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Sample size effects on the 
assessment of eukaryotic diversity 
and community structure in aquatic 
sediments using high-throughput 
sequencing
Francisco J. A. Nascimento  1,4, Delphine Lallias2, Holly M. Bik  3 & Simon Creer  4

Understanding how biodiversity changes in time and space is vital to assess the effects of 
environmental change on benthic ecosystems. Due to the limitations of morphological methods, there 
has been a rapid expansion in the application of high-throughput sequencing methods to study benthic 
eukaryotic communities. However, the effect of sample size and small-scale spatial variation on the 
assessment of benthic eukaryotic diversity is still not well understood. Here, we investigate the effect of 
different sample volumes in the genetic assessment of benthic metazoan and non-metazoan eukaryotic 
community composition. Accordingly, DNA was extracted from five different cumulative sediment 
volumes comprising 100% of the top 2 cm of five benthic sampling cores, and used as template for 
Ilumina MiSeq sequencing of 18 S rRNA amplicons. Sample volumes strongly impacted diversity metrics 
for both metazoans and non-metazoan eukaryotes. Beta-diversity of treatments using smaller sample 
volumes was significantly different from the beta-diversity of the 100% sampled area. Overall our 
findings indicate that sample volumes of 0.2 g (1% of the sampled area) are insufficient to account for 
spatial heterogeneity at small spatial scales, and that relatively large percentages of sediment core 
samples are needed for obtaining robust diversity measurement of both metazoan and non-metazoan 
eukaryotes.

Predicting how benthic diversity and community structure respond to environmental change will continue to 
be an important challenge for aquatic ecology. Such a task is dependent on fast and reliable methods to assess 
diversity, particularly in ecosystems like soft-sediment habitats, where most eukaryotic diversity is comprised of 
microscopic communities1,2 crucial to a number of important ecosystem processes3–6. Despite their demonstrable 
contributions to important ecological functions, the levels of eukaryotic and, in particular, metazoan diversity are 
not well known, due to a number of practical limitations involved in the taxonomic and ecological investigations 
of microscopic eukaryotic communities7. Among these, the level of time and financial resources necessary to 
cover such broad taxonomic scales are perhaps the most important1,7,8.

The application of high-throughput sequencing (HTS) to the study of benthic eukaryotes has the potential 
to significantly advance our knowledge of interstitial eukaryotic diversity8–10. HTS techniques can be applied for 
species identification from samples where organisms have been separated and isolated from the sediment/soil 
matrix or water before the analysis10, or from environmental DNA (eDNA). Environmental DNA is here defined 
as the genetic material attained from samples (soil, sediment, water) irrespective of whether the DNA is intracel-
lular or extracellular, or associated with living or dead biomass11.

Establishing an appropriate and standardized sampling strategy is critical to the use of HTS for studies of ben-
thic eukaryotic biodiversity, particularly since the application of HTS techniques to benthic ecology questions is 
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relatively recent10,12,13. Sediment ecosystems often include a matrix of different particles and aggregates that form 
highly complex and heterogeneous physical environments at both local (e.g. biogenic structures like feeding pits 
or fecal mounds create heterogeneity at a centimeter scale) and at regional spatial scales where benthic habitats 
encompass different habitats such as sandy or soft-sediments kilometres apart14,15. At finer scales, heterogeneity 
and spatial structure can hinder the detection of ecological patterns and processes at ecosystem scales15,16. In par-
ticular, the large number of niches contained within small spaces in sediments14 leads to a heterogeneous distribu-
tion of eukaryotic microbial communities16,17. In addition, DNA from aquatic organisms is itself often distributed 
heterogeneously18 and in benthic habitats it can adsorb more or less efficiently to different minerals19, creating 
additional spatial heterogeneity. This DNA adsorption capacity can differ greatly between sediment types, with 
clay minerals typically having a hundred-times higher adsorption capacity than sandy sediments20. The study of 
biodiversity using DNA sampling is therefore dependent on several factors like the concentration of DNA in the 
sampled habitat, DNA capture and extraction efficiency and sample interference (e.g. inhibition)21.

Common strategies to deal with small scale heterogeneity include the collection of large samples (often 
unpractical and costly) or several smaller samples that are pooled, homogenized and from which a smaller 
sub-sample is taken and analysed, that is considered to be representative of the entire mix17. Lanzén et al.22 
showed that pooling increasing numbers of DNA extraction replicates significantly improved eukaryotic diversity 
estimates for both protists and metazoans in marine sediments. Conversely, recent works using HTS for environ-
mental monitoring of ciliates indicate that replicates from small sediment samples are similar to each other23. The 
strategy of extracting DNA directly from small homogenised samples of sediment without subsequent isolation 
of organisms from the sediment matrix is often utilized in works employing HTS for the assessment of benthic 
microeukaryotic diversity24–26, although such studies often emphasize diversity patterns in single-celled eukary-
otes (e.g. protists) (See Supplementary Table S1 for examples of previous work that assessed eukaryotic diversity 
in aquatic sediments using high-throughput sequencing)27–36. Additionally, a number of works have successfully 
employed eRNA in environmental monitoring assessments of marine eukaryotes23,37–40. Even though the sam-
pling of eRNA presents additional storage and preservation challenges, it can depict accurately the active fraction 
of interstitial communities37,38,41. Nevertheless, eDNA has a higher persistence than eRNA and has been shown to 
capture more representative measures of interstitial biodiversity than eRNA41.

