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Abstract of the Thesis

Java Defensive Optimization

by

Haoqing Wang

Master of Science in Computer Science

University of California, Los Angeles, 2015

Professor Jens Palsberg, Chair

We design and implement two Java optimizations based on JSR308 annota-

tions: pure method memoization and dynamic taint analysis optimization. In

pure method memoization, we introduce JavaMem, an automatic method memo-

ization tool for Java. JavaMem memoizes on Java pure or partially pure method

at runtime according to offline execution time profiling results and static analysis-

based correctness proof. We achieve 3% speedup on average on selected Dacapo

benchmarks. For dynamic taint analysis optimization, we design and implement

METEOR, a portable dynamic taint checking tool that instruments taint propaga-

tion instructions and optimizes the instrumented code by leveraging annotations.

We compete our METEOR against Phosphor. With a slightly slower baseline

performance on non-annotated code, METEOR still beats Phosphor on fully an-

notated benchmarks.

ii



The thesis of Haoqing Wang is approved.

Majid Sarrafzadeh

Todd Millstein

Jens Palsberg, Committee Chair

University of California, Los Angeles

2015

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Pure Method Candidate Selection . . . . . . . . . . . . . . . . . . 5

2.2 Static Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Memoization Implementation . . . . . . . . . . . . . . . . . . . . 11

2.4 Partial Memoization . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Efficient Dynamic Taint Checking . . . . . . . . . . . . . . . . . . 18

3.1 Taint Propagation Implementation . . . . . . . . . . . . . . . . . 18

3.1.1 Taint Tag Storage . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Taint Propagation . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Sinks and Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Non-sensitive Method Propagation Elimination . . . . . . 27

3.3.2 Parameter Checks Elimination . . . . . . . . . . . . . . . . 28

3.3.3 Sensitive Branching . . . . . . . . . . . . . . . . . . . . . . 28

3.3.4 Non-escaping Propagation Elimination . . . . . . . . . . . 30

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Baseline Performance . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Simple Sources and Sinks Benchmark Performance . . . . 36

iv



3.4.4 Fully-Annotated Benchmark Performance . . . . . . . . . 37

4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Candidate Selection . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Parameter Comparison . . . . . . . . . . . . . . . . . . . . 41

4.1.3 Partial Parameter Comparison . . . . . . . . . . . . . . . . 42

4.1.4 Object Immutability Inference . . . . . . . . . . . . . . . . 42

4.2 Dynamic Taint Checking . . . . . . . . . . . . . . . . . . . . . . . 43

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



List of Figures

2.1 Parameter immutability . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 RMR analysis for candidate method p . . . . . . . . . . . . . . . 10

2.3 Pure method parameter immutability analysis algorithm . . . . . 12

2.4 Memoization code transformation . . . . . . . . . . . . . . . . . . 13

2.5 Method before partial memoization . . . . . . . . . . . . . . . . . 14

2.6 Method after partial memoization . . . . . . . . . . . . . . . . . . 16

3.1 Type-use level sources and sinks . . . . . . . . . . . . . . . . . . . 23

3.2 Typecast code transformation . . . . . . . . . . . . . . . . . . . . 25

3.3 Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Code before sensitive branching . . . . . . . . . . . . . . . . . . . 30

3.5 Code after sensitive branching . . . . . . . . . . . . . . . . . . . . 31

3.6 Code after annotation optimization . . . . . . . . . . . . . . . . . 32

vi



List of Tables

2.1 Pure method number and candidate method number. . . . . . . . 6

2.2 List of impure instruction . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Memoization experimental results (Pure No. is the number of pure

methods we memoize and Opt is the execution time after memo-

ization.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 List of escaping instruction in Jimple . . . . . . . . . . . . . . . . 28

3.2 Parameter elimination methods(Method-total is the total number of

method with sink parameter. Method-to-optimize is the number of

chosen method out of method-total to eliminate parameter check.) 29

3.3 Micro Benchmark size and annotation details. . . . . . . . . . . . 34

3.4 Propagation-only baseline performance and overhead. . . . . . . . 35

3.5 Propagation-only performance in Dacapo.(MET is the execution

time of METEOR. MEOH is the overhead of METEOR. PHOH is

phosphors overhead) . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Method as a source in simple source-sink experiment . . . . . . . 37

3.7 Method as a sink in Simple source-sink experiment . . . . . . . . 38

3.8 Comparison in simple source-sink case.(METEOR Ori. is the prop-

agation only time. METEOR Sim is the time with simple source

and sink.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 Fully annotated benchmarking.(Anno-METEOR. is the time with

optimizer off. Anno-Opt. is the time after optimization. Anno-

phos is the time using Phosphor. Speedup is the final comparison

between METEOR and Phosphor) . . . . . . . . . . . . . . . . . 40

vii



CHAPTER 1

Introduction

Compiler optimization has been an important research topic for years. With

numerous new features in programming languages, new optimization opportunities

have been discovered. In this paper, we study optimization with the new Java

8 feature: type annotation. Type annotation [12] is an extension of Java type

system and can be used with conventional Java type. Developers can define their

customized type system by creating new type annotations and defining new type-

checking rules. Type annotations are declared in Java source code and can be

preserved in Java class files. Storing annotations in a class file allows us to optimize

Java programs based on type annotations without accessing source files, which is

critical for a programming language with large libraries. Type annotations can be

either written by programmer or derived from static analysis and crowdsourcing.

Given the broad underlying meanings and affluent resources of annotations, we

believe new optimizations are still to be explored.

In this study, we have two categories of annotation-based optimizations:

• Optimization to speed up the program itself

• Optimization to speed up the inserted dynamic checks for ensuring various

properties of interest

For the first category, we show an example of @Pure annotation which is al-

lowed to be attached to pure method. Pure method has no visible side effects and

its execution preserves the previous states of objects. Pure method memoization
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is a technique that either stores the return value before returning from the first

method call or returns the stored value without executing the method body pro-

vided the parameters are same. This technique has been studied in languages with

pure methods or partial evaluation in [3],[17] and [37]. However their work limits

the memoization to computation-intensive mathematical functions or languages

having pure function features such as Haskell. Memoization on Java macro bench-

marks faces challenges as memoization rules tend to be over restrictive. In chapter

2, we present JavaMem: a memoization tool targeting Java Dacapo benchmarks.

JavaMem allows method parameters to be any reference in addition to primitives

or language-embedded immutable object references. In section 2.4, we introduce a

partial memoization technique applying to methods with only partial code being

pure. We include experimental results on five benchmarks that were already finely

designed and optimized in section 2.5.

For the second category, we describe an example of @Trusted and @Untrusted,

a set of security annotations essentially related to information flow analysis. These

two annotations have subtype relation such that annotated code can be type

checked by annotation checker given security constraints are satisfied. However,

with the presence of type downcast, dynamic information flow security can not

be guaranteed by the static checker. Another problem can be that static checking

targets partial code by design, which results in no runtime soundness. To ensure

soundness, we decide to integrate security type annotation into dynamic taint

checking. In our research, security annotations have three functionalities:

• To prove partial code security regardless of downcast(by static checking).

