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ABSTRACT OF THE DISSERTATION

Stochastic control methods in non-equilibrium thermodynamics
Fundamental bounds on dissipation and power

By

Rui Fu

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2020

Professor Tryphon T. Georgiou, Chair

Classical thermodynamics is aimed at quantifying the efficiency of thermodynamic engines

by bounding the maximal amount of mechanical energy produced compared to the amount of

heat required under quasi-static operation. While this was accomplished early on, by Carnot

and Clausius, the more practical problem of quantifying limits of output power remained

elusive due to the fact that quasi-static processes require infinitely slow cycling, resulting

in a vanishing power. Recent insights, drawn from stochastic thermodynamics, bridge the

gap between theory and practice by presenting fresh approaches that lead to general laws

applicable to the non-equilibrium system. Remarkably, the problem of minimizing dissipa-

tion over a finite time window can be expressed as a stochastic control problem leading to

physically meaningful expressions for the dissipation cost in thermodynamic engines.

Building on the framework of stochastic thermodynamics, we derive bounds on the maximal

power that can be drawn by cycling an overdamped ensemble of particles via a time-varying

potential while alternating contact with heat baths of different temperature (Tc cold, and

Th hot). The previous work focused on the setting where the potential is quadratic and

the distributions are Gaussian. Our analysis relaxes this assumption and asks about fun-

damental bounds on the power under arbitrary distribution. Specifically, first by casting

xiii



the optimization problem of the power into the Benamou-Brenier formulated Optimal mass

transport problem, we show that the power output is bounded by the Fisher information

of the boundary distribution, which can become unbounded with complicated and irregular

control. However, it is unreasonable to expect technological solutions to such demands, and

therefore, a constraint on the complexity of the potential seems meaningful. Assuming a

suitable bound M on the spatial gradient of the controlling potential, we show that the

maximal achievable power is bounded by M
8

(Th
Tc
−1). Moreover, we show that this bound can

be reached to within a factor of (Th
Tc
− 1)/(Th

Tc
+ 1) by operating the cyclic thermodynamic

process with a quadratic potential.

While the majority of works in the literature are concerned with thermodynamic engines

operating in the setting of Carnot’s cyclic contact with alternating heat baths, the natural

processes in living organisms do not follow this setting. Instead, it is the periodic fluctuations

in chemical concentrations in conjunction with the variability of electrochemical potentials

that provide the universal source of cellular energy. Thus, energy exchange is often medi-

ated by continuous processes and energy differentials, whereas the Carnot cycle reflects the

switching mechanics of an idealized engine. We herein propose to consider thermodynamic

processes driven by a heat bath with periodic and continuous temperature profile, and study

questions of maximal power and efficiency at maximal power. Our results state that the

maximal power satisfies a bound proportional to the average fluctuations in the temperature

profile. Moreover, we show the surprising result that the efficiency at maximal power does

not depend on the specific temperature profile, only the maximum and minimum.

xiv



Chapter 1

Introduction

1.1 Background and Motivation

Thermodynamics is the branch of physics which is concerned with the relation between

heat and other forms of energy. Historically, it was born out of the quest to quantify the

maximal efficiency of heat engines, i.e., the maximal ratio of the total work output over

the total heat input to a thermodynamic system. This was accomplished in the celebrated

work of Carnot [4, 5] where, assuming that transitions take place infinitely slowly (quasi-

static operation), it was shown that the maximal efficiency possible is ηC = 1 − Tc/Th

(Carnot efficiency). In this expression, Th and Tc are the absolute temperatures of two heat

reservoirs, hot and cold respectively, with which the heat engine makes contact with during

phases of a periodic operation known as Carnot cycle.

Carnot’s result provides the absolute theoretical limit for the efficiency of a heat engine,

but provides no insight on the amount of power output that can be achieved. Specifically,

in order to reach Carnot efficiency, the period of the Carnot cycle must tend to infinity,

resulting in vanishing total power output. Whereas, to achieve non-vanishing power output,
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a thermodynamic process must take place in finite time, and thereby, away from equilibrium

[6–8]. To this end, the framework of stochastic thermodynamics [9–23] has been developed

in recent years, to allow quantifying work in non-equilibrium thermodynamic transitions. It

is rooted in probabilistic models in the form of stochastic differential equations to specify

the behaviour of particles in a thermodynamic ensemble. Manipulation of the ensemble is

effected by a confining potential that serves as a control input. This potential, together with

a heat reservoir, couples the (canonical) ensemble to the environment. The transferred work

and heat can then be computed at the level of individual particles and averaged over the

ensemble. Important goals of the theory have been to assess the amount of work needed for

bit-erasure in finite time [24–26] and hence computation, i.e., a finite-time Landauer bound,

as well as assessing the efficiency of thermodynamic engines operating at maximal power.

The question of efficiency at maximal power was studied independently by Chambadal [27],

Novikov [28] and Curzon and Ahlborn [29] based on a certain “endoreversible” assumption to

reflect finite-time heat transfer. They derived the bound ηCA = 1−
√
Tc/Th = 1−

√
1− ηC

for efficiency, where the Th and Tc designate temperatures of a hot and cold heat reservoir

respectively, at maximal power k(
√
Th −

√
Tc)

2, with k being the heat conductance. Then,

based on the low-dissipation assumption, the efficiency at maximum power has been obtained

in [30,31], which is reduced to the Curzon-Ahlborn efficiency for symmetric coupling to the

cold and hot bath. Subsequent works, for example, Chen and Yan [32], investigated maximal

power and the efficiency at maximal power when the heat transfer is proportional to the

difference of inverse temperatures instead of Newton’s cooling Law, which gives ηCY =

ηC/(2 − γηC). Here γ = 1/(1 +
√
β/α), and α, β represent the heat transfer coefficient

between the working substance and the cold or the cold reservoir, respectively.

The work mentioned so far for maximal power are all about the heat engine in the macro-

scopic scale. The existence of these results is of fundamental importance. Yet, these authors

did not address the crucial question of how to actually reach this maximal power and effi-
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ciency, as they did not provide information about optimal engine cycles. With the devel-

opment of stochastic thermodynamics during the last twenty years, fresh approaches have

rebuilt general laws that can be applicable to a system driven out of equilibrium. These

approaches provide new insights to analyze and quantify the power extracted and the effi-

ciency at maximal power by studying the thermodynamic system in the microscopic scale. In

contrast to the macroscopic heat engines considered in conventional endoreversible thermo-

dynamics, thermal fluctuations play an important role in most biologically relevant systems

and dynamics. In this regime, the mathematical model for thermodynamic engines must

incorporate the effect of fluctuation and thus allow also for backward steps even in a di-

rected motion [33–35]. A notable contribution in this regard, which is closely related to the

subject of this thesis, is [35], concerned with a class of Brownian Carnot heat engines that

consists of two adiabatic and two isothermal steps modeled by the overdamped Langevin

equation, and studies the problem of maximal power and efficiency at maximal power under

the assumption of Gaussian boundary distributions and quadratic potential. The experi-

mental realization of the Brownian Carnot engine with a single microscopic particle as a

working substance that allows to transform the heat transferred from thermal fluctuations

into mechanical work, is reported in [36]. The similar problem in low dissipation regime has

been studied in [31] and [37]. Analysis of thermodynamic engines in a quantum mechanical

setting appears in [38].

1.2 Objectives and Contributions

The contributions of this dissertation lie in providing insights and quantitative bounds for

the maximal power that a heat engine can achieve in the framework of stochastic thermody-

namics, control protocols to attain these bounds and more broadly drawing a link between

thermodynamics and control. Specifically this dissertation investigates the optimal perfor-

3



mance of the periodically driven thermodynamic heat engine in three different settings. The

objectives and contributions of each chapter are as follows.

� Chapter 3: Maximal power output of a stochastic Carnot-like thermodynamic engine

We study a thermodynamic engine modeled by an over-damped Langevin equation and

operating through a Carnot-like cycle. In this, we consider the problem of maximizing

power and efficiency at maximal power, and seek to determine the optimal control

law that maximizes the power in finite time transitions. We relax the assumptions

considered in earlier literature on Gaussian boundary distributions being Gaussian

and the potential quadratic. We herein propose a physically motivated constraint on

the control effort, and study the respective optimal performance on power. A physically

reasonable upper bound of the power is derived, and given in the form of the ratio of

temperatures of the two heat baths.

The contributions are summarized as follows:

– We make a connection between the maximal power output problem in finite time

transition of a stochastic thermodynamic engine and the Benamou-Brenier for-

mulated optimal mass transport problem.

– We obtain an upper bound for the power which is proportional to the Fisher

information of the boundary distributions.

– With a suitable constraint on the potential, we derive a lower and an upper bound

for the maximal power that can be extracted.

� Chapter 4: Maximal power output of a sinusoidally driven thermodynamic engine

We study a thermodynamic engine driven by a sinusoidal temperature profile and mod-

eled by the over-damped Langevin equation. We consider the problem of maximizing

power and efficiency at maximal power, and seek to determine the control input that

maximizes the power in finite time transitions. First, we consider a sinusoidal control

4



input and use the Fourier representations method to quantify power output of the

engine, and then maximize the power with respect to the phase and amplitude of the

control input. Second, we consider maximizing power of the heat engine with sinu-

soidal temperature profile and a general control input in the linear response regime.

The result we get shows that the optimal protocol for the sinusoidal temperature driven

heat engine is also sinusoidal but of different amplitude and phase.

The contributions are summarized as follows:

– We formulate the problem of optimal performance for a sinusoidally driven heat

engine as an optimal control problem.

– We obtain an explicit form for the optimal control law, and show that the optimal

protocol of a sinusoidally driven heat engine is also sinusoidal function.

– We derive the optimal power output in the linear response regime, and numerically

verify our theoretical results with a numeral method based on Fourier represen-

tation.

� Chapter 5: Thermodynamic bounds on power under arbitrary temperature profile

We study a thermodynamic engine driven by a heat bath with continuously and period-

ically changing temperature profile, modeled by the over-damped Langevin equation.

We consider the problem of maximizing power and efficiency at maximal power and

seek to determine the control input that maximizes power in finite time transitions.

The contributions are summarized as follows:

– We connect the problem of the optimal performance to a control problem.

– We obtain a upper bound on the power that any periodically and continuously

driven heat engine can achieve, which is proportional to the average fluctuations

in the temperature profile.

5



– We show that the efficiency at maximal power does not depend on the temperature

profile.
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Chapter 2

The history of thermodynamics

2.1 Classical thermodynamics

Classical thermodynamics describes the states of thermodynamic systems at near equilib-

rium, and models the exchanged of energy, work and heat based on the Laws of thermody-

namics as its heart.

2.1.1 Laws of thermodynamics

For the First law of thermodynamics,

∆E = ∆Q−W, (2.1)

where ∆E denotes the change in the internal energy, Q denotes the quantity of the heat

that is supplied to the system, and W denotes the amount of the work done by the system.

It is a version of conservation of energy, states that the total energy of an isolated system is

7



constant. Energy can be transferred from one form to another, but can neither be destroyed

or created. For the Second law of thermodynamics,

∆S ≥ 0, (2.2)

where S denotes the entropy of the system. It states that the total entropy production can

never decrease. It can remain constant in the ideal case where the system is in thermo-

dynamic equilibrium, or is going through a reversible process. In all processes that occur,

including spontaneous processes, the total entropy of the system and its surroundings in-

creases and the process is irreversible in the thermodynamic sense.

2.1.2 Carnot heat engine

Usually the second law of thermodynamics is rationalized by considering processes that

involve transferring heat into work by engines, which return to their original thermodynamic

states after completion of one cycle. Carnot heat engine is a theoretical engine going through

a reversible Carnot cycle. The Carnot cycle is an ideal thermodynamic cycle proposed by the

French physicist Sadi Carnot in 1824, who gives a theoretical upper bound on the efficiency

that any classical thermodynamic engine can achieve when it operates between two heat

baths with different temperatures during the conversion of heat into work, or conversely,

the efficiency of a refrigerator that creates the temperature difference with surroundings by

applying work to the system. The Carnot cycle consists of four phases as follows [39]:

� Isothermal expansion: Heat is transferred from the hot reservoir with constant temper-

ature Th. The gas particle starts to expand, and the work is done on the surroundings

by pushing up the piston, which is shown in Figure 2.1. During this process, even

though the pressure of the gas drops down, the temperature inside the piston keeps

constant as it is continuously contacted with the hot reservoir, from which the heat

8



Qh is absorbed, leading to the increase of the entropy of the gas ∆S = Qh
Th

.

Figure 2.1 – Isothermal expansion of the Carnot cycle.

� Isentropic (reversible and adiabatic) expansion: During this process, the expansion is

continued by reducing the pressure of the gas, shown in Figure 2.2. The work is done

on the surroundings with rising up the piston. There is no heat transfer between the

system and the surroundings because the gas is thermally insulated from the reservoir

and the engine is also assumed to be frictionless, leading to the temperature of the gas

cooling down to Tc(< Th).

� Isothermal Compression: Heat is transferred to the cold reservoir with constant tem-

perature Tc. The work is done by the surrounding on the gas with pushing down the

piston, leading to the increase of the pressure of the gas, which is shown in Figure

2.3. During this process, even though the pressure of the gas goes up, the temperature

9



Figure 2.2 – Isentropic expansion of the Carnot cycle.

inside the piston keeps constant as it is continuously contacted with the cold reservoir,

by which the heat Qc is absorbed, leading to the decreased entropy of the gas ∆S = Qc
Tc

.

Figure 2.3 – Isothermal compression of the Carnot cycle.
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� Isentropic (reversible and adiabatic) compression: During this process, the compression

is continued by pushing down the piston, the pressure of the gas is increased, shown

in Figure 2.4. The work is done by the surroundings to the gas by pushing down the

piston. There is no heat transfer between the system and the surroundings because

the gas is thermally insulated from the reservoir and the engine is also assumed to be

frictionless, leading to the temperature of the gas heating up to T1.

Figure 2.4 – Isentropic compression of the Carnot cycle.

The pressure-volume (P-V) graph for the Carnot cycle is also shown in Figure 2.5.
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Figure 2.5 – Pressure-volume graph for the Carnot cycle.

The efficiency for the heat engine going through the Carnot cycle is defined as Carnot

efficiency given as:

ηC = 1− Tc
Th
, (2.3)

which gives the maximal efficiency that the heat engine can achieve when it operates between

two temperatures Th and Tc(< Th). However, in order to achieve the Carnot efficiency, the

process should be quasi-static, all the states should be at near-equilibrium, which gives the

vanishing power.
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2.2 Stochastic thermodynamics

Stochastic thermodynamics provides a new framework to describe small systems like colloids

or biomolecules driven far away from equilibrium but still contacted with a heat bath. The

laws for classical thermodynamics including the first-law like conservation of energy involv-

ing exchanged heat, applied work and entropy production entering refinements of the second

law can be meaningfully defined on the level of individual trajectories [9, 18], which yields

the respective ensemble quantities after averaging. Various exact relations involving the dis-

tribution of such quantities like integral and detailed fluctuation theorems for total entropy

production and the Jarzynski relation follow from such an approach based on Langevin dy-

namics.

2.2.1 Fluctuation theorem

The fluctuation theorem (FT) [40] relates to quantifying the relationship between the prob-

ability that the entropy increases and decreases during a fixed amount of time for a system

currently not at thermodynamic equilibrium. From the second law of thermodynamics, we

know the entropy of an isolated system should keep increasing until it reaches the equilibrium.

However, we realized that the second law is only a statistical conclusion after the discov-

ery of statistical mechanics, indicating that there may exist some nonzero probability that

the entropy of an isolated system spontaneously decrease, which is exactly the fluctuation

theorem quantifies.

The fluctuation theorem states that for systems away from equilibrium during a finite interval

[0, t], the ratio between the probability for Σ̄t taking on a value A and the opposite one −A

will be exponential in At with Σ̄t defining the probability distribution of the time-averaged

13



irreversible entropy production

Pr(Σ̄t = A)

Pr(Σ̄t = −A)
= eAt. (2.4)

The fluctuation theorem provides a clear mathematical expression for the probability that

entropy flows in a direction that is opposite to the one dictated by the second law of ther-

modynamics.

