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PURPOSE-DIRECTED ANALOGY

Smadar Kedar-Cabelli

Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

Abstract

Recent  artificial  intelligence models of
analogical reasoning are based on mapping some
underlying causal network of relations between
analogous situations. However, causal relations
relevant for the purpose of one analogy may be
irrelevant for another.  We describe here a
technique which uses an explicit representation
of the purpose of the analogy to automatically
create the relevant causal network. We
illustrate the technique with two case studies in
which concepts of everyday artifacts are learned
by analogy®.

[Alny two things which are from one point of view
stmilar may be dissimilar from another point of view.

-K. Popper, The Logic of Scientific Discovery

1 Introduction

A recent development in artificial intelligence (Al)
research on analogical reasoning has been to recognize
that analogy involves mapping some underlying causal

network of relations between analogous situvations
19, 3.5, 26,. Qﬁ.en. however, there are numerous
causal networks describing the situations. Which are

the relevant ones to map when performing a particular
analogy? Causal relations relevant for the purpose of
one analogy may be irrelevant for another. A more
robust model of analogical reasoning cannol always
reason from predefined causal networks, but needs the
ability to automatically generate the appropriate

network based on the purpose of the analogy being
performed.
This paper describes a new technique,

Purpose-Dhrected Analogy, which is designed to address
the above limitation using a specialized notion of
‘purpose’ lo automatically generate the relevant causal
network. In particular, we are developing a system to
learn concepts of everyday artifacts by reasoning
analogically from a known example of an artifact to an
unknown example. The specialized notion of ‘purpose’
is the purpose for which these artifacts will be used.

“Thisa research is supported by GTE Laboratories, under Coniract No.
GTE840917.

Artifacts can be viewed as objects designed to enable
people to perform certain actions (chairs to sit on, pens
to write with, and so on). If the goal of an agent is
wo perform an action, often the agent may need to
recognize an artifact which will enable him to perform
that action (or a plan of actions leading to the goal).
One way to recognize such an artifact is by reasoning
analogically from a known example of the artifact to an
unknown example. The central idea is that:

Two czamples will be considered analogous if
they share a network of relations which
demonstrates how both can be wused for the
same purpose.

Thus, performing an analogy can be viewed as a
subprocess of a more global problem solving process (as
in [11]): to enable an agent to proceed with an action
he desires Lo perform by being able Lo recognize objects
that facilitate that action.

For example, suppose an agent is thirsty, and would
like to drink hot liquids. Assume that as a result, the
agent wants to learn the concept HOT-CUP: objects
whose purpose is Lo enable the drinking of hot liquids.
One way to learn the concept is to be able to
determine if a new example (a styrofoam cup, say) is
analogous to a known, prototypical example (a ceramic
mug) in ways relevant for the purpose of a HOT-CUP.
If & cup were needed for a different purpose (ornamental
or religious, say), a different network of relations would
be relevant.

Section Il presents a unifying framework for concept
learning by analogy in order to compare existing models
and point to & key limitation. Section lIl describes the
Purpose-Directed Analogy technique. Section 1V
illustrates the technique with two case studies. One
case study involves learning the concept of a cup for
the purpose of drinking hot liquids. The second case
study involves learning the concept of a vehicle in the
context of identifying vehicles violating the legal statute
“A  vehicle is prohibited in a public park”. We
conclude in section V with a discussion of limitations of
the technique, future work, and a summary.

Il Related Research and a Limitation
A. Discussion

A common view is that analogy is powerful because
it allows us to learn about an unfamiliar situation by



mapping over man)y aspects of a familiar situation with
a dramatic savings in reasoning. To highlight the
directionality in the mapping. the familiar situation is
often referred to as the base situation from which
aspects are mapped over to the unfamiliar, or target
siluation, [5]. Thus in the analogy “Science is like a
jigsaw puzzle”, the less well-understood process of
scientific discovery is likened to the working out of a
jigsaw puzzle--a more familiar activity. As a result,
many of the properties of scientific inquiry are
highlighted, without needing separate explanation.

We present in this section a simple, four-stage
unifying framework that describes existing Al models of
concept learning by analogy. (In fact, this framework
encompasses other forms of analogical reasoning such as
problem-solving by analogy and metaphor comprehension
18].) We then discuss three such models

[5, 2, 26] from this common perspective. We examine

the limitation which we address in this paper: the
inability of these models to automatically generate a
causal network relevant for the purpose of a particular
analogy.

