
Lawrence Berkeley National Laboratory
LBL Publications

Title
AMReX and pyAMReX: Looking Beyond ECP

Permalink
https://escholarship.org/uc/item/05h6j8zz

Authors
Myers, Andrew
Zhang, Weiqun
Almgren, Ann
et al.

Publication Date
2024-03-18

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/05h6j8zz
https://escholarship.org/uc/item/05h6j8zz#author
https://escholarship.org
http://www.cdlib.org/

AMReX and pyAMReX: Looking Beyond
ECP

Journal Title
XX(X):1–12
©The Author(s) 2024
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Andrew Myers1, Weiqun Zhang1, Ann Almgren1, Thierry Antoun1,2, John Bell1, Axel Huebl1,
Alexander Sinn3

Abstract
AMReX is a software framework for the development of block-structured mesh applications with adaptive mesh
refinement (AMR). AMReX was initially developed and supported by the AMReX Co-Design Center as part of the
U.S. DOE Exascale Computing Project, and is continuing to grow post-ECP. In addition to adding new functionality and
performance improvements to the core AMReX framework, we have also developed a Python binding, pyAMReX, that
provides a bridge between AMReX-based application codes and the data science ecosystem. pyAMReX provides zero-
copy application GPU data access for AI/ML, in situ analysis and application coupling, and enables rapid, massively
parallel prototyping. In this paper we review the overall functionality of AMReX and pyAMReX, focusing on new
developments, new functionality, and optimizations of key operations. We also summarize capabilities of ECP projects
that used AMReX and provide an overview of new, non-ECP applications.

Keywords
Adaptive mesh refinement; structured mesh/grids; particles; co-design; performance portability

Introduction

The AMReX software framework was initially developed as
part of the U.S. DOE Exascale Computing Project (ECP) to
support the development of block-structured adaptive mesh
refinement (AMR) algorithms for multiphysics applications
described by partial differential equations in simple or
complex geometries (Zhang et al. 2021). Block-structured
AMR uses a hierarchical representation of the solution at
multiple levels of resolution where the solution on each level
is defined on the union of data containers at that resolution.
These data containers, which represent the solution over a
logically rectangular subregion of the domain, can contain
field data defined on a mesh, Lagrangian particles or
combinations of both.

AMR reduces the computational cost and memory
footprint compared to a uniform mesh while preserving
accurate descriptions of different physical processes in
complex multiphysics algorithms. AMReX builds on
decades of development of the fundamental algorithmic
underpinnings of adaptive mesh refinement, going back to
work by Berger and Oliger (1984), Berger and Colella
(1989) and Almgren et al. (1998). There are also a number
of different open-source AMR frameworks; see the 2014
survey paper by Dubey et al. (2014) for a discussion of
these frameworks and references to both the frameworks and
application codes that use them.

The design of AMReX was informed by two major
factors. First, AMReX should be able to support a
wide range of multiphysics applications with different
performance characteristics without imposing restrictions
on how application developers construct their algorithms.
Careful consideration was given to separating the design of
the data structures and basic operations from the algorithms

that use those data structures. AMReX uses a layered
design that provides a rich set of flexible tools that can be
used by a wide range of applications. This layered design
allows application developers to interact with the software
at several different levels of abstraction. Applications can
simply use the AMReX data containers and iterators and
none of the higher-level functionality, both in stand-alone
AMReX-based codes and in non-AMReX based codes that
selectively use AMReX functionality. At an intermediate
level of functionality, applications can use the data structures
and iterators for single- and multi-level operations but retain
complete control over the time evolution algorithm, i.e.,
the ordering of algorithmic components at each level and
across levels. AMReX also provides developers the option to
exploit additional functionality in AMReX that is designed
specifically for AMR algorithms that subcycle in time.
This layer provides stubs for the necessary operations such
as advancing the solution on a level, correcting coarse
grid fluxes with time- and space-averaged fine grid fluxes,
averaging data from fine to coarse and interpolating in both
space and time from coarse to fine.

The other major factor influencing the AMReX design
was performance portability. Current HPC architectures
typically include some type of GPU accelerator. Achieving
high performance on these architectures requires efficient

1Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2Now with: CEA, Paris, France
3Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

Corresponding author:
Andrew Myers, MS 50A-3111, Lawrence Berkeley, National Laboratory,
Berkeley, CA 94720.
Email: atmyers@lbl.gov

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

ar
X

iv
:2

40
3.

12
17

9v
1

 [
cs

.D
C

]
 1

8
M

ar
 2

02
4

2 Journal Title XX(X)

utilization of the accelerator. However, different accelerators
have different capabilities and programming models.
To isolate applications from a particular architecture
and programming model without sacrificing performance,
AMReX introduced a lightweight abstraction layer that
effectively hides the details of the architecture from the
application. This layer provides constructs that allow the user
to specify what operations they want to perform on a block of
data without specifying how those operations are carried out.
AMReX then maps those operations onto the target hardware
at compile time so that the hardware is utilized effectively.
AMReX currently supports CUDA, HIP and SYCL for GPU
acceleration and OpenMP for multi-core CPU architectures.
AMReX-based applications have run successfully at scale
on some of the largest supercomputers in the world, each
of which utilizes quite different hardware: OLCF’s AMD
MI250X-based Frontier, NERSC’s NVIDIA A100 machine
Perlmutter, ALCF’s Aurora, which uses Intel Xe GPUs, and
Riken’s Fugaku platform, which uses ARM A64FX CPUs,
to name a few.

AMReX was successfully used by six of the ECP
applications to meet their performance / capability goals.
These applications represented a wide range of disciplines
and computational paradigms. The particle-in-cell code
WarpX (Vay et al. 2018; Fedeli et al. 2022) is used
for simulations of particle accelerators, beams and laser-
plasmas. The astrophysics code, Castro (Almgren et al.
2010; Almgren et al. 2020), uses high-fidelity explicit
algorithms for compressible flow in combination with self-
gravity and nuclear reaction networks. The cosmology code,
Nyx (Almgren et al. 2013), models compressible flow in
an expanding universe with self-gravity and a Lagrangian
particle representation of dark matter. The MFiX-Exa code
(Musser et al. 2022; Porcu et al. 2023) models multiphase
particle-laden flows with reactions and heat transfer effects
in complex geometries. The combustion codes, PeleC
(de Frahan et al. 2023), based on a fully compressible
formulation, and PeleLMeX (Esclapez et al. 2023), based
on a low Mach number formulation, model reacting flows
with detailed kinetics and transport in complex geometries.
The AMR-Wind code solves incompressible flow with
additional physics to model atmospheric boundary layers,
with coupling to an unstructured flow solver to model flow
around turbine blades (Sharma et al. 2024).

In addition to the ECP applications, AMReX is also
being used in applications ranging from beam dynamics
(ImpactX: (Huebl et al. 2022a)) and plasma wakefield
acceleration (HiPACE++: (Diederichs et al. 2022)) to
geophysical fluid dynamics (ERF (Almgren et al. 2023) for
atmospheres and REMORA for oceans) to epidemiology
(ExaEpi), to name a few. These new applications, in
combination with performance improvements and the
addition of new features for existing applications, are driving
the addition of new capabilities to AMReX.

