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RESEARCH ARTICLE

Relating Cortical Atrophy in Temporal Lobe
Epilepsy with Graph Diffusion-Based
Network Models
Farras Abdelnour1*, Susanne Mueller2, Ashish Raj1

1Radiology, Weill Cornell Medical College, New York, New York, United States of America, 2 Radiology,
University of California San Francisco, San Francisco, California, United States of America

* faa2016@med.cornell.edu

Abstract
Mesial temporal lobe epilepsy (TLE) is characterized by stereotyped origination and spread

pattern of epileptogenic activity, which is reflected in stereotyped topographic distribution of

neuronal atrophy on magnetic resonance imaging (MRI). Both epileptogenic activity and

atrophy spread appear to follow white matter connections. We model the networked spread

of activity and atrophy in TLE from first principles via two simple first order network diffusion

models. Atrophy distribution is modeled as a simple consequence of the propagation of epi-

leptogenic activity in one model, and as a progressive degenerative process in the other.

We show that the network models closely reproduce the regional volumetric gray matter

atrophy distribution of two epilepsy cohorts: 29 TLE subjects with medial temporal sclerosis

(TLE-MTS), and 50 TLE subjects with normal appearance on MRI (TLE-no). Statistical vali-

dation at the group level suggests high correlation with measured atrophy (R = 0.586 for

TLE-MTS, R = 0.283 for TLE-no). We conclude that atrophy spread model out-performs the

hyperactivity spread model. These results pave the way for future clinical application of the

proposed model on individual patients, including estimating future spread of atrophy, identi-

fication of seizure onset zones and surgical planning.

Author Summary

Medial temporal lobe epilepsy is the most common form of focal epilepsy. In this work we
investigate two models describing the dynamics of epilepsy. In the first model the extra-
hippocampal spread of seizure activity is primarily responsible for the apparent topo-
graphic distribution of atrophy. The second hypothesis is that loss of hippocampal
neurons leads to remote deafferentation followed by gradual and progressive neuronal loss
in connected regions. Impoverishment of hippocampal connections can lead to reduced
complexity of remote circuitry. The purpose of this work is to develop network theoretic
models of regional atrophy dynamics resulting from each of the above hypotheses, and to
statistically determine which model is a better descriptor of the spatial patterning of real
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TLE atrophy. Both models are based on simple graph theoretic models of influence spread
as a network diffusion process, enacted on the brains structural connectivity network.

Introduction
Mesial temporal lobe epilepsy (TLE) is the most common form of focal epilepsy, and is charac-
terized by seizure focus in the mesial temporal lobe from where it can spread into other neocor-
tical regions. Based on their aspect on the structural MRI and histopathology, two subtypes of
TLE are distinguished. One that is characterized by prominent hippocampal atrophy or
mesial-temporal sclerosis (TLE-MTS) and one where the hippocampus appears completely
normal (TLE-no). In both cases, new morphometric analysis using MRI shows consistent evi-
dence of extra-hippocampal and extratemporal atrophy [1–6]. It is shown by Coan et al that
atrophy progression in temporal lobe epilepsy depends on lateralization [7]. In a related work,
it is observed that patients with TLE show progressive neocortical damage, likely a result of sei-
zures [8]. Atrophy distributions appear to vary significantly, and both widespread [9] and
restricted distribution of gray matter (GM) atrophy [4, 10] have been observed in TLE subjects.
In most cases however, damaged regions tend to be functionally and anatomically connected to
the hippocampus and other medial temporal structures [3, 11–13].

Thus, both epileptogenic activity and gross atrophy in epilepsy establish themselves at net-
worked sites, and appear to spread along fiber pathways. However, it is not clear whether activ-
ity or atrophy is the propagating event, and two hypotheses have been proposed. First, seizure
activity is the primary propagating quantity, and neuronal damage results from excitotoxicity
[14]. In this view, the extrahippocampal spread of seizure activity is primarily responsible for
the apparent topographic distribution of atrophy [11, 13, 15]. Although atrophy in all regions
might worsen with time, there is no progressive outward spread of atrophy. The medial tempo-
ral and limbic structures have important connections to each other and to the hippocampus;
these connections provide significant feedback mechanisms [16], leading to the spread of ini-
tially local epileptogenic activity to widespread connected regions. The process of neuronal
death secondary to sustained hyperactivity is not fully understood, but likely involves mutual
inter-cortical trophic exchanges, ultimately leading to long-lasting remodeling of brain net-
works [17]. Once epileptogenic activity is established in a region, over time it causes local atro-
phy via a complex cascade of neurobiological events [18], a process called excitotoxicity. The
close correspondence between the sites of epileptogenic activity and atrophy patterns observed
in TLE patients described above supports this hypothesis. The second hypothesis is that loss of
hippocampal neurons leads to remote deafferentation followed by gradual and progressive
neuronal loss in connected regions. Impoverishment of hippocampal connections can lead to
reduced complexity of remote circuitry [9]. The processes leading up to remote atrophy are
also complex, and several mechanisms have been suggested [19]. Studies of the temporal and
spatial sequencing of epilepsy and regional atrophy suggest that brain atrophy is a dynamic
process that progresses over time [20]. In support of this hypothesis, it was noted that seizure
spread and atrophy are unrelated [21], while white matter fiber integrity was correlated with
remote atrophy [9]. Hence, the spread of both activity and atrophy are partially supported by
prior studies, and a definite consensus eludes the field. The medial temporal lobe is highly con-
nected and either case could theoretically lead to significant temporal atrophy. Since both
modes of spread involve the anatomic connectivity network of the brain, a purely phenomeno-
logical or statistical analysis would not be able to disambiguate between them, as both would
estimate similar topography, at least in the vicinity of the hippocampus. However, the brain-
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wide topography estimated by the two models are sufficiently distinct to allow quantitative dis-
ambiguation between the two, but this would require quantitative network modeling (see sub-
sections Model I: Spread of Epileptogenic Activity and Model 2: Spread of Atrophy via
Progressive Degenerative Process under Materials and Methods section).

The purpose of this paper is to develop network theoretic models of regional atrophy
dynamics resulting from each of the above hypotheses, and to statistically determine which
model is a better descriptor of the spatial patterning of real TLE atrophy. Both models are
based on simple graph theoretic models of influence spread as a Network Diffusion (ND) pro-
cess, enacted on the brain’s structural connectivity network whose nodes correspond to GM
regions (obtained from atlas-based parcellation of T1-weighted MRI) and edges correspond to
WM tracts between them (obtained from diffusion tensor imaging, DTI, followed by fiber trac-
tography). The first model captures the network-centric spread of epileptogenic activity, using
a recently developed network model of the spread of functional activity in brain networks [22].
Regional atrophy is treated as a simple consequence of established patterns of epileptic activity.
This model only considers the time-averaged propensity of a region of experiencing epileptic
activity, hence it does not preclude different patterns of seizure activity at different times in the
same individual. The second model captures the spread of atrophy as a progressive degenera-
tive process resulting from deafferentation. We show that this too can be adequately modeled
by a very similar ND process, with the critical difference from the first model being that an ini-
tial atrophy seed is needed, putatively hippocampus in TLE-MTS, followed by a time-resolved
progression of atrophy into distal regions. Epileptogenic activity does not enter this model, and
deafferentiation is the primary propagating event. A similar model was employed to capture
the spread of neurodegeneration in dementias [23]. Note that the complex neurobiology of
excitotoxicty and remote degeneration cannot be tested using these macroscopic graph theo-
retic models. Our main contribution is to mathematically encode two competing but equally
plausible mechanisms of spread, and show that they have differential macroscopic conse-
quences which can be rigorously tested using imaging data alone, without requiring electro-
physiology data. It is of course possible and likely that both excitotoxicity and deafferentation
occur concomitantly in the same epileptic brain; this study is not designed to separate these
two effects in an individual, but to judge, from group data, which of these two mechanisms
plays a dominant role in the entire TLE population.