• To provide optimization information.

• To serve as a declarative and readable system for defining security policies.

We design and implement our own dynamic taint checker integrated with secu-

rity annotation features. The implementation of dynamic taint checking is studied
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in [5], [4], [22], [7], [8], [35], [33], [31], [29], [27], [32] and [18]. Our taint checking

tool uses similar approaches from the previous work and is written on Soot library

for being portable, maintainable and extensible. We evaluate our tool METEOR

on micro and macro benchmarks in section 3.4.

The remainder of the thesis is as follows. Chapter 2 presents JavaMem in-

cluding its offline profiling technique, correctness proof static analysis and partial

memoization. We include experimental results of both pure and partially pure

method memoization in section 2.5. Chapter 3 presents METEOR design and

implementation. Chapter 4 compares JavaMem and METEOR to prior works.

Chapter 5 concludes this study.
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CHAPTER 2

Memoization

In this chapter, we propose JavaMem as a tool to optimize Java bytecode by

method memoization. JavaMem contains three main components:

1. An offline profiler to find pure method candidates according to performance

profiling information.

2. A static analyzer to identify methods out of candidates to memoize.

3. An instrumentor to rewrite methods from step 2 at bytecode level.

Memoization in Java has not been explored on macro benchmarks such as Da-

capo benchmark suite. Unlike in languages with pure function like Haskell and

ML, programmers cannot declare pure functions in Java before Java 8. Memoiza-

tion also requires identical values on method actual parameters. Memoization for

Java faces two main challenges due to these restrictions:

• Pure methods are not explicitly declared.

• Parameter deep comparison incurs high overhead.

The first challenge is addressed by many program analysis and in our case, by

adopting JSR308 annotation to indicate pure methods. @Pure annotation can be

inferred using inference tool in [16]. The second challenge limits the number of

methods worth memoization by incurring high parameter comparison overhead.

To alleviate parameter comparison overhead, we decide to focus on methods with

4



only immutable parameters and compare locations of them. We define immutable

parameters as those that are not mutated after the pure method is called. Note

that parameter immutability is at object immutability level which is different from

reference immutability in that, it enforces that object is immutable through the

whole program after initialization while the later ensures immutability within the

pure method.

The process of memoization is as follows. First JavaMem identifies all pure

methods and profiles them to select the candidates for memoization. Once can-

didates are chosen, JavaMem then starts a static analysis to identify those with

only immutable parameters and primitives. At last, the instrumentor transforms

the bytecode by inserting instructions. In section one, we present our approach

for pure method candidate selection. We then show how JavaMem finds pure

methods with immutable parameters from the candidates in section two. Section

three provides code transformation for optimization. In section four, we investi-

gate further in partial memoization on impure methods. In the last section, we

include the experimental results on selected Dacapo benchmarks.

2.1 Pure Method Candidate Selection

Pure method is a method without side effects according to the definition in [30].

We define @Pure as the type annotation for declaring method purity. We use

the tool ReImInfer in [16] to infer pure methods. ReImInfer uses a context

sensitive constraint solver to generate reference immutability annotations from

which method purity is inferred.

We define candidate methods as pure methods that are worth memoization in

terms of saving execution time. Note that parameters in candidate methods are

not enforced to be immutable. We define target methods as those selected out of

candidates methods with only immutable parameters or primitives.
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Benchmarks Pure method number Called number Candidate number

avrora 3698 116 0

xalan 4019 388 5

fop 3355 860 9

luindex 1497 147 0

lusearch 1497 31 1

sunflow 756 181 0

Table 2.1: Pure method number and candidate method number.

Because of high quantity of pure methods, our profiler instruments all pure

methods at once. Call count and execution time are both profiled and used for

estimating potential speedup. The execution time is valid only after the method

is fully warmed up. We define the general execution time of method as:

E =

∑
Ti

n
+ BT

In the formula, Ti is the execution time and n is the count of pure method calls.

BT is the overhead of executing profiling instructions. Note that pure methods

can be recursive, resulting in less accurate execution time estimation. To resolve

this, we define the general execution of recursive pure methods as:

Er =
2 ∗ E
n− 1

− BT

n ∗ (n− 1)

The following equation holds:

ST =


(E − P ) ∗ n non− recursive

(Er−P )∗n
D

recursive

ST is the execution time that can be potentially saved by memoization. D

is the average depth of call stack for the recursive call. P is the overhead of
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retrieving the memoized value. Memoization targets candidates with ST being

big enough(> 1.0%) compared to benchmark execution time. Note that P and

BT are profiled in an isolated execution. Table 2.1 shows the number of pure

methods in some Dacapo benchmarks. Note that it is impossible to cover every

execution path during benchmarking. Column Called number gives the number

of pure methods that are actually executed. Column Candidate Number is the

number of candidate methods. The number of candidates is small due to that P

is proportional for most pure methods that run quickly such as getters in class.

2.2 Static Correctness Proof

A method call is allowed to return the memoized value without executing method

body if:

1. it is a pure method and

2. it is called with the same parameters between two executions.

Ensuring 2 is straightforward when the method is static and parameter is

primitive. However, with reference parameters, deep object comparisons are de-

manded. Comparison between two objects in language without deep object im-

mutability feature such as in [14] is difficult despite that equal method can be

used in some cases. But in general, deep object comparison produces unaccept-

able overhead and equal method does not enforce deep object equality. To resolve

this, we first define same parameters as follows:

• They are primitives with same values

• They are 1) references and 2) every value transitively reachable from them

is same

7



Criteria 2 is proved if a pure method has only same primitives or immutable

parameters with same locations. In fact, we could relax criteria 2 by narrowing

down the reachable variables to those only read by the method. Figure 2.1 shows

an example of parameter immutability. The only value read by the method foo

is a.f1. We consider a as an immutable parameter(receiver) for method foo even

though field f2 of a is mutated after the first call of foo.

A key observation is that some objects are deep immutable only after certain

execution point. For example, in xalan, the AST nodes are initialized in the first

execution phase and then stay unchanged until the end of execution.

The above discussion leads to approaches to identify target methods. We

design a static analyzer including a whole program pointer analysis and two whole

program analysis to prove parameter immutability.

For the pointer analysis, we first use an inclusion-based context-insensitive

analysis similar in [19] to generate the points-to graph. We use Soot as our analysis

tool and modify its Spark library. We keep the original context-insensitive analysis

and extend the points-to graph to hold extra information in heap object. A data

structure F(p) is created for each heap object for later analysis.

We have two analysis for candidate method p: field read analysis and parame-

ter immutability analysis. The field read analysis is to identify, for each candidate

method parameter, which field is read. It inputs a points-to graph, a call graph

and a candidate p and outputs a set of objects and their fields read by p. The pa-

rameter immutability analysis is, for each candidate method p, to judge whether

or not all its parameters are immutable. It inputs a points-to graph(with added

analysis results from field read analysis), a control flow graph and a method p and

outputs a boolean indicating target method.