2.2.2 Jarzynski equality

In thermodynamics, the work done on the system W is connected to the free energy difference

∆F between two states through the following inequality

W ≥ ∆F, (2.5)

where the equality holds only for the quasi-static process. Jarzynski equality [41, 42] sheds

light on the equality relation between the free energy difference and the precise amount of

work required for finite-time transitions,

e
− ∆F
kBT = E

{
e
− W
kBT

}
, (2.6)

with E{.} denotes the expectation on the path space of system trajectories, kB is the Boltz-

mann constant, and T represents the temperature of the heat bath. It keeps valid no matter

how fast the process is.
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Chapter 3

Maximal power output of a stochastic

Carnot-like thermodynamic engine

3.1 Introduction

The present work focuses on maximizing power in general, relaxing the assumption of Gaus-

sian boundary distributions and quadratic potential, within the context of stochastic ther-

modynamics [10, 11], which is a stochastic control problem. Our analysis is based on an

overdamped Langevin model for thermodynamic processes (with damping coefficient γ), and

explores advantages and pitfalls of selecting arbitrary control input, i.e., confining potential,

for steering thermodynamic ensembles through cyclic operation while alternating contact

between available heat reservoirs. It is noted that without physically motivated constraints

on the actuation potential, the power output can become unbounded. The salient feature

of actuation (time-varying potential U(t, x), with t denoting time and x ∈ Rd the spacial

coordinate) that draws increasing amounts of power is its ability to drive the thermodynamic

ensemble to a state of very low entropy. Indeed, the magnitude of the spatial gradient of the
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potential ∇xU(t, x) plays a key role. Thus, it is reasonable on physical grounds to suitably

constrain this mode of “control” actuation, that is responsible for energy exchange between

the ensemble and the environment. The present work puts forth and motivates the bound1

(equation (3.61))

1

γ

∫
Rd
‖∇xU(t, x)‖2ρ(t, x) dx ≤M,

where ρ denotes the thermodynamic state, as a suitable such constraint, and under this

assumption it is shown that a maximal amount of power output that can be extracted by

cyclic operation of a Carnot-like engine is

M

8
(
Th
Tc
− 1)

(
Th
Tc
− 1

Th
Tc

+ 1

)
≤ Pmax ≤

M

8
(
Th
Tc
− 1).

That is, the upper bound M
8

(Th
Tc
−1) on power output only depends on M and the temperature

of the two heat baths2. Moreover, this bound can be attained within a factor of (Th
Tc
−1)/(Th

Tc
+

1), which depends only on the ratio of temperatures of the two heat baths as well.

The exposition proceeds as follows. Section 3.2 details the stochastic model, thermodynamic

ensembles and the heat/energy exchange mechanism. Section 3.3 is a brief overview of opti-

mal transport theory, on which the main results are based. Section 3.4 explores a connection

between the second law of thermodynamics and the Wasserstein geometry of optimal mass

transport that underlies the mechanism of energy dissipation in thermodynamic transitions.

Section 3.5 returns to the concept of a cyclicly operated thermodynamic engine and expresses

the optimal efficiency and power output as functions of the operating protocol (solution of a

stochastic control problem that dictates the choice of control time-varying potential), tem-

1Interestingly, this can also be expressed in information theoretic terms, as a bound on the Fisher infor-
mation of thermodynamic states.

2In general power output is an extensive quantity, as it depends on the size of the thermodynamic ensem-
ble/engine. However, in our treatment, the ensemble is described by a probability distribution (normalized).
Hence, the bounds appear as “intensive.”
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perature of heat reservoirs, timing of the cyclic operation, and thermodynamic states at the

end of phases of the Carnot-like cycle. Section 3.6 contains the main results regarding seeking

maximal power output. Specifically, Section 3.6.1 explains optimal scheduling times, Section

3.6.2 highlights questions that arise based on physical grounds for Gaussian thermodynamic

states, Sections 3.6.3 and 3.6.4 discuss optimal thermodynamic states at the two ends of the

Carnot-like cycle, and Sections 3.6.5 and 3.6.6 derive bounds on maximal achievable power

with or without constraint on the controlling potential. A concluding remarks section recaps

and points to future research directions and open problems.

3.2 Stochastic thermodynamic models

We begin by describing the basic model for a thermodynamic ensemble used in this work.

This consists of a large collection of Brownian particles that interact with a heat bath in the

form of a stochastic excitation and driven under the influence of an external (time varying)

potential between end-point states. The dynamics of individual particles are expressed in

the form of stochastic differential equations.

3.2.1 Langevin dynamics

The (under-damped) Langevin equations

dXt =
pt
m

dt (3.1a)

dpt =−∇xU(t,Xt)dt−
γpt
m

dt+
√

2γkBT (t)dBt, (3.1b)

represent a standard model for molecular systems interacting with a thermal environment.

Throughout, Xt ∈ Rd denotes the location of a particle and pt denotes its momentum at
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time t, U(t, x) denotes a time-varying potential for x ∈ Rd, m is the mass of the particle, γ

is the viscosity coefficient, kB is the Boltzmann constant, T (t) denotes the temperature of

the heat bath at time t, and Bt denotes a standard Rd-valued Brownian motion.

In this paper, we consider only the case where inertial effects in the Langevin equation (3.1b)

are negligible for the time resolution of interest. Specifically, for temporal resolution ∆t� m
γ

and small particle size, the dynamics reduce to the over-damped Langevin equation

dXt = −1

γ
∇xU(t,Xt)dt+

√
2kBT (t)

γ
dBt. (3.2)

Intuitively, equation (3.2) is obtained from (3.1b) by setting dpt = 0 and replacing pt
m

dt =

dXt. For a more detailed explanation see [10, page 20].

Thus, we view {Xt}t≥0 as a diffusion process. The state of the thermodynamic ensemble is

identified with the probability density of Xt, denoted by ρ(t, x), which satisfies the Fokker-

Planck equation

∂ρ

∂t
− 1

γ
∇x · [(∇xU + kBT∇x log ρ)ρ ] = 0. (3.3)

Remark 3.2.1. The under-damped Langevin equation (3.1) is the most common dynami-

cal model for a particle immersed in a heat bath [10]; alternative models can be based on

e.g., a Poisson process for the thermal excitation, space-dependent viscosity coefficient, and

possibly nonlinear effects of an interaction potential. It has been used to model e.g., col-

loidal particles in a laser trap, enzymes and molecular motors in single molecule assays, and

so on [11]. In the present work, we follow recent literature [13, 35, 43–45] where, besides

Brownian excitation, the focus on constant viscosity coefficient γ.
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3.2.2 Heat, work, and the first law

The evolution of the thermodynamic ensemble under the influence of the time-varying ther-

mal environment and the time-varying potential U(t, x), leads to exchange of heat and work,

respectively. Heat and work can be defined at the level of a single particle as explained

below.

The energy exchange between an individual particle and the thermal environment represents

heat. This exchange is effected by forces exerted on the particle due to viscosity (−γ dXt
dt

)

and due to the random thermal excitation (
√

2γkBT
dBt
dt

). It is formally expressed as the

product of force and displacement

(−γdXt

dt
+
√

2γkBT
dBt

dt
) ◦ dXt

in Stratonovich form. Using (3.2), formally,

−γdXt

dt
+
√

2γkBT
dBt

dt
= ∇xU(t,Xt),

which leads to the expression d̄Q = ∇xU(t,Xt) ◦ dXt for the heat; see [10, Chapter 4.1] for

a more detailed exposition. Then, bringing in the Itô correction, we arrive at

d̄Q = −1

γ
‖∇xU(t,Xt)‖2dt+ ∆xU(t,Xt)

kBT (t)

γ
dt

+∇xU(t,Xt)

√
2kBT (t)

γ
dBt.

Note that we use d̄, as in the case of not-perfect differentials, to emphasize that
∫
d̄Q depends

on the path and not just on end-point conditions.

19



The work transferred to the particle by a change in the actuating potential is taken as3

d̄W =
∂U

∂t
(t,Xt)dt. (3.4)

Thence, since the internal energy is simply the value of the potential, the first law of ther-

modynamics, dU(t,Xt) = d̄Q+ d̄W , holds.

Accordingly, for a thermodynamic ensemble at a state ρ(t, x), the heat and work differentials

are

d̄Q =

[∫
Rd

(
−1

γ
‖∇xU‖2 + ∆xU

kBT

γ

)
ρ dx

]
dt (3.5a)

d̄W =

[∫
Rd

∂U

∂t
ρ dx

]
dt, (3.5b)

leading to the first law for the ensemble dE(ρ, U) = d̄Q+ d̄W , where the internal energy is

E(ρ, U) =

∫
Rd
Uρ dx, (3.5c)

and depends on ρ, U , whereas Q,W depend on the path.

3.2.3 Summary notation

As usual, Rd denotes the d-dimensional Euclidean space, for d ∈ N, with 〈x, y〉 and ‖x‖ =√
〈x, x〉 denoting the respective inner product and norm, for x, y ∈ Rd. Throughout the

chapter, the stochastic differential equations are stated in Itô form, unless the Stratonovich

integration notation ◦ is used explicitly. The Gaussian distribution with mean m and co-

variance Σ is denoted by N(m,Σ). For convenience we provide the following Table of the

various quantities, including the corresponding units in SI format: Newton (N), seconds (s),

3This particular formula for the work has been the subject of considerable debate [46], [47], [48], [49].
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Table 3.1 – Symbols and corresponding units

Definition Notation Units

time t s

position of particle Xt m

Boltzmann constant kB Nm

damping coefficient γ Ns/m

potential U(t, x) Nm

temperature T oK

Brownian motion Bt s
1
2

density in Rd ρ(t, x) m−d

velocity field in Rd v(t, x) m/s

Wasserstein metric, length W2(·, ·), `ρ[ti,tf ] m

entropy S(ρ) Nm

work (particle/ensemble) W,W Nm

heat (particle/ensemble) Q,Q Nm

energy (particle/ensemble) U, E Nm

free energy F Nm

bound in (3.61) M Nm/s

power P Nm/s

meter (m), absolute temperature in degrees Kelvin ( oK).

3.3 A brief excursion into optimal mass transport

As it turns out, dissipation in Langevin models (3.2) is closely linked to the path that a

thermodynamic ensemble traverses. This path is seen as a trajectory in the space proba-

bility distributions and its length, that quantifies dissipation, is metrized by the so-called

Wasserstein metric. Thus, we now embark on a brief excursion into the basics of optimal

mass transport so as to provide context for needed results in Wasserstein geometry –the

pertinence of the Wasserstein metric to thermodynamics has been recognized in [11,50–54].

We denote by P2(Rd) the space of probability distributions with finite second-order moment.
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We utilize the notation dµ to signify a probability measure while we write dµ(x) = ρ(x)dx

to signify that dµ is absolutely continuous with respect to the Lebesgue measure dx with ρ

the corresponding probability density.

For dµ0, dµ1 ∈ P2(Rd), the 2-Wasserstein distance

W2(µ0, µ1) :=

√
inf

π∈Π(µ0,µ1)

∫
Rd×Rd

‖x− y‖2dπ(x, y), (3.6)

where Π(µ0, µ1) denotes the set of probability measures on the product space Rd × Rd with

µ0, µ1 as marginals, is a bona fide metric on the space of distributions. This metric, in fact,

induces a Riemannian-like structure as we explain below.

The expression
∫
‖x− y‖2dπ(x, y) above is a relaxation of the transportation cost

∫
Rd
‖x−Ψ(x)‖2dµ0(x)

in Monge’s problem [55] to be minimized over maps Ψ that transfer the “mass” distribution

µ0 into µ1, i.e., such that
∫
A
dµ1 =

∫
Ψ−1(A)

dµ0 over measurable sets A. This relation is

denoted by Ψ]µ0 = µ1. In case the two measures admit densities, it can be expressed via

the change of variables formula

det(∇xΨ(x))ρ1(Ψ(x)) = ρ0(x),

for the respective ρi’s (i ∈ {0, 1}). In fact, in this case where both measures admit densities,

the support of the optimal π in (the convex problem) (3.6) coincides with the graph of the

unique minimizing map Ψ : Rd → Rd for Monge’s problem. Further, the optimal Ψ is the

gradient of a convex function ψ on Rd [55, Ch.5], i.e., Ψ = ∇xψ. Interesting, being a gradient

“vector field,” Ψ is curl-free, which in itself characterizes optimality.

We now sketch how P2(Rd) can be equipped with a Riemannian-like structure, while we refer
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to [56] for a rigorous exposition. For brevity and for notational convenience, we are only

concerned with distributions that admit densities and use the simplified notation ρ ∈ P2(Rd).

Consider an “infinitessimal” perturbation ρ+ δ ∈ P2(Rd) and the solution φ to the Poisson

equation

∇x · (ρ∇xφ) = −δ.

The map Ψ = Id+∇xφ, where Id denotes the identity map, optimally transports ρ into ρ+δ

as (Id +∇xφ)]ρ ' ρ + δ. Alternatively, v = ∇xφ can be viewed as a velocity field effecting

transport as ρ−∇x · (ρv) = ρ+ δ.

Thus, the correspondence δ → ∇xφ identifies tangent directions δ on P2(Rd), i.e., rates of

change ∂ρ
∂t

= δ about a given density ρ, with an (optimal) corresponding velocity field ∇xφ.

Hence, it is natural to consider the (twice) average “kinetic energy” to define a metric on

tangent directions on P2(Rd). Specifically, if δi = ∂ρ
∂ti

, for i ∈ {1, 2}, represent two tangent

directions at ρ, we define the inner product

〈 ∂ρ
∂t1

,
∂ρ

∂t2
〉W :=

∫
Rd
〈∇xφ1,∇xφ2〉ρ dx, (3.7)

where the φi’s solve ∇x · (ρ∇xφi) = − ∂ρ
∂ti

. The associated norm is

‖∂ρ
∂t
‖W :=

√
〈∂ρ
∂t
,
∂ρ

∂t
〉W.

Consider ρ[ti,tf ] := {ρ(t, ·) ∈ P2(Rd)|t ∈ [ti, tf ]} as a curve (path) in P2(Rd). Two quantities

of interest are its length,

`ρ[ti,tf ]
:=

∫ tf

ti

∥∥∂ρ
∂t

∥∥
W

dt, (3.8)
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and the kinetic energy integral (action) along the path

Aρ[ti,tf ]
:=

∫ tf

ti

∥∥∂ρ
∂t

∥∥2

W
dt (3.9)

(modulo a factor of 1
2
). It can be seen that

`ρ[ti,tf ]
= min

√
(tf − ti)Aρ[ti,tf ]

,

over time-parametrizations of the path, with the minimum corresponding to constant veloc-

ity. Moreover, the minimal path-length between two end-points ρti and ρtf turns out to be

precisely W2(ρti , ρtf ), and thus, P2(Rd) is a length space, [56], [55, Chapter 8].

We conclude with an important inequality linking the Wasserstein metric to information

functionals. Consider a reference probability distribution dm = e−V dx ∈ P2(Rd), with V (x)

having Hessian ∇2
xV ≥ κI for κ ∈ R, and dµ = ρdm also in P2(Rd). The relative entropy

and Fisher information functionals, respectively, are defined by

H(µ|m) :=

∫
Rd
ρ log(ρ) dm, (3.10a)

I(µ|m) :=

∫
Rd
‖∇x log(ρ)‖2ρ dm. (3.10b)

These are linked to the Wasserstein distance via the following HWI∗ inequality [57,58],

H(µ1|m)−H(µ2|m) ≤W2(µ1, µ2)
√
I(µ1|m)− κ2

2
W2

2(µ1, µ2), ∀µ1, µ2 ∈ P2(Rd).

(3.11)
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3.4 The second law, dissipation, and Wasserstein ge-

ometry

Next, we discuss the second law of thermodynamics in the context of an ensemble of particles

obeying over-damped Langevin dynamics (3.2) for a heat bath with constant temperature

T (t) = T . The classical formulation of the law amounts to the inequality

W −∆F ≥ 0, (3.12)

where W =
∫ tf
ti
d̄W is the work transferred to the ensemble over a time interval (ti, tf ), and

∆F is the change in the free energy4

F(ρ, U) = E(ρ, U)− TS(ρ) (3.13)

between the two end-point states, see [12,59]. Here,

S(ρ) = −kB
∫
Rd

log(ρ) ρ dx (3.14)

denotes the entropy of the state ρ, and U the potential. Inequality (3.12) becomes equality for

quasi-static (reversible) thermodynamic transitions. In general, for irreversible transitions,

the gap in (3.12) quantifies dissipation. Interestingly, alternative formulations that shed

light into irreversible transitions have recently been discovered. A most remarkable identity

was discovered by Jarzynski in the late 90’s [41] to hold for irreversible thermodynamic

4The free energy represents the amount of energy that can be delivered at temperature T with fixed
potential U . However, a rather revealing re-write of the free energy is as the relative entropy (KL-divergence)
between the current state ρ and the Gibbs distribution ρGibbs(x) = e−βU(x)/Z, with β = 1/kBT and

Z =
∫
Rd e

−βU(x)dx the partition function. Specifically, F(ρ, U) = β−1
∫
Rd log( ρ(x)

ρGibbs(x)
)ρ(x)dx− β−1 log(Z).
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transitions between work and free energy, in the form,

E
{
e−βW

}
− e−β∆Feq = 0,

where the expectation is taken over the probability law on paths, W =
∫
d̄W represents

the work along trajectories of individual particles, and ∆Feq = −β−1 log(
Ztf
Zti

) signifies the

difference of the equilibrium free energy −β−1 log(Zt) at the two end-points in time t ∈

{ti, tf}. Here, Zt =
∫
Rd e

−βU(t,x)dx where, as usual, β = 1/kBT . In Jarzynski’s original

derivation [41, 60] of the Jarzynski equality, the notions of work and heat are in alignment

with the ones used in this paper, though [60] considers more general stochastic dynamics

satisfying one type of detailed balance condition [60, Section 1]. Interestingly, the Jarzynski

equality holds even for an alternative notion of work, see e.g., [61].