In this paper, we focus on capabilities that have been
developed in the past four years. We first provide an
brief overview of AMReX. We then discuss a number of
enhancements to AMReX aimed at enabling new application
codes and improving performance, particularly on GPU-
accelerated architectures. Next, we discuss the python
binding, pyAMReX, that provides access to AMReX data

structures and operations from Python. Finally, we present
some conclusions and discuss future directions.

AMReX Overview
In this section, we provide an overview of the basic
capabilities of AMReX; we refer the interested reader to
Zhang et al. (2021) for details.

AMReX provides a set of data containers that can be
used to store structured mesh and particle data on distributed
memory systems. Although the focus is on supporting block-
structured AMR codes, AMReX’s flexible data structures
and functions for operating on these data are also useful for
building non-AMR applications.

The multi-dimensional array is one of the most
fundamental data structures used by many scientific
computing applications. AMReX is written in C++, which
does not have native multi-dimensional array support.
amrex::FArrayBox is an AMReX class for storing
multi-dimensional mesh data, with a Fortran-like syntax for
accessing the data. It holds the data for a logically rectangular
spatial region with its integer index bounds specified by
amrex::Box. The framework supports data that is cell-
centered, face-centered, edge-centered or nodal.

In AMReX, the spatial index is global, thus the lower
bounds of the array in FArrayBox do not need to be zero.
In fact, they can be negative, which is useful for applications
solving partial differential equations. For block-structured
AMR, the computational domain consists of multiple logi-
cally rectangular subdomains that are distributed among MPI
processes. amrex::MultiFab is a container for a col-
lection of FArrayBox objects that are locally owned. The
amrex::MultiFab also contains metadata for communi-
cation between MPI processes. The amrex::MFIter class
iterates over a amrex::MultiFab object in parallel, with
each MPI process iterating over the FArrayBox objects
it owns. amrex::MFIter also supports a logical tiling
option for cache-blocking and multi-threaded executation
with OpenMP.

AMReX also provides a amrex::ParIter class for
iterating over distributed particle data. Particles in AMReX
are associated with a grid and a level. (We note that even in
the absence of mesh data we do construct a mesh hierarchy
to organize the particles.) In general, particle data can be
stored in Array-of-Struct (AoS) style, Struct-of-Array (SoA)
style, or in some combination of the two. The original
implementation of particles in AMReX used AoS only. Later,
support for optional particle components stored in SoA style
was added, but the limitation that the required particle data
(positions and id numbers) be stored in AoS-style remained.

In addition to the basic data types, AMReX supports a
multilevel embedded boundary representation of complex
geometry; linear solvers for cell-centered and nodal data;
asynchronous I/O in a native format readable by ParaView,
VisIt and yt; mesh pruning; interfaces to hypre and
PETSc solvers; and level set functionality for particle-wall
interactions. In addition, the capability to use the bittree
(Dhruv 2024) algorithm for regridding has been added
recently.

As noted above, AMReX uses MPI for communication
between processes. Common communication patterns such

Prepared using sagej.cls

Myers et al. 3

as ghost cell exchange, copying data from one distribution to
another, and communication between AMR levels (including
interpolation, restriction, etc.) are created automatically
and cached for performance. AMReX also provide MPI
functionality for common global reduction operations
across MPI ranks. AMReX aggregates messages into
communication buffers to reduce latency.

New features and optimizations
In this section, we discuss new capabilities added to
AMReX to improve application performance and to
support new application codes. We particularly focus on
features added to support and improve the performance
of post-ECP applications, including ImpactX, ERF, ExaEpi
and REMORA, and on supporting the Python interfaces
described below.

Performance Portability
Many modern supercomputers are hybrid computing systems
built with both CPUs and GPUs, with the latter providing
most of the computing power. There are several different
GPU vendors and their GPUs have different architectures.
Programming for these heterogeneous systems is challenging
because there is no standard programming model for
all of these different GPU architectures. To facilitate
heterogeneous programming for AMReX applications and
for our own development of AMReX, we have created a
performance portability abstraction layer, which is built upon
the native solutions provided by the vendors. That is, we
use CUDA, HIP and SYCL for NVIDIA, AMD and Intel
GPUs, respectively. AMReX’s portability layer is similar to
those provided by Kokkos (Edwards et al. 2014) or RAJA
(Beckingsale et al. 2019) but tailored to the needs of block-
structured AMR applications.

AMReX provides a construct, amrex::ParallelFor,
for launching a GPU kernel looping over a one- or multi-
dimensional iteration space. Listing 1 shows an example
of using ParallelFor on three MultiFab objects. The
example code runs on CPUs and all major GPUs. On
multicore CPU architectures, we decompose the loops over
the individual FArrayBox’s into logical tiles to enable
OpenMP parallelism and improve cache performance. The
tile size is specified at runtime in the inputs file and can also
be set to different values for different loops.

Here, the data type of a, b and c is amrex::Array4,
which is a lightweight alias to FArrayBox. Unlike
FArrayBox, this non-owning data structure can be used in
GPU kernels. The separation of data ownership and access is
a very important design pattern for GPU programming. For
these types of relatively simple kernels, high efficiency can
be achieved. For example, the triad kernel in this example
is memory bandwidth limited and is able to reach more
than 80% of the peak memory bandwidth on NVIDIA A100
GPUs, despite the cost associated with multi-dimensional
arrays such as the conversion between 1D and 3D indices.

Kernel Fusing
AMR applications can have many relatively small patches
when the regions identified as requiring higher resolution

1 // triad on MultiFabs: mfa = mfb + scalar*mfc
2 #pragma omp parallel if (Gpu::notInLaunchRegion())
3 for (MFIter mfi(mf, TilingIfNotGPU());
4 mfi.isValid(); ++mfi)
5 {
6 auto const& a = mfa.array(mfi);
7 auto const& b = mfb.const_array(mfi);
8 auto const& c = mfc.const_array(mfi);
9 ParallelFor(mfi.tilebox(),

10 [=] AMREX_GPU_DEVICE (int i, int j, int k) {
11 a(i,j,k) = b(i,j,k) + scalar * c(i,j,k);
12 });
13 }

Listing 1: Example of ParallelFor. This code can be compiled
to run on CPU with OpenMP or GPU with CUDA, HIP, or
SYCL.

are small and cannot be merged to form larger patches. To
launch a GPU kernel for each of the small patches would
incur a significant cost due to GPU kernel launch latency. For
example, a simple kernel like the triad in Listing 1 running
on an AMD MI250X will only be able to achieve ∼ 10%
of its peak memory bandwidth on small boxes of 323 cells.
To alleviate the latency issue of launching multiple small
kernels, AMReX provides a kernel fusion capability. Listing
2 shows an example of rewriting the code in Listing 1 to use a
single kernel launch for all the local data in the MultiFab.

1 // triad on MultiFabs: mfa = mfb + scalar*mfc
2 auto const& a = mfa.arrays;
3 auto const& b = mfb.const_arrays;
4 auto const& c = mfc.const_arrays;
5 ParallelFor(mfa,
6 [=] AMREX_GPU_DEVICE (int box,
7 int i, int j, int k) {
8 a[box](i,j,k) = b[box](i,j,k)
9 + scalar * c[box](i,j,k);

10 });

Listing 2: Example of kernel fusion. Only one GPU kernel is
launched even when there are multiple patches.

In this example, if there are 512 patches of 323 cells
each, only one GPU kernel is launched to work on all 512
patches, which enables it to achieve similar performance as
if operating on a single patch of 2563 cells.