For field read analysis, because we only focus on transitively reachable objects

and their fields read by the method, an inter-method analysis is performed to

8



public static void main(){

A a = new A();

a.set(1,2);

a.foo(1); // record

a.setF2(0); // modify field f2 of object a

a.foo(1); // return memoized value

}

Class A{

int f1;

int f2;

public A(){

}

public void set(int x, int y){

this.f1 = x;

this.f2 = y;

}

public void setF2(int n){

this.f2 = n;

}

@Pure public int foo(int num){

return num + this.f1;

}

}

Figure 2.1: Parameter immutability
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Input : CallGraph, Points-to Graph, p

Output : Set

//initiate:

Set = Ø

M = Ø

add p in M

MethodToAnalyze = all methods reachable from p

//core algorithm:

Repeat

remove a method p from M and p from MethodToAnalyze

for each instruction Inst in p

if Inst has the form v = f.s

then

for every object o that f points to

add o to Set and filed s to F(p) of o

for every m ∈ callers(p) and in MethodToAnalyze

add m to M

Until MethodToAnalyze == Ø

Figure 2.2: RMR analysis for candidate method p

compute such a set: RMR. For each method p, RMR(p) is defined as a set that

contains all reachable objects read by the method on the heap. After the analysis,

each object owns a data structure F(p) containing the fields read by method p.

The field read analysis is a straightforward context-insensitive, flow-insensitive

analysis based on the call graph and points-to graph. The analysis is described

through the algorithm in Figure 2.2.

For parameter immutability analysis, we use a backwards dataflow analysis

framework in [21] to find target methods. For candidate method p, we com-

10



pute transitively reachable objects set INI(p) from parameters. The rules of the

dataflow analysis for proving p as target method are described as follows(we de-

scribe the rules ignoring the cases in static field and array without losing generality.

Our analysis is implemented correctly for these cases).

1. out(b) = ∩in(s)(s is the successor block of b)

2. in(b) = out(b) − Kill(b)(Kill(b) returns a set containing o in that, b is a

block having the form f.v = t. Field v is contained in F(p) for o in RMR(p),

where every o is the object pointed to by reference f.)

in(b) and out(b) are the immutable object sets before and after execution

respectively. The complete algorithm to prove a method to be a target method is

shown in Figure 2.3 in which p is a candidate pure method. The algorithm runs

a dataflow analysis and returns TRUE if p is a target method. For reflection, we

use the embedded TamiFlex in Soot which records information of reflections from

pre-executions.

2.3 Memoization Implementation

In this section, we describe JavaMem code transformation. We create a customized

HashMap for each method to store parameter values and the return value. Note

that for reference parameters, the virtual address is used as Hashmap key. This is

safe in our experiment since the object virtual address is unchangeable in a bench-

marking cycle. We instrument the targeted methods in that, at method entry,

we first inspect the existence of actual parameters in the HashMap. If they are

cached in Hashmap, JavaMem retrieves the return value from the map and returns

it. Before the original return instruction, JavaMem inserts instructions to hash

the return value. Figure 2.4 shows code transformation after instrumentation.

11



Input : p, Control Flow Graph, Points-to Graph

Output : Boolean

//initiate :

E = INI(p)∩RMP(p)

in[Exit] = E;

For every block i

in[i] = E

ChangeNodes = all blocks

TM = Ø

//core algorithm:

Repeat

remove i from changeNodes

for every successor block s of i

out[i] ∩= in[s]

orig = in[i]

in[i] = out[i] - kill(out[i])

if orig != in[i]

for every predecessor p of i, add p to changeNode

Until changeNodes == Ø

if E == In[k], (k is the first block of p) return TRUE

return FALSE

Figure 2.3: Pure method parameter immutability analysis algorithm

12



public int foo(A this, List list, int num){

MenKey key = MemRuntime.getKey(this, list, num);

if (A.memMap.contains(key)) return A.memMap.get(key);

// code of pure computation

. . .

// end of pure computation

A.memMap.put(key, v);

return v;

}

Figure 2.4: Memoization code transformation

2.4 Partial Memoization

Pure method memoization demands method purity. In fact, there exists non-

pure method that executes impure instructions only after pure computation. An

example to illustrate this is that a pure method is inlined at the entry of an

impure method. In Figure 2.5, the method runs pure instructions first and then

an impure instruction loading the result of pure computation. To discover partial

memoization opportunities, we use an intra-method dataflow analyzer in Soot

which first splits method into a pure part followed by an impure part. The first

impure instruction delimits the two parts. For implementation brevity in partial

pure analysis, we assume that any impure instruction can change the pre-states

of objects. A list of impure instructions is shown in Table 2.2. After splitting, we

compute variable dependent set of the impure part. In Figure 2.5, the method

invocation of bar is the first impure instruction that sets method body apart.

We adopt the similar approach used in pure method memoization for partial

memoization. The only difference is that the return value becomes variables in de-

pendent set. To simplify implementation, we define a partial memoizable method

13



public int foo(int ){

A r0;

int i0;

int i1;

int i2;

int i3;

int i4;

r0 := @this;

i0 := @parameter0;

i1 = r0.val;

i2 = virtualInvoke r0.getV(); // A.getV(int) is a pure method

i2 = i1 + i2;

//this line is delimiter

i3 = virtualInvoke r0.bar(i2); // A.bar(int) is an impure method

i4 = i2 + i3;

return i4;

}

Figure 2.5: Method before partial memoization

14



by two criteria:

• The dependent set contains at most one variable.

• It follows the same criteria as defined in pure method memoization except

that the targeted method is impure.

Figure 2.6 shows the code transformation after partial memoization.

instruction description

local.field = v field write

local[m] = v array write

field = v static field write

invokeExpr when the method is impure

Table 2.2: List of impure instruction

2.5 Evaluation

We evaluate JavaMem on Dacapo benchmark suite. Memoization on Dacapo

is challenging in that every benchmark in Dacapo suite is very well manually

tuned by experts. Methods that can be potentially memoized were designed using

space-for-time techniques such as hashmap cache. However we are still able to find

speedup of two benchmarks through pure method memoization: xalan and fop.

And in xalan, luindex and lusearch, we obtain speedup by partial memoization.