While the Jarzynski relation establishes equality between the above functional of the work

and free energy differences, it does not allow quantifying the actual expected work performed

on the ensemble. An alternative identity that quantifies explicitly the gap in (3.12) holds

for irreversible thermodynamic transitions. This identity is (cf. Theorem 3.1)

W −∆F = γ

∫ tf

ti

∥∥∂ρ
∂t

∥∥2

W
dt,︸ ︷︷ ︸

dissipation

(3.15)

which is γ times Aρ[ti,tf ]
, the action integral along the time-parametrized path traversed.

W −∆F =
γ

tf − ti
W2(ρti , ρtf )

2 (3.16)

quantifies the least amount of work needed for transition between specified end-point ther-

modynamic states, or the maximal work that can be drawn. We recap the key points below.

Theorem 3.1. Consider thermodynamic transitions between states ρti, ρtf , under constant

temperature T and a time-varying potential U for the overdamped Langevin model (3.2).

26



Then,

W −∆F ≥ γ

tf − ti
`2
ρ[ti,tf ]

. (3.17)

Relation (3.17) holds with equality for a path of the thermodynamic ensemble chosen to be

a constant speed W2-geodesic, effected by a suitable potential, a choice that corresponds to

minimal dissipation.

Proof. We first derive (3.15), cf. [62, 63] for similar computations with time independent

potential. Consider

dF
dt

(ρ, U) =
d

dt
E(ρ, U)− T d

dt
S(ρ)

=

∫
Rd

∂U

∂t
ρdx+

∫
Rd

(U + kBT (1 + log ρ))
∂ρ

∂t
dx.

Using the Fokker-Planck equation (3.3), the second term

∫
Rd

(U+kBT (1+log ρ))
1

γ
∇x ·[(∇xU+kBT∇x log ρ)ρ] dx

=− 1

γ

∫
Rd
‖∇xU + kBT∇x log ρ‖2ρ dx

=− γ
∫
Rd
‖v‖2ρ dx,

where the first equality follows using integration by parts (under standard assumptions on

the decay rate of ρ at infinity), while the second equality is a re-write using5

v := −1

γ
(∇xU + kBT∇x log ρ). (3.18)

5We note that v is known as Nelson’s current velocity [64].
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Thus, dF
dt

(ρ, U)=
∫
Rd

∂U
∂t
ρ dx− γ

∫
Rd ‖v‖

2ρ dx. Integrating over [ti, tf ] yields

∆F =W − γ
∫ tf

ti

∫
Rd
‖v‖2ρ dx dt, (3.19)

where v is the gradient of φ = − 1
γ
(U + kBT log ρ) and satisfies the continuity equation ∇ ·

(ρ∇φ) = ∂ρ
∂t

as claimed. This establishes (3.15).

The inequality (3.17) follows from the fact that the W2-length of the path ρ[ti,tf ] (i.e., as a

curve in P2), is given by (3.8). Specifically, provided
∫
Rd ‖v‖

2ρ dx = α2 remains constant

along the path (i.e., for t ∈ [ti, tf ]),

α =
1

tf − ti
`ρ[ti,tf ]

.

and the claim follows. If on the other hand the kinetic energy varies with time, then the

path ρ(t, ·), time-reparametrized by

t̃(t) :=
`ρ[ti,t]

`ρ[ti,tf ]

(tf − ti) + ti

will be traversed via a velocity field

ṽ(t̃(t)) =
v(t)

‖v(t)‖ρ

`ρ[ti,tf ]

tf − ti
.

Knowing ṽ, a new potential Ũ can be computed so that ṽ(t̃, ·) = ∇xŨ(t̃, ·)+kBT∇x log(ρ(t̃, ·)).

Finally, equality in (3.17) holds when taking ρ[ti,tf ] to be a geodesic [65].

Remark 3.4.1. Early work by Jordan et al. [50], pointing out that the gradient flow of the

free energy in W2 is the Fokker-Planck equation, set the stage for understanding the role of

the Wasserstein geometry in quantifying dissipation. This fact was recognized in [11, 51, 52]

and more recently developed in [53, 54].
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3.5 Cyclic operation of engines

We consider two types of thermodynamic transitions, isothermal and adiabatic. The first

corresponds to a situation where the system remains in contact with a heat bath of constant

temperature T while a time-varying potential steers its thermodynamic state ρ(t, .) from an

initial ρ(ti, ·) to a final ρ(tf , ·). The adiabatic transition amounts to abrupt changes in both,

the temperature of the heat bath as well as the shape of the potential, that are fast enough

not to have any measurable effect on the state ρ(t, .) and, as a consequence, to the entropy of

the ensemble. We evaluate next the energy and work budgets in the corresponding actuation

protocols.

3.5.1 Isothermal transition

We consider transition between states ρti and ρtf for the ensemble modeled by (3.2), over

a time interval [ti, tf ], under the time-varying potential U(t,Xt) and in contact with a heat

bath of temperature T . Using the relationship (3.15) between work, free energy, and the dis-

sipation, and the first law, we have the following identity relating thermodynamic quantities

in isothermal transitions

W = ∆E − T∆S +Wirr (3.20a)

Q = T∆S −Wirr (3.20b)

with the irreversible Wirr that represents dissipation attaining its minimal value

γ

tf − ti
W2(ρti , ρtf )

2 (3.20c)

29



by the choice of actuation ∇xU(t, ·) in (3.18) with v the optimal velocity field minimizing

dissipation in (3.15) (item iii) in Theorem 3.1).

It is important to note that the minimizing v can be obtained by solving a convex reformu-

lation of (3.15) in terms of the density ρ(t, ·) and the momentum field p(t, ·) = v(t, ·)ρ(t, ·),

in the form

min
p(t,·),ρ(t,·)

∫ tf

ti

∫
Rd

‖p‖2

ρ
dxdt (3.21a)

subject to
∂ρ

∂t
+∇x · p = 0 (3.21b)

and ρ(ti, ·), ρ(tf , ·) specified. (3.21c)

Then, v = p/ρ, see [66, Section 4] and [55, p. 241].

3.5.2 Adiabatic transition

We now consider transition between ρti and ρtf for the ensemble modeled by (3.2), over a

time interval [ti, tf ], under abrupt changes in the potential U(t, ·) and the temperature T of

the heat bath.

The transition takes place over an infinitesimally short time interval about time t (with

t−/t+ indicating the left/right limits, respectively). Thus, the temperature T of the heat

bath jumps between values T (t−) and T (t+) while, at the same time, the controlling potential

switches from U(t−, ·) to U(t+, ·).

The energy budget of the transition no longer contains irreversible losses, as the right hand

side of (3.15) vanishes. Moreover, the entropy of the ensemble remains constant. Thus, the
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work input into the system equal to change in internal energy,

W =

∫
Rd

(U(t+, x)− U(t−, x))ρ(t, x)dx = ∆E , (3.22a)

and therefore no heat transfer takes place, and therefore,

Q = 0. (3.22b)

3.5.3 Finite-time Carnot cycle

We are now in position to consider a complete Carnot-like thermodynamic cycle where the

ensemble is steered between two states ρa and ρb during isothermal expansion (from ρa to

ρb) and contraction (from ρb to ρa) phases, separated by adiabatic transitions. Periodic

operation about such a scheduling is sought as a means to extract work from a heat bath.

A schematic in Figure 3.1 depicts the phases of the cyclic operation. These four phases are

described in detail next.

1) Isothermal process in temperature Th (“hot”): The first step is an isothermal

expansion over the time interval (0, t1) in contact with a heat bath of temperature T = Th.

Change in the potential steers the ensemble from a starting state ρa to a terminal state ρb.

As in (3.20),

W(1) = ∆E (1) − Th∆S(1) +W(1)
irr (3.23a)

Q(1) = Th∆S(1) −W(1)
irr (3.23b)

where the superscript enumerates the phase in the cycle, and the minimal work loss W(1)
irr

31



Figure 3.1 – Carnot-like cycle of a stochastic model for a heat engine (with d = 1): the
operation cycles clockwise through two isothermal transitions (1) and (3), and two adiabatic
transitions (2) and (4). During the isothermal transitions having duration t1 and t3, the
ensemble is in contact with a “hot” reservoir of temperature Th, and a “cold” one of tem-
perature Tc, respectively. The adiabatic transitions are considered to be instantaneous, i.e.,
t2 = t4 = 0. The marginal densities are ρa and ρb.

depends only on the end-point states as it equals

W(1)
irr =

γ

t1
W2(ρa, ρb)

2. (3.23c)
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2) Adiabatic process: The second phase of the cycle is an adiabatic transition at time

t = t1, over an infinitesimal interval (of duration“t2 = 0”), bringing the ensemble in contact

with a heat bath of temperature Tc (“cold”). As in (3.22),

W(2) = ∆E (2) (3.24a)

Q(2) = 0 (3.24b)

while the state remains at ρb.

3) Isothermal process in temperature Tc (“cold”): The third step is an Isothermal

contraction over the time interval (t1, t1+t3) while in contact with a heat bath of temperature

Tc. Actuation in the form of the time-varying potential causes the state of the ensemble to

return to ρa back from starting at ρb. Once again, as in (3.20),

W(3) = ∆E (3) − Tc∆S(3) +W(3)
irr (3.25a)

Q(3) = Tc∆S(3) −W(3)
irr (3.25b)

W(3)
irr =

γ

t3
W2(ρa, ρb)

2. (3.25c)

4) Adiabatic process: Finally, an adiabatic transition over an interval of infinitesimal

duration (“t4 = 0”) returns the ensemble to be in contact with a heat reservoir of temperature

Th for a total period of the cycle tperiod = t1 + t3. The state of the ensemble remains at ρa,

to begin the cycle again. As before, in (3.22),

W(4) = ∆E (4) (3.26a)

Q(4) = 0 (3.26b)
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3.5.4 Thermodynamic efficiency & power delivered

For a cyclic process the total change in internal energy

4∑
i=1

∆E (i) = 0.

On the other hand, the entropy doesn’t change during the adiabatic transitions

∆S(i) = 0, for i = 2, 4,

while, since it depends only on the end-point states

∆S(1) = −∆S(3) = S(ρb)− S(ρa) =: ∆S.

As a result, the total work output is

−W = −

(
4∑
i=1

∆E (i) −
4∑
i=1

Ti∆S(i) +
4∑
i=1

W(i)
irr

)
= (Th − Tc)∆S −W(1)

irr −W
(3)
irr . (3.27)

Thus, assuming optimality of the choice of the potential to minimizeWirr in each transition,

we conclude that the total work output possible is

−W = (Th − Tc)∆S − γ(
1

t1
+

1

t3
)W2(ρa, ρb)

2. (3.28)

Since Th > Tc, naturally, a necessary condition for positive work output is that ∆S :=

S(ρb) − S(ρa) > 0 which dictates that phase 1 is an isothermal expansion and phase 3, an

isothermal contraction.6

The thermodynamic efficiency of an engine is the ratio of work extracted over the heat

6The opposite would be true if we sought to operate the cycle for refrigeration purposes.
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dissipated,

η =
−W
Qh

, (3.29)

where the heat input during isothermal expansion is

Qh = ∆Q(1) = Th∆S −Wirr.

Once again assuming optimality (Wirr = γ
t1

W2(ρa, ρb)
2), the bound on the efficiency is seen

to be

η =
(Th − Tc)∆S − γ( 1

t1
+ 1

t3
)W2(ρa, ρb)

2

Th∆S − γ 1
t1

W2(ρa, ρb)2
. (3.30)

When the period of the cyclic process tends to infinity (and hence, t1, t3 →∞), tends to the

Carnot limit for quasistatic (infinitely slow) transitions ηC = 1− Tc
Th
.

Periodic operation, over a finite period t1 + t3 (since t2 = t4 = 0), delivers

P = − W
(t1 + t3)

=
(Th − Tc)∆S − γ( 1

t1
+ 1

t3
)W2(ρa, ρb)

2

t1 + t3

units of power. Note that the power output is zero when Carnot efficiency is achieved,

because the total duration t1 + t3 → ∞. In the sequel, we focus on assessing bounds on

available power.

3.6 Fundamental limits to power

Our main interest is in assessing the maximal amount of power that can be drawn by a

thermodynamic engine operating between heat baths with temperatures Th and Tc < Th,
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i.e.,“hot” and “cold”, respectively. In the present work we draw conclusions based on the

basic model in (3.2) via analysis of the thermodynamic cycle that was presented in Section

3.5.

Consider the expression in (5.2) for the power that can be drawn via a cyclic operation as

discussed. Preparation of the ensemble, and actuation during the cycle, allow a number

of choices. Specifically, the power depends on the period t1 + t3, the times of the two

isothermal phases t1, t3 individually, as well as the end-point states (distributions) ρa, ρb.

The latter choice impacts both, the Wasserstein distance W2(ρa, ρb) as well as the change in

entropy ∆S. We will explore systematically the various options.

3.6.1 Optimizing the time scheduling

Optimizing the maximal power delivered during cyclic operation

P =
1

t1 + t3
(Th − Tc)∆S −

γ

t1t3
W2(ρa, ρb)

2,

with respect to choices for t1, t3, with W2(ρa, ρb), Th, Tc and ∆S kept fixed, gives that

t1 = t3 =
4γW2(ρa, ρb)

2

(Th − Tc)∆S
, (3.31)

and therefore that the period for the cycle is

tcycle := t1 + t3 =
8γW2(ρa, ρb)

2

(Th − Tc)∆S
. (3.32)

If instead we specify the period of the cycle tcycle, and optimize with respect to the breakdown
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between t1 and t3, we once again obtain that the durations of the two phases are equal

t1 = t3 =
tcycle

2
. (3.33)

Remark 3.6.1 (Efficiency at maximum power). The thermodynamic efficiency (3.29) of the

engine, when it is operating at optimal transition times (3.31) that maximize the power, is

equal to

ηSS =
2(Th − Tc)
3Th + Tc

=
ηC

2− ηC
2

(3.34)

This result appeared in [31], and [35] for the case of Gaussian marginals ρa, ρb and potential

U(t, x) that is quadratic in x. Our derivation establishes (3.34) in a general setting.

Using the expression (3.32), the total power delivered

P =
(Th − Tc)2

16γ

(
∆S

W2(ρa, ρb)

)2

. (3.35)

But as we will see in Section 3.6.2, optimizing the power for ρa, ρb leads to the non-physical

conclusion of a vanishingly small tcycle .

3.6.2 The caveat of optimal tcycle: Gaussian states ρa, ρb

The case where the two marginal distributions/states are Gaussian allows for closed-form

expressions for ∆S and their Wasserstein distance. Indeed, if ρa, ρb are Gaussian distributions

with zero mean and variances Σa,Σb, respectively, then

W2(ρa, ρb)
2 =tr

(
Σa+Σb−2(Σ1/2

a ΣbΣ
1/2
a )1/2

)
(3.36a)
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and

∆S = S(ρb)− S(ρa) =
1

2
kB log det(ΣbΣ

−1
a ). (3.36b)

Evidently, these allow deriving explicit expressions for the available power in terms of the

respective variances.

Specializing to the case of scalar processes with σi (i ∈ {a, b}) the corresponding standard

deviation, i.e., Σi = σ2
i , and period tcycle for the thermodynamic cycle as in (3.32), we obtain

that the maximal power available, as a function of σa and σb, is given by

P (σa, σb) =
k2
B(Th − Tc)2

16γ

(
log σb

σa

σb − σa

)2

. (3.37)

The corresponding heat uptaken from the hot reservoir and the work extracted during one

cycle are

Q(1) = Qh =
1

4
kB(3Th + Tc) log

σb
σa

and

−W =
1

2
kB(Th − Tc) log

σb
σa
,

respectively.

The maximum of the power P (σa, σb) over either σa, or σb, takes place when σa = σb. But

at this limiting condition, although

max
σb

P (σa, σb) =
k2
B(Th − Tc)2

16γσ2
a

(3.38a)
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and the rate with which heat is drawn is

lim
σb→σa

Qh
tcycle

=
k2
B(3Th + Tc)(Th − Tc)

32γσ2
a

,

the limiting values of−∆W ,Qh over a cycle vanish, as does the period tcycle of the cycle. Thus

we are led to a non-physical situation of a vanishingly small period for the thermodynamic

cycle.

A similar issue in the context of power in quantum engines is brought up in [38]. In the

setting herein, in addition, it is seen that taking

σa → 0

and operating with a vanishingly small period for the cycle, leads to infinite power. Once

again, bringing up a non-practical situation that is questionable on physical grounds. In the

sequel we focus on tcycle being finite.

3.6.3 Optimizing the thermodynamic state ρb

Henceforth we fix the period tcycle as well as the duration of the isothermal phases according

to (3.33). The power delivered, as a function of the ρi’s (i ∈ {a, b}), is

(Th − Tc)
tcycle

(S(ρb)− S(ρa))−
4γ

t2cycle

W2(ρa, ρb)
2. (3.39)

We now consider the problem to maximize power over choice of ρb, with ρa specified. This

problem reduces to finding a suitable minimizer of

min
ρb
{W2(ρa, ρb)

2 − hS(ρb)} (3.40)

39



for h =
tcycle(Th−Tc)

4γ
. Throughout we assume that states have finite second-order moments.

As noted earlier, the space of probability distributions (measures, in general) with finite

second-order moments P2(Rd) is metrized by the Wasserstein metric W2(·, ·) and, as can

easily be verified, the expression

W2(ρa, ρb)
2 − hS(ρb) (3.41)

is strictly convex, which leads to the following statement.