Compile-Time Kernel Specialization
The development of AMReX is often driven by the needs of
AMReX-based applications. A number of these applications
often use runtime parameters in GPU kernels such as shown
in Listing 3, which shows an example with six possible
options for execution with branches based on runtime
conditions.

Because the runtime options are the same for all
threads, thread divergence is not an issue. However,
different branches may place drastically different demands
on computing resources such as registers. The compiler
could not know at compile time which branch will be
taken. Even if the cheapest branch is taken at run time, the

Prepared using sagej.cls

4 Journal Title XX(X)

1 int A_runtime_option = ...;
2 int B_runtime_option = ...;
3 enum A_options : int { A0, A1, A2, A3};
4 enum B_options : int { B0, B1 };
5 ParallelFor(N, [=] AMREX_GPU_DEVICE (int i)
6 {
7 // ...
8 if (A_runtime_option == A0) {
9 // ...

10 } else if (A_runtime_option == A1) {
11 // ...
12 } else if (A_runtime_option == A2) {
13 // ...
14 else {
15 // ...
16 }
17 if (A_runtime_option != A3 &&
18 B_runtime_option == B1) {
19 // ...
20 }
21 // ...
22 });

Listing 3: Example of GPU kernel with runtime options.

performance could be severely affected by the assumption
that the most expensive branch might be taken. To address
this performance issue, AMReX provides a special version
of the ParallelFor kernel-launching construct that is
optimized for this type of case.

1 int A_runtime_option = ...;
2 int B_runtime_option = ...;
3 enum A_options : int { A0, A1, A2, A3};
4 enum B_options : int { B0, B1 };
5 ParallelFor(
6 TypeList<CompileTimeOptions<A0,A1,A2,A3>,
7 CompileTimeOptions<B0,B1>
8 >{},
9 {A_runtime_option, B_runtime_option},

10 N,
11 [=] AMREX_GPU_DEVICE (int i,
12 auto A_control,
13 auto B_control) {
14 // ...
15 if constexpr (A_control.value == A0) {
16 // ...
17 } else if constexpr (A_control.value == A1) {
18 // ...
19 } else if constexpr (A_control.value == A2) {
20 // ...
21 else {
22 // ...
23 }
24 if constexpr (A_control.value != A3 &&
25 B_control.value == B1) {
26 // ...
27 }
28 // ...
29 });

Listing 4: Example of the optimized version of a GPU kernel
with runtime options.

Using this form of ParallelFor, the example in
Listing 3 can be rewritten as shown in Listing 4.

Here, the code is expanded into all combinations of
the run time parameters at compile time using C++17
fold expressions. The resulting code does not incur an
unnecessary performance penalty if the expensive branches
are not taken.

Parallel Reductions
AMReX provides a flexible and performance portable
approach for common node-level reductions used by
applications. Listing 5 shows an example of computing the
sum, minimum and maximum of a MultiFab on a parallel
compute device (GPU or multi-core CPU). As mentioned
earlier, global reduction primitives for multi-node reductions
via MPI are also provided.

1 auto const& a = mf.const_arrays();
2 auto result = ParReduce(
3 TypeList<ReduceOpSum,ReduceOpMin,ReduceOpMax>{},
4 TypeList<Real,Real,Real>{},
5 mf,
6 [=] AMREX_GPU_DEVICE (int box,
7 int i, int j, int k)
8 {
9 auto v = a[box](i,j,k);

10 return {v, v, v};
11 }
12);
13 // result is a tuple holding the sum, min and max.

Listing 5: Performing an on-device, parallel reduce on mixed
reduction types.

These parallel reduction operations for mixed data
types also work for particle data, which is discussed
in more detail in the next section. This is useful, for
example, in the AMReX-based epidemiological modeling
code ExaEpi. Every day, the total number of infected,
hospitalizations, people on ventilators, etc. need to be tracked
for diagnostic purposes. Fusing these global reduction
operations minimizes the number of GPU kernel launches
needed.

MPI Communication of Mesh and Particle Data
We have added support to AMReX for GPU-aware MPI. If it
is enabled, AMReX allocates the buffers from a dedicated
memory arena to improve performance. Moving data
between the buffers and data containers (e.g., MultiFab)
could be costly if care is not taken to minimize the GPU
kernel launch overhead. When packing/unpacking the buffer,
we often need to copy data from/to hundreds of small
regions, which could be as small as a single cell. We
use kernel fusion to ameliorate this cost. For mesh data,
we have also added support for function templates for
user-defined index mapping to capture application-specific
communication patterns, which can be useful for multi-block
applications and non-Cartesian coordinates.

Pure Struct-of-Array Particles
Particles in AMReX are associated with a level and grid
in the adaptive mesh refinement hierarchy based on their

Prepared using sagej.cls

Myers et al. 5

position coordinates. For CPU-only applications, grids are
typically further subdivided into tiles for OpenMP threading
and efficient cache-blocking (Zhang et al. 2021).

As a result, particles in AMReX are required to have
AMReX SPACEDIM position components. In addition, a
64-bit unsigned integer id number that uniquely identifies
each particle both on and across all MPI ranks is also
required; currently, AMReX supports up to ∼ 5× 1011

unique particles on up to ∼ 16.7× 106 MPI ranks. These
required components can be extended by an arbitrary number
of real- and integer-valued optional components that can be
used to store application-specific data (for example, mass,
momentum, moment of inertia, ionization level, etc.). These
optional components can either be registered at compile time
or added at run time.

As discussed earlier, AMReX initially required the particle
coordinates and id number to be stored in an AoS-style.
This layout is non-optimal in several ways. First, any
time the particle positions were accessed, the id numbers
for those particles would also be read into cache. If the
id numbers (mostly used for postprocessing and to flag
particles for later removal) were not needed, between 1/4
(double precision floats, 3 spatial dimensions) and 2/3
(single precision floats, 1 spatial dimension) of the available
memory bandwidth was wasted reading in data that wouldn’t
be used. A similar point could made for operations that
only need to access and/or modify the id number and not
the particle position coordinates. Second, the AoS layout
is unable to take advantage of SIMD instructions (either
manual or auto-vectorization), in which the exact same
operations are applied to adjacent (and properly aligned)
memory locations. Taking advantage of these instructions
is crucial to achieving maximum performance on modern
CPU architectures. An SoA data layout can also better
take advantage of vectorized loads and stores, in which
consecutive threads access consecutive memory locations, on
GPU architectures as well.

To address these limitations, we have added to AMReX
the ability to store particle data, including the position
and id components, in pure SoA style. Figure 1 illustrates
the differences in data layout for the original AMReX
implementation where position and id numbers were
stored in AoS form and the new pure SoA-style. Our
implementation of this feature makes heavy use of
template metaprogramming with C++17 features such as
constexpr if to maintain compatibility with the legacy
AoS-style particle layout and to ensure that migrating codes
from the old to the new layout is minimally invasive. Listing
6 demonstrates how to use the new capabilities. The code at
the top is AoS-only, while the code on the bottom works for
both AoS-style and SoA-style particle data.

Since these changes, several AMReX-based codes have
made the transition to pure SoA particle data. In particular,
we studied the effect of this change on the performance
of ImpactX (Huebl et al. 2022a), a beam dynamics code
including space charge effects that uses AMReX for its
particle and mesh data structures as well as GPU offloading.
ImpactX is the successor of the IMPACT-Z code for beam
dynamics modeling in particle accelerators (Qiang et al.
2000).

