014). For example, Liu et al. (2011) implemented 3D‐Var
assimilation for AOD observations into the National Centers for Environmental Prediction (NCEP)
Gridpoint Statistical Interpolation (GSI) 3D‐Var DA system and used it to assimilate moderate resolution
imaging spectroradiometer (MODIS) AOD data from the Terra and Aqua satellites for a dust storm case over
East Asia. They showed that both aerosol analyses and subsequent aerosol forecasts were improved by
assimilating AOD observations. Building upon Liu et al. (2011), Schwartz et al. (2012) assimilated MODIS
AOD and AIRNow surface observations of particulates with radii ≤2.5 μm (PM2.5) using the NCEP GSI
3D‐Var DA system. Both AOD and surface PM2.5 forecasts over the United States showed the greatest
improvement when AOD and PM2.5 observations were assimilated concurrently. Recently, Benedetti
et al. (2019) assimilated MODIS AOD retrievals from both dark target and deep blue algorithms using the
European Centre for Medium‐Range Weather Forecasts (ECMWF) operational 4D‐Var system and showed
that the assimilation of MODIS AOD observations, especially deep blue products, could improve dust ana-
lyses and forecasts over the East Asia up to 48 hr.

Although the 3D‐Var technique can improve aerosol analyses and forecasts, the use of static (i.e.,
time‐invariant) background error covariances (BECs) limits its usefulness in some situations. Conversely,
ensemble‐based DA techniques, such as the ensemble Kalman filter (EnKF; Evensen, 1994; Houtekamer
&Mitchell, 1998), ensemble square root filter (EnSRF; Whitaker & Hamill, 2002), and ensemble adjustment
Kalman filter (EAKF; Anderson, 2001), can spread observation information beyond the observation loca-
tions more effectively than variational techniques through flow‐dependent BECs. However,
ensemble‐based methods can suffer from sampling errors due to a limited number of ensemble members,
but these can be mitigated through the optimal use of covariance localization and inflation. Pagowski and
Grell (2012) assimilated surface PM2.5 observations from the United States Environmental Protection
Agency AIRNow network using the NCEP GSI 3D‐Var and EnSRF DA systems. Their results demonstrated
the superiority of the EnSRF method over the 3D‐Var method in forecasting aerosol concentrations. In con-
trast, Rubin et al. (2016) found that the differences between aerosol analyses produced by assimilating
MODIS AOD using an EAKF from the National Center for Atmospheric Research (NCAR)'s Data
Assimilation Research Testbed and a 2D‐Var method from the Naval Research Laboratory Atmospheric
Variational Data Assimilation System (NAVDAS) were statistically insignificant in terms of root mean
square (RMS) error (RMSE), bias, and correlation. Similar to Rubin et al. (2016), Schwartz et al. (2014) found
that the aerosol analyses and forecasts produced by the EnSRF failed to outperform those produced by the
3D‐Var method due to insufficient ensemble spread.

Recently, ensemble‐variational hybrid DA techniques have become increasingly popular for meteorological
applications and are used in operational analysis systems at the United Kingdom Meteorological Office
(Clayton et al., 2013), NCEP (Kleist & Ide, 2015a, 2015b), and Environment Canada (Buehner et al., 2015;
Caron et al., 2015). Hybrid techniques enjoy the benefits of ensemble‐based flow‐dependent BECs while also
using static BECs to mitigate the potential sampling issues within ensemble‐based methods. Schwartz
et al. (2014) assimilated MODIS AOD, surface PM2.5, and conventional meteorological observations over
the United States using 3D‐Var, EnSRF, and hybrid variational‐ensemble methods within the NCEP GSI
DA and found that aerosol forecasts initialized from hybrid analyses best matched AIRNow and Aerosol
Robotic Network (AERONET) observations in terms of bias, RMSE, correlation, and Equitable Threat Score.

Following the approach of Schwartz et al. (2014), this study assesses the impact of assimilating AOD and
other meteorological observations on dust forecasts over North Africa and the East Atlantic using the
3D‐Var, EnSRF, and hybrid DA methods within the GSI system and the Weather Research and
Forecasting (WRF) dust model (S.‐H. Chen et al., 2010, 2015). However, this study differs from Schwartz
et al. (2014) in three main aspects. First, Schwartz et al. (2014) evaluated the effects of assimilating aerosol
observations on aerosol forecasts over the United States, while this study focuses on dust forecasts over
North Africa and the East Atlantic during the summer, where dust transport is dominated by strong flow
features (e.g., African easterly jet and African easterly waves). In addition, to the best of the authors' knowl-
edge, this is the first study to examine the impact of hybrid method aerosol DA on dust forecasts over the
Sahara Desert, which is the largest contributor to global mineral dust aerosol emissions (Prospero
et al., 2002). Second, Schwartz et al. (2014) assimilated AOD data produced by MODIS's “dark target” algo-
rithm, which is used to retrieve AOD values over dark land, such as forest (Kaufman et al., 1997; Levy
et al., 2013, 2015) and “ocean retrieval” algorithm (Remer et al., 2005; Tanré et al., 1999), while this study
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assimilates AOD from the dark target, ocean retrieval, and deep blue algorithms (Sayer et al., 2013). The
deep blue algorithm, which is used to retrieve AOD data over reflective land surfaces (e.g., desert and barren
land), provides a vast amount of additional AOD data over North African deserts. Analyses and forecasts of
dust over North Africa and the East Atlantic, which primarily originates from North African deserts, could
benefit immensely from high‐quality deep blue AOD data over those desert regions. Substantial improve-
ments to the deep blue algorithm have increased the viability of deep blue AOD data for DA applications,
particularly in MODIS data collection 6.1 (Korras‐Carraca et al., 2015; Sayer et al., 2013, 2014), easing the
data quality concerns that have often resulted in deep blue AOD being excluded from AOD DA studies
(e.g., Schwartz et al., 2012, 2014). Third, in addition to AOD data, Schwartz et al. (2014) assimilated solely
conventional meteorological observations while this study assimilates both conventional and satellite radi-
ance observations. The exclusion of satellite data in Schwartz et al. (2014) might have caused them to over-
estimate the impact of AOD assimilation on aerosol forecasts.

The remainder of this work is organized as follows: A brief description of the numerical tools used in this
study is given in section 2. In section 3, the observations used and numerical experiment design are
described. Dust aerosol analyses and forecasts from different experiments are compared and discussed in
section 4, and a concluding summary is presented in section 5.

2. Dust Model, Data Assimilation System, and Their Configurations
2.1. Dust Model

A dust model, based on the WRF model Version 3.7.1 (Skamarock et al., 2008), was developed by S.‐H. Chen
et al. (2010, 2015) and is used for dust and weather forecasts. Only a brief introduction of the dust model is
given here as a thorough description of themodel can be found in the original papers. A dust continuity equa-
tion in themodel accounts for transport, subgrid boundary layermixing, subgrid cumulus mixing, sedimenta-
tion, and other source/sink processes. In this study, five size bins with median dust radii of 0.25, 0.5, 1.0, 2.0,
and 4.0μmareused. These size bins are also used in the assimilation system,which is introduced in section 2.2.

Dust is introduced to the model via surface emission and is removed via dry deposition to the ground, wet
scavenging by cloud droplets, and rainfall. Emission is controlled by three parameters, as described in
S.‐H. Chen et al. (2010)—vegetation type, soil moisture, and 10‐m wind speed—and it is active when (1)
the vegetation type is “barren,” (2) soil volumetric moisture content is less than 0.2, and (3) 10‐mwind speed
is greater than a threshold value, which is set to 6.0 m s−1 in this study.

In the dust model, the National Aeronautics and Space Administration (NASA)/Goddard Space Flight
Center shortwave and longwave radiation schemes (Chou et al., 2001; Chou & Suarez, 1994, 1999) were
modified to consider dust‐radiation interaction. Dust aerosol optical properties (i.e., single scattering albedo,
asymmetry parameter, and extinction coefficient) with respect to different wavelengths were calculated
using the Optical Properties of Aerosols and Cloud software package (Hess et al., 1998).
Dust‐microphysics interaction was also included in the two‐moment microphysics scheme (Cheng
et al., 2010) that was implemented in the dust model. Dust particles can serve as both cloud condensation
nuclei and ice nuclei. For the ice nuclei, two heterogeneous ice nucleation processes are included: deposition
and immersion freezing (J.‐P. Chen et al., 2008; Hoose et al., 2010).