Proposition 3.6.1. Assuming that Th, Tc as well as tcycle and an initial state ρa ∈ P2(Rd)

are specified, there exists a unique minimizer ρb of (3.40).

Proof. Equation (3.40) is similar to one step in the so-called JKO-scheme (also, proximal

projection) that displays the heat equation as the gradient flow of the Shannon entropy [50].

While W2(ρa, ρb)
2 − hS(ρb) is strictly convex, it is not automatically bounded from below.

Thus, a rather extensive and technical argument is needed to show existence and uniqueness

of a minimizer. This is detailed in [50, Proposition 4.1].

We conclude this section with two statements. The first establishes implicit conditions for

optimality of ρb, in maximizing the expression in (3.39) (equivalently, minimizing (3.41)).

For ease of referencing we view the expression in (3.39) as a function of ρb, namely,

f(ρb) :=
(Th−Tc)
tcycle

(S(ρb)−S(ρa))−
4γ

t2cycle

W2(ρa, ρb)
2. (3.42)

The following lemma provides stationarity conditions for f(ρb) that, albeit, are implicit

in that they involve the optimal transport map from ρa and ρb that minimizes quadratic

transportation cost [55, Ch. 5]. We first highlight stationarity conditions that characterize

the minimizer of f(·) in (3.42).
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Lemma 3.6.1. Consider two probability densities ρa, ρ
∗
b in P2(Rd), where ρ∗b is the unique

maximizer of f(ρb), and let ∇xψ, for a convex function ψ on Rd, be such that ∇xψ]ρa = ρ∗b .

The following (stationarity) condition holds

kB(Th − Tc)∇x log ρ∗b(y)− 8γ

tcycle

(
(∇xψ)−1 − Id

)
(y) = 0, (3.43)

where Id denotes the identity map.

Proof. Consider an arbitrary smooth vector field ξ on Rd with bounded support, and Ψs :

Rd → Rd defined by

∂

∂s
Ψs(x) = ξ(Ψs(x)), Ψ0 = Id,

for x ∈ Rd and s ≥ 0. If ρs := Ψs]ρ
∗
b , we claim that

lim
s→0

1

s
(f(ρs)− f(ρ∗b)) ≥

∫
Rd
〈Df (x), ξ(x)〉ρ∗b(x)dx, (3.44)

where, for ∆T := Th − Tc,

Df (x) = −kB∆T

tcycle

∇ log(ρ∗b(x)) +
8γ

t2cycle

(∇ψ−1(x)− x).

Assuming the claim is true (to be shown shortly), then, because ρ∗b is the maximizer, f(ρs) ≤

f(ρ∗b). Therefore

∫
〈Df (x), ξ(x)〉ρ∗b(x)dx ≤ lim

s→0

f(ρs)−f(ρ∗b)

s
≤ 0.

Hence, by symmetry ξ → −ξ,

∫
〈Df (x), ξ(x)〉ρ∗b(x)dx = 0. (3.45)
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This is true for all vector fields ξ ∈ C∞0 (Rd,Rd). As a result, Df (x) = 0, concluding (3.43)

and the lemma.

It remains to prove (3.44). By definition,

f(ρs)− f(ρ∗b) =
∆T

tcycle

(S(ρs)− S(ρ∗b))−
4γ

t2cycle

(W2(ρa, ρs)
2 −W2(ρa, ρ

∗
b)

2).

The entropy term

S(ρs) =− kB
∫

log(ρs(x))ρs(x)dx = −kB
∫

log(ρs(Ψs(x)))ρ∗b(x)dx

=− kB
∫

log(
ρ∗b((x))

det(∇Ψs(x))
)ρ∗b(x)dx = S(ρ∗b) + kB

∫
log(det(∇Ψs(x)))ρ∗b(x)dx.

Therefore

lim
s→0

1

s
(S(ρs)− S(ρ∗b)) = lim

s→0

kB
s

∫
log(det(∇Ψs(x)))ρ∗b(x)dx = kB

∫
∇ · ξ(x)ρ∗b(x)dx

=− kB
∫
〈ξ(x),∇ log(ρ∗b(x))〉ρ∗b(x)dx.

The Wasserstein term

W2(ρa, ρs)
2 −W2(ρa, ρ

∗
b)

2 ≤
∫
‖∇ψ−1(x)−Ψs(x)‖2ρ∗b(x)dx−

∫
‖∇ψ−1(x)−x‖2ρ∗b(x)dx

=

∫
〈x−Ψs(x), 2∇ψ−1(x)− x−Ψs(x)〉ρ∗b(x)dx.

Therefore

lim
s→0

1

s

[
W2(ρa, ρs)

2 −W2(ρa, ρ
∗
b)

2
]
≤ −2

∫
〈ξ(x),∇ψ−1(x)− x〉ρ∗b(x)dx.

Using the two expressions, the one for derivative of the entropy and the other for the Wasser-

stein distance, the claim follows.
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The lemma, which is of independent interest, is used in the proof of the following proposition

concluding the section. The proposition states that, for scalar distributions for simplicity, if

ρa is Gaussian, then so is ρb. As a consequence the optimal actuation protocol is based on

a time-varying potential U(t, x) that is quadratic in x.

Proposition 3.6.2. If ρa is a one-dimensional Gaussian distribution with zero mean and

variance σ2
a, then ρ∗b is also Gaussian with zero mean and variance σ2

b , where

σb =
1 +
√

1 + c

2
σa, (3.46)

and c =
kB(Th−Tc)tcycle

2γσ2
a

.

Proof. According to Proposition 3.6.1, the maximizer is unique. Therefore, it is sufficient to

show that the Gaussian distribution N(0, σ2
b ), where σ2

b is given by (3.46), satisfies the op-

timality condition (3.43). When ρa, ρ
∗
b are Gaussian, ∇ψ−1(y) = σa

σb
y. Hence, the optimality

condition reads

kBtcycle∆T

8γ
∇ log ρ∗b(y)− y +∇ψ−1(y) =

kBtcycle∆T

8γ

y

σ2
b

− (1− σa
σb

)y

=(
kBtcycle∆T

8γσ2
b

− 1 +
σa
σb

)y = 0, ∀ y ∈ R,

which is satisfied when σb is according to (3.46).

Remark 3.6.2. In earlier works, it is commonly assumed that the marginal distributions

ρa, ρb are Gaussian and the potential function U(t, x) is quadratic in x. Proposition 3.6.2

justifies this assumption to some extent: if ρa is specified to be Gaussian, the optimal ρb and

the optimal potential function that achieve the maximum power, are Gaussian and quadratic,
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respectively. However, as we will see in Section 3.6.4, if instead ρb is specified as Gaussian

distribution, the optimal ρa is not Gaussian. Gaussian distributions turn out instead to be lo-

cal minimizers of the power under certain conditions (see discussion following Remark 3.6.3).

3.6.4 Optimizing the thermodynamic state ρa

We now consider the dependence of the maximal power on ρa, i.e., on the thermodynamic

state at which the ensemble begins its expansive phase. As we will see, the situation is

not symmetric to the conclusions drawn in Section 3.6.3 with regard to ρb and, without

further assumptions, an optimal ρa does not exist. Interestingly, on closer inspection, the

source of this conundrum is the unreasonably high demands on the magnitude of ∇xU for

the controlling potential U(t, x). The insights gained lead to the framework for maximal

power in the follow up section.

For simplicity, and without any loss of generality for the purposes of this section, we assume

that ρb is specified to be a zero-mean Gaussian distribution with standard deviation σb. In

view of (3.39), a choice of ρa that is close to a Dirac delta distribution allows arbitrarily

large negative values for the entropy, i.e., S(ρa) ' −∞, and hence infinite power.

Thus, it is natural to impose a lower bound on the entropy of ρa, or simply fix −∞ < sa =

S(ρa) < S(ρb). But in this case, and once more in view of (3.39), maximal power would

be drawn by minimizing W2(ρa, ρb) over probability densities ρa with entropy sa. We claim

that

inf
ρa
{W2(ρa, ρb) | S(ρa) = sa > −∞} = 0. (3.47)
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To see this note that

inf
ρa

W2(ρa, ρb) = 0

by taking ρa to approximate an increasingly fine train of suitably scaled Dirac deltas, i.e.,

ρa(x) ≈
∑
i∈Z

ρiδxi(x)

where ρi =
∫ xi+1

xi
ρb(x)dx and xi (i ∈ Z) equispaced. The latter is a singular distribution

which, however, can be approximated arbitrarily closely in W2 by a probability density with

any given entropy. Such a density can be produced by approximating Dirac deltas by a

piecewise constant function with finite support.

The optimization problem (3.47) is inherently related to the continuity of the entropy func-

tional with respect to the Wasserstein distance. For a rigorous treatment of the problem,

see [67], where it is shown that unless certain regularity assumptions are in place for ρa and

ρb, the infimum in (3.47) is zero.

Remark 3.6.3 (Gaussian is not optimal for ρa). The preceeding arguments show that a

Gaussian distribution is not the optimal choice for ρa with respect to maximizing power,

even when ρb is Gaussian, unless additional constraints are introduced.

Since the Gaussian distribution maximizes entropy when mean and variance are specified,

it is natural to explore constraints on the mean and variance of ρa for the purposes of

maximizing power. Without loss of generality, the mean can be assumed to be zero and the

variance specified to be σ2
a < σ2

b . First-order and second order optimality analysis for the

power output (3.39), at ρa = N(0, σ2
a) is carried out. It turns out that, although N(0, σ2

a)

satisfies the first-order optimality condition, it does not satisfy the second-order optimality

condition. In fact, N(0, σ2
a) is a local minimizer when σa < σb < kB(Th − Tc)tcycle/(8γσa).
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The analysis is given as follows, and aims to highlight that the conjecture that a Gaussian ρa

is optimal fails. This, in fact, is not surprising. Maximizing the power over ρa is equivalent

to minimizing the entropy of ρa. Minimizing entropy under fixed variance constraint does

not lead to Gaussian distributions as two Dirac delta distribution with the desired mean and

variance achieve negative infinity entropy.

Proof. Let A0,σ2 denote the set of absolutely continuous distributions with mean 0 and

variance σ2 :

A0,σ2 :=

{
ρ ∈ P2,ac(Rd);

∫
xρ(x)dx = 0,

∫
x2ρ(x)dx=σ2

}

and consider the functional

g(ρa) = −Th − Tc
tcycle

S(ρa)−
4γ

t2cycle

W2(ρa, ρb)
2 (3.48)

that represents the portion of power given in (3.39) that depends on ρa.

(i) We first show that maxρa∈A0,σ2
a
g(ρa) is unbounded, and hence that the maximizer does

not exist. Consider a sequence of density functions {µn}n∈N according to

µn =
1

2
µ(1)
n +

1

2
µ(2)
n ,

where

µ(1)
n = N(

√
σ2
a −

1

n2
,

1

n2
)

µ(2)
n = N(−

√
σ2
a −

1

n2
,

1

n2
).

(3.49)

It is easy to verify that µn ∈ A0,σ2
a
. The goal is to show that limn→∞ g(µn) = ∞. The
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entropy S(µn) is bounded from above as follows,

S(µn) ≤ 1

2
(kB log(2)+S(µ(1)

n ))+
1

2
(kB log(2)+S(µ(2)

n )) = kB log 2
√

2πe− kB log n.

The first inequality follows from a respective bound on the entropy of Gaussian mix-

tures [68, Theorem 3].

The Wasserstein distance is bounded by

W2(µn, ρb)
2 ≤ 1

2
W2(µ(1)

n , ρb)
2 +

1

2
W2(µ(2)

n , ρb)
2 = σ2

a + σ2
b − 2

σb
n
, (3.50)

where the convexity of the functional W2(·, ρb)2 is used [69, Eq.(2.12)]. Combining the

two bounds for the entropy and Wasserstein distance yields

g(µn) = − ∆T

tcycle

S(µn)− 4

t2cycle

W2(µn, ρb)
2

≥ kB∆T

tcycle

(
−log 2

√
2πe+log n

)
− 4

t2cycle

(
σ2
a+σ2

b−2
σb
n

)
.

Taking the limit n→∞ proves limn→∞ g(µn) is unbounded, and hence that there is no

maximizer. Next, in (ii) and (iii) we show that the Gaussian distribution is instead a

local minimizer, under certain conditions, and hence that it is the opposite of distribu-

tions that we seek.

(ii) We now perform first-order optimality analysis for

max
ρa∈A0,σ2

a

g(ρa)

at ρa = N(0, σ2
a). Consider a smooth vector field with bounded support ξ ∈ C∞0 (R,R)
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such that

∫
Rd
ξ(x)ρa(x)dx = 0. (3.51)

Then, as before, define the flow Ψs : R→ R generated by ξ according to

∂

∂s
Ψs(x) = ξ(Ψs(x)), Ψ0 = Id,

for x ∈ R and s ∈ R. Now define ρ̃s := Ψs]ρa. Because of (3.51), the mean of the

distribution ρ̃s remains constant at 0. However, the variance changes from σ2
a, and ρ̃s is

not inside A0,σ2
a
.

In order to keep the variance constant at σ2
a, we project ρ̃s into A0,σ2

a
by setting ρs =

Gs]ρ̃s, where Gs(x) := r(s)x and

r(s) =
σa√∫

Rd |y|2ρ̃s(y)dy
=

σa√∫
Rd |Ψs(x)|2ρa(x)dx

.

By definition of Gs, the variance of ρs is equal to σ2
a, hence ρs ∈ A0,σ2

a
.

Following the same procedure as in the proof of Lemma 3.6.1, the first-order optimality

condition is

∫
〈Dg(x), v(x)〉ρa(x)dx = 0, (3.52)

where

v(x) =
d

ds
Gs(Ψs(x))|s=0 = ξ(x)− x

σ2
a

∫
ξ(z)zρa(z)dz, (3.53)
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and

Dg(x) =
kB∆T

tcycle

∇ log(ρ∗a(x)) +
8γ

t2cycle

(∇ψ(x)− x)

where ∇ψ is the optimal transport map from ρa to ρb. For the setting where ρa and ρb

are N(0, σ2
a) and N(0, σ2

b ), respectively, ∇ψ(x) = σb
σa
x and

Dg(x) = −kB∆T

tcycle

x+
8γ

t2cycle

(
σb
σa
− 1)x. (3.54)

Letting α := −kB∆T
tcycle

+ 8γ
t2cycle

( σb
σa
−1) and inserting (3.54) into (3.52) yields α

∫
xv(x)ρa(x)dx =

0, which is satisfied because of (3.53). Hence, ρa being N(0, σ2
a) satisfies first-order op-

timality condition.

(iii) We follow up by carrying out second-order analysis. The objective is to show that

the limit

lim
s→0

1

s2
(g(ρs) + g(ρ−s)− 2g(ρa))

=− ∆T

tcycle

lim
s→0

S(ρs)+S(ρ−s)−2S(ρa)

s2
− 4γ

t2cycle

lim
s→0

W2(ρs, ρb)
2+W2(ρ−s, ρb)

2−2W2(ρa, ρb)
2

s2

can be strictly positive. Assume ξ(x) = ∇η(x) for some η, and define

ζ(x) = η(x)− x2

2σ2
a

∫
R
〈z,∇η(z)〉ρa(z)dz,

For the second order derivative of the entropy, we use the existing results from [69, Eq.

(2.30), Eq.(3.37)], where it is shown that

d2

ds2
S(ρs)

∣∣∣∣
s=0

= −kB
∫ (
‖∇2ζ‖2

F +
1

σ2
a

‖∇ζ‖2

)
ρadx (3.55)
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Next, we consider the second order derivative of the Wasserstein distance. Since∇ψ]ρa =

ρb and (Gs ◦Ψs)]ρa = ρs, we have

W2(ρb, ρs)
2 ≤

∫
R
‖∇ψ(x)−Gs(Ψs(x))‖2ρa(x)dx.

As a result

lim
s→0

W2(ρs, ρb)
2 + W2(ρ−s, ρb)

2 − 2W2(ρa, ρb)
2

s2

≤ lim
s→0

1

s2

[ ∫
‖∇ψ(x)−Gs(Ψs(x))‖2ρa(x)dx+

∫
‖∇ψ(x)−G−s(Ψ−s(x))‖2ρa(x)dx

− 2

∫
‖∇ψ(x)− x‖2ρa(x)dx

]
= lim

s→0

1

s2

[ ∫ (
‖Gs(Ψs(x))‖2 + ‖G−s(Ψ−s(x))‖2

)
ρa(x)dx

− 2

∫ (
‖x‖2 + 〈Ωs(x),∇ψ(x)〉

)
ρa(x)dx

]
,

where Ωs(x) = Gs(Ψs(x))+G−s(Ψ−s(x))−2x. The first three terms cancel out, because

the variance is constant. Therefore, the limit simplifies to

lim
s→0

W2(ρs, ρb)
2 + W2(ρ−s, ρb)

2 − 2W2(ρa, ρb)
2

s2

≤− 2

∫
Rd

lim
s→0
〈Ωs(x)

s2
,∇ψ(x)〉ρa(x)dx

=− 2

∫
Rd
〈∂

2Gs(Ψs(x))

∂s2

∣∣∣∣
s=0

,∇ψ(x)〉ρa(x)dx

=− 2
σb
σa

∫
Rd
〈∂

2Gs(Ψs(x))

∂s2
(x)

∣∣∣∣
s=0

, x〉ρa(x)dx,

(3.56)

where ∇ψ(x) = σb
σa
x is used in the last step. Next we compute ∂2Gs(Ψs(x))

∂s2
(x)|s=0. Differ-

entiating once gives

∂Gs(Ψs(x))

∂s
=

∂

∂s
(r(s)Ψs(x)) = r(s)∇η (Ψs(x)) + ṙ(s)Ψs(x).
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Differentiating twice and evaluating at s = 0 gives

∂2Gs(Ψs(x))

∂s2

∣∣∣∣
s=0

= 2ṙ(0)∇η(x) + r(0)∇2η(x)∇η(x) + r̈(0)x.