...

...

...

...

thread 0 thread 1

...

...

...

...

...

...

...

thread 0 thread 1
= 4 bytes

Figure 1. Top: Old particle data layout with particle positions x,
y, and z and the unique id number stored AoS-style, along with
three additional components, a, b, and i stored SoA-style,
where a and b are real-valued and i is integer-valued. This
example shows the case of 3 spatial dimensions and double
precision floating point data. Bottom: New particle data layout
where all quantities are stored SoA-style. Note that, for GPU
execution, consecutive threads access adjacent memory
locations when reading in a component (say, the id numbers)
for the new layout but not the old. This enables vectorized loads
and stores and does not waste memory bandwidth on data that
will not be used. The new layout also enables better cache
reuse and vectorization on CPU architectures as well.

1 // old style based on AoS data layout
2 auto& tile = pti.GetParticleTile();
3 const auto np = tile.numParticles();
4 auto pdata = tile.getParticleTileData();
5

6 amrex::ParallelFor(np,
7 [=] AMREX_GPU_DEVICE (int i)
8 {
9 ParticleType& p = pdata.m_aos[i];

10 if (p.id().is_valid()) {
11 some_function(pdata, i);
12 }
13 });

1 // new style using pure SoA data layout
2 auto& tile = pti.GetParticleTile();
3 const auto np = tile.numParticles();
4 auto pdata = tile.getParticleTileData();
5

6 amrex::ParallelFor(np,
7 [=] AMREX_GPU_DEVICE (int i)
8 {
9 auto p = pdata[i];

10 if (p.id().is_valid()) {
11 some_function(pdata, i);
12 }
13 });

Listing 6: Example of migrating a ParIter loop from the old
layout to the new one. In both cases, we loop over all our
particles and apply an operation to only the valid ones (those
with ids greater than 0). The first code snippet illustrates the
old style in which the particle id was always stored as AoS.
The second snippet will work for both pure SoA and legacy-
style data layouts.

Prepared using sagej.cls

6 Journal Title XX(X)

Table 1 summarizes the improvement benefits seen in
ImpactX from transitioning its particles to the new, pure
SoA format. As a benchmark, we use a standard test
problem that propagates a particle beam through a single
FODO cell, i.e. through one cell of lattice constructed
of alternating focusing and defocusing quadrapolar lenses.
The performance improvements are shown for a few select
routines and also for the overall runtime of the test. For
the GPU test, we used a single NVIDIA A100 SMX with
80 GB of HBM. The CPU tests were run on a single core
of a 12th Gen Intel(R) Core(TM) i9-12900H. Both single
precision (SP) and double precision (DP) results are shown.
Overall, most routines see at least a small improvement from
the change in data structure and bandwidth savings, with
improvements of 2-3x not being uncommon due to synergies
with improved GPU occupancy, compiler auto-vectorization
for simple functions, and overhauled particle ID functions.
Finally, as an added benefit, the new layout also enables the

GPU CPU
SP DP SP DP

Push::Drift 2.32 1.80 2.17 1.76
Push::Quad 2.32 1.32 1.05 1.00
collect lost 2.78 3.65 2.48 3.24
add particles 1.05 1.06 1.02 1.02
overall 2.34 1.65 1.28 1.21

Table 1. ImpactX speedup from transition to pure SoA data
layout and optimized particle id handling. DP: double precision,
SP: single precision.

zero-copy GPU Python interface described in a later section
for the particle position and id numbers.

Memory Management
On heterogeneous systems, there are a variety of memory
types: device memory, managed memory, pinned host
memory, and pageable host memory. AMReX provides a
number of memory allocators so that the user can choose
the type of memory for allocation. To minimize the cost
of data movement, AMReX by default allocates data in
device memory, and a runtime parameter is provided for
switching to managed memory. Allocating and deallocating
GPU memory can be very costly. To minimize memory
allocation, AMReX pre-allocates a large chunk of device
memory during initialization and stores it in a memory arena.
This significantly improves the performance for operations
where temporary memory space is needed for example, in
our implementation of computing the sum of the data in
a MultiFab. It takes 0.0001 seconds on NVIDIA A100
for a MultiFab with 2563 cells using the memory arena;
Without the memory arena, the cost is 0.0006 seconds.

A common mistake in GPU programming allows the
memory used in a GPU kernel to be freed before the
kernel finishes execution, due to the asynchronous nature
of GPU kernel launches. One could add a synchronization
call after the GPU kernel launch, but this could add
unnecessary synchronization to the code. In AMReX, we
have implemented an asynchronous-safe memory arena that
does not require synchronization. An example is shown in
Listing 7, in which the code is asynchronous-safe because
we use amrex::The Async Arena.

1 {
2 FArrayBox tmp(..., The_Async_Arena());
3 ParallelFor(...); // Async kernel using tmp
4 } // Scope ends: the destructor of tmp is called.

Listing 7: Example of using the asynchronous-safe memory
arena.

The implementation for CUDA uses a stream ordered
memory allocator that guarantees the free happens after the
kernel finishes. For HIP and SYCL, we use a host callback
function to implement the memory safety guarantee.

These memory arenas also work with particle data. In
fact, with the inherently dynamic data structures necessitated
by particle methods, the use of the arenas is particularly
desirable. The memory arenas also allow flexibility in
placing particle data in different types of memory for GPU
execution. By calling the appropriate arena, users can place
data in device memory, pinned host memory, managed
memory, etc, based on how they plan to use this data in their
application workflow. For example, for off-line or for in-situ
analysis, it often makes sense to perform the analysis on the
host side, to avoid over-subscribing device memory. Both
WarpX and the AMReX-based biological cell modeling code
BoltzmannMFX (Palmer et al. 2023) frequently copy data
into temporary host-side particle containers that use pinned
memory to speed up the device-to-host data transfers for
analysis.

pyAMReX

AMReX has seen wide adoption as a software library
used in pre-compiled applications. With the popularity of
interactive computing in recent years, e.g., via Project
Jupyter (Kluyver et al. 2016), and the rise of scripting
languages as productive runtime “glue code” to connect
and steer software components, using AMReX from a
scripting layer for tasks like integration, data processing
and/or prototyping is desirable.

The new pyAMReX project is part of the AMReX
software ecosystem and builds directly on the AMReX
C++ library. The Python language bindings of pyAMReX
bridge the compute role of AMReX in block-structured
simulation codes with the data science software ecosystem.
With pyAMReX providing zero-copy GPU data access for
workflows in AI/ML and in situ analysis, applications can
be coupled and extended from Python, and rapid, massively
parallel prototyping is enabled.

pyAMReX is implemented as a C++ library via
pybind11 (Jakob et al. 2017), which targets the Python C API
to expose standardized C entry points of Python modules.
Due to the evolution of the C++ language from C++11
to C++17, type introspection and meta-programming inside
pybind11 make adding new bindings for AMReX functions,
classes, etc. simple and maintainable.