B. Concept Learning by Analogy: Unifying
Framework

The problem of concept learning by analogy, and the
four-stage unifying framework for solving it, is stated in
figure II-1.

We illustrate each stage by the analogy “The
hydrogen atom is like our solar system” from [5]. The
framework we present is slightly more general than the
models it describes: most of these models simplify the
reasoning by supplying the base example instead of
retrieving it. In this analogy, the potentially analogous
base concept ‘solar system’, is provided as input, rather
than retrieved.

First, independent relations and causal networks of
relations describing the base concept are derived. By a
causal network of relations, we mean a set of relations
related by any higher order relations such as ‘physical-
cause(ri,rj)’, ‘logically-implies(ri,rj)’, ‘enables(ri,rj)’ and
so on. (This is a broader sense of ‘causal’ than is
sometimes used (5|.) /ndependent relations are those
not belonging to a causal network. The causal network
of relations in this example describes that ‘the sun
attracting the planets causes the planets to orbit the
sun’.  Next, the causal network is mapped from the
base concept over to the target, to explain why the
electrons orbit the nucleus of the atom. Finally, the
correctness of the mapping is justified: that in fact ‘the
nucleus attracting the electrons causes the electrons to
revolve around the nucleus.’

The unifying framework does not perform any
concept learning, in the sense that it does not modify
the the system’s representation of the target concept in
any way. In order to model concept learning following
the analogical reasoning, this framework is used in
conjunction with (possibly) three subsequent stages.
First, the concept may be learned by simply retaining
the causal structure which was mapped to the target
concept. For instance, more is learned about the atom

Figure II-1: Unifying Framework for

Concept Learning by Analogy

Given:

e a new, target concept, (e.g. the atom)

Find:

o a familiar, base concept, (e.g. the solar
system)

o causal networks of relations of the base
concept, and

o causal networks of relations of the target
concept derived from the base concept

Process:
RETRIEVE
=
ke ~~
base: solar system target: atom
DE[}]VE JUSTIFY
attracts  orbits act.s orbns
w l cause l
planet elect.ron
=~ T — — /
MAP

by retaining the causal structure describing why the
electrons orbit the nucleus. In addition, concept
learning might involve forming a generalization of the
target and base, as in [26]. A generalized concept of
‘attractive force’ may be learned as a result of the
above analogy. Furthermore, learning could involve
debugging or refining a ‘faulty’ causal structure or
generalization, by repeated analogical reasoning with the
same, or different, base concepts (2, 28|. For example,
the description of the atom’s physical mechanisms may
only be partially correct, and may be revised by
analogy to other concepts.

Given the above framework, we can now discuss
three recent models of concept learning by analogy
[5, 2, 26]. (See [6, 8] for surveys of other work on
analogy.)

C. Gentner’s Domain-Independence Relevance
Criterion

The central idea in Gentner's structure-mapping
theory [5] is that a syntactic (domain-independent)
principle can be used to select the relevant aspects of

151



152

situations for any analogy. This systematicity principle
states Lhat, in general, causal networks of relations are
relevant Lo the analogy between situations, while
independent relations are not. The justification is that
analogy is deflined as a reasoning process which maps
over a “..system of connected knowledge, not a mere
assortment of independent facts™ |5, p.162]. Thus, as
we saw earlier, in the analogy “The hydrogen atom is
like our solar system™ more is understood about the
atom by mapping over causal relations. Specifically, the
causal network describing why the planets orbit the sun
is mapped Lo explain why the electrons orbit the
nucleus of the atom. Note that the analogy is not
intended to teach us that the nucleus of the atom is
‘yellow, hot or massive’ like the sun. These
independent relations, not involved in the causal
network, are considered irrelevant to the analogy.

Gentner's model assumes that the relevant causal
network is given. For a different purpose, a different
causal network may be relevant. Consider, for example,
a different analogy with the sun: the metaphor “Juliet
is the sun”, from Shakespere’s Romeo and Juliet (also
discussed in [5]). We know the context in which this
metaphor is conveyed: that Juliet is a woman and
Romeo loves her. The purpose of this metaphor is to
analogically convey positive qualities about Juliet, not to
convey anything about physical mechanisms! Thus the
causal network about the sun which was supplied for
the previous analogy is no longer relevant.