2.2. Data Assimilation System

The GSI (Shao et al., 2016) is an analysis system that was originally developed for operational use but is now
freely available for community use. The system is designed to be flexible and can be run efficiently on various
parallel computing platforms. Three different DA methods are available in the GSI analysis system, includ-
ing the 3D‐Var method, EnSRF method, and hybrid method, in which the last one combines the first two.
Below, we briefly introduce how AOD observations are assimilated in each method.
2.2.1. The 3D‐Var Method
Liu et al. (2011) extended the Community Radiative Transfer Model (Han et al., 2006; Liu & Weng, 2006) to
implement an AOD observation operator into the GSI analysis system. The forward operator computes AOD
using aerosol profiles as an input. Liu et al. (2011) employed 3D mass concentrations of aerosol species as
control variables (“one‐step procedure”). This is different from previous studies (e.g., Benedetti et al., 2009;
Lee et al., 2013; Pagowski et al., 2010; Zhang et al., 2008) that employed either total column AOD or total
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aerosol mass as control variables (“two‐step procedure”), requiring assumptions of the vertical distribution
and contribution of individual species' mass to the total aerosol mass. The control variables of the 3D‐Var
method include unbalanced surface pressure, stream function, unbalanced velocity potential, unbalanced
virtual temperature, and pseudo relative humidity. In addition, the control variables also include the mixing
ratios of five bin dust variables. The code that was developed by Liu et al. (2011) is modified and used in our
3D‐Var AOD assimilation. Note that in Liu et al. (2011), there are 15 aerosol species, including five different
dust species. Since dust is the major aerosol type over the region of interest and is the only aerosol type in the
WRF dust model, we set other 10 aerosol species to zeros so that the assimilation of AOD only corrects five
dust species.

The BEC was calculated using the National Meteorological Center method (Parrish & Derber, 1992). In
detail, background error statistics were computed using the differences between 24‐ and 12‐hr forecasts initi-
alized at 0000 or 1200 UTC each day during the month of June 2015. Cross correlations between different
aerosol variables or between aerosol and meteorological variables are not considered, and only some multi-
variate correlations between stream function and velocity potential/virtual temperature/surface pressure are
taken into account.
2.2.2. The EnSRF Method
The community EnKF system released with the NCEP GSI system is based on the EnSRF, and
model‐simulated observations are computed using the GSI observation operators, including AOD, as those
used for 3D‐Var. In the EnSRF, aerosol control (or analysis) variables are identical to those in 3D‐Var, and
meteorological control variables are zonal wind, meridional wind, temperature, pseudo relative humidity,
and surface pressure. In this study, cross correlations are not permitted between meteorological and aerosol
analysis variables. However, cross correlations between the five meteorological analysis variables are
allowed as are cross correlations between the five size bin dust variables.

In this study, 36 ensemble members were used to calculate flow‐dependent BECs. Both inflation and covar-
iance localization are used to alleviate the sampling problem caused by the use of a limited number of
ensemble members. Posterior multiplicative “relaxation to prior spread” inflation (Whitaker &
Hamill, 2012) was adopted to maintain ensemble spread and avoid filter divergence. The inflation factors
for meteorological and aerosol variables were set to 1.12 and 1.20, respectively, following Schwartz
et al. (2014). The horizontal and vertical covariance localizations, which were used to reduce spurious cor-
relations, were based upon the Gaspari and Cohn function (Gaspari & Cohn, 1999). The horizontal localiza-
tion scale for all observations (i.e., conventional, surface pressure, radiance, and AOD observations) is
1,800 km following Schwartz et al. (2014), and vertical localization scales for conventional/AOD and
radiance/surface pressure observations are 1.0 and 2.2 scale height, respectively, followingWang et al. (2013).
Note that the inflation method and horizontal/vertical localization scales used are determined from the
information contained in previous studies as well as an analysis of our own sensitivity tests (results not
shown). Observation‐space vertical localization used in EnSRF requires a vertical location for each observa-
tion. Because AOD observations are vertically integrated quantities, to assign vertical locations for AOD
observations is not straightforward. Therefore, the model‐simulated aerosol transmittance for each AOD
observation was calculated, and the pressure level where the transmittance was maximized was assigned
as the vertical location for each AOD observation. Note that this approach is similar to the widely used
method for determining the vertical locations for the assimilation of satellite radiances (Hamill et al., 2011;
Houtekamer & Mitchell, 2005; Houtekamer et al., 2005; Newman et al., 2015).
2.2.3. The Hybrid Method
In the NCEP GSI hybrid analysis system, a combination of static BEC, which is used for 3D‐Var, and
flow‐dependent BEC, which is used for EnSRF, is employed through the use of extended control variables
(Lorenc, 2003). The specifics of expansion of the GSI hybrid system for aerosol DA are given in Schwartz
et al. (2014), and only important aspects of aerosol DA are briefly described here.

As mentioned in Schwartz et al. (2014), the number of extended control variables is reduced in the GSI
hybrid system for computational efficiency. This approach introduces cross correlations between all control
variables, including cross correlations between meteorological and aerosol variables. Auxiliary experiments
are conducted for a limited number of cases to investigate effects of the meteorological‐aerosol correlations
included in the BEC of the hybrid method. In the auxiliary experiments, meteorology and aerosol observa-
tions are assimilated using the EnSRF method that includes cross correlations between meteorological and
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aerosol variables. Results of the auxiliary experiments are qualitatively similar to results with the EnSRF
method without the meteorological‐aerosol correlations, which is consistent with section 7 of Schwartz
et al. (2014). In this study, in combining static and flow‐dependent BECs, the weights given to the static
and flow‐dependent BECs are 0.25 and 0.75, respectively. Limited sensitivity to the weights given to BECs
from 3D‐Var and EnKF was reported for meteorological (Wang, 2011; Wang et al., 2013; Zhang
et al., 2013) and aerosol applications (Schwartz et al., 2014). Several values for the weights given to the
static and flow‐dependent BECs are tested, but, as in previous studies, the resulting analyses show little
sensitivity to the weighting values chosen. Covariance localization was also used in the hybrid to reduce
spurious correlations, with identical values as in the EnSRF. Note that vertical localization in hybrid is
model‐space localization (cf. observation‐space localization in EnSRF) and does not require an exact
vertical location of each observation.

3. Observations, Ensembles, and Experimental Design
3.1. Observations for Assimilation

Observations that are used in DA include AOD, satellite radiance, and conventional data. DA is cycled every
6 hr with observations falling within a 6‐hr time period centered at the analysis time. AOD observations are
provided byMODIS Level 2 (L2) 550‐nmAOD retrievals from the Terra andAqua satellites, which are gridded
at a 10‐km horizontal resolution. Unlike Schwartz et al. (2014), who only assimilated dark target AOD data,
this study uses both dark target and deep blue data. Only observations of AOD < 5.0 with the “best” quality,
as determined by a confidence flag value of 3, are considered for assimilation. All AOD observations meeting
these criteria are thinned to a 54‐km grid to reduce correlations between adjacent observations.

MODIS AOD data are only available during the day. Thus, AOD observations can only be assimilated at
0600, 1200, and 1800 UTC for our model domain, which includes North Africa and the East Atlantic.
Figure 1 gives an example of typical distributions of MODIS AOD observations (both deep blue and dark tar-
get products) at 0600, 1200, and 1800 UTC. Since only dust aerosols are considered in this study, we have
attempted to reduce the amount of nondust aerosols that, through AOD DA, are ultimately treated as dust
in the WRF dust model by only assimilating AOD observations north of the equator and east of 60°W, which

Figure 1. MODIS AOD observations (both deep blue and dark target) assimilated at 0600 (blue), 1200 (green), and 1800
(red) UTC 15 June 2015 over Domain 1. Only observations north of the equator and east of 60°W are assimilated.
Boundaries of Domain 2 are also shown.
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prevents the assimilation of most AOD observations dominated by biomass burning or sea salt aerosols. To
confirm that the assimilated AOD observations are mainly due to the presence of dust aerosols, monthly
averaged Ångström exponent (AE) values from the Visible Infrared Imaging Radiometer Suite (VIIRS)
sensor are plotted (Figure 2). AE values can be used as an indicator of aerosol size, with smaller values
generally corresponding to larger aerosols, such as dust. The VIIRS AE values are calculated based on the
488‐ and 670‐nm optical depths over land and the 550‐ and 865‐nm optical depths over the ocean.
Although some MODIS AOD observations north of the equator and east of 60°W (e.g., north of North
Africa and north of 25°N over the Atlantic) correspond to AE values greater than 0.75 (a threshold value
used in Di Tomaso et al., 2017), most assimilated MODIS AOD observations have AE values smaller than
0.75. We will use the filtering method in Di Tomaso et al. (2017) to exclude nondust AOD observations in
our future work.

The observational error of MODIS AOD data depends on the retrieval algorithm (i.e., dark target versus deep
blue) and the surface type (water, nondesert land, or desert). Errors for dark target data are assigned following
the method used by Remer et al. (2005), Schwartz et al. (2012), and Schwartz et al. (2014). Although the dark
target observational errors used in this study are smaller than those referenced in previous studies (e.g., Hyer
et al., 2011; Shi et al., 2011; Zhang &Reid, 2006), they are consistent with values that were successfully used in
previous studies (Liu et al., 2011; Schwartz et al., 2012; Schwartz et al., 2014). For deep blue data, observational
errors are determined using each observation's uncertainty information and confidence flag value, which are
included in L2 MODIS AOD/aerosol data files. The actual formulae used to compute observational errors for
any MODIS AOD (εAOD) observation are as follows:

εAOD ¼
0:03þ 0:05τo; dark target over water

0:05þ 0:15τo; dark target over land

0:05þ 0:15τo þ 0:013− dbcf ; deep blue

8><
>:

where τo is the MODIS AOD value and dbcf is the confidence flag for deep blue products.