We tested the two models using group level atrophy distributions observed in two TLE
cohorts: a) non-lesional temporal lobe epilepsy with mesial temporal sclerosis, and b) non-
lesional temporal lobe epilepsy with no MRI-visible mesial temporal sclerosis. We show that
while both models mimic group-level measured atrophy distribution, the (remote degenera-
tion) spread-of-atrophy model performs better than the spread-of-activity model in both TLE-
no and TLE-MTS groups. The study cohort, like the disease itself, contains considerable inter-
subject variability, hence group-level tests will not be valid at the individual level. However, our
purpose is not to apply this approach to individuals, but only to test which of two network
models is better supported by group level data reflecting the relative involvement of different
brain regions in the TLE population as a whole. Other potential etiologies of TLE atrophy unre-
lated to the network, including pre-existing conditions such as subtle cortical malformation
microdysgenesis [24] or genetic variants that could be associated with specific atrophy patterns,
are not considered in this study.

Results
Computing the t-statistics between the TLE-MTS and TLE-no groups reveals no significant
difference in atrophy, with some regions reaching significance threshold ±2std with the
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exception of the ipsilateral hippocampus, which is characteristic of TLE-MTS. Fig A in the S1
Text gives the t-statistics between the two groups and highlights the regions nearing signifi-
cance. We fit the two proposed models, spread-of-activity (Model 1), and spread-of-atrophy
via a progressive degenerative process (Model 2), to the two epilepsy subtypes (TLE-MTS and
TLE-no). TLE subjects were grouped into ipsilateral and contralateral, by side-flipping one
group, so that all patients had the epileptogenic focus on the left side, henceforth called the
“ipsilateral side.” All named regions are understood to be from the ipsilateral side, unless other-
wise specified. In all figures, the lobes are colored for ease of reading as follows: blue = frontal
lobe, magenta = parietal lobe, red = occipital lobe, green = temporal lobe, cyan = cingulate
structures, and black = subcortical structures. In this work, ventral diencephalon (VDC) refers
to a group of structures that usually cannot be discriminated in standard T1-weighted images.
The region includes the hypothalamus, mammillary body, subthalamic nuclei, substantia
nigra, red nucleus, lateral geniculate nucleus, and medial geniculate nucleus. All eigen-modes
ui are ordered by the increasing associated eigenvalues such that u1 and u86 correspond respec-
tively to the smallest and largest eigenvalues.

Measured atrophy is defined as the t-statistics obtained from the volumetrics of healthy
group and each epileptic group, TLE-MTS and TLE-no, see Analysis Outline subsection for
details. In this work model analysis is performed only at group level, individual subjects are not
considered. In the case of Model 1 (spread of epileptic activity), both epilepsy types were bilat-
erally seeded in all temporal regions, followed by the evaluation of the model (Eq (10)) using a
progressively increasing number of eigen-modes indexed by the corresponding eigenvalues
ordered from smallest to largest, and the vector x0 has ones for the components corresponding
to the temporal lobes of both hemispheres, and zero everywhere else. This model does not sup-
port systematic seeding of individual regions, since it is given in terms of brain-wide eigen-
modes of the network. For each subset of the Laplacian eigen-modes the correlation R between
the resulting atrophy estimate and the measured atrophy is computed. In Model 2 (atrophy via
degenerative process) one node is seeded at a time, then as the diffusion into the network (t in
Eq (14)) progresses, the correlation R between the empirical and the estimated atrophy is com-
puted over a range of t. The estimated atrophy is then obtained from the t yielding the highest
R. The process is thus repeated for all seed nodes. For example, the hippocampus is seeded,
then the seed diffuses into the structural network as per Eq (14) as a function of t. The pattern
yielding the highest R with the empirical atrophy is then used as the cortical atrophy estimate
predicted atrophy. Thus, the results fromModel 2 cover all regions, in turn, acting as seeds,
and each such experiment is evaluated independently.

TLE-MTS
The TLE-MTS measured atrophy reflected in Fig 1(a) indicates, as expected, pronounced atro-
phy in the hippocampus, with less marked atrophy ipsilaterally in pars orbitalis, amygdala,
VDC, pallidum, thalamus and inferior temporal gyrus. Contralateral temporal pole, transverse
temporal gyrus, entorhinal cortex (ERC) and pars opercularis also reveal some atrophy.

Model 1: Spread of epileptogenic activity. To evaluate this model (F1, Eq (10)), an initial
seeding of epileptogenic activity is needed but unknown a priori. However, since the subjects
are TLE we can safely assume that a temporal region is involved. To maintain generality and
reduce bias, we will simultaneously seed all temporal regions in both hemispheres, and evaluate
the summation in Eq (10) accordingly, for 2� N� 86 terms successively. Fig 1(b) gives the
Pearson correlation R of F1 and the empirical atrophy of TLE-MTS patients for each N. At
N = 5 we observe the first, most substantial uptick in R. The best match is found at N = 68, giv-
ing R = 0.394 (p = 1.7 × 10−4). Using additional eigen-modes yields a small change downward
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in R, with R = 0.386 (p = 2.4 × 10−4) when N = 86 (Fig 1(b)). The largely monotonous increase
of the R vs. N curve suggests that each eigen-mode makes an incremental but positive contribu-
tion to the accuracy of the model, but with diminishing returns coming from higher eigen-
modes. Fig 1(c) gives the estimated atrophy distribution with N = 68 summation terms. The
estimate indicates a strong peak at the hippocampus, followed by the thalamus and the amyg-
dala. The model generally succeeds in capturing stereotyped MTS atrophy in ipsilateral regions,
particularly in the temporal and frontal lobes. Most interestingly, it recapitulates the central
and prominent role of the hippocampus in TLE-MTS based only on network eigen-modes.

From Fig 1(b), the first eigen-mode to contribute meaningfully to the atrophy estimate is u5,
with R = 0.01 (p = 0.94) when only eigen-modes u2–4 are used, and R = 0.198 when u5
(p = 0.07) is added. In fact, u5 shows a good similarity with measured t-statistics, with a bias for
subcortical regions (Fig 2(a), with the largest coefficients of ju5j and corresponding regions
listed in Table 1). In order to assess the contribution of individual eigen-modes to the model,
Fig 2(c) gives the correlation R of the individual eigen-modes and the measured atrophy.
Eigen-mode u5 yields R = 0.268 (p = 0.01), while u68 gives R = 0.469 (p = 5.4 × 10−6).