However, how much such strategies can tell us about sediment metazoan diversity is not clear as small sam-
ples do not seem to be effective in capturing metazoan meiofauna diversity. Meiofaunal organisms are physically 
larger (38 µm-1 mm in size), have patchy distributions in space and time, and most likely have lower effective 
population sizes compared to bacterial and protist populations14. As such, when targeting meiofauna diversity, 
isolation from larger sediment samples is recommended12. However, meiofauna studies typically employ decan-
tation or density extraction and sieving in order to concentrate metazoan organisms and physically separate them 
from sediment grains. Ecologically important organisms such as single-celled microeukaryotes and taxa <38 µm 
in size are lost during these physical extraction/isolation protocols. There are obvious advantages in the use of 
the same sample for HTS diversity assessments of multiple communities of different size fractions (eg. protists, 
bacteria and meiofauna)39. Only by measuring these metrics in the same sample will we be able to capture and 
understand the interspecific interactions occurring in small spatial scales and how they affect sediment diversity.

As such, one important methodological question that needs to be addressed for benthic HTS is what sample 
volume from a homogenized mixture can adequately represent the diversity and community structure of both 
microeukaryotes and metazoans in the sediment. Sample size can affect the measurement and interpretation 
of biodiversity metrics, particularly in species rich ecosystems42. Insufficient sample sizes are responsible for 
non-trivial biases on estimations of beta-diversity that are hard to predict42. Since diversity metrics are essential 
tools for benthic ecological research, with the emergence of HTS, it is vital to understand how sample volumes 
influences biodiversity metrics in aquatic sediments.

Soil microbial ecologists have found sample volume to have an effect on the patterns of soil microbial bio-
mass43 and on how accurately microbial community structure and diversity is assessed44–46. For example, soil vol-
umes of 10 g were related to higher richness, diversity and evenness46 and with lower variability between replicates 
than smaller sample volumes44 (see Supplementary Table S2 for an overview of studies that investigated effects of 
sample volumes on diversity assessments). Nevertheless, few studies have looked at the effects of sample volumes 
using HTS in aquatic sediments.

Therefore, we address in our study an important question in biodiversity assessments of marine sediments 
using HTS: what percentage of a core sampling unit is a representative and appropriate sample volume for a 
reliable measurement of both micro-eukaryotic and metazoan diversity and associated community structure?

Consequently, we devised a novel experimental design that analysed metazoan and non-metazoan eukaryotic 
diversity and community composition in replicated samples of five different sediment volumes (0.2, 4, 6, 8 and 
10 g) that together comprised 100% surface area of a sampling core. Sampling cores are generally considered the 
best quantitative sampling technique for benthic communities in marine clay and silt sediments47 and here we 
employed a sampling core commonly used in both field and experimental studies of benthic ecology3–5. Following 
environmental DNA extractions, we sequenced the V4 region of the 18 S nuclear small subunit (nSSU) ribosomal 
RNA (rRNA) gene from these different sediment quantities and used ca. 400 base pair amplicons to assess the 
impact of sample volume on alpha and beta-diversity measurements. Our findings contribute to the development 
of consistent protocols to facilitate the comparison among ecological studies on benthic eukaryotic communities.

Results
HTS data output. Community analysis was performed on both the 96% and the 99% OTUs and produced 
similar results. For conciseness, we present the 96% OTU data here and the 99% OTU data in Supplementary 
Information (See Supplement Table S3 for statistics regarding the 99% OTUs).
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In total the Illumina Miseq sequencing of eukaryotic 18 S rRNA amplicons yielded 10 320 000 raw paired-end 
reads from 25 samples from which 7 776 371 quality-filtered reads were assembled. After chimera removal there 
was an average of 305 997 sequences per sample (min-168 672; max- 572 017; Supplement Table S4). Clustering 
at 96% OTU similarity produced 10 220 OTUs assigned to domain Eukaryota after singleton and doubleton 
removal, of which 4870 were non-metazoan eukaryotes, 870 OTUs were from metazoan taxonomic groups and 
4480 could not be assigned to Order. OTU accumulation plots for Non-metazoan Eukaryotes and Metazoans are 
presented in Supplementary Information (Supplementary Fig. S1).