The satellite radiance observations assimilated in this study are listed in Table 1. Channel selection for each
instrument and observational error for each channel are consistent with NCEP's operational settings. Prior
to assimilation, all radiance observations are thinned to a 108‐km grid and quality screened within the GSI
system. Details of GSI's quality control (QC) procedures for radiance data can be found in Hu et al. (2016).

Figure 2. Monthly averaged (June 2015) Ångström exponent (AE) from the Visible Infrared Imaging Radiometer Suite
(VIIRS) sensor. Hatched regions indicate AE values greater than 0.75.
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Since radiance observations are prone to systematic errors (i.e., biases), we use GSI's variational bias
correction (VarBC) capability (Auligné et al., 2007; Dee, 2004; Derber & Wu, 1998; Pu et al., 2019; Zhu,
Derber, Collard, Dee, Treadon, Gayno, & Jung, 2014; Zhu, Derber, Collard, Dee, Treadon, Gayno, Jung,
Groff, et al., 2014) to limit their impact on assimilation. Initial bias correction coefficients for our specific
assimilation settings, observation data, model configuration, and time period are generated following the
method described by Hu et al. (2016) and Liu et al. (2012) and updated during each DA cycle.

Finally, we assimilate conventional, Global Positioning System (GPS) Radio Occultation (RO), and
satellite‐derived wind observations, which are listed in Table 2. These data are also subject to a battery of
QC checks within GSI before assimilation. Observational errors for conventional observations follow those
from the North American Mesoscale Forecast System.

3.2. Configuration of the Ensemble

Thirty‐six ensemble members are used in EnSRF DA. The horizontal grid spacing of each ensemble member
is 27 km. Following Torn et al. (2006), the initial and lateral boundary conditions (at 0000 UTC 27May 2015)
for the ensemble members are generated by perturbing the control variables, including dust aerosols, from
the values derived from NCEP's Final (FNL) global analysis. Perturbations are randomly assigned according
to a Gaussian probability distribution with a zero mean and standard deviation equal to the static BEC used
in 3D‐Var.

Table 1
Satellite Radiance Observations Assimilated

Instrument Satellite

Infrared High‐Resolution Infrared Radiation Sounder‐3 (HIRS‐3) NOAA‐16, 17
HIRS‐4 MetOp‐A, B

NOAA‐18, 19
Atmospheric Infrared Sounder (AIRS) Aqua
Infrared Atmospheric Sounding Interferometer (IASI) MetOp‐A, B
Cross‐track Infrared Sounder (CrIS) Suomi NPP

Microwave Advanced Microwave Sounding Unit‐A (AMSU‐A) NOAA‐15, 18, 19
MetOp‐A, B
Aqua

AMSU‐B NOAA‐17
Microwave Humidity Sounder (MHS) NOAA‐18, 19

MetOp‐A, B
Advanced Technology Microwave Sounder (ATMS) Suomi NPP
Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) Aqua
Special Sensor Microwave Imager (SSM/I) DMSP F‐13, 14, 15
Special Sensor Microwave Imager/Sounder (SSMI/S) DMSP F‐16

Table 2
Conventional Observations Assimilated

Observing platform Observation type

Radiosonde Wind
temperature
Specific humidity
Surface pressure

Aircraft Wind
temperature

Wind profiler Wind
Ship and buoy Wind

temperature
Specific humidity
Surface pressure

Surface Synoptic Observation (SYNOP) and Meteorological Aerodrome Reports (METAR) Surface pressure
GPS RO Refractivity
Satellite‐derived winds Wind
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Although we are primarily interested in analyses and forecasts produced
for June 2015, the ensemble starts DA cycling 5 days earlier at 0000
UTC 27 May 2015 to improve the ensemble spread from the random per-
turbations for dust and other meteorological variables. The 5‐day DA
cycling assimilates both meteorological and AOD observations mentioned
in section 3.1 using the EnSRF DA method. The last forecast ensemble of
the 5‐day DA cycling, which is initialized by the analysis ensemble at 1800
UTC 31 May, will be used for 1‐month DA cycling experiments in this
study, and it is referred to the spun‐up forecast ensemble in the remainder
of this paper.

3.3. Experimental Design

A total of six primary DA cycling experiments is conducted (Table 3). An
additional experiment (Hybrid_NoDB), which is introduced in section 4.3, is performed to examine the
impact of assimilating MODIS deep blue AOD observations. All experiments assimilate conventional, GPS
RO, satellite‐derived winds, and radiance observations. The first part of any experiment name (i.e.,
“3DVAR,” “EnKF,” or “Hybrid”) in Table 3 indicates the DAmethod used for the experiment, while the sec-
ond part of the experiment name indicates whether AOD observations (both dark target and deep blue data)
are (“ALL”) or are not (“NoAOD”) assimilated. Comparing the results of experiments that differ only in the
DAmethod used allows one to assess the relative performance of each DAmethod, while comparing experi-
ments that differ only by whether or not they assimilate AOD observation permits one to investigate the
impact of AOD assimilation on dust forecasts.

All experiments conduct analysis‐forecast cycles every 6 hr from 0000 UTC 1 June 2015 to 1800 UTC 30 June
2015. For the first cycle, the first‐guess or background information for all experiments is derived from the
spun‐up forecast ensemble valid at 0000 UTC 1 June 2015, with the “EnKF” experiments using the full
ensemble and the “3DVAR” and “Hybrid” experiments using the mean of the ensemble. Background infor-
mation for each subsequent cycle is taken from, in the case of the “EnKF” experiments, a 6‐hr dust model
forecast ensemble initialized from the most recent posterior (analysis) ensemble or, in the case of the
“3DVAR” or “Hybrid” experiment, a deterministic 6‐hr dust model forecast initialized from the most recent
analysis. It should be noted that posterior ensembles were not recentered about hybrid analyses (i.e., there is
no feedback from hybrid cycle to EnSRF cycle).

The posterior ensemble means of the “EnKF” experiments and analyses of the “3DVAR” and “Hybrid”
experiments for all cycles (i.e., from 0000 UTC 1 to 1800 UTC 30 June 2015 at 6‐hr intervals) are used to initi-
alize 72‐hr forecasts, producing a total of 120 forecasts for each experiment. Each 72‐hr dust model forecast
consists of two nested domains with horizontal grid spacings of 27 and 9 km, respectively (Figure 1), 38 ver-
tical levels, and a 50‐hPa model top. All forecasts are made with the two‐way nesting option and use the phy-
sics schemes listed in Table 4. Note that only the outer 27‐km domain is used in the DA cycling process.

4. Results and Discussions
4.1. DA Analysis

The analyses from all 6‐hourly DA cycles are, unless otherwise specified, evaluated against three different
observational data sets, including MODIS and AERONET AODs and aerosol backscatter profiles from the

Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument
aboard the Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) satellite. All comparisons are performed at the
observation locations (i.e., analyses are interpolated to observation loca-
tions). RMSEs and biases are used to evaluate the performance of each
DA method.
4.1.1. Comparison With MODIS AOD Observations
The results from the three “ALL” experiments, all of which assimilate
MODIS AOD observations, are used to confirm that AOD assimilation is
proceeding as expected. Figure 3 shows RMS of O − B (observation minus
background) and O−A (observation minus analysis) for AOD for all 1200

Table 3
Summary of DA Cycling Experiments

Experiment
name DA method Assimilated observations

3DVAR_ALL 3D‐Var AOD (deep blue and dark target),
conventional, and radiance
observations

EnKF_ALL EnSRF
Hybrid_ALL Hybrid
3DVAR_NoAOD 3D‐Var Conventional and radiance

observationsEnKF_NoAOD EnSRF
Hybrid_NoAOD Hybrid
Hybrid_NoDB Hybrid AOD (dark target only), conventional,

and radiance observations

Table 4
Physics Schemes Used for Dust Forecasts

Physical parameterization Selected option

Microphysics Two‐moment scheme (Cheng et al., 2010)
Cumulus parameterization Kain‐Fritsch scheme (Kain, 2004)
Planetary boundary layer MRF scheme (Hong & Pan, 1996)
Shortwave radiation GSFC scheme (Chou & Suarez, 1999)
Longwave radiation GSFC scheme (Chou et al., 2001)
Land surface model Noah LSM (F. Chen et al., 1996)

10.1029/2019MS001890Journal of Advances in Modeling Earth Systems

CHOI ET AL. 8 of 30



UTC DA cycles. The 1200 UTC cycle is used since the amount of MODIS
data available over North Africa and the East Atlantic is maximized dur-
ing the 1200 UTC cycle's DA time window. The RMS of O − A is smaller
than the RMS of O − B for all analysis cycles, and the difference between
the two RMS values decreases with each additional DA cycle as expected.