Fig 1. (a) TLE-MTS atrophy distribution. As expected, the hippocampus has the highest atrophy, consistent with TLE-MTS. (b) Pearson correlation R
betweenΦ1 and measured atrophy vs. the number of eigen-modes used. Peak R is reached when eigen-modes u2–68 are used. (c) Atrophy distribution
estimated using Model 1 using eigen-modes u2 – u68. Model 2: (d) Correlation R obtained when each node is seeded (modelΦ2). The highest R is obtained
when the hippocampus is seeded. (e) R vs. graph diffusion depth. Hippocampus seeding leads to the highest R is obtained at t = 5.56, followed by amygdala
and the hypothalamus. (f) Estimated TLE-MTS atrophy obtained fromModel 2 when the hippocampus is seeded.

doi:10.1371/journal.pcbi.1004564.g001
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Fig 2. Model 1: Atrophy distribution via exitotoxicity. (a) Eigen-mode u5 captures the essentials of estimating network diffusion from the Laplacian’s
eigen-modes for TLE-MTS when the ipsilateral hippocampus is seeded. (b) Eigen-mode u2 recovers features of the TLE-no when the temporal lobe is
bilaterally seeded. (c) Plot of R vs the eigen-mode index for TLE-MTS when each eigen-mode ui is correlated with the group atrophy. (d) Plot of R vs. the
eigen-mode index for the TLE-no when eigen-modes ui are each correlated with the group atrophy.

doi:10.1371/journal.pcbi.1004564.g002

Table 1. Eigen-modes ju5j and ju2j (Fig 2(a) and 2(b)), and their dominant regions (Model 1).

Eigen-mode u5 Eigen-mode u2

VDC-R 0.3170 Middletemporal-L 0.1844

VDC-L 0.3069 Superiortemporal-L 0.1803

Thalamus-R 0.2993 Inferiortemporal-L 0.1757

Thalamus-L 0.2804 Insula-L 0.1683

Hippocampus-L 0.2107 Fusiform-L 0.1682

Hippocampus-R 0.2058 Middletemporal-R 0.1671

Pallidum-R 0.1789 Insula-R 0.1660

Superiorfrontal-L 0.1639 Putamen-L 0.1655

Pallidum-L 0.1590 Superiortemporal-R 0.1673

Superiorfrontal-R 0.1584 Putamen-R 0.1625

doi:10.1371/journal.pcbi.1004564.t001
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Model 2: Spread of atrophy. Using Model 2, we estimate the distribution of network dif-
fusion estimate Eq (14) and at each individual node compute its Pearson correlation R (see
Materials and Methods section) against the TLE-MTS measured atrophy at all diffusion depths
t with 900 evenly spaced samples in the interval [0, 100], and 100 evenly spaced samples in the
interval [100.01, 500]. The process is repeated for all possible seedings, and the maximum R is
obtained for each seeding—as shown in Fig 1(d). Ipsilateral hippocampus seeding appears to
give the highest correlation, with R = 0.586 (p = 3.2 × 10−9), followed by the amygdala
(R = 0.423, p = 4.9 × 10−5) and the hypothalamus (R = 0.402, p = 1.2 × 10−4). Other prominent
candidate seed regions include thalamus, ERC and parahippocampal gyrus. In general the con-
tralateral hemisphere gives small R for all of its nodes (in the range [0, 0.114]). The behavior of
R versus diffusion depth t varies by seeding; some examples are shown in Fig 1(e) for three
strongest candidate seeds: hippocampus, hypothalamus (part of VDC) and amygdala. The ND
pattern obtained from hippocampal seeding of the model is shown in Fig 1(f).

Given that subcortical regions repeatedly show up as plausible seeds in our data and are
widely conjectured as epileptogenic foci in related literature, we investigated the effect of sub-
cortical seeding in more detail. We consider the network diffusions due to seeds located in the
ipsilateral subcortical nodes for both epilepsy types, listed in Table 2. The cerebellum shows the
weakest similarity R, suggesting secondary or insignificant involvement in seizure trigger or
propagation in the epilepsy network. The TLE-MTS column gives the highest correlation at the
hippocampus (R = 0.586), which is to be expected. High values for seedings at amygdala, thala-
mus and VDC indicates that these subcortical structures may have joint involvement in
TLE-MTS etiology, supporting previous studies [25].

TLE-normal
The measured atrophy of TLE-no, Fig 3(a), reveals pronounced atrophy broadly, bilaterally
distributed across cortical and subcortical regions, particularly in the frontal and temporal
lobes. The region with the highest atrophy is the contralateral transverse temporal gyrus, with
t-statistics of 3.74. Other regions with high atrophy include the contralateral precentral gyrus
(t-statistics 3.29) and the postcentral gyrus (t-statistics 3.45).

Table 2. Subcortical Pearson correlation R of the estimated atrophy and the t-statistics for both epi-
lepsy types. “Max” refers to the overall highest R and the corresponding region, all located in the ipsilateral
hemisphere.

TLE-MTS TLE-normal Mean

Cerebellum 0.124 0.181 0.153

Thalamus 0.372 0.216 0.294

Caudate 0.225 0.229 0.227

Putamen 0.251 0.229 0.240

Pallidum 0.323 0.243 0.283

Hippocampus 0.586 0.210 0.398

Amygdala 0.423 0.194 0.309

Accumbens 0.232 0.227 0.230

VDC 0.402 0.213 0.308

Mean 0.326 0.216

Max 0.586 0.243

Hippocampus Pallidum

doi:10.1371/journal.pcbi.1004564.t002
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Model 1: Spread of epileptogenic activity. We estimate F1 from the network’s eigen-

modes fuig86i¼1 as described in Eq (10). The initial configuration comes from seeding all regions
in the bilateral temporal lobes. Fig 3(b) gives the resulting Pearson correlation with the mea-
sured atrophy for the first N summation terms, 2� N� 86. R reaches a maximum at eigen-
mode u2, with R = 0.213 (p = 0.05), suggesting that eigen-mode u2 most closely approximates
the atrophy distribution depicted in Fig 3(a). Using additional eigen-modes does not improve
R, perhaps with the exception of eigen-mode u27, where we obtain R = 0.192 (p = 0.08). The
resulting estimated atrophy pattern is depicted in Fig 3(c), implicating temporal lobe regions
and the bilateral putamen. Due to the prominence of u2 in the above result, we investigated the
pattern produced by u2 in Fig 2(b), with the largest coefficients of ju2j and corresponding
regions listed in Table 1). The contribution of each individual eigen-mode to the TLE-no atro-
phy estimate is plotted against the eigen-modes’ index in Fig 2(d). As can be appreciated from
the figure, u2 gives one of the highest Pearson correlations (R = 0.213, p = 0.05), along with
eigen-modes u83 (R = 0.216, p = 0.05) and u85 (R = 0.222, p = 0.04) with comparable R values.

Model 2: Spread of atrophy. Pearson correlation analysis of the measured atrophy and
the estimated atrophy obtained fromModel 2 Eq (14) when seeded at each node is performed.
Fig 3(d) depicts the distribution of maximum R after seeding each region in turn, and suggests

Fig 3. TLE-no case, Model 1: (a) Cortical/subcortical atrophy obtained from t-statistics of epileptic and healthy groups’ volumetrics. (b) R vs. the number of
eigen-modes Eq (10) used for neuronal atrophy estimation. (c) Atrophy distribution estimated using Model 1 and eigen-modes u2 – u27. Model 2: (d)
Correlation R of group atrophy andΦ2 obtained when each node is seeded. (e) R vs. graph diffusion depth t. Left paracentral gives the maximum R, followed
by the left post central and the left frontal pole. (f) Neuronal atrophy estimate obtained fromModel 2 when the paracentral lobe is seeded.