Alpha diversity differences with sample volume. The number of unique OTUs was lowest in the 1% of the total 
sampled area (0.2 g) with an average of 1238 and 121 OTUs for non-metazoan eukaryotes and metazoans, respec-
tively, and increased with sample volume to a maximum of 5243 and 468 eukaryotic and metazoan OTUs in 
the treatment with 100% of the total sample area (28.2 g) (Fig. 1A,B). The difference in the number of unique 
non-metazoan OTUs between the 100% treatment and all other treatments was significant for all sample volumes 
below 85% of the total area sampled (24 g), but not for any remaining sample volumes above that value (Table 1). 
A similar pattern was seen for the number of unique metazoan OTUs but with a lower threshold, at 64% of the 
total area sampled (18 g) (Table 1). There was also a significant effect of sample volume on diversity for both 
non-metazoan eukaryotes and metazoans (Fig. 1C–E, Table 1). Pairwise comparisons between the treatment 
comprising 100% of the sample area (28.2 g) and all other treatments show that the differences in Margalef and 
ACE for non-metazoan eukaryotes were significant for all sample volumes below 71% (20 g) and 78% (22 g), 
respectively, but not for larger sample volumes (Table 1). For metazoans that cut-off was at 57% of the total area 
sampled (16 g) for Margalef and 63% (18 g) for ACE index (Table 1), respectively.

Beta-diversity differences with sample volume. Figure 2 shows a simplified NMDS ordination of the 
non-metazoan eukaryotic (Fig. 2A) and metazoan (Fig. 2B) community composition. An NMDS and PCoA plot 
with all treatments for the 96% OTUs can be seen in the Supplementary Information (Supplement Fig. S2-A,S2-B, 

Figure 1. Diversity measurements for Non-Metazoan Eukaryotes (A,C,E) and Metazoans (B,D,F) in the 
different treatments. Figure panels show number of unique OTUs (A,B), Margalef Diversity index (C,D) and 
ACE index (E,F). Dotted line indicates the cutoff point after which the differences to the 100% treatment stop 
being significant (see Table 1). Diversity measurements were performed on transformed data. Data represents 
96% OTUs.
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for non-metazoan eukaryotes and metazoan NMDS, and Supplement Fig. S3-A,S3-B for PCoA ordination, 
respectively). PERMANOVA analysis showed a significant effect of sample volume in both non-metazoan eukary-
otic and metazoan community beta-diversity (Table 1). PERMDISP revealed significant overall differences among 
treatments. Non-metazoan community composition of the 100% treatment (28.2 g) was different from all sample 
volumes below 43% of the total sampled area (12 g) but not significantly different from any of the sample volumes 
equal or larger than this value (Table 1). The differences in beta-diversity between the treatment comprising 
100% of the area sampled (28.2 g) and all other sample volumes are not significant for the 71% treatment (20 g) 
and above. These dissimilarities among treatments in relation to the 100% of the area sampled decreased clearly 
with increased sample volume (Fig. 3). Data analysis with 99% OTUs presented similar results (see Supplement 
Table S3 for statistics, Supplement Fig. S4 for simplified NMDS and Fig. S5 for PCoA).

Unsurprisingly, differences between the 100% treatment and smaller sample volumes (0.2 g, 4 g, 8 g, 10 g and 
12 g) were mostly driven by nestedness, while turnover was more influential in explaining overall beta-diversity 
differences between larger sample volumes and the 100% treatment. This pattern was seen for both Non-Metazoan 
Eukaryotes and for Metazoans (Supplement Fig. S6A,B, respectively).

Additional sample volumes and read combination. Combining reads of different sample volumes had no effect 
on beta-diversity measurements. As it is possible to see in both the NMDS plot and in the weighted PCoA (Fig. 4), 
there is considerable overlap between the two ways of analysing sample volume of 10 g here tested (6 g + 4 g 
vs 10 g) for both metazoan and non-metazoan eukaryotic beta-diversity. We found no statistical differences in 
beta-diversity between these two ways of obtaining 10 g of sediment (PERMANOVA, p = 0.24 and p = 0.65 for 
metazoans and non-metazoan eukaryotes, respectively). In fact, Sørensens dissimilarity among the 5 replicates of 
the 10 g treatment is higher than the average dissimilarity between the pairs of 6 g + 4 g and 10 g for each replicate 
(Fig. 5). Both these two analyses suggest that we obtain very similar representations of beta-diversity if we pool 
6 g + 4 g or if we analyse 10 g directly. Additionally, we performed a similar test to investigate whether there were 
significant differences in beta-diversity if we pooled 8 + 6 g vs 10 + 4 g to get 14 g and 8 g + g6 + 4 g vs 1g0 + 8 g 
to get 18 g. We found the same pattern as mentioned above for 10 g vs 6 + 4 g (Supplement Fig. S7). No statistical 
differences were found in beta-diversity (PERMANOVA, p = 0.53 and p = 0.92 for 14 g and 18 g, respectively) and 
higher dissimilarity between the replicates of the same pooling combination than the replicates obtained with 
different pooling combinations (Supplement Fig. S8). Taken together, these results show clearly that there is no 
effect of pooling samples and that the differences seen in our study are indeed due to sample volume.