For an ensemble‐based DA system, the spread‐skill relationship is also
often used to examine whether the system is stable and performs reason-
ably. The total spread is defined as the square root of the sum of the obser-
vation error variance and ensemble variance of the simulated
observations. A system is considered well calibrated if the total spread of
the prior ensemble is similar to the magnitude of the RMS difference
(RMSD) between the prior ensemble mean B and the observations O
(Houtekamer et al., 2005; Schwartz et al., 2014). For the EnKF_ALL
experiment, the total spread for both the prior and posterior ensembles
remains nearly constant throughout the cycling period, indicating that
the EnSRF system is stable. However, the prior ensemble's total spread
is smaller than RMS of O − B for all cycles, indicating that the perfor-
mance of the EnSRF system is suboptimal in terms of its spread‐skill diag-
nostics. Note that the results of the 0600 and 1800 UTC DA cycles produce
the same conclusions as those of the 1200 UTC DA cycle.

Figure 4h shows the MODIS monthly‐average 550‐nm AOD distribution
for June 2015, produced by merging data from the Terra and Aqua satel-
lites. The monthly‐average MODIS AOD field is the average of the
MODIS AOD data fields produced at each analysis time by interpolating
MODIS AOD observations (from both the Terra and Aqua satellites) avail-
able within a 6‐hr window—centered on the analysis time—to the model
grid. Interpolation is accomplished by computing the distance‐weighted
average of all observations present within 30 km of each grid point.
Large AOD values over Mauritania, Western Sahara, Mali, Algeria,
Niger, and Chad are associated with mineral dust originating from the
Sahara Desert. High AOD values over the East Atlantic are primarily asso-
ciated with the transport of Saharan dust by the prevailing wind (e.g.,
African Easterly Jet). The AOD “discontinuity” appearing along the wes-
tern coast of North Africa is due to the use of different retrieval algorithms
for bright desert land surfaces (deep blue) and ocean surfaces (ocean
retrieval). Significant AOD features over Gabon, the Republic of the
Congo, and the Democratic Republic of the Congo are primarily due to
biomass burning in the Congo Basin, which produces black and organic
carbon. Small but nonnegligible AOD values over the West Atlantic can
be primarily attributed to sea salt aerosols ejected from the ocean surface
via bubble‐bursting processes. Since sea salt, organic carbon, and black
carbon aerosols are not considered in this study (i.e., only dust aerosol is
included in the WRF dust model), special caution should be exercised

when interpreting and evaluating the AOD analyses for areas where dust is not the dominant aerosol type.

Figures 4a–4f show the average of all AOD analyses for each experiment. The overall spatial pattern of the
observed AOD distribution (Figure 4h) is well captured by all DA experiments. However, in the three
“NoAOD” experiments, AOD values are overestimated (underestimated) over North Africa (Atlantic
Ocean) compared to the observations (see Figures 5b, 5d, and 5f). Through AOD assimilation, AOD analysis
values over North Africa are reduced, while those over the Atlantic Ocean are increased, as demonstrated by
the results of the three “ALL” experiments (also see Figures 5a, 5c, and 5e). To identify whether the
improved AOD analysis over North Africa in “ALL” experiments is due to the assimilation of AOD or
meteorology data, monthly averaged total (i.e., sum of five size bins) dust emission fluxes from six DA experi-
ments are plotted (Figure 6). Dust emission flux of the “ALL” experiment is similar to that of the

Figure 3. Root mean square (RMS) of O− B (red circle) and O−A (blue cir-
cle) for 550‐nm MODIS AOD, computed using all 1200 UTC analyses of (a)
3DVAR_ALL, (b) Hybrid_ALL, and (c) EnKF_ALL experiments. For
EnKF_ALL experiment, prior (red square) and posterior (blue square) total
spreads are also shown. The numbers on abscissa denote day and hour in
June 2015.

10.1029/2019MS001890Journal of Advances in Modeling Earth Systems

CHOI ET AL. 9 of 30



Figure 4. Monthly averaged AOD distribution of June 2015 for (a) 3DVAR_ALL, (b) 3DVAR_NoAOD, (c) EnKF_ALL, (d) EnKF_NoAOD, (e) Hybrid_ALL,
(f) Hybrid_NoAOD, (g) Hybrid_NoDB analyses, and (h) MODIS AOD observation.

10.1029/2019MS001890Journal of Advances in Modeling Earth Systems

CHOI ET AL. 10 of 30



corresponding “NoAOD” experiment for each DA method. This implies that the AOD assimilation mainly
contributes to the improved AOD analysis in the “ALL” experiments compared to the “NoAOD”
experiments. Nevertheless, the AOD analyses from the “ALL” experiments still differ significantly from
observations in several areas. For example, analysis AOD values exceed observations over Algeria and are
smaller than the observed values over central Africa (between 0°N and 15°N) in 3DVAR_ALL. In the
EnKF_ALL experiment, analysis and MODIS AOD values agree quite well over Algeria, but analysis AOD
values are generally smaller than observed over the Atlantic Ocean. Both 3DVAR_ALL's
larger‐than‐observed AOD values over Algeria and EnKF_ALL's smaller‐than‐observed AOD values over
the Atlantic disappear in analyses of Hybrid_ALL, which gives the best result (Figure 5).
Domain‐averaged monthly‐mean differences and RMSDs between the AOD analyses from all six experi-
ments and MODIS AOD observations are calculated to facilitate a quantitative comparison. The differences
(RMSDs) for 3DVAR_ALL, 3DVAR_NoAOD, EnKF_ALL, EnKF_NoAOD, Hybrid_ALL, and
Hybrid_NoAOD are −0.019 (0.131), −0.022 (0.401), −0.132 (0.192), −0.107 (0.349), −0.044 (0.109), and
−0.079 (0.360), respectively. The AOD analyses of Hybrid_ALL best agree with MODIS AOD observations
in terms of the RMSD, while the analyses of 3DVAR_ALL are most similar to MODIS observations in terms
of simple difference. Note that the latter result is due to the presence of large areas of positive and negative

Figure 5. Mean differences of AOD analyses of (a) 3DVAR_ALL, (b) 3DVAR_NoAOD, (c) EnKF_ALL,
(d) EnKF_NoAOD, (e) Hybrid_ALL, and (f) Hybrid_NoAOD from MODIS AOD observations.
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differences of similar magnitude, rather than high agreement between 3DVAR analyses and MODIS
observations. The AOD distributions of the three “NoAOD” experiments differ substantially from each
other due to differences in the analyzed wind fields for each experiment. These wind differences produce
differences in dust emission (Figures 6b, 6d, and 6f), which is a function of the 10‐m wind speed,
ultimately leading to differences in the simulated amount and distribution of dust aerosol. Consistent
features with mean AOD discrepancy distributions can be found in AOD RMS difference distributions
(figure not shown).

Analysis increments of 700‐hPa total dust mixing ratio at 12 UTC 4 June 2015 from the three “ALL” experi-
ments are shown in Figure 7. In the summer, the midlevel (~700‐hPa) flow over North Africa and the East
Atlantic is often dominated by the African easterly jet and associated waves. Overall, analysis increments of
the EnKF_ALL and Hybrid_ALL experiments better reflect the background flow than those of the
3DVAR_ALL experiment. For example, the positive dust increments over the Atlantic between 10°N and
20°N are more longitudinally continuous in EnKF_ALL and Hybrid_ALL—coinciding with the African
easterly jet originating over the Sahara Desert—than in 3DVAR_ALL. In short, flow‐dependent BECs are
more efficient in extracting information from the observations than static BECs, which is the primary reason
that Hybrid_ALL produces AOD analyses that best match the observations.

Figure 6. Monthly‐average total dust emission fluxes (i.e., sum over all five size bins; μg m−2 s−1) for (a) 3DVAR_ALL,
(b) 3DVAR_NoAOD, (c) EnKF_ALL, (d) EnKF_NoAOD, (e) Hybrid_ALL, and (f) Hybrid_NoAOD.
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In summary, comparing the monthly‐mean AOD analyses for the “ALL”
and “NoAOD” experiments to observations shows better agreement
between the “ALL” monthly‐mean AOD analyses and observations. Of
the three “ALL” experiments, Hybrid_ALL produces the monthly‐mean
AOD analysis that best matches the observations, while the AOD analysis
from EnKF_ALL performs better than that from 3DVAR_ALL. These
results demonstrate that while using flow‐dependent BECs alone can be
effective for improving AOD assimilation, additional gains can be attained
using static and flow‐dependent BECs simultaneously.
4.1.2. Comparison With AERONET AOD Observations
AERONET AOD observations (Cuevas et al., 2019; Giles et al., 2019)
represent an independent data set that can be used to assess our
AOD analyses and forecasts. The AERONET is a ground‐based aerosol
observation network established by NASA and PHOTONS. AERONET
observations provide globally distributed, high‐temporal frequency
observations of AOD at several wavelengths (Jiang et al., 2019).
Version 3 AERONET data have three data quality levels: Level 1.0
(unscreened), Level 1.5 (cloud screened and quality controlled), and
Level 2.0 (quality assured). In this study, only Level 2.0 AERONET
AOD data at 500 nm are used for AOD verification. Note that AOD
values at 550 nm can be transformed to 500 nm using the AE (Eck
et al., 1999) but the AOD difference between the two wavelengths is
not large for a range of AE values. We selected 20 of the 74
AERONET stations found within Domain 1, located in North Africa,
the Atlantic Ocean, and the Arabian Peninsula, for AOD verification
(Figure 8). Since AERONET AOD data, when available, are reported
far more frequently than the 6‐hr analysis interval but not necessarily
exactly at each analysis time, the AERONET AOD values used to eval-
uate our AOD analyses are computed by averaging all valid data
within a 2‐hr window centered at each analysis time.