doi:10.1371/journal.pcbi.1004564.g003

Relating Temporal Lobe Epilepsy Cortical Atrophy with Network Models

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004564 October 29, 2015 8 / 24



that in TLE-normal group, there is no strong evidence of prominent and stereotyped seeding.
While the obtained coefficients R for all seeds are comparable, a seed in the paracentral sulcus
(frontal lobe) gives the highest correlation (R = 0.283, p = 8.3 × 10−4). The postcentral gyrus
gives the second highest correlation, with R = 0.266 (p = 0.013). Fig 3(e) gives the curve of R vs.
diffusion time t when a seed is placed in the postcentral gyrus. The maximum R = 0.283 is
reached at t = 72.53. For comparison we also show R curves corresponding to other plausible
seedings: hippocampus, which, unlike MTS case, does not exhibit a pre-eminent role as seed
region; and contralateral transverse-temporal gyrus, which is probably an empirical aberration,
a view cemented by the anomalous R curve it exhibits. The estimated atrophy from the model
seeded at paracentral gyrus, evaluated at maximum R, is shown in Fig 3(f), and implicates sub-
cortical, temporal, frontal and parietal regions, in that order. Bilateral fusiform and middle
temporal gyri, inferior and superior temporal gyri, and the precentral gyrus stand out. We note
that the spread-of-atrophy model underestimates the atrophy in the occipital lobe and misses
the contralateral pars opercularis and precentral gyri in the frontal lobe. Whilst the contralat-
eral transverse temporal gyrus suffers a significant atrophy (Fig 3(a)), it appears to be largely
missed in the ND model (Fig 3(f)).

Referring to Table 2, we notice that for the TLE-no case the ipsilateral subcortical regions
caudate, putamen, pallidum, and the accumbens R coefficients are quite comparable with the
maximum R obtained in the paracentral gyrus. From this result it is difficult to assign a domi-
nant or focal onset zone. This underscores that the TLE-no group is not only heterogeneous in
its atrophy topography, but also in the site of epilepsy origin. This means that group level fit-
ting presented here has limited utility for the heterogeneous TLE-no case compared to
TLE-MTS, where the hippocampus was revealed as the strongest likely region of origin.

Models’ Accuracy
To visualize the possibility of outliers or anomalous distribution of points in both models, we
scatter plot the measured neuronal atrophy vs. its estimate for both models and both types of
epilepsy. Fig 4(a) and 4(b) give the scatter plots for the case of TLE-MTS Models 1 and 2
respectively. The Model 1 plot reveals more widely scattered points than in the case of Model 2,
where the model is more selective in its estimate of atrophy. This is also consistent with the
higher R obtained fromModel 2. Similar observations can be made for the TLE-no case, Fig 4
(c) and 4(d); while the plots are more scattered than in the TLE-MTS case above, Model 2 still
gives a more accurate estimate of the neuronal atrophy than Model 1. In order to further
explore the models’ sensitivity to outliers, Fig B in S1 Text gives the scatter plots of the empiri-
cal atrophy vs the logarithm of the estimated atrophy. The resulting R is computed for all four
cases. As reflected in the figure, Model 2 is once again superior to Model 1 for both TLE-MTS
(R = 0.400 vs R = 0.340, Figs. B(a) and B(b)), and TLE-no (R = 0.270 vs R = 0.170, Figs. B(c)
and B(d)).

Null Model
To rule out the possibility that the above results were obtained by chance, we predict a ran-
domly shuffled version of the measured atrophy for both types of epilepsy using both Models 1
and 2. For each model and each epilepsy type we run 1,000 iterations of randomly shuffled ver-
sions of the measured atrophy and compute the resulting R. For Model 1, in each iteration we
find R forF1 Eq (10) with the sum evaluated up to K with 2� K� 86. For Model 2, we evaluate
F2 Eq (14) over a range of t when the hippocampus is seeded (case TLE-MTS), and when the
paracentral sulcus is seeded (case TLE-no). For each iteration, the correlation R is computed in
a similar fashion to sections TLE-MTS and TLE-normal above.

Relating Temporal Lobe Epilepsy Cortical Atrophy with Network Models
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Fig 5 summarizes the findings. Fig 5(a) indicates the histogram resulting from the randomly
shuffled measured atrophy in the case of Model 1 and TLE-MTS. None of the shuffled atro-
phies achieved a correlation exceeding that obtained from the empirical measured atrophy
(R = 0.394). Similarly, measured atrophy randomization in Model 2 gives a histogram where
the measured atrophy has the highest R, Fig 5(b). The TLE-no case does not perform as well.
Fig 5(c) gives the histogram obtained in the case of Model 1. The measured atrophy has a cor-
relation of R = 0.213, with 57 randomly shuffled instances of the atrophy yielding higher R,
with a maximum R = 0.426. Nonetheless, only a small percentage of all iterations, 5.7% give
R> 0.213. Model 2 gives improved results, with only 8 random atrophy patterns having
R> 0.283 (0.8% of all iterations). The highest correlation obtained is R = 0.323. The fact that
all reported R values are at the extreme end of the null distribution conveys a strong suggestion
that the network is indeed a relevant modulator or atrophy in TLE. The fact that the reported R
statistic of Model 1, but not of Model 2, is only moderate in relation to the null histogram

Fig 4. Scatter plots for eachmodel and epilepsy type of the measured neuronal atrophy vs. the neuronal atrophy as estimated by the twomodels.
Empirical vs. estimated neuronal atrophy for the case of TLE-MTS; Model 1 (a), and Model 2 (b); and measured vs. estimated neuronal atrophy for the case
of TLE-no; Model 1 (c), and Model 2 (d). For both types of epilepsy, Model 2 outperforms Model 1.

doi:10.1371/journal.pcbi.1004564.g004

Relating Temporal Lobe Epilepsy Cortical Atrophy with Network Models

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004564 October 29, 2015 10 / 24



further cements our conclusion that Model 2 (degenerative spread) is a superior network
model than Model 1 (excitotoxicity spread).

Discussion
Understanding where an epileptic seizure originates, which regions undergo ictal and interictal
hyperactivity, how and where in the brain seizure activity causes atrophy are important ques-
tions in epilepsy research. Both effective models of seizure propagation as well as a thorough
understanding of how epilepsy induces cortical atrophy are lacking as of yet. A close corre-
spondence exists between the sites of pronounced hyperactivity and atrophy patterns [4, 26],
but two competing hypotheses can explain these findings: 1) hyperactivity propagates in

Fig 5. Histograms of R resulting from 1,000 instances of random permutations of the neuronal atrophy for each type of epilepsy and for both
models. From the histograms, the estimated neuronal atrophy is likely to be specific to the atrophies obtained from both epilepsy groups, more so in the case
of Model 2 where high R is obtained for both types of epilepsy. Histograms of R resulting from random permutation of neuronal atrophy, (a) TLE-MTSModel
1, (b) TLE-MTS, Model 2. Histogram of R resulting from TLE-no neuronal atrophy random permutation, (c) Model 1, and (d) Model 2.

doi:10.1371/journal.pcbi.1004564.g005
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connected brain regions and via local excitotoxicity causes atrophy [11, 13–15]; 2) excitotoxi-
city in the onset zone causes atrophy, which then propagates to connected regions via a deaffer-
entation and remote degeneration process involving a cascade of neurobiological events
leading to frank neuronal death [9, 19–21]. Existing neuroimaging studies are mixed [1–6, 9,
11, 13–15, 20], some finding support for one model, and some for the other. But quantitative
model-based testing of these competing views has not been reported previously.