Prepared using sagej.cls

Myers et al. 7

1 #include "pyAMReX.H"
2 #include <AMReX_Box.H>
3

4 // ...
5 py::class_< Box >(m, "Box")
6 // constructor(s)
7 .def(py::init<
8 IntVect const &,
9 IntVect const &

10 >(),
11 py::arg("small"),
12 py::arg("big")
13)
14 // ...
15

16 .def("intersects",
17 &Box::intersects)
18 .def_property_readonly(
19 "ok", &Box::ok)
20 ;

Listing 8: pyAMReX uses plain C++ code to register Python
types. This snippet defines the AMReX class Box in Python
with pybind11.

Listing 8 shows how to expose the C++ type
amrex::Box to Python; once it is registered other
classes and methods can use this type in their Python
interfaces. Following the same logic, applications that
are built on AMReX just need to add minimal Python
bindings themselves, because they can rely on all the
Python-registered AMReX types from pyAMReX.

Python modules written with pybind11 are pre-compiled
to shared libraries, which automatically expose only a
set of standardized, C API symbols for import into
the Python interpreter, that ultimately call AMReX C++
routines. Additional type extensions that are more effectively
written in pure Python are added at import time. In the
future, pyAMReX might transition to nanobind (Jakob
2022), which is a recent reimplementation of pybind11 APIs
with improved compile-, link- and runtime of the binding
code.

Zero-Copy APIs
Exchanging large, heap/GPU-allocated data across API
interfaces in Python, without the need to create copies,
benefits from the permissive memory access rights in
operating systems, since the Python interpreter and all
its dynamically loaded (imported) libraries reside in the
same process. Thus, any process-allocated memory can be
accessed across Python modules and loaded C++ libraries
by exchanging a pointer and the respective meta information
that describe data placement and layout.

Luckily, in the past years the exchange of multi-
dimensional (ND) array data in Python has been stan-
dardized in CPU code via the array protocol (Con-
sortium for Python Data API Standards 2021) driven
by NumPy (Harris et al. 2020), based on the earlier
buffer protocol implementations in Python. Adding support
for sharing a Python type’s data with read/write access
requires implementation of a __array_interface__
dictionary property for AMReX Python types, which
describes primarily shape, stride, data types, description

and data pointer, among other details. The standardized
__cuda_array_interface__ uses nearly the same
metadata, with an optional CUDA stream added. Since
unified memory pointers are available in CUDA, a pointer
to GPU data can be exchanged between AMReX and
CuPy (Okuta et al. 2017), Numba (Lam et al. 2015), or
PyTorch (Paszke et al. 2019) to create views into their
respective host-controlled GPU data container that works the
same way as it works with NumPy CPU array data.

A new iteration on the CPU/GPU array interfaces
was pursued with the deep learning pack standard
(DLPack). DLPack uniformly wraps CPU or GPU data and
brings improvements in supported accelerated programming
models, more supported packages in the data science
ecosystem, and in lifetime (data ownership) handling. A
DLPack implementation in pyAMReX is ongoing* and will
enable ROCm and SYCL GPU support.

Listing 9 shows how the array interface is used in practice.
Line 7 creates a CuPy ND array that is a readable and
writable data view into an existing AMReX Array4. CuPy
reads the Array4.__cuda_array_interface__ dic-
tionary and extracts data pointer and layout information
to create a non-owning cupy.ndarray. Equivalently,
NumPy ND arrays and PyTorch tensors are created.

1 import amrex.space3d as amr
2 import cupy as cp
3

4 mfab = amr.MultiFab(<...>)
5 for mfi in mfab:
6 array4 = mfab.array(mfi)
7 cp_arr = cp.array(array4, copy=False)

Listing 9: Standardized interfaces on Python types can be
used to create views from one datatype into another. Here, a
CuPy ND array is used to read-write access the field data in
an AMReX Array4.

Convenient methods are added to types like Array4,
e.g., .to_numpy() and .to_cupy(), which spare
the user from the extra line and also keep the ND
index order in AMReX-typical Fortran order (indexed
x,y,z,component as F_CONTIGUOUS, although
C_CONTIGUOUS is the default for Python). Notably,
in benchmarks with CuPy, Fortran indexing caused
performance drawbacks. Thus, experienced users have the
choice to set a .to_cupy(order="C") argument to
index as C-ordered component,z,y,x and perform
optimally with CuPy.†

Additional arguments such as
.to_numpy(copy=True) are supported and perform
the expected device-to-host copy if called on a device
memory container, and a device-to-device copy if performed
as .to_cupy(copy=True). For users that use the
managed memory arena in AMReX, it is worth noting that
.to_numpy(copy=False) works for read and write on

∗https://github.com/AMReX-Codes/pyamrex/issues/9
†https://github.com/cupy/cupy/issues/7783

Prepared using sagej.cls

https://github.com/AMReX-Codes/pyamrex/issues/9
https://github.com/cupy/cupy/issues/7783

8 Journal Title XX(X)

GPU memory as expected, but includes the performance
penalty of implicit data transfers.

Computing in Python
Currently, pyAMReX does not expose
amrex::ParallelFor/Reduce/... computing
primitives, but can call pre-compiled functions from Python
that make use of those. In order to be able to generate
new compute kernels at runtime from the Python scripting
language, pyAMReX makes use of the aforementioned
zero-copy APIs to pass data for compute into a third-party
Python CPU/GPU framework of choice, e.g., NumPy, CuPy,
Numba, PyTorch, which then can support just-in-time (JIT)
GPU kernel compilation.

Listing 10 shows how to generate accelerated array
computations on an ND field (AMReX MultiFab). As is
typical in AMReX, the outermost loops iterate over mesh-
refinement levels and data blocks on the current device. Lines
22ff. create a CuPy or NumPy array view, followed by a
device-side assignment of the value 42.0 to all index points
using the () ellipsis, independent of array rank.

1 # finest active MR level, get from a
2 # simulation's AmrMesh object, e.g.:
3 # finest_level = sim.finest_level
4

5 # iterate over mesh-refinement levels
6 for lev in range(finest_level + 1):
7 # get an existing MultiFab, e.g.,
8 # from a simulation:
9 # mfab = sim.get_field(lev=lev)

10 # Config = sim.extension.Config
11

12 # grow (aka guard/ghost/halo) regions
13 ngv = mfab.n_grow_vect
14

15 # get every local block of the field
16 for mfi in mfab:
17 # global index box w/ guards
18 bx = mfi.tilebox().grow(ngv)
19

20 # numpy representation: non-
21 # copying view, w/ guard/ghost
22 field = mfab.array(mfi).to_cupy() \
23 if Config.have_gpu else \
24 mfab.array(mfi).to_numpy()
25

26 field[()] = 42.0

Listing 10: An example Python script showing accelerated
array operations on a field with pyAMReX v24.03.

One difference when operating on NumPy/CuPy views
compared to AMReX Array4 is the index offset of each
local data block. The former use zero-based indexing on
local blocks while AMReX uses global indexing.

In Listing 10, only the select-all array operation
[()] = 42.0 represents the “hot loop” of operations (or
on GPU, the kernel function). Other Python array ellipsis
selectors such as operating on an index range with an offset
(e.g., [1:,1:, 1:]) or a slice (e.g., [0, ...]), etc. can
be used as usual to form more complex expressions such
as stencils. In frameworks like CuPy and Numba, multiple

subsequent array operations can also be fused into one
kernel, using their respective framework JIT syntax.