Figure 9 shows the AOD biases for all six DA experiments relative to
AERONET observations. Biases at each AERONET station and for each
experiment are computed by averaging differences between AERONET
and analysis AOD values over 120 DA cycles. For the three “NoAOD”
experiments (Figures 9b, 9d, and 9f), AOD analyses have positive biases
at almost all AERONET stations over North Africa and negative biases
at stations in Spain, Algeria, Nigeria, Cyprus, and the West Atlantic.
Positive biases are largest for the 3DVAR_NoAOD experiment.

Compared to the AOD analyses for the “NoAOD” experiments, those for
the corresponding “ALL” experiments have smaller AOD bias magnitudes
at most AERONET sites. This includes bias magnitude reductions at sta-
tions outside of Nigeria where “NoAOD” analyses are negatively biased
and at all stations where “NoAOD” analyses are positively biased
(Figures 9a, 9c, and 9e). Sometimes the magnitudes of “ALL” and
“NoAOD” are the same, and some positively biased locations in the
“NoAOD” analyses show negative biases in the “ALL” analyses. For the
3DVAR_ALL experiment, AOD analyses at stations between 25°N and
35°N are positively biased, while AOD analyses from the EnKF_ALL
experiment are negatively biased at most stations. Biases in the
Hybrid_ALL AOD analyses lie between those from the 3DVAR_ALL

and EnKF_ALL experiments. The pervasiveness of negative biases over broad regions in the EnKF_ALL
analyses is partly attributed to the use of the ensemble mean—which tends to reduce variations present in
individual members—for bias calculation.

Figure 7. Analysis increments of 700‐hPa total dust mixing ratio (μg kg−1)
at 1200 UTC 4 June 2015 for (a) 3DVAR_ALL, (b) EnKF_ALL, and (c)
Hybrid_ALL experiments.
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The AERONET‐based AOD comparison described in this section is consistent with the MODIS‐based AOD
comparison in section 4.1.1.
4.1.3. Comparison With CALIOP Backscatter Observations
The vertical distribution of dust aerosol is important because the effects of dust particles on radiation and
clouds can vary depending on the altitude of a dust layer relative to clouds in the same atmospheric column.
The CALIOP instrument aboard the CALIPSO satellite provides invaluable, detailed vertical profiles of
clouds and aerosols along its track (Young et al., 2018). Total (Level 2 [L2]) aerosol backscatter information
from CALIOP is used to evaluate the vertical distribution of dust in the analyses and forecasts from all
experiments. This data set, which represents the retrieved backscatter due solely to aerosols, is chosen for
this purpose since it allows an evaluation of modeled dust data without requiring a simultaneous assessment
of other nonaerosol model variables (i.e., for clouds, absorbing gases, and others), as would be required if the
Level 1 attenuated backscatter data set were chosen instead. Additionally, CALIOP aerosol backscatter
observations are suitable for model validation since, as with AERONET data, they represent an independent
source of aerosol information.

To validate model analyses against CALIOP total aerosol backscatter data, the modeled dust distribution is
first transformed into CALIOP‐equivalent backscatter values along CALIPSO tracks using the Goddard
Satellite Data Simulator Unit (G‐SDSU; Matsui et al., 2014) for each DA experiment. Both CALIOP and
the model‐simulated total backscatter data are then processed and interpolated to the same resolution (from
finer to coarser) according to the procedure outlined below:

1. Flag cloud‐contaminated and unreliable CALIOP L2 total backscatter data (CAL_b) by

a. selecting data points that are classified as “aerosol” or “clear air” by the CALIOP L2 vertical feature mask
(VFM) product

b. using only data points with extinction QC flag values of 0, 1, 2, 16, 18, or 32,768 (Toth et al., 2018).

Note that the vertical resolution of both CALIOP L2 VFM and extinction QC data is finer (30 m) than that of
CALIOP L2 total backscatter data (60 m), meaning that two VFM and extinction QC values exist for each
backscatter value. Thus, a backscatter value is considered acceptable if both of its corresponding VFM values
indicate “aerosol” or “clear air” and both of its associated extinction QC flag values are one or more of those
listed in (b) above.

Figure 8. Geographical locations of AERONET stations over Domain 1. AERONET stations used for verification are
denoted by red dots, and their station names are given.
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2. Assign a small backscatter value (10−4 km−1 sr−1) to all “clear‐air” data points in CAL_b, to represent the
backscatter from “background” aerosols that are present even when CALIOP fails to detect a significant
aerosol feature.

3. Interpolate G‐SDSU‐simulated backscatter (GSDSU_b) data horizontally and vertically to the grid used
by CAL_b.

4. Exclude corresponding data points in both CAL_b and GSDSU_b where

a. CAL_b values are equal to the background value (CAL_b = 10−4 km−1 sr−1) and total modeled dust mix-
ing ratios at the same points are <1 μg m−3. This prevents data points with small background aerosol
amounts from causing differences between CALIOP and model backscatter (i.e., bias), as well as back-
scatter differences between experiments, to appear misleadingly small.

b. CAL_b data are flagged as cloud contaminated or unreliable.
c. Interpolated GSDSU_b data are invalid.

5. Compute CAL_b and GSDSU_b values on model vertical levels by averaging valid data.

Two average vertical profiles of total backscatter biases are computed for each experiment: one for data
points over North Africa (i.e., land; Figure 10a) and the other for data points over the Atlantic (i.e., ocean;

Figure 9. Biases of AOD for analyses of (a) 3DVAR_ALL, (b) 3DVAR_NoAOD, (c) EnKF_ALL, (d) EnKF_NoAOD,
(e) Hybrid_ALL, and (f) Hybrid_NoAOD experiments. Biases are calculated against AERONET AOD observations.
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Figure 10c). While magnitudes differ between experiments, all bias profiles for the same surface type (land or
ocean) share the same general shape. However, bias profiles for land and ocean are noticeably different in
both magnitude and shape. Comparing the backscatter analyses of the “ALL” experiments to those of the
corresponding “NoAOD” experiments over land shows that AOD assimilation in (1) 3DVAR_ALL improves
and degrades the analysis backscatter profile between 0.5 and 4.5 km and above 4.5 km, respectively;
(2) EnKF_ALL improves and degrades the analysis backscatter profile above and below 5 km, respectively;
and (3) Hybrid_ALL improves the analysis backscatter profile between 1.5 and 3.5 km but degrades it else-
where. In short, AOD assimilation appears to reduce backscatter analysis biases at most levels but increases
them at others. This is due to the general reduction in columnAOD values caused by AOD assimilation, con-
sistent with the results of sections 4.1.1 and 4.1.2. Since MODIS AOD values reflect the extinction of visible
light due to all aerosols in an atmospheric column, an assimilation‐driven reduction in column‐total AOD at
a horizontal model grid point is the result of reduced modeled dust concentrations throughout the column
where such concentrations are initially non‐zero. This produces smaller total backscatter values and the gen-
eral leftward shift seen for the “ALL” land‐based average analysis backscatter bias profiles relative to those of
the “NoAOD” experiments. In general, the land‐based backscatter bias profiles for the “ALL” experiments
show that Hyrbid_ALL produces better backscatter analyses than 3DVAR_ALL below 0.25 km and above
1.5 km but not in between, while EnKF_ALL produces worse backscatter analyses than both Hybrid_ALL
and 3DVAR_ALL at all levels below 5 km.

RMSEs of the “ALL” analyses over land are slightly smaller than those of their “NoAOD” counterparts at
nearly all levels (Figure 10b), in contrast with the biases for the two sets of experiments. The differences

Figure 10. Vertical distributions of (a and c) bias and (b and d) RMSE of backscatter (km−1 sr−1) for analyses. CALIOP
backscatter observations whose paths cross over (a and b) land and (c and d) ocean are used for bias and RMSE calculation.
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in RMSE and bias values between the “ALL” and “NoAOD” experiments, together with the fact that RMSE
magnitudes are one order larger than corresponding bias magnitudes, imply that modeled backscatter
values are not consistently greater or less than observed values at any given level. As a result, backscatter
biases are small and do not adequately reflect the small positive effect that AOD assimilation has on the
vertical dust distribution, which is illustrated through RMSEs. Of the three “ALL” experiments,
3DVAR_ALL and Hybrid_ALL have slightly smaller RMSEs than does EnKF_ALL, especially at middle
to upper levels.