In this paper we attempt such a study, by mathematically encoding each competing hypoth-
esis in terms of network spread, and testing them on measured atrophy data in TLE. The first
model captures the spread of epileptogenic hyperactivity as a network diffusion process, based
on the following assumptions: a) epileptogenic activity in epileptogenic regions induces a simi-
lar activity in distal but connected regions, b) this influence is stronger between highly con-
nected regions, c) once a region begins to experience epileptogenic activity, it can then act as a
seed for propagating this process to other regions, and d) atrophy is the excitotoxicity-driven
consequence of lifetime hyperactivity. EEG data lend strong support to this model. In TLE, par-
tial loss of consciousness, known as complex partial seizures, is induced by the hyperactivity
starting in temporal regions and spreading to wider brain networks, well past the ictal period.
While each patient and even seizures in the same patient can be different, recordings during
and after ictal activity frequently show progression of activity from medial to lateral temporal,
followed by orbitofrontal and frontoparietal regions [27]. In the extreme case, when ictal activ-
ity turns into a generalized seizure and reaches the contralateral temporal lobe, this can lead to
loss of consciousness [28]. While this process is complex and locally nonlinear, we expect that
its overall behavior can be grosso modo approximated by linear network-based dynamic models
driven by low-order differential equations. Such models are already popular in areas of signal
and image processing [29, 30], and have recently been applied to model the spread of func-
tional activity in brain networks [22]. The second model assumes that atrophy is caused by pro-
gressive deafferentiation, which is the primary propagating event, recapitulating classic
neurodegenerative progression along fiber tracts, via a complex neurobiological cascade, which
on a macroscopic scale is again simplified into a linear dynamic process.

Both quantitative network diffusion models developed here yield similar first order differential
equations constrained on the network, giving similar network dynamics, and each model has
only one degree of freedom, β or γ. Although this succeeds in reducing the complex spatio-tem-
poral dynamics of epileptogenic atrophy of each spread hypothesis to a highly parsimonious,
low-dimensional model, it also underscores the difficulty in disambiguating between them. Both
models give a strong resemblance to measured group level atrophy data from two TLE cohorts—
29 TLE-MTS subjects and 50 TLE-normal subjects. Due to its highly localized atrophy (ipsilateral
hippocampus), TLE-MTS yields the best atrophy estimation with high R, when seeded at the hip-
pocampus (Fig 1(d)–1(f)). However, both subtypes TLE-MTS and TLE-no show validation of
both models, whose estimates are significantly correlated with measured atrophy and appear to
be consistent with similar conclusions reached in the literature. On the whole, however, our data
favors the degenerative spread-of-atrophy model over the spread-of-activity model; in TLE-MTS:
R = 0.586 (hippocampal seeding, Model 2) versus R = 0.396 (u2–68, Model 1); in TLE-no:
R = 0.283 (paracentral gyrus seeding, Model 2) versus R = 0.213 (u2, Model 1). As described ear-
lier, a simple test of which model is better is whether the fit with real data peaks at an intermedi-
ate value of t or whether the fit is monotonically increasing in t, peaking at t =1. The behavior
of the R vs. t curves in Figs 1(e) and 3(e), is clearly not monotonic, instead peaking at intermedi-
ate values of t. This supports the above conclusion, that spread-of-atrophy (Model 2) is more
plausible than Model 1. We note that the prominence of paracentral gyrus as seed in TLE-no is
surprising; while epileptic seizures originating in this region are common and usually accompa-
nied by motor symptoms, they are not typically classified as TLE. Hence our result is most likely
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due to the extremely strong precentral atrophy seen in some of our TLE-no cohort, and/or the
strong connectivity between precentral and various subcortical structures. Indeed, subcortical
regions were found to act almost equally well as seed regions in our models (Table 2), which is
much more plausible. The models’ simplicity leads to a fast implementation with minimal
computational power. This study is meant as a proof of concept rather than as a clinical applica-
tion, hence its use of group atrophy rather than individual subject data. However, successful test-
ing of the presented network dynamic models could open the door to a number of potential
clinical applications on individual patients, including estimation of future atrophy, identification
of seizure onset zones and surgical planning.

Small Eigen-modes as Attractors and Modulators of Epilepsy
The brain graph’s Laplacians eigen-modes should be intuitively understood as sub-networks
within which an excitotoxicity-driven process would get “trapped” and reverberate. Network
eigen-modes are increasingly appearing in brain science; for instance, they act as attractors for
dementia pathology [23]. A description of the neuroscientific meaning of these eigen-modes,
as applied to brain activity spread, was given in our previous paper on this topic—see [22].

Our results support a somewhat speculative role of network eigen-modes in epileptic pro-
cesses, although we note that this study was not designed to explore this aspect in detail. Our
theory finds that atrophy (and activity) would be predominantly contained within a few small
spatially distributed but separate sub-networks of the brain, given by the eigen-modes of the
network Laplacian–Eqs (10) and (14). Closer inspection of selected small eigen-modes (Fig 2
(a) and 2(b)) reveals a compelling picture whereby u2 matches the spatial pattern of TLE-no
atrophy, and u5 matches TLE-MTS. Both eigen-modes are dominated by temporal, medial and
subcortical structures—precisely the regions that are most frequently associated with TLE. To
be sure, other eigen-modes also bear resemblance to atrophy data (Fig 2(c) and 2(d)), but due
to their large eigen-value they do not contribute significantly to either model.

The marked predilection of epilepsies to occur in medial temporal and subcortical regions is
well known, but poorly understood more than 60% of all epilepsies are of the temporal type,
and of those 80% have MTS (statistics from epilepsy.com). Why are certain regions especially
vulnerable to epileptic seizures, and why are the patterns of atrophy in certain epilepsies so ste-
reotyped? Given that seizures can in theory arise in any part of the brain (as they frequently do,
in frontal, parietal and other regions), that seizures frequently generalize outside of onset
zones, and sometimes even recruit the entire brain, the principle of parsimony would dictate
that epilepsies should recruit all regions equally. That this is not so suggests that vulnerable
structures enjoy a privileged location in the brain network. However, these regions do not
stand out in terms of degree, clustering, path length or other conventional network theory met-
rics. That small network eigen-modes consistently implicate these regions, which are central
actors in epileptogenic activity and atrophy, could provide a potential explanation for regional
and stereotyped predilection of TLE, and why it happens to be the most common variant of
focal epilepsy [25]. Thus, temporal, limbic and subcortical regions are located in a network
neighborhood that anchors some of the smallest network eigen-modes, which act as attractors
for epileptogenic activity or degenerative processes. This interpretation of small eigen-modes
was first put forward in [23] in the context of neurodegenerative disease modeling, and current
results suggest a similar, albeit speculative role in epilepsy.

Agreement with Prior Studies in TLE Atrophy
Similar to previous morphometric results [5, 31, 32], the spread-of-activity model (Model 1)
finds widespread atrophy in the ipsilateral temporal lobe (fusiform and parahippocampal). In
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addition to the regions outlined in [5] for TLE-MTS, Model 1 finds atrophy in the ipsilateral
middle temporal gyrus, lateral orbital frontal gyrus, and precentral and postcentral gyri. The
model also finds significant subcortical atrophy, particularly in the hypothalamus, amygdala,
and hippocampus. High atrophy is also found in the contralateral thalamus and hippocampus.
TLE-MTS atrophy is also widely reported in the frontal lobe [33] where it is proposed that
under certain conditions mesiotemporal epileptic activities would propagate through the thala-
mus to the frontocentral areas. Frontal and parietal regions play a crucial role in the evolution
of complex partial seizure [28], and Model 1 (but not Model 2) captures this, especially in lat-
eral orbitofrontal regions. On the other hand Model 2 reveals atrophy patterns chiefly in the
subcortical ipsilateral region, chiefly the hippocampus, amygdala, hypothalamus, and thala-
mus, all strongly implicated in epileptogenesis [5, 32]. An additional region captured by Model
2 (but not Model 1), is ERC (Fig 1(f)).