D. Burstein's Automatic Indexing Into the
Relevant Network

Burstein’s model 2| also relies on the domain-
independent criterion stated above. However, his model
is a step closer Lo automatically selecting the relevant
causal network among many candidate networks: it is
provided with & relation used to index into the relevant
causal network. One specific analogy he uses to
illustrate his work is: *“A wvariable is like a box, in that
numbers can be inside variables in some ways similar to
the way objects can be inside boxes™. [2]. The action
by which ‘variable’ is analogous to ‘box’ is explicitly
supplied: they are analogous by the fact that things
can be ‘put inside’ them. This eliminates considering
many irrelevant actions involving boxes (such as
stacking boxes, playing with boxes, etc.). Given the
*put-inside’ action, the system is able to aulomatically
retrieve the relevant goal/plan structure related to it:
the ‘store' plan is retrieved, which describes related
actions such as putting things in boxes, taking things
out of boxes, etc. (Actions can be thought of as
relations, and the plan structure which connects actions
in & higher order ‘enable’ relation can be viewed as the
causal network of relations.) This goal/plan structure is
then mapped to ‘variable', to learn about storing things
in variables, taking things out of variables, and so on,
by analogy to boxes.

If the relevant action were not supplied, however,
many actions and goal/plan structures associated with
‘box’ could be considered when trying to understand the
analogy. Consider a student trying to understand this
analogy. He will immediately eliminate many of these as
being irrelevant. He is not likely to infer that variables

can be ‘stacked’ like boxes, or that variables can be
‘played with' like buxes. Why is that? A student
learning about variables knows Lhe purpose of the
analogy: (o learn a command in a computer language,
and commands in a computer language enable the
computer to manipulate numbers and symbols. Given
several goal/plan structures, the student ‘might dismiss
‘play’ or ‘stack’ as irrelevant for the purpose of the

analogy. ‘Put inside’ might finally be focused on as the
relevant action, and ‘store’ as the related goal/plan
structure.  So although Burstein's model is provided

with an action ‘put-inside’ which can be used to
automatically index into the relevant goal/plan structure
‘store’, it is supplied with exactly the relevant action,
and cannot reason from the purpose of the analogy to
select that action automatically.

E. Winston's Learning from Precedents and
Exercises

The main scenario for learning and reasoning in
Winston's work on analogy is one of guided learning
(e.g. |26]). Here, a teacher supplies the system with a
precedent. For instance, the system is provided with
part of the Macbeth plot, describing Macbeth’s
relationship to Lady Macbeth, and what causes him o
aspire to become king. The system is also given an
exercise which describes personalities and relationships
among some people. The task is Lo show that in the
exercise ‘the noble may want to be king,’ by analogy to
the precedent. This is accomplished by mapping a
portion of the causal network shared by the precedent
and the exercise. If in the precedent these relations are
causally connected to the relation ‘Macbeth may want
to be king', then it can be (plausibly) concluded that in
the exercise ‘the noble may want Lo be king'.

Although Winston admits that *...the way things are
matched depends on purpose as well as on experience”
|25, p.6] currently just the appropriate causal structure
needed to make the analogy was supplied. If, however,
an analogy between the Macbeth story and the exercise
were performed not for the purpose of understanding
Macbeth’s motives, but rather to to understand Lady
Macbeth’s motives, say, different causal relations would
be considered important.

IITI Purpose-Directed Analogy
A. Discussion

We have argued above that Gentner's systematicity
principle, Burstein’s indexing into the relevant causal
network, and Winston's analogies between precedents
and exercises are all limited in their ability to
automatically generate the network relevant for the
purpose of a particular analogy, since explicit knowledge
of purpose is not supplied as an input in these models.

Purpose-Directed Analogy attempts Lo overcome this
limitation by making a specialized notion of ‘purpose’
an explicit input to the analogy. It uses this “purpose’
to automatically generate the relevant causal network
for learning concepts by analogy. In this section we
present the statement of the general problem, and the
technique introduced to solve it. Section IV illustrates
the technique by solving this problem in two case



studies of learning concepts of everyday artifacts. We
are illustrating an initial  design and  partial
implementation, not a fully implemented system. We
have recently begun an implementation of a prototype
system in PROLOG, a logic programming language [12].
(A PROLOG program consists of a set of horn clauses,
a subclass of logical implications. The computation is
based on resolution theorem-proving.)