Although AOD values are generally smaller over the Atlantic than over North Africa, backscatter biases and
RMSEs are not (i.e., larger percentage biases). For instance, a negative bias peak appears near the surface
over both land and ocean, but the magnitude of the peak over ocean is almost twice larger than that over
land (Figure 10c). One reason that the low‐level negative backscatter bias peak is particularly large over
the ocean is the lack of sea salt aerosols in our model, which can nevertheless contribute significantly to
observed backscatter values. Since AOD values are generally underestimated over the ocean without AOD
assimilation (Figure 5), AOD DA has the effect of shifting backscatter bias profiles to the right, which
reduces the negative biases below 1.5 km but increases positive biases above. Ultimately, this is due to the
fact that AOD observations do not provide any information regarding the vertical distribution of aerosols.
To improve modeled dust (and thus backscatter) profiles over the ocean, either that the model background
data provided as input to GSI must include marine aerosols, or that aerosol observations with vertical
information, such as CALIOP backscatter, must be assimilated. Exploring these approaches is beyond the
scope of this work and is left for future investigation.

As with RMSEs over land, RMSEs over ocean are reduced slightly at nearly all levels after AOD assimilations
(Figure 10d). Near their ~1‐km peak, RMSEs are greater for EnKF_ALL than for 3DVAR_ALL
and Hybrid_ALL.

In conclusion, AOD assimilation reduces aerosol backscatter RMSEs slightly at nearly all levels, with better
performance from the variational and hybrid methods than the EnSRF method. The slightly worse
performance for the EnSRF method is due in part to (1) the use of ensemble mean (smoothness) in
evaluating the EnKF analyses and (2) the use of the adjoint operator in both the 3D‐Var and hybrid methods.
While AOD assimilation can reduce average AOD analysis biases with respect to both MODIS and
independent, nonassimilated AERONET data, its impact on backscatter bias profiles is less clear and
depends on the DA method used and profile height. This is due to the fact that AOD data do not describe
the vertical distribution of aerosols. Improving backscatter bias and RMSE profiles thus requires the
assimilation of observations that can describe the vertical distribution of aerosols, such as CALIOP
backscatter, which is expected to have a positive impact on AOD RMSEs as well.

4.2. Forecast Results

Similar to the analysis evaluation procedure above, dust forecasts are verified by comparing model results
against MODIS AOD, AERONET AOD, and CALIOP backscatter observations. Taylor diagrams, which
can provide concise statistical summaries of how well two patterns (i.e., model forecasts and observations)
match each other in terms of their correlation, their RMS difference, and the ratio of their variances
(Taylor, 2001), are introduced in this section to present and assess forecast results. Since two‐way interaction
is used during the forecasts, the results from a high‐resolution child domain overwrite the results for the
same area in its mother domain. Thus, in this section, results from Domain 1 are used for verification in
order to cover a larger area.
4.2.1. AOD Forecasts
4.2.1.1. Comparison With MODIS AOD Observations
The spatial pattern of AOD forecast biases with respect to MODIS AOD is similar for all six experiments at
24, 48, and 72 hr, as shown in Figure 11 for the 72‐hr forecast, with positive biases over the deserts of North
Africa and negative biases elsewhere. The patterns/magnitudes of the “NoAOD” 72‐hr AOD forecast biases
are very similar to those of the corresponding analysis biases (Figure 5). For the “ALL” experiments, AOD
bias magnitudes grow with increasing forecast length while differences between the three experiments
shrink. This behavior is caused by the natural growth of systematic errors during the free forecast following
the abrupt change in the AOD distribution due to AOD DA.
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Figure 12 shows a Taylor diagram for the 0‐, 24‐, 48‐, and 72‐hr AOD forecasts from all six DA experiments.
Overall, the “ALL” AOD forecasts are in better agreement with MODIS observations than the “NoAOD”
AOD forecasts in all aspects (i.e., “ALL” forecasts show higher correlations, similar spatial variability to
the observation, and smaller RMS differences), with the exception of the 72‐hr forecasts when all experi-
ments have a similar correlation. AOD forecasts from the “ALL” experiments worsen with increasing fore-
cast length in terms of AOD RMS difference, spatial correlation, and normalized standard deviation. Taylor
statistics for the “NoAOD” forecasts, on the other hand, change only slightly, causing the Taylor statistics for
the “ALL” and “NoAOD” experiments (other than 3DVAR_NoAOD) to converge with increasing forecast
length. Of the “ALL” experiments, Hybrid_ALL and EnKF_ALL produce the best AOD analysis and AOD
forecasts (at 24, 48, and 72‐hr), respectively, the latter of which are slightly better than the corresponding
forecasts of Hybrid_ALL.

In summary, due to AOD assimilation, the AOD forecasts of the “ALL” experiments outperform those of the
“NoAOD” experiments compared to observations. However, differences in forecast quality between the
“ALL” and “NoAOD” experiments, as well as among the three “ALL” experiments, shrink as forecast length
increases. At the initial (analysis) time, modeled AOD values fromHybrid_ALL best match the observations,
while the best AOD forecasts are produced by EnKF_ALL, which hold a slight advantage over their
Hybrid_ALL counterparts from a Taylor statistics perspective.

Figure 11. The same as Figure 5 but for 72‐hr forecasts.
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4.2.1.2. Comparison With AERONET AOD Observations
The 72‐hr AOD forecast biases at each AERONET station from all six DA
experiments are shown in Figure 13. Forecast biases for the three
“NoAOD” experiments are larger than those of the corresponding
“ALL” experiments. Differences among the “ALL” experiments become
smaller with forecast length (results for 24‐ and 48‐hr forecasts are not
shown). The 72‐hr AOD forecast biases with respect to AERONET obser-
vations are consistent with those computed with respect to
MODIS observations.

Figure 14 shows AOD forecast mean absolute errors (MAEs) and
RMSEs as a function of forecast length averaged over 20 AERONET sta-
tions. AOD MAEs of the “ALL” experiments are smaller than those of
the corresponding “NoAOD” experiments regardless of DA methods.
AOD forecast improvement through the AOD assimilation is more
noticeable when the 3D‐Var method is used (~35% to 60%). Of the
“ALL” experiments, forecasts of the Hybrid_ALL are better than those
of the 3DVAR_ALL and EnKF_ALL regardless of forecast
lengths (Figure 14a).

AOD RMSE values increase in all experiments other than
EnKF_NoAOD and Hybrid_NoAOD, and, with the exception of
3DVAR_NoAOD, tend to converge with increasing forecast length
(Figure 14b). Using the 3D‐Var method, AOD assimilation reduces
AOD RMSEs of subsequent forecasts at all times, with RMSE reduc-
tions becoming more substantial with increasing forecast length. For
the EnSRF and hybrid methods, AOD assimilation improves forecast
AOD RMSEs for the first 48 hr, after which time RMSE reductions

become less significant. These results clearly show that AOD assimilation positively impacts AOD ana-
lyses and forecasts.

Regardless of whether or not AOD data are assimilated, the EnSRF and hybrid methods produce better dust
forecasts than the 3DVARmethod. When AOD data are assimilated, RMSEs indicate that the hybrid method
produces the best AOD forecasts, while the EnSRF and 3D‐Var methods produce the second best and worst
AOD forecasts, respectively.

While our AOD forecast assessments have thus far focused on month‐long averages, it is also important to
determine how well each experiment captures short‐term, day‐to‐day fluctuations in AOD. To do this, 0‐,
6‐, 12‐, and 18‐hr AOD forecasts from each experiment starting from each day's 1200 UTC DA cycle, when
most MODIS AOD observations are assimilated in the “ALL” experiments (Figure 1), are stitched together
and interpolated to AERONET stations to form a month‐long AOD time series for each station that can be
compared to the station's own AOD time series. Of the 20 selected stations within Domain 1, four stations in
North Africa (Medenine‐IRA, Santa Cruz, Dakar, and Tamanrasset_INM; see Figure 8 for their locations)
are selected for comparison since they are located near or within the main region of interest and have fewer
missing values than others in the same area. At Medenine‐IRA, which is located in Tunisia, all AOD time
series, both simulated and observed, show two peaks near 1200 UTC on 17 and 25 June. Although forecasted
AOD values exceed observations near these peaks, observed and forecasted AODs over the entire 1‐month
period are well correlated for all experiments, with correlation coefficients between the two exceeding
0.75 for all experiments. Of the three “ALL” experiments, Hybrid_ALL has the highest correlation coeffi-
cient (0.87), followed by that of EnKF_ALL, and finally 3DVAR_ALL (Figure 15a). At Santa Cruz on the
island of Tenerife, AERONET‐observed high‐AOD events on 6, 22, and 30 June are well captured in all
experiments. High correlation between observed and forecasted AOD is again found at this station for all
experiments (correlation coefficients above 0.7), with higher correlation for the “ALL” experiments than
the corresponding “NoAOD” experiments. As with the Medenine‐IRA station data, Hybrid_ALL produces
the best forecast‐observation correlation at this station (Figure 15b). At the Dakar station in Senegal, large
observed temporal fluctuations in AOD are accurately captured in all experiments but are represented

Figure 12. Taylor diagram for 0‐, 24‐, 48‐, and 72‐hr AOD forecasts of seven
DA experiments. Blue, green, and red dots denote 3DVAR_ALL,
EnKF_ALL, and Hybrid_ALL experiments, respectively. Blue, green, and
red crosses indicate 3DVAR_NoAOD, EnKF_NoAOD, and Hybrid_NoAOD
experiments, respectively. Red square denotes Hybrid_NoDB experiment.
The numbers 1, 2, 3, and 4 correspond to 0‐, 24‐, 48‐, and 72‐hr forecasts,
respectively.
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particularly well by the “ALL” experiments, whose correlation coefficients are greater than those of the
corresponding “NoAOD” experiments. Hybrid_ALL once again has the highest correlation, followed by
3DVAR_ALL and EnKF_ALL (Figure 15c). Finally, at the Tamanrasset_INM station in Algeria, some
observed peaks in AOD near 14 and 30 June are not found in the forecasts, resulting in lower correlation
coefficients (below 0.65). The “EnKF” and “Hybrid” experiments have higher correlation coefficients than
the “3DVAR” experiments do (Figure 15d).