TLE-normal atrophy is known to be widespread bilaterally, with no apparent focus nor scle-
rosis visible on MRI [5, 34, 35]. Both network models give bilateral effects without a clear
focus. In this group, the progressive degeneration model is not as strongly supported as for the
MTS group, since the highest R from seeding various regions does not show a clear winner (Fig
3(d)). The most plausible seeds are precentral gyrus and frontal pole—neither being an espe-
cially prominent source of either seizure activity or atrophy in TLE. The progressive degenera-
tive model with precentral seeding largely agrees with previously published results [5, 34, 35],
with significant atrophy found in the ipsilateral inferior temporal gyrus, an epileptogenic focus
candidate [5]. Regions with significant estimated atrophy not reported in [5] include the con-
tralateral fusiform and the ipsilateral superior frontal gyrus. The latter node is structurally con-
nected with the ipsilateral putamen where the proposed network diffusion model estimates
high atrophy.

Relationship to Prior Work in Brain Network Analysis
This study is related to but distinct from conventional analysis of epilepsy networks [6, 17, 36–
39] or functional connectivity analyses [40–42]. Additionally, the effect of TLE on the struc-
tural network topology has been well studied, see for example [43–46]. Here our focus is in
developing models of networked spread from first principles, rather than obtaining descriptive
network statistics for epilepsy networks. The general class of network dynamics developed
here, network diffusion, is well known in the area of signal and image processing [29, 30]. For
example it has been used for image enhancement [29] using weighted graphs. In [30] the
authors propose an image smoothing method using heat kernel and weighted undirected net-
work. Bougleux et al consider discrete image smoothing and denoising on weighted graphs
using Laplacian operators [47]. Our laboratory was the first to develop diffusive dynamics
enacted on networks as a macroscopic model of the evolution of neurodegenerative brain dis-
eases like Alzheimer’s disease and other dementias [23]. However this does not imply any simi-
larity in pathophysiological mechanisms between dementia and epilepsy, two different disease
processes. The spread-of-activity model is based on our prior work on modeling the patterns of
functional connectivity in the brain [22], where we hypothesized that on a given structural net-
work, functional influences must travel along connected edges, and satisfy first-order diffusive
dynamics which are natural for this kind of influence propagation. The ability of a common
mechanistic network model to mimic disparate brain behaviors, from neurodegenerative
spread to functional correlations to epilepsy does suggest a striking convergence in the behav-
ior of large scale brain phenomena.
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Study Limitations and Future Work
Conceptually, the prime limitation of this study is that it assumes no cross-talk between the
two alternative models of spread, activity and atrophy—necessitated by the purpose of testing
which model “wins”. It is not known whether this is strictly accurate, and several reports sug-
gest evidence of interplay [9, 19–21].

However, we believe that a statistically sound first step mandates that the two mechanisms
be tested and judged separately before potential interplay can be realistically modeled. Addi-
tional effects such as developmental abnormalities may come into play. This however is always
an issue in any disease with a wide spectrum of causative factors, such as epilepsy. This should
not, and does not, reduce the utility of network modeling efforts as long as one can strongly
believe that the network is modulating the advance of disease, regardless of etiology. There is
no doubt that such is the case with epilepsy. We emphasize that the presented models cannot
address disease etiology or pathophysiology; its value lies in showing that the macroscopic
effect of network dynamics can largely explain the stereotyped patterns of atrophy in TLE,
regardless of individual subjects etiologic factors.

Another limitation is that while we model the spread of activity, we do not utilize
electrophysiological data to test this, instead relying on regional atrophy patterns. This too is
necessitated by the current goal of testing between competing models, but in the future it
would be desirable to explore the spatiotemporal dynamics of EEG recordings. For this work
the whole brain EEG data needed to achieve network modeling has proven exceedingly difficult
to acquire on our patients. Current connectome technology based on diffusion MRI and tracto-
graphy underestimates long-range connections, and is especially unreliable at estimating inter-
hemispheric connections and tracts passing through complicated neighborhoods, for instance
frontotemporal connections via the uncinate fasciculus and the connections between the limbic
system and orbitofrontal cortex. As a result the model’s estimated atrophy shows bias for ipsi-
lateral hemisphere and underestimates contralateral atrophy. Orbitofrontal cortex is strongly
connected to limbic structures and shows significant atrophy in both TLE-MTS and TLE-no
cases, but is underestimated by our models due to underweighted uncinate fasciculus connec-
tivity. Another limitation is that our models assume static connections and do not account for
change in connections due to alteration in activity or atrophy. Since this study involves mea-
sured atrophy, we could only include epilepsy subtypes TLE-MTS and TLE-no which have ste-
reotyped topography of atrophy. A preliminary investigation of cases of more heterogeneous
epilepsies gave inconsistent patterns amongst subjects as expected, and made the model corre-
spondingly non-informative. Hence proposed models may not be applied at group level to het-
erogeneous epilepsies.

Materials and Methods

Ethics Statement
This study was approved by UCSF’s IRB and written informed consent was obtained from
each subject according to the Declaration of Helsinki. Seventy nine patients suffering from
drug resistant TLE were recruited between mid 2005 and end of 2007 from the Pacific Epilepsy
Program, California Pacific Medical Center and the Northern California Comprehensive Epi-
lepsy Center, UCSF, where they underwent evaluation for epilepsy surgery.

Network Notation
In a brain network each node represents a GM region located on either the neocortex or in
deep brain subcortical areas. We define a network G ¼ ðV; EÞ with a set of N nodes given by
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V ¼ fvi j i 2 1; . . . ;Ng and a set of edges given by an ordered node pair E ¼
fði; jÞ j i 2 V; j 2 Vg [48]. Between any two nodes i and j there might exist an edge represent-
ing a fiber tract whose connectivity weight ci,j 2 [0,1) can be measured from the streamlines
of the dMRI tractography, and this defines a connectivity matrixC ¼ fci;j j ði; jÞ 2 Eg.
Although some individual neurons are known to be directional, dMRI does not allow measure-
ment of directionality. Major fiber bundles resolvable by dMRI, especially cortico-cortical path-
ways are generally bidirectional, having roughly equal number of connections in either
direction [49]. We define the connectivity strength or the weighted degree of a node i in this net-
work as the sum of all connection weights:

di ¼
X
jjði;jÞ2E

ci;j: ð1Þ

Table 3 describes the various parameters and variables used in this work.

Model 1: Spread of Epileptogenic Activity
We codify here, from first principles, the hypothesis that epileptogenic activity in the epilepto-
genic focus spreads outward following known anatomical pathways. What is described here is
a simple diffusion process, a model that applies to any spreading quantity. Here, that quantity
is brain activity, and we model how it would propagate along the structural network of the
brain. For an isolated GM region R1, the average activation signal over all its neurons x1(t) is
proportional to the number of hyperactive neurons per voxel. We assume a simple damped
system behavior, given by dx1(t)/dt = −βx1(t). This damped behavior is consistent with epilep-
togenic activity, which has a transient nature and dies away exponentially. Damping in such a
system may be assumed to arise from gradual loss of synchrony due to dephasing between neu-
rons. Damping behavior of this sort has a long history in brain signal modeling, especially in

Table 3. Summary of the variables and definitions used in this text.