In Table 2.3, we present the pure method memoization speedup results.
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public int foo(int ){

A r0;

MemMap r1;

int i0;

int i1;

int i2;

int i3;

int i4;

bool b0;

r0 := @this;

i0 := @parameter0;

r1 = r0.memMap;

b0 = virtualInvoke r1.containsKey(r0,i0);

if b0 goto lable0;

i1 = r0.val;

i2 = virtualInvoke r1.getV(); // A.getV(int) is a pure method

i2 = i1 + i2;

r1.put(r0,i0,i2); // memoize value

goto lable1;

//this line is dilimiter

label0:

i2 = virtualInvoke r1.getValue(r0,i0);

label1:

i3 = virtualInvoke r0.bar(i2); // A.bar(int) is an impure method

i4 = i2 + i3;

return i4;

}

Figure 2.6: Method after partial memoization

16



Benchmark Original Pure No. Partial Pure No. Opt (speedup)

avrora 3021ms 0 0 N/A

xalan 563ms 1 3 541ms(4.1%)

fop 261ms 1 1 254ms(2.8%)

luindex 602ms 0 1 580ms(3.8%)

lusearch 698ms 0 1 683ms(2.2%)

sunflow 1827ms 0 0 N/A

Table 2.3: Memoization experimental results (Pure No. is the number of pure

methods we memoize and Opt is the execution time after memoization.)
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CHAPTER 3

Efficient Dynamic Taint Checking

In this chapter, we introduce our tool METEOR for dynamic information flow

analysis and optimization. METEOR has two major parts: an bytecode instru-

mentor that inserts taint propagation instructions and an optimizer that takes

advantage of JSR 308 annotation and static checking. The bytecode instrumentor

enables taint propagation by instrumenting both system and application libraries.

It also reads annotations from class files and optionally from configuration files.

The optimizer performs mostly offline to eliminate unnecessary propagation in-

structions according to annotations. METEOR is implemented on Soot and ASM.

It is worth mentioning that our tool makes no modification to JVM which makes

it portable.

3.1 Taint Propagation Implementation

Our approach adopts variable-based taint propagation techniques. Tracking taint

tags by variable is consistent with the granularity of JSR 308 annotation. In the

following subsections, we describe our taint storage and propagation implementa-

tion.

3.1.1 Taint Tag Storage

METEOR attaches a 32-bit integer to every variable. Each bit in the 32-bit inte-

ger represents a type of annotation and 32 different types of security annotation

18



can be supported as JSR308 defines 17 types of annotations so far. In this study,

we are only concerned with a single type of annotation but could easily extend our

work to multiple types. METEOR creates 32-bit taint variables for local variables,

method parameters, return values and object fields. For taint storage, [36] shows

a centralized storage where all taint tags are stored in a global array, which incurs

high overhead. We use de-centralized storage approach in which each taint tag is

locally stored with each variable. Ensuring consistency with JSR 308 annotation

faces the challenge of storing taint tags for primitive array because JSR 308 anno-

tation can declare annotations on array elements. METEOR tracks each element

in primitive array to obtain high precision. For each object, we add a self-tag field

in the object class indicating the taint value of the object itself. Adding a field

to java.lang.Object class crashes Hotspot JVM as result of changing the internal

class structure. To resolve this, we create an interface with self-tag and modify

all classes to extend it.

For each local variable or parameter, METEOR creates a taint local variable

or parameter if it is a primitive. If the variable is an object or object array, no

modification is needed because it has a self-tag already. If it is a primitive array,

we create a taint integer array of the same length in which each integer is a taint

tag of the element in the original primitive array. The only tricky case is that

for multi-dimensional primitive array, we use the feature provided by JVMTI to

convert every multi-dimensional primitive array to a special object at runtime.

For object fields, we modify the class file to create a taint field for each primitive

field. Similarly, METEOR creates an array of taint tags for each primitive array

field. Note that for HotSpot 8, adding fields to specific classes such as Java

primitive wrapper classes is forbidden. To resolve this, we use the technique in

[36] and pre-allocate an external map which stores taint tags for these fields. The

tag could be retrieved by using the signature of the object and offset of the field

which is computed at compile time.
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3.1.2 Taint Propagation

In this subsection, we describe the code transformation for taint propagation.

Previous work such as [5] instrumented class files at bytecode level. We choose

Soot as our tool library to rewrite bytecode at a higher abstraction level to ensure

high readability and extensibility. Soot reads bytecode and tranlates bytecode to

Jimple which is a 3-address representation. Jimple instruction is stackless with

references to stack translated to local variables. Local variables in Jimple have

specific names and are fully typed. This contributes to static analysis design and

simple code generation. Next, for each type of Jimple statement or expression,

we discuss our code transformation strategy.

Assignment statement: Assignment statement contains a LHS and a RHS

where the taint tag always flows from RHS to LHS. The taint tag of the LHS is

identical to that of the RHS. Specifically, if LHS or RHS has primitive type, we

add an assignment instruction to assign the taint tag of the RHS to the LHS.

Arithmetic expression: Arithmetic statement has the general form of x+y.

The taint tag of the arithmetic result is the least upper bound of taint tags of

operands. We simply refer to the bit-wise OR of the two operands as the taint

tag of arithmetic expression.

Class field and method declaration: Our instrumentor iterates through

primitives or primitive arrays and adds an extra taint field for each such variable.

Method declaration must be transformed to a corresponding instrumented one

with a different name to avoid overriding issues. A taint parameter is added for

the primitive or primitive array parameter to pass the taint tag into the method

body.

Method invocation: METEOR instrumentor modifies each method invo-

cation statement to have the signature of the instrumented method. For each

primitive or primitive array formal parameter in the original method, METEOR
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places the taint variable of those parameters in right places. After the invoca-

tion, we have to retrieve the taint tag of the return variable if the return type of

method is not void. To avoid the overhead of pre-allocating a boxed object in [5],

we simply pre-allocate a global class to temporarily store the return taint tag and

then pass back to the call site. Note that global class is one-to-one mapped to

Java thread to preserve thread safety.

Method return: Before return statement, our instrumentor inserts an in-

struction to pass the taint tag of return primitive or primitive array to the global

class.

NewArray: Jimple has a newarray expression which initiates a new array.

For each newarray(Primitive Type) expression, a newarray(int) instruction is in-

serted to create an array containing taint tags of the original array elements.

Native method call: Although our instrumentation tool executes on whole

application and system libraries, methods not written in Java bytecode are not

applicable for instrumentation. These methods are native methods in machine

code and can be called from bytecode call cites. We adopt the same strategy

used in [5]. Before native method calls, we pre-compute the bit-wise OR of all

inputs reachable from every actual parameter. To make implementation simpler

without losing soundness, we take into account only the taint tags of primitives

and references.

Reflective method call: JVM supports reflection which dynamically re-

trieves methods from a class and invokes the method. At call site, the instrumentor

collects taint tags for parameters and intercepts the reflective call. A reflective

call to the instrumented method is therefore called by the interceptor instead.
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3.2 Sinks and Sources

JSR 308 security annotation introduces @Trusted and @Untrusted annotations.

By declaring variable as @Trusted, we mean it can only be a trusted variable

while @Untrusted variable could be either trusted or untrusted. Subtype relation

holds: @Trusted <: @Untrusted. In dynamic taint analysis, sensitive values are

denoted by @Untrusted in our experiments. As we mentioned, JSR308 security

annotations have various types such as @Trusted, @Random @Readonly, etc. They

can appear in any place of type-use. This leads to a broader and more fine-grained

definition of sources and sinks.

Sinks: Sinks are places where only the non-least restrictive taint tag is ac-

ceptable. In our system, they are places where non-sensitive(@Trusted) values are

expected.