In short, the validation of AOD forecasts against AERONET observations reinforces the results of similar
validation efforts against MODIS observations: AOD assimilation clearly improves AOD analyses and sub-
sequent forecasts, particularly for the 3D‐Varmethod. Comparisons with AERONET data show that the ben-
efits of AOD assimilation persist for about 48 hr for the EnSRF and hybrid methods. The forecasts of
Hybrid_ALL perform the best in terms of monthly averaged bias and correlation with observed day‐to‐day
AOD fluctuations, followed by the forecasts of EnKF_ALL, and finally 3DVAR_ALL. Hybrid_ALL's super-
iority with respect to AERONET data is attributable to the use of the hybrid DA method, which enjoys the
benefits of flow‐dependent BECs while minimizing potential issues associated with insufficient ensemble
spread by using static BECs as well. Note, however, that it is EnKF_ALL, not Hybrid_ALL, that performs
the best with respect to MODIS AOD data. This could be due in part to large differences in spatial coverage
and temporal resolution (2‐hr average for observations vs. snapshot data for model) between AERONET and
MODIS AOD observations.

Figure 13. The same as Figure 9 but for 72‐hr forecasts.
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Figure 14. Domain‐averaged (a) MAE and (b) RMS error (RMSE) of AOD as a function of forecast length. MAE and
RMSE are calculated using AOD values from selected 20 AERONET stations.

Figure 15. Six‐hourly time series of AOD from 1200 UTC 1 June 2015 to 1200 UTC 1 July 2015 at (a) Medenine‐IRA, (b) Santa Cruz, Tenerife, (c) Dakar,
and (d) Tamanrasset_INM AERONET stations. Correlation value between time series of AERONET observation and each DA experiment is shown next to the
name of each experiment.
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4.2.2. Total Aerosol Backscatter Profiles
Forecasted total backscatter profiles are compared with those from CALIOP L2 observations. Mean 72‐hr
forecast biases and RMSEs with respect to CALIOP data are presented in Figure 16. Over land, the shape
of each experiment's 72‐hr forecasted backscatter bias profile (Figure 16a) is generally similar to that of its
analysis profile (Figure 10a). However, there are fewer differences among the bias profiles of all experiments
at the 72‐hr forecast time. The effect of AOD assimilation on 72‐hr forecast bias profiles depends significantly
on the DA method. For 3D‐Var, AOD assimilation reduces bias magnitudes at all levels other than between
0.25 and 1 km and above 7 km, compared to 3DVAR_NoAOD. For the hybrid method, forecasted backscat-
ter bias magnitudes are reduced by AOD assimilation below 0.25 km and above 1.25 km and degraded else-
where, compared to Hybrid_NoAOD. Finally, for EnKF, AOD assimilation reduces forecast bias magnitudes
between 1.5 and 3.0 km and above 5.0 km, compared to EnKF_NoAOD.

Over the ocean, differences among the backscatter bias profiles from all experiments (Figure 16c) are also
smaller at the 72‐hr forecast time than the analysis time (Figure 10c). The forecast bias profiles share the
same basic features as their analysis bias counterparts, with large negative biases below 1 km and positive
biases above. Additionally, as with the analysis bias profiles, AOD assimilation causes the 72‐hr forecast bias
profiles to shift rightward toward larger values (smaller negative or larger positive biases), but the shift is
small relative to that seen in the analyses. Backscatter RMSE profiles for the 72‐hr forecasts and their ana-
lyses are also similar over both land and ocean for all experiments, although RMSE differences among
experiments are smaller for the forecasts (Figures 16b and 16d). We again emphasize that bias magnitudes
are about one order smaller than RMSE values for both the analyses and forecasts due to the cancelation
of positive and negative biases that occurs when averaging individual bias profiles together.

Figure 16. The same as Figure 10 but for 72‐hr forecasts.
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Figure 17 shows Taylor diagrams for forecasted backscatter profiles at 0,
24, 48, and 72 hr from all six DA experiments. Taylor statistics for each
experiment and forecast time are calculated using vertical profiles of
CALIOP backscatter. Over land, the pattern correlation and RMSD values
are very similar for all experiments and forecast times with all correlation
values between 0.12 and 0.22. Nevertheless, the pattern correlation and
RMSD values for the “ALL” experiments are slightly better (i.e., correla-
tion increased; RMSD decreased) than those of the corresponding
“NoAOD” experiments at all forecast times. Of the “ALL” experiments,
3DVAR_ALL produces the best backscatter forecasts at 0 and 24 hr, while
Hybrid_ALL produces the best forecasts at 48 and 72 hr.

Over the ocean, pattern correlation values are also low for all experiments,
falling between 0.14 and 0.20, while normalized standard deviations are
slightly worse than those over land, with values between 0.18 and 0.36.
RMSDs for all experiments, forecast times, and surface types are
very similar.

The conclusions drawn from the Taylor diagrams computed against
CALIOP backscatter profiles are noticeably different than those com-
puted against MODIS AOD data for the same forecast times and
experiments. MODIS‐generated Taylor diagrams show pattern correla-
tion values between 0.5 and 0.85, substantially higher than those of
the CALIOP‐based diagrams, and error (RMSD) values that greatly
depend on forecast length. It is possible that the consistent, significant
disagreement between modeled and CALIOP backscatter is due not
only to inaccurately modeled dust fields but also to potential shortcom-
ings in the G‐SDSU operator, related to the single scattering properties
(particularly backscatter) of dust aerosols, used to obtain modeled
backscatter from the simulated dust distribution. To better assess the
likelihood that the poor Taylor statistics for CALIOP backscatter are
due to the G‐SDSU, CALIOP AOD values are compared to those pro-
duced by the G‐SDSU.

Figure 18 shows a Taylor diagram describing the relationship between
G‐SDSU‐simulated and CALIOP AOD for all six DA experiments.
AOD forecast quality shows clearer dependencies on forecast length
and AOD assimilation than the backscatter forecast Taylor statistics.
Additionally, AOD assimilation reduces RMSDs for all DA methods
and forecast lengths. The fact that MODIS AOD assimilation improves
AOD forecasts but has little effect on backscatter forecasts, even though
both sets of forecasts are evaluated against CALIOP data and both AOD
and backscatter are computed using the G‐SDSU, implies that the con-
sistently poor agreement between forecasted and CALIOP backscatter
is largely due to the horizontal, two‐dimensional nature of MODIS
AOD observations rather than serious issues in the G‐SDSU backscatter
operator. It is this lack of vertical aerosol information that limits the
impact of AOD assimilation on backscatter profiles to shifting the entire

profile to the left (over land) or right (over ocean).

In short, while MODIS AOD assimilation slightly reduces backscatter RMSEs at all levels for both forecasts
and analyses, it reduces the corresponding bias magnitudes at only some levels, with others experiencing an
increase in bias magnitudes. The Taylor diagrams show small changes in normalized standard deviations for
different forecast times when the 3D‐Var and hybridmethods are used but show no notable variations in cor-
relation or RMSD values between different experiments or forecast lengths. Since MODIS AOD assimilation
improves AOD analyses and forecasts with respect to both CALIOP andMODIS observations, its inability to

Figure 17. Taylor diagrams comparing simulated backscatter profiles of six
DA experiments with CALIOP backscatter observations whose paths cross
over (a) land and (b) ocean. Blue, green, and red dots (crosses) denote
3DVAR_ALL, EnKF_ALL, and Hybrid_ALL (3DVAR_NoAOD,
EnKF_NoAOD, and Hybrid_NoAOD) experiments, respectively. The num-
bers 1, 2, 3, and 4 indicate 0‐, 24‐, 48‐, and 72‐hr forecasts, respectively.
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significantly improve backscatter profiles is likely due in part to the
fact that MODIS AOD observations do not provide any information
regarding the vertical distribution of aerosols.