Particle operations follow the same logic, as shown in
Listing 11. Both the legacy AoS + SoA and the new pure
SoA particle layout are supported in pyAMReX. The pure
SoA particle layout provides better performance as well as
write access for GPU particle positions and indices in CuPy.‡

1 # code-specific getter function, e.g.:
2 # pc = sim.get_particles()
3 # Config = sim.extension.Config
4

5 # iterate over mesh-refinement levels
6 for lvl in range(pc.finest_level + 1):
7 # loop local tiles of particles
8 for pti in pc.iterator(pc, level=lvl):
9 # compile-time and

10 # runtime attributes
11 soa = pti.soa().to_cupy() \
12 if Config.have_gpu else \
13 pti.soa().to_numpy()
14

15 x = soa.real["x"]
16 y = soa.real["y"]
17

18 # write to all particles in tile
19 x[:] = 0.30
20 y[:] = 0.35
21 soa.real["z"][:] = 0.40
22

23 soa.real["a"][:] = x[:]**2
24 soa.real["b"][:] = x[:] + y[:]
25 # ...
26

27 # all int attributes
28 for soa_int in soa.int.values():
29 soa_int[:] = 12

Listing 11: An example Python script showing accelerated
particle operations with pyAMReX v24.03.

As for the ND field arrays, the “hot loop” of computation
is best placed in array operations such as [:] = value.
Selective indexing and masking with temporary arrays are
the usual patterns in high-performance Python, and various
Python frameworks support JIT compilation of explicit
indices when needed.

Project Integration
pyAMReX was initially designed with workflows in mind:
(i) to enhance an existing AMReX application with Python
code, data-science and/or AI/ML capabilities, (ii) to write a
standalone application or test of AMReX, rapidly prototyped
in Python.

Enhancing, steering and modifying HPC applications with
routines written in Python is a desirable feature in exascale-
ready codes such as WarpX, which already benefited from
a runtime modularity in the (CPU-only) predecessor code
WARP (Grote et al. 2005). Spearheading the adoption of
pyAMReX for exascale modeling codes, the AMReX-based
WarpX and ImpactX simulation codes (Huebl et al. 2022b)

‡https://github.com/cupy/cupy/issues/2031

Prepared using sagej.cls

https://github.com/cupy/cupy/issues/2031

Myers et al. 9

use user-defined C++ to Python callbacks and manipulate
AMReX-managed GPU data via pyAMReX: users adjust
the treatment of selected particle species, prototype new
physical accelerator elements or replace numerical solvers,
load external data, and steer simulation behavior in a way
that would be too custom or complex to define in a key-value
based inputs file syntax.

An integration with a machine learning (ML) framework
has recently been reported in Sandberg et al. (2024). In
this work, the ImpactX code (Huebl et al. 2022a) is
augmented using pyAMReX to couple analytical particle
beam updates and data-driven particle updates using a pre-
trained neural network. The ML training data was created
with a high-fidelity WarpX simulation and used to train a
neural network offline. The resulting model is then integrated
with the CUDA bindings of pyAMReX to update the GPU-
accelerated ImpactX particle simulation state with GPU-
accelerated neural network inference using PyTorch. For
particle accelerator physicists, replacing traditionally costly
sections of a beamline simulation with such specialized
surrogate models enables the study of whole-device models
in start-to-end simulations.

Finally, pyAMReX also supports the design of standalone
benchmarks, prototype examples, new AMReX-powered
command line tools and even applications, purely from
Python. AMReX tutorials have been updated to include
examples of the Python usage of the MultiFab class and
to solve a multi-dimensional heat equation, providing easy
accessibility of AMReX to new community members and
for use in education. Additionally, being able to integrate
AMReX functionality in scripts will enable users and
developers to build standalone data processing tools, e.g., for
post-processing, and will enable rapid prototyping and unit
testing of AMReX functionality and numerical solvers based
on AMReX.

Conclusions and Future Work
In this paper, we have reviewed the basic features of
AMReX and discussed a number of new features that
have been added to the framework. One of these new
features supports the aggregation of a number of small
computational kernels into a single kernel launch. A related
feature incorporates an efficient kernel launching mechanism
that supports selection of different kernel options at runtime.
We have also developed a flexible reduction mechanism that
performs a number of different reductions simultaneously.

We have made several enhancements to the particle
functionality in AMReX. We have introduced a more flexible
approach for representing particle data that can combine
both SoA and AoS representations. In particular, AMReX
now supports a pure SoA representation that has led to
significant performance improvements for a number of
applications. We have also developed a Python binding
of AMReX, pyAMReX, that provides a bridge between
AMReX simulation methodology and data science software.

There are a number of additional capabilities that we
are currently developing within AMReX to support the
requirements of new applications. One area of active
development is to extend interoperability using a multiblock
paradigm to couple different applications efficiently. In a

multiblock approach, each application has its own index
space and the framework provides the mapping between
index spaces and between (possibly) different solution
representations. The applications can then be run in an
MPMD mode using separate MPI commnicators with
AMReX handling the communication between the different
codes needed for the overall simulation. This facilitates
coupling different applications without significant recoding.
Use cases here range from solving a system of PDEs on
a mapped multiblock domain that cannot be represented
with a global index space to coupling different PDE solvers
in different domains to coupling a stochastic algorithm
such as kinetic Monte Carlo to a fluctuating hydrodynamics
solver to model a catalytic surface interacting with a fluid.
A related area of development is to support algorithm
refinement approaches in which the representation of the
underlying physics changes as a function of resolution. A
hybrid algorithm that dynamically switches from a coarse-
grained continuum model to a fine-grained particle model
depending on flow conditions would be a typical use case for
this capability. We are also extending the python interface
to AMReX to support integration of ML concepts into
AMReX-based applications. Use cases here would include
developing ML-based surrogates for outer loop operations
and developing ML methodologies for coupling between
different scales.

Another driver for AMReX development is extending
the performance portability constructs to work optimally on
new architectures or new features in the software stack on
existing architectures. One particularly interesting direction
in this direction is the use of AMReX as the basis for
the co-design of custom architectures. The developments of
chiplet technology have the potential to support the deign
of performant, energy efficient specialized architectures for
select applications.

Acknowledgements

We acknowledge the AMReX open source community for their
invaluable contributions. In addition, we acknowledge and thank
Shreyas Ananthan, Ryan Sandberg and all other pyAMReX
contributors. This research was supported by: the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration; the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research, Exascale Computing Project under contract DE-AC02-
05CH11231; the U.S. Department of Energy (DOE) Office of
Advanced Scientific Computing Research (ASCR) via the Scientific
Discovery through Advanced Computing (SciDAC) program
FASTMath Institute; and the Laboratory Directed Research and
Development Program of Lawrence Berkeley National Laboratory
under U.S. Department of Energy Contract No. DE-AC02-
05CH11231. This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the U.S.
Department of Energy under and resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

Prepared using sagej.cls

https://github.com/AMReX-Codes/pyamrex/graphs/contributors
https://github.com/AMReX-Codes/pyamrex/graphs/contributors

10 Journal Title XX(X)

References

Almgren A, Lattanzi A, Haque R, Jha P, Kosovic B, Mirocha
J, Perry B, Quon E, Sanders M, Wiersema D, Willcox
D, Yuan X and Zhang W (2023) Erf: Energy research
and forecasting. Journal of Open Source Software 8(87):
5202. DOI:10.21105/joss.05202. URL https://doi.org/

10.21105/joss.05202.
Almgren A, Sazo MB, Bell J, Harpole A, Katz M, Sexton

J, Willcox D, Zhang W and Zingale M (2020) CASTRO:
A Massively Parallel Compressible Astrophysics Simulation
Code. Journal of Open Source Software 5(54): 2513. DOI:
10.21105/joss.02513.