Inserting this expression into (3.56) gives

lim
s→0

W2(ρs, ρb)
2 + W2(ρ−s, ρb)

2 − 2W2(ρa, ρb)
2

s2

≤− 2
σb
σa

[
2ṙ(0)

∫
〈x,∇η(x)〉ρa(x)dx+

∫
〈x,∇2η(x)∇η(x)〉ρa(x)dx+ σ2

ar̈(0)

]
.

(3.57)

Inserting the derivatives of r(s),

ṙ(0) = − 1

σ2
a

∫
〈∇η(x), x〉ρa(x)dx,

r̈(0) =
3

σ4
a

(∫
〈∇η(x), x〉ρa(x)dx

)2

− 1

σ2
a

∫
(‖∇η(x)‖2+〈x,∇2η(x)∇η(x)〉)ρa(x)dx,

gives

lim
s→0

W2(ρs, ρb)
2 + W2(ρ−s, ρb)

2 − 2W2(ρa, ρb)
2

s2

≤−2σb
σa

[
1

σ2
a

(∫
〈x,∇η(x)〉ρadx

)2

−
∫
‖∇η‖2ρadx

]
= 2

σb
σa

∫
‖∇ζ(x)‖2ρa(x)dx.

(3.58)

Using (3.55) and (3.58), we conclude that

lim
s→0

1

s2
(g(ρs) + g(ρ−s)− 2g(ρa)) ≥ (

kB∆T

tcycleσ2
a

− 8γσb
t2cycleσa

)

∫
‖∇ζ‖2ρadx.

Hence, when σb ∈ (σa,
kB∆Ttcycle

8γσa
], the second-order variation is positive and ρa = N(0, σ2

a)

is a local minimizer.
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3.6.5 Maximal power with arbitrary potential

In this section, we show that the power output of a thermodynamic engine, under any

choice of potential U(t, x) cannot exceed a bound that involves the Fisher information of the

marginal state ρa.

Proposition 3.6.3. Under the standing assumptions on the Carnot-like cycle, the power

output (3.39), is bounded by

P ≤ k2
B(Th − Tc)2

16γ
I(ρadx|dx). (3.59)

Proof. First, we will show that It is a consequence of the HWI∗ inequality (3.11);

The proof follows by expressing the HWI∗ inequality (3.11) for a Gaussian reference measure

dmg = (2πσ2)−
d
2 e−

‖x‖2

2σ2 dx with constant κ = 1
σ2 and taking the limit as σ →∞. The relative

entropy with respect to Gaussian measure is

H(µ|mg) =

∫
log(

dµ

dx
)dµ−

∫
log(

dmg

dx
)dµ = −k−1

B S(
dµ

dx
) +

σ2
µa

2σ2
+
d

2
log(2πσ2).

where σ2
µ :=

∫
‖x‖2dµ. Therefore, the left hand side of (3.11)

H(µa|mg)−H(µb|mg) = k−1
B (S(ρb)− S(ρa)) +

σ2
µa − σ

2
µb

2σ2
,

with ρa = dµa/dx, ρb = dµb/dx, and σ2
µa , σ

2
µb

are the corresponding variances. On the right

hand side, the Fisher information term becomes

I(µa|mg) =

∫
‖∇ log(

dµa
dmg

)‖2dµa =

∫
‖∇ log(

dµa
dx

)−∇ log(
dmg

dx
)‖2dµa

=

∫
‖∇ log(

dµa
dx

)‖2dµa − 2

∫
〈∇ log(

dµa
dx

),
−x
σ2
〉dµa +

∫
‖−x
σ2
‖2dµa

= I(µa|dx)− 2d

σ2
+
σ2
µa

σ4
.
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Thus, taking the limit σ →∞, (3.60) follows. Second

S(ρb)− S(ρa) ≤ kBW2(ρa, ρb)
√
I(ρadx|dx). (3.60)

Using the formula for power (3.39), we have

P ≤ (Th − Tc)∆S
tcycle

− 4γ

t2cycle

∆S2

k2
BI(ρadx|dx)

=− 4γ

t2cycle

(
∆S− tcyclek

2
B(Th−Tc)
8γ

I(ρadx|dx)
)2

k2
BI(ρadx|dx)

+
k2
B(Th − Tc)2

16γ
I(ρadx|dx)

≤ k2
B(Th − Tc)2

16γ
I(ρadx|dx),

concluding the bound in (3.59).

We point out that the bound in (3.59) becomes tight when tcycle takes the optimal value (3.32)

and ρb → ρa. Specifically, if ρa = N(0, σ2
a) and ρb = N(0, σ2

b ) are Gaussian distributions and

tcycle takes the optimal value (3.32), then as σb → σa the power output is given by (3.38a),

which coincides with (3.59), since I(ρadx|dx) = 1
σ2
a
.

3.6.6 Maximal power under constrained potential

While a lower bound on S(ρa) readily implies an upper bound on the available power,

achieving such a bound in general requires a cyclic operation involving an irregular and

complicated potential function U(t, x) to bring back the ensemble to ρa at end of each

cycle. It is unreasonable to expect technological solutions to such demands, and therefore,

a constraint on the complexity of the potential function seems meaningful. To this end, we
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propose the constraint

1

γ

∫
Rd
‖∇xU(t, x)‖2ρ(t, x) dx ≤M (3.61)

for all t ∈ (0, tcycle). Thus, we analyze the maximum power (3.39) that can be extracted

from a thermodynamic engine, under the constraint (3.61).

Theorem 3.6.1. Consider a thermodynamic ensemble, undergoing a Carnot cycle as de-

scribed in Section 3.5, governed with the over-damped Langevin equation (3.2). Then, the

maximum power P that can be extracted from the cycle, over all marginal probability distri-

butions ρa and ρb, the cycle period tcycle, and all potential functions U(t, x) that respect the

bound (3.61), satisfies

M

8
(
Th
Tc
− 1)

Th
Tc
− 1

Th
Tc

+ 1
≤ Pmax ≤

M

8
(
Th
Tc
− 1) (3.62)

Proof. The proof for the upper-bound follows from bounding the entropy difference S(ρb)−

S(ρa) under the constraint (3.61). During the isothermal transition in contact with the cold

bath with temperature Tc,

S(ρb)− S(ρa) =−
∫ tcycle

tcycle
2

d

dt
S(ρ(t, ·)) dt

=
−kB
γ

∫ tcycle

tcycle
2

(〈∇x log ρ,∇xU〉ρ + kBTc‖∇x log ρ‖2
ρ)dt,

where the notation 〈∇xf,∇xg〉ρ :=
∫
Rd〈∇xf,∇xg〉ρdx and ‖∇xf‖ρ =

√
〈∇xf,∇xf〉ρ is used.

By the Cauchy-Schwartz inequality and constraint (3.61),

−〈∇x log ρ,∇xU〉ρ ≤ ‖∇xU‖ρ‖∇x log ρ‖ρ ≤
√
γM‖∇x log ρ‖ρ.
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Hence,

S(ρb)− S(ρa) ≤
kB
γ

∫ tcycle

tcycle
2

(√
γM‖∇x log ρ‖ρ − kBTc‖∇x log ρ‖2

ρ

)
dt

≤kB
γ

∫ tcycle

tcycle
2

γM

4kBTc
dt =

M

8Tc
tcycle.

This concludes the bound ∆S ≤ M
Tc

tcycle

8
on the entropy difference, which yields to upper-

bound on the power output:

P ≤ (Th − Tc)
tcycle

∆S − 1

tcycle

Wirr ≤
M(Th − Tc)

8Tc
(3.63)

where Wirr ≥ 0 is used.

Next, we prove the lower-bound by describing a setting so that the power is equal to the lower

bound. Assume the marginal distributions ρa and ρb are Gaussian N(0, σ2
a) and N(0, σ2

b )

respectively, and the potential function U(t, x) = 1
2
atx

2 is a quadratic function. In this

setting, the exact power output is equal to

P =
1

tcycle

kB(Th − Tc) log(
σb
σa

)− 1

γtcycle

∫ tcycle

0

(at −
kBT

σ2
t

)2σ2
t dt

with update law for the variance given by the Lyapunov equation:

dσ2
t

dt
= −2(

at
γ
− kBT

γσ2
t

)σ2
t

with the constraint (3.61) given by 1
γ
a2
tσ

2
t ≤ M . Then, in the limit as tcycle → 0, and

σb → σa = σ, the power output is equal to

P = kB(Th − Tc)
λ

2
− γλ2σ2 (3.64)
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with the constraint

|γλ+
kBTc
σ2
| ≤
√
γM

σ
, (3.65)

where we introduced a new variable λ = a
γ
− kBTc

γσ2 . Next, we will show that the maximum of

the expression (3.64) over all values of λ and σ that satisfy the constraint (3.65), is equal to

the lower-bound.

The constraint (3.65) is expressed as:

0 ≤ λ ≤
√
γM

γσ
− kBTc

γσ2
, for σ ≥ kBTc√

γM
.

The inequality λ ≥ 0 ensures that the power is non-negative, whereas σ ≥ kBTc√
γM

ensures that

the upper bound is positive. We utilize dimensionless variables

x :=
λ

λ0

, y :=
σ0

σ

for σ0 := kBTc/
√
γM , λ0 := M/kBTc, and re-write (3.64) and the constraints,

P = Mf(x, y), 0 ≤ x ≤ g(y), 0 < y ≤ 1

where f(x, y) = ∆T
2Tc
x − x2

y2 , g(y) = y − y2. As long as y ≤ y0, where y0 = 1
1+ ∆T

4Tc

, the

unconstrained maximizer

x∗(y) = argmaxx f(x, y) =
∆T

4Tc
y2

satisfies the constraint x∗(y) ≤ g(y). When y0 < y ≤ 1, the maximizer is at x = g(y). Hence,

max
x≤y−y2

f(x, y) =


(∆T )2

16T 2
c
y2, 0 < y ≤ y0

∆T
2Tc

(y − y2)− (1− y)2, y0 ≤ y ≤ 1

.
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Maximizing the expressions in the two cases over y gives

max

{(
∆T

3Tc + Th

)2

,
(∆T )2

8Tc(Tc + Th)

}
=

(∆T )2

8Tc(Tc + Th)
.

This is achieved for

σ =
kBTc√
γM

2(Th + Tc)

(Th + 3Tc)
, λ =

M

kBTc

(Th + 3Tc)(Th − Tc)
4(Th + Tc)2

. (3.66)

The lower-bound also holds in vector setting by extending this argument and considering a

d-dimensional Gaussian distributions with independent components.

This final result is universal as it does not depend on the choice of ρa and ρb, unlike (3.59).

Moreover, the bounds in this final result are especially appealing in that it the depend on

the ratio Th/Tc of the absolute temperatures of the two heat baths.

Remark 3.6.4. It is noted that the upper bound in (3.62) on achievable power under the

constraint (3.61) does not depend on tcycle, whereas our construction for achieving the lower

bound ensures that the bound is approached as tcycle → 0.

Remark 3.6.5. In the proof of Theorem 3.6.1, an operating point has been constructed to

ensure that power equal the lower bound in (3.62) can be achieved. The parameters are given

in equation (3.66) in the Appendix. For this operating point, which corresponds to maximal

power constrained by (3.61), the efficiency turns out to be

η =
Th − Tc
Th + Tc

.

It is interesting to note that

ηSS ≤ ηCA ≤ η ≤ ηC ,

57



where ηSS is the efficiency given in (3.34), ηCA = 1 −
√
Tc/Th is the Curzon-Ahlborn effi-

ciency, and ηC = 1− Tc/Th is the Carnot Efficiency. Furthermore, ηCA, η and ηC tend to 1

as Tc → 0, while ηSS → 2/3. Interestingly, that η may be larger than ηSS is due to the fact

it is obtained under an added constraint on the controlling potential, that seeks to maximize

power, as compared to ηSS; the increase in efficiency is consistent with the inherent trade-off

between power and efficiency.

3.7 Concluding remarks

The present work focused on quantifying the maximal power that can be drawn by a Carnot-

like heat engine operating by alternating contact with two heat reservoirs and modeled by

stochastic overdamped Langevin dynamics driven by the time dependent potential. The

framework that the work is based on is that of Stochastic Thermodynamics [9–13], which

allows quantifying energy and heat exchange by individual particles in a thermodynamic

ensemble, to be subsequently averaged, so as to quantify performance of the thermodynamic

process as a whole. A physically reasonable bound is derived, which is shown to be reached

within a specified factor, both depending on the ratio Th/Tc of the absolute temperatures

of the two heat baths, hot and cold, respectively. The present work is quite distinct from

earlier results, within a similar framework, which is however restricted to Gaussian states.

Conditions that suggest non-physical conclusions are highlighted, and a suitable constraint

on the controlling potential is brought forth that underlies our analysis.

In the past few decades, there have been several attempts to quantify efficiency mainly, but

also power, of thermodynamic processes operating in Carnot-like manner. It is fair to say

that there has been neither a consensus on the type of assumptions that have been used by

previous authors, and thereby, nor full consistency of the results. This is to be expected, since

finite-period operation and finite-time thermodynamic transitions require substance/engine
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dependent assumptions to capture the complexity of heat transfer in non-equilibrium states.

Thus, estimated bounds may never reach the “universality” of the celebrated Carnot effi-

ciency. They are expected to provide physical insights and guidelines for engineering design.

Thus, it will be imperative that these estimates be subject to experimental testing. The

notable feature of our conclusions as compared to earlier works is that the expressions we

derive are given in the form of ratio of absolute temperatures–a physically suggestive feature.

The present work follows a long line of contributions within the control field to draw links

between thermodynamics and control, see e.g., [70–75]. More recently, important insights

have linked the Wasserstein distance of optimal mass transport, which itself is a solution to

a stochastic control problem, to the dissipation mechanism in stochastic thermodynamics

[11, 51–54]. Indeed, the Wasserstein metric takes the form of an action integral and arises

naturally in the energy balance of thermodynamic transitions. This fact has been explored

and developed for the overdamped Langevin dynamics studied herein. Whether similar

conclusions can be drawn for underdamped Langevin dynamics remains an open research

direction at present. Furthermore, much work remains to reconcile and compare alternative

viewpoints and models for thermodynamic processes including those based on the Boltzmann

equation.

Besides the potentially intrinsic value of the analysis and bounds that have been derived,

it is hoped that the control-theoretic aspect of the problem to optimize Carnot-like cycling

of thermodynamic process has been sufficiently highlighted, and that this work will serve to

raise attention on this important and foundational topic to the control community.
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Chapter 4

Harvesting energy from a sinusoidally

driven thermodynamic engine

4.1 Introduction

As mentioned earlier, the natural processes in living organisms do not follow Carnot setting.

It is often mediated by continuous processes and energy differentials, whereas the Carnot

cycle reflects the switching mechanics of an idealized engine. Therefore, in this and also

the following chapter, we put forth stochastic models for non-equilibrium thermodynamic

processes in contact with a heat source having periodically and continuously varying temper-

ature. It then explores the question of how to optimize energy harvesting, both in terms of

power and efficiency. In the current chapter, we will study power extracted from sinusoidally

driven heat bath, which is a stochastic control problem of a somewhat non-traditional na-

ture; the coupling between controlling potential and heat bath renders the models nonlinear.

Expressions in closed form are not possible. Thus, we resort to approximation and numerical

verification for limiting cases. Conclusions are drawn as to the nature of optimal operation.
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Related work treating thermodynamic systems in the linear response regime can be found

in [76].

The main contributions of our paper are to be viewed within the context of stochastic con-

trol. The motivation and inspiration come from non-equilibrium thermodynamics processes.

Natural processes would somehow self-organize, to match driving potentials and optimize

efficiency and power, which remains speculatory at present. Specific physical processes need

to be modeled, validated, and compared before any definitive statement is made.

The paper develops as follows. In Section 4.2 we present certain basic stochastic model of

thermodynamic processes. Section 4.3 details our results for sinusoidal control gain and 4.4

extends the conclusion with a more general control gain, and in Section 4.5 we discuss future

directions and open questions.