B. Statement of the General Problem

We first introduce some Lerminology. A concepl is a
set of elements. The goal concept is the concept
currently being learned by analogy. A concepl
definition provides a specification of logically necessary
and sufficient conditions for being an element of the set,
while a sufficient concept definition provides sufficient
conditions only. An ezample of a concept is deflined as
an element of the set. The domain theory consists of
default IF-THEN rules (axioms) and action operators
which represent what is typically true in a real world
domain. An ezplanation of how an example is a
member of a concept is a proofl that the example is an
element of the set. The explanation can be viewed as a
causal network of relations, consisting of domain-theory
rules which link properties of examples, actions, and
goals with the relation ‘enables(ri,rj)’ and ‘logically-
implies(ri,rj)).  An explanation relevant for a particular
purpose can be viewed as a causal network of relations
all of whose relations are related, either directly or by
transitivity, Lo relations representing Lhe purpose.

Concept: learning by analogy as considered here
differs slightly from that studied by Gentner, Burstein,
or Winston. The analogy is not made between base
and Larget concepts, but rather between base and Larget
ezamples of the concept.

The problem, and the four-stage technique for solving
it, is stated in figure IIl-1.

The system first retriecves a known, base example of
the goal concept. The system then ezplains to itsell
how this example satisfies the purpose of Lhe concept
using the domain theory. (We make the simplilying
assumption that there is a single purpose, which is
given.) More precisely, using Al planning terminology,
if the purpose of an artifact is to enable an agent lo
perform a goel action, then the artifact will satisfy the
purpose il its structural features enable a plan of actions
leading to the goal. [t will enable a plan of actions if
it satisfies those preconditions of the actions in which it
1s 1nvolved. So for example, a ceramic mug will enable
an agent to drink hot liquids il it enables those
preconditions ef actions in a plan leading to DRINK in
which it is invelved: that is, il it enables the agent to
PUTIN the hat liquids (i.e. pour), KEEP the hot liquid
in the cup for some interval of time, GRASP the cup
with the hot liquids in order to PICKUP, and finally if
it enables the agent to DRINK the hot liquids. The
prototypical ceramic mug clearly satisfies these
preconditions with its open concavity, its non-porous,
insulating material, its flat bottom, handle, and light
weight.

The styrofoam cup will be considered analogous to

Figure IIl-1: Purpose-Directed Analogy

Given:

» goal concept (e.g. HOT-CUP)

o purpose of goal concept (e.g. enable an agent
to drink hot liquids)

» domain theory (e.g. axioms such as ‘vx has-
part(x,handle) = graspable(x)’)

s a new, targel example (e.g. styrofoam-cupl)

Find:

« a familiar, base example (e.g. ceramic-mugl),

e an explanation of how the base example is a
member of the goal concept (e.g. how

ceramic-mugl is a HOT-CUP), and

« an explanation of the target example is a
member of the goal concept derived from the
explanation of the base example (e.g. how
styrofoam-cupl is a HOT-CUP)

Process:
RETRIEVE
/ — ““-
base: ceramic mug  targel: styrofoam cup
EXPLAIN JUSTIFY
{ £

N 1
enable DRINK hot liquids  enable DRINK hot liquids

graspable, liftable... graspable, liftable...

ceramic, handle, '}ablc... sty rofmical .s}ﬂe...
—7

~

e

the ceramic mug if it too can be used for the stated
purpose. To show that, the system wmaps the
explanation derived for the ceramic mug, and attempts
to jusiify that it s sausfied by this example. The
styrofoam cup satisflies the explanation, although with
slightly different structural characteristics. It differs
structurally in that the styrofoam, not ceramic material,
provides insulation; and the conical shape, rather than
the handle, makes it graspable.

C. Relationship to Explanation-Based
Generalization

The research described here adapts recent techniques
for performing goal-directed &nd explanation-based
generalization |4, 11, 14, 17, 18, 19, 27 One  key
feature of these techniques is that the relevant aspects
of a single example can be extracted by generating an
explanation of how the example satisfies a particular

goal, or purpose.
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Figure IV-1:

Purpose:
Enable INGEST hot-liquid
Plan:
PUTIN - KREEP GRASP
Preconditions:
can(contain can(keep
(contents)) (hot-liquid,int})
Structural Features: T

non-porous
insulates-heat
stable

open-concavity

Attributes:
has-part(open-cylinder) material(ceramic)
has-part(flat-bottom)

can(be-grasped-by
(agent,hot-liquid))

insulates-heat
grasping-area

material(ceramic)
has-part(handle)