Our data analysis was performed with relative OTU abundances, suggested by McMurdie & Holmes48 as an 
appropriate and effective alternative to rarefying. However, the same authors warn that artefacts due to varying 
sampling depths can persist even when using relative OTU abundance48. Since we cumulated reads numbers from 
0.2–10 g volumes to represent up to 100% of the cores, it is possible that there was an over-inflation of rare taxa 
in the larger sample volumes that would affect our diversity metrics. However, as discussed above and shown in 
Figs 4 and 5 and Figs S7 and S8 in Supplementary Information, combining reads of different sample volumes had 
no significant effects on beta-diversity assessment. Furthermore, an analysis with a dataset trimmed to contain 
only the 30 most abundant non-metazoan eukaryotic taxa in each sample volume, produced similar results to 
the whole data set in terms of the effect of sample size on beta-diversity measurements (PERMANOVA, F = 8.0, 
p = 0.001, NMDS plots presented in Fig. S11 Supplementary Information). Differences in beta-diversity between 
the 100% treatment and the six smaller samples sizes (0.2 g, 4 g, 6 g, 8 g, 10 g and 12 g) tested with PERMDISP were 
all significant, but not for the remaining sample sizes above 12 g.

Community
ANOVA F 
statistics

ANOVA p value 
ANOVA

Lowest % of core sampled 
significantly different from 
the 100% treatment

Percentage of metazoan taxa NA 4.1 <0.001 1% (0.2 g)

Number of unique OTUs Non-Metazoan Eukaryotes 67 <0.001 85% (24 g)

Metazoans 23 <0.001 78% (22 g)

Margalef index Non-Metazoan Eukaryotes 57 <0.001 71% (20 g)

Metazoans 17 <0.001 57% (16 g)

ACE richness Non-Metazoan Eukaryotes 51 <0.001 78% (22 g)

Metazoans 19 <0.001 63% (18 g)

PERMANOVA 
F Statistics

PERMANOVA 
p value

Lowest % of core sampled 
significantly different from 
the 100% treatment

Beta-Diversity Non-Metazoan Eukaryotes 2.5 <0.001 43% (12 g)

Metazoans 1.9 <0.001 71% (20 g)

Table 1. Summary of statistical tests comparing the different treatments with the treatment comprising 100% 
of the sampled area (96% OTUs). One-way parametric analysis of variance ANOVA was used to test for the 
effect of sample volume. P values smaller than 0.01 indicate a significant effect of sample volume. Pairwise 
comparisons between the 100% treatment and the other 13 treatments were performed with the Tukey HSD 
test. Effects of sample volumes on beta-diversity differences among treatments were tested with PERMANOVA. 
Differences between the 100% treatment and the other 13 treatments for beta-diversity was tested with 
PERMDISP. The treatment with the highest sample volume still different from the treatment comprising 100% 
of the sampled area in each of the variable is presented in the last column of the table.
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Taxonomic composition. The percentage of OTUs belonging to metazoan groups was different among sample 
volumes (Fig. 6), with the smallest sample volume (1% of the total sampled area, corresponding to 0.2 g) contain-
ing significantly less metazoan OTUs than all the other treatments (ANOVA, p < 0.001, Table 1). No additional 
significant differences among other sample volumes in metazoan vs non-metazoan eukaryote taxa were detected. 
Generally, the most abundant non-metazoan eukaryotic groups were the dinoflagellates, followed by diatoms and 
ciliates (Fig. 7A and Supplement Fig. S9-A). Copepod OTUs dominated the metazoan dataset comprising more 
that 70% of the relative abundance. Bivalvia (mostly the clam Limecola balthica) and nematodes OTUs were the 
other most frequent metazoan groups in our study (Fig. 7B and Supplement Fig. S9-B).

Discussion
Effects of sample volume on both alpha and beta-diversity. Our results show clearly that sample 
volume affected all non-metazoan eukaryotic and metazoan diversity metrics investigated here. Sample volume 
had a significant effect on percentage of metazoan OTUs, number of unique OTUs, Margalef and ACE diversity 
indexes both for non-metazoan eukaryotes and metazoans (Fig. 1, Table 1).