Sources: Sources are places where the non-most restrictive values are created.

In our system, they are referred to places where sensitive(@Untrusted) values are

created.

In phosphor[5], sinks and sources are declared at method level, which tends

to be restrictive in industry-level development. For example, Phosphor can only

indicate return value of a method to be a source and method parameter as a

sink. This leads to a problem of over-constraining the way in which application

is written. Figure 3.1 shows a case where method write is treated as a sink

regardless of context. However in some call sites, the developer knows the method

will not incur a security problem, so sensitive values are allowed. Similarly, the

constructor of a class could return either a sensitive or non-sensitive object. Sinks

and sources in METEOR are defined at type-use level which means whenever a

type use appears we could treat the correlated variable as a source or sink.

Adding sources and sinks for simple application is a trivial task. In [36], they

insert assertions in code to define sources and sinks. Prior definition of sources
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//call site 1 :

write(s); // s should be non-sensitive value

@Trusted A v = new @Trusted A();

//call site 2:

write(p); // p is allowed to be sensitive

@Untrusted A v = new @Unstrusted A();

Figure 3.1: Type-use level sources and sinks

and sinks is restricted in a way that sinks and sources appear in small numbers.

For example, in SQL injection detection, sources are hard-coded strings and sinks

are functions executing sql commands. But when it comes to JSR 308 annotation

with broad meanings, adding sources and sinks could be untraceable and error

prone because the assumption of small number does not hold. Static information

flow type system such as JSR308 annotation checking tool is developed to enforce

information flow safety while its soundness is not preserved due to partial checking

and downcast, which will be explained later.

In dynamic taint analysis, with less readable sources and sinks declared in form

of assertion or declaration in the configuration file, extending the code or changing

the security policy is also error prone. We solve this by taking advantage of JSR308

annotations. As we described in chapter 2, the JSR308 annotation provides a

statically checkable and highly readable security type system. We integrate the

JSR308 security annotations into our dynamic information flow analysis. The

annotation serves three purposes :

1. Enabling partial program security by static checking.

2. Directing compiler optimizations

3. Providing a formal declarative approach to define flexible and easy-to-change

security policies.
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Combining JSR308 annotations with dynamic information flow analysis faces

some challenges, in that the static annotation checker provides no guarantee that

the whole system is safe at runtime. In fact, it is infeasible using static checker

to check the whole code in most cases[12]. We refer to JSR 308 static checking as

partial checking when it checks partial code leaving some library code unchecked.

In addition, annotation type downcast exists for the convenience of type checking

but requires runtime checking on it. With only partial checking, we next describe

some key rules of annotation-to-instruction transformation to preserve soundness.

Annotation on Typecast: JSR308 annotation could be attached to a type-

cast. Typecast is categorized as follows.

1. Typecast as a source on an object initiation

2. Typecast as a sink

3. Typecast as a source on any instruction except object initiation

For category 1, METEOR inserts instructions right after the newRef or newAr-

ray instruction to initialize the taint tag to be a source(@Untrusted) value. For

category 2, the instrumentor inserts check instructions based on the type of the

variable. For primitives, it checks the taint variables against the static taint an-

notations while for objects it checks the self-tags. Note that if the typecast anno-

tation is a source(@Untrusted) annotation, which means a upcast, no instruction

is required to be inserted. For category 3, we define a special annotation @Init

to mark the typecast as a source. Introducing category 3 is important because it

adds flexibility for developers to define flexible security rules without modifying

the source code. Figure 3.2 illustrates code transformation on typecast as a source

and sink respectively. The method fooCastSink is transformed regarding category

2 and fooCastSource is transformed according to category 3.

Sink annotation on parameter: Without the annotation static checker,

every sink variable needs to be dynamically checked. With whole program static
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public void foo(){

@Trusted A v = (@Trusted A) bar();

//code

}

public void fooCastSink(){

A v = bar();

if (v.self_tag | 0x00000001 != 0x00000000) throw new

TaintExeception();

//code

}

public void fooCastSource(){

A v = bar();

v.self_tag |= 0x00000001

//code

}

Figure 3.2: Typecast code transformation
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checking, we could simply ignore the sink annotations on parameters at run-

time and only insert dynamic checks on downcasts. But with partial checking,

we conservatively insert check instructions for each sink parameter because call-

backs from unchecked code could propagate sensitive(@Untrusted) values into the

method.

Source annotation in configuration file: A configuration file contains an-

notation declarations defined by developers at method level. It is also the respon-

sibility of programmer to ensure the correctness of these method declarations[12].

In practice, these methods are from unchecked code and their method bodies are

not statically checked. METEOR assumes these method interfaces are correct and

do not violate soundness in terms of return taint tag. For example, @Trusted foo()

means that this method return value is always set to @Trusted. Figure 3.3 shows

a configuration file that declares exec and load as sinks. Note that the default

annotation is @Untrusted in static annotation checker(exec returns @Untrusted

value) while the default taint tag in METEOR dynamic analysis is mapped to

@Trusted.

We implement annotation transformation on our modified ASM tool. Because

JSR308 is only partially supported by ASM5.0 in that annotations with bytecode

offset are not supported, we modify the ASM library to precisely insert instructions

by reading the bytecode offset of JSR308 annotations.

3.3 Optimization

With annotations available in bytecode, we are able to design and implement

several optimization techniques. Our optimizations take advantage of static anal-

ysis from annotation inference tool which automatically generates annotations in

bytecode. There are four optimization phases focusing on different optimization

aspects. In the following subsections, we show the details of our optimizations.
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class Runtime {

public Process exec(@Trusted String command);\\sink command

public Process exec(@Trusted String[] cmdarray);

public Process exec(@Trusted String[] cmdarray, String[] envp);

public Process exec(@Trusted String[] cmdarray, String[] envp,

Filedir);

public Process exec(@Trusted String command, String[] envp);

public Process exec(@Trusted String command, String[] envp,

Filedir);

public void load(@Trusted String filename);

public void loadLibrary(@Trusted String libname);

}

Figure 3.3: Configuration file

3.3.1 Non-sensitive Method Propagation Elimination

If no non-sensitive(@Untrusted) taint tag flows out of method, we do not have to

instrument the method body with taint propagation instructions. We define the

default taint tag of a variable as the value of sink annotation(@Trusted). We de-

fine a method as a non-sensitive method if it contains only non-sensitive(@Trusted)

annotation on escaping instruction. Escaping instruction is defined as the instruc-

tion that propagates values to fields, array elements, method parameters or return

variables. Table 3.1 shows the list of escaping Jimple instructions. If the method

is a non-sensitive method, it does not propagate non-sensitive values. We mark

these methods and eliminate every propagation instruction.
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Instruction Description

specialinvoke local.m(. . .) special method call

interfaceinvoke local.m(. . .) interface method call

virtualinvoke local.m(imm , ..., imm ) virtual method call

staticinvoke m(imm , ..., imm ) static method call

new refType object initialization

newarray(type) [m] one-dimensional array initialization

newmultiarray(type)[m]* multi-dimensional array initialization

return v return

local.field = v object field write

local[imm] = v array write

field = v static field write

throw ex exception throw

Table 3.1: List of escaping instruction in Jimple

3.3.2 Parameter Checks Elimination

As we mentioned above, methods having sink parameters have to inspect taint

tags of sink parameters at runtime before entering the method body because of

callbacks from unchecked code. Parameter checking instructions are eliminated

if the method is private. We also identify methods that are called only from

checked code. For reflections, we use the same tool in chapter 2 to obtain runtime

reflection information. Table 3.2 shows the number of such methods.