Explain How the Ceramic Mug is a HOT-CUP

PICKUP INGEST
A ~

can(be-pickedup-by can(be-ingested-by
(agent,hot-liquid)) (agent,hot-liquid))
A i~

light-weight open-concavity
stable ~
~

weight(6 ounces) has-part(open-cylinder)

has-part(flat-bottom)

In  adapting these techniques to analogy, the
distinction between analogy and generalization has
somewhat blurred. While in analogy the explanation is

mapped from a known example and modified to fit the

new example; in generalization, the explanation is
generated anew for each example. Is there an
advantage to modifying explanations rather than

generating them each time? Although it seems plausible
that modifying explanations is computationally more
eflicient, we do not yet have experimental data to
support this. One can argue, however, that observing
multiple examples and modifying the explanation slightly
each time provides a principled way of learning
alternate ways of satisfying a particular goal or purpose
(see also [13]). Current generalization techniques which
analyze a single ezample do not have this capability.

The work described here is most closely related to
Winstons [27], where the relevant structural features of
an example of an artifact are extracted by explaining
how the example satisfies some pre-defined functional
features. We extend this work by providing the ability
to automatically derive relevant structural and functional
features [rom an explicitly given purpose.

IV Case Studies
A. Discussion

In this section we illustrate the technique by two
case studies. Our case studies illustrate the problem of
refining concepts of artifacts, by analogy, based on the
specialized purpose for which these artifacts are Lo be

used. Often when learning a concept, some notion of
the concept is already known, and the task is to modily
it slightly as it is used in a different context. To
simplify our technique conceptually, we assume that the
known purpose of the artifact, constrained by the
specialized purpose for which it is intended, is the
‘purpose’ input to the system. For example, if the
system is to learn the concept of ‘vehicle’ in the context
of prohibiting vehicles from being driven in the park, we
assurne that in the known purpose of vehicles (to enable
transportation), constrained by the context (interfering
with park use) is the "purpose’ input 1o the system: i.e.
vehicles that ‘enable transportation but interfere with
park use'.

B. Case Study 1:
Liquids

A Cup for Drinking Hot

In the case study described below, a system for
performing Purpose-Directed Analogy takes as input the
goal concept (HOT-CUP), its purpose (to enable an
agent to drink hot liquids), a target example (a
styrofoam cup), and domain theory (typical actions an
agent can perform, a structural and functional model of
the artifact). Then, by analogical reasoning to a known
base example of a HOT-CUP (a ceramic mug), the
system determines how the target example (styrofoam
cup) is a member of the concept (HOT-CUP), derived
from the explanation of how the base example is a
member of the concept.

We now detail each step of the technigue.



1. RETRIEVE atep

Given the goal concept, this step retrieves a
prototypical base example of the goal concept.
Specifically, a prototypical example of a HOT-CUP (a
ceramic mug) is retrieved. To simplify the problem, we
assume that a prototypical example is known, and
stored in such a way that it can be easily retrieved (as
an instance of the general concept in an instance/class
hierarchy).

2. EXPLAIN step

The next step uses the domain theory to explain
how the base example (ceramic mug satisfies the
purpose (to enable an agent to drink hot liquids) (see
figure IV-1).  This is the crux of Purpose-Directed
Analogy:  in this step the relevant explanation is
automatically derived, given explicit purpose for which
the artifact is used.

The explanation step consist of two parts: first,
derive a general ezplanation of how an example can
satisfy the purpose of the goal concept; second,
recognize that features of the example in fact satisfy the
explanation.

Derive a General Explanation: First, given the
purpose of the goal concept and domain theory, a
general explanation of how an example satisflies the
purpose of the goal concept is derived. The purpose of
HOT-CUP can be stated in a PROLOG-like
representation as follows:

purpose(object,
enable-action(object,Ingest(agent, hot-liquid, object)))
< hot-cup(object)

In words: if something is a HOT-CUP, its purpose is Lo
enable an agent to ‘ingest’ hot liquids. If the purpose
of a HOT-CUP is to enable ingesting hot liquids, then
an example of & HOT-CUP will satisfy the purpose if it
enables a plan of action leading to the goal. A planner
(as in [12]) generates a prototypical plan (or ‘script’)
which leads Lo the goal action ‘ingest’: The plan is:

Putin(agent, liquid, object)

Keep(agent, liquid, object, time-interval)
Grasp(agent, object, liquid)
Pickup(agent, object, liquid)

Ingest(agent, liquid, object)

Each action has a list of preconditions which must be
true in order to enable the action. The object
preconditions are Lhose preconditions which must be true
of the object in order to enable the action. For an
artifact to enable the plan of actions, it is expected to
satisly the object preconditions of each of the actions in
the plan. The object preconditions are:

object preconditions for ‘Putin’:
can( contain(object, contents))

object preconditions for ‘Keep"
can( keep(object, hot-liquid, time-interval))

object preconditions for *Grasp”:
can( be-grasped-by(object, agent, hot-liquid))

object preconditions for ‘Pickup’
can( be-pickedup-by(object, agent, hot-liquid))

object preconditions for ‘Ingest’:
can( be-ingested-with(object, agent, hot-liquid))

In general, the preconditions are collected together
by a method such as goal regression [22] which collects
only those preconditions not directly enabled by previous
actions, and keeps track ol other constraints among the
preconditions.

The output of this first part is a general explanation
of the preconditions which an example is expected to
satisfy in order to fulfill the purpose of a HOT-CUP.

Recognize Example as Satisfying  the
Explanation: Given the general explanation, the base
example, and domain theory, this step verifies that, in
fact, the base example (a ceramic mug) satisfies the
explanation for membership in HOT-CUP (closely
related to plan recognition [23].) An artifact can satisfy
these preconditions, or functional requirements, by
certain structural characteristics. These can be satisfied,
in turn, by particular attributes of the artifact.

The example is represented as a frame, with
attributes represented by slots and values. A frame in a
PROLOG:-like representation is a list  of binary
predicates [12]. The [rame describing ceramic-mugl is:

manufacturer(ceramic-mugl, abc-co))
serial-number(ceramic-mugl, 72118))
color(ceramic-mugl, blue)
material(ceramic-mugl, ceramic)
weight(ceramic-mugl, 6-ounces)
has-part(ceramic-mugl, flat-bottom)
has-part(ceramic-mugl, open-cylinder)
has-part(ceramic-mugl, handle)

contains  ‘default’ rules,
structural and functional
characteristics of an artifact. An ¢nable slructure rule
expresses how a general structural attribute can
typically be satisfied by a particular attribute of an
object. For instance:

The domain theory
representing typical

struclure(object, open-concavity) <
has-part(object,open-cylinder)

The enable function rule expresses how a functional
requirement can typically be satisfied by a structural
attribute. For example:

enable-function(object,
can( contain(object, contents)) <«
structure(object, open-concavity)

185
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Recognition proceeds as a search for rules to
generate a proof that attributes of the ceramic mug
satisfy the functional requirements. The resulting
explanation is as follows: (see Figure 1V-1 for an
illustration):  Since the shape of the mug is an open
cylinder, it has an open concavity which allows hot
liquids to be PUTIN it (i.e. poured in). Tke ceramic
material of the mug provides a non-porous material
which also insulates the heat, and the flat shape of its
bottom makes it stable--all which enable the cup to
KEEP the hot liquid for some interval. Its handle and
insulating material makes it GRASPable. Its weight (6
oz.) makes it light-weight, and that, along with its
stability, enable an agent to PICK it UP. Finally,
enabling all the previous actions, along with having an
open concavity, allows the agent to perform his goal
action of INGESTing the hot liquids from the ceramic
mug.

The output of this step, then, is an explanation of
how the base example (the ceramic mug) satisfies the

purpose of HOT-CUP.
3. MAP Step

This step copies the explanation of the base example
over to the target example (the styrofoam cup).

4. JUSTIFY Step

This step takes as input the explanation mapped
over, the target example, and domain theory, and
attempts to justify that the explanation is satisfied by
the target example. If it cannot justify it using the
explanation as its stands, it modifies the explanation to
show that the target example is a member of the goal
concept in a slightly different way.

First, it attempts to show how the attributes of the
styrofoam cup satisfy the structural and functional
requirements of something that is a HOT-CUP in the
same way as the ceramic mug. If it fails to do that, it
attempts to modify a portion of the explanation to
show that the functional requirements are satisfied by
alternative structural features. If it is unable to do
that, it attempts to show that alternative actions satisfy
the agent's goal action. If that is unsuccessful, the
justification step fails.  This processing is similar in
spirit to derivational analogy {3]. and partial provisional
planning {24].