Almgren AS, Beckner VE, Bell JB, Day MS, Howell LH, Joggerst
CC, Lijewski MJ, Nonaka A, Singer M and Zingale M
(2010) CASTRO: A New Compressible Astrophysical Solver.
I. Hydrodynamics and Self-gravity. Astrophysical Journal
715(2): 1221–1238. DOI:10.1088/0004-637X/715/2/1221.

Almgren AS, Bell JB, Colella P, Howell LH and Welcome
M (1998) A conservative adaptive projection method for
the variable density incompressible Navier-Stokes equations.
Journal of Computational Physics 142: 1–46. DOI:10.1006/
jcph.1998.5890.

Almgren AS, Bell JB, Lijewski MJ, Lukić Z and Andel EV
(2013) Nyx: A massively parallel AMR code for computational
cosmology. The Astrophysical Journal 765(1): 39. DOI:
10.1088/0004-637x/765/1/39.

Beckingsale DA, Burmark J, Hornung R, Jones H, Killian W,
Kunen AJ, Pearce O, Robinson P, Ryujin BS and Scogland TR
(2019) RAJA: Portable Performance for Large-Scale Scientific
Applications. In: 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC).
pp. 71–81. DOI:10.1109/P3HPC49587.2019.00012.

Berger MJ and Colella P (1989) Local adaptive mesh refinement for
shock hydrodynamics. Journal of Comptuational Physics 82:
64–84. DOI:10.1016/0021-9991(89)90035-1.

Berger MJ and Oliger J (1984) Adaptive mesh refinement
for hyperbolic partial differential equations. Journal of
Computational Physics 53: 484–512. DOI:10.1016/0021-
9991(84)90073-1.

Consortium for Python Data API Standards (2021) Python array
API standard. URL https://data-apis.org/array-

api.
de Frahan MTH, Rood JS, Day MS, Sitaraman H, Yellapantula

S, Perry BA, Grout RW, Almgren A, Zhang W, Bell JB and
Chen JH (2023) Pelec: An adaptive mesh refinement solver for
compressible reacting flows. The International Journal of High
Performance Computing Applications 37(2): 115–131. DOI:
10.1177/10943420221121151.

Dhruv A (2024) AMReX-Bittree-Performance. URL
https://github.com/Lab-Notebooks/AMReX-

Bittree-Performance.
Diederichs S, Benedetti C, Huebl A, Lehe R, Myers A, Sinn

A, Vay JL, Zhang W and Thévenet M (2022) Hipace++:
A portable, 3d quasi-static particle-in-cell code. Computer
Physics Communications 278: 108421. DOI:10.1016/
j.cpc.2022.108421.

Dubey A, Almgren A, Bell J, Berzins M, Brandt S, Bryan G,
Colella P, Graves D, Lijewski M, Löffler F, O’Shea B, Schnetter
E, Van Straalen B and Weide K (2014) A survey of high

level frameworks in block-structured adaptive mesh refinement
packages. Journal of Parallel and Distributed Computing
74(12): 3217 – 3227. DOI:10.1016/j.jpdc.2014.07.001.

Edwards H, Trott CR and Sunderland D (2014) Kokkos: Enabling
manycore performance portability through polymorphic mem-
ory access patterns. Journal of Parallel and Distributed Com-
puting 74(12): 3202 – 3216. DOI:10.1016/j.jpdc.2014.07.003.
Domain-Specific Languages and High-Level Frameworks for
High-Performance Computing.

Esclapez L, Day M, Bell J, Felden A, Gilet C, Grout R, de Frahan
MH, Motheau E, Nonaka A, Owen L, Perry B, Rood J,
Wimer N and Zhang W (2023) Pelelmex: an amr low mach
number reactive flow simulation code without level sub-
cycling. Journal of Open Source Software 8(90). DOI:
10.21105/joss.05450.

ExaEpi (2023) ExaEpi documentation. URL https://

exaepi.readthedocs.io.
Fedeli L, Huebl A, Boillod-Cerneux F, Clark T, Gott K, Hillairet

C, Jaure S, Leblanc A, Lehe R, Myers A, Piechurski C, Sato
M, Zaı̈m N, Zhang W, Vay JL and Vincenti H (2022) Pushing
the frontier in the design of laser-based electron accelerators
with groundbreaking mesh-refined particle-in-cell simulations
on exascale-class supercomputers. In: Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’22. IEEE Press. ISBN
9784665454445. DOI:10.1109/SC41404.2022.00008.

Grote DP, Friedman A, Vay J and Haber I (2005) The WARP
Code: Modeling High Intensity Ion Beams. AIP Conference
Proceedings 749(1): 55–58. DOI:10.1063/1.1893366.

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R,
Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del
Rı́o JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K,
Reddy T, Weckesser W, Abbasi H, Gohlke C and Oliphant TE
(2020) Array programming with NumPy. Nature 585(7825):
357–362. DOI:10.1038/s41586-020-2649-2.

Huebl A, Lehe R, Mitchell CE, Qiang J, Ryne RD, Sandberg RT
and Vay JL (2022a) Next Generation Computational Tools for
the Modeling and Design of Particle Accelerators at Exascale.
In: Proc. 5th Int. Particle Accel. Conf. (NAPAC’22), number 5
in International Particle Accelerator Conference. Albuquerque,
NM, USA: JACoW Publishing, Geneva, Switzerland. ISBN
978-3-95450-232-5, pp. 302–306. DOI:10.18429/JACoW-
NAPAC2022-TUYE2.

Huebl A, Lehe R, Zoni E, Shapoval O, Sandberg RT, Garten
M, Formenti A, Jambunathan R, Kumar P, Gott K,
Myers A, Zhang W, Almgren A, Chad E M, Qiang J,
Sinn A, Diederichs S, Thevenet M, Grote DP, Fedeli L,
Clark T, Zaim N, Vincenti H and Vay JL (2022b) From
Compact Plasma Particle Sources to Advanced Accelerators
with Modeling at Exascale. In: Proceedings of the
20th Advanced Accelerator Concepts Workshop (AAC’22),
Advanced Accelerator Concepts Workshop. Hauppauge,
NY, USA: arXiv. URL https://arxiv.org/abs/

2303.12873. In print.
Jakob W (2022) nanobind: tiny and efficient C++/Python bindings.

Https://github.com/wjakob/nanobind.
Jakob W, Rhinelander J and Moldovan D (2017) pybind11

– Seamless operability between C++11 and Python.
Https://github.com/pybind/pybind11.

Prepared using sagej.cls

https://doi.org/10.21105/joss.05202
https://doi.org/10.21105/joss.05202
https://data-apis.org/array-api
https://data-apis.org/array-api
https://github.com/Lab-Notebooks/AMReX-Bittree-Performance
https://github.com/Lab-Notebooks/AMReX-Bittree-Performance
https://exaepi.readthedocs.io
https://exaepi.readthedocs.io
https://arxiv.org/abs/2303.12873
https://arxiv.org/abs/2303.12873

Myers et al. 11

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M,
Frederic J, Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P,
Avila D, Abdalla S, Willing C and development team J (2016)
Jupyter notebooks - a publishing format for reproducible
computational workflows. In: Loizides F and Scmidt B
(eds.) Positioning and Power in Academic Publishing: Players,
Agents and Agendas. Netherlands: IOS Press, pp. 87–90.