3.3.3 Sensitive Branching

For methods that are not marked as non-sensitive methods, we perform optimiza-

tion based on the observation that taint propagation does not need to start until

an untrusted taint tag is found. More specifically, taint tracking needs to start only
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Benchmark Method-total Method-to-optimize

avrora 439 361

batik N/A N/A

eclipse N/A N/A

fop 790 604

h2 344 3

jython 131 15

luindex 235 165

lusearch 262 176

pmd 143 15

sunflow 83 25

Tomcat 2342 1590

tradebeans 537 331

tradesoap 572 306

xalan 1863 974

Table 3.2: Parameter elimination methods(Method-total is the total number of

method with sink parameter. Method-to-optimize is the number of chosen method

out of method-total to eliminate parameter check.)

after the first non-sensitive(@Untrusted) taint tag leaks out of the method local

scope. Our optimization is inspired by [25]. Inside a sensitive method, our instru-

mentor performs a special transformation: it keeps the original bytecode method

body(untracked version) and appends the instrumented method body(tracked ver-

sion) to the original one. Before each escaping instruction, a check instruction CK

is inserted and a corresponding label L-CK is created pointing to a correspond-

ing bytecode in the instrumented code. At runtime, PC jumps to the label if

an untrusted taint tag is detected. We show the example of sensitive branching

transformation in Figure 3.4 and Figure 3.5. Note that the first integer parameter
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public void foo(int, int){

A r0;

int i0;

int i1;

r0 := @this;

i0 := @parameter0;

i1 := @parameter1;

r0.value_tag = i1;

r0.value = i0;

}

Figure 3.4: Code before sensitive branching

is the value and the second is the taint tag.

METEOR eliminates unnecessary branching checks by two criteria:

1. The checking target is non-primitive or primitive array and

2. It has a @Trusted annotation.

Suppose we have @Trusted annotation on i0, branching checks and corre-

sponding propagation instruction in tracked version can be eliminated. Figure 3.6

illustrates the details of code transformation.

3.3.4 Non-escaping Propagation Elimination

In our experiments, there are some methods that we can not optimize using

non-sensitive method propagation elimination or sensitive branching because of

instrumentation issues such as method body size exceeding 64KB limit. As we

discussed above, an instruction does not propagate sensitive information if no sen-

sitive(@Untrusted) value escapes through escaping instruction. METEOR elimi-

nates propagation for such instructions in these methods.
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public void foo(int, int){

A r0;

int i0;

int i1;

r0 := @this;

i0 := @parameter0;

i1 := @parameter1;

if i1 != 0x00000000 goto label0;

r0.value = i0;

return;

label0:

r0.value_tag = i1;

r0.value = i0;

}

Figure 3.5: Code after sensitive branching
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public void foo(int, int){

A r0;

int i0;

int i1;

r0 := @this;

i0 := @parameter0;

i1 := @parameter1;

r0.value = i0;

return;

label0:

r0.value = i0;

}

Figure 3.6: Code after annotation optimization

3.4 Evaluation

In this section, we evaluate the performance of METEOR. We first evaluate our

dynamic information flow analysis tool with the optimizations off. This serves

as a baseline of taint propagation performance. For baseline performance, we

compare METEOR analysis with Phosphor analysis in both micro and macro

benchmarks. We choose Phosphor because it is the only portable analyzer that

works on Dacapo benchmarks. We then evaluate our optimizer on benchmarks

with only simple sources and sinks. In the simple source-sink evaluation, we show

how our general optimization without the aids of annotations could speedup the

execution. In the last subsection, we evaluate our tool in macro benchmarks with

annotations and compare the results with Phosphor.

32



3.4.1 Experiment Setup

Fully evaluating METEOR faces challenges in that there exists no dynamic infor-

mation flow analyzer integrated with JSR308 annotations. To show the overall

effects of our defensive optimization and our instrumentation tool, we decide to

hack Phosphor and add the annotation features to it. Phosphor is a dynamic

taint analyzer written on ASM library. We choose Phosphor because we believe

it is the only tool available providing both soundness and good performance on

Dacapo benchmarks and we are familiar with ASM. We are able to get Phosphor

source code and integrate our modified ASM tool into it. We keep all phosphor

original propagation instrumentation and optimization unchanged and only add

features of reading JSR308 annotations and transforming them to the correspond-

ing bytecode instructions. Note that we do not add annotation-based optimization

to phosphor. (In fact, we fail to add our optimization to phosphor because the

way that phosphor is written involves too many interactions between different

instrumentation and optimization phases, which is very error prone although we

are able to get help from the author).

For all benchmarks, we have to recompile the source code with Java 8 compiler

to support JSR308 annotations. We manually change class files in xalan, lucene,

luindex, tomcat and eclipse to make the compiling succeed. We add key annota-

tions to places where we believe there should be sinks and sources. And we also

partially annotate the key components of those benchmarks to serve as the main

frames of annotation sets. We then use the uw annotation inference tool to gener-

ate fully-annotated benchmarks. The uw tool automatically inserts downcasts to

ensure that the static annotation checker checks without error. Such automatic

downcast insertion is included in their newest version of unpublished inference

tool. Because the way how the inference tool and programmers put annotation

is not always run-time secure with the presence of downcast, we encounter nu-

merous security exceptions forcing programs to halt. To resolve this, we carefully
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tune the benchmarks and change some security checks to non-sensitive(@Trusted)

initializations. For most benchmarks, we find such manual work is done within

an hour based on our understanding of the benchmarks by repeating execution.

For our experimental purpose, we assume these changes are safe although further

expert advice might be needed to prove the correctness of these changes.

All experiments are done in Macbook Pro 13 with 4GB RAM and 2.5GHz CPU

with power on and the execution time is the average of 10 best runs of 10 runs

after the coefficient variant is small enough. We use HotSpot 8 as our JVM.

3.4.2 Baseline Performance

In this evaluation, we compare taint propagation performance. We instrument the

whole JRE8 libraries and benchmarks with METEOR instrumentor and Phosphor

instrumentor respectively. In Table 3.3, we show the size of the benchmarks and

type and quantity of annotations inserted.

Benchmarks Lines of Code Number of @Random Number of @Trusted

JLV 1210 11 0

Jsortsql 483 0 9

JRQsortsql 849 6 9

Benchmarksql 3984 7 69

MonteCarlo 14092 186 0

Table 3.3: Micro Benchmark size and annotation details.