Figure 2. Simplified non-metric multidimensional scaling (NMDS) analysis of the Sørensen beta-diversity 
matrix based on transformed OTU table for Non-Metazoan Eukaryotes (A) and Metazoans (B). Differences 
between the different treatments and the 100% treatment stopped being significant at 43% of sediment analyzed 
for Non-Metazoan Eukaryotes and in the 78% treatment for Metazoans (PERMANOVA, PERMDISP, see 
Table 1). For better visualization, only the treatment comprising 100% of the sampled volume, 3 treatments 
significantly different from the 100% treatment (1, 14, 28% for Non-Metazoan Eukaryotes and 1, 21 and 35% 
for Metazoans), and one treatment not significantly different from the 100% treatment (50% for Non-Metazoan 
Eukaryotes and 85% for Metazoans) are here shown. Data represents 96% OTUS.
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Figure 3. Average Sørensen dissimilarity index in each treatment in relation to the treatment where 100% of 
the sampled area was analyzed ((A)-Non-Metazoan Eukaryotes; (B)- Metazoans). Circles represent average 
dissimilarity in relation to the 100% treatment and error bars SE. Dotted line indicates the cutoff point after 
which the differences to the 100% treatment stop being significant (see Table 1). Sørensen dissimilarity index 
was calculated using transformed OTU data. Data represents 96% OTUS.

Figure 4. PCoA (A,C) and NMDS (B,D) ordinations comparing two different strategies for obtaining 10 g 
with the sample volumes used in this study: 6 + 4 g (in blue) vs 10 g (in red). No statistical differences were seen 
between the two treatments (PERMANOVA, p = 0.24 and p = 0.65). Data represents 96% OTUS.
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These results are in accordance with previous studies that found sample volume to have a significant influence 
when investigating the diversity and community composition of soil bacteria17,44. In addition, Penton et al.46 
using HTS to look at soil fungal and bacterial communities found that alpha diversity, richness and evenness to 
be larger with larger sample volumes showing a similar pattern to our results. However, related effects of sam-
ple volume on richness and alpha diversity were not seen in marine meiofauna in Brannock and Halanych12. 
Although these authors compared alpha diversity metrics among samples of different volumes, only two replicates 
were employed, which might account for the different results. Brannock & Hananych12 also used a different set of 
primers on fully marine sediments that generally include more diverse communities than soft-sediment brackish 
habitats like the Baltic Sea14.

Sample volume was also a significant factor when analysing beta-diversity for both non-metazoan eukaryotes 
and metazoans, with the smallest sample volume clearly separately from all other groups (Fig. 2). Our results 
indicate that dissimilarity among treatments in relation to the 100% treatment decreases with sample volume 
(Fig. 3), showing that sample volume is an important factor when assessing sediment beta-diversity. Indeed, 
the larger the sample volume, the more animals are captured and the more similar the samples are to the 100% 
treatment. Sample volume effects on beta-diversity and community composition were seen on different taxo-
nomic groups from other studies, including bacteria, eukaryote and metazoans in both terrestrial and aquatic 
ecosystems12,17,44,46. While the effects of sample volume on beta-diversity were significant in our metazoan and 
non-metazoan eukaryotes datasets (Fig. 2, Table 1), there were important differences between these two taxo-
nomic groups. Our results suggest that the analysis of a much larger percentage of the core is needed for meta-
zoans (78%) than for non-metazoan eukaryotes (43%) in order to achieve a representative picture of the real 
beta-diversity, indicating a higher degree of patchiness for the metazoan community. Such small spatial scale 
patchiness has also been reported for small benthic metazoans like meiofauna12,14 as these animals tend to cluster 
in microsites rich in organic matter content14,49. A common strategy in studies focusing on meiofauna commu-
nity structure is to isolate individuals from large sediment sample sizes by decantation or density extraction in a 

Figure 5. Average Sørensen dissimilarity index among replicates of the 10 g and distance between 10 g vs 
6 g + 4 g of the same replicate (based on data for Metazoans). Data represents 96% OTUS.