Parameter or variable Role

G structural network of N nodes

V set of nodes of G

vi ith node of G

E set of edges of G

C structural connectivity matrix

ci,j element (i, j) of C

δi weighted degree of node i

L Laplacian of C

λi ith eigenvalue of L

ui ith eigen-mode of L

Δ diagonal degree matrix

β Model 1 diffusion rate

γ Model 2 diffusion rate

xi(t) hyperactive neurons in a given volume i

Vi number of voxels in ith region Ri

Φ1 atrophy spread due to excitotoxicity

yi(t) neuronal loss in the i region

Φ2 atrophy spread due to neuronal loss

doi:10.1371/journal.pcbi.1004564.t003
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neural mass approximations of neuronal assemblies [50], firing rate neural models [51], and is
ultimately governed by membrane time constant of leaky-integrate-and-fire neurons [52] in all
these exponential signal decay is the key component. Next consider a pair of cortical regions
R1 and R2, whose connectivity weight is c1,2. The number of hyperactive neurons in R2 is pro-
portional V2 x2, where V2 is the number of voxels in R2. Of these, the number of axonal projec-
tions from R2 to R1 is proportional to c1;2

1
d2
V2x2, where we divide the connectivity by the

weight of R2, δ2 (see Eq (1), to get a ratio. The proportion of neurons in R1 which experience a
hyperactive afferent from R2, assuming uniform mixing of afferents, is then given by
1
V1
c1;2

1
d2
V2x2. Our key assumption next is that each afferent hyperactive neuron is able to induce

hyperactivity in connecting neurons at a constant rate, modeled as a Poisson process. There-
fore, the rate of change in the number of R1 neurons which undergo hyperactivation secondary
to enervation by R2, after accounting for the internal (damped) dynamics of R1, is given by

dx1ðtÞ
dt

¼ b
1

V1

c1;2
1

d2
V2x2ðtÞ � x1ðtÞ

� �
ð2Þ

where we assume identical rate constant β for both the internal and external signals contribut-
ing to the dynamics of R1 for simplicity. For multiple afferents into R1, we modify this to

dxiðtÞ
dt

¼ b
1

Vi

X
j

ci;j
1

dj

VjxjðtÞ � xiðtÞ
 !

: ð3Þ

Assuming a previously proposed relationship between GM volume and degree given by Vk /ffiffiffiffi
dk

p 8k 2 V [22] we have

dxiðtÞ
dt

¼ b d
�1
2

i

X
j

ci;jd
�1
2

j xjðtÞ � xiðtÞ
 !

: ð4Þ

Expanding to include the entire network, Eq (4) can be expressed compactly as:

dxðtÞ
dt

¼ �bLxðtÞ; ð5Þ

where x(t) is an N × 1 vector describes the fraction of hyperactive epileptogenic neurons in all
brain regions, and the matrix L is the well-known symmetric and nonnegative definite network
Laplacian

L ¼ I � D�1=2CD�1=2; ð6Þ

where Δ is the diagonal degree matrix with the node degree δi as the ith diagonal element.
A closed form solution to Eq (5) is given by

xðtÞ ¼ exp ð�bLtÞx0: ð7Þ

Details of relevant network theory can be found in [48]. This describes the first order
dynamics of the spread of epileptogenic neuronal populations along brain networks, starting at
an initial configuration x0. The ND model above ismass conserving, entailing no increase of
hyperactivity overall, merely its distribution from focal loci to wider networks. This is appro-
priate for TLE, where ictal activity in medial temporal regions rarely generalizes systemically or
leads to a total loss of consciousness [28]. It is important to note that the time-scale of above
equations is related to neural signal transmission, measured in milliseconds.
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The spread-of-activity model assumes that atrophy in any brain region is the consequence
of excitotoxicity induced by lifetime epileptogenic activity in that region. The process of neuro-
nal death secondary to hyperactivity is not fully understood, and several processes have been
implicated, including trophic exchanges, remodeling of brain networks [17], and complex cas-
cade of neurobiological events [18]. At a macroscopic level, however, these complexities may
not be germane, and the overall accumulative effect on atrophy may simply be captured by:

F1 /
Z 1

0

xðtÞdt: ð8Þ

In this model, the stronger and more frequent the level of hyperactivity experienced by a
region, the more atrophy it will suffer. Although a full verification of the network diffusion
model of activity spread would require multi-channel ictal and interictal EEG measurements,
using the above model relating activity to atrophy we are able to circumvent this, and instead
utilize MRI-derived regional atrophy as the end measure of the model.

Due to integration to1, atrophy in this model does not explicitly depend on diffusion
depth t. Expanding Eq (8) in terms of Laplacian eigen-modes and exchanging the order of sum-
mation and integration:

F1 ¼
XN
i¼1

uiu
0
ix0

Z 1

0

e�bli tdt; ð9Þ

and where {λi} are the eigenvalues of the Laplacian matrix L, and {ui} are the corresponding
eigen-modes. Evaluating the definite integral above we obtain

F1 ¼
1

b

XN
i¼1

1

li
uiu

0
ix0 ¼

1

b
Lyx0; ð10Þ

where we consider only the terms with i> 1, since the first eigen-mode simply represents uni-
form activation of the entire brain, which is not relevant in TLE, which rarely displays general-

ized epileptogenic activity that recruits the entire brain. Ly refers to the interesting observation
that the above expression evaluates to the pseudo-inverse of L. Further, due to the 1

li
term, the

smallest eigenvalues have the most dominant contribution, thus the summation above is only
needed for the first few eigen-modes. In Results section, we evaluate the similarity between
measured atrophy patterns and F1 over varying number of eigen-components.

Model 2: Spread of Atrophy via Progressive Degenerative Process
This model assumes that rather than epileptic activity the process of progressive deafferenta-
tion is the propagating event, a process initiated at onset zones by excitotoxicity and other
causes, but which thereafter spreads throughout the brain network via remote degeneration.
Again, the complex neurobiological cascades leading to frank remote degeneration, involving
axonal reaction, inflammation, autophagy, oxidative damage, synaptic dysfunction, loss of tro-
phic support, anterograde and retrograde degeneration, and finally frank neuronal death [19]
are not attempted to be modeled here. Instead, we assume that on a macroscopic level, these
details are not germane, and that the overall behavior is governed by linear dynamics. Given
that degeneration is a result of slow processes which build up over time rather than act instan-
taneously, it is appropriate to model the local (to the region) degenerative dynamics set in
motion by a single event entailing loss of y01 neurons per voxel in an isolated region R1 via an
impulse response function, which is commonly used in linear systems theory to characterize
such non-instantaneous effects [53]. Since the exact shape of this impulse response is not
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known, we choose one of the simplest but most widely used plausible causal functions, given
by the exponential decay function y1ðtÞ ¼ y01expð�gtÞ, which simply encodes the expectation
that a single insult will cause further but non-instantaneous degeneration, persisting in the
region with a half-life of 1/γ. This corresponds again to a simple damped system behavior,
which may be written as dy1(t)/dt = −γy1(t). Next consider a pair of cortical regions R1 and R2,
whose connectivity weight is c1,2. In a short time interval δt, let the number of newly deceased
neurons in R2 be V2 y2, where V2 is the number of voxels in R2. This group of external newly
deceased neurons then cause degeneration in R1, modeled as a Poisson process in close analogy
to Model 1. Thus, accounting for both the internal and externally-induced atrophy dynamics
in R1, we have

dy1ðtÞ
dt

¼ g
1

V1

c1;2
1

d2

V2y2ðtÞ � y1ðtÞ
� �

ð11Þ

where we assume identical rate constant γ for both the internal and external atrophy dynamics
for simplicity. Since these equations are fully analogous to Model 1, on the entire network we
have

dyðtÞ
dt

¼ �gLyðtÞ; ð12Þ

where y(t) is an N × 1 vector describes the density per voxel of dying neurons in all brain
regions. Eq (12) admits a closed form solution yðtÞ ¼ expð�gLtÞy0, giving a time-dependent
process starting with initial “seed”map y0 at t = 0, and ending at a uniform distribution at t =
1. Since y(t) denotes the number of newly deceased neurons at any instant, the overall atrophy
during the degenerative process is given by the time integral