4.2 Mathematical model

Consider the stochastic dynamics as

γdXt = −∇U(t,Xt)dt+
√

2kBT (t)γdBt,

which represents a standard model for molecular systems interacting with a thermal envi-

ronment. Throughout, Xt denotes the location of a particle, and without loss of generality,

we assume the mean of Xt is zero. U(t, x) denotes the time-varying potential that can be

externally controlled, γ is the viscosity coefficient, kB is the Boltzmann constant, and Bt is

the Brownian motion describing thermal fluctuation, and

T (t) = T0 + T1 cos(ωt), T0 > T1 ≥ 0, (4.1)
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is the temperature of a fluctuating heat bath. We restrict our attention to the case where

the potential is quadratic U(t,Xt) = 1
2
q(t)X2

t .

The variance of Xt, Σ(t) := E{X2
t }, satisfies the following differential Lyapunov equation

Σ̇(t) = −2

γ
q(t)Σ(t) +

2

γ
kBT (t). (4.2)

Then the power that is extracted by the interaction of the stochastic system with the heat

bath during one period is defined as

power := − ω

2π
E

{∫ 2π
ω

0

q̇(t)
∂U

∂q
(t,Xt)dt

}
= − ω

4π

∫ 2π
ω

0

q̇(t)Σ(t)dt.

We will consider the following optimization problem

max{− ω

4π

∫ 2π
ω

0

q̇(t)Σ(t)dt | subject to (4.1), (5.8)}, (4.3)

in two different cases. First, we will consider the optimization problem (4.3) under the

assumption that the potential has a sinusoidal intensity: q(t) = q0 + q1 cos(ωt + φ). Next,

we will explore the same problem for the general periodic intensity q(t).

4.3 Sinusoidal control gain

Consider the potential with a sinusoidal intensity

q(t) = q0 + q1 cos(ωt+ φ), q0 > 0, (4.4)
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then the power extracted during one period is given as the following

power := − ω

4π

∫ 2π
ω

0

q̇(t)Σ(t)dt =
ω2q1

4π

∫ 2π
ω

0

sin(ωt+ φ)Σ(t)dt. (4.5)

From (4.2), we know the variance Σ(t) will evolve according to

Σ̇(t) = −2

γ
[q0 + q1 cos(ωt+ φ)] Σ(t) +

2

γ
kBT (t). (4.6)

4.3.1 Fundamental limits for the power

The problem we will study in this section is as the following:

Problem 4.3.1. Determine the phase shift φ in the control law q(t) that maximize Eq. (4.5)

subject to Eq. (4.4) and (4.6) and the boundary condition Σ(0) = Σ(2π
ω

).

Proposition 4.3.1. There exists a unique attractive periodic solution for Eq. (4.6).

Proof. Solving above linear non-homogeneous ODE gives the closed form gives

Σ(t) = Σ0 exp

{
−2q1

γω
sin(ωt+ φ)− 2

γ
q0t+

2q1

γω
sin(φ)

}
+ exp

{
−2q1

γω
sin(ωt+ φ)− 2

γ
q0t

}∫ t

0

2kB
γ
T (t) exp

{
2q1

γω
sin(ωτ+φ)+

2

γ
q0τ

}
dτ. (4.7)

In order to have the 2π
ω

-periodic solution, Σ(0) = Σ(2π
ω

), which gives

Σ(0) =

2kB
γ

exp
{
− q1
γω

sin(φ)
}

exp{ 4π
γω
q0} − 1

∫ 2π
ω

0

(T0 + T1 cos(ωt)) exp

{
2q1

γω
sin(ωt+ φ) +

2

γ
q0t

}
dt.

(4.8)

Attractiveness

In addition, exp
{∫ 2π

ω

0
−2 [q0 + q1 cos(ωt+ φ)]

}
dt < 1 will ensure the stability of the solution
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according to Floquet Theory.

Thus, Eq. (4.6) admits a stable and unique periodic solution, which is given in the form of

Eq. (4.7) with the initial condition as Eq. (4.8).

Theorem 4.3.2. Problem 1 has a unique minimizer. Thus power has a unique maximizer

φ = π
2
− arctan( γω

2q0
).

Proof. Define:

q(t) =
∞∑

n=−∞

ane
inωt, T (t) =

∞∑
n=−∞

bne
inωt, Σ(t) =

∞∑
n=−∞

cne
inωt.

Eq (4.6) gives

Σ̇ =
∞∑

n=−∞

inωcne
inωt = −2

γ

∞∑
n=−∞

ane
inωt

∞∑
n=−∞

cne
inωt +

2kB
γ

∞∑
n=−∞

bne
inωt.

From q(t) = q0 + q1 cos (ωt+ φ)q0 + q1 = ei(ωt+φ)+e−i(ωt+φ)

2
, we have

∞∑
n=−∞

ane
inωt = q0 + q1 cos(ωt+ φ),

and

a0 = q0, a1 =
q1

2
eiφ, a−1 =

q1

2
e−iφ,

Doing the similar analysis for T (t) gives

b0 = T0, b1 =
T1

2
, b−1 =

T1

2
, bn = 0, n 6= 0,−1, 1.
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Therefore, we have

Σ̇ = −2

γ

(
a0 + a1e

iωt + a−1e
−iωt) ∞∑

n=−∞

cne
inωt +

2kB
γ

(
b0 + b1e

iωt + b−1e
−iωt) ,

and

inωcn = −2

γ
(a0cn + a1pn−1 + a−1pn+1) +

2kB
γ
bn

with

cn =
− 2
γ
a1

inω + 2
γ
a0

cn−1 +
− 2
γ
a−1

inω + 2
γ
a0

cn+1 +

2kB
γ

inω + 2
γ
a0

bn (4.9)

matricially expressed as: c = Ac+ b. The solution is given by the Von-Neumann series

c =
∞∑
k=0

Akb. (4.10)

The truncated series cm =
∑m

k=0 A
kb up to the order m = 2 is shown in Table 4.1. In time

domain, the approximated solution is:

Σ2(t) =c
(2)
0 + 2Re(c

(2)
1 eiωt) + 2Re(c

(2)
2 ei2ωt)

=
kBT0

q0

− 2Re(
q1e

iφ

2q0

kbT1e
iθ√

4q2
0 + γ2ω2

) + 2Re

( −kBT0q1
q0

eiφ + kBT1√
4q2

0 + γ2ω2
ei(ωt−θ)

)

+ 2Re

(
−kBT1q1

2
√
γ2ω2 + q2

0

√
γ2ω2 + 4q2

0

ei(2ωt+φ−θ−θ2)

)

=
kBT0

q0

− kBT1q1

q0

√
γ2ω2 + 4q2

0

cos(φ+ θ)− 2kBT0q1

q0

√
γ2ω2 + 4q2

0

cos(ωt+ φ− θ)

+
2kBT1√
γ2ω2 + 4q2

0

cos(ωt− θ)− kBT1√
γ2ω2 + 4q2

0

√
γ2ω2 + q2

0

cos(2ωt+φ−θ − θ2),

where θ = arctan( γω
2q0

), and θ2 = arctan(γω
q0

).
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n iteration m = 0 iteration m = 1 iteration m = 2

2 c
(0)
2 = 0 c

(1)
2 = 0 c

(2)
2 = −a1

γiω+a0
c

(1)
1

1 c
(0)
1 = 0 c

(1)
1 = 2kB

iγω+2a0
b1 c

(2)
1 = −2a1

iγω+2a0
c

(1)
0 + 2kB

iγω+2a0
b1

0 c
(0)
0 = 0 c

(1)
0 = kBb0

a0
c

(2)
0 = −a1

a0
c

(1)
−1 −

a−1

a0
c

(1)
1 + kB

a0
b0

−1 c
(0)
−1 = 0 c

(1)
−1 = 2kB

−iωγ+2a0
b−1 c

(2)
−1 = −2a−1

−iγω+2a0
c

(1)
0 + 2kB

−iγω+2a0
b−1

−2 c
(0)
−2 = 0 c

(1)
−2 = 0 c

(2)
−2 = −a−1

γiω+a0
c

(1)
−1

Table 4.1 – The Fourier coefficients for first order approximation of the variance

For the power extracted during one period is computed as

power = − ω

4π

∫ 2π
ω

0

q̇(t)Σ(t)dt =
ω

4π

∫ 2π
ω

0

∞∑
n=−∞

inωcne
inωt

∞∑
n=−∞

ane
inωtdt

=
ω

4π

∫ 2π
ω

0

(a0 + a1e
iωt + a−1e

−iωt)
∞∑

n=−∞

inωcne
inωtdt

=
1

2
(−iωa1c−1 + iωa−1c1) =

iω

2
(−a1c−1 + a−1c1)

= iωIm{a−1c1}i = −ωIm{a−1c1}

=
ωq1kB

2(4q2
0 + γ2ω2)q0

(
−q1T0γω + cos(φ)γωT1q0 + 2 sin(φ)T1q

2
0

)
= − kBγT0q

2
1ω

2

2(4q2
0 + γ2ω2)q0

+
kBωT1q1

2(4q2
0 + γ2ω2)

(γω cos(φ) + 2q0 sin(φ))

= − kBγT0q
2
1ω

2

2(4q2
0 + γ2ω2)q0

+
kBωT1q1

2
√

4q2
0 + γ2ω2

sin(φ+ θ), (4.11)

where θ = arctan( γω
2q0

).

The maximum is achieved at φ = π
2
− θ. Particularly, when γω

2q0
= 1, the maximum power

will be obtained when φ = π
4
. The power can also be expressed as

power =
kBT0q0

2γ

(
− ω2

r

1 + ω2
r

q2
r +

ωrTrqr√
1 + ω2

r

sin(φ+ θ)

)
, (4.12)
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where

ωr =
ω
2q0
γ

, qr =
q1

q0

, Tr =
T1

T0

, θ = arctan(ωr)

are dimensionless variables. ωr can be interpreted as the ratio of the applied frequency to

the natural frequency of the system. The maximum power, over φ, is achieved at φ = π
2
− θ.

The maximum power is then equal to

max
φ

power =
kBT0q0

2γ

ωr√
1 + ω2

r

(
− ωr√

1 + ω2
r

q2
r + Trqr

)
. (4.13)

This explains the quadratic curve in Figure 4.2. For fixed ωr and Tr, the maximum power,

over qr, is achieved at

qr =
Tr
2ωr

√
1 + ω2

r ,

and the maximum power is equal to

power =
kBT0q0

8γ
T2

r .

Define Th := T0 + T1 and Tc := T0 − T1, then

power =
kBT0q0

8γ
(
Th − Tc

Th + Tc

)2.
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4.4 Generalization for the control

In this section, we will consider the temperature fluctuation about the mean value T0 as

follows:

T (t) = T0 + εT1 cos(ωt), (4.14)

and study the potential for drawing the power by applying periodic control

q(t) = q0 + εu(t), (4.15)

where εu(t) is the deviation of the control input from the nominal value q0.

4.4.1 Fundamental limits for the power

In this part, the limit case when perturbation ε is small is studied. We seek to determine a

control input that maximizes power, that is,

max
u

− ω

4π

∫ 2π
ω

0

εu̇(t)Σ(t)dt

subject to Σ̇(t) = −2

γ
(q0 + εu(t))Σ(t) +

2

γ
kBT (t),

u(0) = u(
2π

ω
). (4.16)

To this end, we carry out a perturbation analysis about ε = 0. The variance Σ(t) is expressed

as

Σ(t) =
∞∑
k=0

εkΣ(k)(t), (4.17)
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where Σ(k)(t) solves the Lyapunov equation (4.6) for εk order. In particular, the leading two

terms satisfy

Σ̇(0)(t) = −2q0

γ
Σ(0)(t) +

2kBT0

γ
(4.18)

Σ̇(1)(t) = −2q0

γ
Σ(1)(t)− 2u(t)

γ
Σ(0)(t) +

2kBT1

γ
cos(ωt). (4.19)

We truncate all but the first two terms in the objective function of the optimal control

problem, and consider the problem to optimize

max
u
− ω

4π

∫ 2π
ω

0

(
εu̇(t)Σ(0)(t) + ε2u̇(t)Σ(1)(t)

)
dt. (4.20)

The solution of the optimal control problem (4.20) can now be expressed as follows.

Theorem 4.4.1. Consider the optimal control problem (4.20). The optimal control law is

u∗(t) = q∗1 cos(ωt− φ∗), (4.21)

where

q∗1 =
q0gT1

2γωT0

, φ∗ = ∠(γω − i2q0), (4.22a)

with g =
√
γ2ω2 + 4q2

0, giving power output

power = ε2
kBq0T

2
1

8γT0

+O(ε3),

and the expression for the variance Σ(t) up to first order in ε is:

Σ(t) =
kBT0

q0

+ ε
kBT1

γω
sin(ωt) +O(ε2).

Proof. Solving (4.18), together with the periodic condition for Σ(t), we can obtain that

69



Σ(0)(t) is constant and satisfies

Σ(0)(t) =
kBT0

q0

,

therefore, the optimization problem (4.20) becomes

max
u

− ω

4π

∫ 2π
ω

0

ε2u̇(t)Σ(1)(t)dt,

subject to Σ̇(1)(t) = −2q0

γ
Σ(1)(t)− 2u(t)

γ
Σ(0)(t) +

2kBT1

γ
cos(ωt)

u(0) = u(
2π

ω
). (4.23)

Define L := u̇(t)Σ(1)(t)+λ(Σ̇(1)(t)+ 2q0
γ

Σ(1)(t)+ 2u(t)
γ

Σ(0)(t)− 2kBT1

γ
cos(ωt)) with λ lagrangian

multiplier, then the optimal u and Σ(1)(t) should satisfy the following Euler Lagrange equa-

tion

∂L
∂u
−

d(∂L
∂u̇

)

dt
=

2λkBT0

γq0

− Σ̇(1) = 0 (4.24)

∂L
∂Σ(1)

−
d( ∂L

∂Σ̇(1) )

dt
= u̇+

2λq0

γ
− λ̇ = 0. (4.25)

Then substituting Eq. (4.24) into Eq. (4.25), we have

u̇+
q2

0

kBT0

Σ̇(1) − γq0

2kBT0

Σ̈(1) = 0, (4.26)

which together with the Lyapunov equation Eq. (4.18) gives

Σ̇(1) = −2q0

γ
Σ(1) − 2u

γ

kBT0

q0

+
2kBT1

γ
cos(ωt). (4.27)

and

Σ̈(1) = −kBT1ω

γ
sin(ωt), (4.28)
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from which, we can easily get (4.21), (4.22) and (4.23).

4.4.2 Efficiency at maximal power

For the Carnot-like cycle, Qh is defined as the heat transfer during the time interval that the

system is in contact with hot thermal bath T = Th. However, when the temperature profile

is continuous, it is not clear to distinguish the heat transfer to the hot bath from the heat

transfer to the cold bath. This issue is resolved in the linear response regime by defining Qh

according to

Qh[q] =

∫ tf

0

T (t)− Tc
Th − Tc

Q̇(t)[q]dt =

∫ tf

0

cos(ωt) + 1

2
Q̇(t)[q]dt, (4.29)

where Q̇(t)[q] is the heat transfer rate given by the sum of the rate of change in energy and

power output

Q̇(t)[q] =
d

dt
E{U(t,Xt)}+ tf Ṗ [q] =

1

2
q(t)Σ̇(t).

In this chapter, we will use the definition (4.29) to define Qh and efficiency. The efficiency

is defined to be the ratio between the work output W = tfpower and the heat input Qh :

η =
tfpower

Qh
. The heat is computed as the following:

Qh : =
1

4

∫ tf

0

(cos(ωt) + 1) q(t)Σ̇(t)dt

= −1

4

∫ tf

0

q̇(t)Σ(t)dt+
1

4

∫ tf

0

cos(ωt)q(t)Σ̇(t)dt

=
1

2
tfpower +

1

4

∫ tf

0

cos(ωt) (q0 + εq∗1 cos(ωt− φ∗)) (ε
kBT1

γ
cos(ωt) +O(ε))dt

=
1

2
tfpower + ε

q0kBT1tf
2γ

+O(ε2).
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Therefore, the efficiency at maximal power can be computed as

η =
tfpower

Qh

=
tfpower

1
2
tfpower + ε

q0kBT1tf
2γ

+O(ε2)
=
εT1

T0

+O(ε2)

=
Th − Tc
Th + Tc

+O((Th − Tc)2) =
ηC

2− ηC
+O((Th − Tc)2), (4.30)

where we define Th := T0 + εT1, Tc := T0 − εT1, and ηC Carnot efficiency.

Remark 4.4.1. We note that Carnot efficiency, for quasistatic operation between two heat

baths of temperatures Th and Tc, for hot and cold respectively, is ηC = Th−Tc
Th

. Letting Th =

T0 + εT1 and Tc = T0 − εT1, and evaluating the expression for ηC, gives

2εT1

T0 + εT1

= 2ε
T1

T0

+O(ε2).