Figure 6. Differences among treatments in proportion of Metazoan (full bar) vs Non-Metazoan Eukaryotes 
(empty bars). Asterisk indicates a significant difference among treatments in proportion of metazoan OTUs. 
These proportions represent transformed OTU data, from 96% OTUs.
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38–45 µm sieve before DNA extraction. Decantation concentrates living individuals from a large sample size into 
a smaller volume and reduces the quantity of extracellular DNA, DNA from dead/decaying, resting stages and the 
quantity of PCR-inhibiting humic acids in the analysed sample. Such a strategy is recommended by previous stud-
ies for HTS assessments of meiofauna diversity12. However, decantation will necessarily involve the loss of infor-
mation from protists and eukaryotes smaller than 38 μm and soft-bodied animals in the meiofauna fraction. For 
studies aiming at assessing biodiversity of both the larger meiofauna and microeukaryotes, the effects of decanta-
tion must therefore be considered. Combining multiple sub-samples for microbial eukaryotes, with sieving and 
isolation of the larger meiofauna from the remaining sediment sample, are a feasible alternative strategy when 
aiming for simultaneous recovery of benthic taxa representing different size fractions and trophic levels50. The 
extracted DNA for each size fraction could then be PCR amplified and bioinformatically pooled after sequencing 
for effective diversity assessments. In addition, this strategy is useful in studies using sampling equipment with 
larger surface areas such as Van Veen grab sampler. This sampling equipment has a total surface area considerably 
larger than the core used in our study and is often used in environmental monitoring studies that employ HTS 
in sediment surveys of diversity (e.g.23,40,41,51–53). As such, sampling volumes equivalent to for example 43% and 
78% of the surface area of a Van Veen grab sampler will not be realistic for logistical reasons and strategies that 
employ combination of multiple sub-samples for microeukaryotes together with animal isolation for metazoans 
are appropriate23,39–41,51–53. Studies using Van Veen grab to sample sediment for HTS assessments of eukaryotic 
diversity often randomly collect 1.5–2 g of sediment from across the top 1 cm surface layer of the grab to address 
the issue of micro-scale patchiness23,39–41,51–53. Unfortunately, we were not able to test in our experiment sample 
volumes of 1.5–2 g, as the two DNA extraction kits here used that contained the same reagents, were optimized 
for sample volumes not smaller that 4–5 g (PowerMax® Soil DNA Isolation Kit) or larger than 0.2 g (PowerSoil® 
DNA Isolation Kit). To test a sample volume of 1.5–2 g efficiently we would need to use a separate extraction kit 
with different protocols and reagents, making the comparison with remaining sample volumes difficult. Testing 
these often used sample volumes in future studies would provide valuable information.

Community composition. We found a high diversity of eukaryotes in brackish sediments of the Baltic Sea. In 
terms of relative OTU abundance (Fig. 6 and Supplement Fig. S6) the Copepoda was the most represented group, 
despite nematode being generally the most abundant taxon in metazoan datasets for brackish and marine sedi-
ments7,12,54. It is possible that the higher prevalence of copepod OTUs here found is related to: (a) the degenerate 
nature of the eukaryotic primers sets used in our study10,55, (b) high biomass of copepod tissue that was poten-
tially differentially amplified56 and (c) the extraction strategy used in our study designed to capture total (both 
intra- and extracellular) DNA. As such, and taking into account the size of our amplicons (~400 bp), our sample 
likely reflects DNA from contemporary and recently inhabiting organisms, in addition to DNA from planktonic 
organisms that has settled to the benthos. Copepods species such as Acartia bifilosa and Arcatia tonsa found in 
our dataset deploy sediment resting stages57, thereby suggesting marine snow as the likely source of copepod 
eDNA. Similarly, Guardiola et al.37 recovered more Arthropoda diversity compared to nematodes in 18 S nSSU 

Figure 7. Proportion of the most abundant taxonomic groups in each treatment: (A) Top five most abundant 
Non-Metazoan Eukaryotes in each treatment; (B) Top nine most abundant Metazoan taxa in each treatment. 
Data represents 96% OTUs.
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HTS analyses from samples obtained from deep sea canyons where eDNA was extracted directly from sediment. 
Nevertheless, our study detected 194 unique nematode OTUs suggesting that we did manage to effectively sample 
metazoan diversity (Supplement Fig. S10).

Concluding remarks. Collectively our work indicates that small spatial variability, even within a sampling unit, is 
a factor that needs to be taken into account in studies investigating eukaryotic and metazoan diversity in aquatic 
sediments. To achieve a representative assessment of the beta-diversity for both these communities it is necessary 
to sample a large percentage of the sampling unit (78% or 22 g). We saw similar pattern for alpha-diversity met-
rics (Table 1, Fig. 3B,D,F) but the different estimates of richness for the 100% treatment stop being significant at 
around 60% of the sampling unit. As such, if one is targeting solely metazoans it is probably more efficient to first 
separate the metazoan community from the sediment particles using elutriate or density extraction techniques4,14 
before DNA extraction as suggested by Brannock & Halanych12. Furthermore, when larger sampling units are to 
be used (e.g. Van Veen grabs) to simultaneously sample multiple size fractions of sediment communities, com-
bining multiple sediment subsamples for microeukaryotes with sediment sieving and isolation of larger taxa has 
been shown to be effective23,41

Nevertheless, it is clear from our study that small sample volumes of 0.2 g (1% of the sampled area), often used 
in benthic surveys to address sediment benthic diversity are not large enough to account for spatial heterogene-
ity, even at small spatial scales, and measure reliably both alpha and beta-diversity in non-metazoan eukaryotic 
communities. In contrast to other studies with marine sediments we did find a strong effect of sample volumes on 
alpha-diversity metrics for non-metazoan eukaryotes indicating a need for the use of larger sample volumes. In 
addition, our data suggest that approximately 14 g of homogenized sediment in our study needs to be sampled to 
achieve an adequate beta-diversity measurement.