F2ðtÞ /
Z t

0

yðtÞdt; ð13Þ

which has a closed form solution

F2ðtÞ ¼
1

g

XN
i¼1

1

li
1� exp �glitð Þð Þuiu

0
iy0; ð14Þ

In contrast to F1, F2(t) can be viewed as a function of time, but here t has units of years rather
than milliseconds, since the model captures the slow spread of degenerating neurons. Since the
true time since onset is not empirically accessible in general, we will estimate t as the instant
tcrit when the theoretical pattern F2(t) best matches measured atrophy pattern in the subject.
Both tcrit and the rate constant γ are a priori inaccessible, and must be empirically determined
by data fitting. Seed vector y0 is known in the TLE-MTS case to a high level of confidence, since
prominent hippocampal sclerosis indicates a high likelihood that it is indeed the focus location.
Thus, we initialize y0 by a unit vector which is zero except for the element corresponding to the
hippocampus node which is 1.

Comparison between Model 1 and Model 2
Inspection of Eqs (10) and (14) reveals that they differ only in the indefinite integral over t;
consequently Model 1 is simply Model 2, evaluated at t =1. Thus, one simple test of which
model is better would be to determine whether the fit with real data peaks at an intermediate
value of t (Model 2 wins) or whether the fit is monotonically increasing in t, peaking at t =1
(Model 1 wins).
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Study Population
The epilepsy population consisted of 29 TLE-MTS subjects (mean age 39.79±10.77, left TLE/
right TLE 15/14, females/males 17/12). The presence of MTS in TLE-MTS was suggested by
hippocampal subfield volumetry using high-resolution T2-weighted images aimed at the hip-
pocampus. The TLE-no cohort consisted of fifty subjects (mean age 37.64±10.19, left TLE/
right TLE 20/30, females/males 27/23). The healthy control group had mean age 35.93±9.92
and females/males 45/16. Identification of epileptogenic focus was based on seizure semiology
and prolonged ictal and interictal video/EEG/telemetry (VET) in all patients. In this work non-
lesional epilepsy is defined as TLE with or without MTS but no other pathology detectable on
visual inspection, e.g. tumor, dysplasia, vascular or other malformation.

All imaging of epileptic subjects was performed on a Bruker MedSpec 4T system controlled
by a Siemens Trio TM console and equipped with an eight-channel array coil (USA Instru-
ments). The following sequences were acquired: (1) For cortical thickness and thalamus mea-
surements a volumetric T1-weighted gradient echo MRI (MPRAGE): TR/TE/TI = 2300/3/950
ms, 1.0 × 1.0 × 1.0mm3 resolution, acquisition time 5.17min. (2) For the measurement of hip-
pocampal subfields, a high-resolution T2-weighted fast spin echo sequence: TR/TE = 3500/19
ms, 0.4 × 0.4mm2 in plane resolution, 2mm slice thickness, 24 slices acquisition time of
5.30min. (3) For the determination of intracranial volume (ICV), a T2-weighted turbo spin
echo sequence: TR/TE = 8390/70 ms, 0.9 × 0.9 × 3mm3 nominal resolution, 54 slices, acquisi-
tion time of 3.06min.

Healthy Cohort (Connectome)
A cohort of normal subjects were collected jointly by Weill Cornell Medical College and the
Brain Trauma Foundation to create the normative connectivity information in the form of
tractograms, see [54] for details. Seventy three healthy subjects were used to create the norma-
tive connectivity information in the form of tractograms. T1-weighted structural and diffu-
sion-weighted MR images were collected on a 3T GE Signa EXCITE scanner (GE Healthcare,
Waukesha, WI). The High Angular Resolution Diffusion Images data were acquired with 55
isotropically distributed diffusion-encoding directions at b = 1000sec/mm^2 and one at
b = 0sec/mm^2, from 72 1.8mm thick interleaved slices (no slice gap) and 128 × 128 matrix
size, zero-filled during reconstruction to 256 × 256. Proposed and validated in Iturria-Medina
et al [55], the tractography algorithm implemented here incorporates tissue classification prob-
ability and orientation distribution information using Bayesian methods.

Analysis Outline
We define measured atrophy as the volumetrics t-statistics s obtained from a healthy group
and an epileptic group (TLE-MTS and TLE-no). We assume that the neuronal atrophy result-
ing from epilepsy is proportional to the cortical/subcortical volumetric change relative to
healthy brains. The two-sample t-statistic of the epileptic groups were computed relative to the
healthy control group. For two samples x and y of sizes n andm and with variances s2

x and s
2
y ,

the t-statistic is given by

s ¼ �x � �yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x
n
þ s2y

m

q ;

where �x and �y are respectively the means of x and y. In this work, x and y are the volumetrics
matrices obtained from the healthy group x and the epileptic groups y. The use of the t-statistic
between healthy and disease groups’ regional volumes in this manner is a well known and
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widely used surrogate for measuring atrophy at a regional level, and forms the basis for almost
all brain volumetric pipelines, e.g. [26, 31, 56].

We apply the network models described by Eqs (10), (14) on the Laplacian L of the 86
nodes mean structural connectivity of a population of healthy brains. In the case of the spread
of activity model, Eq (10), we bilaterally seed all of the temporal nodes (vector x0 of Eq (10) has
ones for the elements corresponding to both temporal lobes, and zero elsewhere). The atrophy

F1 is then computed over subsets of the Laplacian eigen-modes (1b
PK

i¼1
1
li
uiu

0
ix0, 1� K� 86)

until all eigen-modes have been exhausted. At each value of i, R between group atrophy and F1

is computed. The F1 with the highest R is taken as Model 1’s estimate of neuronal atrophy.
Regarding Model 2, atrophy via remote degeneration, a seed is placed at a given node, then

F2(t) Eq (14) is computed over a range of diffusion depth values t. At each value of t the corre-
lation of F2 with group atrophy at the given node is computed. The F2 with the highest R is
then Model 2’s estimated atrophy for the seeded node. The process is repeated for all nodes.
The F2 yielding the highest R of all nodes is the model’s estimate of the neuronal atrophy. In
this work we discard the correlation R obtained in less than three time points (t< 3) diffusion
since this does not allow the diffusion to propagate significantly into the Laplacian network. In
such cases, we choose instead the highest local maximum. We note however that all of the
obtained atrophy estimates result in R vs t curves with unique maxima with t> 2. The resulting
correlation curve generally takes on a bell shape, but occasionally exhibits local maxima or
even monotony, in which case we choose the time point corresponding to the highest one.
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