In this example, the styrofoam cup satisfies most of
the structural and functional requirements in the same
way as the ceramic mug. It differs structurally only in
that it is the styrofoam material, not ceramic, which
insulates the heat; and it is the conical shape, rather
than a handle, which makes it graspable. Since the
styrofoam cup also fits these relevant functional
requirements and therefore the purpose, even if with
different  structural characteristics, it is considered
analogous to the ceramic mug, and may also be

classified as a HOT-CUP.

The result of this step is a (possibly modified)
explanation of how the styrofoam cup satisfies the
purposes of a HOT-CUP.

5. Learning

Given the two explanations as input, learning is
achieved first by retaining the two explanations derived
by the system. This provides the system with the
ability to classify the target example as a member of
the concept.  Next, the system proceeds to form a
generalization based on the explanations generated for
two examples. Given these two explanations, the
system  can summarize the common  structural
characteristics (and when finding none in common--the
functional ones) to form a sufficient definition of the
goal concept.  Thus the output of this step is a
sufficient definition of a HOT-CUP: an object which can
have an open concavity, can be made of nonporous,
insulating material, can be stable, lightweight, and can
be graspable.  This sufficient definition can be used
from now on to recognize examples of a HOT-CUP
more easily, since it is described in more operational
terms [20], i.e. in terms of structural, observable
characteristics (see section V.A for further discussion of
‘operationality’).

C. Case Study 2: Vehicle in Park

We are also applying Purpose-Directed Analogy to a
more complex case study, that of forming legal concepts
by legal reasoning from precedents (initiated within the
TAXMAN 11 project |16, 21}). (For other research on
Al and legal reasoning see [9]). Given the legal statute
“A vehicle is prohibited in a public park” (7], the task
is to learn the concept DISTURBING-VEHICLE, an
object which enables driving but interferes with park
use. We do not present a detailed solution here.
Rather, we sketch it briefly.

A case is brought before the court for violating the
statute ‘A vehicle is prohibited in a public park’. It is
the case of Tommy, an 18-year old, who was found
speeding through the park on a bicycle by a policeman.
The system performing Purpose-Directed Analogy can be
viewed as modelling the task of the prosecuting lawyer.
The lawyer will argue that riding a bicycle in the park
is analogous to a case where a passenger car was driven
into the park, a clear example of a vehicle prohibited in
the park. (This style of argumentation from precedents
is a common form of legal argumentation.) The
argument involves . presenting the relevant facts that
justify why for this law, the bicycle case is analogous to
the case involving a passenger car. Knowledge of the
purpose of the vehicles that the law intends to prohibit
(DISTURBING-VEHICLES, objects which enable driving
but interfere with park use) is used to derive the
relevant explanation used in this analogy. The problem
of learning the legal concept DISTURBING-VEHICLE
by argumentation from precedents, guided by knowledge
of legislative intent, more specifically the purpose of
DISTURBING-VEHICLE, is thus an instance of the
general problem of learning concepts by Purpose-
Directed Analogy.

First, the system retricves the clear precedent case
(involving a passenger car). We assume that clear
precedent cases are known, and can easily be retrieved.
Next, the system ezplains why the precedent case has
violated this law, and thus involves a DISTURBING-



VEHICLE. 'The statute’s intent is o prohibit driving
those vehicles which would interfere with people's use of
the park, such as enjoying Lhe serene setting, and the
natural habitat provided by the park. Driving a
passenger car clearly interferes with these aspects of the
park: it makes noise, and thus disturbs the serene
setting. It pollutes the air, and rmay trample the lawn
and even small animals, and thus destroys the natural
habitat.  Next, the system maps this explanation to
argue (justify) that the case involving a bicycle is a
DISTURBING-VEHICLE in the same relevant respects.
Because the bicycle trampled the lawn, flowers, and
sped by park users, it similarly interfered with the
serene setting and the natural habitat of the park, and
is therefore analogous to the case of a passenger car in
the aspects relevant for these purposes, and may also be
classified as a DISTURBING-VEHICLE. Finally, the
systern  generalizes to a sufficient definition of
DISTURBING-VEHICLE. based on the explanations, su
that future cases can be identified more easily as having
violated the legal statute.