The larger sample volumes here discussed seem to capture adequately the complex heterogeneous matrix 
of microhabitats that soft sediments provide for both micro metazoans and eukaryotes. In addition, our results 
are based on the use of a sampling core of one size, albeit a common one used in studies of micrometazoans3–5 
with sediment from one location in a coastal muddy soft-sediment habitat. It would be valuable to test these 
recommendations with additional sample volumes commonly used in field studies, and different locations with 
sediment of different types collected with sampling equipment of lager sizes.

Our results are relevant for both field and experimental studies in marine systems, but the present investiga-
tion did not aim to replicate current sampling strategies used in ongoing benthic monitoring initiatives (e.g. in 
terms of number of replicates per site and overall number of sample sites). However, our findings indicate that 
DNA extraction volume can significantly impact biodiversity estimates derived from metabarcoding approaches, 
and this should be taken into account when designing future DNA-based environmental monitoring strategies.

Our study underlines the need for a robust standardization of methods to investigate the diversity of eukary-
otic communities and allow for cross-study comparisons, particularly taking into account the foreseeable future 
where DNA techniques will become more important in efforts to assess the dynamics of biodiversity in aquatic 
sediments58.

Material and Methods
Sample collection. Silt muddy sediment was collected with five handheld Perspex sediment cores taken 
approximately 40–50 cm from each other from a depth of 15 m at a temperature of 5 °C and salinity of 6 psu in 
the Stockholm archipelago (58°50′N, 17°32′E) in the northern Baltic Sea, Sweden. The handheld sampling units 
were 44 mm diameter with a surface area of 15 cm2, a size which has been found to be appropriate for sampling 
of microbial benthic metazoans such as meiofauna59. After collection, the sediment cores were transported to 
Stockholm University and placed in a thermoconstant room at 5 ± 1 °C overnight. Previous studies report that 
>95% of the diversity of Baltic Sea metazoan diversity is found within the first centimetre of sediment60. As such, 
on the following day, the top 2 centimetres of sediment from each replicate sediment core were sliced, homoge-
nized, weighed and divided into five sample volumes: 0.2 g, 4 g, 6 g, 8 g, and the remaining amount of sediment 
that varied between 10–11 g, corresponding to 1, 14, 21, 28 and 36% of the top 2 centimetres of each core. In this 
way, all the sediment from the top 2 cm of each of the five replicates was analysed, with the experimental design 
facilitating the investigation of the effect of sample volume in the composite core. The sediment samples were then 
placed in 50 mL Falcon tubes and kept at −20 °C until DNA extraction, with the exception of the 0.2 g samples 
that were placed in 1.5 mL Eppendorf tubes. The sample volumes were chosen taking into account the practical 
limitations of existing DNA extraction commercial kits and the need to have a sufficiently large number of differ-
ent sediment quantities to test the effect of sample volume while looking at the whole surface area of the sampling 
unit at an affordable cost.

Sample preparation and sequencing. For the 0.2 g samples, DNA was extracted with the PowerSoil® 
DNA Isolation Kit (MOBIO, Cat#12888), following the protocol instructions. The PowerMax® Soil DNA 
Isolation Kit (MOBIO, Cat#12988) was used for the remaining sample volumes (4 g, 6 g, 8 g and 10 g). The pro-
tocol, methodology and chemical reagents used in the different kits are identical, the only difference being the 
amount of sediment each kit can process12. After DNA extraction, samples were frozen at −20 °C in 100 μL (0.2 g 
samples) and 3 mL (all other sample volumes of C6 solution (10 mM Tris)). Following this, 100 μL of each DNA 
extract was purified using PowerClean® Pro DNA Clean-Up Kit (MOBIO, Cat# 12997–50) and stored in 100 μL 
of C5 (10 mM tris) solution at −20 °C. DNA extraction from different sample volumes yielded DNA extracts of 
different concentration ranging from 62.6 to 10.1 ng/μL. Before PCR amplification all DNA extracts were stand-
ardized to a concentration of 10 ng/μL.

The highly conservative metabarcoding primers TAReuk454FWD1 (5′-CCAGCA(G/C)C(C/T)
GCGGTAATTCC-3′) and TAReukREV3 (5′-ACTTTCGTTCTTGAT(C/T)(A/G)A-3′)61 and Pfu DNA 
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polymerase (Promega, Southampton, UK) were used to PCR amplify the 18 S nSSU gene region, yielding frag-
ments between 365–410 bp not including adaptors or barcodes. Each sample volume from the five replicate sam-
pling cores were amplified in triplicates. These triplicates were then pooled, dual-barcoded with Nextera XT index 
primers following Bista et al.62 and visualized by gel electrophoresis. These tagged amplicons were later purified 
with the Agencourt AMPure XP PCR Purification kit (Beckman Coulter), quantified with Qubit (Invitrogen, 
USA) and pooled in equimolar quantities. The purified amplicons were then sequenced in both directions on an 
Illumina MiSeq platform at National Genomics Infrastructure (NGI-Stockholm, Sweden) as a single pool com-
prised of the 25 different samples with 25 unique index primer combinations (i.e., five sample volumes – 0.2 g, 4 g, 
6 g, 8 g, and 10 g – from 5 different sampling core replicates).