4.3. Impact of Assimilating Deep Blue AOD Data on Analyses
and Forecasts

While one would expect deep blue AOD data, via assimilation, to
improve dust analyses and forecasts over and downstream of source
regions (e.g., desert), deep blue data prior to Collection 6.1 (Sayer
et al., 2013, 2014, 2015) were often excluded from assimilation due
to the presence of large errors (Levy et al., 2013; Sayer
et al., 2013, 2014). Since the release of Collection 6.1, which included
deep blue data produced by a significantly improved algorithm, some
studies have examined the benefit of assimilating deep blue AOD
data over arid regions (e.g., Benedetti et al., 2019; Di
Tomaso et al., 2017).

To investigate the impact of deep blue products on dust analyses and
forecasts in this study, a seventh experiment is conducted
(Hybrid_NoDB) that is identical to Hybrid_ALL but excludes deep
blue AOD data (i.e., no AOD data over desert; Figure 1). Results from
the Hybrid_NoDB experiment are compared to those from
Hybrid_ALL and Hybrid_NoAOD.

Over land, the monthly‐average AOD analysis from Hybrid_NoDB
(Figure 4g) is broadly similar to that from Hybrid_NoAOD, though

Figure 18. Taylor diagram comparing simulated AOD of six DA experiments
with CALIOP AOD observations. Blue, green, and red dots (crosses) denote
3DVAR_ALL, EnKF_ALL, and Hybrid_ALL (3DVAR_NoAOD, EnKF_NoAOD,
and Hybrid_NoAOD) experiments, respectively. The numbers 1, 2, 3, and 4
indicate 0‐, 24‐, 48‐, and 72‐hr forecasts, respectively.

Figure 19. AOD RMSEs for (a–c) analyses and (d–f) 24‐hr forecasts of (a and d) Hybrid_ALL, (b and e) Hybrid_NoAOD, and (c and f) Hybrid_NoDB experiments.
RMSEs are calculated against AERONET AOD observations.
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some differences are evident at finer scales with Hybrid_NoDB AOD
slightly more consistent with MODIS AOD. Over ocean, the average
Hybrid_NoDB AOD analysis is similar to that from Hybrid_ALL except
in a small portion of the East Atlantic close to the coast of West Africa
where AOD values are larger than in Hybrid_ALL due to greater dust
transport from the Sahara Desert, which is the result of higher AOD
values over the region caused by the absence of AOD assimilation in
Hybrid_NoDB. The Taylor diagram in Figure 12 shows that the analyses
and forecasts of Hybrid_NoDB lie between those of Hybrid_ALL and
Hybrid_NoAOD, in terms of performance against MODIS AOD, as antici-
pated. However, the Taylor statistics of Hybrid_NoDB are closer to those
of Hybrid_NoAOD, particularly for longer forecast times, demonstrating
the importance of assimilating AOD data over major source regions for
accurate dust transport forecasts, even when the source region covers a
relatively small portion of the total domain.

Comparing the RMSEs of the three “Hybrid” experiments at individual
AERONET sites (Figure 19) reveals that the assimilation of deep blue

AOD data reduces analysis and/or forecast errors at many locations. Deep blue AOD assimilation reduces
the average 24‐hr forecast RMSEs from the four Canary Island AERONET stations (stations 3, 4, 7, and
10), with four‐station average RMSEs for Hybrid_ALL, Hybrid_NoAOD, and Hybrid_NoDB of 0.097,
0.145, and 0.123, respectively. The RMSE difference between Hybrid_ALL and Hybrid_NoDB is particularly
notable since the forecasts of both are derived from analyses that assimilate dark target AOD data over the
Canary Islands. That the short‐term forecast errors are still worse for Hybrid_NoDB reinforces the impor-
tance of assimilating AOD data over dust source regions (i.e., deep blue AOD data) to ensure accurate dust
transport forecasts over both short and long distances. When averaged across all 20 AERONET stations,
MAEs and RMSEs are smallest for Hybrid_ALL and greatest for Hybrid_NoAOD, with those of
Hybrid_NoDB falling in between (Figure 14), consistent with Taylor statistics computed against MODIS
AOD. However, while both Hybrid_ALL and Hybrid_NoDB clearly produce better AOD analyses and fore-
casts relative to AERONET data, AOD‐assimilation‐driven AOD forecast improvements only persist for
30 hr when deep blue data are excluded, as opposed to 48 hr when both deep blue and dark target data
are assimilated (Figure 14b).

5. Summary and Conclusions

To assess the impact of assimilating AOD observations with various DA methods over desert areas, we con-
duct seven numerical experiments using the WRF dust model and the GSI analysis system, each producing
analyses and 72‐hr forecasts covering North Africa and the East Atlantic every 6 hr throughout the month of
June 2015. Six of the experiments are defined by whether or not AOD observations are assimilated (“ALL”
and “NoAOD,” respectively) and the DA method used (3D‐Var [3DVAR], EnSRF [EnKF], and hybrid
[Hybrid]). The seventh experiment assimilates AOD data using the hybrid DA method but excludes deep
blue data (“NoDB”). Dust analyses and forecasts from all experiments are evaluated against MODIS AOD,
AERONET AOD, and CALIOP total backscatter observations. The results of this study are briefly summar-
ized below.

• Comparing the “ALL” experiments to their corresponding “NoAOD” counterparts reveals that assimilat-
ing MODIS AOD observations has a positive impact on dust analyses and forecasts, regardless of the DA
method used. Specifically, AOD assimilation improves the monthly averaged horizontal AOD distribu-
tion, the time evolution of AOD at point locations, and, to a much lesser extent, the profiles of total back-
scatter relative to MODIS AOD, AERONET AOD, and CALIOP backscatter observations, respectively.
AOD assimilation improves AOD forecasts for up to 48 hr, in agreement with Benedetti et al. (2019).

• The relative performance of the analyses and forecasts from the “ALL” experiments against MODIS AOD,
AERONET AOD, and CALIOP backscatter data is summarized in Table 5. Hybrid_ALL and EnKF_ALL
produce better AOD analyses and forecasts with respect to both MODIS and AERONET AOD observa-
tions. On the other hand, 3DVAR_ALL and Hybrid_ALL produce the best analyses and forecasts, respec-
tively, of total backscatter when compared against CALIOP observations. The EnSRF method produces

Table 5
Summary of Relative Performance of Analyses and Forecasts of
“ALL” Experiments With the Top the Best

MODIS AOD AERONET AOD CALIOP backscatter

Analysis Hybrid_ALL Hybrid_ALL 3DVAR_ALL
EnKF_ALL EnKF_ALL Hybrid_ALL
3DVAR_ALL 3DVAR_ALL EnKF_ALL

24‐hr forecast EnKF_ALL Hybrid_ALL 3DVAR_ALL
Hybrid_ALL EnKF_ALL Hybrid_ALL
3DVAR_ALL 3DVAR_ALL EnKF_ALL

48‐hr forecast EnKF_ALL Hybrid_ALL Hybrid_ALL
Hybrid_ALL EnKF_ALL 3DVAR_ALL
3DVAR_ALL 3DVAR_ALL EnKF_ALL

72‐hr forecast EnKF_ALL EnKF_ALL Hybrid_ALL
Hybrid_ALL Hybrid_ALL 3DVAR_ALL
3DVAR_ALL 3DVAR_ALL EnKF_ALL
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the worst backscatter analyses and forecasts partially due to the fact that it is the only method that lacks
an adjoint operator, which, along with the BEC, helps to more precisely distribute the horizontal column
AOD increment in the vertical dimension. Overall, the hybrid method performs slightly better than the
other two since it benefits from ensemble‐based, flow‐dependent BECs while using static BECs tomitigate
sampling problems that can hinder their effectiveness. However, there is no single method that performs
best against all three aerosol observation types. It should be noted that the observations used to verify our
model results have inherent errors that are not considered in this study but could affect our conclusions.

• Comparing the Hybrid_ALL, Hybrid_NoAOD, and Hybrid_NoDB experiments shows that the assimila-
tion of deep blue AOD data improves AOD analyses and forecasts over most areas near and downstream
of dust source regions and causes AOD forecast improvements to persist for an additional 18 hr compared
to those where only dark target data are assimilated. This suggests that the usefulness of AOD assimilation
can be maximized by using both dark target and deep blue AOD data.

This is our first attempt to improve dust forecasts using data assimilation. While some promising and inter-
esting results are obtained, dust analyses and forecasts can be further improved by (1) accounting for aero-
sols other than mineral dust, which may be especially useful in areas where dust is not the dominant aerosol
type, (2) assimilating CALIOP backscatter data to constrain the vertical distribution of aerosols and comple-
ment the two‐dimensional, horizontal aerosol information provided by MODIS AOD data, (3) optimizing
the EnSRFmethod by adjusting horizontal/vertical localization scales and implementingmore sophisticated
inflation methods, and (4) adjusting the wind‐speed threshold for dust emission. All of these issues will be
addressed in future work. We will also investigate the effects of assimilating aerosol observations on meteor-
ological forecasts through aerosol‐radiation‐cloud feedbacks.
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