Lam SK, Pitrou A and Seibert S (2015) Numba: a llvm-based
python jit compiler. In: Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC, LLVM ’15. New
York, NY, USA: Association for Computing Machinery. ISBN
9781450340052. DOI:10.1145/2833157.2833162.

Musser J, Almgren AS, Fullmer WD, Antepara O, Bell JB,
Blaschke J, ott KG, Myers A, Porcu R, Rangarajan D, Rosso
M, Zhang W and Syamlal M (2022) Mfix-exa: A path toward
exascale cfd-dem simulations. The International Journal
of High Performance Computing Applications 36(1): 40–58.
DOI:10.1177/10943420211009293.

Okuta R, Unno Y, Nishino D, Hido S and Loomis C (2017) CuPy:
A NumPy-Compatible Library for NVIDIA GPU Calculations.
In: Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Thirty-first Annual Conference on Neural
Information Processing Systems (NIPS).

Palmer BJ, Almgren AS, Johnson CGM, Myers AT and
Cannon WR (2023) BMX: Biological modelling and interface
exchange. Scientific Reports 13(1): 12235. DOI:10.1038/
s41598-023-39150-1.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf
A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J and Chintala S (2019) PyTorch: An
Imperative Style, High-Performance Deep Learning Library.
In: Wallach H, Larochelle H, Beygelzimer A, d'Alché-Buc F,
Fox E and Garnett R (eds.) Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.

Porcu R, Musser J, Almgren AS, Bell JB, Fullmer WD and
Rangarajan D (2023) MFIX-Exa: CFD-DEM simulations of
thermodynamics and chemical reactions in multiphase flows.
Chemical Engineering Science 273: 118614. DOI:10.1016/
j.ces.2023.118614.

Qiang J, Ryne RD, Habib S and Decyk V (2000) An object-oriented
parallel particle-in-cell code for beam dynamics simulation in
linear accelerators. Journal of Computational Physics 163(2):
434–451. DOI:10.1006/jcph.2000.6570.

REMORA (2023) REMORA documentation. URL https://

remora.readthedocs.io.
Sandberg RT, Lehe R, Mitchell CE, Garten M, Myers A, Qiang

J, Jean-Luc V and Huebl A (2024) Synthesizing particle-in-
cell simulations through learning and gpu computing for hybrid
particle accelerator beamlines. In: Proceedings of the Platform
for Advanced Scientific Computing Conference, PASC ’24.
New York, NY, USA: Association for Computing Machinery.
Under review.

Sharma A, Brazell MJ, Vijayakumar G, Ananthan S, Cheung L,
deVelder N, Henry de Frahan MT, Matula N, Mullowney P,
Rood J, Sakievich P, Almgren A, Crozier PS and Sprague
M (2024) ExaWind: Open-source CFD for hybrid-RANS/LES
geometry-resolved wind turbine simulations in atmospheric
flows. Wind Energy DOI:10.1002/we.2886.

Vay J, Almgren A, Bell J, Ge L, Grote D, Hogan M, Kononenko O,
Lehe R, Myers A, Ng C, Park J, Ryne R, Shapoval O, Thévenet
M and Zhang W (2018) Warp-X: A new exascale computing
platform for beam-plasma simulations. Nuclear Instruments
and Methods in Physics Research Section A Accelerators
Spectrometers Detectors and Associated Equipment DOI:
10.1016/j.nima.2018.01.035.

Zhang W, Myers A, Gott K, Almgren A and Bell J (2021) AMReX:
Block-structured adaptive mesh refinement for multiphysics
applications. The International Journal of High Performance
Computing Applications 35(6): 508–526. DOI:10.1177/
10943420211022811.

Author biography

Andrew Myers is a Computer Systems Engineer in the Center for
Computational Sciences and Engineering at Lawrence Berkeley
National Laboratory. His work focuses on scalable particle methods
for emerging architectures in the context of adaptive mesh
refinement. He is an active developer of the AMReX framework
and of the electromagnetic Particle-in-Cell code WarpX.

Weiqun Zhang is a Computer Systems Engineer at Lawrence
Berkeley National Laboratory. He is interested in high-performance
computing, computational physics, and programming in general.
Currently, he works on the AMReX software framework and
WarpX, an advanced electromagnetic Particle-in-Cell code.

Ann Almgren is a Senior Scientist at Lawrence Berkeley
National Laboratory, and the Department Head of the Applied
Mathematics Department in LBL’s Applied Mathematics and
Computational Research Division. Her primary research interest
is in computational algorithms for solving PDE’s in a variety of
application areas. Her current projects include the development
and implementation of new multiphysics algorithms in high-
resolution adaptive mesh codes that are designed for the latest
hybrid architectures. She is a Fellow of the Society of Industrial
and Applied Mathematics and was the Deputy Director of the ECP
AMReX Co-Design Center.

Thierry Antoun pursued his engineering studies at ENSTA Paris,
followed by an MSc in Applied Mathematics, specializing in
Modeling and Simulation at the Institut Polytechnique de Paris. He
was a summer intern at Lawrence Berkeley National Laboratory,
focusing on optimizing AMReX particle data structures and the
PIC codes WarpX & ImpactX. Since the end of 2023, he is a
member of the CExA team at the French Alternative Energies and
Atomic Energy Commission (CEA), working on the Kokkos library
to facilitate the transition of codes to GPUs.

John Bell is a Senior Scientist at Lawrence Berkeley National
Laboratory. His research focuses on the development and analysis
of numerical methods for partial differential equations arising in
science and engineering. He is a Fellow of the Society of Industrial
and Applied Mathematics and a member of the National Academy
of Sciences, and was the Director of the ECP AMReX Co-Design
Center.

Axel Huebl is a Research Scientist and computational physicist at
Lawrence Berkeley National Laboratory. He works at the interfaces

Prepared using sagej.cls

https://remora.readthedocs.io
https://remora.readthedocs.io

12 Journal Title XX(X)

of HPC, laser-plasma physics, and advanced particle accelerator
research. He drives open standards in his community, is the software
architect of the Beam, Plasma & Accelerator Simulation Toolkit
(BLAST) and is a lead-developer of Exascale simulation software
such as WarpX (2022 Gordon Bell Prize Winner) and ImpactX. He
is an active developer of AMReX and leads pyAMReX.

Alexander Sinn is an undergraduate student at Deutsches
Elektronen-Synchrotron (DESY). His research interest are in high-
performance computing and modeling of particle accelerators. He
is one of the maintainers of the BLAST simulation software
HiPACE++ for wakefield accelerator modeling.

Prepared using sagej.cls

	Introduction
	AMReX Overview
	New features and optimizations
	Performance Portability
	Kernel Fusing
	Compile-Time Kernel Specialization
	Parallel Reductions
	MPI Communication of Mesh and Particle Data
	Pure Struct-of-Array Particles
	Memory Management

	pyAMReX
	Zero-Copy APIs
	Computing in Python
	Project Integration

	Conclusions and Future Work