V Conclusion
A. Limitations and Future Research

We plan to complete the implementation of the
system in the near future. In addition, we expect to
experiment with the system using case studies of
increasing complexity. We also plan Lo test the system
on case studies for learning concepts with alternative
purposes. Further, several major theoretical issues still
need to be addressed before we have a robust Purpose-
Directed Analogy technique.

Generalizing the lechnigue to other domains: We
provided an initial design of a technique to learn
concepts of everyday artifacts, Can this technique be
generalized to other domains such as those studied by
Gentner, Burstein, and Winston? We use a very
specific notion of purpose, the purpose for which an
artifact is intended to be used. ‘Purpose’ in analogy
can express many different intentions. It can refer to
the purpose of the agent forming the analogy, the
purpose of the agent understanding the analogy, the
purpose of the analogy process itsell, the purpose of the
agent using the concept learned as a result of the
analogy, and so on. One important open problem to be
solved before the technique can be generalized is to
represent classes of purposes, and their relationship to
one another.

Deritnng the Goal Concept: Currently, the system is
given a single concept to learn, and a single purpose.
Yet in most real-world forms of learning, there are
many concepts to learn. In addition, there are many,
sometimes coaflicting, purposes [or learning. Can a
systern arrive at the desired concept(s) to learn, and
infer the purpese(s) automatically from context? In his
research on centeztual learning, Keller has demonstrated
a scenario for this in the context of heuristic search
|11}, An important issue for future research is to
examine the problem of formulating concepts and
purposes in these domains.

Adeguacy of The Domain Theory: The explanations
derived by Purpose-Directed Analogy are only as
adequate as the underlying domain theory used. In the
case studies presented here, the system had all the
correct domain theory rules needed to derive the
cxplanations. Yet theories of the domains of
commonsense artifacts and law are both inezaet and
information-incomplete.  In fact, the representation of
most  real-world domains will always be lacking.
Learning in these domains will have to account for a
weak underlying theory (see [15, 16| for one approach).

The domain theory is inexact in that the axioms
represent  what  is  only  approaximately  true. For
example, a rule such as ‘has(vehicle Motor) =
pollutes(vehicle,Air)’ is not infallible: what if the motor
is dead? One issue to deal with is how o learn
concepts when exceptions to these rules arise (see also
[1]). Both analytic and empirical techniques that deal
with exceptions will need Lo be developed ( [28] is one
such analytic technique). In addition, the theory in
these domains is information-incomplete in that we
cannot hope to represent all the needed information
about these domains. For example, our representation
might be missing the rule ‘has-pari(x, handle) =
graspable(x)' needed to generate the explanation of how
something is a cup. Thus the issue of when to
approximate when generating an explanation will come
into play. In the long term, techniques will need to be
developed to learn these axioms from empirical
techniques, or from reasoning from first principles.

Operationality of Definitions: Intuitively, we want
our concept definitions to enable agents to easily
recognize members of the concepts. When is a concept
definition ‘operational’ in these domains? When is it
‘non-operational' |20]7 Currently we assume that
structural definitions allow a human agent to easily
classify examples as being members of a concept (hence
are operational), while functional and purposive
definitions do not (and hence are non-operational). The
notion of concept operationalization has  been
investigated in [10]. Keller advocates defining
operationality in terms of the intended use of the
concept. The intended use in the case studies examined
here seems to be one of classification. An interesting
open issue to explore is whether knowledge of the type
of domain (artifacts, say) and the intended use of a
concept (classification, say) can be used to automatically
define operational and non-operational languages for
defining concepts in a given domain.

B. Summary

To summarize, we have outlined a framework of
existing models of analogical reasoning, within which we
discussed three existing models of concept learning by
analogy. We argued that a key limitation is that these
models cannot automatically generale the causal netwark
of relations relevant for the purpose of a particular
analogy. We then introduced an initial design for
Purpose-Directed Analogy in concept learning, which
addresses this limitation by using a specialized notion of
purpose Lo automatically derive the relevant explanation
(causal network). This specialized purpose is the
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purpose for which an artifact is intended o be used,
Given explicit knowledge of the purpose of Lhe artifact,
two examples are considered analogous by the system if
they share an explanation which proves that both can
be used for the same purpose.  We illustrated the
technique with two case studies of learning concepts of
everyday artifacts.

learns

Building a machine that

by analogy and
commonsense  dormains is still beyond our
abilities, yet we are slowly progressing toward that goal.

reasons in
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