4.4.3 Numerical validation

In this section, we provide numerical validation and insight into the effect of higher order

terms in the expansions. Specifically, we consider a sinusoidal control input and use Fourier

representations to numerically solve the Lyapunov equation and obtain expressions for the

power. Our interest mainly focuses on how maximal power depends on the amplitude and

phase of the control, and on how efficiency at maximal power depends on the amplitude of

the temperature fluctuations of the heat bath. Starting from the choice of control

q(t) = q0 + q1 cos(ωt− φ) = a−1e
−iωt + a0 + a1e

iωt,

where a0 = q0 and a1 = ā−1 = 1
2
q1e
−iφ, the power drawn can be expressed as

power = −iω
2

(a1c−1 − a−1c1) , (4.31)
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where cn is the nth Fourier coefficient of covariance Σ. The Fourier coefficients can be

obtained by expressing the Lyapunov equation in the Fourier domain, to obtain a set of

linear coupled equations for the various terms. We truncate and keep the first 100 modes,

and solve the resulting finite-dimensional problem for a range of values for q1 and φ.

The numerical result for the power is depicted in Figure 4.1, Figure 4.2 and Figure 4.3. It is

observed that the pair of values (φ, q1) that maximize the power are close to the analytical

expressions obtained by ignoring second-order terms. The model parameters used to obtain

the numerical result are presented in Table 4.2.

Notation vs. value notation value
perturbation ε 1

viscosity coefficient γ 1
frequency ω 2

temperature T1 0.5
temperature T0 1
nominal gain q0 1

Table 4.2 – Parameters selected in the simulations.

The thermal efficiency is also evaluated numerically. The efficiency as a function of the

temperature fluctuation T1 is depicted in Figure 4.4. The numerical result is compared

with the analytical result obtained up to first-order approximation. It is observed that the

analytical expression captures the behavior of the efficiency for small values of T1 for the

model. We also plot the optimal control law and temperature profile, interestingly which

shows that the optimal control law is sinusoidal function when the temperature is sinusoidal,

but with different phases, which is shown in Figure 4.5.
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Figure 4.1 – Numerical evaluation of the power output as a function of the control phase φ
as described in Section 4.4.3. “φ∗” is the optimal control parameter computed analytically
using (4.22).
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Figure 4.2 – Numerical evaluation of the power output as a function of the control phase q1

as described in Section 4.4.3. “q∗1” is the optimal control parameter computed analytically
using (4.22).
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Figure 4.3 – Numerical evaluation of the power output as a function of the control phase φ
and control amplitude q1 as described in Section 4.4.3. The points marked by “◦” and “∗”
correspond to optimal control parameters. The first (“◦”) was computed numerically, and
the second (“∗”) analytically using (4.22).
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Figure 4.4 – Numerical evaluation of efficiency as a function of temperature fluctuation T1, at
maximum power. The numerical result is compared with the analytical expressions derived
using first-order approximations in (4.30).
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Figure 4.5 – The comparison between the optimal control law and the temperature profile.

4.5 Concluding remarks

We addressed the question of maximal power and efficiency for thermodynamic processes in

contact with a heat bath having periodic continuously varying temperature. Our analysis

is approximate and focuses on sinusoidal fluctuations. It is of interest to study the effect of

the temperature profile, and properties of optimal controlling potential, in a more general

setting.
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Chapter 5

Thermodynamic bounds on power

under arbitrary temperature profile

5.1 Introduction

In this chapter, we consider the problem of maximal power extracted from a thermodynamic

engine in contact with a heat source having periodically and continuously varying tempera-

ture, and seek to determine the control input that giving the maximal power in finite time

transitions. Under the appropriate constraints, we draw some conclusions on the bounds of

maximal power and also the corresponding efficiency. The main contribution of this chap-

ter is that our results give the upper bound of the maximal power any periodically and

continuous heat engine can achieve, which is proportional to the average fluctuations in the

temperature profile. Moreover, we show the surprising result that the efficiency at maximum

power does not depend on the temperature profile, just the maximum and minimum values.

The chapter is developed as follows. In Section 5.2 we introduce certain basic stochastic

model of thermodynamic processes, and show some relevant known results. Sections 5.3 and

77



5.4 detail our results about the bounds of maximal power and corresponding efficiency for

our overdamped stochastic model, and in Section 5.6 we discuss future directions and open

questions.

5.2 Mathematical model

The Langevin equation

γdXt = −∇U(t,Xt)dt+
√

2kBT (t)γdBt. (5.1)

This model has been studied extensively when the system undergoes a Carnot cycle [77–79]:

the system is in contact with the heat bath of temperature Th for t1 amount of time, and

then it switches instantaneously to contact with a cold bath of temperature Tc for t2 amount

of time, i.e.

T (t) =


Th, t ∈ (0, t1)

Tc, t ∈ (t1, t1 + t2).

Let tf = t1 + t2 denotes the cycle period. The first question of interest is to understand the

maximum power that can be extracted from the system by controlling the potential function.

The power extracted from the system over a cycle is defined according to

P := −E
[

1

tf

∫ tf

0

1

2
q̇(t)X2

t dt.

]
(5.2)

Let Pmax denote the maximum power that can be achieved by controlling the potential

function. The second question we will tackle is that of the efficiency of the system operating

at maximum power, denoted by ηmp. These problems have also been studied for Carnot
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cycle, the results are as follows:

Pmax =
(kB(Th − Tc))2

16γσ2
min

, (5.3a)

ηmp =
2 (Th − Tc)
3Th + Tc

, (5.3b)

where σmin is the minimum value of the variance of Xt over the cycle.

The objective of this paper is to extend those results to arbitrary temperature profile. The

motivations come from analysis of biological thermodynamic systems that undergo a contin-

uously changing temperature profile, instead of abrupt change in the Carnot cycle model.

In particular, we assume that the temperature profile is of the form:

T (t) =
Th + Tc

2
+
Th − Tc

2
α(t), (5.4)

where α(t) is a periodic function of period tf taking values in [−1,+1]. Note that the special

case where α(t) = 1 for t ∈ (0, t1), and α(t) = −1 for t ∈ (t1, tf ) corresponds to the Carnot

cycle. The extension of existing results (5.3a) to an arbitrary temperature profile is:

Pmax ≤
(kB(Th − Tc))2

16γσ2
min

Var(α), (5.5)

where Var(α) := 1
tf

∫ tf
0
α(t)2dt −

(
1
tf

∫ tf
0
α(t)dt

)2

is the variation of α in one cycle. The

upper bound can be achieved when the total period tf tends to zero, and the corresponding

efficiency is given:

ηmp =
2 (Th − Tc)
3Th + Tc

. (5.6)

Some striking implications of our result are as follows:

1. Assuming α(t) = ±1, the result for the Carnot cycle is recovered.
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2. The maximum power is proportional to the variations in the temperature.

3. Over the set of admissible temperature profiles, maximum power is achieved when the

temperature profile is according to Carnot cycle.

4. The efficiency at maximum power ηmp does not depend on the temperature profile.

5.3 The analysis for the power and efficiency

In this section, we will present the analysis of the maximum power and the corresponding

efficiency.

5.3.1 Analysis of maximal power

In this section, we will study maximizing power for the dynamics (5.1). For this model, the

expression for power (5.2) simplifies to

P := −E
[

1

tf

∫ tf

0

1

2
q̇(t)X2

t dt.

]
=− 1

2tf

∫ tf

0

q̇(t)Σ(t)dt (5.7)

where Σ(t) := E[X2
t ] is governed by the Lyapunov equation:

Σ̇(t) = −2q(t)

γ
Σ(t) +

2kBT (t)

γ
. (5.8)

The objective is to analyze the maximal power that can be extracted by controlling the

coefficient q(t):

P∗ = max
q

{
P [q], s.t. Σ(t) solves (5.8), q(0) = q(tf ), Σ(0) = Σ(tf ), Σ(t) ≥ σ2

min

}
,

(5.9)
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because without any constraint, the power can become unbounded. The key step is to

simplify the expression for the power by a change of variable.

Lemma 5.3.1. The expression for the power is equal to

P [q] = J [x] :=
kB(Th − Tc)

2tf

∫ tf

0

[
−λtf ẋ(t)2e2x(t) +αẋ(t)

]
dt, (5.10)

where x(t) := 1
2

log( Σ(t)

σ2
min

), λ :=
2γσ2

min

tfkB(Th−Tc)
is a dimensionless constant. Moreover, the problem

for maximizing the power is equivalent to

Pmax = max
x
{J [x], s.t. x(0) = x(tf ), x(t) ≥ 0} . (5.11)

Proof. Define the function F (t) according to

F (t) :=
1

2
q(t)Σ(t)− kBT (t)

2
log(Σ(t)).

Taking the time derivative yields

dF (t)

dt
=

1

2
q̇(t)Σ(t)+

1

2
q(t)Σ̇(t)− 1

2
kBṪ (t) log(Σ(t))− 1

2Σ(t)
kBT (t)Σ̇(t)

=
1

2
q̇(t)Σ(t)− q(t)2

γ
Σ(t) + 2q(t)

kBT (t)

γ
+
k2
BT (t)2

γΣ(t)
− 1

2
kBṪ (t) log(Σ(t))

=
1

2
q̇(t)Σ(t)− γ

(
q(t)

√
Σ(t)

γ
− kBT (t)

γ
√

Σ(t)

)2

− 1

2
kBṪ (t) log(Σ(t))

=
1

2
q̇(t)Σ(t)− γσ̇(t)2 − kBṪ (t) log(σ(t)),

where σ(t) :=
√

Σ(t) and we used σ̇(t) =
q(t)
√

Σ(t)

γ
− kBT (t)

γ
√

Σ(t)
from (5.8). Integrating over a

cycle yields

F (tf )−F (t0)=−tfP [q]−
∫ tf

0

[
γσ̇(t)2+kBṪ (t) log(σ(t))

]
dt,
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where we used the definition of power (5.7). Using F (0) = F (tf ) because of the boundary

conditions Σ(0) = Σ(tf ) and q(0) = q(tf ), yields the following expression for power

P [q] = − 1

tf

∫ tf

0

[
γσ̇(t)2 + kBṪ (t) log(σ(t))

]
dt.

Using the definition x(t) := log( σ(t)
σmin

) and dimensionless number λ :=
2γσ2

min

tfkB(Th−Tc)
concludes

P [q] = − 1

tf

∫ tf

0

[
γσ2

minẋ(t)2e2x(t) + kB
Th − Tc

2
α̇x(t)

]
dt

= −kB(Th − Tc)
2tf

∫ tf

0

[
λtf ẋ(t)2e2x(t) + α̇(t)x(t)

]
dt

= −kB(Th − Tc)
2tf

∫ tf

0

[
λtf ẋ(t)2e2x(t) − α(t)ẋ(t)

]
dt,

where the last step follows from integration by parts and periodic boundary conditions.

For maximizing the power, we are allowed to choose any x(t) under two constraints: (i) x(t)

is periodic, i.e. x(0) = x(tf ), (ii) x(t) is positive, i.e. x(t) ≥ 0. The two constraints are due

to the definition x(t) = 1
2

log( Σ(t)

σ2
min

) and the constraints Σ(0) = Σ(tf ) and Σ(t) ≥ σ2
min.

The following theorem provides bounds for the maximal power.

Theorem 5.3.1. Consider the over-damped Langevin dynamics (5.1) under the temperature

profile (5.4). Then, the maximal power (5.11) satisfies the upper-bound:

P∗ ≤ k2
BT

2
c

16γσ2
min

(
Th
Tc
− 1)2Var(α). (5.12)

And there exists an explicit protocol q0(t) that achieves the upper-bound within a gap that
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converges to zero as tf → 0, and the optimal protocol and the resulting variance are given by

q0(t) =
kB
σ2
min

T (t) exp(− 1

λtf

∫ t

t0

(α(s)− ᾱ) ds)− kB(Th − Tc)
4σ2

min

(α(t)− ᾱ) (5.13)

and

Σ0(t) = σ2
min exp(

1

λtf

∫ t

t0

(α(s)− ᾱ) ds), (5.14)

where t0 is a time so that
∫ t
t0

(α(s)− ᾱ) ds ≥ 0 for all t.

Proof. The proof is based on the equivalent formulation of the power according to Lemma 5.3.1.

The upper-bound follows by proving an upper-bound for J [x] for all x.

J [x] =
kB(Th − Tc)

2tf

∫ tf

0

−λtf ẋ(t)2e2x(t) + α(t)ẋ(t)dt

≤ kB(Th − Tc)
2tf

∫ tf

0

−λtf ẋ(t)2 + α(t)ẋ(t)dt

=−kB(Th−Tc)
2tf

∫ tf

0

λtf

[
ẋ(t)− 1

2λtf
(α(t)−ᾱ)

]2

dt+
kB(Th − Tc)

8λt2f

∫ tf

0

(α(t)−ᾱ)2dt

≤ kB(Th − Tc)
8λt2f

∫ tf

0

(α(t)− ᾱ)2dt,

where ᾱ = 1
tf

∫ tf
0
α(t)dt. The second line follows because e2x(t) ≥ 1 when x(t) ≥ 0. The

third line follows by completion of squares and
∫
ẋ(t)dt = x(tf )− x(0) = 0. This proves the

upper-bound:

Pmax = max
x
{J [x], s.t. x(0) = x(tf ), x(t) ≥ 0} ≤ kB(Th − Tc)

8λt2f

∫ tf

0

(α(t)− ᾱ)2dt.

The proof for the lower-bound follows by using a particular choice for x(t) and computing

83



the power for that particular choice. Let

x∗(t) =
1

2λtf

∫ t

t0

(α(s)− ᾱ) ds,

this is a valid choice for x(t): the periodic boundary condition is true because of definition

of ᾱ; the positivity condition is true by suitable choice of t0. Inserting x∗ back to J [x] gives

J [x∗]=
kB(Th−Tc)

2tf

∫ tf

0

−λtf ẋ∗(t)2e2x∗(t)+α(t)ẋ∗(t)dt

≥ kB(Th−Tc)
2tf

∫ tf

0

−λtf ẋ∗(t)2e2x∗max + α(t)ẋ∗(t)dt

= (2− e2x∗max)
kB(Th − Tc)

8λt2f

∫ tf

0

(α(t)− ᾱ)2dt

=
kB(Th−Tc)

8λtf
Var(α)−(e2x∗max−1)

kB(Th−Tc)
8λtf

Var(α),

where

x∗max : = max
t
x∗t ≤

1

2λtf

∫ t

t0

|α(s)−ᾱ|ds ≤ 1

λ
=
kB(Th − Tc)

2γσ2
min

tf .

Therefore, in the limit as tf → 0, we have e2x∗max → 1, hence J [x∗] → kB(Th−Tc)
8λt2f

Var(α)

concluding

Pmax ≥ J [x∗] ≥ kB(Th − Tc)
8λtf

Var(α)− ε,

where ε is positive, has the same order as O(tf ).
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5.3.2 Analysis of efficiency

The efficiency is defined to be the ratio between the work output W = tfP and heat input

Qh.

η =
tfP
Qh

. (5.15)

For the Carnot-like cycle, Qh is defined as the heat transfer during the time interval that the

system is in contact with hot thermal bath T = Th. However, when the temperature profile

is arbitrary, it is not clear to distinguish the heat transfer to the hot bath from the heat

transfer to the cold bath. This issue is resolved in the linear response regime by defining Qh

according to

Qh[q] =

∫ tf

0

T (t)− Tc
Th − Tc

Q̇(t)[q]dt =

∫ tf

0

α(t) + 1

2
Q̇(t)[q]dt, (5.16)

where Q̇(t)[q] is the heat transfer rate given by the sum of the rate of change in energy and

power output

Q̇(t)[q] =
d

dt
E{U(t,Xt)}+ tf Ṗ [q] =

1

2
q(t)Σ̇(t).

In this paper, we use the definition (5.16) to define Qh and efficiency, although the setting

we consider is far from linear response regime. The next theorem characterizes the efficiency

operating with the protocol (5.13) that achieves the upper-bound for maximum power as

tf → 0:

η[q0] :=
tfP [q0]

Qh[q0]

under the following assumption on the temperature profile.
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Assumption A1: There exists τ ∈ [0, tf ] such that α(t− τ) is an odd function.

Theorem 5.3.2. Consider the over-damped Langevin dynamics (5.1) under the protocol (5.13)

for q(t) and Assumption A1. Then, the efficiency satisfies

η[q0] =
2 (Th − Tc)
3Th + Tc

− 4(Th + Tc)

3Th + Tc

1

3Th + Tc
tfε−

4(Th + Tc)

3Th + Tc

(
1

(3Th + Tc)2
t2fε

2 + ...

)
,

(5.17)

where ε is positive, and have the same order as O(tf ).

Assumption A1: There exists τ ∈ [0, tf ] such that α(t− τ) is an odd function.

Proof. Without loss generality, we can assume α(t) is odd, because time shifting doesn’t

affect the power and heat. For the heat absorbed from the hot reservoir,

Qh : =
1

4

∫ tf

0

(α(t) + 1) q(t)x2ρ̇(x, t)dxdt

= −1

4

∫ tf

0

q̇(t)x2ρ(x, t)dxdt− 1

4

∫ tf

0

α̇(t)q(t)Σ(t)dt− 1

4

∫ tf

0

α(t)q̇(t)Σ(t)dt

= −1

4

∫ tf

0

q̇(t)Σ(t)dt+
1

4

∫ tf

0

α(t)q(t)Σ̇(t)dt

=
1

2
tfpower+

1

8

∫ tf

0

2kBα(t)

(
Th+Tc

2
+
Th−Tc

2
α(t)

)
Σ̇(t)

Σ(t)
dt− 1

8

∫ tf

0

γα(t)Σ̇(t)2

Σ(t)
dt

=
tf
2

power+
kB
2

∫ tf

0

α(t)

(
Th+Tc

2
+
Th−Tc

2
α(t)

)
σ̇(t)

σ(t)
dt− γ

2

∫ tf

0

α(t)σ̇(t)2dt

=
tf
2

power+
kB

8λtf

∫ tf

0

(Th+Tc)α(t)2 + (Th−Tc)α(t)3dt

− γσ2
min

2

∫ tf

0

1

4λ2t2f
α(t)3e

1
λtf

∫ t
t0
α(s)ds

dt

=
tf
2

power +
k2
B(T 2

h − T 2
c )

16γσ2
min

∫ tf

0

α(t)2dt.