JLV is a benchmark running Las Vegas algorithms. We annotate it with @Ran-

dom annotation set as JLV generates and accepts random values. Jsortsql is a

micro benchmark that executes SQL scripts. We use @Trusted annotation set to

ensure that each method executeQuery allows only trusted commands. JRQsortsql

is a modified version of Jsortsql which executes quick sort to rank the query results.

We annotate it with both @Trusted and @Random annotation sets. Benmarksql
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is a commonly used mid-sized benchmark annotated by @Trusted annotation set.

MonteCarlo is another widely used mid-sized benchmark that runs randomized

algorithms. We annotate its algorithm core libraries and recompile the bench-

marks with Java 8 compiler. Dacapo benchmark suite contains 14 benchmarks

for measuring JVM performance. With METEOR, we are able to instrument 12

out of them and run them to completion. Batik fails to instrument because it

uses special compiler library that forbids METEOR from analyzing. Eclipse fails

because of library compiling issues. With Phosphor, we are able to instrument

9 of them and execute them without exception. Though we can run through all

14 benchmarks in the virtual machine provided by the author, we believe there

are some special modifications made on either the JRE libraries and the bench-

marks or its instrumentation requires special manipulation. For the purpose of

propagation-only performance comparison, we refer to the results in [5]. Table

3.4 shows the results of overhead in both METEOR and Phosphor. In Table 3.5,

we include the results of Dacapo benchmarks. The Original column shows the

execution time without taint propagation.

Benchmarks Original Phosphor overhead METEOR overhead

JLV 158ms 280ms 77.85% 312ms 97.47%

Jsortsql 823ms 1249ms 51.76% 1312ms 59.42%

JRQsortsql 911ms 1312ms 44.02% 1428ms 56.75%

Benchmarksql 2091ms 2139ms 22.96% 2180ms 42.56%

MonteCarlo 2448ms 4376ms 78.76% 5120ms 91.50%

Table 3.4: Propagation-only baseline performance and overhead.

We notice that the propagation overhead of METEOR is higher than that

of phosphor. We observe that, in phosphor implementation, there already exists

some optimizations based on simple static analysis at bytecode level. Although

there is a chance JIT would do the same optimization in some cases, such opti-
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Benchmarks Original MET MEOH PHOH

avrora 3021ms 3145ms 4.1% 3.3%

batik 1253ms N/A N/A 13.5%

eclipse 17932ms N/A N/A 219.6%

fop 261ms 462ms 77.0% 57.7%

h2 4043ms 5967ms 47.6% 38.2%

jython 1623ms 2739ms 68.8% 56.9%

luindex 602ms 1112ms 84.7% 41.6%

lusearch 698ms 1521ms 117% 92.8%

pmd 1572ms 1698ms 8% 27.6%

sunflow 1827ms 2570ms 40.7% 35.0%

Tomcat 1602ms 1981ms 23.7% 38.2%

tradebeans 3217ms 4268ms 32.7% 31.9%

tradesoap 15823ms 18976ms 19.9% 20.6%

xalan 563ms 971ms 72.5% 50.2%

Table 3.5: Propagation-only performance in Dacapo.(MET is the execution time

of METEOR. MEOH is the overhead of METEOR. PHOH is phosphors overhead)

mization at instrumentation phase still generates execution speedup.

3.4.3 Simple Sources and Sinks Benchmark Performance

We declare simple sources and sinks in the benchmarks. In case we intend to

perform dynamic taint checking with minimum efforts, we insert sources and sinks

into the program at method level. Note that we do not use static checker here and

this evaluation is intended to show the maximum speedup without annotations.

In Table 3.6 and 3.7, we present the list of source and sink methods. Table 3.8

shows the execution time in METEOR and Phosphor.
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Class Name&Descriptor

java.io.InputStream int read(byte[])

java.io.InputStream int read(byte[],int,int)

java.io.BufferedReader int read()

java.io.BufferedReader int read(char[],int,int)

java.io.BufferedReader int readLine()

java.io.Reader int read(char[])

java.io.Reader int read(char[],int,int)

java.io.Reader int read(CharBuffer)

java.io.Reader int read()

Table 3.6: Method as a source in simple source-sink experiment

3.4.4 Fully-Annotated Benchmark Performance

With fully-annotated benchmarks, METEOR is able to take advantage of an-

notations. We instrument JRE8 libraries and benchmarks with METEOR op-

timizations on. On Phosphor side, we use our modified version of Phosphor to

perform annotation transformation. Table 3.9 shows the fully-annotated per-

formance comparison between METEOR and Phosphor. As we could see, with

annotations available, the speedup due to METEOR optimizaitons is obvious. In

our experiment, sunflow delivers the highest speed up. By our observation, it is

because that sunflow tends to have a large number of non-sensitive methods.
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Class Name&Descriptor

java.io.OutputStream void write(int)

java.io.OutputStream void write(byte[])

java.io.OutputStream void write(byte[],int,int)

java.io.PrintStream void println(java.lang.String)

java.io.PrintStream void println(java.lang.Object)

java.io.BufferedWriter void write(char[],int,int)

java.io.BufferedWriter void write(int)

java.io.BufferedWriter void write(java.lang.String,int,int)

java.lang.Process exec(java.lang.String[])

Table 3.7: Method as a sink in Simple source-sink experiment
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Benchmarks METEOR Ori. METEOR Sim. Phosphor

avrora 3145ms 3270ms 3124ms

batik N/A N/A N/A

eclipse N/A N/A N/A

fop 462ms 342ms 416ms

h2 5967ms 5201ms 5632ms

jython 2739ms 2394ms N/A

luindex 1112ms 963ms 941ms

lusearch 1521ms 1491ms 1444ms

pmd 1698ms 1683ms 1543ms

sunflow 2570ms 2331ms 2579ms

Tomcat 1981ms 1782ms N/A

tradebeans 4268ms 3821ms N/A

tradesoap 18976ms 17988ms N/A

xalan 971ms 794ms 862ms

Table 3.8: Comparison in simple source-sink case.(METEOR Ori. is the propa-

gation only time. METEOR Sim is the time with simple source and sink.)
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Benchmark Anno-METEOR Anno-Opt. Anno-Phos Speedup

avrora 3616ms 3209ms(12.6%) 3522ms 2.7%

batik N/A N/A N/A N/A

eclipse N/A N/A N/A N/A

fop 497ms 395ms(25.8%) 455ms 9.2%

h2 6580ms 5380ms(22.3%) 6007ms 11.6%

jython 3102ms 2852ms(8.8%) N/A N/A

luindex 1149ms 1193ms(-3.8%) 1008ms -18.4%

lusearch 1510ms 1484ms(1.8%) 1532ms 3.2%

pmd 1973ms 1888ms(4.5%) 1858ms -1.6%

sunflow 5039ms 3490ms(44.3%) 4878ms 39.8%

Tomcat 3085ms 2643ms(16.7%) N/A N/A

tradebeans 4403ms 3981ms(10.6%) N/A N/A

tradesoap 20874ms 18211ms(14.6%) N/A N/A

xalan 1019ms 827ms(23.2%) 920ms 5.5%

Table 3.9: Fully annotated benchmarking.(Anno-METEOR. is the time with opti-

mizer off. Anno-Opt. is the time after optimization. Anno-phos is the time using

Phosphor. Speedup is the final comparison between METEOR and Phosphor)
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CHAPTER 4

Related Work

4.1 Memoization

4.1.1 Candidate Selection

Deciding that a pure method is worth memoizing is a difficult task. The cost of

parameter comparison, result caching and retrieval, cache hit rate and method

execution time contribute to the complexity. In [2], they calculate the execution

time saved by memoization given the target method has a very specific function-

ality such as quick sort. But the overall performance is undecided due to the lack

of estimation on other costs. Our work uses an once-and-for-all offline profiler to

accurately estimate the potential speedup for each method.