Bioinformatics. Amplicon reads were demultiplexed by NGI and raw demultiplexed reads were used in 
the initial data processing and quality-filtering was carried out in QIIME 1.863. Raw Illumina reads were first 
subjected to read pairing (merging Read 1 and Read 2) using the join_paired_ends.py in QIIME, followed 
by a demultiplexing step using the multiple_split_libraries_fastq.py script which split samples according to 
dual-index barcodes and also performed quality-filtering of raw reads. Remaining forward and reverse PCR 
primer sequences were subsequently removed from Illumina reads using Trimmomatic version 0.3264. Processed 
reads were concatenated into a single file, and then subjected to open-reference OTU picking with Uclust using 
the pick_open_reference_otus.py script in QIIME (with 10% subsampling, no prefiltering, and reverse strand 
match enabled). Singleton and doubleton OTUs were discarded from the resulting OTU tables (retaining only 
OTUs with >2 reads). Two independent OTU picking workflows were carried out, using pairwise cutoffs at 96% 
and 99% sequence identify (hereby referred to as 96% and 99% OTUs). Taxonomy was assigned to representative 
OTU sequences using the RDP Classifier65 in QIIME (assign_taxonomy.py), using the SILVA 119 release as a 
reference database66. OTU representative sequences were aligned using PYNAST67 in align_seqs.py and used to 
construct a Phylogenetic tree using FastTree68 in make_phylogeny.py. All bioinformatics commands, OTU tables, 
and quality-filtered Illumina reads have been posted on FigShare (doi: 10.6084/m9.figshare.4993667).

Community analyses. The number of reads for the five sample volumes (0.2 g, 4 g, 6 g, 8 g and 10 g) of the 
same replicate were then added in all possible combinations to produce nine additional sample volumes (12 g, 
14 g, 16 g, 18 g, 20 g, 22 g, 24 g, 28 g and the complete 28.2 g) for the five replicate cores, corresponding to 43, 50, 
57, 64, 71, 78, 85, 99 and 100% of the sediment in the top 2 cm of each core (see Supplement Table S5). This data 
set was imported into R v 3.3.2 (R Core Team 2016) and analysed using the phyloseq69 and vegan70 packages. Raw 
OTU abundances were transformed to relative abundances, which has been suggested as a more appropriate 
and effective alternative to rarefying48. The effect of sample volume on proportion of metazoan taxa, number of 
unique OTUs, Margalef, and ACE index were tested with one-way analysis of variance (ANOVA). ACE is com-
monly used as an alpha-diversity measure in HTS investigations that takes into account rare taxa, while the choice 
of the Margalef index was based on its high sensitivity to sample volume and good capability of discriminating 
between samples with different alpha-diversity71. Homogeneity of variances between groups were tested using 
Bartlett’s test to examine for all ANOVA analysis. Differences among treatments, i.e sample volumes, in relation 
to the 100% treatment were tested with a Tukey HSD posthoc test for all variables and were considered significant 
at a p < 0.01.

Community composition was examined by first dividing OTUs into Metazoa, and non-metazoan Eukaryotes 
groups. The dissimilarity between faunal assemblages in the different sample volumes was analysed by non-metric 
multidimensional scaling (NMDS), using the Sørensen’s dissimilarity coefficient, and Principal Coordinates 
Analysis (PCoA) using Bray distances. To test for effects of sample volume on beta-diversity we conducted a 
PERMANOVA multivariate analysis of variance with the adonis function of the vegan package70. The function 
PERMDISP was used to test for differences in beta-diversity among sample volumes in relation to the 100% treat-
ment. Additionally, we used metrics to partition beta-diversity to quantify the relative importance of turnover and 
nestedness in the different sample volumes72,73. These authors propose that beta-diversity measured as Sørensen 
dissimilarity index (βsør) can be separated into dissimilarity as a consequence of turnover, i.e species replacement 
between sites or samples (βsim), and dissimilarity attributable to nestedness, species loss from sample to sample 
(βnes). We used the R package betapart74 for this analysis. Following this, we compared how both components 
of beta-diversity, turnover and nestedness changed with sample volume in relation to the 100% treatment. All 
statistical tests were performed on R v 3.3.2.

Data Accessibility. Data associated with this manuscript is deposited on FigShare (doi:10.6084/
m9.figshare.4993667).
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