To show the last equality is true, we will show both
∫ tf

0
α(t)3 and

∫ tf
0
α(t)3e

1
λtf

∫ t
t0
α(s)ds

dt are
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zero when α(t) is odd. For
∫ tf

0
α(t)3dt,

∫ tf

0

α(t)3dt =

∫ tf
2

0

α(t)3dt+

∫ tf

tf
2

−α(−t)3dt =

∫ tf
2

0

α(t)3dt+

∫ −tf
−
tf
2

α(t)3dt

=

∫ tf
2

0

α(t)3dt+

∫ 0

tf
2

α(t)3dt = 0

and for the third term
∫ tf

0
α(t)3e

1
λtf

∫ t
t0
α(s)ds

dt, define

f(t) :=

∫ t

t0

α(s)ds,

then f(t) is an even function given α(t) is odd, which can be proved as the following:

Define g(t) := f(t)−f(−t), then g′(t) = f ′(t)+f ′(−t) = α(t)−α(t) = 0 , then g(t) is constant

and g(t) = g(0) = 0, which gives f(t) = f(−t) : f(t) is even, from which g2(t) := e
1
λtf

f(t)
is

even, therefore α(t)3g2(t) is an odd function and

∫ tf

0

α(t)3e
1
λtf

∫ t
0 α(s)ds

= 0,

which gives

Qh =
1

2
power +

k2
B(T 2

h − T 2
c )

16γσ2
min

∫ t

0

α(t)2dt,

from which the efficiency under the protocol (5.13) can be computed as

η[q0] =
tfP [q0]

1
2
tfP [q0] +

k2
B(T 2

h−T 2
c )

16γσ2
min

∫ t
0
α(t)2dt

=
1

1
2

+
k2
B(T 2

h−T 2
c )

16γσ2
mintfP[q0]

∫ t
0
α(t)2dt

=
1

1
2
+
k2
B(T 2

h−T 2
c )

16γσ2
mintf

∫ t
0 α(t)2dt

(kB(Th−Tc))2

16γσ2
min

tf

∫ t
0 α(t)2dt

(
1−

tf ε

Th−Tc

)

=
1

1
2

+ 1
Th−Tc
Th+Tc

−
tf

Th+Tc
ε

=
2 (Th − Tc − tfε)
3Th + Tc − tfε
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=
2 (Th − Tc)
3Th + Tc

− 4(Th + Tc)

3Th + Tc

1

3Th + Tc
tfε−

4(Th + Tc)

3Th + Tc

(
1

(3Th + Tc)2
t2fε

2 + ...

)
,

where we use P [q0] = (kB(Th−Tc))2

16γσ2
mintf

Var(α)− (Th−Tc)k2
B

∫ t
0 α

2(t)dt

16γσ2
min

ε for the computation, where ε is

positive, and same order as O(tf ).

5.3.3 Consistent verification for optimal performance in the Carnot-

limit

As we mentioned above, the upper bound of the power in (5.12) will be achieved when we

apply the control protocol (5.13) as the period of the cycle tends to zero. In this part, we

will compare our result in the Carnot limit where the temperature is piecewise constant with

the known results for Carnot-like heat engine in [35] when the total period tf → 0.

T (t) =


Th, t ∈ (0, t1)

Tc, t ∈ (t1, t1 + t2).

� The optimal protocol

From Eq.(13) in [35], the optimal protocol for the variance defined as σ1(t)2 in the

Carnot setting should satisfy

σ1(t) = σa + 2
σb − σa
tf

t, 0 ≤ t <
tf
2
, (5.18)

where σ2
a and σ2

b are the variance at initial point and half period point, respectively.

In our current chapter, we know, from (5.14), the optimal protocol for the variance

defined as σ2(t)2 during the interval [0,
tf
2

) satisfy,

σ2(t) = σmin exp

(
1

2λtf

∫ t

t0

(α(s)− ᾱ) ds

)
= σmin exp

(
1

2λtf

∫ t

t0

α(s)ds

)
, (5.19)
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where λ :=
2γσ2

min

tfkB(Th−Tc)
is a dimensionless constant, and t0 is a time so that

∫ t
t0

(α(s)− ᾱ) ds ≥

0 for all t. In the Carnot limit, it can be written as

σ2(t) =σmin exp

(
1

2λtf

∫ t

t0

α(s)ds

)
= σmin exp

(
1

2λtf

∫ t

t0

ds

)
=σmin exp

(
t

2λtf

)
= σmin exp

(
kB(Th − Tc)

4γσ2
min

t

)
.

When tf → 0, we can do the Taylor expansion

σ2(t) = σmin exp

(
kB(Th − Tc)

4γσ2
min

t

)
= σmin

(
1 +

kB(Th − Tc)
4γσ2

min

t

)
+O(t2).

From the Eq (5.14), in the limit case, we can write

σmin = σa,

σmin

(
1 +

kB(Th − Tc)
4γσ2

min

tf
2

)
= σa

(
1 +

kB(Th − Tc)
4γσ2

a

tf
2

)
= σb (5.20)

and

σ2(t) = σa

(
1 +

kB(Th − Tc)
4γσ2

a

t

)
= σa + 2

σb − σa
tf

t,

which is consistent with Eq. (5.18). For the optimal variance in the other interval

[
tf
2
, tf ), the same results hold based on the similar analysis.

For the optimal control in these two cases, because both satisfy the same Lyapunov

equation, so they will coincide automatically.

� The optimal power extracted

From Eq.(20) and Eq.(21) in [35], the maximal power extracted power1 of the Carnot-
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like heat engine should satisfy

power1 =
(Th − Tc)2 ln σb

σa

16γ(σb − σa)2
.

For the result in the current chapter, the maximal power power2 extracted in the

Carnot limit and also tf → 0 can be written as

power2 =
k2
BT

2
c

16γσ2
min

(
Th
Tc
− 1)2 =

k2
B(Th − Tc)2

16γσ2
min

. (5.21)

From Eq. (5.20), we can write power1 as

power1 =
(Th − Tc)2 ln σb

σa

16γ(σb − σa)2
=

(Th − Tc)2

16γ

kB(Th−Tc)
8γσ2

a
tf

kB(Th−Tc)
8γσa

tf
=
k2
B(Th − Tc)2

16γσ2
a

,

which coincides with Eq. (5.21).

� The efficiency at maximal power

From Eq. (23) in [35], we know the efficiency at maximal power η1 is given as

η1 =
2(Th − Tc)
3Th + Tc

, (5.22)

which just depends on the temperatures.

From the result in current chapter Eq. (5.17), the efficiency at maximal power η2 in

the Carnot limit and also tf → 0 can be written as

η2 =
2(Th − Tc)
3Th + Tc

,

which coincides with Eq. (5.22).
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5.4 Optimization under different constraints

In the previous section, we have investigated the optimization problem (5.11), however, the

constraint Σ(t) ≥ σ2
min may not be easily implemented in some sense. In this section, we

will focus on maximizing power under different constraints, which are technically easier to

implement.

Problem 1: Bounded on the intensity of the potential q(t)

P∗qmax
= max

q
{P [q], s.t. Σ(t) solves (5.8), q(0) = q(tf ),Σ(0) = Σ(tf ), q(t) ≤ qmax} ,

(5.23)

Corollary 5.4.1. Consider the over-damped Langevin dynamics (5.1) under the temperature

profile (5.4). Then, the optimization problem (5.23) satisfies the upper-bound:

P∗M ≤
kBTcqmax

16γ
(
Th
Tc
− 1)2Var(α). (5.24)

Proof. There exists time t0 such that Σ(t0) = Σmin, where Σmin is the smallest value of

Σ(t), t ∈ [0, tf ], then

Σ̇(t0) = 0,

which gives

qmaxΣmin ≥ q(t0)Σmin ≥ kBTc,
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then

Σ(t) ≥ Σmin ≥
kBTc
qmax

,

substitute into (5.12) gives

P∗M ≤
kBTcqmax

16γ
(
Th
Tc
− 1)2Var(α).

Next, we will consider optimization under the constraint of control input as follows.

Problem 2: Bounded on the gradient of the potential

P∗M = max
q

{
P [q], s.t. Σ(t) solves (5.8), q(0) = q(tf ),Σ(0) = Σ(tf ),

1

γ
E{‖∇U‖2} ≤M

}
.

(5.25)

Corollary 5.4.2. Consider the over-damped Langevin dynamics (5.1) under the temperature

profile (5.4). Then, the optimization problem (5.25) satisfies the upper-bound:

P∗M ≤
M

16
(
Th
Tc
− 1)2Var(α). (5.26)

Proof. The constraint on the gradient potential given in Eq. (5.25) can be written as follows

with quadratic potential U(t, x) = 1
2
q(t)x2

1

γ
q(t)2Σ(t) ≤M. (5.27)

There exists time t0 such that Σ(t0) = Σmin, where Σmin is the smallest value for Σ(t), t ∈
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[0, tf ], then

Σ̇(t0) = 0,

which gives q(t0)Σmin = kBT (t0) ≥ kBTc, then

q(t0)2Σ2
min ≥ k2

BT
2
c ,

together with the constraint q(t0)2Σmin < γM giving

k2
BT

2
c ≤ q(t0)2Σ2

min ≤ γMΣmin,

then

Σ(t) ≥ Σmin ≥
k2
BT

2
c

γM
,

substitute into (5.12) gives

P∗M ≤
M

16
(
Th
Tc
− 1)2Var(α).

5.5 Numerical verification

In this chapter, we will verify our results for:

α(t) = cos(ωt).
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Through the illustrating example of a sinusoidal temperature profile, we compare the results

obtained in the linear response regime in Chapter 4 with the ones obtained in the present

chapter. In particular, we consider a temperature profile of period tf = 2π
ω

given by

T (t) =
Th + Tc

2
+
Th − Tc

2
cos(ωt).

First, we plot the optimal protocols obtained in each of the frameworks, along with the

temperature profile in Figure 5.1, which shows that the optimal control law obtained in Eq.

(5.13) coincides with the one obtained in the linear response regime in Chapter 4 when the

difference between Th and Tc is small. Next, we numerically solve the full Langevin equation

with the optimal protocol in each of frameworks to get power output, which are compared

with the upper bound Eq. (5.12) of the maximal power that can be drawn from continuous

and periodic heat bath for different temperatures together. The results of this analysis are

portrayed in Figure 5.2, and the model parameters used to obtain the numerical result are

presented in Table 5.1.

Notation vs. value notation value
Boltzmann constant kB 1
viscosity coefficient γ 1

period tf 0.6
minimal variance σ2

min 0.6

Table 5.1 – Parameters selected in the simulations.
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Figure 5.1 – Protocol for the sinusoidal temperature T (t) = Th+Tc
2

+ Th−Tc
2

cos(ωt): The solid
line in blue is the protocol Eq. (5.13), while the dotted line in magenta is the protocol Eq.
(4.21) in Chapter 4 when Th − Tc is small.

5.6 Conclusion and Remark

The present work focused on quantifying the maximal power that can be drawn from thermo-

dynamic processes driven by the heat bath with periodic and continuous temperature profile.

The motivation comes from the fact that biological processes in our nature rarely conforms

to the setting of Carnot’s cyclic contact with alternating heat baths, or the physics of the

thermocouple with a stationary thermal gradient. Instead, it is the periodic fluctuations in

chemical concentrations in conjunction with the variability of electrochemical potentials that

provide the universal source of cellular energy. The framework is based on stochastic ther-

modynamics, which allows quantifying energy and heat exchanged by individual particles

in a thermodynamic ensemble, to be subsequently averaged, so as to quantify performance

of the thermodynamic as a whole. A universal and meaningful bound is derived, which is
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Figure 5.2 – The power output compared in different settings: The solid line in blue is the
power obtained by using the protocol Eq. (5.13) with T (t) = Th+Tc

2
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2
cos(ωt), and the

dotted line in magenta is the one obtained by using the protocol Eq. (4.21) in Chapter 4,
while the dashed line in red is the upper bound in Eq. (5.12).

proportional to the average fluctuations in the temperature profile.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

In this dissertation, we focused on quantifying the maximal power that can be drawn from

a thermodynamic heat engine that is periodically in contact with a heat reservoir and is

modeled by stochastic overdamped Langevin dynamics driven by a time dependent potential

that can be externally controlled. The framework that the work is based on is that of

Stochastic Thermodynamics [9–13], from which fresh approaches have pointed at general

laws applicable to non-equilibrium systems. The new advances appear to bridge the gap

between theory and practice in that they lead to physically meaningful expressions for the

dissipation cost in operating a thermodynamic engine over a finite time window. They allow

quantifying energy and heat exchange by individual particles in a thermodynamic ensemble,

to be subsequently averaged, so as to quantify performance of the thermodynamic process

as a whole.

In Chapter 3, we considered the maximal power drawn from a Carnot-like heat engine oper-

ating by periodically alternating contact with two heat reservoirs. A physically reasonable
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bound is derived, which is shown to be reached within a specified factor, both depending on

the ratio Th/Tc of the absolute temperatures of the two heat baths, hot and cold, respec-

tively. The present work is quite distinct from earlier that are restricted to Gaussian states

and quadratic potential. Conditions that suggest non-physical conclusions are highlighted,

and a suitable constraint on the controlling potential is brought forth that underlies our

analysis.

Motivated by the biological processes in nature that undergo a continuously changing tem-

perature profile, instead of abrupt change in the Carnot cycle mode, Chapter 4 considers

quantifying the maximal power that can be drawn from the thermodynamic heat engine

periodically driven by a heat reservoir with sinusoidal temperature profile, and seek to de-

termine the control law that maximizes the power. The analysis of the maximal power, and

of efficiency at maximal power, is given in the linear response regime and shows that the

optimal control law is sinusoidal function just as the temperature profile, but with different

phase. Interestingly, the efficiency at maximal power just depends on the ratio of upper and

lower bound of the sinusoidal temperature profile. The results are numerically verified via

the Fourier analysis.

In Chapter 5, we studied the problem of quantifying the maximal power that can be drawn

from a thermodynamic heat engine that is periodically driven by a heat reservoir with con-

tinuous temperature profile in general. We give an upper bound of the power that any heat

engine can achieve under these conditions. The results are numerically verified by the special

case of sinusoidal temperature profile.

In the past few decades, there have been several attempts to quantify efficiency mainly,

but also power, of thermodynamic processes. It is fair to say that there has been neither

a consensus on the type of assumptions that have been used by previous authors, and nor

full consistency of the results. This is to be expected, since finite-period operation and

finite-time thermodynamic transitions require substance/engine-dependent assumptions to
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capture the complexity of heat transfer in non-equilibrium states. Thus, estimated bounds

may never reach the “universality” of the celebrated Carnot efficiency. They are expected to

provide physical insights and guidelines for engineering design. Thus, it is imperative that

these estimates be subject to experimental testing. The notable feature of our conclusions as

compared to earlier works is that: (1) For the Carnot heat engine, the expressions we derive

are given in the form of the ratio of absolute temperatures–a physically suggestive feature.

(2) For periodically and continuously driven thermodynamic engine, we give the universal

upper bound of the maximal power that the heat engine can achieve.

6.2 Future work

The present work follows a long line of contributions within the control field to draw links

between thermodynamics and control, see e.g. [70–75]. There is a wide range of possible

applications as well as extensions of the theory that lay ahead.

� Underdamped description for the Carnot-like thermodynamic engine

The Wasserstein distance of optimal mass transport, which itself is a solution to a

stochastic control problem, has been linked to the dissipation mechanism in stochastic

thermodynamics [11,51–54]. Indeed, the Wasserstein metric takes the form of an action

integral and arises naturally in the energy balance of thermodynamic transitions. This

fact has been explored and developed for the overdamped Langevin dynamics studied

herein. Whether similar conclusions can be drawn for underdamped Langevin dynamics

remains an open research direction at present. Furthermore, much work remains to

reconcile and compare alternative viewpoints and models for thermodynamic processes

including those based on the Boltzmann equation.

� Optimal performance in Stirling engines, thermocouples, and biological processes.

99



It is an open question whether methods similar to those in Chapter 3 can be used

to study the optimal performance of Stirling engines, thermocouples, and biological

processes.

� Optimal performance in the nonlinear regime

In Chapter 4, we studied the optimal performance of the sinusoidally driven heat engine

and determined the control law in the linear response regime. While in Chapter 5 we

obtained a universal upper bound for the maximal power that can be extracted in

general and a respective optimal control law for a special case, derivation of optimal

control laws in the nonlinear response regime still remains open.
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