4.1.2 Parameter Comparison

Parameter deep comparison is critical for retrieving the hashed result from hashmap.

A typical deep comparison would require testing equality of transitively reachable

variables between two objects. The cost of such deep comparison in Java could

negate the potential memoization speedup. Several techniques have been pro-

posed to solve this. Simply comparing object locations is the simplest one but

lacks the soundness. Hash-Consing[13][28] is a technique that ensures there only

exists one copy of the value such that object comparison is simplified to location

comparison. While hash-consing alleviates comparison overhead, the cost it incurs

is shown to be unacceptable in [23][24][10] due to garbage collection overhead and
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large memory usage. In JavaMem, we ensure parameter immutability by static

analysis. As a result, the cost of parameter comparison is constant without losing

the soundness of memoization.

4.1.3 Partial Parameter Comparison

For a pure method, actual parameters are partially compared if and only if the

subset of all transitively reachable values read by the method are compared. Such

partial parameter comparison is sufficient for the purpose of memoization. Con-

ventional parameter comparison technique would compare all transitive values.

Such technique is over restrictive as a method usually depends on only a subset of

those values. Dynamic analysis to compute the method-read subset is explored in

[15][1] where a dependence set is computed dynamically and comparison is done

by comparing only the values in those set. While their technique appears to be

effective, the cost of dynamic analysis is hard to estimate. Additionally, there can

be still a high cost if the subset is large. The work in [26] forces programmers to

manually identify the subset, which is infeasible in practical use. Our approach

takes advantage of static analysis to conservatively obtain a list of subset values.

4.1.4 Object Immutability Inference

Immutability has been studied in terms of both reference immutability and ob-

ject immutability. Reference immutability is proposed in [6]. And the tools to

infer reference immutability are developed in [9]. Reference immutability differs

from object immutability in that it enforces transitively reachable values from a

reference to be immutable with only the usage of that reference. For example,

an object could be mutated in the first phase and then assigned to an immutable

reference by which the object can not be mutated. Note that the object could be

mutated if there are other mutable references. Even though reference immutability
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provides useful information for program analysis such as pure method inference, it

is insufficient to be used directly to serve our purpose. For example, an immutable

reference as a parameter can be mutated if other mutable reference to the same ob-

ject exists. Object immutability guarantees all transitively reachable values from

the object is immutable after initialization phase. [20] presents a static analysis

to infer immutable objects. Immutability in their work is defined in class context

and any field write after constructor invocations renders the object immutable.

This is restrictive in our use case when the object has a long initialization phase

after constructor invocations. The work in [34] defines stationary fields whose all

reads happen after all writes, which enables long initialization spanning multiple

methods. They define that an object initialization ends when the object is stored

into heap reference. As a result, their analysis does not track objects once objects

are stored in heap. Although their analysis is highly scalable in large benchmarks,

it loses analysis accuracy and analyzes only class field immutability. Our analysis

is directed by pure method information and infers object field immutability with

long initialization. Scalability is not an issue in our case since the pure method

candidates are small in number.

4.2 Dynamic Taint Checking

Many promising dynamic taint checking systems have been designed and im-

plemented in various ways. Among them, Dytan [8] provides both data-flow and

control-flow dynamic taint analysis in x86 code. Their tool instruments all system-

wide x86 executables without relying on customized runtimes. In their experi-

ment, sources are non-hard-coded strings and sinks are database access functions.

All sources are directly specified in binary code, which makes specifying taint

policy difficult. They show up to 5.53x overhead on data-flow only taint analysis.

Phosphor [5] is closest to our work in that it is a portable taint analysis tool
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that tracks data-flow taint in Java. METEOR differs from phosphor in three

aspects: First, Phosphor transforms multi-dimensional array to a special wrapper

class, which is problematic when the multi-dimensional array is passed into native

code. Although in Dacapo benchmarks, no such case exists, we find Phosphor

fail to instrument Hadoop. Second, Phosphor is implemented in ASM which is a

bytecode rewriting library, while METEOR is implemented in Soot which takes

advantage of Jimple instruction set. In fact, we find implementing propagation

and optimization in METEOR is easier and less error-prone due to the small

number of Jimple instructions compared to bytecode instructions. The soundness

of dynamic taint analysis tool is rarely proved. Phosphor uses unit test to prove

the correctness of taint propagation. We believe a static program prover should

exist to formally prove the soundness of the tool and Jimple instruction set is

better for such static proof. Third, Phosphor does not perform unnecessary taint

tracking elimination optimization while METEOR provides several optimization

techniques based on annotations.

Lift [25] is also a x86 dynamic taint tracking tool which adopts redundant

propagation elimination optimizations. The most important optimization is Fast-

Path optimization which generates a tracked version and untracked version in

a single method body and switches between them. Our sensitive branching is

similar to Fast-Path optimization and differs in two ways. First in Lift, branching

checks happen together before a code segment(a block) and if one of the tag is

unsafe, it jumps to the tracked version and will switch back in next segment.

In METEOR, each check happens before every escape instruction, which allows

more untracked instructions to execute. Once it jumps to the tracked version,

it does not jump back. This is based on our experiments that 90.4% jump-

backs would jump to tracked version again within the next two checks. Second,

METEOR eliminates unnecessary branching checks in untracked version based on

annotations. METEOR also eliminates propagation instructions if the method is
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non-sensitive. Lift generates overhead from 1.06x to 3.60x.

TaintDroid [11] is an interpreter-based system-wide taint tracking system on

DVM. It requires the modification of VM interpreter and like Phosphor, it does

not perform optimizations on eliminating unnecessary propagation. It tracks array

elements in a single tag, which incurs loss of precision. While it has an average

overhead of 1.14x, the tracking accuracy and portability could be issues in general

use.
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CHAPTER 5

Conclusion

We design and implement JavaMem and METEOR to utilize JSR308 annotations

for optimizations and improve performance on both micro and macro benchmarks.

To the best of our knowledge, We are the first to combine Java 8 annotations

with dynamic taint analysis to bring dynamic information flow analysis closer to

practical use. And we are the first to explore memoization in macro benchmarks

in Java and show execution speedup.
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